face-api/dist/tfjs.esm.js

5002 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var iq=Object.create;var r0=Object.defineProperty;var aq=Object.getOwnPropertyDescriptor;var lq=Object.getOwnPropertyNames;var uq=Object.getPrototypeOf,cq=Object.prototype.hasOwnProperty;var wr=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Kt=(r,t)=>{for(var e in t)r0(r,e,{get:t[e],enumerable:!0})},pq=(r,t,e,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let o of lq(t))!cq.call(r,o)&&o!==e&&r0(r,o,{get:()=>t[o],enumerable:!(n=aq(t,o))||n.enumerable});return r};var Kl=(r,t,e)=>(e=r!=null?iq(uq(r)):{},pq(t||!r||!r.__esModule?r0(e,"default",{value:r,enumerable:!0}):e,r));var A_=wr((hmt,E_)=>{E_.exports=Ue;var bo=null;try{bo=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function Ue(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}Ue.prototype.__isLong__;Object.defineProperty(Ue.prototype,"__isLong__",{value:!0});function Bn(r){return(r&&r.__isLong__)===!0}Ue.isLong=Bn;var w_={},I_={};function lc(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=I_[r],n)?n:(e=He(r,(r|0)<0?-1:0,!0),o&&(I_[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=w_[r],n)?n:(e=He(r,r<0?-1:0,!1),o&&(w_[r]=e),e))}Ue.fromInt=lc;function wo(r,t){if(isNaN(r))return t?ac:Io;if(t){if(r<0)return ac;if(r>=N_)return __}else{if(r<=-v_)return zn;if(r+1>=v_)return T_}return r<0?wo(-r,t).neg():He(r%Zp|0,r/Zp|0,t)}Ue.fromNumber=wo;function He(r,t,e){return new Ue(r,t,e)}Ue.fromBits=He;var Qg=Math.pow;function h0(r,t,e){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return Io;if(typeof t=="number"?(e=t,t=!1):t=!!t,e=e||10,e<2||36<e)throw RangeError("radix");var n;if((n=r.indexOf("-"))>0)throw Error("interior hyphen");if(n===0)return h0(r.substring(1),t,e).neg();for(var o=wo(Qg(e,8)),s=Io,i=0;i<r.length;i+=8){var a=Math.min(8,r.length-i),u=parseInt(r.substring(i,i+a),e);if(a<8){var l=wo(Qg(e,a));s=s.mul(l).add(wo(u))}else s=s.mul(o),s=s.add(wo(u))}return s.unsigned=t,s}Ue.fromString=h0;function oi(r,t){return typeof r=="number"?wo(r,t):typeof r=="string"?h0(r,t):He(r.low,r.high,typeof t=="boolean"?t:r.unsigned)}Ue.fromValue=oi;var C_=1<<16,Fq=1<<24,Zp=C_*C_,N_=Zp*Zp,v_=N_/2,S_=lc(Fq),Io=lc(0);Ue.ZERO=Io;var ac=lc(0,!0);Ue.UZERO=ac;var Yp=lc(1);Ue.ONE=Yp;var k_=lc(1,!0);Ue.UONE=k_;var d0=lc(-1);Ue.NEG_ONE=d0;var T_=He(-1,2147483647,!1);Ue.MAX_VALUE=T_;var __=He(-1,-1,!0);Ue.MAX_UNSIGNED_VALUE=__;var zn=He(0,-2147483648,!1);Ue.MIN_VALUE=zn;var xt=Ue.prototype;xt.toInt=function(){return this.unsigned?this.low>>>0:this.low};xt.toNumber=function(){return this.unsigned?(this.high>>>0)*Zp+(this.low>>>0):this.high*Zp+(this.low>>>0)};xt.toString=function(t){if(t=t||10,t<2||36<t)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(zn)){var e=wo(t),n=this.div(e),o=n.mul(e).sub(this);return n.toString(t)+o.toInt().toString(t)}else return"-"+this.neg().toString(t);for(var s=wo(Qg(t,6),this.unsigned),i=this,a="";;){var u=i.div(s),l=i.sub(u.mul(s)).toInt()>>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c="0"+c;a=""+c+a}};xt.getHighBits=function(){return this.high};xt.getHighBitsUnsigned=function(){return this.high>>>0};xt.getLowBits=function(){return this.low};xt.getLowBitsUnsigned=function(){return this.low>>>0};xt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(zn)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&!(t&1<<e);e--);return this.high!=0?e+33:e+1};xt.isZero=function(){return this.high===0&&this.low===0};xt.eqz=xt.isZero;xt.isNegative=function(){return!this.unsigned&&this.high<0};xt.isPositive=function(){return this.unsigned||this.high>=0};xt.isOdd=function(){return(this.low&1)===1};xt.isEven=function(){return(this.low&1)===0};xt.equals=function(t){return Bn(t)||(t=oi(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};xt.eq=xt.equals;xt.notEquals=function(t){return!this.eq(t)};xt.neq=xt.notEquals;xt.ne=xt.notEquals;xt.lessThan=function(t){return this.comp(t)<0};xt.lt=xt.lessThan;xt.lessThanOrEqual=function(t){return this.comp(t)<=0};xt.lte=xt.lessThanOrEqual;xt.le=xt.lessThanOrEqual;xt.greaterThan=function(t){return this.comp(t)>0};xt.gt=xt.greaterThan;xt.greaterThanOrEqual=function(t){return this.comp(t)>=0};xt.gte=xt.greaterThanOrEqual;xt.ge=xt.greaterThanOrEqual;xt.compare=function(t){if(Bn(t)||(t=oi(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};xt.comp=xt.compare;xt.negate=function(){return!this.unsigned&&this.eq(zn)?zn:this.not().add(Yp)};xt.neg=xt.negate;xt.add=function(t){Bn(t)||(t=oi(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,He(m<<16|f,c<<16|p,this.unsigned)};xt.subtract=function(t){return Bn(t)||(t=oi(t)),this.add(t.neg())};xt.sub=xt.subtract;xt.multiply=function(t){if(this.isZero())return Io;if(Bn(t)||(t=oi(t)),bo){var e=bo.mul(this.low,this.high,t.low,t.high);return He(e,bo.get_high(),this.unsigned)}if(t.isZero())return Io;if(this.eq(zn))return t.isOdd()?zn:Io;if(t.eq(zn))return this.isOdd()?zn:Io;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(S_)&&t.lt(S_))return wo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,He(f<<16|d,p<<16|m,this.unsigned)};xt.mul=xt.multiply;xt.divide=function(t){if(Bn(t)||(t=oi(t)),t.isZero())throw Error("division by zero");if(bo){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?bo.div_u:bo.div_s)(this.low,this.high,t.low,t.high);return He(e,bo.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?ac:Io;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return ac;if(t.gt(this.shru(1)))return k_;s=ac}else{if(this.eq(zn)){if(t.eq(Yp)||t.eq(d0))return zn;if(t.eq(zn))return Yp;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(Io)?t.isNegative()?Yp:d0:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(zn))return this.unsigned?ac:Io;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=Io}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:Qg(2,a-48),l=wo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=wo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Yp),s=s.add(l),o=o.sub(c)}return s};xt.div=xt.divide;xt.modulo=function(t){if(Bn(t)||(t=oi(t)),bo){var e=(this.unsigned?bo.rem_u:bo.rem_s)(this.low,this.high,t.low,t.high);return He(e,bo.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};xt.mod=xt.modulo;xt.rem=xt.modulo;xt.not=function(){return He(~this.low,~this.high,this.unsigned)};xt.and=function(t){return Bn(t)||(t=oi(t)),He(this.low&t.low,this.high&t.high,this.unsigned)};xt.or=function(t){return Bn(t)||(t=oi(t)),He(this.low|t.low,this.high|t.high,this.unsigned)};xt.xor=function(t){return Bn(t)||(t=oi(t)),He(this.low^t.low,this.high^t.high,this.unsigned)};xt.shiftLeft=function(t){return Bn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low<<t,this.high<<t|this.low>>>32-t,this.unsigned):He(0,this.low<<t-32,this.unsigned)};xt.shl=xt.shiftLeft;xt.shiftRight=function(t){return Bn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low>>>t|this.high<<32-t,this.high>>t,this.unsigned):He(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};xt.shr=xt.shiftRight;xt.shiftRightUnsigned=function(t){if(Bn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return He(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?He(e,0,this.unsigned):He(e>>>t-32,0,this.unsigned)};xt.shru=xt.shiftRightUnsigned;xt.shr_u=xt.shiftRightUnsigned;xt.toSigned=function(){return this.unsigned?He(this.low,this.high,!1):this};xt.toUnsigned=function(){return this.unsigned?this:He(this.low,this.high,!0)};xt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};xt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};xt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};Ue.fromBytes=function(t,e,n){return n?Ue.fromBytesLE(t,e):Ue.fromBytesBE(t,e)};Ue.fromBytesLE=function(t,e){return new Ue(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};Ue.fromBytesBE=function(t,e){return new Ue(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var cE=wr(()=>{});var pE=wr(()=>{});var GE=wr((VE,j0)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(VE,typeof j0=="object"&&j0,typeof define=="function"&&define)});var UE=wr((WE,X0)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(WE,typeof X0=="object"&&X0,typeof define=="function"&&define)});var qE=wr((HE,Y0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(HE,typeof Y0=="object"&&Y0,typeof define=="function"&&define)});var jE=wr((KE,Z0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(KE,typeof Z0=="object"&&Z0,typeof define=="function"&&define)});var YE=wr((XE,J0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(XE,typeof J0=="object"&&J0,typeof define=="function"&&define)});var JE=wr((ZE,Q0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(ZE,typeof Q0=="object"&&Q0,typeof define=="function"&&define)});var QE=wr(()=>{});var eA=wr((tA,ry)=>{(function(r,t,e){var n=256,o=6,s=52,i="random",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,I,N){var E=[];I=I==!0?{entropy:!0}:I||{};var A=g(h(I.entropy?[w,b(t)]:w==null?x():w,3),E),D=new f(E),F=function(){for(var P=D.g(o),V=a,G=0;P<u;)P=(P+G)*n,V*=n,G=D.g(1);for(;P>=l;)P/=2,V/=2,G>>>=1;return(P+G)/V};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),t),(I.pass||N||function(P,V,G,W){return W&&(W.S&&d(W,D),P.state=function(){return d(D,{})}),G?(e[i]=P,V):P})(F,A,"global"in I?I.global:this==e,I.state)}function f(w){var I,N=w.length,E=this,A=0,D=E.i=E.j=0,F=E.S=[];for(N||(w=[N++]);A<n;)F[A]=A++;for(A=0;A<n;A++)F[A]=F[D=c&D+w[A%N]+(I=F[A])],F[D]=I;(E.g=function(P){for(var V,G=0,W=E.i,q=E.j,H=E.S;P--;)V=H[W=c&W+1],G=G*n+H[c&(H[W]=H[q=c&q+V])+(H[q]=V)];return E.i=W,E.j=q,G})(n)}function d(w,I){return I.i=w.i,I.j=w.j,I.S=w.S.slice(),I}function h(w,I){var N=[],E=typeof w,A;if(I&&E=="object")for(A in w)try{N.push(h(w[A],I-1))}catch(D){}return N.length?N:E=="string"?w:w+"\0"}function g(w,I){for(var N=w+"",E,A=0;A<N.length;)I[c&A]=c&(E^=I[c&A]*19)+N.charCodeAt(A++);return b(I)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var I=r.navigator,N=I&&I.plugins;return[+new Date,r,N,r.screen,b(t)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),t),typeof ry=="object"&&ry.exports){ry.exports=m;try{p=QE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):e["seed"+i]=m})(typeof self!="undefined"?self:tA,[],Math)});var bh=wr((n1t,rA)=>{var oX=GE(),sX=UE(),iX=qE(),aX=jE(),lX=YE(),uX=JE(),bc=eA();bc.alea=oX;bc.xor128=sX;bc.xorwow=iX;bc.xorshift7=aX;bc.xor4096=lX;bc.tychei=uX;rA.exports=bc});var wk=wr(()=>{});var pw=wr(()=>{});var G1=wr(()=>{});var dH=wr(()=>{});var hH=wr(()=>{});var gH=wr(()=>{});var xH=wr((EC,U1)=>{var W1=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};function e(){return it.buffer!=ee&&je(it.buffer),xe}function n(){return it.buffer!=ee&&je(it.buffer),fe}function o(){return it.buffer!=ee&&je(it.buffer),Ae}function s(){return it.buffer!=ee&&je(it.buffer),Pn}function i(){return it.buffer!=ee&&je(it.buffer),lr}function a(){return it.buffer!=ee&&je(it.buffer),Jn}function u(){return it.buffer!=ee&&je(it.buffer),Br}var l=typeof t!="undefined"?t:{},c,p;l.ready=new Promise(function(M,U){c=M,p=U});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f=Object.assign({},l),d=[],h="./this.program",g=(M,U)=>{throw U},x=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",I=l.ENVIRONMENT_IS_PTHREAD||!1,N="";function E(M){return l.locateFile?l.locateFile(M,N):N+M}var A,D,F,P;function V(M){if(M instanceof tc)return;X("exiting due to exception: "+M)}if(w){var G=pw(),W=G1();b?N=W.dirname(N)+"/":N=__dirname+"/",A=(U,dt)=>(U=Sp(U)?new URL(U):W.normalize(U),G.readFileSync(U,dt?void 0:"utf8")),F=U=>{var dt=A(U,!0);return dt.buffer||(dt=new Uint8Array(dt)),dt},D=(U,dt,Lt)=>{U=Sp(U)?new URL(U):W.normalize(U),G.readFile(U,function(Zt,Yt){Zt?Lt(Zt):dt(Yt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(U){if(!(U instanceof tc))throw U}),process.on("unhandledRejection",function(U){throw U}),g=(U,dt)=>{if(Go())throw process.exitCode=U,dt;V(dt),process.exit(U)},l.inspect=function(){return"[Emscripten Module object]"};let M;try{M=dH()}catch(U){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),U}global.Worker=M.Worker}else(x||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.replace(/[?#].*/,"").lastIndexOf("/")+1):N="",w||(A=M=>{var U=new XMLHttpRequest;return U.open("GET",M,!1),U.send(null),U.responseText},b&&(F=M=>{var U=new XMLHttpRequest;return U.open("GET",M,!1),U.responseType="arraybuffer",U.send(null),new Uint8Array(U.response)}),D=(M,U,dt)=>{var Lt=new XMLHttpRequest;Lt.open("GET",M,!0),Lt.responseType="arraybuffer",Lt.onload=()=>{if(Lt.status==200||Lt.status==0&&Lt.response){U(Lt.response);return}dt()},Lt.onerror=dt,Lt.send(null)}),P=M=>document.title=M);w&&typeof performance=="undefined"&&(global.performance=hH().performance);var q=console.log.bind(console),H=console.warn.bind(console);w&&(q=M=>G.writeSync(1,M+`
`),H=M=>G.writeSync(2,M+`
`));var K=l.print||q,X=l.printErr||H;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var Z=4,et=Atomics.load,nt=Atomics.store,st=Atomics.compareExchange,at;l.wasmBinary&&(at=l.wasmBinary);var ot=l.noExitRuntime||!0;typeof WebAssembly!="object"&&Qu("no native wasm support detected");var it,mt,gt=!1,It;function Rt(M,U){M||Qu(U)}var Dt=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ht(M,U,dt){U>>>=0;for(var Lt=U+dt,Zt=U;M[Zt]&&!(Zt>=Lt);)++Zt;if(Zt-U>16&&M.buffer&&Dt)return Dt.decode(M.buffer instanceof SharedArrayBuffer?M.slice(U,Zt):M.subarray(U,Zt));for(var Yt="";U<Zt;){var yt=M[U++];if(!(yt&128)){Yt+=String.fromCharCode(yt);continue}var $t=M[U++]&63;if((yt&224)==192){Yt+=String.fromCharCode((yt&31)<<6|$t);continue}var nr=M[U++]&63;if((yt&240)==224?yt=(yt&15)<<12|$t<<6|nr:yt=(yt&7)<<18|$t<<12|nr<<6|M[U++]&63,yt<65536)Yt+=String.fromCharCode(yt);else{var ro=yt-65536;Yt+=String.fromCharCode(55296|ro>>10,56320|ro&1023)}}return Yt}function qt(M,U){return M>>>=0,M?Ht(n(),M,U):""}function ce(M,U,dt,Lt){if(dt>>>=0,!(Lt>0))return 0;for(var Zt=dt,Yt=dt+Lt-1,yt=0;yt<M.length;++yt){var $t=M.charCodeAt(yt);if($t>=55296&&$t<=57343){var nr=M.charCodeAt(++yt);$t=65536+(($t&1023)<<10)|nr&1023}if($t<=127){if(dt>=Yt)break;U[dt++>>>0]=$t}else if($t<=2047){if(dt+1>=Yt)break;U[dt++>>>0]=192|$t>>6,U[dt++>>>0]=128|$t&63}else if($t<=65535){if(dt+2>=Yt)break;U[dt++>>>0]=224|$t>>12,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}else{if(dt+3>=Yt)break;U[dt++>>>0]=240|$t>>18,U[dt++>>>0]=128|$t>>12&63,U[dt++>>>0]=128|$t>>6&63,U[dt++>>>0]=128|$t&63}}return U[dt>>>0]=0,dt-Zt}function ge(M,U,dt){return ce(M,n(),U,dt)}var ee,xe,fe,Ae,De,Pn,lr,Jn,Br;I&&(ee=l.buffer);function je(M){ee=M,l.HEAP8=xe=new Int8Array(M),l.HEAP16=Ae=new Int16Array(M),l.HEAP32=Pn=new Int32Array(M),l.HEAPU8=fe=new Uint8Array(M),l.HEAPU16=De=new Uint16Array(M),l.HEAPU32=lr=new Uint32Array(M),l.HEAPF32=Jn=new Float32Array(M),l.HEAPF64=Br=new Float64Array(M)}var Vr=l.INITIAL_MEMORY||16777216;if(I)it=l.wasmMemory,ee=l.buffer;else if(l.wasmMemory)it=l.wasmMemory;else if(it=new WebAssembly.Memory({initial:Vr/65536,maximum:65536,shared:!0}),!(it.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&X("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");it&&(ee=it.buffer),Vr=ee.byteLength,je(ee);var Gr,Qn=[],to=[],Jr=[],Ca=!1;function Go(){return ot}function Ni(){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)Hd(l.preRun.shift());jd(Qn)}function Er(){Ca=!0,!I&&jd(to)}function va(){if(!I){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)Z1(l.postRun.shift());jd(Jr)}}function Hd(M){Qn.unshift(M)}function qd(M){to.unshift(M)}function Z1(M){Jr.unshift(M)}var Ul=0,vp=null,Sa=null;function $C(M){Ul++,l.monitorRunDependencies&&l.monitorRunDependencies(Ul)}function Cg(M){if(Ul--,l.monitorRunDependencies&&l.monitorRunDependencies(Ul),Ul==0&&(vp!==null&&(clearInterval(vp),vp=null),Sa)){var U=Sa;Sa=null,U()}}function Qu(M){l.onAbort&&l.onAbort(M),M="Aborted("+M+")",X(M),gt=!0,It=1,M+=". Build with -sASSERTIONS for more info.";var U=new WebAssembly.RuntimeError(M);throw p(U),U}var RC="data:application/octet-stream;base64,";function vg(M){return M.startsWith(RC)}function Sp(M){return M.startsWith("file://")}var Qr;Qr="tfjs-backend-wasm-threaded-simd.wasm",vg(Qr)||(Qr=E(Qr));function Sg(M){try{if(M==Qr&&at)return new Uint8Array(at);if(F)return F(M);throw"both async and sync fetching of the wasm failed"}catch(U){Qu(U)}}function FC(){if(!at&&(x||b)){if(typeof fetch=="function"&&!Sp(Qr))return fetch(Qr,{credentials:"same-origin"}).then(function(M){if(!M.ok)throw"failed to load wasm binary file at '"+Qr+"'";return M.arrayBuffer()}).catch(function(){return Sg(Qr)});if(D)return new Promise(function(M,U){D(Qr,function(dt){M(new Uint8Array(dt))},U)})}return Promise.resolve().then(function(){return Sg(Qr)})}function OC(){var M={env:Mg,wasi_snapshot_preview1:Mg};function U(yt,$t){var nr=yt.exports;if(l.asm=nr,UC(l.asm._emscripten_tls_init),Gr=l.asm.__indirect_function_table,qd(l.asm.__wasm_call_ctors),mt=$t,!I){var ro=Xt.unusedWorkers.length;Xt.unusedWorkers.forEach(function(ka){Xt.loadWasmModuleToWorker(ka,function(){--ro||Cg("wasm-instantiate")})})}}I||$C("wasm-instantiate");function dt(yt){U(yt.instance,yt.module)}function Lt(yt){return FC().then(function($t){return WebAssembly.instantiate($t,M)}).then(function($t){return $t}).then(yt,function($t){X("failed to asynchronously prepare wasm: "+$t),Qu($t)})}function Zt(){return!at&&typeof WebAssembly.instantiateStreaming=="function"&&!vg(Qr)&&!Sp(Qr)&&!w&&typeof fetch=="function"?fetch(Qr,{credentials:"same-origin"}).then(function(yt){var $t=WebAssembly.instantiateStreaming(yt,M);return $t.then(dt,function(nr){return X("wasm streaming compile failed: "+nr),X("falling back to ArrayBuffer instantiation"),Lt(dt)})}):Lt(dt)}if(l.instantiateWasm)try{var Yt=l.instantiateWasm(M,U);return Yt}catch(yt){X("Module.instantiateWasm callback failed with error: "+yt),p(yt)}return Zt().catch(p),{}}var J1,Q1,Ng={};function tc(M){this.name="ExitStatus",this.message="Program terminated with exit("+M+")",this.status=M}function PC(M){var U=Xt.pthreads[M];delete Xt.pthreads[M],U.terminate(),QS(M),Xt.runningWorkers.splice(Xt.runningWorkers.indexOf(U),1),U.pthread_ptr=0}function MC(M){var U=Xt.pthreads[M];U.postMessage({cmd:"cancel"})}function Kd(M){var U=Xt.pthreads[M];Rt(U),Xt.returnWorkerToPool(U)}function LC(M){var U=Xt.getNewWorker();if(!U)return 6;Xt.runningWorkers.push(U),Xt.pthreads[M.pthread_ptr]=U,U.pthread_ptr=M.pthread_ptr;var dt={cmd:"run",start_routine:M.startRoutine,arg:M.arg,pthread_ptr:M.pthread_ptr};return U.runPthread=()=>{w&&U.ref(),U.postMessage(dt,M.transferList),delete U.runPthread},U.loaded&&U.runPthread(),0}var kg={varargs:void 0,get:function(){kg.varargs+=4;var M=s()[kg.varargs-4>>>2];return M},getStr:function(M){var U=qt(M);return U}};function Tg(M){if(I)return Hl(1,1,M);It=M,Go()||(Xt.terminateAllThreads(),l.onExit&&l.onExit(M),gt=!0),g(M,new tc(M))}function zC(M,U){if(It=M,!U&&I)throw Eg(M),"unwind";Tg(M)}var _g=zC;function BC(M){if(M instanceof tc||M=="unwind")return It;g(1,M)}var Xt={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){I?Xt.initWorker():Xt.initMainThread()},initMainThread:function(){for(var M=8;M--;)Xt.allocateUnusedWorker()},initWorker:function(){ot=!1},setExitStatus:function(M){It=M},terminateAllThreads:function(){for(var M of Object.values(Xt.pthreads))Xt.returnWorkerToPool(M);for(var M of Xt.unusedWorkers)M.terminate();Xt.unusedWorkers=[]},returnWorkerToPool:function(M){var U=M.pthread_ptr;delete Xt.pthreads[U],Xt.unusedWorkers.push(M),Xt.runningWorkers.splice(Xt.runningWorkers.indexOf(M),1),M.pthread_ptr=0,w&&M.unref(),QS(U)},receiveObjectTransfer:function(M){},threadInitTLS:function(){Xt.tlsInitFunctions.forEach(M=>M())},loadWasmModuleToWorker:function(M,U){M.onmessage=Yt=>{var yt=Yt.data,$t=yt.cmd;if(M.pthread_ptr&&(Xt.currentProxiedOperationCallerThread=M.pthread_ptr),yt.targetThread&&yt.targetThread!=Wg()){var nr=Xt.pthreads[yt.targetThread];nr?nr.postMessage(yt,yt.transferList):X('Internal error! Worker sent a message "'+$t+'" to target pthread '+yt.targetThread+", but that thread no longer exists!"),Xt.currentProxiedOperationCallerThread=void 0;return}$t==="processProxyingQueue"?Xd(yt.queue):$t==="spawnThread"?LC(yt):$t==="cleanupThread"?Kd(yt.thread):$t==="killThread"?PC(yt.thread):$t==="cancelThread"?MC(yt.thread):$t==="loaded"?(M.loaded=!0,w&&M.unref(),U&&U(M),M.runPthread&&M.runPthread()):$t==="print"?K("Thread "+yt.threadId+": "+yt.text):$t==="printErr"?X("Thread "+yt.threadId+": "+yt.text):$t==="alert"?alert("Thread "+yt.threadId+": "+yt.text):yt.target==="setimmediate"?M.postMessage(yt):$t==="callHandler"?l[yt.handler](...yt.args):$t&&X("worker sent an unknown command "+$t),Xt.currentProxiedOperationCallerThread=void 0},M.onerror=Yt=>{var yt="worker sent an error!";throw X(yt+" "+Yt.filename+":"+Yt.lineno+": "+Yt.message),Yt},w&&(M.on("message",function(Yt){M.onmessage({data:Yt})}),M.on("error",function(Yt){M.onerror(Yt)}),M.on("detachedExit",function(){}));var dt=[],Lt=["onExit","onAbort","print","printErr"];for(var Zt of Lt)l.hasOwnProperty(Zt)&&dt.push(Zt);M.postMessage({cmd:"load",handlers:dt,urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:it,wasmModule:mt})},allocateUnusedWorker:function(){var M,U=E("tfjs-backend-wasm-threaded-simd.worker.js");M=new Worker(U),Xt.unusedWorkers.push(M)},getNewWorker:function(){return Xt.unusedWorkers.length==0&&(Xt.allocateUnusedWorker(),Xt.loadWasmModuleToWorker(Xt.unusedWorkers[0])),Xt.unusedWorkers.pop()}};l.PThread=Xt;function jd(M){for(;M.length>0;)M.shift()(l)}function VC(){var M=Wg(),U=s()[M+52>>>2],dt=s()[M+56>>>2],Lt=U-dt;s_(U,Lt),Ug(U)}l.establishStackSpace=VC;function Eg(M){if(I)return Hl(2,0,M);try{_g(M)}catch(U){BC(U)}}var Np=[];function GC(M){var U=Np[M];return U||(M>=Np.length&&(Np.length=M+1),Np[M]=U=Gr.get(M)),U}function WC(M,U){var dt=GC(M)(U);Go()?Xt.setExitStatus(dt):o_(dt)}l.invokeEntryPoint=WC;function UC(M){Xt.tlsInitFunctions.push(M)}function HC(M){e_(M,!b,1,!x),Xt.threadInitTLS()}function qC(M){I?postMessage({cmd:"cleanupThread",thread:M}):Kd(M)}function Ag(M,U,dt,Lt){return I?Hl(3,1,M,U,dt,Lt):Dg(M,U,dt,Lt)}function Dg(M,U,dt,Lt){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Zt=[],Yt=0;if(I&&(Zt.length===0||Yt))return Ag(M,U,dt,Lt);if(Yt)return Yt;var yt={startRoutine:dt,pthread_ptr:M,arg:Lt,transferList:Zt};return I?(yt.cmd="spawnThread",postMessage(yt,Zt),0):LC(yt)}function KC(){return 65536}var jC=!0;function XC(){return jC}function Xd(M){Atomics.store(s(),M>>2,1),Wg()&&n_(M),Atomics.compareExchange(s(),M>>2,1,0)}l.executeNotifiedProxyingQueue=Xd;function YC(M,U,dt,Lt){if(M==U)setTimeout(()=>Xd(Lt));else if(I)postMessage({targetThread:M,cmd:"processProxyingQueue",queue:Lt});else{var Zt=Xt.pthreads[M];if(!Zt)return;Zt.postMessage({cmd:"processProxyingQueue",queue:Lt})}return 1}function ZC(M,U,dt){return-1}function JC(){Qu("")}function ec(M){ec.shown||(ec.shown={}),ec.shown[M]||(ec.shown[M]=1,w&&(M="warning: "+M),X(M))}function QC(){w||b||ec("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function tv(){return Date.now()}function $g(){return 4294901760}function ev(){return $g()}var Yd;w?Yd=()=>{var M=process.hrtime();return M[0]*1e3+M[1]/1e6}:Yd=()=>performance.timeOrigin+performance.now();function rv(M,U,dt){n().copyWithin(M>>>0,U>>>0,U+dt>>>0)}function nv(){return w?gH().cpus().length:navigator.hardwareConcurrency}function ov(M){var U=t0(),dt=M();return Ug(U),dt}function Hl(M,U){var dt=arguments.length-2,Lt=arguments;return ov(()=>{for(var Zt=dt,Yt=Hg(Zt*8),yt=Yt>>3,$t=0;$t<dt;$t++){var nr=Lt[2+$t];u()[yt+$t>>>0]=nr}return r_(M,Zt,Yt,U)})}var Zd=[];function sv(M,U,dt){Zd.length=U;for(var Lt=dt>>3,Zt=0;Zt<U;Zt++)Zd[Zt]=u()[Lt+Zt>>>0];var Yt=M<0,yt=Yt?Ng[-M-1]:dv[M];return yt.apply(null,Zd)}function iv(M){try{return it.grow(M-ee.byteLength+65535>>>16),je(it.buffer),1}catch(U){}}function av(M){var U=n().length;if(M=M>>>0,M<=U)return!1;var dt=$g();if(M>dt)return!1;let Lt=(nr,ro)=>nr+(ro-nr%ro)%ro;for(var Zt=1;Zt<=4;Zt*=2){var Yt=U*(1+.2/Zt);Yt=Math.min(Yt,M+100663296);var yt=Math.min(dt,Lt(Math.max(M,Yt),65536)),$t=iv(yt);if($t)return!0}return!1}function lv(){throw"unwind"}function Rg(M){return I?Hl(4,1,M):52}function Fg(M,U,dt,Lt,Zt){return I?Hl(5,1,M,U,dt,Lt,Zt):70}var uv=[null,[],[]];function cv(M,U){var dt=uv[M];U===0||U===10?((M===1?K:X)(Ht(dt,0)),dt.length=0):dt.push(U)}function Og(M,U,dt,Lt){if(I)return Hl(6,1,M,U,dt,Lt);for(var Zt=0,Yt=0;Yt<dt;Yt++){var yt=i()[U>>>2],$t=i()[U+4>>>2];U+=8;for(var nr=0;nr<$t;nr++)cv(M,n()[yt+nr>>>0]);Zt+=$t}return i()[Lt>>>2]=Zt,0}function Pg(M){var U=l["_"+M];return U}function pv(M,U){e().set(M,U>>>0)}function mv(M,U,dt,Lt,Zt){var Yt={string:Mn=>{var Ep=0;if(Mn!=null&&Mn!==0){var l_=(Mn.length<<2)+1;Ep=Hg(l_),ge(Mn,Ep,l_)}return Ep},array:Mn=>{var Ep=Hg(Mn.length);return pv(Mn,Ep),Ep}};function yt(Mn){return U==="string"?qt(Mn):U==="boolean"?!!Mn:Mn}var $t=Pg(M),nr=[],ro=0;if(Lt)for(var ka=0;ka<Lt.length;ka++){var a_=Yt[dt[ka]];a_?(ro===0&&(ro=t0()),nr[ka]=a_(Lt[ka])):nr[ka]=Lt[ka]}var e0=$t.apply(null,nr);function sq(Mn){return ro!==0&&Ug(ro),yt(Mn)}return e0=sq(e0),e0}function fv(M,U,dt,Lt){dt=dt||[];var Zt=dt.every(yt=>yt==="number"||yt==="boolean"),Yt=U!=="string";return Yt&&Zt&&!Lt?Pg(M):function(){return mv(M,U,dt,arguments,Lt)}}Xt.init();var dv=[null,Tg,Eg,Ag,Rg,Fg,Og],Mg={__emscripten_init_main_thread_js:HC,__emscripten_thread_cleanup:qC,__pthread_create_js:Dg,_emscripten_default_pthread_stack_size:KC,_emscripten_get_now_is_monotonic:XC,_emscripten_notify_task_queue:YC,_emscripten_set_offscreencanvas_size:ZC,abort:JC,emscripten_check_blocking_allowed:QC,emscripten_date_now:tv,emscripten_get_heap_max:ev,emscripten_get_now:Yd,emscripten_memcpy_big:rv,emscripten_num_logical_cores:nv,emscripten_receive_on_main_thread_js:sv,emscripten_resize_heap:av,emscripten_unwind_to_js_event_loop:lv,exit:_g,fd_close:Rg,fd_seek:Fg,fd_write:Og,memory:it||l.wasmMemory},t_=OC(),hv=l.___wasm_call_ctors=function(){return(hv=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},gv=l._init=function(){return(gv=l._init=l.asm.init).apply(null,arguments)},xv=l._init_with_threads_count=function(){return(xv=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},yv=l._get_threads_count=function(){return(yv=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},bv=l._register_tensor=function(){return(bv=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},wv=l._dispose_data=function(){return(wv=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},Iv=l._dispose=function(){return(Iv=l._dispose=l.asm.dispose).apply(null,arguments)},Cv=l._Abs=function(){return(Cv=l._Abs=l.asm.Abs).apply(null,arguments)},vv=l._Acos=function(){return(vv=l._Acos=l.asm.Acos).apply(null,arguments)},Sv=l._Acosh=function(){return(Sv=l._Acosh=l.asm.Acosh).apply(null,arguments)},Nv=l._Add=function(){return(Nv=l._Add=l.asm.Add).apply(null,arguments)},kv=l._AddN=function(){return(kv=l._AddN=l.asm.AddN).apply(null,arguments)},Tv=l._All=function(){return(Tv=l._All=l.asm.All).apply(null,arguments)},_v=l._Any=function(){return(_v=l._Any=l.asm.Any).apply(null,arguments)},Ev=l._ArgMax=function(){return(Ev=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},Av=l._ArgMin=function(){return(Av=l._ArgMin=l.asm.ArgMin).apply(null,arguments)},Dv=l._Asin=function(){return(Dv=l._Asin=l.asm.Asin).apply(null,arguments)},$v=l._Asinh=function(){return($v=l._Asinh=l.asm.Asinh).apply(null,arguments)},Rv=l._Atan=function(){return(Rv=l._Atan=l.asm.Atan).apply(null,arguments)},Fv=l._Atan2=function(){return(Fv=l._Atan2=l.asm.Atan2).apply(null,arguments)},Ov=l._Atanh=function(){return(Ov=l._Atanh=l.asm.Atanh).apply(null,arguments)},Pv=l._AvgPool=function(){return(Pv=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},Mv=l._AvgPool3D=function(){return(Mv=l._AvgPool3D=l.asm.AvgPool3D).apply(null,arguments)},Lv=l._AvgPool3DGrad=function(){return(Lv=l._AvgPool3DGrad=l.asm.AvgPool3DGrad).apply(null,arguments)},zv=l._BatchMatMul=function(){return(zv=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},Bv=l._Bincount=function(){return(Bv=l._Bincount=l.asm.Bincount).apply(null,arguments)},Vv=l._Ceil=function(){return(Vv=l._Ceil=l.asm.Ceil).apply(null,arguments)},Gv=l._ClipByValue=function(){return(Gv=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},Wv=l._Conv2D=function(){return(Wv=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},Uv=l._Conv2DBackpropInput=function(){return(Uv=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},Hv=l._Conv3D=function(){return(Hv=l._Conv3D=l.asm.Conv3D).apply(null,arguments)},qv=l._Conv3DBackpropFilterV2=function(){return(qv=l._Conv3DBackpropFilterV2=l.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Kv=l._Conv3DBackpropInputV2=function(){return(Kv=l._Conv3DBackpropInputV2=l.asm.Conv3DBackpropInputV2).apply(null,arguments)},jv=l._Cos=function(){return(jv=l._Cos=l.asm.Cos).apply(null,arguments)},Xv=l._Cosh=function(){return(Xv=l._Cosh=l.asm.Cosh).apply(null,arguments)},Yv=l._CropAndResize=function(){return(Yv=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},Zv=l._Cumprod=function(){return(Zv=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},Jv=l._Cumsum=function(){return(Jv=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},Qv=l._DenseBincount=function(){return(Qv=l._DenseBincount=l.asm.DenseBincount).apply(null,arguments)},tS=l._DepthToSpace=function(){return(tS=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},eS=l._DepthwiseConv2dNative=function(){return(eS=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},rS=l._Diag=function(){return(rS=l._Diag=l.asm.Diag).apply(null,arguments)},nS=l._Dilation2D=function(){return(nS=l._Dilation2D=l.asm.Dilation2D).apply(null,arguments)},oS=l._Dilation2DBackpropFilter=function(){return(oS=l._Dilation2DBackpropFilter=l.asm.Dilation2DBackpropFilter).apply(null,arguments)},sS=l._Dilation2DBackpropInput=function(){return(sS=l._Dilation2DBackpropInput=l.asm.Dilation2DBackpropInput).apply(null,arguments)},iS=l._Elu=function(){return(iS=l._Elu=l.asm.Elu).apply(null,arguments)},aS=l._EluGrad=function(){return(aS=l._EluGrad=l.asm.EluGrad).apply(null,arguments)},lS=l._Equal=function(){return(lS=l._Equal=l.asm.Equal).apply(null,arguments)},uS=l._Exp=function(){return(uS=l._Exp=l.asm.Exp).apply(null,arguments)},cS=l._Expm1=function(){return(cS=l._Expm1=l.asm.Expm1).apply(null,arguments)},pS=l._FlipLeftRight=function(){return(pS=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},mS=l._Floor=function(){return(mS=l._Floor=l.asm.Floor).apply(null,arguments)},fS=l._FloorDiv=function(){return(fS=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},dS=l._FusedBatchNorm=function(){return(dS=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},hS=l._FusedConv2D=function(){return(hS=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},gS=l._FusedDepthwiseConv2D=function(){return(gS=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},xS=l._Gather=function(){return(xS=l._Gather=l.asm.Gather).apply(null,arguments)},yS=l._GatherNd=function(){return(yS=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},bS=l._Greater=function(){return(bS=l._Greater=l.asm.Greater).apply(null,arguments)},wS=l._GreaterEqual=function(){return(wS=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},IS=l._IsFinite=function(){return(IS=l._IsFinite=l.asm.IsFinite).apply(null,arguments)},CS=l._IsInf=function(){return(CS=l._IsInf=l.asm.IsInf).apply(null,arguments)},vS=l._IsNan=function(){return(vS=l._IsNan=l.asm.IsNan).apply(null,arguments)},SS=l._LRN=function(){return(SS=l._LRN=l.asm.LRN).apply(null,arguments)},NS=l._LRNGrad=function(){return(NS=l._LRNGrad=l.asm.LRNGrad).apply(null,arguments)},kS=l._LeakyRelu=function(){return(kS=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},TS=l._Less=function(){return(TS=l._Less=l.asm.Less).apply(null,arguments)},_S=l._LessEqual=function(){return(_S=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},ES=l._LinSpace=function(){return(ES=l._LinSpace=l.asm.LinSpace).apply(null,arguments)},AS=l._Log=function(){return(AS=l._Log=l.asm.Log).apply(null,arguments)},DS=l._Log1p=function(){return(DS=l._Log1p=l.asm.Log1p).apply(null,arguments)},$S=l._LogicalAnd=function(){return($S=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},RS=l._LogicalNot=function(){return(RS=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},FS=l._LogicalOr=function(){return(FS=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},OS=l._LogicalXor=function(){return(OS=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},PS=l._Max=function(){return(PS=l._Max=l.asm.Max).apply(null,arguments)},MS=l._MaxPool=function(){return(MS=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},LS=l._MaxPool3D=function(){return(LS=l._MaxPool3D=l.asm.MaxPool3D).apply(null,arguments)},zS=l._MaxPool3DGrad=function(){return(zS=l._MaxPool3DGrad=l.asm.MaxPool3DGrad).apply(null,arguments)},BS=l._Maximum=function(){return(BS=l._Maximum=l.asm.Maximum).apply(null,arguments)},VS=l._Mean=function(){return(VS=l._Mean=l.asm.Mean).apply(null,arguments)},GS=l._Min=function(){return(GS=l._Min=l.asm.Min).apply(null,arguments)},WS=l._Minimum=function(){return(WS=l._Minimum=l.asm.Minimum).apply(null,arguments)},US=l._MirrorPad=function(){return(US=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},HS=l._Multinomial=function(){return(HS=l._Multinomial=l.asm.Multinomial).apply(null,arguments)},qS=l._Multiply=function(){return(qS=l._Multiply=l.asm.Multiply).apply(null,arguments)},KS=l._Neg=function(){return(KS=l._Neg=l.asm.Neg).apply(null,arguments)},jS=l._NonMaxSuppressionV3=function(){return(jS=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},Lg=l._NonMaxSuppressionV4=function(){return(Lg=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},zg=l._NonMaxSuppressionV5=function(){return(zg=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},Jd=l._NotEqual=function(){return(Jd=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},XS=l._OneHot=function(){return(XS=l._OneHot=l.asm.OneHot).apply(null,arguments)},YS=l._PadV2=function(){return(YS=l._PadV2=l.asm.PadV2).apply(null,arguments)},kp=l._Pow=function(){return(kp=l._Pow=l.asm.Pow).apply(null,arguments)},Bg=l._Prelu=function(){return(Bg=l._Prelu=l.asm.Prelu).apply(null,arguments)},Tp=l._Prod=function(){return(Tp=l._Prod=l.asm.Prod).apply(null,arguments)},_p=l._RealDiv=function(){return(_p=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},ZS=l._Reciprocal=function(){return(ZS=l._Reciprocal=l.asm.Reciprocal).apply(null,arguments)},j=l._Relu=function(){return(j=l._Relu=l.asm.Relu).apply(null,arguments)},ut=l._Relu6=function(){return(ut=l._Relu6=l.asm.Relu6).apply(null,arguments)},Ft=l._ResizeBilinear=function(){return(Ft=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},pe=l._ResizeBilinearGrad=function(){return(pe=l._ResizeBilinearGrad=l.asm.ResizeBilinearGrad).apply(null,arguments)},Xe=l._ResizeNearestNeighbor=function(){return(Xe=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},Ye=l._ResizeNearestNeighborGrad=function(){return(Ye=l._ResizeNearestNeighborGrad=l.asm.ResizeNearestNeighborGrad).apply(null,arguments)},oe=l._Reverse=function(){return(oe=l._Reverse=l.asm.Reverse).apply(null,arguments)},re=l._RotateWithOffset=function(){return(re=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},br=l._Round=function(){return(br=l._Round=l.asm.Round).apply(null,arguments)},eo=l._Rsqrt=function(){return(eo=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},Na=l._ScatterNd=function(){return(Na=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},Vg=l._SearchSorted=function(){return(Vg=l._SearchSorted=l.asm.SearchSorted).apply(null,arguments)},Qd=l._SelectV2=function(){return(Qd=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},JS=l._Selu=function(){return(JS=l._Selu=l.asm.Selu).apply(null,arguments)},on=l._Sigmoid=function(){return(on=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},ql=l._Sign=function(){return(ql=l._Sign=l.asm.Sign).apply(null,arguments)},Gg=l._Sin=function(){return(Gg=l._Sin=l.asm.Sin).apply(null,arguments)},TH=l._Softmax=function(){return(TH=l._Softmax=l.asm.Softmax).apply(null,arguments)},_H=l._Softplus=function(){return(_H=l._Softplus=l.asm.Softplus).apply(null,arguments)},EH=l._SparseFillEmptyRows=function(){return(EH=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},AH=l._SparseReshape=function(){return(AH=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},DH=l._SparseSegmentReduction=function(){return(DH=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},$H=l._SparseToDense=function(){return($H=l._SparseToDense=l.asm.SparseToDense).apply(null,arguments)},RH=l._Sqrt=function(){return(RH=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},FH=l._Square=function(){return(FH=l._Square=l.asm.Square).apply(null,arguments)},OH=l._SquaredDifference=function(){return(OH=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},PH=l._Step=function(){return(PH=l._Step=l.asm.Step).apply(null,arguments)},MH=l._StridedSlice=function(){return(MH=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},LH=l._Sub=function(){return(LH=l._Sub=l.asm.Sub).apply(null,arguments)},zH=l._Sum=function(){return(zH=l._Sum=l.asm.Sum).apply(null,arguments)},BH=l._Tan=function(){return(BH=l._Tan=l.asm.Tan).apply(null,arguments)},VH=l._Tanh=function(){return(VH=l._Tanh=l.asm.Tanh).apply(null,arguments)},GH=l._TensorScatterUpdate=function(){return(GH=l._TensorScatterUpdate=l.asm.TensorScatterUpdate).apply(null,arguments)},WH=l._Tile=function(){return(WH=l._Tile=l.asm.Tile).apply(null,arguments)},UH=l._TopK=function(){return(UH=l._TopK=l.asm.TopK).apply(null,arguments)},HH=l._Transform=function(){return(HH=l._Transform=l.asm.Transform).apply(null,arguments)},qH=l._Transpose=function(){return(qH=l._Transpose=l.asm.Transpose).apply(null,arguments)},KH=l.__FusedMatMul=function(){return(KH=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},jH=l._malloc=function(){return(jH=l._malloc=l.asm.malloc).apply(null,arguments)},XH=l._free=function(){return(XH=l._free=l.asm.free).apply(null,arguments)},YH=l.__emscripten_tls_init=function(){return(YH=l.__emscripten_tls_init=l.asm._emscripten_tls_init).apply(null,arguments)},Wg=l._pthread_self=function(){return(Wg=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},ZH=l.___errno_location=function(){return(ZH=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},e_=l.__emscripten_thread_init=function(){return(e_=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},JH=l.__emscripten_thread_crashed=function(){return(JH=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},QH=l._emscripten_main_thread_process_queued_calls=function(){return(QH=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},tq=l._emscripten_main_browser_thread_id=function(){return(tq=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},r_=l._emscripten_run_in_main_runtime_thread_js=function(){return(r_=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},eq=l._emscripten_dispatch_to_thread_=function(){return(eq=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},n_=l.__emscripten_proxy_execute_task_queue=function(){return(n_=l.__emscripten_proxy_execute_task_queue=l.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},QS=l.__emscripten_thread_free_data=function(){return(QS=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},o_=l.__emscripten_thread_exit=function(){return(o_=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},s_=l._emscripten_stack_set_limits=function(){return(s_=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},t0=l.stackSave=function(){return(t0=l.stackSave=l.asm.stackSave).apply(null,arguments)},Ug=l.stackRestore=function(){return(Ug=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},Hg=l.stackAlloc=function(){return(Hg=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},rq=l.dynCall_iijjiiii=function(){return(rq=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},nq=l.dynCall_jiji=function(){return(nq=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)};l.keepRuntimeAlive=Go,l.wasmMemory=it,l.cwrap=fv,l.ExitStatus=tc,l.PThread=Xt;var qg;Sa=function M(){qg||i_(),qg||(Sa=M)};function i_(M){if(M=M||d,Ul>0)return;if(I){c(l),Er(),startWorker(l);return}if(Ni(),Ul>0)return;function U(){qg||(qg=!0,l.calledRun=!0,!gt&&(Er(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),va()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),U()},1)):U()}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();i_();var Kg;m&&(Kg={uncaughtException:process.listeners("uncaughtException").filter(function(M){return!m.uncaughtException.indexOf(M)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(M){return!m.unhandledRejection.indexOf(M)>-1})});var jg;if(typeof WasmBackendModule!="undefined")jg=WasmBackendModule;else if(typeof t!="undefined")jg=t;else throw new Error("Could not find wasm module in post.js");if(Kg){var oq=jg._dispose;jg._dispose=function(){oq(),Kg.uncaughtException.forEach(function(M){process.removeListener("uncaughtException",M)}),Kg.unhandledRejection.forEach(function(M){process.removeListener("unhandledRejection",M)})}}return t.ready}})();typeof EC=="object"&&typeof U1=="object"?U1.exports=W1:typeof define=="function"&&define.amd?define([],function(){return W1}):typeof EC=="object"&&(EC.WasmBackendModuleThreadedSimd=W1)});var bH=wr((der,yH)=>{yH.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`});var wH=wr((AC,q1)=>{var H1=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!="undefined"?t:{},n,o;e.ready=new Promise(function(j,ut){n=j,o=ut});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var i=Object.assign({},e),a=[],u="./this.program",l=(j,ut)=>{throw ut},c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f="";function d(j){return e.locateFile?e.locateFile(j,f):f+j}var h,g,x,b;function w(j){if(j instanceof vp)return;A("exiting due to exception: "+j)}if(m){var I=pw(),N=G1();p?f=N.dirname(f)+"/":f=__dirname+"/",h=(j,ut)=>(j=Ni(j)?new URL(j):N.normalize(j),I.readFileSync(j,ut?void 0:"utf8")),x=j=>{var ut=h(j,!0);return ut.buffer||(ut=new Uint8Array(ut)),ut},g=(j,ut,Ft)=>{j=Ni(j)?new URL(j):N.normalize(j),I.readFile(j,function(pe,Xe){pe?Ft(pe):ut(Xe.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),a=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof vp))throw j}),process.on("unhandledRejection",function(j){throw j}),l=(j,ut)=>{if(fe())throw process.exitCode=j,ut;w(ut),process.exit(j)},e.inspect=function(){return"[Emscripten Module object]"}}else(c||p)&&(p?f=self.location.href:typeof document!="undefined"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf("blob:")!==0?f=f.substr(0,f.replace(/[?#].*/,"").lastIndexOf("/")+1):f="",h=j=>{var ut=new XMLHttpRequest;return ut.open("GET",j,!1),ut.send(null),ut.responseText},p&&(x=j=>{var ut=new XMLHttpRequest;return ut.open("GET",j,!1),ut.responseType="arraybuffer",ut.send(null),new Uint8Array(ut.response)}),g=(j,ut,Ft)=>{var pe=new XMLHttpRequest;pe.open("GET",j,!0),pe.responseType="arraybuffer",pe.onload=()=>{if(pe.status==200||pe.status==0&&pe.response){ut(pe.response);return}Ft()},pe.onerror=Ft,pe.send(null)},b=j=>document.title=j);var E=e.print||console.log.bind(console),A=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var D=4,F;e.wasmBinary&&(F=e.wasmBinary);var P=e.noExitRuntime||!0;typeof WebAssembly!="object"&&Jr("no native wasm support detected");var V,G=!1,W;function q(j,ut){j||Jr(ut)}var H=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function K(j,ut,Ft){ut>>>=0;for(var pe=ut+Ft,Xe=ut;j[Xe]&&!(Xe>=pe);)++Xe;if(Xe-ut>16&&j.buffer&&H)return H.decode(j.subarray(ut,Xe));for(var Ye="";ut<Xe;){var oe=j[ut++];if(!(oe&128)){Ye+=String.fromCharCode(oe);continue}var re=j[ut++]&63;if((oe&224)==192){Ye+=String.fromCharCode((oe&31)<<6|re);continue}var br=j[ut++]&63;if((oe&240)==224?oe=(oe&15)<<12|re<<6|br:oe=(oe&7)<<18|re<<12|br<<6|j[ut++]&63,oe<65536)Ye+=String.fromCharCode(oe);else{var eo=oe-65536;Ye+=String.fromCharCode(55296|eo>>10,56320|eo&1023)}}return Ye}function X(j,ut){return j>>>=0,j?K(at,j,ut):""}function Z(j,ut,Ft,pe){if(Ft>>>=0,!(pe>0))return 0;for(var Xe=Ft,Ye=Ft+pe-1,oe=0;oe<j.length;++oe){var re=j.charCodeAt(oe);if(re>=55296&&re<=57343){var br=j.charCodeAt(++oe);re=65536+((re&1023)<<10)|br&1023}if(re<=127){if(Ft>=Ye)break;ut[Ft++>>>0]=re}else if(re<=2047){if(Ft+1>=Ye)break;ut[Ft++>>>0]=192|re>>6,ut[Ft++>>>0]=128|re&63}else if(re<=65535){if(Ft+2>=Ye)break;ut[Ft++>>>0]=224|re>>12,ut[Ft++>>>0]=128|re>>6&63,ut[Ft++>>>0]=128|re&63}else{if(Ft+3>=Ye)break;ut[Ft++>>>0]=240|re>>18,ut[Ft++>>>0]=128|re>>12&63,ut[Ft++>>>0]=128|re>>6&63,ut[Ft++>>>0]=128|re&63}}return ut[Ft>>>0]=0,Ft-Xe}function et(j,ut,Ft){return Z(j,at,ut,Ft)}var nt,st,at,ot,it,mt,gt,It,Rt;function Dt(j){nt=j,e.HEAP8=st=new Int8Array(j),e.HEAP16=ot=new Int16Array(j),e.HEAP32=mt=new Int32Array(j),e.HEAPU8=at=new Uint8Array(j),e.HEAPU16=it=new Uint16Array(j),e.HEAPU32=gt=new Uint32Array(j),e.HEAPF32=It=new Float32Array(j),e.HEAPF64=Rt=new Float64Array(j)}var Ht=e.INITIAL_MEMORY||16777216,qt,ce=[],ge=[],ee=[],xe=!1;function fe(){return P}function Ae(){if(e.preRun)for(typeof e.preRun=="function"&&(e.preRun=[e.preRun]);e.preRun.length;)lr(e.preRun.shift());Sa(ce)}function De(){xe=!0,Sa(ge)}function Pn(){if(e.postRun)for(typeof e.postRun=="function"&&(e.postRun=[e.postRun]);e.postRun.length;)Br(e.postRun.shift());Sa(ee)}function lr(j){ce.unshift(j)}function Jn(j){ge.unshift(j)}function Br(j){ee.unshift(j)}var je=0,Vr=null,Gr=null;function Qn(j){je++,e.monitorRunDependencies&&e.monitorRunDependencies(je)}function to(j){if(je--,e.monitorRunDependencies&&e.monitorRunDependencies(je),je==0&&(Vr!==null&&(clearInterval(Vr),Vr=null),Gr)){var ut=Gr;Gr=null,ut()}}function Jr(j){e.onAbort&&e.onAbort(j),j="Aborted("+j+")",A(j),G=!0,W=1,j+=". Build with -sASSERTIONS for more info.";var ut=new WebAssembly.RuntimeError(j);throw o(ut),ut}var Ca="data:application/octet-stream;base64,";function Go(j){return j.startsWith(Ca)}function Ni(j){return j.startsWith("file://")}var Er;Er="tfjs-backend-wasm.wasm",Go(Er)||(Er=d(Er));function va(j){try{if(j==Er&&F)return new Uint8Array(F);if(x)return x(j);throw"both async and sync fetching of the wasm failed"}catch(ut){Jr(ut)}}function Hd(){if(!F&&(c||p)){if(typeof fetch=="function"&&!Ni(Er))return fetch(Er,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+Er+"'";return j.arrayBuffer()}).catch(function(){return va(Er)});if(g)return new Promise(function(j,ut){g(Er,function(Ft){j(new Uint8Array(Ft))},ut)})}return Promise.resolve().then(function(){return va(Er)})}function qd(){var j={env:Kd,wasi_snapshot_preview1:Kd};function ut(oe,re){var br=oe.exports;e.asm=br,V=e.asm.memory,Dt(V.buffer),qt=e.asm.__indirect_function_table,Jn(e.asm.__wasm_call_ctors),to("wasm-instantiate")}Qn("wasm-instantiate");function Ft(oe){ut(oe.instance)}function pe(oe){return Hd().then(function(re){return WebAssembly.instantiate(re,j)}).then(function(re){return re}).then(oe,function(re){A("failed to asynchronously prepare wasm: "+re),Jr(re)})}function Xe(){return!F&&typeof WebAssembly.instantiateStreaming=="function"&&!Go(Er)&&!Ni(Er)&&!m&&typeof fetch=="function"?fetch(Er,{credentials:"same-origin"}).then(function(oe){var re=WebAssembly.instantiateStreaming(oe,j);return re.then(Ft,function(br){return A("wasm streaming compile failed: "+br),A("falling back to ArrayBuffer instantiation"),pe(Ft)})}):pe(Ft)}if(e.instantiateWasm)try{var Ye=e.instantiateWasm(j,ut);return Ye}catch(oe){A("Module.instantiateWasm callback failed with error: "+oe),o(oe)}return Xe().catch(o),{}}var Z1,Ul;function vp(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}function Sa(j){for(;j.length>0;)j.shift()(e)}function $C(){Jr("")}function Cg(){return 4294901760}function Qu(){return Cg()}function RC(j,ut,Ft){at.copyWithin(j>>>0,ut>>>0,ut+Ft>>>0)}function vg(j){try{return V.grow(j-nt.byteLength+65535>>>16),Dt(V.buffer),1}catch(ut){}}function Sp(j){var ut=at.length;j=j>>>0;var Ft=Cg();if(j>Ft)return!1;let pe=(br,eo)=>br+(eo-br%eo)%eo;for(var Xe=1;Xe<=4;Xe*=2){var Ye=ut*(1+.2/Xe);Ye=Math.min(Ye,j+100663296);var oe=Math.min(Ft,pe(Math.max(j,Ye),65536)),re=vg(oe);if(re)return!0}return!1}var Qr={varargs:void 0,get:function(){Qr.varargs+=4;var j=mt[Qr.varargs-4>>>2];return j},getStr:function(j){var ut=X(j);return ut}};function Sg(j){return 52}function FC(j,ut,Ft,pe,Xe){return 70}var OC=[null,[],[]];function J1(j,ut){var Ft=OC[j];ut===0||ut===10?((j===1?E:A)(K(Ft,0)),Ft.length=0):Ft.push(ut)}function Q1(j,ut,Ft,pe){for(var Xe=0,Ye=0;Ye<Ft;Ye++){var oe=gt[ut>>>2],re=gt[ut+4>>>2];ut+=8;for(var br=0;br<re;br++)J1(j,at[oe+br>>>0]);Xe+=re}return gt[pe>>>2]=Xe,0}function Ng(j){var ut=e["_"+j];return ut}function tc(j,ut){st.set(j,ut>>>0)}function PC(j,ut,Ft,pe,Xe){var Ye={string:on=>{var ql=0;if(on!=null&&on!==0){var Gg=(on.length<<2)+1;ql=Jd(Gg),et(on,ql,Gg)}return ql},array:on=>{var ql=Jd(on.length);return tc(on,ql),ql}};function oe(on){return ut==="string"?X(on):ut==="boolean"?!!on:on}var re=Ng(j),br=[],eo=0;if(pe)for(var Na=0;Na<pe.length;Na++){var Vg=Ye[Ft[Na]];Vg?(eo===0&&(eo=Lg()),br[Na]=Vg(pe[Na])):br[Na]=pe[Na]}var Qd=re.apply(null,br);function JS(on){return eo!==0&&zg(eo),oe(on)}return Qd=JS(Qd),Qd}function MC(j,ut,Ft,pe){Ft=Ft||[];var Xe=Ft.every(oe=>oe==="number"||oe==="boolean"),Ye=ut!=="string";return Ye&&Xe&&!pe?Ng(j):function(){return PC(j,ut,Ft,arguments,pe)}}var Kd={abort:$C,emscripten_get_heap_max:Qu,emscripten_memcpy_big:RC,emscripten_resize_heap:Sp,fd_close:Sg,fd_seek:FC,fd_write:Q1},LC=qd(),kg=e.___wasm_call_ctors=function(){return(kg=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},Tg=e._init=function(){return(Tg=e._init=e.asm.init).apply(null,arguments)},zC=e._init_with_threads_count=function(){return(zC=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},_g=e._get_threads_count=function(){return(_g=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},BC=e._register_tensor=function(){return(BC=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},Xt=e._dispose_data=function(){return(Xt=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},jd=e._dispose=function(){return(jd=e._dispose=e.asm.dispose).apply(null,arguments)},VC=e._Abs=function(){return(VC=e._Abs=e.asm.Abs).apply(null,arguments)},Eg=e._Acos=function(){return(Eg=e._Acos=e.asm.Acos).apply(null,arguments)},Np=e._Acosh=function(){return(Np=e._Acosh=e.asm.Acosh).apply(null,arguments)},GC=e._Add=function(){return(GC=e._Add=e.asm.Add).apply(null,arguments)},WC=e._AddN=function(){return(WC=e._AddN=e.asm.AddN).apply(null,arguments)},UC=e._All=function(){return(UC=e._All=e.asm.All).apply(null,arguments)},HC=e._Any=function(){return(HC=e._Any=e.asm.Any).apply(null,arguments)},qC=e._ArgMax=function(){return(qC=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},Ag=e._ArgMin=function(){return(Ag=e._ArgMin=e.asm.ArgMin).apply(null,arguments)},Dg=e._Asin=function(){return(Dg=e._Asin=e.asm.Asin).apply(null,arguments)},KC=e._Asinh=function(){return(KC=e._Asinh=e.asm.Asinh).apply(null,arguments)},jC=e._Atan=function(){return(jC=e._Atan=e.asm.Atan).apply(null,arguments)},XC=e._Atan2=function(){return(XC=e._Atan2=e.asm.Atan2).apply(null,arguments)},Xd=e._Atanh=function(){return(Xd=e._Atanh=e.asm.Atanh).apply(null,arguments)},YC=e._AvgPool=function(){return(YC=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},ZC=e._AvgPool3D=function(){return(ZC=e._AvgPool3D=e.asm.AvgPool3D).apply(null,arguments)},JC=e._AvgPool3DGrad=function(){return(JC=e._AvgPool3DGrad=e.asm.AvgPool3DGrad).apply(null,arguments)},ec=e._BatchMatMul=function(){return(ec=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},QC=e._Bincount=function(){return(QC=e._Bincount=e.asm.Bincount).apply(null,arguments)},tv=e._Ceil=function(){return(tv=e._Ceil=e.asm.Ceil).apply(null,arguments)},$g=e._ClipByValue=function(){return($g=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},ev=e._Conv2D=function(){return(ev=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},Yd=e._Conv2DBackpropInput=function(){return(Yd=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},rv=e._Conv3D=function(){return(rv=e._Conv3D=e.asm.Conv3D).apply(null,arguments)},nv=e._Conv3DBackpropFilterV2=function(){return(nv=e._Conv3DBackpropFilterV2=e.asm.Conv3DBackpropFilterV2).apply(null,arguments)},ov=e._Conv3DBackpropInputV2=function(){return(ov=e._Conv3DBackpropInputV2=e.asm.Conv3DBackpropInputV2).apply(null,arguments)},Hl=e._Cos=function(){return(Hl=e._Cos=e.asm.Cos).apply(null,arguments)},Zd=e._Cosh=function(){return(Zd=e._Cosh=e.asm.Cosh).apply(null,arguments)},sv=e._CropAndResize=function(){return(sv=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},iv=e._Cumprod=function(){return(iv=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},av=e._Cumsum=function(){return(av=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},lv=e._DenseBincount=function(){return(lv=e._DenseBincount=e.asm.DenseBincount).apply(null,arguments)},Rg=e._DepthToSpace=function(){return(Rg=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},Fg=e._DepthwiseConv2dNative=function(){return(Fg=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},uv=e._Diag=function(){return(uv=e._Diag=e.asm.Diag).apply(null,arguments)},cv=e._Dilation2D=function(){return(cv=e._Dilation2D=e.asm.Dilation2D).apply(null,arguments)},Og=e._Dilation2DBackpropFilter=function(){return(Og=e._Dilation2DBackpropFilter=e.asm.Dilation2DBackpropFilter).apply(null,arguments)},Pg=e._Dilation2DBackpropInput=function(){return(Pg=e._Dilation2DBackpropInput=e.asm.Dilation2DBackpropInput).apply(null,arguments)},pv=e._Elu=function(){return(pv=e._Elu=e.asm.Elu).apply(null,arguments)},mv=e._EluGrad=function(){return(mv=e._EluGrad=e.asm.EluGrad).apply(null,arguments)},fv=e._Equal=function(){return(fv=e._Equal=e.asm.Equal).apply(null,arguments)},dv=e._Exp=function(){return(dv=e._Exp=e.asm.Exp).apply(null,arguments)},Mg=e._Expm1=function(){return(Mg=e._Expm1=e.asm.Expm1).apply(null,arguments)},t_=e._FlipLeftRight=function(){return(t_=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},hv=e._Floor=function(){return(hv=e._Floor=e.asm.Floor).apply(null,arguments)},gv=e._FloorDiv=function(){return(gv=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},xv=e._FusedBatchNorm=function(){return(xv=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},yv=e._FusedConv2D=function(){return(yv=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},bv=e._FusedDepthwiseConv2D=function(){return(bv=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},wv=e._Gather=function(){return(wv=e._Gather=e.asm.Gather).apply(null,arguments)},Iv=e._GatherNd=function(){return(Iv=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},Cv=e._Greater=function(){return(Cv=e._Greater=e.asm.Greater).apply(null,arguments)},vv=e._GreaterEqual=function(){return(vv=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},Sv=e._IsFinite=function(){return(Sv=e._IsFinite=e.asm.IsFinite).apply(null,arguments)},Nv=e._IsInf=function(){return(Nv=e._IsInf=e.asm.IsInf).apply(null,arguments)},kv=e._IsNan=function(){return(kv=e._IsNan=e.asm.IsNan).apply(null,arguments)},Tv=e._LRN=function(){return(Tv=e._LRN=e.asm.LRN).apply(null,arguments)},_v=e._LRNGrad=function(){return(_v=e._LRNGrad=e.asm.LRNGrad).apply(null,arguments)},Ev=e._LeakyRelu=function(){return(Ev=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},Av=e._Less=function(){return(Av=e._Less=e.asm.Less).apply(null,arguments)},Dv=e._LessEqual=function(){return(Dv=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},$v=e._LinSpace=function(){return($v=e._LinSpace=e.asm.LinSpace).apply(null,arguments)},Rv=e._Log=function(){return(Rv=e._Log=e.asm.Log).apply(null,arguments)},Fv=e._Log1p=function(){return(Fv=e._Log1p=e.asm.Log1p).apply(null,arguments)},Ov=e._LogicalAnd=function(){return(Ov=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},Pv=e._LogicalNot=function(){return(Pv=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Mv=e._LogicalOr=function(){return(Mv=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},Lv=e._LogicalXor=function(){return(Lv=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},zv=e._Max=function(){return(zv=e._Max=e.asm.Max).apply(null,arguments)},Bv=e._MaxPool=function(){return(Bv=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},Vv=e._MaxPool3D=function(){return(Vv=e._MaxPool3D=e.asm.MaxPool3D).apply(null,arguments)},Gv=e._MaxPool3DGrad=function(){return(Gv=e._MaxPool3DGrad=e.asm.MaxPool3DGrad).apply(null,arguments)},Wv=e._Maximum=function(){return(Wv=e._Maximum=e.asm.Maximum).apply(null,arguments)},Uv=e._Mean=function(){return(Uv=e._Mean=e.asm.Mean).apply(null,arguments)},Hv=e._Min=function(){return(Hv=e._Min=e.asm.Min).apply(null,arguments)},qv=e._Minimum=function(){return(qv=e._Minimum=e.asm.Minimum).apply(null,arguments)},Kv=e._MirrorPad=function(){return(Kv=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},jv=e._Multinomial=function(){return(jv=e._Multinomial=e.asm.Multinomial).apply(null,arguments)},Xv=e._Multiply=function(){return(Xv=e._Multiply=e.asm.Multiply).apply(null,arguments)},Yv=e._Neg=function(){return(Yv=e._Neg=e.asm.Neg).apply(null,arguments)},Zv=e._NonMaxSuppressionV3=function(){return(Zv=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},Jv=e._NonMaxSuppressionV4=function(){return(Jv=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},Qv=e._NonMaxSuppressionV5=function(){return(Qv=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},tS=e._NotEqual=function(){return(tS=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},eS=e._OneHot=function(){return(eS=e._OneHot=e.asm.OneHot).apply(null,arguments)},rS=e._PadV2=function(){return(rS=e._PadV2=e.asm.PadV2).apply(null,arguments)},nS=e._Pow=function(){return(nS=e._Pow=e.asm.Pow).apply(null,arguments)},oS=e._Prelu=function(){return(oS=e._Prelu=e.asm.Prelu).apply(null,arguments)},sS=e._Prod=function(){return(sS=e._Prod=e.asm.Prod).apply(null,arguments)},iS=e._RealDiv=function(){return(iS=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},aS=e._Reciprocal=function(){return(aS=e._Reciprocal=e.asm.Reciprocal).apply(null,arguments)},lS=e._Relu=function(){return(lS=e._Relu=e.asm.Relu).apply(null,arguments)},uS=e._Relu6=function(){return(uS=e._Relu6=e.asm.Relu6).apply(null,arguments)},cS=e._ResizeBilinear=function(){return(cS=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},pS=e._ResizeBilinearGrad=function(){return(pS=e._ResizeBilinearGrad=e.asm.ResizeBilinearGrad).apply(null,arguments)},mS=e._ResizeNearestNeighbor=function(){return(mS=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},fS=e._ResizeNearestNeighborGrad=function(){return(fS=e._ResizeNearestNeighborGrad=e.asm.ResizeNearestNeighborGrad).apply(null,arguments)},dS=e._Reverse=function(){return(dS=e._Reverse=e.asm.Reverse).apply(null,arguments)},hS=e._RotateWithOffset=function(){return(hS=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},gS=e._Round=function(){return(gS=e._Round=e.asm.Round).apply(null,arguments)},xS=e._Rsqrt=function(){return(xS=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},yS=e._ScatterNd=function(){return(yS=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},bS=e._SearchSorted=function(){return(bS=e._SearchSorted=e.asm.SearchSorted).apply(null,arguments)},wS=e._SelectV2=function(){return(wS=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},IS=e._Selu=function(){return(IS=e._Selu=e.asm.Selu).apply(null,arguments)},CS=e._Sigmoid=function(){return(CS=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},vS=e._Sign=function(){return(vS=e._Sign=e.asm.Sign).apply(null,arguments)},SS=e._Sin=function(){return(SS=e._Sin=e.asm.Sin).apply(null,arguments)},NS=e._Softmax=function(){return(NS=e._Softmax=e.asm.Softmax).apply(null,arguments)},kS=e._Softplus=function(){return(kS=e._Softplus=e.asm.Softplus).apply(null,arguments)},TS=e._SparseFillEmptyRows=function(){return(TS=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},_S=e._SparseReshape=function(){return(_S=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},ES=e._SparseSegmentReduction=function(){return(ES=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},AS=e._SparseToDense=function(){return(AS=e._SparseToDense=e.asm.SparseToDense).apply(null,arguments)},DS=e._Sqrt=function(){return(DS=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},$S=e._Square=function(){return($S=e._Square=e.asm.Square).apply(null,arguments)},RS=e._SquaredDifference=function(){return(RS=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},FS=e._Step=function(){return(FS=e._Step=e.asm.Step).apply(null,arguments)},OS=e._StridedSlice=function(){return(OS=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},PS=e._Sub=function(){return(PS=e._Sub=e.asm.Sub).apply(null,arguments)},MS=e._Sum=function(){return(MS=e._Sum=e.asm.Sum).apply(null,arguments)},LS=e._Tan=function(){return(LS=e._Tan=e.asm.Tan).apply(null,arguments)},zS=e._Tanh=function(){return(zS=e._Tanh=e.asm.Tanh).apply(null,arguments)},BS=e._TensorScatterUpdate=function(){return(BS=e._TensorScatterUpdate=e.asm.TensorScatterUpdate).apply(null,arguments)},VS=e._Tile=function(){return(VS=e._Tile=e.asm.Tile).apply(null,arguments)},GS=e._TopK=function(){return(GS=e._TopK=e.asm.TopK).apply(null,arguments)},WS=e._Transform=function(){return(WS=e._Transform=e.asm.Transform).apply(null,arguments)},US=e._Transpose=function(){return(US=e._Transpose=e.asm.Transpose).apply(null,arguments)},HS=e.__FusedMatMul=function(){return(HS=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},qS=e._malloc=function(){return(qS=e._malloc=e.asm.malloc).apply(null,arguments)},KS=e._free=function(){return(KS=e._free=e.asm.free).apply(null,arguments)},jS=e.___errno_location=function(){return(jS=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},Lg=e.stackSave=function(){return(Lg=e.stackSave=e.asm.stackSave).apply(null,arguments)},zg=e.stackRestore=function(){return(zg=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},Jd=e.stackAlloc=function(){return(Jd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},XS=e.dynCall_iijjiiii=function(){return(XS=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},YS=e.dynCall_jiji=function(){return(YS=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=MC;var kp;Gr=function j(){kp||Bg(),kp||(Gr=j)};function Bg(j){if(j=j||a,je>0||(Ae(),je>0))return;function ut(){kp||(kp=!0,e.calledRun=!0,!G&&(De(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),Pn()))}e.setStatus?(e.setStatus("Running..."),setTimeout(function(){setTimeout(function(){e.setStatus("")},1),ut()},1)):ut()}if(e.preInit)for(typeof e.preInit=="function"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();Bg();var Tp;s&&(Tp={uncaughtException:process.listeners("uncaughtException").filter(function(j){return!s.uncaughtException.indexOf(j)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(j){return!s.unhandledRejection.indexOf(j)>-1})});var _p;if(typeof t!="undefined")_p=t;else if(typeof WasmBackendModuleThreadedSimd!="undefined")_p=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Tp){var ZS=_p._dispose;_p._dispose=function(){ZS(),Tp.uncaughtException.forEach(function(j){process.removeListener("uncaughtException",j)}),Tp.unhandledRejection.forEach(function(j){process.removeListener("unhandledRejection",j)})}}return t.ready}})();typeof AC=="object"&&typeof q1=="object"?q1.exports=H1:typeof define=="function"&&define.amd?define([],function(){return H1}):typeof AC=="object"&&(AC.WasmBackendModule=H1)});var Ta=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Wo=class{refCount(t){return Ln("refCount")}incRef(t){return Ln("incRef")}timerAvailable(){return!0}time(t){return Ln("time")}read(t){return Ln("read")}readSync(t){return Ln("readSync")}readToGPU(t,e){return Ln("readToGPU")}numDataIds(){return Ln("numDataIds")}disposeData(t,e){return Ln("disposeData")}write(t,e,n){return Ln("write")}move(t,e,n,o,s){return Ln("move")}createTensorFromGPUData(t,e,n){return Ln("createTensorFromGPUData")}memory(){return Ln("memory")}floatPrecision(){return Ln("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Ln("dispose")}};function Ln(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function u_(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,Xg(r,t,e)}function mq(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,Xg(r,e,n),Xg(t,e,n)}function Ap(r,t,e){return Math.max(r,Math.min(t,e))}function fq(r){return r%2===0?r:r+1}function Xg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function dq(r){let t=0;for(let e=0;e<r.length;e++)t+=r[e];return t}function hq(r,t){let e=Math.random();return t*e+(1-e)*r}function gq(r,t){let e=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(t[n]);e+=o*o}return e}function _(r,t){if(!r)throw new Error(typeof t=="string"?t:t())}function Re(r,t,e=""){_(sn(r,t),()=>e+` Shapes ${r} and ${t} must match`)}function no(r){_(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function te(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e<r.length;e++)t*=r[e];return t}function xq(r){return r.length===0}function n0(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==null&&t[e]!==null&&r[e]!==t[e])return!1;return!0}function sn(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==t[e])return!1;return!0}function _a(r){return r%1===0}function yq(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let t=Math.exp(2*r);return(t-1)/(t+1)}}function bq(r){let t=Math.ceil(Math.sqrt(r));return[t,Math.ceil(r/t)]}function wq(r){let t=new Uint32Array(r);for(let e=0;e<r;++e)t[e]=e;return u_(t),t}function nc(r,t){return t<=r.length?r:r+" ".repeat(t-r.length)}function Iq(r,t=o=>0,e,n){return new Promise((o,s)=>{let i=0,a=()=>{if(r()){o();return}i++;let u=t(i);if(e!=null&&i>=e){s();return}n!=null?n(a,u):setTimeout(a,u)};a()})}function Cq(r,t){let e=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function fr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),_(r.every(n=>n>=-e&&n<e),()=>`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),_(r.every(n=>_a(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function o0(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:fr(t,r).sort(),i=0;for(let a=0;a<r.length;++a){if(s!=null){if(s[i]===a&&r[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${r[a]}' is not 1`);(s[i]==null||s[i]>a)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function s0(r,t){return Yg(r,t)}function Yg(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else if(r==="string")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function i0(r,t){for(let e=0;e<r.length;e++){let n=r[e];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function a0(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function vq(r,t){return!(t==="complex64"||t==="float32"&&r!=="complex64"||t==="int32"&&r!=="float32"&&r!=="complex64"||t==="bool"&&r==="bool")}function Dp(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function l0(r){if(r==null)return 0;let t=0;return r.forEach(e=>t+=e.length),t}function Uo(r){return typeof r=="string"||r instanceof String}function c_(r){return typeof r=="boolean"}function p_(r){return typeof r=="number"}function jl(r){return Array.isArray(r)?jl(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":p_(r)?"float32":Uo(r)?"string":c_(r)?"bool":"float32"}function ki(r){return!!(r&&r.constructor&&r.call&&r.apply)}function $p(r,t){for(let e=t;e<r;++e)if(r%e===0)return e;return r}function Ti(r){let t=r.length;if(t<2)return[];let e=new Array(t-1);e[t-2]=r[t-1];for(let n=t-3;n>=0;--n)e[n]=e[n+1]*r[n+1];return e}function m_(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)o[i]=e[r+i]}else{let s=t[0],i=t.slice(1),a=i.reduce((u,l)=>u*l)*(n?2:1);for(let u=0;u<s;u++)o[u]=m_(r+u*a,i,e,n)}return o}function rc(r,t,e=!1){if(r.length===0)return t[0];let n=r.reduce((o,s)=>o*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?" for a complex tensor":""}.`);return m_(0,r,t,e)}function Sq(r,t){if(Array.isArray(r))return r;if(t==="float32")return r instanceof Float32Array?r:new Float32Array(r);if(t==="int32")return r instanceof Int32Array?r:new Int32Array(r);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(r));throw new Error(`Unknown dtype ${t}`)}function th(r,t){let e=Rp(r,t);for(let n=0;n<e.length;n++)e[n]=1;return e}function Rp(r,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${t}`)}function Nq(r,t){let e=r.reduce((n,o)=>n*o,1);if(t==null||t==="float32")return rc(r,new Float32Array(e));if(t==="int32")return rc(r,new Int32Array(e));if(t==="bool")return rc(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Me(r){r.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function kq(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=e[o]*r[o];return n}function Tq(r,t,e){if(t===0)return[];if(t===1)return[r];let n=new Array(t);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/e[o]),r-=n[o]*e[o];return n[n.length-1]=r,n}function oc(r){return r&&r.then&&typeof r.then=="function"}var f_="tfjsflags",eh=class{constructor(t){this.global=t,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=Eq,this.populateURLFlags()}setPlatform(t,e){this.platform!=null&&(L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=t,this.platform=e}registerFlag(t,e,n){if(this.flagRegistry[t]={evaluationFn:e,setHook:n},this.urlFlags[t]!=null){let o=this.urlFlags[t];L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(`Setting feature override from URL ${t}: ${o}.`),this.set(t,o)}}async getAsync(t){return t in this.flags?this.flags[t]:(this.flags[t]=await this.evaluateFlag(t),this.flags[t])}get(t){if(t in this.flags)return this.flags[t];let e=this.evaluateFlag(t);if(oc(e))throw new Error(`Flag ${t} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[t]=e,this.flags[t]}getNumber(t){return this.get(t)}getBool(t){return this.get(t)}getString(t){return this.get(t)}getFlags(){return this.flags}get features(){return this.flags}set(t,e){if(this.flagRegistry[t]==null)throw new Error(`Cannot set flag ${t} as it has not been registered.`);this.flags[t]=e,this.flagRegistry[t].setHook!=null&&this.flagRegistry[t].setHook(e)}evaluateFlag(t){if(this.flagRegistry[t]==null)throw new Error(`Cannot evaluate flag '${t}': no evaluation function found.`);return this.flagRegistry[t].evaluationFn()}setFlags(t){this.flags=Object.assign({},t)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let t=this.getQueryParams(this.global.location.search);f_ in t&&t[f_].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=Dq(o,s)})}};function Eq(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(Aq(t,n[0],n[1]),n.join("="))),t}function Aq(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||"")}function Dq(r,t){let e=t.toLowerCase();return e==="true"||e==="false"?e==="true":`${+e}`===e?+e:t}function L(){return u0}var u0=null;function d_(r){u0=r}var c0;function p0(){if(c0==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");c0=r}return c0}function $q(){let r=p0();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function rh(r,t){let e=$q();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var _i="Abs",Ho="Acos",qo="Acosh",oo="Add",Ko="AddN",Ea="All",Aa="Any",Ei="ArgMax",Ai="ArgMin",jo="Asin",Xo="Asinh",Yo="Atan",Zo="Atanh",Jo="Atan2",Qo="AvgPool",Fp="AvgPoolGrad",Di="AvgPool3D",Xl="AvgPool3DGrad",ts="BatchMatMul",$i="BatchToSpaceND",Da="Bincount",nh="BitwiseAnd",h_="BroadcastTo",Yl="BroadcastArgs",ho="Cast",es="Ceil",go="ClipByValue",Op="Complex",Zl="ComplexAbs",Ri="Concat",rs="Conv2D",Pp="Conv2DBackpropFilter",ns="Conv2DBackpropInput",os="Conv3D",$a="Conv3DBackpropFilterV2",Ra="Conv3DBackpropInputV2",ss="Cos",is="Cosh",Fa="Cumprod",as="Cumsum",Oa="CropAndResize",Jl="DenseBincount",Pa="DepthToSpace",ls="DepthwiseConv2dNative",Mp="DepthwiseConv2dNativeBackpropFilter",Lp="DepthwiseConv2dNativeBackpropInput",Ql="Diag",us="Dilation2D",tu="Dilation2DBackpropInput",eu="Dilation2DBackpropFilter",cs="RealDiv",zp="Einsum",ps="Elu",Ma="EluGrad",La="Erf",za="Equal",ms="Exp",Fi="ExpandDims",fs="Expm1",Bp="FFT",ru="Fill",Ba="FlipLeftRight",ds="Floor",hs="FloorDiv",gs="FusedBatchNorm",Oi="GatherV2",Va="GatherNd",Ga="Greater",xs="GreaterEqual",xo="Identity",Vp="IFFT",Gp="Imag",ys="IsFinite",bs="IsInf",ws="IsNan",Is="LeakyRelu",Wa="Less",Ua="LessEqual",Ha="LinSpace",Cs="Log",vs="Log1p",qa="LogicalAnd",Ka="LogicalNot",ja="LogicalOr",g_="LogicalXor",x_="LogSoftmax",rmt="LowerBound",Ss="LRN",Xa="LRNGrad",nmt="MatrixBandPart",Ns="Max",ks="Maximum",Ts="MaxPool",Wp="MaxPoolGrad",Pi="MaxPool3D",nu="MaxPool3DGrad",Up="MaxPoolWithArgmax",_s="Mean",Es="Min",As="Minimum",Ds="MirrorPad",Ya="Mod",Za="Multinomial",$s="Multiply",Mi="Neg",Ja="NotEqual",Qa="NonMaxSuppressionV3",tl="NonMaxSuppressionV4",el="NonMaxSuppressionV5",Li="OnesLike",Rs="OneHot",zi="Pack",Fs="PadV2",omt="Pool",Os="Pow",Ps="Prelu",Ms="Prod",Hp="RaggedGather",qp="RaggedRange",Kp="RaggedTensorToTensor",ou="Range",jp="Real",Ls="Reciprocal",zs="Relu",Bi="Reshape",Bs="ResizeNearestNeighbor",rl="ResizeNearestNeighborGrad",Vs="ResizeBilinear",nl="ResizeBilinearGrad",Gs="Relu6",Ws="Reverse",Us="Round",Hs="Rsqrt",ol="ScatterNd",sl="TensorScatterUpdate",il="SearchSorted",Vi="Select",qs="Selu",Gi="Slice",Ks="Sin",al="Sinh",js="Sign",Xs="Sigmoid",Ys="Softplus",Zs="Sqrt",Js="Sum",Wi="SpaceToBatchND",Ui="SplitV",Qs="Softmax",su="SparseFillEmptyRows",ll="SparseReshape",iu="SparseSegmentMean",au="SparseSegmentSum",ul="SparseToDense",ti="SquaredDifference",lu="Square",sc="StaticRegexReplace",cl="StridedSlice",uu="StringNGrams",cu="StringSplit",pu="StringToHashBucketFast",ei="Sub",ri="Tan",ni="Tanh",so="Tile",pl="TopK",ml="Transform",io="Transpose",mu="Unique",Hi="Unpack",fu="UnsortedSegmentSum",smt="UpperBound",qi="ZerosLike",yo="Step",oh="FromPixels",fl="RotateWithOffset",Ki="_FusedMatMul",ji="FusedConv2D",Xi="FusedDepthwiseConv2D";function Yi(...r){L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(...r)}function Rq(...r){L().getBool("IS_TEST")||L().getBool("PROD")||console.log(...r)}var Xp=rh("kernelRegistry",()=>new Map),sh=rh("gradRegistry",()=>new Map);function ih(r,t){let e=f0(r,t);return Xp.get(e)}function m0(r){return sh.get(r)}function Zg(r){let t=Xp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split("_");a===r&&e.push(i)}return e}function ic(r){let{kernelName:t,backendName:e}=r,n=f0(t,e);Xp.has(n)&&Yi(`The kernel '${t}' for backend '${e}' is already registered`),Xp.set(n,r)}function b_(r){let{kernelName:t}=r;sh.has(t)&&L().getBool("DEBUG")&&Yi(`Overriding the gradient for '${t}'`),sh.set(t,r)}function cmt(r,t){let e=f0(r,t);if(!Xp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);Xp.delete(e)}function pmt(r){if(!sh.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);sh.delete(r)}function mmt(r,t){Zg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});ic(o)})}function f0(r,t){return`${t}_${r}`}var y={};Kt(y,{arraysEqual:()=>sn,arraysEqualWithNull:()=>n0,assert:()=>_,assertNonNegativeIntegerDimensions:()=>Me,assertNonNull:()=>no,assertShapesMatch:()=>Re,bytesFromStringArray:()=>l0,bytesPerElement:()=>Dp,checkConversionForErrors:()=>i0,clamp:()=>Ap,computeStrides:()=>Ti,convertBackendValuesAndArrayBuffer:()=>Sq,createScalarValue:()=>Bq,createShuffledIndices:()=>wq,decodeString:()=>Qp,distSquared:()=>gq,encodeString:()=>hu,fetch:()=>Gq,fingerPrint64:()=>zq,flatten:()=>si,getArrayFromDType:()=>Yg,getTypedArrayFromDType:()=>s0,hasEncodingLoss:()=>vq,hexToLong:()=>ah,indexToLoc:()=>Tq,inferDtype:()=>jl,inferFromImplicitShape:()=>Cq,isBoolean:()=>c_,isFunction:()=>ki,isInt:()=>_a,isNumber:()=>p_,isPromise:()=>oc,isScalarShape:()=>xq,isString:()=>Uo,isTypedArray:()=>or,isValidDtype:()=>a0,locToIndex:()=>kq,makeOnesTypedArray:()=>th,makeZerosNestedTypedArray:()=>Nq,makeZerosTypedArray:()=>Rp,nearestDivisor:()=>$p,nearestLargerEven:()=>fq,now:()=>pc,parseAxisParam:()=>fr,randUniform:()=>hq,repeatedTry:()=>Iq,rightPad:()=>nc,shuffle:()=>u_,shuffleCombo:()=>mq,sizeFromShape:()=>te,sizeToSquarishShape:()=>bq,squeezeShape:()=>o0,sum:()=>dq,swap:()=>Xg,tanh:()=>yq,toNestedArray:()=>rc,toTypedArray:()=>Jp});function Jg(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray}var x0=Kl(A_());var cc=x0.default||x0;function ah(r){return cc.fromString(r,!0,16)}var $_=ah("c3a5c85c97cb3127"),uc=ah("b492b66fbe98f273"),an=ah("9ae16a3b2f90404f");function g0(r){return r.xor(r.shru(47))}function R_(r,t,e){let n=r.slice(t,t+e);return cc.fromBytes(Array.from(n),!0,!0)}function Le(r,t){return R_(r,t,8)}function D_(r,t){return R_(r,t,4)}function Ar(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function du(r,t,e=ah("9ddfea08eb382d69")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function Oq(r,t,e,n,o,s){o=o.add(r),s=Ar(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Ar(o,44)),[o.add(n),s.add(i)]}function tx(r,t,e,n){return Oq(Le(r,t),Le(r,t+8),Le(r,t+16),Le(r,t+24),e,n)}function Pq(r,t=r.length){if(t>=8){let e=an.add(t*2),n=Le(r,0).add(an),o=Le(r,t-8),s=Ar(o,37).mul(e).add(n),i=Ar(n,25).add(o).mul(e);return du(s,i,e)}if(t>=4){let e=an.add(t*2),n=D_(r,0);return du(n.shl(3).add(t),D_(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return g0(an.mul(s).xor($_.mul(i))).mul(an)}return an}function Mq(r,t=r.length){let e=an.add(t*2),n=Le(r,0).mul(uc),o=Le(r,8),s=Le(r,t-8).mul(e),i=Le(r,t-16).mul(an);return du(Ar(n.add(o),43).add(Ar(s,30)).add(i),n.add(Ar(o.add(an),18)).add(s),e)}function Lq(r,t=r.length){let e=an.add(t*2),n=Le(r,0).mul(an),o=Le(r,8),s=Le(r,t-8).mul(e),i=Le(r,t-16).mul(an),a=Ar(n.add(o),43).add(Ar(s,30)).add(i),u=du(a,n.add(Ar(o.add(an),18)).add(s),e),l=Le(r,16).mul(e),c=Le(r,24),p=a.add(Le(r,t-32)).mul(e),m=u.add(Le(r,t-24)).mul(e);return du(Ar(l.add(c),43).add(Ar(p,30)).add(m),l.add(Ar(c.add(n),18)).add(p),e)}function zq(r,t=r.length){let e=cc.fromNumber(81,!0);if(t<=32)return t<=16?Pq(r,t):Mq(r,t);if(t<=64)return Lq(r,t);let n=e,o=e.mul(uc).add(113),s=g0(o.mul(an).add(113)).mul(an),i=[cc.UZERO,cc.UZERO],a=[cc.UZERO,cc.UZERO];n=n.mul(an).add(Le(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Ar(n.add(o).add(i[0]).add(Le(r,u+8)),37).mul(uc),o=Ar(o.add(i[1]).add(Le(r,u+48)),42).mul(uc),n=n.xor(a[1]),o=o.add(i[0]).add(Le(r,u+40)),s=Ar(s.add(a[0]),33).mul(uc),i=tx(r,u,i[1].mul(uc),n.add(a[0])),a=tx(r,u+32,s.add(a[1]),o.add(Le(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=uc.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Ar(n.add(o).add(i[0]).add(Le(r,u+8)),37).mul(p),o=Ar(o.add(i[1]).add(Le(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(Le(r,u+40))),s=Ar(s.add(a[0]),33).mul(p),i=tx(r,u,i[1].mul(p),n.add(a[0])),a=tx(r,u+32,s.add(a[1]),o.add(Le(r,u+16))),[s,n]=[n,s],du(du(i[0],a[0],p).add(g0(o).mul($_)).add(s),du(i[1],a[1],p).add(n),p)}function Bq(r,t){return t==="string"?hu(r):Jp([r],t)}function Vq(r,t){return r instanceof Float32Array&&t==="float32"||r instanceof Int32Array&&t==="int32"||r instanceof Uint8Array&&t==="bool"}function Jp(r,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=si(r)),L().getBool("DEBUG")&&i0(r,t),Vq(r,t))return r;if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool"){let e=new Uint8Array(r.length);for(let n=0;n<e.length;++n)Math.round(r[n])!==0&&(e[n]=1);return e}else throw new Error(`Unknown data type ${t}`)}function pc(){return L().platform.now()}function Gq(r,t){return L().platform.fetch(r,t)}function hu(r,t="utf-8"){return t=t||"utf-8",L().platform.encode(r,t)}function Qp(r,t="utf-8"){return t=t||"utf-8",L().platform.decode(r,t)}function or(r){return L().platform.isTypedArray!=null?L().platform.isTypedArray(r):Jg(r)}function si(r,t=[],e=!1){if(t==null&&(t=[]),typeof r=="boolean"||typeof r=="number"||typeof r=="string"||oc(r)||r==null||or(r)&&e)t.push(r);else if(Array.isArray(r)||or(r))for(let n=0;n<r.length;++n)si(r[n],t,e);else{let n=-1;for(let o of Object.keys(r))/^([1-9]+[0-9]*|0)$/.test(o)&&(n=Math.max(n,Number(o)));for(let o=0;o<=n;o++)si(r[o],t,e)}return t}var ex=class{constructor(t,e){this.backendTimer=t,this.logger=e,e==null&&(this.logger=new y0)}profileKernel(t,e,n){let o,s=()=>{o=n()},i,a=pc();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:pc()-a})}if(L().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let c=o[l];c.data().then(p=>{Wq(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function Wq(r,t,e){if(t!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${e}'`),!0}return!1}var y0=class{logKernelProfile(t,e,n,o,s,i){let a=typeof o=="number"?nc(`${o}ms`,9):o.error,u=nc(t,25),l=e.rank,c=e.size,p=nc(e.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||e.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${u} %c${a} %c${l}D ${p} %c${c} %c${m} %c${i}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function F_(r,t,e){let n={},o={};for(let u=0;u<t.length;u++)n[t[u].id]=!0;for(let u=0;u<r.length;u++){let l=r[u],c=l.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<t.length;d++)if(n[m.id]){l.outputs.forEach(h=>n[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let m in c)s[c[m].id]=!0,i[l.id]=!0;break}}let a=[];for(let u=0;u<r.length;u++){let l=r[u];if(o[l.id]&&i[l.id]){let c={};for(let m in l.inputs){let f=l.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,a.push(p)}}return a}function O_(r,t,e,n){for(let o=t.length-1;o>=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!sn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var P_=20,lh=3,b0=7;function M_(r,t,e,n){let o=Ti(t),s=Uq(r,t,e,o),i=t.length,a=rx(r,t,e,o,s),u=["Tensor"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(a.map(l=>" "+l).join(`
`)),u.join(`
`)}function Uq(r,t,e,n){let o=te(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e==="complex64"?ch(r):r;if(a>1)for(let l=0;l<o/s;l++){let c=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],uh(u[c+p],0,e).length)}return i}function uh(r,t,e){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(b0))} + ${parseFloat(r[1].toFixed(b0))}j`:Uo(r)?n=`'${r}'`:e==="bool"?n=L_(r):n=parseFloat(r.toFixed(b0)).toString(),nc(n,t)}function L_(r){return r===0?"false":"true"}function rx(r,t,e,n,o,s=!0){let i=e==="complex64"?2:1,a=t[0],u=t.length;if(u===0){if(e==="complex64"){let h=ch(r);return[uh(h[0],0,e)]}return e==="bool"?[L_(r[0])]:[r[0].toString()]}if(u===1){if(a>P_){let g=lh*i,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-lh)*i,a*i));return e==="complex64"&&(x=ch(x),b=ch(b)),["["+x.map((w,I)=>uh(w,o[I],e)).join(", ")+", ..., "+b.map((w,I)=>uh(w,o[a-lh+I],e)).join(", ")+"]"]}return["["+(e==="complex64"?ch(r):Array.from(r)).map((g,x)=>uh(g,o[x],e)).join(", ")+"]"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>P_){for(let h=0;h<lh;h++){let g=h*p,x=g+p;m.push(...rx(r.slice(g,x),l,e,c,o,!1))}m.push("...");for(let h=a-lh;h<a;h++){let g=h*p,x=g+p;m.push(...rx(r.slice(g,x),l,e,c,o,h===a-1))}}else for(let h=0;h<a;h++){let g=h*p,x=g+p;m.push(...rx(r.slice(g,x),l,e,c,o,h===a-1))}let f=u===2?",":"";m[0]="["+(a>0?m[0]+f:"");for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<u;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function ch(r){let t=[];for(let e=0;e<r.length;e+=2)t.push([r[e],r[e+1]]);return t}var le=class{constructor(t,e,n){if(this.dtype=e,this.shape=t.slice(),this.size=te(t),n!=null){let o=n.length;_(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Yg(e,this.size),this.strides=Ti(t)}set(t,...e){e.length===0&&(e=[0]),_(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;o<t.length-1;++o)n+=this.strides[o]*t[o];return this.values[n]}locToIndex(t){if(this.rank===0)return 0;if(this.rank===1)return t[0];let e=t[t.length-1];for(let n=0;n<t.length-1;++n)e+=this.strides[n]*t[n];return e}indexToLoc(t){if(this.rank===0)return[];if(this.rank===1)return[t];let e=new Array(this.shape.length);for(let n=0;n<e.length-1;++n)e[n]=Math.floor(t/this.strides[n]),t-=e[n]*this.strides[n];return e[e.length-1]=t,e}get rank(){return this.shape.length}toTensor(){return ii().makeTensor(this.values,this.shape,this.dtype)}},ii=null,tm=null,Hq=null;function z_(r){ii=r}function B_(r){tm=r}function V_(r){Hq=r}var Pt=class{constructor(t,e,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=t.slice(),this.dtype=e||"float32",this.size=te(t),this.strides=Ti(t),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let t=await this.data();return tm.buffer(this.shape,this.dtype,t)}bufferSync(){return tm.buffer(this.shape,this.dtype,this.dataSync())}async array(){let t=await this.data();return rc(this.shape,t,this.dtype==="complex64")}arraySync(){return rc(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let t=ii().read(this.dataId);if(this.dtype==="string"){let e=await t;try{return e.map(n=>Qp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataToGPU(t){return this.throwIfDisposed(),ii().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=ii().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>Qp(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await ii().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(ii().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return tm.print(this,t)}clone(){return this.throwIfDisposed(),tm.clone(this)}toString(t=!1){let e=this.dataSync();return M_(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),tm.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),ii().makeVariable(this,t,e,n)}};Object.defineProperty(Pt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return rh("Tensor",()=>Pt)}O();var dl=class extends Pt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!sn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);ii().disposeTensor(this),this.dataId=t.dataId,ii().incRef(this,null)}dispose(){ii().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(dl,Symbol.hasInstance,{value:r=>r instanceof Pt&&r.assign!=null&&r.assign instanceof Function});var Co={};Kt(Co,{assertTypesMatch:()=>N0,getTensorsInContainer:()=>ph,isTensorInList:()=>Kq,makeTypesMatch:()=>jt});var w0;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(w0||(w0={}));var I0;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(I0||(I0={}));var C0;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(C0||(C0={}));var v0;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(v0||(v0={}));var S0;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(S0||(S0={}));var qq={float32:v0,int32:I0,bool:C0,complex64:S0};function ur(r,t){if(r==="string"||t==="string"){if(r==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${r} with ${t}`)}return qq[r][t]}function mc(r){return ur(r,"int32")}function nx(r){return r!=null&&typeof r=="object"&&"texture"in r&&r.texture instanceof WebGLTexture}function ox(r){return typeof GPUBuffer!="undefined"&&r!=null&&typeof r=="object"&&"buffer"in r&&r.buffer instanceof GPUBuffer}function jt(r,t){if(r.dtype===t.dtype)return[r,t];let e=ur(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function N0(r,t){_(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function Kq(r,t){return t.some(e=>e.id===r.id)}function ph(r){let t=[];return G_(r,t,new Set),t}function G_(r,t,e){if(r==null)return;if(r instanceof Pt){t.push(r);return}if(!jq(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),G_(s,t,e))}}function jq(r){return Array.isArray(r)||typeof r=="object"}function k0(r){return r.kernelName!=null}var sx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},gu=class{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new sx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:t,asyncInit:e}=this.initializeBackendsAndReturnBest();if(e)throw new Error(`The highest priority backend '${t}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(t)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(t){if(!(t in this.registry))if(t in this.registryFactory){let{asyncInit:e}=this.initializeBackend(t);if(e)return null}else return null;return this.registry[t]}findBackendFactory(t){return t in this.registryFactory?this.registryFactory[t].factory:null}registerBackend(t,e,n=1){return t in this.registryFactory?(Yi(`${t} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[t]={factory:e,priority:n},!0)}async setBackend(t){if(this.registryFactory[t]==null)throw new Error(`Backend name '${t}' not found in registry`);if(this.backendName=t,this.registry[t]==null){this.backendInstance=null;let{success:e,asyncInit:n}=this.initializeBackend(t);if(!(n?await e:e))return!1}return this.backendInstance=this.registry[t],this.setupRegisteredKernels(),this.profiler=new ex(this.backendInstance),!0}setupRegisteredKernels(){Zg(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){Zg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Wo)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(i=>o<this.pendingBackendInitId?!1:(this.registry[t]=i,this.pendingBackendInit=null,!0)).catch(i=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,Yi(`Initialization of backend ${t} failed`),Yi(i.stack||i.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[t]=n,{success:!0,asyncInit:!1}}catch(n){return Yi(`Initialization of backend ${t} failed`),Yi(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(t){if(!(t in this.registryFactory))throw new Error(`${t} backend not found in registry`);this.backendName===t&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,t in this.registry&&(this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t]),delete this.registryFactory[t],this.backendName===t&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((t,e)=>this.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(t,e){let n=this.state.tensorInfo.get(e),o=n.backend,s=this.readSync(e),i=o.refCount(e);o.disposeData(e,!0),n.backend=t,t.move(e,s,n.shape,n.dtype,i),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(t,e){let n=null;if(e==null){if(typeof t!="function")throw new Error("Please provide a function to tidy()");e=t}else{if(typeof t!="string"&&!(t instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof e!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=t}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return gu.nextTensorId++}nextVariableId(){return gu.nextVariableId++}clone(t){let e=T.runKernel(xo,{x:t}),n={x:t},o=i=>({x:()=>{let a="float32",u={x:i},l={dtype:a};return T.runKernel(ho,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(ih(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype==="complex64"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=k0(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(k0(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let x=ih(d,this.backendName);_(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let I=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,I);n=this.saveTensorsForBackwardMode(N)}return I}}else{let{forwardFunc:d}=t,h=g=>{o&&(n=g.map(x=>this.keep(this.clone(x))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let x=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,x),x}}let{inputs:c,attrs:p}=t,m=k0(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=m0(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(_(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=t;n==="string"&&Uo(t[0])&&(s=t.map(u=>hu(u)));let i=o.write(s,e,n),a=new Pt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n==="string"){let u=this.state.tensorInfo.get(i),l=l0(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||"float32";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Pt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new dl(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++;let n=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(n=t.size*Dp(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof dl||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!=="complex64"&&t.dtype!=="string"){let n=t.size*Dp(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=m0(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=Rp(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=ph(t),n=new Set(e.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let i=this.state.activeScope.track[s];!i.kept&&!n.has(i.id)&&i.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],e.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(_(e.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));_(s instanceof Pt,()=>"The result y returned by f() must be a tensor.");let i=F_(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let a={};a[s.id]=n==null?Xq(s.shape):n,O_(a,i,l=>this.tidy(l),Yq);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return _(ki(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{_(e.every(a=>a instanceof Pt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),_(n.value instanceof Pt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),_(ki(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];_(c.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),_(c.every(m=>m instanceof Pt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=pc(),n=await this.backend.time(t);return n.wallMs=pc()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new sx;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};gu.nextTensorId=0;gu.nextVariableId=0;function Xq(r){let t=th(te(r),"float32");return T.makeTensor(t,r,"float32")}function T0(){let r=p0();if(r._tfengine==null){let t=new eh(r);r._tfengine=new gu(t)}return d_(r._tfengine.ENV),z_(()=>r._tfengine),r._tfengine}var T=T0();function Yq(r,t){let e={a:r,b:t};return T.runKernel(oo,e)}var xu={};Kt(xu,{isBrowser:()=>E0,isMobile:()=>Qq,mockIsMobile:()=>Jq});function Zq(){return typeof navigator!="undefined"&&navigator!=null}var _0;function Jq(r){_0=r}function Qq(r){if(_0!==void 0)return _0;if(r||Zq()){if(r||(r=navigator),r.product==="ReactNative")return!0;let t=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function E0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Sn=L();Sn.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Sn.registerFlag("IS_BROWSER",()=>E0());Sn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Sn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Sn.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));Sn.registerFlag("PROD",()=>!1);Sn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Sn.getBool("DEBUG"));Sn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Sn.registerFlag("IS_TEST",()=>!1);Sn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>Sn.getBool("DEBUG"));Sn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Sn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Sn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function Wr(r,t){let e=r;if(or(r))return t==="string"?[]:[r.length];if(nx(r)){let o=r.channels||"RGBA";return[r.height,r.width*o.length]}else if(ox(r))return[r.buffer.size/(t==null?4:Dp(t))];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||or(e)&&t!=="string";)n.push(e.length),e=e[0];return Array.isArray(r)&&L().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&U_(r,n,[]),n}function U_(r,t,e){if(e=e||[],!Array.isArray(r)&&!or(r)){_(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${r.length} elements`),_(r.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o<r.length;++o)U_(r[o],n,e.concat(o))}function W_(r,t,e,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==t||r==="numeric"&&t==="string")throw new Error(`Argument '${e}' passed to '${n}' must be ${r} tensor, but got ${t} tensor`)}}function v(r,t,e,n="numeric"){if(r instanceof Pt)return W_(n,r.dtype,t,e),r;let o=jl(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),W_(n,o,t,e),r==null||!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let u=r==null?"null":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Wr(r,o);!or(r)&&!Array.isArray(r)&&(r=[r]);let a=o!=="string"?Jp(r,o):si(r,[],!0);return T.makeTensor(a,s,o)}function hl(r,t,e,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,i)=>v(s,`${t}[${i}]`,e,n))}var A0="__op";function k(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+A0;let o=(...s)=>{T.startScope(e);try{let i=n(...s);return oc(i)&&console.error("Cannot return a Promise inside of tidy."),T.endScope(i),i}catch(i){throw T.endScope(null),i}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function tK(r,t){let e=v(r,"real","complex"),n=v(t,"imag","complex");Re(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return T.runKernel(Op,o)}var Nn=k({complex_:tK});function ln(r,t,e,n){if(n==null)n=jl(r);else if(n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(ox(r)||nx(r)){if(n!=="float32"&&n!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return T.backend.createTensorFromGPUData(r,t||e,n)}if(!or(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Me(t);let o=te(t),s=te(e);_(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i<e.length;++i){let a=e[i],u=i===e.length-1?a!==te(t.slice(i)):!0;_(e[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!or(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!=="string"?Jp(r,n):si(r,[],!0),T.makeTensor(r,t,n)}function sr(r,t,e){let n=Wr(r,e);return ln(r,t,n,e)}var mh={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var ix=4;async function q_(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i<o.length;++i){let a=o[i],u=Array.isArray(r)?r[i].tensor:r[a];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${u.dtype}`);let l={name:a,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let m=await u.bytes(),f=m.reduce((g,x)=>g+x.length,0)+ix*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=ix,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(u.data());t!=null&&(l.group=t),e.push(l)}let s=await Promise.all(n);return{data:eK(s),specs:e}}function ax(r,t){let e={},n,o=0;for(let s of t){let i=s.name,a=s.dtype,u=s.shape,l=te(u),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=mh[p.dtype],f=r.slice(o,o+l*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(a==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=sK()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(a==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*m}else if(a==="string"){let p=te(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+ix))[0];o+=ix;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=mh[a],m=r.slice(o,o+l*p);if(a==="float32")c=new Float32Array(m);else if(a==="int32")c=new Int32Array(m);else if(a==="bool")c=new Uint8Array(m);else if(a==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=sr(f,u,"float32"),g=sr(d,u,"float32");e[i]=Nn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*p}a!=="complex64"&&(e[i]=sr(c,u,a))}return e}function eK(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var D0=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function H_(r){return D0?Buffer.byteLength(r):new Blob([r]).size}function K_(r){if(D0)return Buffer.from(r).toString("base64");let t=new Uint8Array(r),e="";for(let n=0,o=t.length;n<o;n++)e+=String.fromCharCode(t[n]);return btoa(e)}function j_(r){if(D0){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(r),e=new Uint8Array(t.length);for(let n=0;n<t.length;++n)e.set([t.charCodeAt(n)],n);return e.buffer}function em(r){if(r.length===1)return r[0];let t=0;r.forEach(o=>{t+=o.byteLength});let e=new Uint8Array(t),n=0;return r.forEach(o=>{e.set(new Uint8Array(o),n),n+=o.byteLength}),e.buffer}function $0(r){let t="/";for(r=r.trim();r.endsWith(t);)r=r.slice(0,r.length-1);let e=r.split(t);return e[e.length-1]}function lx(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:t};return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(e.initializerSignature=r.initializerSignature),r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),e}function R0(r,t,e){let n={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(n.trainingConfig=r.trainingConfig),r.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!e)throw new Error("modelJSON has weightsManifest but weightData is null");n.weightSpecs=t,n.weightData=e}return r.signature!=null&&(n.signature=r.signature),r.userDefinedMetadata!=null&&(n.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(n.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(n.initializerSignature=r.initializerSignature),n}async function rm(r,t){let e,n;return r.weightsManifest!=null&&([e,n]=await t(r.weightsManifest)),R0(r,e,n)}function Zi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:H_(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:H_(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function ux(r){let t=[];for(let e of r)t.push(...e.weights);return t}function rK(){let r=e=>{let n=e<<13,o=0;for(;!(n&8388608);)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function nK(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function oK(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function sK(){let r=rK(),t=nK(),e=oK();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i<n.length;i++){let a=n[i],u=r[e[a>>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var ve=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return ve.instance==null&&(ve.instance=new ve),ve.instance}static registerSaveRouter(t){ve.getInstance().saveRouters.push(t)}static registerLoadRouter(t){ve.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return ve.getHandlers(t,"save")}static getLoadHandlers(t,e){return ve.getHandlers(t,"load",e)}static getHandlers(t,e,n){let o=[];return(e==="load"?ve.getInstance().loadRouters:ve.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},X_=r=>ve.registerSaveRouter(r),Y_=r=>ve.registerLoadRouter(r),Z_=r=>ve.getSaveHandlers(r),J_=(r,t)=>ve.getLoadHandlers(r,t);var F0="tensorflowjs",O0=1,fc="models_store",yu="model_info_store";function Q_(){if(!L().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function P0(r){let t=r.result;t.createObjectStore(fc,{keyPath:"modelPath"}),t.createObjectStore(yu,{keyPath:"modelPath"})}var Ji=class{constructor(t){if(this.indexedDB=Q_(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(F0,O0);s.onupgradeneeded=()=>P0(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(fc,"readonly"),l=a.objectStore(fc).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{let a=Zi(e),u=i.transaction(yu,"readwrite"),l=u.objectStore(yu),c;try{c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a})}catch(m){return o(m)}let p;c.onsuccess=()=>{p=i.transaction(fc,"readwrite");let m=p.objectStore(fc),f;try{f=m.put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a})}catch(d){return o(d)}f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(yu);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};Ji.URL_SCHEME="indexeddb://";var tE=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ji.URL_SCHEME)?iK(r.slice(Ji.URL_SCHEME.length)):null;ve.registerSaveRouter(tE);ve.registerLoadRouter(tE);function iK(r){return new Ji(r)}function aK(r){return r.startsWith(Ji.URL_SCHEME)?r.slice(Ji.URL_SCHEME.length):r}var cx=class{constructor(){this.indexedDB=Q_()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(F0,O0);n.onupgradeneeded=()=>P0(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(yu,"readonly"),a=s.objectStore(yu).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=aK(t),new Promise((e,n)=>{let o=this.indexedDB.open(F0,O0);o.onupgradeneeded=()=>P0(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(yu,"readwrite"),a=i.objectStore(yu),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(fc,"readwrite");let f=l.objectStore(fc).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var gl="/",nm="tensorflowjs_models",eE="info",lK="model_topology",uK="weight_specs",cK="weight_data",pK="model_metadata";function rE(r){return{info:[nm,r,eE].join(gl),topology:[nm,r,lK].join(gl),weightSpecs:[nm,r,uK].join(gl),weightData:[nm,r,cK].join(gl),modelMetadata:[nm,r,pK].join(gl)}}function nE(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function mK(r){let t=r.split(gl);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(gl)}function fK(r){return r.startsWith(Qi.URL_SCHEME)?r.slice(Qi.URL_SCHEME.length):r}var Qi=class{constructor(t){if(!L().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=rE(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Zi(t);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,K_(t.weightData));let s={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,initializerSignature:t.initializerSignature!=null?t.initializerSignature:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw nE(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.initializerSignature!=null&&(e.initializerSignature=a.initializerSignature),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=j_(i),e}};Qi.URL_SCHEME="localstorage://";var oE=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Qi.URL_SCHEME)?dK(r.slice(Qi.URL_SCHEME.length)):null;ve.registerSaveRouter(oE);ve.registerLoadRouter(oE);function dK(r){return new Qi(r)}var px=class{constructor(){_(L().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),_(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=nm+gl,n=gl+eE;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(e)&&s.endsWith(n)){let i=mK(s);t[i]=JSON.parse(this.LS.getItem(s))}}return t}async removeModel(t){t=fK(t);let e=rE(t);if(this.LS.getItem(e.info)==null)throw new Error(`Cannot find model at path '${t}'`);let n=JSON.parse(this.LS.getItem(e.info));return nE(e),n}};var om="://",Dr=class{constructor(){this.managers={}}static getInstance(){return Dr.instance==null&&(Dr.instance=new Dr),Dr.instance}static registerManager(t,e){_(t!=null,()=>"scheme must not be undefined or null."),t.endsWith(om)&&(t=t.slice(0,t.indexOf(om))),_(t.length>0,()=>"scheme must not be an empty string.");let n=Dr.getInstance();_(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=Dr.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(Dr.getInstance().managers)}};function mx(r){if(r.indexOf(om)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Dr.getSchemes().join(",")}`);return{scheme:r.split(om)[0],path:r.split(om)[1]}}async function sE(r,t,e=!1){_(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=ve.getLoadHandlers(r);_(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),_(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=ve.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=mx(r).scheme,u=mx(r).path,l=a===mx(r).scheme,c=await o.load();e&&l&&await Dr.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await Dr.getManager(a).removeModel(u),p.modelArtifactsInfo}async function iE(){let r=Dr.getSchemes(),t={};for(let e of r){let n=await Dr.getManager(e).listModels();for(let o in n){let s=e+om+o;t[s]=n[o]}}return t}async function aE(r){let t=mx(r);return Dr.getManager(t.scheme).removeModel(t.path)}async function lE(r,t){return sE(r,t,!1)}async function uE(r,t){return sE(r,t,!0)}var M0=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}setTimeoutCustom(t,e){if(typeof window=="undefined"||!L().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(t,e);return}this.functionRefs.push(t),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},e),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let o=this.functionRefs[n.data.index];o(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(t){return Jg(t)}};if(L().get("IS_BROWSER")){L().setPlatform("browser",new M0);try{Dr.registerManager(Qi.URL_SCHEME,new px)}catch(r){}try{Dr.registerManager(Ji.URL_SCHEME,new cx)}catch(r){}}var hK={importFetch:()=>cE()},L0;var z0=class{constructor(){this.util=pE(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return L().global.fetch!=null?L().global.fetch(t,e):(L0==null&&(L0=hK.importFetch()),L0(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}isTypedArray(t){return this.util.types.isFloat32Array(t)||this.util.types.isInt32Array(t)||this.util.types.isUint8Array(t)||this.util.types.isUint8ClampedArray(t)}};L().get("IS_NODE")&&!L().get("IS_BROWSER")&&L().setPlatform("node",new z0);function bt(r,t="float32",e){return t=t||"float32",Me(r),new le(r,t,e)}function gK(r,t){let e=v(r,"x","cast");if(!a0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:e},o={dtype:t};return T.runKernel(ho,n,o)}var Q=k({cast_:gK});function xK(r){let e={x:v(r,"x","clone","string_or_numeric")};return T.runKernel(xo,e)}var un=k({clone_:xK});function fx(r,t=!1){console.log(r.toString(t))}T0();var yK={buffer:bt,cast:Q,clone:un,print:fx};B_(yK);function Idt(){L().set("PROD",!0)}function Cdt(){L().set("DEBUG",!0)}function vdt(){L().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function B0(r){L().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}V_(B0);function Sdt(){T.disposeVariables()}function Vn(){return T}function fh(){return T.memory()}function Ndt(r){return T.profile(r)}function B(r,t){return T.tidy(r,t)}function Tt(r){ph(r).forEach(e=>e.dispose())}function $e(r){return T.keep(r)}function kdt(r){return T.time(r)}function bK(r){return T.setBackend(r)}function Tdt(){return T.ready()}function _dt(){return T.backendName}function Edt(r){T.removeBackend(r)}function Adt(r){return T.findBackend(r)}function Ddt(r){return T.findBackendFactory(r)}function sm(r,t,e=1){return T.registerBackend(r,t,e)}function mE(){return T.backend}function $dt(r,t){L().setPlatform(r,t)}function wK(r,t){let e=v(r,"a","add"),n=v(t,"b","add");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(oo,o)}var Y=k({add_:wK});function IK(r,t){let e=v(r,"a","floorDiv"),n=v(t,"b","floorDiv");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(hs,o)}var im=k({floorDiv_:IK});function CK(r,t){let e=v(r,"a","div"),n=v(t,"b","div");if([e,n]=jt(e,n),e.dtype==="int32"&&n.dtype==="int32")return im(e,n);let o={a:e,b:n},s={};return T.runKernel(cs,o,s)}var ct=k({div_:CK});function vK(r,t){let e=v(r,"a","mul"),n=v(t,"b","mul");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel($s,o)}var $=k({mul_:vK});function SK(r){let t=v(r,"x","abs");if(t.dtype==="complex64"){let e={x:t};return T.runKernel(Zl,e)}else{let e={x:t};return T.runKernel(_i,e)}}var Ee=k({abs_:SK});function NK(r){let e={x:v(r,"x","acos")};return T.runKernel(Ho,e)}var dx=k({acos_:NK});function kK(r){let e={x:v(r,"x","acosh")};return T.runKernel(qo,e)}var hx=k({acosh_:kK});function TK(r){_(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),_(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>v(o,`tensors${s}`,"addN")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!sn(o.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return T.runKernel(Ko,n)}var fE=k({addN_:TK});function _K(r,t=null,e=!1){let o={x:v(r,"x","all","bool")},s={axis:t,keepDims:e};return T.runKernel(Ea,o,s)}var am=k({all_:_K});function EK(r,t=null,e=!1){let o={x:v(r,"x","any","bool")},s={axis:t,keepDims:e};return T.runKernel(Aa,o,s)}var dc=k({any_:EK});function AK(r,t=0){let n={x:v(r,"x","argMax")},o={axis:t};return T.runKernel(Ei,n,o)}var ta=k({argMax_:AK});function DK(r,t=0){let n={x:v(r,"x","argMin")},o={axis:t};return T.runKernel(Ai,n,o)}var gx=k({argMin_:DK});function $K(r){let e={x:v(r,"x","asin")};return T.runKernel(jo,e)}var xx=k({asin_:$K});function RK(r){let e={x:v(r,"x","asinh")};return T.runKernel(Xo,e)}var yx=k({asinh_:RK});function FK(r){let e={x:v(r,"x","atan")};return T.runKernel(Yo,e)}var bx=k({atan_:FK});function OK(r,t){let e=v(r,"a","atan2"),n=v(t,"b","atan2");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Jo,o)}var wx=k({atan2_:OK});function PK(r){let e={x:v(r,"x","atanh")};return T.runKernel(Zo,e)}var Ix=k({atanh_:PK});function MK(r,t,e,n,o="NHWC",s){let i=r[3],a=[...t,i],u=hE(o);return hc(r,a,e,s,n,null,null,u)}function G0(r,t,e,n,o,s,i="channelsLast"){let[a,u]=dh(t),l;if(i==="channelsLast")l=[a,u,r[3],r[3]];else if(i==="channelsFirst")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return hc(r,l,e,n,o,s,!1,i)}function LK(r,t,e,n,o,s,i="NDHWC"){let[a,u,l]=V0(t),c,p;if(i==="NDHWC")p="channelsLast",c=[a,u,l,r[4],r[4]];else if(i==="NCDHW")p="channelsFirst",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return dE(r,c,e,n,o,!1,p,s)}function hc(r,t,e,n,o,s,i=!1,a="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(a==="channelsLast")[u,l,c,p]=r;else if(a==="channelsFirst")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=dh(e),[x,b]=dh(n),w=lm(m,x),I=lm(f,b),{padInfo:N,outHeight:E,outWidth:A}=VK(o,l,c,h,g,w,I,s,a),D=i?d*p:d,F;return a==="channelsFirst"?F=[u,D,E,A]:a==="channelsLast"&&(F=[u,E,A,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:E,outWidth:A,outChannels:D,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:I,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function dE(r,t,e,n,o,s=!1,i="channelsLast",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,m]=r;else if(i==="channelsFirst")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[x,b,w]=V0(e),[I,N,E]=V0(n),A=lm(f,I),D=lm(d,N),F=lm(h,E),{padInfo:P,outDepth:V,outHeight:G,outWidth:W}=GK(o,l,c,p,x,b,w,A,D,F,a),q=s?g*m:g,H;return i==="channelsFirst"?H=[u,q,V,G,W]:i==="channelsLast"&&(H=[u,V,G,W,q]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:G,outWidth:W,outChannels:q,padInfo:P,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:I,dilationHeight:N,dilationWidth:E,inShape:r,outShape:H,filterShape:t}}function zK(r,t,e,n,o){n==null&&(n=W0(r,t,e));let s=r[0],i=r[1],a=hh((s-t+2*n)/e+1,o),u=hh((i-t+2*n)/e+1,o);return[a,u]}function BK(r,t,e,n,o,s){o==null&&(o=W0(r,t[0],n[0]));let i=[0,0,0,e];for(let a=0;a<3;a++)r[a]+2*o>=t[a]&&(i[a]=hh((r[a]-t[a]+2*o)/n[a]+1,s));return i}function W0(r,t,e,n=1){let o=lm(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function dh(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function V0(r){return typeof r=="number"?[r,r,r]:r}function lm(r,t){return t<=1?r:r+(r-1)*(t-1)}function VK(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r=="number"){l={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=zK([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;l={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r=="object"){let m=u==="channelsLast"?r[1][0]:r[2][0],f=u==="channelsLast"?r[1][1]:r[2][1],d=u==="channelsLast"?r[2][0]:r[3][0],h=u==="channelsLast"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=hh((t-s+m+f)/n+1,a),p=hh((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function GK(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(r==="valid"&&(r=0),typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=BK([t,e,n,1],[a,u,l],1,[o,s,i],r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,x=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,I=Math.floor(g/2),N=g-I,E=Math.floor(x/2),A=x-E;p={top:I,bottom:N,left:E,right:A,front:b,back:w,type:"SAME"}}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function hh(r,t){if(!t)return Math.trunc(r);switch(t){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function ao(r){let[t,e,n]=dh(r);return t===1&&e===1&&n===1}function $r(r,t){return ao(r)||ao(t)}function ea(r){return dh(r).every(t=>t>0)}function hE(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Se(r,t,e){if(e!=null){if(typeof t=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t=="number")_(_a(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(o=>{_(_a(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function WK(r,t){let n={x:v(r,"x","reshape","string_or_numeric")},o={shape:t};return T.runKernel(Bi,n,o)}var R=k({reshape_:WK});function UK(r,t,e,n,o){let s=v(r,"x","avgPool","float32"),i=1;_($r(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Se("avgPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Qo,l,c);return p=Q(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bu=k({avgPool_:UK});function HK(r,t,e,n,o,s="NDHWC"){let i=v(r,"x","avgPool3d","float32"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(typeof e=="number"&&e>0||Array.isArray(e)&&e[0]>0&&e[1]>0&&e[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${e}'`),Se("avgPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Di,l,c);return p=Q(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Cx=k({avgPool3d_:HK});function qK(r,t=0){_(r.length>=1,()=>"Pass at least one tensor to concat");let e=hl(r,"tensors","concat","string_or_numeric");if(e[0].dtype==="complex64"&&e.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),e.length===1)return un(e[0]);let n=e,o={axis:t};return T.runKernel(Ri,n,o)}var se=k({concat_:qK});function KK(r,t,e=!1,n=!1){let o=v(r,"a","matMul"),s=v(t,"b","matMul");[o,s]=jt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return T.runKernel(ts,i,a)}var Bt=k({matMul_:KK});function jK(r){let e={x:v(r,"x","sigmoid","float32")};return T.runKernel(Xs,e)}var tn=k({sigmoid_:jK});function XK(r,t,e){let n=v(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:t,size:e};return T.runKernel(Gi,o,s)}var Ot=k({slice_:XK});function YK(r){let e={x:v(r,"x","tanh","float32")};return T.runKernel(ni,e)}var ra=k({tanh_:YK});function ZK(r,t,e,n,o,s){let i=v(r,"forgetBias","basicLSTMCell"),a=v(t,"lstmKernel","basicLSTMCell"),u=v(e,"lstmBias","basicLSTMCell"),l=v(n,"data","basicLSTMCell"),c=v(o,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=se([l,p],1),f=Bt(m,a),d=Y(f,u),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Ot(d,[0,0],x),w=Ot(d,[0,g],x),I=Ot(d,[0,g*2],x),N=Ot(d,[0,g*3],x),E=Y($(tn(b),ra(w)),$(c,tn(Y(i,I)))),A=$(ra(E),tn(N));return[E,A]}var gE=k({basicLSTMCell_:ZK});function JK(r,t,e){let n=v(r,"x","batchToSpaceND"),o=t.reduce((a,u)=>a*u);_(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),_(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),_(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return T.runKernel($i,s,i)}var wu=k({batchToSpaceND_:JK});function xE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function QK(r,t,e,n,o,s){s==null&&(s=.001);let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;n!=null&&(c=v(n,"offset","batchNorm")),_(a.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(l==null||a.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:xE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=T.runKernel(gs,m,f);return R(d,i.shape)}var na=k({batchNorm_:QK});function tj(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),_(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),_(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),na(i,a,u,c,l,s)}var vx=k({batchNorm2d_:tj});function ej(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),_(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),_(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),na(i,a,u,c,l,s)}var Sx=k({batchNorm3d_:ej});function rj(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),_(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),_(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),na(i,a,u,c,l,s)}var Nx=k({batchNorm4d_:rj});function nj(r,t,e){let n=v(r,"x","bincount"),o=v(t,"weights","bincount");_(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return T.runKernel(Da,s,i)}var kx=k({bincount_:nj});function oj(r,t){let e=v(r,"x","bitwiseAnd"),n=v(t,"y","bitwiseAnd");if(!sn(e.shape,n.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${e.shape}, y: ${n.shape}`);if(e.dtype!=="int32"||n.dtype!=="int32")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${e.dtype} and type of y: ${n.dtype}`);let o={a:e,b:n};return T.runKernel(nh,o)}var yE=k({bitwiseAnd_:oj});function sj(r,t){let e=v(r,"s0","broadcastArgs","int32"),n=v(t,"s1","broadcastArgs","int32");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return T.runKernel(Yl,o)}var bE=k({broadcastArgs_:sj});function ij(r,t){let e=v(r,"broadcastTo","x"),n=e.shape;if(Me(t),t.length<e.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${e.rank}.`);if(t.length>e.rank){let l=e.shape.slice();for(;l.length<t.length;)l.unshift(1);e=R(e,l)}let o=e.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return un(e);let a={x:e},u={reps:s};return T.runKernel(so,a,u)}var oa=k({broadcastTo_:ij});function aj(r){let e={x:v(r,"x","ceil","float32")};return T.runKernel(es,e)}var Tx=k({ceil_:aj});function vo(r,t,e){Me(r),e=e||jl(t);let n={shape:r,value:t,dtype:e};return T.runKernel(ru,{},n)}function lj(r,t,e){let n=v(r,"x","clipByValue");if(_(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`),t===e)return vo(n.shape,t,n.dtype);let o={x:n},s={clipValueMin:t,clipValueMax:e};return T.runKernel(go,o,s)}var vr=k({clipByValue_:lj});function uj(r){return se(r,0)}var _x=k({concat1d_:uj});function cj(r,t){return se(r,t)}var Ex=k({concat2d_:cj});function pj(r,t){return se(r,t)}var Ax=k({concat3d_:pj});function mj(r,t){return se(r,t)}var Dx=k({concat4d_:mj});function fj(r,t,e,n,o="NHWC",s=[1,1],i){let a=v(r,"x","conv2d","float32"),u=v(t,"filter","conv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Se("conv2d",n,i);let p=o==="NHWC"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),_($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(ea(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),_(ea(e),()=>"Error in conv2D: Strides should be larger than 0.");let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(rs,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var kn=k({conv2d_:fj});function dj(r,t,e,n,o="NWC",s=1,i){let a=v(r,"x","conv1d"),u=v(t,"filter","conv1d"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),_(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),_(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Se("conv1d",n,i),_(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),_($r(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),_(ea(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),_(ea(e),()=>"Error in conv1D: Stride should be larger than 0."),_(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=kn(m,p,[1,e],n,"NHWC",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var um=k({conv1d_:dj});function hj(r,t,e,n,o,s="NHWC",i){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),_(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),_(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),_(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s==="NHWC"?a[3]:a[1],p=s==="NHWC"?u.shape[3]:u.shape[1];_(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),_(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Se("conv2dDerInput",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=T.runKernel(ns,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var cm=k({conv2DBackpropInput_:hj});function gj(r,t,e,n,o,s){let i=v(r,"x","conv2dTranspose"),a=v(t,"filter","conv2dTranspose");return cm(e,i,a,n,o,"NHWC",s)}var pm=k({conv2dTranspose_:gj});function xj(r,t,e,n,o="NDHWC",s=[1,1,1]){let i=v(r,"x","conv3d"),a=v(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),_(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),_(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),_($r(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`),_(ea(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),_(ea(e),()=>"Error in conv3D: Strides should be larger than 0.");let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=T.runKernel(os,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var $x=k({conv3d_:xj});function yj(r,t,e,n,o){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),_(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),_(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),_(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=T.runKernel(Ra,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Rx=k({conv3DBackpropInput_:yj});function bj(r,t,e,n,o){let s=v(r,"x","conv3dTranspose"),i=v(t,"filter","conv3dTranspose");return Rx(e,s,i,n,o)}var Fx=k({conv3dTranspose_:bj});function wj(r){let e={x:v(r,"x","cos","float32")};return T.runKernel(ss,e)}var Iu=k({cos_:wj});function Ij(r){let e={x:v(r,"x","cosh","float32")};return T.runKernel(is,e)}var mm=k({cosh_:Ij});function Cj(r,t=0,e=!1,n=!1){let s={x:v(r,"x","cumprod")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(Fa,s,i)}var gc=k({cumprod_:Cj});function vj(r,t=0,e=!1,n=!1){let s={x:v(r,"x","cumsum")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(as,s,i)}var fm=k({cumsum_:vj});function Sj(r,t,e,n=!1){let o=v(r,"x","denseBincount"),s=v(t,"weights","denseBincount");_(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),_(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return T.runKernel(Jl,i,a)}var gh=k({denseBincount_:Sj});function Nj(r,t,e="NHWC"){let n=v(r,"x","depthToSpace","float32"),o=e==="NHWC"?n.shape[1]:n.shape[2],s=e==="NHWC"?n.shape[2]:n.shape[3],i=e==="NHWC"?n.shape[3]:n.shape[1];_(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),_(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${t} for depthToSpace with input shape
${n.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),_(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return T.runKernel(Pa,a,u)}var Ox=k({depthToSpace_:Nj});function kj(r,t,e,n,o="NHWC",s=[1,1],i){let a=v(r,"x","depthwiseConv2d","float32"),u=v(t,"filter","depthwiseConv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o==="NHWC"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Se("depthwiseConv2d",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(ls,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var sa=k({depthwiseConv2d_:kj});function Tj(r){let e={x:v(r,"x","diag")};return T.runKernel(Ql,e)}var wE=k({diag_:Tj});function _j(r,t,e,n,o=[1,1],s="NHWC"){let i=v(r,"x","dilation2d"),a=v(t,"filter","dilation2d");_(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),_(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),_(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0),_(u.shape[3]===a.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${u.shape[3]} vs ${a.shape[2]}`);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=T.runKernel(us,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Px=k({dilation2d_:_j});var Ur={};Kt(Ur,{assertAndGetBroadcastShape:()=>Mt,getBroadcastDims:()=>IE,getReductionAxes:()=>ye});function IE(r,t){let e=r.length,n=[];for(let o=0;o<e;o++){let s=e-1-o,i=r[s]||1;(t[t.length-1-o]||1)>1&&i===1&&n.unshift(s)}return n}function ye(r,t){let e=[];for(let n=0;n<t.length;n++){let o=r[r.length-n-1],s=t.length-n-1,i=t[s];(o==null||o===1&&i>1)&&e.unshift(s)}return e}function Mt(r,t){let e=Math.max(r.length,t.length),n=new Array(e);for(let o=0;o<e;o++){let s=r[r.length-o-1];s==null&&(s=1);let i=t[t.length-o-1];if(i==null&&(i=1),s===1)n[e-o-1]=i;else if(i===1)n[e-o-1]=s;else if(s!==i){let a=`Operands could not be broadcast together with shapes ${r} and ${t}.`;throw Error(a)}else n[e-o-1]=s}return n}function Ej(r,t){let e=v(r,"a","equal","string_or_numeric"),n=v(t,"b","equal","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(za,o)}var Rr=k({equal_:Ej});function Aj(r,t,e){let n=v(t,"a","where"),o=v(e,"b","where"),s=v(r,"condition","where","bool"),i=Mt(Mt(s.shape,n.shape),o.shape),a=oa(s,i),u=oa(n,i),l=oa(o,i),c={condition:a,t:u,e:l};return T.runKernel(Vi,c)}var be=k({where_:Aj});function Dj(r){let e={x:v(r,"x","zerosLike")};return T.runKernel(qi,e)}var vt=k({zerosLike_:Dj});function $j(r,t){let e=v(r,"a","div"),n=v(t,"b","div");[e,n]=jt(e,n);let o=ct(e,n),s=vt(o),i=Rr(n,s);return be(i,s,o)}var Mx=k({divNoNan_:$j});function Rj(r,t){let e=v(r,"t1","dot"),n=v(t,"t2","dot");_((e.rank===1||e.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(_(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Bt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Bt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Bt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Bt(e,i)}}var Lx=k({dot_:Rj});function Fj(r,...t){let e=t.map((o,s)=>v(o,`tensors${s}`,"einsum")),n={equation:r};return T.runKernel(zp,e,n)}var CE=k({einsum_:Fj});function Oj(r){let e={x:v(r,"x","elu","float32")};return T.runKernel(ps,e)}var ia=k({elu_:Oj});function Pj(r,t){let e=v(r,"x","ensureShape","string_or_numeric");if(!n0(e.shape,t))throw new Error(`EnsureShape: Shape of tensor ${e.shape} is not compatible with expected shape ${t}`);return r}var vE=k({ensureShape_:Pj});function Mj(r){let t=v(r,"x","erf");_(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Q(t,"float32"));let e={x:t};return T.runKernel(La,e)}var zx=k({erf_:Mj});function U0(r,t){for(let e=0;e<r.length;++e)if(r[r.length-e-1]!==t-1-e)return!1;return!0}function SE(r,t,e){let n=r.length+t.length,o=[],s=0,i=0;for(let a=0;a<n;a++)e.indexOf(a)===-1?o.push(r[s++]):o.push(t[i++]);return o}function H0(r,t){let e=[],n=r.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&e.push(r[s]);let o=t.map(s=>r[s]);return[e,o]}function So(r,t){let e=t.map(n=>1);return SE(r,e,t)}function Lj(r,t,e){_(U0(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function q0(r,t){if(U0(r,t))return null;let e=[];for(let n=0;n<t;++n)r.indexOf(n)===-1&&e.push(n);return r.forEach(n=>e.push(n)),e}function xh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function zj(r,t){let e=[];for(let n=t-r;n<t;++n)e.push(n);return e}function Bj(r,t=null,e=!1){let o={x:v(r,"x","max")},s={reductionIndices:t,keepDims:e};return T.runKernel(Ns,o,s)}var Sr=k({max_:Bj});function Vj(r,t=null,e=!1){let o={x:v(r,"x","min")},s={axis:t,keepDims:e};return T.runKernel(Es,o,s)}var xl=k({min_:Vj});function Gj(r,t){let e=v(r,"base","pow"),n=v(t,"exp","pow");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Os,o)}var cn=k({pow_:Gj});function ft(r,t){if((or(r)&&t!=="string"||Array.isArray(r))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&or(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ln(r,[],[],t)}function Wj(r){let e={x:v(r,"x","sqrt","float32")};return T.runKernel(Zs,e)}var Ne=k({sqrt_:Wj});function Uj(r){let t=v(r,"x","square"),e={};return T.runKernel("Square",{x:t},e)}var Wt=k({square_:Uj});function Hj(r,t=null,e=!1){let n=v(r,"x","sum");n.dtype==="bool"&&(n=Q(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Js,o,s)}var pt=k({sum_:Hj});function qj(r,t="euclidean",e=null,n=!1){r=v(r,"x","norm");let o=NE(r,t,e),s=o.shape;if(n){let i=fr(e,r.shape);s=So(o.shape,i)}return R(o,s)}function NE(r,t,e=null){if(r.rank===0)return Ee(r);if(r.rank!==1&&e===null)return NE(R(r,[-1]),t,e);if(r.rank===1||typeof e=="number"||Array.isArray(e)&&e.length===1){if(t===1)return pt(Ee(r),e);if(t===1/0)return Sr(Ee(r),e);if(t===-1/0)return xl(Ee(r),e);if(t==="euclidean"||t===2)return Ne(pt(cn(Ee(r),ft(2,"int32")),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(e)&&e.length===2){if(t===1)return Sr(pt(Ee(r),e[0]),e[1]-1);if(t===1/0)return Sr(pt(Ee(r),e[1]),e[0]);if(t===-1/0)return xl(pt(Ee(r),e[1]),e[0]);if(t==="fro"||t==="euclidean")return Ne(pt(Wt(r),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${e}`)}var yl=k({norm_:qj});function Kj(r,t=null,e=!1){return yl(r,"euclidean",t,e)}var Bx=k({euclideanNorm_:Kj});function jj(r){let e={x:v(r,"x","exp")};return T.runKernel(ms,e)}var ir=k({exp_:jj});function Xj(r,t=0){let e=v(r,"x","expandDims","string_or_numeric");_(t<=e.rank,()=>"Axis must be <= rank of the tensor");let n={input:e},o={dim:t};return T.runKernel(Fi,n,o)}var ar=k({expandDims_:Xj});function Yj(r){let e={x:v(r,"x","expm1")};return T.runKernel(fs,e)}var Vx=k({expm1_:Yj});function Zj(r,t){let e=v(r,"x","tile","string_or_numeric");_(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return T.runKernel(so,n,o)}var Fr=k({tile_:Zj});function Jj(r,t,e,n="float32"){t==null&&(t=r);let o=bt([r,t],n),s=r<=t?r:t;for(let a=0;a<s;++a)o.set(1,a,a);let i=R(o.toTensor(),[r,t]);if(e==null)return i;if(e.length===1)return Fr(ar(i,0),[e[0],1,1]);if(e.length===2)return Fr(ar(ar(i,0),0),[e[0],e[1],1,1]);if(e.length===3)return Fr(ar(ar(ar(i,0),0),0),[e[0],e[1],e[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${e.length}D.`)}var xc=k({eye_:Jj});function Qj(r){let e={x:v(r,"x","floor","float32")};return T.runKernel(ds,e)}var aa=k({floor_:Qj});function t6(r,t,e=0,n=0){let o=v(r,"x","gather"),s=v(t,"indices","gather","int32"),i={x:o,indices:s},a={axis:e,batchDims:n};return T.runKernel(Oi,i,a)}var la=k({gather_:t6});function e6(r,t){let e=v(r,"a","greater","string_or_numeric"),n=v(t,"b","greater","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ga,o)}var Fe=k({greater_:e6});function r6(r,t){let e=v(r,"a","greaterEqual","string_or_numeric"),n=v(t,"b","greaterEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(xs,o)}var pn=k({greaterEqual_:r6});function n6(r){let e={input:v(r,"input","imag")};return T.runKernel(Gp,e)}var Cu=k({imag_:n6});function o6(r){let e={x:v(r,"x","isFinite")};return T.runKernel(ys,e)}var Gx=k({isFinite_:o6});function s6(r){let e={x:v(r,"x","isInf")};return T.runKernel(bs,e)}var Wx=k({isInf_:s6});function i6(r){let e={x:v(r,"x","isNaN")};return T.runKernel(ws,e)}var Ux=k({isNaN_:i6});function a6(r,t=.2){let n={x:v(r,"x","leakyRelu")},o={alpha:t};return T.runKernel(Is,n,o)}var vu=k({leakyRelu_:a6});function l6(r,t){let e=v(r,"a","less","string_or_numeric"),n=v(t,"b","less","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Wa,o)}var bl=k({less_:l6});function u6(r,t){let e=v(r,"a","lessEqual","string_or_numeric"),n=v(t,"b","lessEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ua,o)}var Gn=k({lessEqual_:u6});function kE(r,t,e){if(e<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:t,num:e};return T.runKernel(Ha,{},n)}function c6(r,t=5,e=1,n=1,o=.5){let s=v(r,"x","localResponseNormalization");_(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),_(_a(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=T.runKernel(Ss,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Hx=k({localResponseNormalization_:c6});function p6(r){let e={x:v(r,"x","log","float32")};return T.runKernel(Cs,e)}var Nr=k({log_:p6});function m6(r){let e={x:v(r,"x","log1p")};return T.runKernel(vs,e)}var Su=k({log1p_:m6});function f6(r){return _(ki(r),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let n=v(t,"x","tf.grad","string_or_numeric"),o=e!=null?v(e,"dy","tf.grad"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(n),[n],o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Kx(i),i[0]})}}function d6(r){return _(ki(r),()=>"The f passed in grads(f) must be a function"),(t,e)=>{_(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=hl(t,"args","tf.grads","string_or_numeric"),o=e!=null?v(e,"dy","tf.grads"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(...n),n,o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Kx(i),i})}}function h6(r){return _(ki(r),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{_(t instanceof Pt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),_(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=T.gradients(()=>r(t),[t],e);return Kx(n),{grad:n[0],value:o}}}function g6(r){return _(ki(r),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{_(Array.isArray(t)&&t.every(o=>o instanceof Pt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),_(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=T.gradients(()=>r(...t),t,e);return e!=null&&Re(n.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Kx(n.grads),n}}function qx(r,t){_(ki(r),()=>"The f passed in variableGrads(f) must be a function"),_(t==null||Array.isArray(t)&&t.every(l=>l instanceof dl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let l in T.registeredVariables)t.push(T.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=T.gradients(r,t,null,s);_(a.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),_(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function mn(r){return T.customGrad(r)}function Kx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function x6(r){let e={x:v(r,"x","neg")};return T.runKernel(Mi,e)}var Ut=k({neg_:x6});function y6(r){let e={x:v(r,"x","softplus")};return T.runKernel(Ys,e)}var ai=k({softplus_:y6});function b6(r){let t=v(r,"x","logSigmoid");return mn(n=>({value:Ut(ai(Ut(n))),gradFunc:i=>$(i,tn(Ut(n)))}))(t)}var jx=k({logSigmoid_:b6});function w6(r,t){let e=v(r,"a","sub"),n=v(t,"b","sub");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(ei,o)}var lt=k({sub_:w6});function I6(r,t=-1){let e=v(r,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return mn((o,s)=>{let a=Sr(o,t,!0),u=lt(o,a),l=lt(Q(u,"float32"),Nr(pt(ir(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=ir(f);return lt(p,$(pt(p,t,d),h))}}})(e)}var dm=k({logSoftmax_:I6});function C6(r,t=null,e=!1){let n=v(r,"x","logSumExp"),o=fr(t,n.shape),s=Sr(n,o,!0),i=lt(n,s),a=ir(i),u=pt(a,o),l=Nr(u),c=Y(R(s,l.shape),l);if(e){let p=So(c.shape,o);return R(c,p)}return c}var hm=k({logSumExp_:C6});function v6(r,t){let e=v(r,"a","logicalAnd","bool"),n=v(t,"b","logicalAnd","bool");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(qa,o)}var Or=k({logicalAnd_:v6});function S6(r){let e={x:v(r,"x","logicalNot","bool")};return T.runKernel(Ka,e)}var Nu=k({logicalNot_:S6});function N6(r,t){let e=v(r,"a","logicalOr","bool"),n=v(t,"b","logicalOr","bool");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(ja,o)}var gm=k({logicalOr_:N6});function k6(r,t){let e=v(r,"a","logicalXor","bool"),n=v(t,"b","logicalXor","bool");return Mt(e.shape,n.shape),Or(gm(r,t),Nu(Or(r,t)))}var Xx=k({logicalXor_:k6});var Yx=2147483648;function T6(r,t,e="left"){let n=v(r,"sortedSequence","searchSorted"),o=v(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(a.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(te(u.shape)>=Yx)throw new Error(`values tensor size must less than ${Yx}`);if(a.shape[1]>=Yx)throw new Error(`trailing dim_size must less than ${Yx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return T.runKernel(il,l,c)}var yh=k({searchSorted_:T6});function TE(r,t){return yh(r,t,"left")}function _6(r,t,e,n,o){let s=v(r,"x","maxPool"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),_($r(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Se("maxPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Ts,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ku=k({maxPool_:_6});function E6(r,t=[1,1,1],e,n,o,s="NDHWC"){let i=v(r,"x","maxPool3d"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se("maxPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Pi,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Zx=k({maxPool3d_:E6});function A6(r,t,e,n,o=!1){let i={x:v(r,"x","maxPoolWithArgmax")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=T.runKernel(Up,i,a);return{result:u[0],indexes:u[1]}}var _E=k({maxPoolWithArgmax_:A6});function D6(r,t){let e=v(r,"a","maximum"),n=v(t,"b","maximum");[e,n]=jt(e,n),e.dtype==="bool"&&(e=Q(e,"int32"),n=Q(n,"int32")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(ks,o)}var Tn=k({maximum_:D6});function $6(r,t=null,e=!1){let o={x:v(r,"x","mean")},s={axis:t,keepDims:e};return T.runKernel(_s,o,s)}var ke=k({mean_:$6});function Te(r,t="float32"){if(Me(r),t==="complex64"){let n=Te(r,"float32"),o=Te(r,"float32");return Nn(n,o)}let e=Rp(te(r),t);return T.makeTensor(e,r,t)}function dr(r,t="float32"){if(Me(r),t==="complex64"){let n=dr(r,"float32"),o=Te(r,"float32");return Nn(n,o)}let e=th(te(r),t);return T.makeTensor(e,r,t)}function EE(r,t,{indexing:e="xy"}={}){if(e!=="xy"&&e!=="ij")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=v(r,"x","meshgrid",r instanceof Pt?r.dtype:"float32");if(t===void 0)return[n];let o=v(t,"y","meshgrid",t instanceof Pt?t.dtype:"float32"),s=te(n.shape),i=te(o.shape);return e==="xy"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Bt(dr([i,1],n.dtype),n),Bt(o,dr([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Bt(n,dr([1,i],n.dtype)),Bt(dr([s,1],o.dtype),o)])}function R6(r,t){let e=v(r,"a","minimum"),n=v(t,"b","minimum");[e,n]=jt(e,n),e.dtype==="bool"&&(e=Q(e,"int32"),n=Q(n,"int32")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(As,o)}var uo=k({minimum_:R6});function F6(r,t,e){_(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=v(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");_(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let a=0;a<n.rank;a++)_(t[a].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),_(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return T.runKernel(Ds,i,s)}var Jx=k({mirrorPad_:F6});function O6(r,t){let e=v(r,"a","mod"),n=v(t,"b","mod");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Ya,o)}var Qx=k({mod_:O6});function P6(r,t=null,e=!1){r=v(r,"x","moments");let n=fr(t,r.shape),o=ke(r,n,e),s=o.shape;e||(s=So(o.shape,n));let i=Wt(lt(Q(r,"float32"),R(o,s))),a=ke(i,n,e);return{mean:o,variance:a}}var yc=k({moments_:P6});function M6(r,t,e,n){let o=v(t,"data","multiRNNCell"),s=hl(e,"c","multiRNNCell"),i=hl(n,"h","multiRNNCell"),a=o,u=[];for(let p=0;p<r.length;p++){let m=r[p](a,s[p],i[p]);u.push(m[0]),u.push(m[1]),a=m[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var AE=k({multiRNNCell_:M6});function L6(r,t,e,n=!1){let o=v(r,"logits","multinomial"),s=o.size,i=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=T.runKernel(Za,u,l);return i===1?R(c,[c.size]):c}var DE=k({multinomial_:L6});function z6(r,t){let e=v(r,"a","notEqual","string_or_numeric"),n=v(t,"b","notEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ja,o)}var li=k({notEqual_:z6});function B6(r,t,e=1,n=0,o="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let i={indices:v(r,"indices","oneHot","int32")},a={dtype:o,depth:t,onValue:e,offValue:n};return T.runKernel(Rs,i,a)}var ua=k({oneHot_:B6});function V6(r){let e={x:v(r,"x","onesLike")};return T.runKernel(Li,e)}var Ir=k({onesLike_:V6});function G6(r,t){let e=v(r,"v1","outerProduct"),n=v(t,"v2","outerProduct");_(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Bt(o,s)}var $E=k({outerProduct_:G6});function W6(r,t,e=0){let n=v(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:t,constantValue:e},s={x:n};return T.runKernel(Fs,s,o)}var fn=k({pad_:W6});function U6(r,t,e=0){return _(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),fn(r,[t],e)}var RE=k({pad1d_:U6});function H6(r,t,e=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fn(r,t,e)}var FE=k({pad2d_:H6});function q6(r,t,e=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fn(r,t,e)}var OE=k({pad3d_:q6});function K6(r,t,e=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),fn(r,t,e)}var PE=k({pad4d_:K6});function j6(r,t,e){let n=v(r,"x","spaceToBatchND");_(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),_(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),_(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return T.runKernel(Wi,o,s)}var Tu=k({spaceToBatchND_:j6});function X6(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=v(r,"x","maxPool"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_($r(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=G0(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n==="same"?m=Z6([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=Y6([c.inHeight,c.inWidth],p,m),g=f?n:"valid",x=f?u:Tu(u,p,d),w=(e==="avg"?()=>bu(x,t,s,g,i):()=>ku(x,t,s,g,i))(),I=f?w:wu(w,p,h);return l?R(I,[I.shape[1],I.shape[2],I.shape[3]]):I}function Y6(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function Z6(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var ty=k({pool_:X6});function J6(r,t){let e=v(r,"x","prelu"),n=v(t,"alpha","prelu"),o={x:e,alpha:n};return T.runKernel(Ps,o)}var _u=k({prelu_:J6});function Q6(r,t=null,e=!1){let n=v(r,"x","prod");n.dtype==="bool"&&(n=Q(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Ms,o,s)}var ey=k({prod_:Q6});function tX(r,t,e,n){let o=r.map((c,p)=>v(c,`tensors${p}`,"raggedGather","int32")),s=v(t,"paramsDenseValues","raggedGather"),i=v(e,"indices","raggedGather","int32"),a={paramsNestedSplits:o,paramsDenseValues:s,indices:i},u={outputRaggedRank:n},l=T.runKernel(Hp,a,u);return{outputNestedSplits:l.slice(0,l.length-1),outputDenseValues:l[l.length-1]}}var ME=k({raggedGather_:tX});function eX(r,t,e){let n=v(r,"starts","raggedRange"),o=v(t,"limits","raggedRange",n.dtype),s=v(e,"deltas","raggedRange",n.dtype),i={starts:n,limits:o,deltas:s},a=T.runKernel(qp,i);return{rtNestedSplits:a[0],rtDenseValues:a[1]}}var LE=k({raggedRange_:eX});function rX(r,t,e,n,o){let s=v(r,"shape","raggedTensorToTensor","int32"),i=v(t,"values","raggedTensorToTensor"),a=v(e,"defaultValue","raggedTensorToTensor",i.dtype),u=n.map((p,m)=>v(p,`tensors${m}`,"raggedTensorToTensor","int32")),l={shape:s,values:i,defaultValue:a,rowPartitionTensors:u},c={rowPartitionTypes:o};return T.runKernel(Kp,l,c)}var zE=k({raggedTensorToTensor_:rX});function nX(r,t,e){Me(r);let n=te(r),o=null;if(e==null||e==="float32")o=new Float32Array(n);else if(e==="int32")o=new Int32Array(n);else if(e==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;s<n;s++)o[s]=t();return T.makeTensor(o,r,e)}var BE=k({rand_:nX});var iy=Kl(bh());var iA={};Kt(iA,{TEST_EPSILON_FLOAT16:()=>nA,createVideoElement:()=>gX,encodeStrings:()=>sA,expectArrayBuffersEqual:()=>hX,expectArraysClose:()=>pX,expectArraysEqual:()=>fX,expectNumbersClose:()=>oA,expectPromiseToFail:()=>mX,expectValuesInRange:()=>dX,play:()=>xX,testEpsilon:()=>ny});var cX=.001,nA=.1;function pX(r,t,e){return e==null&&(e=ny()),tN(r,t,(n,o)=>eN(n,o,e))}function ny(){return T.backend.floatPrecision()===32?cX:nA}function tN(r,t,e){let n=!0;if((or(r)||or(t))&&(n=!1),or(r)&&or(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Wr(r),a=Wr(t);if(!sn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=or(r)?r:si(r),s=or(t)?t:si(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
Actual: ${o}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let a=o[i],u=s[i];if(!e(a,u))throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${u}.
Actual: ${o}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function mX(r,t){r().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function fX(r,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Uo(r)||Uo(r[0])||Uo(t)||Uo(t[0])?tN(r,e,(n,o)=>n==o):tN(r,t,(n,o)=>eN(n,o,0))}function oA(r,t,e){if(e==null&&(e=ny()),!eN(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function eN(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function dX(r,t,e){for(let n=0;n<r.length;n++)if(r[n]<t||r[n]>e)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function hX(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o<n.length;o++)if(e[o]!==n[o])throw new Error(`Expected ArrayBuffer value at ${o} to be ${n[o]} but got ${e[o]} instead`)}function sA(r){for(let t=0;t<r.length;t++){let e=r[t];Array.isArray(e)?sA(e):r[t]=hu(e)}return r}function gX(r){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(r),new Promise(e=>{t.addEventListener("loadeddata",n=>e(t)),t.load()})}async function xX(r){await r.play(),"requestVideoFrameCallback"in r&&await new Promise(t=>{r.requestVideoFrameCallback(t)})}var wc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=iy.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},oy=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=iy.alea(s.toString()),this.randn=new wc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),s<e||Math.log(s)<n)break}return i=1/this.beta*this.d*i,this.alpha<1&&(i*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(i)}convertValue(t){return this.dtype==="float32"?t:Math.round(t)}},sy=class{constructor(t=0,e=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=iy.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function yX(r,t,e=1,n="float32",o){if(Me(r),e==null&&(e=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new oy(t,e,n,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var aA=k({randomGamma_:yX});function bX(r,t=0,e=1,n,o){if(Me(r),n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new wc(t,e,n,!1,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var Ic=k({randomNormal_:bX});function wX(r,t,e){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return Ic(r,0,1,t,e)}var lA=k({randomStandardNormal_:wX});function IX(r,t=0,e=1,n="float32",o){Me(r);let s=bt(r,n),i=new sy(t,e,null,o);for(let a=0;a<s.values.length;a++)s.values[a]=i.nextValue();return s.toTensor()}var Wn=k({randomUniform_:IX});function CX(r,t,e,n){return Wn(r,t,e,"int32",n)}var uA=k({randomUniformInt_:CX});function ca(r,t,e=1,n="float32"){if(e===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:t,step:e,dtype:n};return T.runKernel(ou,{},o)}function vX(r){let e={input:v(r,"input","real")};return T.runKernel(jp,e)}var wl=k({real_:vX});function SX(r){let e={x:v(r,"x","reciprocal")};return T.runKernel(Ls,e)}var ay=k({reciprocal_:SX});function NX(r){let e={x:v(r,"x","relu")};return T.runKernel(zs,e)}var Pr=k({relu_:NX});function kX(r){let e={x:v(r,"x","relu6")};return T.runKernel(Gs,e)}var xm=k({relu6_:kX});function TX(r,t){let n={x:v(r,"x","reverse")},o={dims:t};return T.runKernel(Ws,n,o)}var hr=k({reverse_:TX});function _X(r){let t=v(r,"x","reverse");return _(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),hr(t,0)}var cA=k({reverse1d_:_X});function EX(r,t){let e=v(r,"x","reverse");return _(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),hr(e,t)}var pA=k({reverse2d_:EX});function AX(r,t){let e=v(r,"x","reverse");return _(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),hr(e,t)}var mA=k({reverse3d_:AX});function DX(r,t){let e=v(r,"x","reverse");return _(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),hr(e,t)}var fA=k({reverse4d_:DX});function $X(r){let e={x:v(r,"x","round")};return T.runKernel(Us,e)}var ym=k({round_:$X});function RX(r){let e={x:v(r,"x","rsqrt","float32")};return T.runKernel(Hs,e)}var bm=k({rsqrt_:RX});function FX(r){let e={x:v(r,"x","selu")};return T.runKernel(qs,e)}var wm=k({selu_:FX});function OX(r,t,e,n,o,s=[1,1],i="NHWC"){let a=v(r,"x","separableConv2d"),u=v(t,"depthwiseFilter","separableConv2d"),l=v(e,"pointwiseFilter","separableConv2d"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");_(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),_(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),_(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),_(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];_(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=sa(c,u,n,o,i,s),g=kn(d,l,1,"valid",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Im=k({separableConv2d_:OX});async function PX(r,t){let e=v(r,"x","setdiff1d"),n=v(t,"y","setdiff1d");_(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),_(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),_(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c<o.length;c++)i.has(o[c])||a++;let u=new le([a],e.dtype),l=new le([a],"int32");for(let c=0,p=0;c<o.length;c++)i.has(o[c])||(u.values[p]=o[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var dA=PX;function MX(r){let e={x:v(r,"x","sign")};return T.runKernel(js,e)}var ly=k({sign_:MX});function LX(r){let e={x:v(r,"x","sin","float32")};return T.runKernel(Ks,e)}var Cm=k({sin_:LX});function zX(r){let e={x:v(r,"x","sinh")};return T.runKernel(al,e)}var vm=k({sinh_:zX});function BX(r,t,e){let n=v(r,"x","slice1d");return _(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ot(n,[t],[e])}var Sm=k({slice1d_:BX});function VX(r,t,e){let n=v(r,"x","slice2d");return _(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var wh=k({slice2d_:VX});function GX(r,t,e){let n=v(r,"x","slice3d");return _(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var Nm=k({slice3d_:GX});function WX(r,t,e){let n=v(r,"x","slice4d");return _(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var Cc=k({slice4d_:WX});function UX(r,t=-1){let e=v(r,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return T.runKernel(Qs,n,o)}var Eu=k({softmax_:UX});function HX(r){_(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Bp,t)}var Au=k({fft_:HX});function qX(r){_(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Vp,t)}var Il=k({ifft_:qX});function KX(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=Il(o)}else{let o=[e,2*(t-1)],s=R(wl(r),[e,t]),i=R(Cu(r),[e,t]),a=hr(Ot(s,[0,1],[e,t-2]),1),u=$(hr(Ot(i,[0,1],[e,t-2]),1),ft(-1)),l=se([s,a],1),c=se([i,u],1),p=R(Nn(l,c),[o[0],o[1]]);n=Il(p)}if(n=wl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var km=k({irfft_:KX});function jX(r,t,e=0){let o={x:v(r,"x","split")},s={numOrSizeSplits:t,axis:e};return T.runKernel(Ui,o,s)}var gr=k({split_:jX});function XX(r,t){_(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t<e){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ot(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=se([r,Te(d)],r.shape.length-1),e=t}else o=r;let s=vt(o),i=R(Nn(o,s),[n,e]),a=Au(i),u=Math.floor(e/2)+1,l=wl(a),c=Cu(a),p=gr(l,[u,e-u],l.shape.length-1),m=gr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(Nn(p[0],m[0]),f)}var Du=k({rfft_:XX});function YX(r,t){let e=v(r,"a","squaredDifference"),n=v(t,"b","squaredDifference");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n},s={};return T.runKernel(ti,o,s)}var Tm=k({squaredDifference_:YX});function ZX(r,t){let e=v(r,"x","squeeze","string_or_numeric");return R(e,o0(e.shape,t).newShape)}var Un=k({squeeze_:ZX});function JX(r,t=0){let e=hl(r,"tensors","stack","string_or_numeric");_(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length>0&&_(t<=e[0].rank,()=>"Axis must be <= rank of the tensor");let n=e,o={axis:t};return T.runKernel(zi,n,o)}var qe=k({stack_:JX});function QX(r,t=0){let n={x:v(r,"x","step")},o={alpha:t};return T.runKernel(yo,n,o)}var No=k({step_:QX});function t5(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:v(r,"x","stridedSlice","string_or_numeric")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return T.runKernel(cl,c,p)}var uy=k({stridedSlice_:t5});function e5(r){let e={x:v(r,"x","tan","float32")};return T.runKernel(ri,e)}var cy=k({tan_:e5});function Ke(r,t){no(r);let e=Wr(r,t);if(e.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ln(r,null,e,t)}function ui(r,t,e){if(no(r),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Wr(r,e);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ln(r,t,n,e)}function py(r,t,e){if(no(r),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Wr(r,e);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ln(r,t,n,e)}function hA(r,t,e){if(no(r),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Wr(r,e);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ln(r,t,n,e)}function gA(r,t,e){if(no(r),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Wr(r,e);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ln(r,t,n,e)}function xA(r,t,e){if(no(r),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Wr(r,e);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,ln(r,t,n,e)}var $u={};Kt($u,{calculateShapes:()=>yA,validateInput:()=>_m,validateUpdateShape:()=>rN});function rN(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(e.rank-o))throw new Error(s+` Output shape length < ${n+(e.rank-o)}`);if(e.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let i=0;i<o;++i)if(e.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${e.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<e.rank-o;++i)if(e.shape[i+o]!==r[i+n])throw new Error(s+` updates.shape[${i+o}] (${e.shape[i+o]}) != shape[${i+o}] (${r[i+o]})`)}function _m(r,t,e){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(e.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${e}`);if(e.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}rN(e,t,r)}function yA(r,t,e){let n=t.shape.length,o=n>1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p<s;++p)i*=e[p];let a=o<1?1:o,u=te(t.shape)/a,l=[...Ti(e.slice(0,o)),1],c=te(e);return{sliceRank:o,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}function r5(r,t,e){let n=v(r,"tensor","tensorScatterupdate"),o=v(t,"indices","tensorScatterupdate","int32"),s=v(e,"updates","tensorScatterupdate");if(_m(s,o,n.shape),n.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${n.dtype} and ${s.dtype}.`);let i={tensor:n,indices:o,updates:s},a={};return T.runKernel(sl,i,a)}var bA=k({tensorScatterUpdate_:r5});function n5(r,t=1,e=!0){let n=v(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=T.runKernel(pl,s,i);return{values:a,indices:u}}var my=k({topk_:n5});function o5(r,t=0,e=1,n,o){if(Me(r),n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new wc(t,e,n,!0,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var Em=k({truncatedNormal_:o5});function s5(r,t=0){let e=v(r,"x","unique","string_or_numeric");_(e.rank>0,()=>"The input tensor must be at least 1D");let n={x:e},o={axis:t},[s,i]=T.runKernel(mu,n,o);return{values:s,indices:i}}var fy=k({unique_:s5});function i5(r,t,e){let n=v(r,"x","unsortedSegmentSum"),o=v(t,"segmentIds","unsortedSegmentSum","int32");_(_a(e),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},i={numSegments:e};return T.runKernel(fu,s,i)}var Am=k({unsortedSegmentSum_:i5});function a5(r,t=0){let e=v(r,"x","unstack","string_or_numeric");_(t>=-e.shape.length&&t<e.shape.length,()=>`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return T.runKernel(Hi,n,o)}var xr=k({unstack_:a5});function wA(r,t){return yh(r,t,"right")}function dy(r,t=!0,e,n){return T.makeVariable(r,t,e,n)}function hy(r,t){let e=[];for(let s=0;s<t.length;s++)t[s]&&e.push(s);let n=bt(r,"int32"),o=bt([e.length,r.length],"int32");for(let s=0;s<e.length;s++){let i=n.indexToLoc(e[s]),a=s*r.length;o.values.set(i,a)}return o.toTensor()}async function l5(r){let t=v(r,"condition","whereAsync","bool"),e=await t.data(),n=hy(t.shape,e);return r!==t&&t.dispose(),n}var gy=l5;async function u5(r,t,e){let n=v(r,"tensor","boolMask"),o=v(t,"mask","boolMask","bool"),s=e==null?0:e,i=o.rank,a=n.shape;_(i>0,()=>"mask cannot be scalar"),Re(a.slice(s,s+i),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let h=s;h<s+i;h++)u*=a[h];let l=a.slice(0,s).concat([u],a.slice(s+i)),c=R(n,l),p=R(o,[-1]),m=await gy(p),f=Un(m,[1]),d=la(c,f,s);return r!==n&&n.dispose(),t!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var c5=u5;function p5(r,t,e){let n=v(r,"x","transpose");if(t==null&&(t=n.shape.map((i,a)=>a).reverse()),_(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{_(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype==="complex64"?B(()=>{let i=wl(n),a=Cu(n);return i=T.runKernel(io,{x:i},s),a=T.runKernel(io,{x:a},s),e&&(a=Ut(a)),Nn(i,a)}):T.runKernel(io,o,s)}var Vt=k({transpose_:p5});function m5(r,t,e,n,o=!0){let s=v(r,"v","movingAverage"),i=v(t,"x","movingAverage"),a=v(e,"decay","movingAverage");N0(s,i),_(sn(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=ft(1),l=lt(u,a),c=$(lt(i,s),l);if(o){_(n!=null,()=>"When using zeroDebias: true, step is required.");let p=v(n,"step","movingAverage");c=ct(c,lt(u,cn(a,p)))}return Y(s,c)}var f5=k({movingAverage_:m5});function d5(r,t,e){Me(e);let n=v(r,"indices","scatterND","int32"),o=v(t,"updates","scatterND");_m(o,n,e);let s={indices:n,updates:o},i={shape:e};return T.runKernel(ol,s,i)}var h5=k({scatterND_:d5});function IA(r,t,e,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function x5(r,t,e,n=0){Me(e);let o=v(r,"sparseIndices","sparseToDense","int32"),s=v(t,"sparseValues","sparseToDense","string_or_numeric"),i=v(n,"defaultValue","sparseToDense",s.dtype);IA(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return T.runKernel(ul,a,u)}var y5=k({sparseToDense_:x5});function b5(r,t){let e=v(t,"indices","gatherND","int32"),o={params:v(r,"x","gatherND","string_or_numeric"),indices:e};return T.runKernel(Va,o)}var w5=k({gatherND_:b5});function CA(r,t){if(t==null)return r.shape.slice();if(sn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n<r.shape.length;n++)t[n]==null&&r.shape[n]!=null?e.push(r.shape[n]):e.push(t[n]);return e}return t}function I5(r,t,e,n){let o=v(r,"x","dropout");if(_(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Pt?o.clone():o;let s=CA(o,e),i=1-t,a=ct(aa(Y(Wn(s,0,1,"float32",n),i)),i);return $(o,a)}var nN=k({dropout_:I5});function oN(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function Ih(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let i=2*Math.PI*s/(r+n-1);o[s]=t-e*Math.cos(i)}return Ke(o,"float32")}async function C5(r,t,e=1){let n=v(r,"predictions","inTopK"),o=v(t,"targets","inTopK");_(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),_(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Re(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];_(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=s0("bool",u);for(let p=0;p<u;p++){let m=p*l,f=i.subarray(m,m+l),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<e;h++)if(d[h].index===a[p]){c[p]=1;break}}return r!==n&&n.dispose(),t!==o&&o.dispose(),sr(c,o.shape,"bool")}var v5=C5;var Ru={};Kt(Ru,{conv2d:()=>vA,depthwiseConv2d:()=>SA,matMul:()=>NA});function S5(r,t,e,n,o,s="NHWC",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),_(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),_(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),_(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s==="NHWC"?a.shape[3]:a.shape[1],c=s==="NHWC"?u.shape[3]:u.shape[1];_(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),_(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Se("conv2dDerFilter",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return T.runKernel(Pp,p,m)}var Dm=k({conv2DBackpropFilter_:S5});function vc(r,t,e){if(e==null||e==="linear")return r;if(e==="relu")return $(r,No(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function Sc(r,t){let e=t,n=ye(r.shape,t.shape);return n.length>0&&(e=pt(e,n)),R(e,r.shape)}function Nc(r,t,e,n){if(t==="linear")return r;if(t==="relu")return Pr(r);if(t==="elu")return ia(r);if(t==="relu6")return xm(r);if(t==="prelu")return _u(r,e);if(t==="leakyrelu")return vu(r,n);if(t==="sigmoid")return tn(r);throw new Error(`Unknown fused activation ${t}.`)}var kc=(r,t)=>!(r>0)||t==="linear";function N5({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",kc(T.state.gradientDepth,u)===!1){_(o==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let E=kn(r,t,e,n,o,s,i);return a!=null&&(E=Y(E,a)),Nc(E,u,l,c)}let p=v(r,"x","conv2d","float32"),m=v(t,"filter","conv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Se("fused conv2d",n,i);let h=o==="NHWC"?f.shape[3]:f.shape[1];_(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),_($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=hc(f.shape,m.shape,e,s,n,i),x;a!=null&&(x=v(a,"bias","fused conv2d"),[x]=jt(x,p),o==="NHWC"?Mt(g.outShape,x.shape):(_(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),_(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let E=l.shape;if(_(E.length<=1||E.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${E.length}.`),E.length===1)_(E[0]===1||E[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the number of output channels (${g.outChannels}).`);else if(E.length===3)try{Mt(E,g.outShape)}catch(A){let D=`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=v(l,"prelu weights","fused conv2d")}let w=(E,A)=>{_(o==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,F,P,V]=A,G=vc(E,P,u);_(ao(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=cm(F.shape,G,D,e,n),q=Dm(F,G,D.shape,e,n),H=[W,q];if(V!=null){let K=Sc(V,G);H.push(K)}return H},I={x:f,filter:m,bias:x,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?mn((A,D,F)=>{let P=T.runKernel(ji,I,N);return F([D,A,P]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:w}})(f,m):mn((A,D,F,P)=>{let V=T.runKernel(ji,I,N);return P([D,A,V,F]),d&&(V=R(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:w}})(f,m,x)}var vA=k({fusedConv2d_:N5});function k5(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return T.runKernel(Mp,l,c)}var xy=k({depthwiseConv2dNativeBackpropFilter_:k5});function T5(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=T.runKernel(Lp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var yy=k({depthwiseConv2dNativeBackpropInput_:T5});function _5({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(kc(T.state.gradientDepth,u)===!1){let N=sa(r,t,e,n,o,s,i);return a!=null&&(N=Y(N,a)),Nc(N,u,l,c)}let p=v(r,"x","depthwiseConv2d","float32"),m=v(t,"filter","depthwiseConv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),_(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),_($r(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Se("fused depthwiseConv2d",n,i);let h=hc(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=v(a,"bias","fused conv2d"),[g]=jt(g,p),Mt(h.outShape,g.shape));let x;l!=null&&(x=v(l,"prelu weights","fused depthwiseConv2d"));let b=(N,E)=>{_(ao(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,D,F,P]=E,V=vc(N,F,u),G=yy(D.shape,V,A,e,n,s,i),W=xy(D,V,A.shape,e,n,s,i);if(P!=null){let q=Sc(g,V);return[G,W,q]}return[G,W]},w={x:f,filter:m,bias:g,preluActivationWeights:x},I={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?mn((E,A,D)=>{let F=T.runKernel(Xi,w,I);return D([A,E,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):mn((E,A,D,F)=>{let P=T.runKernel(Xi,w,I);return F([A,E,P,D]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var SA=k({fusedDepthwiseConv2d_:_5});function E5({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(kc(T.state.gradientDepth,s)===!1){let V=Bt(r,t,e,n);return o!=null&&(V=Y(V,o)),Nc(V,s,i,a)}let u=v(r,"a","fused matMul"),l=v(t,"b","fused matMul");[u,l]=jt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=te(d),x=te(h);_(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Mt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),I=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[x,f,p]):R(l,[x,p,f]),E;o!=null&&(E=v(o,"bias","fused matMul"),[E]=jt(E,u),Mt(w,E.shape));let A;i!=null&&(A=v(i,"prelu weights","fused matMul"));let D=(V,G)=>{let[W,q,H,K]=G,X=vc(R(V,H.shape),H,s),Z,et;if(!e&&!n?(Z=Bt(X,q,!1,!0),et=Bt(W,X,!0,!1)):!e&&n?(Z=Bt(X,q,!1,!1),et=Bt(X,W,!0,!1)):e&&!n?(Z=Bt(q,X,!1,!0),et=Bt(W,X,!1,!1)):(Z=Bt(q,X,!0,!0),et=Bt(X,W,!0,!0)),o!=null){let nt=Sc(K,X);return[Z,et,nt]}else return[Z,et]},F={a:I,b:N,bias:E,preluActivationWeights:A},P={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?mn((G,W,q)=>{let H=T.runKernel(Ki,F,P);return q([G,W,H]),{value:R(H,w),gradFunc:D}})(I,N):mn((G,W,q,H)=>{let K=T.runKernel(Ki,F,P);return H([G,W,K,q]),{value:R(K,w),gradFunc:D}})(I,N,E)}var NA=k({fusedMatMul_:E5});function A5(r){return Ih(r,.54,.46)}var kA=k({hammingWindow_:A5});function D5(r){return Ih(r,.5,.5)}var by=k({hannWindow_:D5});function $5(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ot(r,s,t)),s+=e;if(n)for(;s<r.size;){let a=s+t-r.size,u=se([Ot(r,s,t-a),vo([a],o)]);i.push(u),s+=e}return i.length===0?ui([],[0,t]):R(se(i),[i.length,t])}var wy=k({frame_:$5});function R5(r,t,e,n,o=by){n==null&&(n=oN(t));let s=wy(r,t,e),i=$(s,o(t));return Du(i,n)}var TA=k({stft_:R5});function F5(r,t,e,n,o="bilinear",s=0){let i=v(r,"image","cropAndResize"),a=v(t,"boxes","cropAndResize","float32"),u=v(e,"boxInd","cropAndResize","int32"),l=a.shape[0];_(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),_(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),_(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),_(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),_(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return T.runKernel(Oa,c,p)}var _A=k({cropAndResize_:F5});function O5(r){let t=v(r,"image","flipLeftRight","float32");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return T.runKernel(Ba,e,{})}var EA=k({flipLeftRight_:O5});function P5(r){let t=v(r,"image","grayscaleToRGB"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),_(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,Fr(t,o)}var AA=k({grayscaleToRGB_:P5});function M5(r,t,e=0,n=.5){let o=v(r,"image","rotateWithOffset","float32");_(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return T.runKernel(fl,s,i)}var DA=k({rotateWithOffset_:M5});function ko(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),_(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),_(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),_(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),_(t.rank===1,()=>"scores must be a 1D tensor"),_(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function L5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression","float32"),i=v(t,"scores","nonMaxSuppression","float32"),a=ko(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return T.runKernel(Qa,{boxes:s,scores:i},u)}var $A=k({nonMaxSuppression_:L5});function RA(r,t,e){let n=z5(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function z5(r,t,e){return V5(r,t,e||B5)}function B5(r,t){return r>t?1:r<t?-1:0}function V5(r,t,e){let n=0,o=r.length,s=0,i=!1;for(;n<o;){s=n+(o-n>>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function Iy(r,t,e,n,o){return sN(r,t,e,n,o,0)}function Cy(r,t,e,n,o,s){return sN(r,t,e,n,o,0,!1,s,!0)}function vy(r,t,e,n,o,s){return sN(r,t,e,n,o,s,!0)}function sN(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>o&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(FA);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<e&&l.length>0;){let g=l.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<o)break;let I=!1;for(let N=p.length-1;N>=w;--N){let E=G5(r,b,p[N]);if(E>=n){I=!0;break}if(g.score=g.score*W5(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,I||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&RA(l,g,FA))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function G5(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),x=Math.min(a,p),b=Math.min(u,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function W5(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function FA(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function U5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),i=v(t,"scores","nonMaxSuppressionAsync"),a=ko(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=Iy(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Ke(p,"int32")}var OA=U5;function H5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=v(r,"boxes","nonMaxSuppression"),a=v(t,"scores","nonMaxSuppression"),u=ko(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=T.runKernel(el,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var PA=k({nonMaxSuppressionWithScore_:H5});async function q5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=v(r,"boxes","nonMaxSuppressionAsync"),a=v(t,"scores","nonMaxSuppressionAsync"),u=ko(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=vy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ke(m,"int32"),selectedScores:Ke(f)}}var MA=q5;function K5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=v(r,"boxes","nonMaxSuppression"),a=v(t,"scores","nonMaxSuppression"),u=ko(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=T.runKernel(tl,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var LA=k({nonMaxSuppressionPadded_:K5});async function j5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=v(r,"boxes","nonMaxSuppressionAsync"),a=v(t,"scores","nonMaxSuppressionAsync"),u=ko(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=Cy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ke(d,"int32"),validOutputs:ft(h,"int32")}}var zA=j5;function X5(r,t,e=!1,n=!1){let o=v(r,"images","resizeBilinear");_(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),_(n===!1||e===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(Vs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Sy=k({resizeBilinear_:X5});function Y5(r,t,e=!1,n=!1){let o=v(r,"images","resizeNearestNeighbor");_(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),_(n===!1||e===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(Bs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var Ny=k({resizeNearestNeighbor_:Y5});function Z5(r,t="binary",e=!1,n=.5){let o=v(r,"image","threshold"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=$(Ke([n]),255),c,p,m,f;if(_(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),_(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),_(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),_(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=gr(o,[1,1,1],-1);let g=$(c,s),x=$(p,i),b=$(m,a);f=Y(Y(g,x),b)}else f=r;if(t==="otsu"){let g=kx(Q(ym(f),"int32"),sr([]),256);l=J5(g,u)}let d=e?Gn(f,l):Fe(f,l);return Q($(d,255),"int32")}function J5(r,t){let e=Ke([-1]),n=Ke([0]),o=Ke([0]),s,i,a,u,l,c;for(let p=0;p<r.size-1;p++){s=Ot(r,0,p+1),i=Ot(r,p+1),l=ct(pt(s),t),c=ct(pt(i),t);let m=pt($(s,ca(0,s.size)));a=ct(m,pt(s));let f=vo(i.shape,s.size),d=Y(ca(0,i.size),f),h=$(i,d);u=ct(pt(h),pt(i));let g=lt(a,u),x=lt(a,u),b=$(l,c);o=$($(b,g),x);let w=Fe(o,n);n=be(w,o,n),e=be(w,Ke([p]),e)}return e}var BA=k({threshold_:Z5});function Q5(r,t,e="nearest",n="constant",o=0,s){let i=v(r,"image","transform","float32"),a=v(t,"transforms","transform","float32");_(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),_(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return T.runKernel(ml,u,l)}var VA=k({transform_:Q5});function t8(r,t,e){let n=v(r,"a","bandPart");_(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2),a,u;typeof t=="number"?(_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),a=v(t<0?s:t,"numLower","bandPart")):(_(t.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),a=be(bl(t,0),s,uo(t,s))),typeof e=="number"?(_(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`),_(e<=i,()=>`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`),u=v(e<0?i:e,"numUpper","bandPart")):(_(e.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),u=be(bl(e,0),i,uo(e,i)));let l=R(ca(0,s,1,"int32"),[-1,1]),c=ca(0,i,1,"int32"),p=lt(l,c),m=Or(Gn(p,a),pn(p,Ut(u))),f=Te([s,i],n.dtype);return R(qe(xr(R(n,[-1,s,i])).map(d=>be(m,d,f))),o)}var GA=k({bandPart_:t8});function e8(r){let t;if(Array.isArray(r)){t=!1,_(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)_(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=gr(r,r.shape[0],0).map(o=>Un(o,[0]));_(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o<r.length;++o)e.push(T.tidy(()=>{let s=n[o];if(o>0)for(let i=0;i<o;++i){let a=$(pt($(e[i],s)),e[i]);s=lt(s,a)}return ct(s,yl(s,"euclidean"))}));return t?qe(e,0):e}var WA=k({gramSchmidt_:e8});function r8(r,t=!1){if(_(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return UA(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=xr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=UA(u,t);o.push(l),s.push(c)});let i=R(qe(o,0),r.shape),a=R(qe(s,0),r.shape);return[i,a]}}function UA(r,t=!1){return T.tidy(()=>{_(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=xc(e),s=un(r),i=ui([[1]],[1,1]),a=un(i),u=e>=n?n:e;for(let l=0;l<u;++l){let c=s,p=a,m=o;[a,s,o]=T.tidy(()=>{let f=Ot(s,[l,l],[e-l,1]),d=yl(f),h=Ot(s,[l,l],[1,1]),g=be(Fe(h,0),ui([[-1]]),ui([[1]])),x=lt(h,$(g,d)),b=ct(f,x);b.shape[0]===1?a=un(i):a=se([i,Ot(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ut(ct(Bt(g,x),d)),I=Ot(s,[l,0],[e-l,n]),N=$(w,a),E=Vt(a);if(l===0)s=lt(I,Bt(N,Bt(E,I)));else{let F=lt(I,Bt(N,Bt(E,I)));s=se([Ot(s,[0,0],[l,n]),F],0)}let A=Vt(N),D=Ot(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=lt(D,Bt(Bt(D,a),A));else{let F=lt(D,Bt(Bt(D,a),A));o=se([Ot(o,[0,0],[e,l]),F],1)}return[a,s,o]}),Tt([c,p,m])}return!t&&e>n&&(o=Ot(o,[0,0],[e,n]),s=Ot(s,[0,0],[n,n])),[o,s]})}var HA=k({qr_:r8});var Ze;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Ze||(Ze={}));function n8(r,t,e=Ze.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"losses","computeWeightedLoss"),o=null;t!=null&&(o=v(t,"weights","computeWeightedLoss"));let s=o==null?n:$(n,o);if(e===Ze.NONE)return s;if(e===Ze.SUM)return pt(s);if(e===Ze.MEAN){if(o==null)return ke(s);{let i=n.size/o.size,a=ct(pt(s),pt(o));return i>1?ct(a,ft(i)):a}}if(e===Ze.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ct(pt(s),ft(n.size));{let i=$(o,dr(n.shape)),a=Q(pt(li(i,ft(0))),"float32");return ct(pt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Hr=k({computeWeightedLoss_:n8});function o8(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","absoluteDifference"),s=v(t,"predictions","absoluteDifference"),i=null;e!=null&&(i=v(e,"weights","absoluteDifference")),Re(o.shape,s.shape,"Error in absoluteDifference: ");let a=Ee(lt(o,s));return Hr(a,i,n)}var qA=k({absoluteDifference_:o8});function s8(r,t,e,n,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),i=v(t,"predictions","cosineDistance"),a=null;n!=null&&(a=v(n,"weights","cosineDistance")),Re(s.shape,i.shape,"Error in cosineDistance: ");let u=ft(1),l=lt(u,pt($(s,i),e,!0));return Hr(l,a,o)}var KA=k({cosineDistance_:s8});function i8(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","hingeLoss"),s=v(t,"predictions","hingeLoss"),i=null;e!=null&&(i=v(e,"weights","hingeLoss")),Re(o.shape,s.shape,"Error in hingeLoss: ");let a=ft(1);o=lt($(ft(2),o),a);let u=Pr(lt(a,$(o,s)));return Hr(u,i,n)}var jA=k({hingeLoss_:i8});function a8(r,t,e,n=1,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),i=v(t,"predictions","huberLoss"),a=null;e!=null&&(a=v(e,"weights","huberLoss")),Re(s.shape,i.shape,"Error in huberLoss: ");let u=ft(n),l=Ee(lt(i,s)),c=uo(l,u),p=lt(l,c),m=Y($(ft(.5),Wt(c)),$(u,p));return Hr(m,a,o)}var XA=k({huberLoss_:a8});function l8(r,t,e,n=1e-7,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),i=v(t,"predictions","logLoss"),a=null;e!=null&&(a=v(e,"weights","logLoss")),Re(s.shape,i.shape,"Error in logLoss: ");let u=ft(1),l=ft(n),c=Ut($(s,Nr(Y(i,l)))),p=$(lt(u,s),Nr(Y(lt(u,i),l))),m=lt(c,p);return Hr(m,a,o)}var YA=k({logLoss_:l8});function u8(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","meanSquaredError"),s=v(t,"predictions","meanSquaredError"),i=null;e!=null&&(i=v(e,"weights","meanSquaredError")),Re(o.shape,s.shape,"Error in meanSquaredError: ");let a=Tm(o,s);return Hr(a,i,n)}var ZA=k({meanSquaredError_:u8});function c8(r,t){let e=v(r,"labels","sigmoidCrossEntropyWithLogits"),n=v(t,"logits","sigmoidCrossEntropyWithLogits");Re(e.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Pr(n),s=$(n,e),i=Su(ir(Ut(Ee(n))));return Y(lt(o,s),i)}function p8(r,t,e,n=0,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),i=v(t,"logits","sigmoidCrossEntropy"),a=null;if(e!=null&&(a=v(e,"weights","sigmoidCrossEntropy")),Re(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let l=ft(n),c=ft(1),p=ft(.5);s=Y($(s,lt(c,l)),$(p,l))}let u=c8(s,i);return Hr(u,a,o)}var JA=k({sigmoidCrossEntropy_:p8});function m8(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return mn((o,s,i)=>{let u=hm(s,[e],!0),l=lt(Q(s,"float32"),u);i([o,l]);let c=Ut($(l,o));return{value:pt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,x=So(f.shape,[e]);return[$(R(f,x),lt(Q(h,"float32"),ir(g))),$(R(f,x),lt(ir(g),Q(h,"float32")))]}}})(r,t)}function f8(r,t,e,n=0,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),i=v(t,"logits","softmaxCrossEntropy"),a=null;if(e!=null&&(a=v(e,"weights","softmaxCrossEntropy")),Re(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let l=ft(n),c=ft(1),p=ft(s.shape[1]);s=Y($(s,lt(c,l)),ct(l,p))}let u=m8(s,i);return Hr(u,a,o)}var QA=k({softmaxCrossEntropy_:f8});function d8(r,t,e,n){let o=v(r,"indices","sparseFillEmptyRows","int32"),s=v(t,"values","sparseFillEmptyRows"),i=v(e,"denseShape","sparseFillEmptyRows","int32"),a=v(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=T.runKernel(su,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var t2=k({sparseFillEmptyRows_:d8});function h8(r,t,e){let n=v(r,"inputIndices","sparseReshape","int32"),o=v(t,"inputShape","sparseReshape","int32"),s=v(e,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=T.runKernel(ll,i);return{outputIndices:a[0],outputShape:a[1]}}var e2=k({sparseReshape_:h8});function g8(r,t,e){let n=v(r,"data","sparseSegmentMean"),o=v(t,"indices","sparseSegmentMean","int32"),s=v(e,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(iu,i)}var r2=k({sparseSegmentMean_:g8});function x8(r,t,e){let n=v(r,"data","sparseSegmentSum"),o=v(t,"indices","sparseSegmentSum","int32"),s=v(e,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(au,i)}var n2=k({sparseSegmentSum_:x8});function y8(r,t,e,n,o,s,i,a){let u=v(r,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=v(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=T.runKernel(uu,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var o2=k({stringNGrams_:y8});function b8(r,t,e=!0){let n=v(r,"input","stringSplit","string"),o=v(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=T.runKernel(cu,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var s2=k({stringSplit_:b8});function w8(r,t){let e=v(r,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let o={input:e};return T.runKernel(pu,o,n)}var i2=k({stringToHashBucketFast_:w8});function I8(r,t,e,n=!0){let o=v(r,"input","staticRegexReplace","string"),s={pattern:t,rewrite:e,replaceGlobal:n};return T.runKernel(sc,{x:o},s)}var a2=k({staticRegexReplace_:I8});var C8={fft:Au,ifft:Il,rfft:Du,irfft:km},v8={hammingWindow:kA,hannWindow:by,frame:wy,stft:TA},dn={flipLeftRight:EA,grayscaleToRGB:AA,resizeNearestNeighbor:Ny,resizeBilinear:Sy,rotateWithOffset:DA,cropAndResize:_A,nonMaxSuppression:$A,nonMaxSuppressionAsync:OA,nonMaxSuppressionWithScore:PA,nonMaxSuppressionWithScoreAsync:MA,nonMaxSuppressionPadded:LA,nonMaxSuppressionPaddedAsync:zA,threshold:BA,transform:VA},iN={bandPart:GA,gramSchmidt:WA,qr:HA},S8={absoluteDifference:qA,computeWeightedLoss:Hr,cosineDistance:KA,hingeLoss:jA,huberLoss:XA,logLoss:YA,meanSquaredError:ZA,sigmoidCrossEntropy:JA,softmaxCrossEntropy:QA},N8={sparseFillEmptyRows:t2,sparseReshape:e2,sparseSegmentMean:r2,sparseSegmentSum:n2},k8={stringNGrams:o2,stringSplit:s2,stringToHashBucketFast:i2,staticRegexReplace:a2};var J={};Kt(J,{Serializable:()=>Ch,SerializationMap:()=>pa,registerClass:()=>aN});var Ch=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},pa=class{constructor(){this.classNameMap={}}static getMap(){return pa.instance==null&&(pa.instance=new pa),pa.instance}static register(t){pa.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function aN(r){_(r.className!=null,()=>"Class being registered does not have the static className property defined."),_(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),_(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),pa.register(r)}var qr=class extends Ch{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return Tt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return qx(t,e)}dispose(){this.iterations_!=null&&Tt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ft(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(qr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var Tc=class extends qr{static get className(){return"Adadelta"}constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:B(()=>vt(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;B(()=>{let c=Y($(u,this.rho),$(Wt(a),1-this.rho)),p=$(ct(Ne(Y(l,this.epsilon)),Ne(Y(u,this.epsilon))),a),m=Y($(l,this.rho),$(Wt(p),1-this.rho));u.assign(c),l.assign(m);let f=Y($(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Tt(this.accumulatedGrads.map(t=>t.variable)),Tt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};var _c=class extends qr{static get className(){return"Adagrad"}constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:B(()=>vo(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;B(()=>{let u=Y(a,Wt(i));a.assign(u);let l=Y($(ct(i,Ne(Y(u,T.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Tt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};var Ec=class extends qr{static get className(){return"Adam"}constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=ft(e).variable(),this.accBeta2=ft(n).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=lt(1,this.accBeta1),o=lt(1,this.accBeta2);e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:B(()=>vt(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:B(()=>vt(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=Y($(c,this.beta1),$(l,1-this.beta1)),f=Y($(p,this.beta2),$(Wt(l),1-this.beta2)),d=ct(m,n),h=ct(f,o);c.assign(m),p.assign(f);let g=Y($(ct(d,Y(Ne(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign($(this.accBeta1,this.beta1)),this.accBeta2.assign($(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&Tt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),B(()=>{this.accBeta1.assign(cn(this.beta1,this.iterations_+1)),this.accBeta2.assign(cn(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};var Ac=class extends qr{static get className(){return"Adamax"}constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=ft(0).variable(),this.accBeta1=ft(e).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=lt(1,this.accBeta1),o=ct(-this.learningRate,Y($(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:vt(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:vt(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=Y($(c,this.beta1),$(l,1-this.beta1)),f=$(p,this.beta2),d=Ee(l),h=Tn(f,d);c.assign(m),p.assign(h);let g=Y($(ct(o,n),ct(m,Y(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign($(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&Tt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};var Cl=class extends qr{static get className(){return"SGD"}constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=T.registeredVariables[n];B(()=>{let a=Y($(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=$e(ft(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};var Dc=class extends Cl{static get className(){return"Momentum"}constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=ft(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&B(()=>{let u,l=Y($(this.m,i),a);this.useNesterov?u=Y($(this.c,Y(a,$(l,this.m))),s):u=Y($(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Tt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};var $c=class extends qr{static get className(){return"RMSProp"}constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=T.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;B(()=>{let c=Y($(u,this.decay),$(Wt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=Y($(p,this.decay),$(a,1-this.decay)),f=ct($(a,this.learningRate),Ne(lt(c,Y(Wt(m),this.epsilon)))),d=Y($(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=lt(s,d);s.assign(h)}else{let p=Y($(u,this.decay),$(Wt(a),1-this.decay)),m=Y($(l,this.momentum),ct($(a,this.learningRate),Ne(Y(p,this.epsilon))));u.assign(p),l.assign(m);let f=lt(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Tt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Tt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&Tt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};var T8=[Tc,_c,Ec,Ac,Dc,$c,Cl];function l2(){for(let r of T8)aN(r)}var Mr={};Kt(Mr,{browserFiles:()=>c2,browserHTTPRequest:()=>f2,concatenateArrayBuffers:()=>em,copyModel:()=>lE,decodeWeights:()=>ax,encodeWeights:()=>q_,fromMemory:()=>d2,fromMemorySync:()=>fN,getLoadHandlers:()=>J_,getModelArtifactsForJSON:()=>rm,getModelArtifactsForJSONSync:()=>R0,getModelArtifactsInfoForJSON:()=>Zi,getSaveHandlers:()=>Z_,getWeightSpecs:()=>ux,http:()=>_y,isHTTPScheme:()=>Ty,listModels:()=>iE,loadWeights:()=>p2,moveModel:()=>uE,registerLoadRouter:()=>Y_,registerSaveRouter:()=>X_,removeModel:()=>aE,weightsLoaderFactory:()=>pN,withSaveHandler:()=>h2,withSaveHandlerSync:()=>g2});var _8="model",E8=".json",A8=".weights.bin";function u2(r){return new Promise(t=>setTimeout(t)).then(r)}var vl=class{constructor(t){if(!L().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(vl.URL_SCHEME)&&(t=t.slice(vl.URL_SCHEME.length)),(t==null||t.length===0)&&(t=_8),this.modelJsonFileName=t+E8,this.weightDataFileName=t+A8}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o=lx(t,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=s,await u2(()=>i.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=e,await u2(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Zi(t)}}}};vl.URL_SCHEME="downloads://";var lN=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=rm(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,em(i)])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>$0(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=$0(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},D8=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(vl.URL_SCHEME)?$8(r.slice(vl.URL_SCHEME.length)):null;ve.registerSaveRouter(D8);function $8(r="model"){return new vl(r)}function c2(r){return new lN(r)}var ky=class{constructor(t){if(this.shards=[],this.previousShardIndex=0,t instanceof Array||(t=[t]),t=t.map(n=>or(n)?n.buffer:n),t.length===0)return;this.bufferUniformSize=t[0].byteLength;let e=0;for(let n=0;n<t.length;n++){let o=t[n];n!==t.length-1&&o.byteLength!==this.bufferUniformSize&&(this.bufferUniformSize=void 0);let s=e+o.byteLength;this.shards.push({buffer:o,start:e,end:s}),e=s}this.shards.length===0&&(this.byteLength=0),this.byteLength=this.shards[this.shards.length-1].end}slice(t=0,e=this.byteLength){if(t=isNaN(Number(t))?0:t,e=isNaN(Number(e))?0:e,t=Math.max(0,t),e=Math.min(this.byteLength,e),e<=t)return new ArrayBuffer(0);let n=this.findShardForByte(t);if(n===-1)throw new Error(`Could not find start shard for byte ${t}`);let o=e-t,s=new ArrayBuffer(o),i=new Uint8Array(s),a=0;for(let u=n;u<this.shards.length;u++){let l=this.shards[u],p=t+a-l.start,m=a,d=Math.min(e,l.end)-l.start,h=new Uint8Array(l.buffer.slice(p,d));if(i.set(h,m),a+=h.length,e<l.end)break}return s}findShardForByte(t){if(this.shards.length===0||t<0||t>=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(t/this.bufferUniformSize),this.previousShardIndex;function e(o){return t<o.start?-1:t>=o.end?1:0}if(e(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let n=R8(this.shards,e);return n===-1?-1:(this.previousShardIndex=n,this.previousShardIndex)}};function R8(r,t){let e=0,n=r.length;for(;e<=n;){let o=Math.floor((n-e)/2)+e,s=t(r[o]);if(s===0)return o;s<0?n=o:e=o+1}return-1}function uN(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){_(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function a(u,l){_(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),_(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),_(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function cN(r,t){t==null&&(t={});let e=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),o=0,s=.5,a=(t.onProgress==null?await Promise.all(n):await uN(n,t.onProgress,o,s)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(a):await uN(a,t.onProgress,u,l)}async function p2(r,t="",e,n){return pN(i=>cN(i,{requestInit:n}))(r,t,e)}function pN(r){return async(t,e="",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=mh[x]*te(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((I,N)=>{I===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${a.join(", ")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith("/")?"":"/")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=new ky(c.slice(m,m+d));s[f].forEach(x=>{let b=h.slice(x.groupOffset,x.groupOffset+x.sizeBytes),w=ax(b,[x.manifestEntry]);for(let I in w)p[I]=w[I]}),m+=d}),p}}var F8="application/octet-stream",O8="application/json",vh=class{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(_(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=L().platform.fetch,_(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&_(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o=lx(t,n);e.body.append("model.json",new Blob([JSON.stringify(o)],{type:O8}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:F8}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Zi(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?i+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":i+=" Please make sure the server is serving valid JSON for this request.",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return rm(e,s=>this.loadWeights(s))}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=P8(e),s=this.weightPathPrefix||n,i=ux(t),a=[],u=[];for(let c of t)for(let p of c.paths)this.weightUrlConverter!=null?u.push(this.weightUrlConverter(p)):a.push(s+p+o);this.weightUrlConverter&&a.push(...await Promise.all(u));let l=await cN(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[i,em(l)]}};vh.URL_SCHEME_REGEX=/^https?:\/\//;function P8(r){let t=r.lastIndexOf("/"),e=r.lastIndexOf("?"),n=r.substring(0,t),o=e>t?r.substring(e):"";return[n+"/",o]}function Ty(r){return r.match(vh.URL_SCHEME_REGEX)!=null}var m2=(r,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Ty(n)):e=Ty(r),e)return _y(r,t)}return null};ve.registerSaveRouter(m2);ve.registerLoadRouter(m2);function _y(r,t){return new vh(r,t)}function f2(r,t){return _y(r,t)}var Sh=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},Ey=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},mN=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function d2(r,t,e,n){let o=arguments;return new mN(fN(...o))}function fN(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Sh(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Sh({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Sh({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function h2(r){return new Ey(r)}function g2(r){return new Ey(r)}var y2={};Kt(y2,{confusionMatrix:()=>x2});function M8(r,t,e){let n=v(r,"labels","confusionMatrix"),o=v(t,"predictions","confusionMatrix");_(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),_(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),_(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),_(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),_(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=ua(Q(n,"int32"),e),i=ua(Q(o,"int32"),e),a=Vt(s),u=Bt(a,i);return Q(u,"int32")}var x2=k({confusionMatrix_:M8});var Ay={};Kt(Ay,{fromPixels:()=>U8,fromPixelsAsync:()=>G8,toPixels:()=>W8});var Rc;function b2(r,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(ih(oh,T.backendName)!=null){let d={pixels:r},h={numChannels:t};return T.runKernel(oh,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext("2d").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if(Rc==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Rc=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Rc=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Rc.canvas.width=l,Rc.canvas.height=c,Rc.drawImage(r,0,0,l,c),p=Rc.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h<d;h++)for(let g=0;g<t;++g)m[h*t+g]=p[h*4+g]}return py(m,[c,l,t],"int32")}function L8(r){return r!=null&&r.data instanceof Uint8Array}function z8(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function B8(r){return r!=null&&r.width!==0&&r.height!==0}function V8(r){return z8()&&!(r instanceof ImageBitmap)&&B8(r)&&!L8(r)}async function G8(r,t=3){let e=null;if(L().getBool("WRAP_TO_IMAGEBITMAP")&&V8(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?e=n:e=r}else e=r;return b2(e,t)}async function W8(r,t){let e=v(r,"img","toPixels");if(!(r instanceof Pt)){let l=e;e=Q(l,"int32"),l.dispose()}if(e.rank!==2&&e.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${e.rank}.`);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let i=await e.data(),a=e.dtype==="float32"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l<n*o;++l){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=i[l*s+m];if(e.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=o,t.height=n;let l=t.getContext("2d"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}var U8=k({fromPixels_:b2});var Dy={};Kt(Dy,{prepareAndValidate:()=>w2});function w2(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(te(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;p<o.length-1;++p)i*=o[p];let a=r.shape,u=o.slice();u.pop();let l=1;for(let p=s;p<e;++p)l*=a[p],u.push(a[p]);let c=[...Ti(r.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,c]}var ze={};Kt(ze,{assertParamsValid:()=>q8,computeFlatOffset:()=>Z8,computeOutShape:()=>j8,getNormalizedAxes:()=>X8,isSliceContinous:()=>Y8,maskToAxes:()=>K8,parseSliceParams:()=>hN,sliceInfo:()=>J8,startForAxis:()=>_2,startIndicesWithElidedDims:()=>N2,stopForAxis:()=>E2,stopIndicesWithElidedDims:()=>k2,stridesForAxis:()=>T2,stridesWithElidedDims:()=>C2});var dN=-2,H8=-1;function q8(r,t,e){let n=r.shape.length;_(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),_(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)_(t[o]+e[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function K8(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function j8(r,t,e){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((t[o]-r[o])/e[o]);return n}function C2(r,t,e,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<e;s++)s===0?o[t]=1:(o.splice(t,0,1),o.pop());return o}function v2(r,t,e){return e<=r?e:e-(t-1)}function S2(r,t){let e=[];for(let n=0;n<r;n++)e.push(t+n);return e}function X8(r,t,e,n,o,s,i,a,u){let l=r.length,c=new Array(l),p=new Array(l),m=new Array(l);if(t.length&&e>0){let f=t[0],d=e+1;c=N2(i,f,d,n,r),p=k2(a,f,d,o,r),m=C2(s,f,d,r)}else for(let f=0;f<l;f++)c[f]=_2(i,n,s,r,f,u),p[f]=E2(a,o,s,r,f,u),m[f]=T2(s,f,u);return{begin:c,end:p,strides:m}}function N2(r,t,e,n,o){let s=[...o],i=S2(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=0;else{let u=v2(t,e,a),l=n[u];r&1<<u&&(l=0),s[a]=l}return s}function k2(r,t,e,n,o){let s=[...o],i=S2(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=v2(t,e,a),l=n[u];r&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[a]=l}for(let a=0;a<s.length;a++){let u=o[a];s[a]<0&&(s[a]+=u),s[a]=Ap(0,s[a],o[a])}return s}function T2(r,t,e){let n=r[t];return(e&1<<t||n==null)&&(n=1),n}function _2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=Ap(0,i,u-1),i}function E2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=Ap(0,i,u):i=Ap(-1,i,u-1),i}function Y8(r,t,e){let n=e.length;for(let o=0;o<e.length;o++)if(e[o]>1){n=o;break}for(let o=n+1;o<e.length;o++)if(t[o]>0||e[o]!==r[o])return!1;return!0}function Z8(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)e+=r[n]*t[n];return e}function hN(r,t,e){let n,o=r.shape.length;typeof t=="number"?n=[t,...new Array(o-1).fill(0)]:t.length<o?n=t.concat(new Array(o-t.length).fill(0)):n=t.slice(),n.forEach(i=>{_(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.length<o?s=e.concat(new Array(o-e.length).fill(-1)):s=e,s=s.map((i,a)=>i>=0?i:(_(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function J8(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w<p.dims;w++)c&&1<<w&a&&p.numAddAxisAfterEllipsis++,1<<w&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};Q8(p,m);let f=!0,d=!0,h=!0,g=[],x=[];for(let w=0;w<r.length;++w){if(m.strides[w]===0)throw Error(`strides[${w}] must be non-zero`);let I=!!(m.shrinkAxisMask&1<<w),N=r[w];if(N===-1){g.push(I?1:-1);continue}let E=[m.beginMask&1<<w,m.endMask&1<<w],A=[m.strides[w]>0?0:-1,m.strides[w]>0?N:N-1];if(I&&m.strides[w]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<<w&&m.endMask&1<<w);if(m.beginValid&&m.endValid){if(I){let G=m.begin[w]<0?N+m.begin[w]:m.begin[w];if(m.begin[w]=G,m.end[w]=m.begin[w]+1,G<0||G>=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=I2(m.begin[w],0,m.strides[w],N,E,A),m.end[w]=I2(m.end[w],1,m.strides[w],N,E,A);let V=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&V,d=d&&(w===0&&m.strides[w]===1||V)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let F,P=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],P=!0):I?(F=1,P=!0):D&&N>=0&&(m.strides[w]<0?F=-N:F=N,P=!0),P){let V;F===0||F<0!=m.strides[w]<0?V=0:V=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(V)}else g.push(-1)}for(let w=0;w<m.finalShapeGatherIndices.length;++w){let I=m.finalShapeGatherIndices[w];I>=0?x.push(g[I]):I===dN&&x.push(1)}return{finalShapeSparse:x.filter((w,I)=>m.finalShapeGatherIndices[I]!==dN),finalShape:x,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function Q8(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<r.dims;n++)if(1<<n&r.ellipsisMask){let o=Math.min(t.dims-(r.dims-n)+1+r.numAddAxisAfterEllipsis,t.dims);for(;e<o;e++)t.begin[e]=0,t.end[e]=0,t.strides[e]=1,t.beginMask|=1<<e,t.endMask|=1<<e,t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[e]=n}else if(1<<n&r.newAxisMask)t.finalShapeGatherIndices.push(dN),t.finalShapeGatherIndicesSparse.push(-1);else{if(e===t.begin.length)throw Error(`Index out of range using input dim ${e}; input has only ${t.dims} dims, ${t.begin.length}.`);r.begin!=null&&(t.begin[e]=r.begin[n]),r.end!=null&&(t.end[e]=r.end[n]),t.strides[e]=r.strides[n],r.beginMask&1<<n&&(t.beginMask|=1<<e),r.endMask&1<<n&&(t.endMask|=1<<e),r.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(H8),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<e):(t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[e]=n,e++}}function I2(r,t,e,n,o,s){if(o[t])return e>0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var A2="4.5.0";var Nh=class{static sgd(t){return new Cl(t)}static momentum(t,e,n=!1){return new Dc(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new $c(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new Ec(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new Tc(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new Ac(t,e,n,o,s)}static adagrad(t,e=.1){return new _c(t,e)}};var Fc=Nh;var tY=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function kh(){return new Promise(r=>tY(()=>r()))}var S={};Kt(S,{ERF_A1:()=>hY,ERF_A2:()=>gY,ERF_A3:()=>xY,ERF_A4:()=>yY,ERF_A5:()=>bY,ERF_P:()=>dY,PARALLELIZE_THRESHOLD:()=>$y,RowPartitionType:()=>ma,SELU_SCALE:()=>xN,SELU_SCALEALPHA:()=>gN,applyActivation:()=>Nc,assertAndGetBroadcastShape:()=>Mt,assertAxesAreInnerMostDims:()=>Lj,assertParamsConsistent:()=>eY,assignToTypedArray:()=>NY,axesAreInnerMostDims:()=>U0,calculateShapes:()=>yA,checkEinsumDimSizes:()=>DY,checkPadOnDimRoundingMode:()=>Se,combineLocations:()=>SE,combineRaggedTensorToTensorShapes:()=>nY,complexWithEvenIndex:()=>CY,complexWithOddIndex:()=>vY,computeConv2DInfo:()=>hc,computeConv3DInfo:()=>dE,computeDefaultPad:()=>W0,computeDilation2DInfo:()=>MK,computeOptimalWindowSize:()=>aY,computeOutAndReduceShapes:()=>H0,computeOutShape:()=>rY,computePool2DInfo:()=>G0,computePool3DInfo:()=>LK,convertConv2DDataFormat:()=>hE,decodeEinsumEquation:()=>EY,eitherStridesOrDilationsAreOne:()=>$r,expandShapeToKeepDim:()=>So,exponent:()=>TY,exponents:()=>kY,fromStringArrayToUint8:()=>JY,fromUint8ToStringArray:()=>ZY,getAxesPermutation:()=>q0,getBroadcastDims:()=>IE,getComplexWithIndex:()=>SY,getEinsumComputePath:()=>$Y,getEinsumPermutation:()=>AY,getFusedBiasGradient:()=>Sc,getFusedDyActivation:()=>vc,getImageCenter:()=>lY,getInnerMostAxes:()=>zj,getPermuted:()=>cY,getRaggedRank:()=>sY,getReductionAxes:()=>ye,getReshaped:()=>uY,getReshapedPermuted:()=>pY,getRowPartitionTypesHelper:()=>oY,getSliceBeginCoords:()=>mY,getSliceSize:()=>fY,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>PY,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>MY,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>LY,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>VY,getSparseReshapeInputOutputMismatchErrorMessage:()=>WY,getSparseReshapeInputOutputMultipleErrorMessage:()=>GY,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>zY,getSparseReshapeNegativeOutputDimErrorMessage:()=>BY,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>KY,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>UY,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>HY,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>qY,getUndoAxesPermutation:()=>xh,isIdentityPermutation:()=>RY,log:()=>Rq,mergeRealAndImagArrays:()=>wY,prepareAndValidate:()=>w2,prepareSplitSize:()=>OY,segment_util:()=>bN,shouldFuse:()=>kc,slice_util:()=>ze,splitRealAndImagArrays:()=>IY,stridesOrDilationsArePositive:()=>ea,tupleValuesAreOne:()=>ao,upcastType:()=>ur,validateDefaultValueShape:()=>iY,validateInput:()=>_m,validateUpdateShape:()=>rN,warn:()=>Yi});function eY(r,t){let e=r[0].length;r.forEach((o,s)=>{_(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),_(t>=0&&t<e,()=>`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i<e;i++)_(i===t||o[i]===n[i],()=>`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function rY(r,t){let e=r[0].slice();for(let n=1;n<r.length;n++)e[t]+=r[n][t];return e}var ma;(function(r){r[r.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",r[r.VALUE_ROWIDS=1]="VALUE_ROWIDS",r[r.ROW_LENGTHS=2]="ROW_LENGTHS",r[r.ROW_SPLITS=3]="ROW_SPLITS",r[r.ROW_LIMITS=4]="ROW_LIMITS",r[r.ROW_STARTS=5]="ROW_STARTS"})(ma||(ma={}));function nY(r,t,e){let n=new Array;if(e==null&&t==null)return n;if(t==null)for(;n.length<r+e.length;)n.push(-1);else n=t.slice();if(e==null)return n;if(r+e.length!==n.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${r+e.length}, but shape.rank = ${n.length}`);for(let o=1;o<e.length;++o){let s=e[o],i=n[n.length-e.length+o],a=n[i];if(s>=0)if(a>=0){if(a!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${o+r}] = ${s} but shape[${o+r}] = ${a}`)}else n[i]=s}return n}function oY(r){let t={FIRST_DIM_SIZE:ma.FIRST_DIM_SIZE,VALUE_ROWIDS:ma.VALUE_ROWIDS,ROW_LENGTHS:ma.ROW_LENGTHS,ROW_SPLITS:ma.ROW_SPLITS,ROW_LIMITS:ma.ROW_LIMITS,ROW_STARTS:ma.ROW_STARTS},e=[];for(let n of r)if(n in t)e.push(t[n]);else break;return e}function sY(r){return r.length===0?0:r[0]===ma.FIRST_DIM_SIZE?r.length-1:r.length}function iY(r,t){if(r==null||t==null)return;let e=r.length,n=t.length;if(e>=n)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${e} must be less than ragged tensor input flatValues.rank = ${n})`);for(let o=0;o<Math.min(e,n-1);++o){let s=r[o],i=t[o+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${o-r.length}] = ${s} but ragged tensor input.flatValues.shape[${o-r.length}] = ${i}`)}}var $y=30;function aY(r){return r<=$y?r:$p(r,Math.floor(Math.sqrt(r)))}function lY(r,t,e){let n=e*(typeof r=="number"?r:r[0]),o=t*(typeof r=="number"?r:r[1]);return[n,o]}function uY(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i<s;++i)o=o.concat([r[i+1]/t[i],t[i]]);o=o.concat(r.slice(s+1))}return o}function cY(r,t,e=!0){let n=[];if(e){n.push(t);for(let o=t+1;o<r;++o)o<=2*t?(n.push(o),n.push(o-(t+1))):n.push(o)}else{let o=[],s=[];for(let i=1;i<r;++i)i>=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function pY(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s<r.length;++s)s<=t.length?n?o.push(t[s-1]*r[s]):o.push(r[s]/t[s-1]):o.push(r[s]);return o}function mY(r,t){let e=[0];for(let n=0;n<t;++n)e.push(r[n][0]);return e}function fY(r,t,e){let n=r.slice(0,1);for(let o=0;o<e;++o)n.push(r[o+1]-t[o][0]-t[o][1]);return n}var gN=1.7580993408473768,xN=1.0507009873554805;var dY=.3275911,hY=.254829592,gY=-.284496736,xY=1.421413741,yY=-1.453152027,bY=1.061405429;function wY(r,t){if(r.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${t.length}.`);let e=new Float32Array(r.length*2);for(let n=0;n<e.length;n+=2)e[n]=r[n/2],e[n+1]=t[n/2];return e}function IY(r){let t=new Float32Array(r.length/2),e=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)t[n/2]=r[n],e[n/2]=r[n+1];return{real:t,imag:e}}function CY(r){let t=Math.ceil(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=0;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function vY(r){let t=Math.floor(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=2;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function SY(r,t){let e=r[t*2],n=r[t*2+1];return{real:e,imag:n}}function NY(r,t,e,n){r[n*2]=t,r[n*2+1]=e}function kY(r,t){let e=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(t?2:-2)*Math.PI*(o/r);e[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:e,imag:n}}function TY(r,t,e){let n=(e?2:-2)*Math.PI*(r/t),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var yN="->",_Y=/->/g,D2=",",$2="...";function EY(r,t){r=r.replace(/\s/g,"");let e=(r.length-r.replace(_Y,"").length)/yN.length;if(e<1)throw new Error("Equations without an arrow are not supported.");if(e>1)throw new Error(`Equation must contain exactly one arrow ("${yN}").`);let[n,o]=r.split(yN);_(n.indexOf($2)===-1,()=>`The ellipsis notation ("${$2}") is not supported yet.`);let s=n.split(D2),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let a=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;m<n.length;++m){let f=n[m];a.indexOf(f)===-1&&f!==D2&&a.push(f)}let u=new Array(s.length);for(let m=0;m<i;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);u[m]=[];for(let f=0;f<s[m].length;++f)u[m].push(a.indexOf(s[m][f]))}let l=a.length,c=o.length,p=[];for(let m=c;m<l;++m)p.push(m);return{allDims:a,summedDims:p,idDims:u}}function AY(r,t){let e=new Array(r);e.fill(-1);for(let o=0;o<t.length;++o)e[t[o]]=o;let n=[];for(let o=0;o<r;++o)e[o]===-1&&n.push(o);return e=e.filter(o=>o!==-1),{permutationIndices:e,expandDims:n}}function DY(r,t,e){let n=new Array(r);for(let o=0;o<e.length;++o){let s=e[o].shape;for(let i=0;i<t[o].length;++i)n[t[o][i]]===void 0?n[t[o][i]]=s[i]:_(n[t[o][i]]===s[i],()=>`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function $Y(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;i<o;++i)n.push([]);let s=[];for(let i=0;i<e.length;++i){let a=e[i],u=FY(t,a);for(let l of u)s.indexOf(l)===-1&&(n[i].push(l),s.push(l))}return{path:e,steps:n}}function RY(r){return r.every((t,e)=>t===e)}function FY(r,t){let e=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(t)!==-1||t===-1)&&e.push(n);return e}function OY(r,t,e=0){let n=[];if(typeof t=="number")_(r.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);_(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}_(r.shape[e]===t.reduce((i,a)=>i+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function PY(r){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${r}`}function MY(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function LY(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function zY(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function BY(r,t){return`size ${r} must be non-negative, not ${t}`}function VY(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function GY(r,t){let e=te(r),n=te(t);return`Input to reshape is a SparseTensor with ${e}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function WY(r,t){let e=te(r),n=te(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function UY(){return"segment ids must be >= 0"}function HY(){return"segment ids are not increasing"}function qY(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function KY(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var bN={};Kt(bN,{collectGatherOpShapeInfo:()=>YY,computeOutShape:()=>XY,segOpComputeOptimalWindowSize:()=>jY});function jY(r,t){let e=!1,n;for(r<=$y?(n=r,e=!0):n=$p(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=$p(r,n+1);return n}function XY(r,t,e){let n=[],o=r.length;for(let s=0;s<o;s++)s!==t?n.push(r[s]):n.push(e);return n}function YY(r,t,e,n){let o=t.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(e<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${e}).`);for(let p=0;p<n;++p)if(r.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=r.shape[e],a=[],u=1,l=1,c=1;for(let p=0;p<n;++p)a.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<e;p++)a.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<o;p++)a.push(t.shape[p]);for(let p=e+1;p<s;p++)a.push(r.shape[p]),c*=r.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:a}}function ZY(r){try{return r.map(t=>Qp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function JY(r){return r.map(t=>hu(t))}var Kr={};Kt(Kr,{nonMaxSuppressionV3Impl:()=>Iy,nonMaxSuppressionV4Impl:()=>Cy,nonMaxSuppressionV5Impl:()=>vy,whereImpl:()=>hy});l2();var Ry={kernelName:_i,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,No(Q(e,"float32"),-1))}}};var R2={kernelName:Ho,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Wt(Q(e,"float32")),o=Ne(lt(ft(1),n));return Ut(ct(r,o))}}}};var F2={kernelName:qo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(lt(Wt(Q(e,"float32")),1));return ct(r,n)}}}};var O2={kernelName:oo,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=pt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=pt(a,u)),R(a,n.shape)}}}};var P2={kernelName:Ko,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var M2={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var L2={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var z2={kernelName:jo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Ne(lt(ft(1),Wt(Q(e,"float32")))))}}};var B2={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(Y(ft(1),Wt(Q(e,"float32"))));return ct(r,n)}}}};var V2={kernelName:Jo,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=Y(Wt(e),Wt(n)),u=$(r,ct(n,a)),l=ye(e.shape,o);return l.length>0&&(u=pt(u,l)),R(u,e.shape)},b:()=>{let a=Y(Wt(e),Wt(n)),u=Ut($(r,ct(e,a))),l=ye(n.shape,o);return l.length>0&&(u=pt(u,l)),R(u,n.shape)}}}};var G2={kernelName:Yo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Y(Wt(Q(e,"float32")),1))}}};var W2={kernelName:Zo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,lt(ft(1),Wt(Q(e,"float32"))))}}};function QY(r,t,e,n,o,s){let i=v(r,"dy","avgPool3dGrad"),a=v(t,"input","avgPool3dGrad"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),_(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),_(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Se("avgPool3dGrad",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=T.runKernel(Xl,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var U2=k({avgPool3dGrad_:QY});var H2={kernelName:Di,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>U2(r,n,o,s,i,a)}}};function tZ(r,t,e,n,o){let s=v(r,"dy","avgPoolGrad"),i=v(t,"input","avgPoolGrad");_(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),_(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=T.runKernel(Fp,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var q2=k({avgPoolGrad_:tZ});var K2={kernelName:Qo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>q2(r,n,o,s,i)}}};var j2={kernelName:ts,inputsToSave:["a","b"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Bt(r,o,!1,!0),b:()=>Bt(n,r,!0,!1)}:!s&&i?{a:()=>Bt(r,o,!1,!1),b:()=>Bt(r,n,!0,!1)}:s&&!i?{a:()=>Bt(o,r,!1,!0),b:()=>Bt(n,r,!1,!1)}:{a:()=>Bt(o,r,!0,!0),b:()=>Bt(r,n,!0,!0)}}};var X2={kernelName:$i,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>Tu(r,n,o)}}};var Y2={kernelName:h_,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u<i.length;u++)i[u]>1&&a.push(u);return{x:()=>pt(r,a,!0)}}};var Z2={kernelName:ho,gradFunc:r=>({x:()=>r.clone()})};var J2={kernelName:es,gradFunc:r=>({x:()=>vt(r)})};var Q2={kernelName:go,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>be(Or(pn(n,o),Gn(n,s)),r,vt(r))}}};var tD={kernelName:Zl,inputsToSave:["x"],gradFunc:Ry.gradFunc};var eD={kernelName:Ri,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=fr(o,t[0].shape)[0],i=n.map(u=>u[s]);return gr(r,i,s).map(u=>()=>u)}};var rD={kernelName:rs,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return _(ao(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>cm(n.shape,r,o,i,a,u),filter:()=>Dm(n,r,o.shape,i,a,u)}}};var nD={kernelName:ns,inputsToSave:["dy","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>kn(r,o,s,i,a,1,u),filter:()=>Dm(r,n,o.shape,s,i,a,u)}}};function eZ(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),_(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),_(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),_(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return T.runKernel($a,a,u)}var oD=k({conv3DBackpropFilter_:eZ});var sD={kernelName:os,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;_(ao(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>Rx(i.shape,r,a,o,s),filter:()=>oD(i,r,a.shape,o,s)}}};var iD={kernelName:ss,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Ut(Cm(Q(e,"float32"))),r)}}};var aD={kernelName:is,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(vm(Q(e,"float32")),r)}}};var lD={kernelName:as,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=q0([o],n.rank),u=fm(r,o,s,!i);return a!=null&&(u=Vt(u,a)),u}}}};var uD={kernelName:ls,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;_(ao(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return _(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),_($r(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Se("depthwiseConv2d",s,i),{x:()=>yy(u.shape,r,l,o,s,a,i),filter:()=>xy(u,r,l.shape,o,s,a,i)}}};var cD={kernelName:us,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>T.runKernel(tu,s,e),filter:()=>T.runKernel(eu,i,e)}}};var pD={kernelName:ps,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>T.runKernel(Ma,n)}}};var mD={kernelName:La,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=$(ir(Ut(Wt(e))),2/Math.sqrt(Math.PI));return{x:()=>$(r,n)}}};var fD={kernelName:ms,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,e)}}};var dD={kernelName:Fi,inputsToSave:["input"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var hD={kernelName:fs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,ir(e))}}};var gD={kernelName:ds,gradFunc:r=>({x:()=>vt(r)})};var xD={kernelName:hs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ct(r,Q(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,Q(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(pt(a,u),n.shape));let l=Wt(n);return Ut(ct(a,Q(l,"float32")))}}}};var yD={kernelName:gs,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?ft(1):a,l=ye(s.shape,o.shape),c=[];if(s.rank===1){for(let I=0;I<o.shape.length-1;++I)c.push(o.shape[I]);c.push(1)}let p=lt(o,s),m=$(r,u),f=bm(Y(i,ft(n))),d=$($($(f,f),f),ft(-.5));return{x:()=>s.rank===1?R($($(r,Fr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R($($(r,f),u),o.shape),mean:()=>{let I=$($(f,ft(-1)),m);return s.rank===1&&(I=pt(I,l)),R(I,s.shape)},variance:()=>{let I=$($(d,p),m);return s.rank===1&&(I=pt(I,l)),R(I,s.shape)},scale:()=>{let I=$(p,f),N=$(r,I);return s.rank===1&&(N=pt(N,l)),R(N,s.shape)},offset:()=>{let I=r;return s.rank===1&&(I=pt(I,l)),R(I,s.shape)}}}};var ID={kernelName:Oi,inputsToSave:["x","indices"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s}=e,i=fr(s,n.shape)[0];return{x:()=>{let u=n.shape,l=o.size,c=u.slice(0,i),p=c.length,m=u.slice(s,u.length).slice(1),f=m.length,d=bD(0,p),h=bD(p+1,p+1+f),g=wD([c,[l],m]),x=R(r,g),b=R(o,[l]),w=wD([[p],d,h]),I=Vt(x,w),N=Am(I,b,n.shape[i]),E=xh(w);return N=Vt(N,E),N},indices:()=>o}}};function bD(r,t){let e=[];for(let n=r;n<t;++n)e.push(n);return e}function wD(r){let t=[];for(let e=0;e<r.length;++e)for(let n=0;n<r[e].length;++n)t.push(r[e][n]);return t}var CD={kernelName:xs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>vt(e),b:()=>vt(n)}}};var vD={kernelName:xo,gradFunc:r=>({x:()=>Q(r,"float32")})};var SD={kernelName:ys,gradFunc:r=>({x:()=>vt(r)})};var ND={kernelName:bs,gradFunc:r=>({x:()=>vt(r)})};var kD={kernelName:ws,gradFunc:r=>({x:()=>vt(r)})};var TD={kernelName:Is,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Fe(n,0);return{x:()=>be(s,r,$(r,o))}}};var _D={kernelName:vs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Y(e,1))}}};var ED={kernelName:Cs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Q(e,"float32"))}}};var AD={kernelName:x_,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=ir(n);return lt(r,$(pt(r,o,!0),i))}}}};function rZ(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return T.runKernel(Xa,a,u)}var DD=k({localResponseNormalizationBackprop_:rZ});var $D={kernelName:Ss,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>DD(n,o,r,s,i,a,u)}}};function Fy(r,t,e,n){return t.rank<e.rank&&(t=R(t,So(t.shape,n))),r.rank<e.rank&&(r=R(r,So(r.shape,n))),{x:()=>$(r,Q(Rr(e,t),r.dtype))}}var wN={kernelName:Ns,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=fr(o,s.shape),u=Fy(r,i,s,a);return{x:()=>u.x()}}};var RD={kernelName:ks,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,Q(pn(e,n),"float32")),b:()=>$(r,Q(bl(e,n),"float32"))}}};function nZ(r,t,e,n,o,s,i){let a=v(r,"dy","maxPool3dGrad"),u=v(t,"input","maxPool3dGrad"),l=v(e,"output","maxPool3dGrad"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),_(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),_(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Se("maxPool3dGrad",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=T.runKernel(nu,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var FD=k({maxPool3dGrad_:nZ});var OD={kernelName:Pi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>FD(r,n,o,s,i,a,u)}}};function oZ(r,t,e,n,o,s,i){let a=v(r,"dy","maxPoolGrad"),u=v(t,"input","maxPoolGrad"),l=v(e,"output","maxPoolGrad");_(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),_(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),_(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Se("maxPoolGrad",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return T.runKernel(Wp,c,p)}var PD=k({maxPoolGrad_:oZ});var MD={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>PD(r,n,o,s,i,a)}}};var LD={kernelName:_s,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=fr(o,n.shape),a=H0(n.shape,s)[1],u=te(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ct($(p,dr(n.shape,"float32")),u)}}}};var zD={kernelName:Es,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=fr(o,s.shape),u=Fy(r,i,s,a);return{x:()=>u.x()}}};var BD={kernelName:As,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,Q(Gn(e,n),"float32")),b:()=>$(r,Q(Fe(e,n),"float32"))}}};var VD={kernelName:Ds,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var GD={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ye(e.shape,o);return a.length>0?R(pt(r,a),e.shape):r},b:()=>{let a=$(r,Ut(aa(ct(e,n)))),u=ye(n.shape,o);return u.length>0?R(pt(a,u),n.shape):a}}}};var WD={kernelName:$s,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=$(r,Q(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,Q(e,"float32")),u=ye(n.shape,o);return u.length>0?R(pt(a,u),n.shape):a}}}};var UD={kernelName:Mi,gradFunc:r=>({x:()=>Ut(r)})};var HD={kernelName:Rs,inputsToSave:["indices"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>Te(e.shape,"float32")}}};var qD={kernelName:Li,gradFunc:r=>({x:()=>vt(r)})};var KD={kernelName:zi,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return xr(r,n).map(s=>()=>s)}};var IN={kernelName:Fs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var jD={kernelName:Os,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Mt(s.shape,i.shape);return{a:()=>{let c=Q(i,"float32"),p=$(r,$(c,cn(s,lt(c,ft(1))))),m=ye(s.shape,a);return m.length>0&&(p=pt(p,m)),R(p,s.shape)},b:()=>{let c=Fe(s,0),p=be(c,Nr(s),vt(s)),m=$(r,$(o,p)),f=ye(i.shape,a);return f.length>0&&(m=pt(m,f)),R(m,i.shape)}}}};var XD={kernelName:Ps,inputsToSave:["x","alpha"],gradFunc:(r,t)=>{let[e,n]=t,o=Fe(e,0);return{x:()=>be(o,r,$(r,n)),alpha:()=>{let s=be(o,vt(r),$(r,e)),i=ye(n.shape,r.shape);return i.length>0&&(s=pt(s,i)),R(s,n.shape)}}}};function sZ(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=gc(r,e,!0,!1),i=gc(r,e,!0,!0),a=$(s,i);return $(o,a)}function iZ(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Vt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=sZ(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Vt(p,m)}return p}var YD={kernelName:Ms,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o=="number"?s=[o]:s=o,{x:()=>iZ(n,r,s)}}};var ZD={kernelName:cs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ct(r,Q(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,Q(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(pt(a,u),n.shape));let l=Wt(n);return Ut(ct(a,Q(l,"float32")))}}}};var JD={kernelName:Ls,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Ut(Wt(e)))}}};var QD={kernelName:Gs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=$(Gn(e,6),No(e));return{x:()=>$(r,Q(n,"float32"))}}};var t$={kernelName:zs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,Q(No(e),"float32"))}}};var e$={kernelName:Bi,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var r$={kernelName:Vs,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(nl,o,e)}}};var n$={kernelName:Bs,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(rl,o,e)}}};var o$={kernelName:Ws,gradFunc:(r,t,e)=>{let{dims:n}=e,o=fr(n,r.shape);return{x:()=>hr(r,o)}}};var s$={kernelName:Us,gradFunc:r=>({x:()=>vt(r)})};var i$={kernelName:Hs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Ut(ct(r,$(cn(e,1.5),2)))}}};var a$={kernelName:Vi,inputsToSave:["condition"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>Q(vt(e),"float32"),t:()=>$(r,Q(e,r.dtype)),e:()=>$(r,Q(Nu(e),r.dtype))}}};var l$={kernelName:qs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Fe(e,ft(0)),o=ft(gN),s=ft(xN),i=$(r,s),a=$($(r,o),ir(Q(e,"float32")));return be(n,i,a)}}}};var u$={kernelName:Xs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(e,lt(ft(1),e)))}}};var c$={kernelName:js,gradFunc:r=>({x:()=>vt(r)})};var p$={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Iu(Q(e,"float32")),r)}}};var m$={kernelName:al,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(mm(Q(e,"float32")),r)}}};var f$={kernelName:Gi,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=hN(n,o,s),l=[];for(let c=0;c<r.rank;c++)l.push([a[c],i[c]-a[c]-u[c]]);return{x:()=>fn(r,l)}}};var d$={kernelName:Qs,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=$(r,n);return{logits:()=>lt(i,$(pt(i,[o],s),n))}}};var h$={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,tn(e))}}};var CN={kernelName:Wi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>wu(r,n,o)}}};var vN={kernelName:Ui,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>se(r,n)}}};var g$={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,$(Ne(Q(e,"float32")),2))}}};var x$={kernelName:lu,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(Q(e,"float32"),2))}}};var y$={kernelName:ti,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=ft(2);return{a:()=>$(r,$(o,lt(e,n))),b:()=>$(r,$(o,lt(n,e)))}}};var b$={kernelName:yo,gradFunc:r=>({x:()=>vt(r)})};var w$={kernelName:ei,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=pt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=pt(a,u)),R(Ut(a),n.shape)}}}};var I$={kernelName:Js,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;fr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=$(a,dr(n.shape,"float32"));return{x:()=>u}}};var C$={kernelName:ri,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ct(r,Wt(Iu(e)))}}};var v$={kernelName:ni,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(lt(ft(1),Wt(e)),r)}}};var S$={kernelName:so,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=vt(n);if(n.rank===1)for(let a=0;a<o[0];++a)i=Y(i,Ot(r,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)for(let c=0;c<o[3];++c)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return i}}}};var N$={kernelName:io,gradFunc:(r,t,e)=>{let n=e,{perm:o}=n,s=xh(o);return{x:()=>Vt(r,s)}}};var k$={kernelName:Hi,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>qe(r,o)}}};var T$={kernelName:fu,inputsToSave:["segmentIds"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>aZ(r,e)}}};function aZ(r,t){let e=Tn(t,vt(t)),n=la(r,e),o=pn(t,ft(0,"int32")),s=n.rank-o.rank;for(let a=0;a<s;++a)o=ar(o,a+1);o=Or(o,dr(n.shape,"bool"));let i=vt(n);return be(o,n,i)}var _$={kernelName:qi,gradFunc:r=>({x:()=>vt(r)})};var lZ=[Ry,R2,F2,O2,P2,M2,L2,z2,B2,V2,G2,W2,H2,K2,j2,X2,Y2,Z2,J2,Q2,tD,eD,nD,rD,sD,iD,aD,lD,uD,cD,ZD,pD,mD,fD,dD,hD,xD,gD,yD,ID,CD,vD,SD,ND,kD,TD,_D,ED,AD,$D,wN,wN,RD,OD,MD,LD,zD,BD,VD,GD,WD,UD,HD,qD,KD,IN,IN,jD,XD,YD,JD,QD,t$,e$,r$,n$,o$,s$,i$,a$,l$,u$,c$,p$,m$,f$,d$,h$,CN,CN,vN,vN,g$,y$,x$,b$,w$,I$,C$,v$,S$,N$,k$,T$,_$];for(let r of lZ)b_(r);O().prototype.abs=function(){return this.throwIfDisposed(),Ee(this)};O().prototype.acos=function(){return this.throwIfDisposed(),dx(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),hx(this)};O().prototype.add=function(r){return this.throwIfDisposed(),Y(this,r)};O().prototype.all=function(r,t){return this.throwIfDisposed(),am(this,r,t)};O().prototype.any=function(r,t){return this.throwIfDisposed(),dc(this,r,t)};O().prototype.argMax=function(r){return this.throwIfDisposed(),ta(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),gx(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),_(this.size===1,()=>"The array must have only 1 element."),R(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),Q(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};O().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};O().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};O().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),xx(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),yx(this)};O().prototype.atan=function(){return this.throwIfDisposed(),bx(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),wx(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),Ix(this)};O().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),bu(this,r,t,e,n)};O().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),wu(this,r,t)};O().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),na(this,r,t,e,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),oa(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),Q(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Tx(this)};O().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),vr(this,r,t)};O().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Pt&&(r=[r]),se([this,...r],t)};O().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),um(this,r,t,e,n,o,s)};O().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),pm(this,r,t,e,n,o)};O().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),kn(this,r,t,e,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),Iu(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),mm(this)};O().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),gc(this,r,t,e)};O().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),fm(this,r,t,e)};O().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),Ox(this,r,t)};O().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),sa(this,r,t,e,n,o,s)};O().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Px(this,r,t,e,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),Mx(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),ct(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Lx(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),ia(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),Rr(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),zx(this)};O().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Bx(this,r,t)};O().prototype.exp=function(){return this.throwIfDisposed(),ir(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),ar(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Vx(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Au(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),aa(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),im(this,r)};O().prototype.gather=function(r,t,e){return this.throwIfDisposed(),la(this,r,t,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),pn(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),Fe(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),Il(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),km(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Gx(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Wx(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),Ux(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),vu(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Gn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),bl(this,r)};O().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),Hx(this,r,t,e,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),jx(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),dm(this,r)};O().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),hm(this,r,t)};O().prototype.log=function(){return this.throwIfDisposed(),Nr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),Su(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Or(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Nu(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),gm(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Xx(this,r)};O().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Bt(this,r,t,e)};O().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),ku(this,r,t,e,n)};O().prototype.max=function(r,t){return this.throwIfDisposed(),Sr(this,r,t)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Tn(this,r)};O().prototype.mean=function(r,t){return this.throwIfDisposed(),ke(this,r,t)};O().prototype.min=function(r,t){return this.throwIfDisposed(),xl(this,r,t)};O().prototype.minimum=function(r){return this.throwIfDisposed(),uo(this,r)};O().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),Jx(this,r,t)};O().prototype.mod=function(r){return this.throwIfDisposed(),Qx(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),$(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ut(this)};O().prototype.norm=function(r,t,e){return this.throwIfDisposed(),yl(this,r,t,e)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),li(this,r)};O().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),ua(this,r,t,e)};O().prototype.onesLike=function(){return this.throwIfDisposed(),Ir(this)};O().prototype.pad=function(r,t){return this.throwIfDisposed(),fn(this,r,t)};O().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),ty(this,r,t,e,n,o,s)};O().prototype.pow=function(r){return this.throwIfDisposed(),cn(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),_u(this,r)};O().prototype.prod=function(r,t){return this.throwIfDisposed(),ey(this,r,t)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),ay(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Pr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),xm(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};O().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),Sy(this,r,t,e)};O().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),Ny(this,r,t,e)};O().prototype.reverse=function(r){return this.throwIfDisposed(),hr(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Du(this)};O().prototype.round=function(){return this.throwIfDisposed(),ym(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),bm(this)};O().prototype.selu=function(){return this.throwIfDisposed(),wm(this)};O().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Im(this,r,t,e,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),tn(this)};O().prototype.sign=function(){return this.throwIfDisposed(),ly(this)};O().prototype.sin=function(){return this.throwIfDisposed(),Cm(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),vm(this)};O().prototype.slice=function(r,t){return this.throwIfDisposed(),Ot(this,r,t)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),ai(this)};O().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),Tu(this,r,t)};O().prototype.split=function(r,t){return this.throwIfDisposed(),gr(this,r,t)};O().prototype.sqrt=function(){return this.throwIfDisposed(),Ne(this)};O().prototype.square=function(){return this.throwIfDisposed(),Wt(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),Tm(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Un(this,r)};O().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Pt?[this,r]:[this,...r];return qe(e,t)};O().prototype.step=function(r){return this.throwIfDisposed(),No(this,r)};O().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),uy(this,r,t,e,n,o,s,i,a)};O().prototype.sub=function(r){return this.throwIfDisposed(),lt(this,r)};O().prototype.sum=function(r,t){return this.throwIfDisposed(),pt(this,r,t)};O().prototype.tan=function(){return this.throwIfDisposed(),cy(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),ra(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Fr(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),Q(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),Q(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),Q(this,"int32")};O().prototype.topk=function(r,t){return this.throwIfDisposed(),my(this,r,t)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Vt(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),fy(this,r)};O().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),Am(this,r,t)};O().prototype.unstack=function(r){return this.throwIfDisposed(),xr(this,r)};O().prototype.where=function(r,t){return this.throwIfDisposed(),be(r,this,t)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),vt(this)};var _n=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,_n.prototype)}},jr=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,jr.prototype)}},z=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,z.prototype)}},Nt=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,Nt.prototype)}},$m=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,$m.prototype)}};var Th=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;e<this.maxEntries-t;e++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=t}};function _o(r,t){if(Array.isArray(r)){let e=[];for(let n=0;n<t;n++)e=e.concat(r);return e}else{let e=new Array(t);return e.fill(r),e}}function co(r,t){if(!r)throw new $m(t)}function NN(r,t){let e=0;for(let n of r)n===t&&e++;return e}function kr(r){return r.length===1?r[0]:r}function we(r){return Array.isArray(r)?r:[r]}function Eo(r){let e=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return e[0]!=="_"?e:"private"+e}function Sl(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(t,e)=>e.toUpperCase())}var To={};function Rm(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function SN(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(t=>SN(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[e]=n.value:SN(n))}}}function fa(r,t={},e={},n="object",o=!1){if(typeof r=="string"){let s=r,i;if(s in e)i=e[s];else if(s in To)i=To[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in To?[a,u]=To.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(To))l[f]=To[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},To);for(let f of Object.keys(e))To[f]=e[f];SN(s.config);let m=u(a,s.config,e,o);return To=Object.assign({},p),m}else{let l=Object.assign({},To);for(let p of Object.keys(e))To[p]=e[p];let c=new a(s.config);return To=Object.assign({},l),c}}}function uZ(r,t){return r<t?-1:r>t?1:0}function _h(r,t){return-1*uZ(r,t)}function Ao(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function E$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function da(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Oy(r,t,e=0,n=1/0){return co(e>=0),co(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function Qe(r,t){Array.isArray(r)?(y.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>Qe(e,`element ${n+1} of ${t}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${A$(r)}.`)}function A$(r){return r===null?"null":Array.isArray(r)?"["+r.map(t=>A$(t)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function D$(r,t,e){let n=e!=null?e():y.now(),o;return(...i)=>{let a=e!=null?e():y.now();return a-n<t||(n=a,o=r(...i)),o}}function Py(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}var cZ=0;function Ly(){return cZ++}var My={};function Fu(r=""){return r in My||(My[r]=0),My[r]+=1,r+My[r].toString()}var $$=["channelsFirst","channelsLast"],R$=["nearest","bilinear"],F$=["valid","same","causal"],O$=["max","avg"],P$=["sum","mul","concat","ave"];var Fm=new Map;function Oe(r){da($$,"DataFormat",r)}function L$(r){da(R$,"InterpolationFormat",r)}function hn(r){da(F$,"PaddingMode",r)}function kN(r){da(O$,"PoolMode",r)}var Eh=[],M$="/";function pi(r,t){Eh.push(r);try{let e=t();return Eh.pop(),e}catch(e){throw Eh.pop(),e}}function pZ(){return Eh.length===0?"":Eh.join(M$)+M$}function zy(r){if(!z$(r))throw new Error("Not a valid tensor name: '"+r+"'");return pZ()+r}function By(r){if(!z$(r))throw new Error("Not a valid tensor name: '"+r+"'");Fm.has(r)||Fm.set(r,0);let t=Fm.get(r);if(Fm.set(r,Fm.get(r)+1),t>0){let e=`${r}_${t}`;return Fm.set(e,1),e}else return r}var mZ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function z$(r){return!!r.match(mZ)}function B$(r){return r===parseInt(r.toString(),10)}function Do(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;o<e;++o)n*=r[o];return n}function Oc(r){if(r.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n<t&&(t=n)}return t}function mi(r){if(r.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n>t&&(t=n)}return t}function gn(r,t){if(t<r)throw new z(`end (${t}) < begin (${r}) is forbidden.`);let e=[];for(let n=r;n<t;++n)e.push(n);return e}var TN;function cr(){return TN==null&&(TN=mE().epsilon()),TN}function xn(){return"channelsLast"}function en(r,t){return Q(r,t)}function kl(r,t=-1){let e=r.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),R(r,e)}function V$(r,t){return B(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=kl(r,1);return Gy(e,[1,t,1])})}function G$(r){let t=[Do(r.shape)];return R(r,t)}function W$(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],Do(r.shape,1)];return R(r,t)}function Nl(r,t,e){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:return wh(r,[t,0],[e,r.shape[1]]);case 3:return Nm(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return Cc(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ot(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ot(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _N(r,t,e){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:return wh(r,[0,t],[r.shape[0],e]);case 3:return Nm(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return Cc(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Ah(r,t,e,n){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:switch(n){case 1:return Nl(r,t,e);case 2:return _N(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Nl(r,t,e);case 2:return Nm(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return _N(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Nl(r,t,e);case 2:return Cc(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return Cc(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return _N(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Om(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),se(r,t)}function AN(r,t){switch(r.rank){case 1:return _x([r,t]);case 2:return Ex([r,t],0);case 3:return Ax([r,t],0);case 4:return Dx([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Gy(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return Fr(r,t)}function Pm(r,t=0,e=1,n,o){return Ic(r,t,e,n,o)}function $o(r,t,e,n){if(r.rank<2||t.rank<2)throw new Nt(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new Nt(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?EN(r.rank,n,xn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Vt(t,c),[u,-1]);let p=[...o,...l],m=!1,f=!1;return R(Ru.matMul({a:r,b:t,transposeA:m,transposeB:f,bias:n?EN(r.rank,n,xn()):null,activation:e}),p)}}function Wy(r,t,e){return B(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=Q(t,"int32"),la(r,t,e)))}function Pc(r){return $(r,r)}function EN(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function yn(r,t,e){return B(()=>(e==null&&(e=xn()),Oe(e),Y(r,EN(r.rank,t,e))))}function U$(r,t=1){if(t!==1)throw new Nt(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ia(r)}function H$(r){return B(()=>ct(r,Y(Ee(r),1)))}function Uy(r,t,e,n){return B(()=>nN(r,t,e,n))}function q$(r){return B(()=>{let t=Y(.5,$(.2,r));return vr(t,0,1)})}function Ou(r,t,e=!1){return e?r():t()}var K$=["fanIn","fanOut","fanAvg"],j$=["normal","uniform","truncatedNormal"];function fZ(r){da(K$,"FanMode",r)}function dZ(r){da(j$,"Distribution",r)}var bn=class extends J.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Mm=class extends bn{apply(t,e){return Te(t,e)}};Mm.className="Zeros";J.registerClass(Mm);var Pu=class extends bn{apply(t,e){return dr(t,e)}};Pu.className="Ones";J.registerClass(Pu);var Lm=class extends bn{constructor(t){if(super(),typeof t!="object")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return B(()=>$(ft(this.value),dr(t,e)))}getConfig(){return{value:this.value}}};Lm.className="Constant";J.registerClass(Lm);var zm=class extends bn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return Wn(t,this.minval,this.maxval,e,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};zm.className="RandomUniform";J.registerClass(zm);var Bm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`randomNormal does not support dType ${e}.`);return Pm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Bm.className="RandomNormal";J.registerClass(Bm);var Vm=class extends bn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`truncatedNormal does not support dType ${e}.`);return Em(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Vm.className="TruncatedNormal";J.registerClass(Vm);var Gm=class extends bn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return B(()=>{if(t.length!==2||t[0]!==t[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return $(this.gain,xc(t[0]))})}getConfig(){return{gain:this.gain}}};Gm.className="Identity";J.registerClass(Gm);function hZ(r,t="channelsLast"){let e,n;if(Oe(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t==="channelsFirst"){let o=Do(r,2);e=r[1]*o,n=r[0]*o}else if(t==="channelsLast"){let o=Do(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Do(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Xr=class extends bn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,fZ(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,dZ(this.distribution),this.seed=t.seed}apply(t,e){let n=hZ(t),o=n[0],s=n[1],i=this.scale;if(this.mode==="fanIn"?i/=Math.max(1,o):this.mode==="fanOut"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution==="normal"){let a=Math.sqrt(i);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Nt(`${this.getClassName()} does not support dType ${e}.`);return Em(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return Wn(t,-a,a,e,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Xr.className="VarianceScaling";J.registerClass(Xr);var Mc=class extends Xr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Mc.className="GlorotUniform";J.registerClass(Mc);var Lc=class extends Xr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Lc.className="GlorotNormal";J.registerClass(Lc);var zc=class extends Xr{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};zc.className="HeNormal";J.registerClass(zc);var Bc=class extends Xr{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Bc.className="HeUniform";J.registerClass(Bc);var Vc=class extends Xr{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Vc.className="LeCunNormal";J.registerClass(Vc);var Gc=class extends Xr{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Gc.className="LeCunUniform";J.registerClass(Gc);var Wm=class extends bn{constructor(t){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed}apply(t,e){return B(()=>{if(t.length<2)throw new Nt("Shape must be at least 2D.");if(e!=="int32"&&e!=="float32"&&e!==void 0)throw new TypeError(`Unsupported data type ${e}.`);e=e;let n=y.sizeFromShape(t.slice(0,-1)),o=t[t.length-1],s=n*o;s>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${s}) elements: Slowness may result.`);let i=[Math.max(o,n),Math.min(o,n)],a=Pm(i,0,1,e,this.seed),u=iN.qr(a,!1),l=u[0],p=u[1].flatten().stridedSlice([0],[Math.min(o,n)*Math.min(o,n)],[Math.min(o,n)+1]);return l=$(l,p.sign()),n<o&&(l=l.transpose()),$(ft(this.gain),l.reshape(t))})}getConfig(){return{gain:this.gain,seed:this.seed}}};Wm.className="Orthogonal";J.registerClass(Wm);var X$={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Y$(r,t={}){return fa(r,J.SerializationMap.getMap().classNameMap,t,"initializer")}function _e(r){return Rm(r)}function he(r){if(typeof r=="string"){let t=r in X$?X$[r]:r;if(t==="GlorotNormal")return new Lc;if(t==="GlorotUniform")return new Mc;if(t==="HeNormal")return new zc;if(t==="HeUniform")return new Bc;if(t==="LeCunNormal")return new Vc;if(t==="LeCunUniform")return new Gc;{let e={};return e.className=t,e.config={},Y$(e)}}else return r instanceof bn?r:Y$(r)}function Hy(r){return Array.isArray(r)&&Array.isArray(r[0])}function Um(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function St(r){let t;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);t=r[0]}else t=r;return t}function Gt(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Hm(r){let t=0;for(let e of r)e.shape.length===0?t+=1:t+=e.shape.reduce((n,o)=>n*o);return t}var J$="Variable",Dh=class{constructor(t,e="float32",n=J$,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=Ly(),n=n==null?J$:n,this.originalName=zy(n),this.name=By(this.originalName),this.trainable_=o,this.constraint=s,this.val=dy(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),xZ(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function xZ(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(t.shape))}function $h(r){return r.map(t=>t.read())}function qm(r){r.forEach(t=>{t[0].write(t[1])})}var Ie=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},rn=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=Ly(),i!=null&&(this.originalName=zy(i),this.name=By(this.originalName)),this.rank=e.length}},yZ=0,Tl=class{constructor(t,e){this.callArgs=e,this.id=yZ++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},bZ=0,_t=class extends J.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=bZ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=Eo(n)+"_"+Fu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new jr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return kr(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return kr(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new _n(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new _n(`Layer ${this.name} is not connected, no input to return.`);return kr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new _n(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new _n(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return kr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=we(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=we(this.inputSpec);if(t.length!==e.length)throw new z(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let n=0;n<t.length;n++){let o=t[n],s=e[n];if(s==null)continue;let i=o.rank;if(s.ndim!=null&&i!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${i}`);if(s.maxNDim!=null&&i>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${i}`);if(s.minNDim!=null&&i<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${i}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let a=o.shape;for(let u in s.axes){let l=Number(u),c=s.axes[u],p=l>=0?a[l]:a[a.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${a}.`)}}if(s.shape!=null)for(let a=0;a<s.shape.length;++a){let u=s.shape[a],l=o.shape[a];if(u!=null&&l!=null&&u!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(t,e){return t}invokeCallHook(t,e){this._callHook!=null&&this._callHook(t,e)}setCallHook(t){this._callHook=t}clearCallHook(){this._callHook=null}apply(t,e){e=e||{},this.assertNotDisposed();let n=we(t),o=!0;for(let i of n)if(!(i instanceof rn)){o=!1;break}let s=!0;for(let i of n)if(i instanceof rn){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return pi(this.name,()=>{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of we(t))i.push(a.shape);this.build(kr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e),a=we(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=kr(u),this.activityRegularizer!=null)throw new Nt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}else{let i=wZ(t),a=this.computeOutputShape(i),u,l=IZ(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new rn(l,c,this,we(t),e,this.name,p)):u=new rn(l,a,this,we(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new Nt("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new _n(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new _n(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new jr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Hm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return $h(t?this.trainableWeights:this.weights)}setWeights(t){B(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=$h(e);for(let s=0;s<o.length;++s){let i=o[s],a=e[s],u=t[s];if(!y.arraysEqual(i.shape,u.shape))throw new z(`Layer weight shape ${i.shape} not compatible with provided weight shape ${u.shape}`);n.push([a,u])}qm(n)})}addWeight(t,e,n,o,s,i,a,u){if(this._addedWeightNames.indexOf(t)!==-1)throw new z(`Duplicate weight name ${t} for layer ${this.name}`);this._addedWeightNames.push(t),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=u!=null?u():he("zeros"));let l=o.apply(e,n),c=new Dh(l,n,t,i,a);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=we(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,n,o,s,i,a=null){let u=we(t);e=we(e),n=we(n),o=we(o),s=Um(s),i=Um(i);let l=[],c=[],p=[];for(let m of u)l.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new Tl({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:u,outputTensors:e,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:i},a);for(let m=0;m<e.length;m++)e[m].sourceLayer=this,e[m].nodeIndex=this.inboundNodes.length-1,e[m].tensorIndex=m}getConfig(){let t={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(t.batchInputShape=this.batchInputShape),this.dtype!=null&&(t.dtype=this.dtype),t}disposeWeights(){return this.weights.forEach(t=>t.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function wZ(r){r=we(r);let t=[];for(let e of r)t.push(e.shape);return kr(t)}function IZ(r){return"float32"}function DN(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],a=n.inboundLayers[s],u=n.nodeIndices[s],l=DN(i,a,u);for(let c of l)o.indexOf(c)===-1&&o.push(c)}return o}}}var fi=class extends _t{constructor(t){if(super({dtype:t.dtype,name:t.name!=null?t.name:Fu("input").toString()}),t.batchSize==null&&(t.batchSize=null),t.sparse==null&&(t.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=t.sparse,t.inputShape!=null&&t.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let e=t.batchInputShape;if(e==null){if(t.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");e=[t.batchSize].concat(t.inputShape)}else if(t.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=t.dtype||"float32";this.batchInputShape=e,this.dtype=n,this.inputSpec=[{shape:e}];let o=new rn(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[e],outputShapes:[e]})}apply(t,e){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};fi.className="InputLayer";J.registerClass(fi);function qy(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=r.batchShape;r.shape!=null&&t==null&&(t=[null].concat(r.shape));let e=r.dtype;return e==null&&(e="float32"),new fi({batchInputShape:t,name:r.name,dtype:e,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}function CZ(r,t){if(r.dtype==null||r.dtype===t.dtype)return t;try{return Q(t,r.dtype)}catch(e){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Ro=class{constructor(t){if(this.id2Value={},this.id2Mask={},this.name2Id={},t instanceof Ro)for(let e in t.id2Value)this.id2Value[e]=t.id2Value[e],e in t.id2Mask&&(this.id2Mask[e]=t.id2Mask[e]);else{if(t==null)return;for(let e of t)this.add(e.key,e.value)}}add(t,e,n){if(this.id2Value[t.id]==null)this.id2Value[t.id]=CZ(t,e),this.name2Id[t.name]=t.id,n!=null&&(this.id2Mask[t.id]=n);else throw new z(`Duplicate key: name=${t.name}, id=${t.id}`);return this}addFeed(t){this.add(t.key,t.value)}hasKey(t){return this.id2Value[t.id]!=null}names(){return Object.keys(this.name2Id)}getValue(t){if(t instanceof rn){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Value[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Value[e]}}getMask(t){if(t instanceof rn){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Mask[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Mask[e]}}disposeMasks(){this.id2Mask!=null&&Tt(this.id2Mask)}},Ky=new Th,jy=new Th;function tR(r){Ky!=null&&Ky.setMaxEntries(r),jy!=null&&jy.setMaxEntries(r)}function Wc(r,t,e,n){let o=e==null?!1:e.training,s=Array.isArray(r),i=s?r:[r],a=i.map(d=>d.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(",")+"|"+t.names().sort().join(","),p=Ky.get(c),m;if(p==null){let d=vZ(i,t);p=d.sorted,m=d.recipientCounts,Ky.put(c,p),jy.put(c,m)}m={},o||Object.assign(m,jy.get(c));let f=new Ro(t);for(let d=0;d<p.length;++d){if(n!=null){let F=fh().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof fi)continue;let x=[],b=[],w=[],I=!1;for(let F of h.inputs){let P=f.getValue(F),V=f.getMask(F);x.push(P),b.push(V),V!=null&&(I=!0),o||(m[F.name]--,m[F.name]===0&&!t.hasKey(F)&&a.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&w.push(P))}I&&(e=e||{},e.mask=b[0]);let N=we(g.apply(x,e)),E=null;g.supportsMasking&&(E=g.computeMask(x,b));let A=NZ(h),D=Array.isArray(A)?A:[A];for(let F=0;F<D.length;++F){f.hasKey(D[F])||f.add(D[F],N[F],Array.isArray(E)?E[0]:E);let P=a.indexOf(D[F].name);P!==-1&&(u[P]=N[F])}o||Tt(w)}return f.disposeMasks(),s?u:u[0]}function vZ(r,t){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let e=[],n={};if(r.length===1){let o=Q$(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=Q$(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:SZ(n)}}function SZ(r){let t={};for(let e in r)t[e]=r[e].size;return t}function Q$(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function NZ(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){e=n;break}t=r.sourceLayer.getOutputAt(e)}return t}var kZ=L();kZ.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,tR);var nR={};Kt(nR,{maxNorm:()=>TZ,minMaxNorm:()=>AZ,nonNeg:()=>EZ,unitNorm:()=>_Z});function $N(r,t){return B(()=>Ne(pt($(r,r),t,!0)))}var Uc=class extends J.Serializable{getConfig(){return{}}},Km=class extends Uc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=$N(t,this.axis),n=vr(e,0,this.maxValue);return $(t,ct(n,Y(cr(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Km.className="MaxNorm";J.registerClass(Km);var jm=class extends Uc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>ct(t,Y(cr(),$N(t,this.axis))))}getConfig(){return{axis:this.axis}}};jm.className="UnitNorm";J.registerClass(jm);var Xm=class extends Uc{apply(t){return Pr(t)}};Xm.className="NonNeg";J.registerClass(Xm);var Ym=class extends Uc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=$N(t,this.axis),n=Y($(this.rate,vr(e,this.minValue,this.maxValue)),$(1-this.rate,e));return $(t,ct(n,Y(cr(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Ym.className="MinMaxNorm";J.registerClass(Ym);var eR={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Be(r){return Rm(r)}function rR(r,t={}){return fa(r,J.SerializationMap.getMap().classNameMap,t,"constraint")}function Ve(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in eR?eR[r]:r,config:{}};return rR(e)}else return r instanceof Uc?r:rR(r)}function TZ(r){return new Km(r)}function _Z(r){return new jm(r)}function EZ(){return new Xm}function AZ(r){return new Ym(r)}var oR={};Kt(oR,{constant:()=>RZ,glorotNormal:()=>BZ,glorotUniform:()=>zZ,heNormal:()=>VZ,heUniform:()=>GZ,identity:()=>MZ,leCunNormal:()=>WZ,leCunUniform:()=>UZ,ones:()=>$Z,orthogonal:()=>HZ,randomNormal:()=>OZ,randomUniform:()=>FZ,truncatedNormal:()=>PZ,varianceScaling:()=>LZ,zeros:()=>DZ});function DZ(){return new Mm}function $Z(){return new Pu}function RZ(r){return new Lm(r)}function FZ(r){return new zm(r)}function OZ(r){return new Bm(r)}function PZ(r){return new Vm(r)}function MZ(r){return new Gm(r)}function LZ(r){return new Xr(r)}function zZ(r){return new Mc(r)}function BZ(r){return new Lc(r)}function VZ(r){return new zc(r)}function GZ(r){return new Bc(r)}function WZ(r){return new Vc(r)}function UZ(r){return new Gc(r)}function HZ(r){return new Wm(r)}var LR={};Kt(LR,{Layer:()=>_t,RNN:()=>An,RNNCell:()=>Dl,activation:()=>uJ,add:()=>yJ,alphaDropout:()=>e9,average:()=>bJ,averagePooling1d:()=>qN,averagePooling2d:()=>KN,averagePooling3d:()=>jN,avgPool1d:()=>_J,avgPool2d:()=>AJ,avgPool3d:()=>$J,avgPooling1d:()=>EJ,avgPooling2d:()=>DJ,avgPooling3d:()=>RJ,batchNormalization:()=>NJ,bidirectional:()=>KJ,categoryEncoding:()=>i9,centerCrop:()=>o9,concatenate:()=>wJ,conv1d:()=>tJ,conv2d:()=>eJ,conv2dTranspose:()=>rJ,conv3d:()=>nJ,conv3dTranspose:()=>oJ,convLstm2d:()=>WJ,convLstm2dCell:()=>UJ,cropping2D:()=>iJ,dense:()=>cJ,depthwiseConv2d:()=>lJ,dot:()=>SJ,dropout:()=>pJ,elu:()=>j7,embedding:()=>xJ,flatten:()=>fJ,gaussianDropout:()=>t9,gaussianNoise:()=>QJ,globalAveragePooling1d:()=>FJ,globalAveragePooling2d:()=>OJ,globalMaxPool1d:()=>XJ,globalMaxPool2d:()=>YJ,globalMaxPooling1d:()=>FR,globalMaxPooling2d:()=>OR,gru:()=>MJ,gruCell:()=>LJ,input:()=>BN,inputLayer:()=>K7,layerNormalization:()=>kJ,leakyReLU:()=>Y7,lstm:()=>zJ,lstmCell:()=>BJ,masking:()=>r9,maxPool1d:()=>ZJ,maxPool2d:()=>JJ,maxPooling1d:()=>PR,maxPooling2d:()=>MR,maxPooling3d:()=>PJ,maximum:()=>IJ,minimum:()=>CJ,multiply:()=>vJ,permute:()=>gJ,prelu:()=>Z7,randomWidth:()=>a9,reLU:()=>X7,repeatVector:()=>dJ,rescaling:()=>n9,reshape:()=>hJ,resizing:()=>s9,rnn:()=>HJ,separableConv2d:()=>sJ,simpleRNN:()=>VJ,simpleRNNCell:()=>GJ,softmax:()=>J7,spatialDropout1d:()=>mJ,stackedRNNCells:()=>qJ,thresholdedReLU:()=>Q7,timeDistributed:()=>jJ,upSampling2d:()=>aJ,zeroPadding2d:()=>TJ});async function ha(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;s<o.length;++s)r[e[s]]=o[s][0];Tt(n)}}function Xy(r){if(r!=null)for(let t in r){let e=r[t];typeof e!="number"&&e.dispose()}}var sR;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(sR||(sR={}));var qZ=125,_l=class{constructor(){this.validationData=null}setParams(t){this.params=t}async onEpochBegin(t,e){}async onEpochEnd(t,e){}async onBatchBegin(t,e){}async onBatchEnd(t,e){}async onTrainBegin(t){}async onTrainEnd(t){}setModel(t){}},Yy=class{constructor(t,e=10){t==null&&(t=[]),this.callbacks=t,this.queueLength=e}append(t){this.callbacks.push(t)}setParams(t){for(let e of this.callbacks)e.setParams(t)}setModel(t){for(let e of this.callbacks)e.setModel(t)}async onEpochBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochBegin(t,e)}async onEpochEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochEnd(t,e)}async onBatchBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchBegin(t,e)}async onBatchEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchEnd(t,e)}async onTrainBegin(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainBegin(t)}async onTrainEnd(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainEnd(t)}},RN=class extends _l{constructor(){super()}async onEpochBegin(t){this.seen=0,this.totals={}}async onBatchEnd(t,e){e==null&&(e={});let n=e.size==null?0:e.size;this.seen+=n;for(let o in e){let s=e[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let i;o in this.totals?i=this.totals[o]:this.totals[o]=0;let a=B(()=>Y(this.totals[o],$(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?e[n]=this.totals[n]/this.seen:B(()=>{let o=$(ct(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),$e(e[n])}))}},Zy=class extends _l{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;a<i.length;++a)if(typeof i[a]!="number"){let u=i[a];t.push(u.data()),e.push(s),n.push(a)}}let o=await Promise.all(t);for(let s=0;s<o.length;++s)this.history[e[s]][n[s]].dispose(),this.history[e[s]][n[s]]=o[s][0]}},Jy=class extends _l{constructor(t,e){if(super(),this.currentEpoch=0,this.nowFunc=t.nowFunc,this.nextFrameFunc=t.nextFrameFunc||kh,this.yieldEvery=e||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=qZ),this.yieldEvery==="never"&&t.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=D$(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=t.onTrainBegin,this.trainEnd=t.onTrainEnd,this.epochBegin=t.onEpochBegin,this.epochEnd=t.onEpochEnd,this.batchBegin=t.onBatchBegin,this.batchEnd=t.onBatchEnd,this.yield=t.onYield}async maybeWait(t,e,n){let o=[];this.yield!=null&&(await ha(n),o.push(this.yield(t,e,n))),o.push(this.nextFrameFunc()),await Promise.all(o)}async onEpochBegin(t,e){this.currentEpoch=t,this.epochBegin!=null&&(await ha(e),await this.epochBegin(t,e))}async onEpochEnd(t,e){let n=[];this.epochEnd!=null&&(await ha(e),n.push(this.epochEnd(t,e))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(t,e){this.batchBegin!=null&&(await ha(e),await this.batchBegin(t,e))}async onBatchEnd(t,e){let n=[];this.batchEnd!=null&&(await ha(e),n.push(this.batchEnd(t,e))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,t,e)),await Promise.all(n)}async onTrainBegin(t){this.trainBegin!=null&&(await ha(t),await this.trainBegin(t))}async onTrainEnd(t){this.trainEnd!=null&&(await ha(t),await this.trainEnd(t))}};function Qy(r,t){return r==null&&(r={}),r instanceof _l?[r]:Array.isArray(r)&&r[0]instanceof _l?r:we(r).map(n=>new Jy(n,t))}var wn=class{constructor(){}static registerCallbackConstructor(t,e){y.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),wn.checkForDuplicate(e),wn.constructors[t]==null&&(wn.constructors[t]=[]),wn.constructors[t].push(e)}static checkForDuplicate(t){for(let e in wn.constructors)wn.constructors[+e].forEach(o=>{if(o===t)throw new z("Duplicate callback constructor.")})}static clear(){wn.constructors={}}static createCallbacks(t){let e=[];for(let n in wn.constructors){let o=+n;t>=o&&e.push(...wn.constructors[o])}return e.map(n=>new n)}};wn.constructors={};function tb(r,t,e,n,o,s,i,a,u){let l=new Zy,c=[new RN,...wn.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Yy(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function In(r,t={},e=!1){return fa(r,J.SerializationMap.getMap().classNameMap,t,"layer",e)}function Rh(r,t){return B(()=>{r.dtype!=="float32"&&(r=Q(r,"float32"));let e=pt(Pc(r),t,!0),n=vo(e.shape,cr()),o=Ne(Tn(e,n));return ct(r,o)})}function ga(r,t){return B(()=>ke(Pc(lt(t,r)),-1))}function Zm(r,t){return B(()=>ke(Ee(lt(t,r)),-1))}function Mu(r,t){return B(()=>{let e=lt(r,t),n=vr(Ee(r),cr(),Number.MAX_VALUE),o=Ee(ct(e,n));return $(100,ke(o,-1))})}function KZ(r,t){return B(()=>{let e=vr(t,cr(),Number.MAX_VALUE),n=Nr(Y(1,e)),o=vr(r,cr(),Number.MAX_VALUE),s=Nr(Y(1,o));return ke(Pc(lt(n,s)),-1)})}function jZ(r,t){return B(()=>{let e=Tn(0,lt(1,$(r,t)));return ke(Pc(e),-1)})}function XZ(r,t){return B(()=>{let e=Tn(0,lt(1,$(r,t)));return ke(e,-1)})}function YZ(r,t){return B(()=>{let e=pt($(r,t),-1),n=Sr($(lt(1,r),t),-1);return Tn(0,Y(1,lt(n,e)))})}function ZZ(r,t){return B(()=>{let e=Math.log(2),n=lt(t,r),o=lt(Y(n,ai($(-2,n))),e);return ke(o,-1)})}function Hc(r,t,e=!1){return B(()=>{if(e)t=Eu(t);else{let n=pt(t,t.shape.length-1,!0);t=ct(t,n)}return t=vr(t,cr(),1-cr()),Ut(pt($(Q(r,"float32"),Nr(t)),t.shape.length-1))})}function Jm(r,t,e=!1){return B(()=>{let n=Q(aa(G$(r)),"int32");t=vr(t,cr(),1-cr());let o=t.shape,s=R(ua(n,o[o.length-1]),o);return Hc(s,t,e)})}function JZ(r,t){if(!y.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let e=Pr(t),n=Ut(Ee(t));return Y(lt(e,$(t,r)),Su(ir(n)))})}function Qm(r,t){return B(()=>{let e;return e=vr(t,cr(),1-cr()),e=Nr(ct(e,lt(1,e))),ke(JZ(r,e),-1)})}function QZ(r,t){return B(()=>{let e=vr(r,cr(),1),n=vr(t,cr(),1);return pt($(r,Nr(ct(e,n))),-1)})}function t7(r,t){return B(()=>{let e=Nr(Y(cr(),t));return ke(lt(t,$(r,e)),-1)})}function Oh(r,t){return B(()=>{let e=Rh(r,-1),n=Rh(t,-1),o=$(e,n);return Ut(pt(o,-1))})}var Fh={meanSquaredError:ga,meanAbsoluteError:Zm,meanAbsolutePercentageError:Mu,meanSquaredLogarithmicError:KZ,squaredHinge:jZ,hinge:XZ,categoricalHinge:YZ,logcosh:ZZ,categoricalCrossentropy:Hc,sparseCategoricalCrossentropy:Jm,binaryCrossentropy:Qm,kullbackLeiblerDivergence:QZ,poisson:t7,cosineProximity:Oh};function eb(r){if(typeof r=="string"){if(r in Fh)return Fh[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function Ph(r,t){return B(()=>{let e=$(.5,Ir(t)),n=en(Fe(t,e),r.dtype);return ke(Rr(r,n),-1)})}function Mh(r,t){return B(()=>en(Rr(ta(r,-1),ta(t,-1)),"float32"))}function aR(r,t){return B(()=>Q(pt(Or(Rr(r,1),Rr(t,1))),"float32"))}function e7(r,t){return B(()=>Q(pt(Or(Rr(r,1),Rr(t,0))),"float32"))}function r7(r,t){return B(()=>Q(pt(Or(Rr(r,0),Rr(t,1))),"float32"))}function FN(r,t){return B(()=>{let e=aR(r,t),n=r7(r,t),o=Y(e,n);return Q(be(Fe(o,0),ct(e,o),0),"float32")})}function lR(r,t){return B(()=>{let e=aR(r,t),n=e7(r,t),o=Y(e,n);return Q(be(Fe(o,0),ct(e,o),0),"float32")})}function nb(r,t){return Qm(r,t)}function ob(r,t){return r.rank===t.rank&&(r=Un(r,[r.rank-1])),t=ta(t,-1),t.dtype!==r.dtype&&(t=Q(t,r.dtype)),Q(Rr(r,t),"float32")}var n7=ga,o7=ga,s7=Zm,i7=Zm,a7=Mu,l7=Mu,Lh=Hc,u7=Oh,ON=Jm,rb={binaryAccuracy:Ph,categoricalAccuracy:Mh,precision:FN,categoricalCrossentropy:Lh,sparseCategoricalCrossentropy:ON,mse:n7,MSE:o7,mae:s7,MAE:i7,mape:a7,MAPE:l7,cosine:u7};function uR(r){if(typeof r=="string"&&r in rb)return rb[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function zh(r){if(co(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let t;for(let e of Object.keys(Fh))if(Fh[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(rb))if(rb[e]===r){t=e;break}return t!==void 0?t:r.name}}function pR(r){let t={Adagrad:()=>Fc.adagrad(.01),Adadelta:()=>Fc.adadelta(1,.95,cr()),Adam:()=>Fc.adam(.001,.9,.999,cr()),Adamax:()=>Fc.adamax(.002,.9,.999,cr(),0),RMSProp:()=>Fc.rmsprop(.001,.9,0,cr()),SGD:()=>Fc.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function MN(r,t,e=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!PN(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function PN(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!="string"||!PN(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!PN(t))return!1;return!0}else return!1;else{let t=typeof r;return t==="string"||t==="number"||t==="boolean"}}function mR(r,t,e,n=console.log){let o=m7(r),s=["Layer (type)","Input Shape","Output shape","Param #"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push("Receives inputs"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n("_".repeat(t)),sb(s,e,n),n("=".repeat(t));let a=r.layers;for(let c=0;c<a.length;++c)o?f7(a[c],e,n):d7(a[c],e,i,n),n((c===a.length-1?"=":"_").repeat(t));r.checkTrainableWeightsConsistency();let u=p7(r),l=Hm(r.nonTrainableWeights);n(`Total params: ${u+l}`),n(`Trainable params: ${u}`),n(`Non-trainable params: ${l}`),n("_".repeat(t))}function p7(r){let t;return r.collectedTrainableWeights!=null?t=Hm(r.collectedTrainableWeights):t=Hm(r.trainableWeights),t}function m7(r){let t=!0,e=[],n=[];for(let o in r.nodesByDepth)e.push(r.nodesByDepth[o]);for(let o of e){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function sb(r,t,e=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,t[o]),n+=" ".repeat(t[o]-n.length);e(n)}function f7(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){o="multiple"}try{n=JSON.stringify(r.outputShape)}catch(u){n="multiple"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];sb(a,t,e)}function d7(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){s="multiple"}try{o=JSON.stringify(r.outputShape)}catch(p){o="multiple"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m<p.inboundLayers.length;++m){let f=p.inboundLayers[m].name,d=p.nodeIndices[m],h=p.tensorIndices[m];i.push(`${f}[${d}][${h}]`)}let a=r.name,u=r.getClassName(),l=i.length===0?"":i[0],c=[`${a} (${u})`,s,o,r.countParams().toString(),l];sb(c,t,n);for(let p=1;p<i.length;++p)sb(["","","","",i[p]],t,n)}function fR(r,t,e){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&t===0&&typeof e=="string"}function qc(r,t){if(r===null)return null;if(typeof r=="string")return Sl(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];fR(t,o,s)?e.push(s):e.push(qc(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")e[n]=o;else{let s=Sl(n);e[s]=qc(o,s)}}return e}}function ib(r,t){if(r==null)return null;if(typeof r=="string")return Eo(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];fR(t,o,s)?e.push(s):e.push(ib(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n],s=Eo(n);(n==="name"||n==="className")&&typeof o=="string"?e[s]=o:e[s]=ib(o,n)}return e}}var tf="4.5.0";var Hn=class extends _t{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Fu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],Ao(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Ao(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(I),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;co(I===0,"input layer has >1 nodes"),co(N===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(I),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof fi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${t.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,I,N,E,A)=>{(N==null||E==null||A==null)&&(N=b.sourceLayer,E=b.nodeIndex,A=b.tensorIndex);let D=N.inboundNodes[E];if(I.indexOf(D)!==-1)throw new jr(`The tensor ${b.name} at layer "${N.name}" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(Hn.nodeKey(N,E)),N.id in i||(i[N.id]=Object.keys(i).length),I.indexOf(D)===-1&&I.push(D);let F=D.inboundLayers.length;for(let P=0;P<F;P++){let V=D.inputTensors[P],G=D.inboundLayers[P],W=D.nodeIndices[P],q=D.tensorIndices[P];u(V,w,I,G,W,q)}for(w.push(D);I.indexOf(D)>=0;)I.splice(I.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],I=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,I),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;N<b.inboundLayers.length;N++){let E=b.inboundLayers[N],A=b.nodeIndices[N],D=E.inboundNodes[A],F=e[D.id]==null?0:e[D.id];e[D.id]=Math.max(w+1,F),n[D.id]=D}}let m={};for(let b in e){let w=e[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(_h);this.layers=[];for(let b of d){let w=f[b];w.sort((I,N)=>{let E=i[I.id],A=i[N.id];return E<A?-1:E>A?1:0});for(let I of w)I instanceof Hn&&this.internalContainerRefs.push(I),this.layers.push(I)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(_h);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let I=w.outboundLayer;if(I!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new jr(`Graph disconnected: cannot obtain value for tensor ${N} at layer "${I.name}". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(I.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(I=>I===b).length;if(w!==1)throw new jr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0;for(let i of this.layers)for(let a of i.weights){if(n[a.originalName]!=null)throw new z(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,o++}let s=[];for(let i in t){let a=i;if(n[i]==null){let u=i.split("/");a=u.slice(0,-2).concat([u[u.length-1]]).join("/")}if(n[a]!=null)s.push([n[a],t[i]]);else if(e)throw new z(`Provided weight data has no target variable: ${i}`);delete n[a]}if(e){let i=[];for(let a in n)i.push(a);if(i.length>0)throw new z(`${i.length} of ${o} weights are not set: ${i}`)}qm(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${tf}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let n=ib(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return B(()=>{t=we(t);let n=new Ro;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],t[o]);return Wc(this.outputs,n,e)})}computeMask(t,e){return B(()=>{t=we(t);let n;return e==null?n=_o(null,t.length):n=we(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Um(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;a<e.length;a++){let u=this.inputLayers[a],l=e[a],c=u.name+"_0_0";n[c]=l}let o=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(_h);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<l.inboundLayers.length;h++){let g=l.inboundLayers[h],x=l.nodeIndices[h],b=l.tensorIndices[h],w=`${g.name}_${x}_${b}`,I=n[w];p.push(I)}let m=c.computeOutputShape(kr(p)),f=Um(m),d=c.inboundNodes.indexOf(l);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],i=[];for(let a=0;a<this.outputLayers.length;a++){let u=this.outputLayers[a],l=this.outputLayersNodeIndices[a],c=this.outputLayersTensorIndices[a],p=`${u.name}_${l}_${c}`;i.push(p)}for(let a=0;a<i.length;a++){let u=i[a];co(u in n),s.push(n[u])}return kr(s)}runInternalGraph(t,e){e==null&&(e=_o(null,t.length));let n={};for(let u=0;u<this.inputs.length;++u){let l=this.inputs[u],c=t[u],p=e[u];n[l.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(u=>parseInt(u,10)).sort(_h);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[I,N]=d[0];h.mask==null&&(h.mask=N),b=we(p.call(I,h)),w=we(p.computeMask(I,N)),g=[I],x=[N]}else g=d.map(I=>I[0]),x=d.map(I=>I[1]),h.mask==null&&(h.mask=x),b=we(p.call(g,h)),w=we(p.computeMask(g,x));if(p.activityRegularizer)throw new Nt("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let I=0;I<f.length;++I){let N=f[I],E=b[I],A=w[I];n[N.id]=[E,A]}}}}let s=[],i=[],a=[];for(let u of this.outputs){co(u.id in n,`Could not compute output ${u.name} : ${u.id}`);let[l,c]=n[u.id];a.push(l.shape),s.push(l),i.push(c)}return[s,i,a]}buildNodeConversionMap(t){let e={},n;for(let o of this.layers){n=o instanceof Hn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let i=Hn.nodeKey(o,s);this.containerNodes.has(i)&&(e[i]=n,n+=1)}}return e}getLayer(t,e){if(e!=null){if(this.layers.length<=e)throw new z(`Was asked to retrieve layer at index ${e}, but model only has ${this.layers.length} layer(s).`);return this.layers[e]}else if(t==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===t)return n;throw new z(`No such layer: ${t}`)}calculateLosses(){return B(()=>{let t=[];for(let e of this.layers)for(let n=0;n<e.inboundNodes.length;++n){let o=Hn.nodeKey(e,n);this.containerNodes.has(o)&&t.push(...e.calculateLosses())}return t})}getConfig(){let t={name:this.name},e=this.buildNodeConversionMap(this.layers),n=[];for(let i of this.layers){let a=i.getClassName(),u=i.getConfig(),l=[];for(let p=0;p<i.inboundNodes.length;p++){let m=i.inboundNodes[p],f=Hn.nodeKey(i,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${i.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],I=Hn.nodeKey(x,b),N=e[I];N==null&&(N=0),h.push([x.name,N,w,d])}l.push(h)}}}let c={};c.name=i.name,c.className=a,c.config=u,c.inboundNodes=l,n.push(c)}t.layers=n;let o=[];for(let i=0;i<this.inputLayers.length;i++){let a=this.inputLayers[i],u=this.inputLayersNodeIndices[i],l=Hn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.inputLayersTensorIndices[i];o.push([a.name,c,p])}t.inputLayers=o;let s=[];for(let i=0;i<this.outputLayers.length;i++){let a=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=Hn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.outputLayersTensorIndices[i];s.push([a.name,c,p])}return t.outputLayers=s,t}static fromConfig(t,e,n={},o=!1){let s={},i={};function a(g,x){g.name in i?i[g.name].push(x):i[g.name]=[x]}function u(g,x){let b=[],w;for(let I of x){let N=I[0],E=I[1],A=I[2];if(w=I[3]==null?{}:I[3],!(N in s)){a(g,x);return}let D=s[N];if(D.inboundNodes.length<=E){a(g,x);return}let F=D.inboundNodes[E];b.push(F.outputTensors[A])}b.length>0&&g.apply(kr(b),w)}function l(g){let x=g.name,b=In(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(I=>{if(!(I instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${I}`);a(b,I)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!E$(i);)for(let g of p){let x=s[g.name];if(x.name in i){let b=i[x.name];delete i[x.name];for(let w of b)u(x,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];co(x in s);let N=s[x].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function h7(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function ab(r,t){return h7(r,t,"classWeight")}async function lb(r,t,e,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=B(()=>{if(r.shape.length===1)return un(r);if(r.shape.length===2){if(r.shape[1]>1)return ta(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Tt(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Ke(i,"float32")}else return null}function dR(r,t){return $(r,t)}var g7=32;function xR(r,t){let e,n,o=t;e=o.xs,n=o.ys,y.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=hR("input",r.inputNames,e),i=hR("output",r.outputNames,n),a=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u<s.length;u++)y.assert(s[u].shape[0]===a,()=>`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u<i.length;u++)y.assert(i[u].shape[0]===a,()=>`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function hR(r,t,e){if(e instanceof Pt)return[e];if(Array.isArray(e))return y.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function x7(r){if(r.length===3)throw new Nt("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function yR(r,t,e){let n=e.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),y.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),y.assert(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(gR(e.validationData))y.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=x7(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=Qy(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=tb(c,p,e.epochs,null,null,y7(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d<e.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(n||(h=await t.iterator());!n||x<e.batchesPerEpoch;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${e.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${e.batchesPerEpoch*e.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:I,ys:N}=xR(r,w.value),E={};E.batch=b,E.size=I[0].shape[0],await m.onBatchBegin(b,E);let A=[];if(e.classWeight!=null){let P=ab(e.classWeight,r.outputNames);for(let V=0;V<P.length;++V)A.push(await lb(N[V],null,P[V]))}let D=I.concat(N).concat(A),F=a(D);Tt(D);for(let P=0;P<u.length;++P){let V=u[P],G=F[P];E[V]=G,$e(G)}await m.onBatchEnd(b,E),Xy(E),b++,x++}if(n?x>=e.batchesPerEpoch:w.done){if(o){let I;gR(e.validationData)?I=we(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):I=we(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?g7:e.validationBatchSize,verbose:0}));for(let N=0;N<r.metricsNames.length;++N)g[`val_${r.metricsNames[N]}`]=I[N]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function y7(r,t){let e=null;return t.batchesPerEpoch!=null?e=t.batchesPerEpoch:Number.isFinite(r.size)&&(e=r.size),e}function gR(r){return typeof r.iterator=="function"}function b7(r){return typeof r.next=="function"}async function bR(r,t,e){e=e||{};let n=e.batches!=null,o=r.testFunction,s=[];if(e.verbose>0)throw new Nt("Verbose mode is not implemented yet.");y.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=b7(t)?t:await t.iterator(),a=0,u=0;for(;!n||u<e.batches;){let l=await i.next();if(s=B(()=>{if(l.value){let{xs:c,ys:p}=xR(r,l.value),m=c.concat(p),f=B(()=>o(m));if(Tt(m),u===0)for(let h=0;h<f.length;++h)s.push(ft(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=B(()=>Y(s[h],$(d,g))),u>0&&Tt(x)}Tt(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let c=s[l];s[l]=ct(s[l],a),Tt(c)}return kr(s)}function ub(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function ef(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>Nl(n,t,e-t)):Nl(r,t,e-t)}function cb(r,t){return B(()=>r==null?null:Array.isArray(r)?r.map(e=>cb(e,t)):Wy(r,t.dtype==="int32"?t:Q(t,"int32")))}function pb(r,t){let e=[],n=0,o=null;for(;n<r;)o=n+t,o>=r&&(o=r),e.push([n,o]),n=o;return e}function LN(r){let t=[];r instanceof Pt&&(r=[r]);for(let e=0;e<r.length;++e){let n=r[e];if(n.rank===1)t.push(kl(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function Fo(r,t){if(r==null)return;let e=[];if(t instanceof Pt)e.push(t.id);else if(Array.isArray(t))t.forEach(o=>e.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Pt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function w7(r){return r instanceof Pt}function zN(r){return Array.isArray(r)}function wR(r){return!w7(r)&&!zN(r)}function IR(r,t,e,n=!0,o=""){if(t==null||t.length===0){if(r!=null){let i=!1;if(zN(r)&&r.length>0)i=!0;else if(wR(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(wR(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(r[i])}}else if(zN(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=LN(s),e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s). but got array with shape ${a.shape}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c>=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function I7(r,t,e){let n=Ao(r.map(s=>s.shape[0]));n.sort();let o=Ao(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function C7(r,t,e){let n=[ga,Qm,Hc];for(let o=0;o<r.length;++o){let s=r[o],i=t[o],a=e[o];if(i!=null){if(i===Hc&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let u=s.shape.slice(1),l=a.slice(1);for(let c=0;c<u.length;++c){let p=u[c],m=l[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function CR(r,t,e,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(t.length>1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c!==l)throw new z(`Error when checking ${o}: expected ${t[i]} to have shape ${JSON.stringify(e[i])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function v7(r,t){if(r==null||Array.isArray(r)&&r.length===0)return t.map(n=>[]);let e;if(typeof r=="string"||typeof r=="function")e=[r];else if(Array.isArray(r)||typeof r=="object")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var S7="layers-model",qn=class extends Hn{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");mR(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=pR(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof qr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: "${i}". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output "${i}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(eb(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>eb(a))}else{let i=eb(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){let a=this.internalOutputShapes[i],u=this.outputNames[i];this.feedOutputNames.push(u),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[i])}let n=[];this.metrics=t.metrics,this.metricsNames=["loss"],this.metricsTensors=[],pi("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=this.lossFunctions[i];this.outputs.length>1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let o=v7(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};pi("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=o[i];(l=>{let c="",p,m,f;for(let d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Qm?["accuracy","acc"].indexOf(d)!==-1?m=Ph:["crossentropy","ce"].indexOf(d)!==-1&&(m=nb):this.lossFunctions[i]===Jm?["accuracy","acc"].indexOf(d)!==-1?m=ob:["crossentropy","ce"].indexOf(d)!==-1&&(m=ON):["accuracy","acc"].indexOf(d)!==-1?m=Mh:["crossentropy","ce"].indexOf(d)!==-1&&(m=Lh);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=uR(d),p=c+zh(d);let h;pi(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;ub(o);let s=!0,i=this.standardizeUserDataXY(t,e,s,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return kr(l)}finally{Fo(i[0],t),Fo(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),bR(this,t,e)}checkNumSamples(t,e,n,o="steps"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new Ro;if(t instanceof Pt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;u<this.inputs.length;++u)i.add(this.inputs[u],t[u])}else for(let u of this.inputs){let l=t[u.name];if(l==null)throw new z(`No value is provided for the model's input ${u.name}`);i.add(u,l)}let a=Wc(s,i);return n?a:a[0]}retrieveSymbolicTensors(t){let e=_o(null,t.length),n=t.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],i=s.map(a=>a.name);for(let a=0;a<t.length;++a){let u=i.indexOf(t[a]);if(u!==-1&&(e[a]=s[u],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return B(()=>{let o=this.checkNumSamples(t);if(n)throw new Nt("Verbose predictLoop() is not implemented yet.");let s=pb(o,e),i=this.outputs.map(a=>[]);for(let a=0;a<s.length;++a)B(()=>{let l=s[a][0],c=s[a][1],p=ef(t,l,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Ro(m);return Wc(this.outputs,f)}).forEach((l,c)=>i[c].push(l));return kr(i.map(a=>se(a,0)))})}predict(t,e={}){let n=LN(t);CR(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return ub(o),this.predictLoop(n,o)}finally{Fo(n,t)}}predictOnBatch(t){CR(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new jr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let i=0;i<this.feedOutputShapes.length;++i){let a=this.feedOutputShapes[i];this.feedLossFns[i]===Jm?s.push(a.slice(0,a.length-1).concat([1])):s.push(a)}if(t=IR(t,this.feedInputNames,this.feedInputShapes,!1,"input"),e=IR(e,this.feedOutputNames,s,!1,"target"),I7(t,e,null),C7(e,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(o!=null){let c=ab(o,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await lb(u[p],null,c[p]))}return[a,u,l]}testLoop(t,e,n,o=0,s){return B(()=>{let i=this.checkNumSamples(e,n,s,"steps"),a=[];if(o>0)throw new Nt("Verbose mode is not implemented yet.");if(s!=null)throw new Nt("steps mode in testLoop() is not implemented yet");{let u=pb(i,n),l=Ke(gn(0,i));for(let c=0;c<u.length;++c){let p=u[c][0],m=u[c][1],f=Nl(l,p,m-p),d=cb(e,f),h=t(d);if(c===0)for(let g=0;g<h.length;++g)a.push(ft(0));for(let g=0;g<h.length;++g){let x=h[g];a[g]=Y(a[g],$(m-p,x))}}for(let c=0;c<a.length;++c)a[c]=ct(a[c],i)}return a})}getDedupedMetricsNames(){let t=this.metricsNames,e=[];for(let n=0;n<t.length;++n){let o=t[n],s=o;if(NN(t,o)>1){let i=NN(t.slice(0,n),o);s+=`_${i}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new Ro(p),f=Wc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let g=this.lossFunctions[h],x=g(o[h],f[h]);s[h]!=null&&(x=dR(x,s[h]));let b=ke(x);e.push(b),h===0?d=x:d=Y(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=e[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=ke(x(o[b],f[b]))}$e(g),i.push(g)}return d=ke(d),this.calculateLosses().forEach(h=>{d=Y(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read()),l=!0;return[this.optimizer_.minimize(a,l,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>B(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l<this.inputs.length;++l)i.push({key:this.inputs[l],value:o[l]});let a=new Ro(i),u=Wc(this.outputs,a);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],p=ke(c(s[l],u[l]));l===0?n=p:n=Y(n,p),e.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],m=ke(c(s[p],u[p]));e.push(m)}return e})}async fit(t,e,n={}){if(this.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");this.isTraining=!0;let o,s,i,a,u,l,c,p,m;try{let f=n.batchSize==null?32:n.batchSize;ub(f);let d=!1,h=await this.standardizeUserData(t,e,n.sampleWeight,n.classWeight,d,f);o=h[0],s=h[1],m=h[2];let g=!1,x;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Nt("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let F=!0,P=await this.standardizeUserData(u,l,null,null,F,f);c=P[0],p=P[1],x=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),P=o[0].shape[0];c=ef(o,F,P),i=o,o=ef(o,0,F),p=ef(s,F,P),a=s,s=ef(s,0,F),x=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);this.checkTrainableWeightsConsistency();let w=this.makeTrainFunction(),I=this.getDedupedMetricsNames(),N,E;g?(this.makeTestFunction(),N=this.testFunction,E=I.slice().concat(I.map(F=>"val_"+F))):(N=null,x=[],E=I.slice());let A=Qy(n.callbacks,n.yieldEvery);return await this.fitLoop(w,b,I,f,n.epochs,n.verbose,A,N,x,n.shuffle,E,n.initialEpoch,null,null)}finally{this.isTraining=!1,Fo(o,t),Fo(s,e),Fo(i,t),Fo(a,e),Fo(c,u),Fo(p,l),m!=null&&Tt(m)}}async fitLoop(t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=this.checkNumSamples(e,o,f,"steps_per_epoch"),x;g!=null&&(x=gn(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=tb(a,i,s,m,g,f,o,h,p);b.setModel(this),this.history=w,await b.onTrainBegin(),this.stopTraining_=!1;for(let I=m;I<s;++I){await b.onEpochBegin(I);let N={};if(f!=null)throw new Nt("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Nt("batch shuffling is not implemneted yet");c&&y.shuffle(x);let E=Ke(x),A=pb(g,o);for(let D=0;D<A.length;++D){let F={};if(await b.onBatchBegin(D,F),B(()=>{let P=A[D][0],V=A[D][1],G=Nl(E,P,V-P);F.batch=D,F.size=V-P;let W=cb(e,G),q=t(W);for(let H=0;H<n.length;++H){let K=n[H],X=q[H];F[K]=X,$e(X)}if(D===A.length-1&&h){let H=this.testLoop(u,l,o);for(let K=0;K<n.length;++K){let X=n[K],Z=H[K];$e(Z),N["val_"+X]=Z}}}),await b.onBatchEnd(D,F),Xy(F),this.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(I,N),this.stopTraining_)break}return await b.onTrainEnd(),await this.history.syncData(),this.history}async fitDataset(t,e){return yR(this,t,e)}async trainOnBatch(t,e){let n=await this.standardizeUserData(t,e),o=n[0],s=n[1],a=this.makeTrainFunction()(o.concat(s)),u=[];for(let l of a){let c=await l.data();u.push(c[0])}return Tt(a),Fo(n[0],t),Fo(n[1],e),kr(u)}getNamedWeights(t){let e=[],n=t!=null&&t.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let i=0;i<o.length;++i)n&&!o[i].trainable||e.push({name:o[i].originalName,tensor:s[i]});return e}set stopTraining(t){this.stopTraining_=t}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(t){this.optimizer_!==t&&(this.optimizer_=t,this.isOptimizerOwned=!1)}dispose(){let t=super.dispose();if(t.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let e=fh().numTensors;this.optimizer_.dispose(),t.numDisposedVariables+=e-fh().numTensors}return t}getLossIdentifiers(){let t;if(typeof this.loss=="string")t=Eo(this.loss);else if(Array.isArray(this.loss)){for(let e of this.loss)if(typeof e!="string")throw new Error("Serialization of non-string loss is not supported.");t=this.loss.map(e=>Eo(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]=="string")t[o]=Eo(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Eo(zh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>Eo(zh(t)));{let t={};for(let e in this.metrics)t[e]=Eo(zh(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=qc(t.optimizer_config),n=In(e),o;if(typeof t.loss=="string")o=Sl(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>Sl(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=Sl(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>Sl(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=Sl(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t=="string"){let l=Mr.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Mr.encodeWeights(this.getNamedWeights(e)),o=!1,s=null,a={modelTopology:this.toJSON(s,o),format:S7,generatedBy:`TensorFlow.js tfjs-layers v${tf}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:p}=await Mr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Mr.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(MN(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){MN(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};qn.className="Model";J.registerClass(qn);var mb=class extends qn{};mb.className="Functional";J.registerClass(mb);async function vR(r,t){"modelTopology"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=qc(e),o=In(n,t);if(r.weightsManifest!=null){let s=await Mr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),Tt(s)}return o}async function SR(r,t){if(t==null&&(t={}),typeof r=="string"){let e=Mr.getLoadHandlers(r,t);if(e.length===0)e.push(Mr.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return N7(r,void 0,t)}async function N7(r,t,e){if(e==null&&(e={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=In(qc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=k7(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),Tt(l),Tt(c.map(p=>p.tensor))}return a}function k7(r,t){let e=Mr.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var xa=class extends qn{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:Fu("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof xa||t instanceof qn,n;if(e){if(n=t,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=qy({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=DN(this.outputs[0])}this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:_o(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Gt(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new qn({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=e}else y.assert(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof xa))throw new Nt(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=In(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};xa.className="Sequential";J.registerClass(xa);function T7(r){return new qn(r)}function _7(r){return new xa(r)}function BN(r){return qy(r)}function E7(r,t){wn.registerCallbackConstructor(r,t)}var nn=class extends J.Serializable{getConfig(){return{}}},fb=class extends nn{apply(t,e=1){return U$(t,e)}};fb.className="elu";J.registerClass(fb);var db=class extends nn{apply(t){return wm(t)}};db.className="selu";J.registerClass(db);var hb=class extends nn{apply(t){return Pr(t)}};hb.className="relu";J.registerClass(hb);var gb=class extends nn{apply(t){return B(()=>uo(6,Pr(t)))}};gb.className="relu6";J.registerClass(gb);var xb=class extends nn{apply(t){return t}};xb.className="linear";J.registerClass(xb);var yb=class extends nn{apply(t){return tn(t)}};yb.className="sigmoid";J.registerClass(yb);var bb=class extends nn{apply(t){return q$(t)}};bb.className="hardSigmoid";J.registerClass(bb);var wb=class extends nn{apply(t){return ai(t)}};wb.className="softplus";J.registerClass(wb);var Ib=class extends nn{apply(t){return H$(t)}};Ib.className="softsign";J.registerClass(Ib);var Cb=class extends nn{apply(t){return ra(t)}};Cb.className="tanh";J.registerClass(Cb);var rf=class extends nn{apply(t,e=-1){return Eu(t,e)}};rf.className="softmax";J.registerClass(rf);var vb=class extends nn{apply(t,e=-1){return dm(t,e)}};vb.className="logSoftmax";J.registerClass(vb);var Sb=class extends nn{apply(t,e=1){return B(()=>$(tn($(t,e)),t))}};Sb.className="swish";J.registerClass(Sb);var Nb=class extends nn{apply(t){return B(()=>$(t,ra(ai(t))))}};Nb.className="mish";J.registerClass(Nb);function di(r){return r.getClassName()}function VN(r,t={}){return fa(r,J.SerializationMap.getMap().classNameMap,t,"activation")}function hi(r){if(r==null){let t={};return t.className="linear",t.config={},VN(t)}if(typeof r=="string"){let t={};return t.className=r,t.config={},VN(t)}else return r instanceof nn?r:VN(r)}function GN(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var kb=class extends J.Serializable{},Lu=class extends kb{constructor(t){super(),GN(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return B(()=>{let e=Te([1]);return this.hasL1&&(e=Y(e,pt($(this.l1,Ee(t))))),this.hasL2&&(e=Y(e,pt($(this.l2,Pc(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};Lu.className="L1L2";J.registerClass(Lu);function TR(r){return GN(r),new Lu({l1:r!=null?r.l1:null,l2:0})}function _R(r){return GN(r),new Lu({l2:r!=null?r.l2:null,l1:0})}var NR={l1l2:"L1L2"};function me(r){return Rm(r)}function kR(r,t={}){return fa(r,J.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ce(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in NR?NR[r]:r,config:{}};return kR(e)}else return r instanceof kb?r:kR(r)}var nf=class extends _t{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=St(t);let n=Pr(t);return this.maxValue!=null&&(n=vr(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};nf.className="ReLU";J.registerClass(nf);var of=class extends _t{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=St(t);return vu(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};of.className="LeakyReLU";J.registerClass(of);var sf=class extends _t{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=he(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ce(t.alphaRegularizer),this.alphaConstraint=Ve(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Gt(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<t.length;++o)n[o]=t[o];this.inputSpec=[new Ie({ndim:t.length,axes:n})],this.built=!0}call(t,e){return t=St(t),_u(t,this.alpha.read())}getConfig(){let t={alphaInitializer:_e(this.alphaInitializer),alphaRegularizer:me(this.alphaRegularizer),alphaConstraint:Be(this.alphaConstraint),sharedAxes:this.sharedAxes},e=super.getConfig();return Object.assign(t,e),t}};sf.className="PReLU";J.registerClass(sf);var af=class extends _t{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA=1,t==null&&(t={}),t.alpha!=null&&t.alpha!==this.DEFAULT_ALPHA)throw new Nt(`Non-default alpha value (${t.alpha}) is not supported by the ELU layer yet.`);this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=St(t);return ia(n)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};af.className="ELU";J.registerClass(af);var lf=class extends _t{constructor(t){super(t==null?{}:t),this.DEFAULT_THETA=1,t==null&&(t={}),this.theta=t.theta==null?this.DEFAULT_THETA:t.theta}call(t,e){let n=St(t);return $(n,Q(Fe(n,this.theta),"float32"))}computeOutputShape(t){return t}getConfig(){let t={theta:this.theta},e=super.getConfig();return Object.assign(t,e),t}};lf.className="ThresholdedReLU";J.registerClass(lf);var uf=class extends _t{constructor(t){super(t==null?{}:t),this.DEFAULT_AXIS=1,t==null&&(t={}),this.softmax=new rf().apply,this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis}call(t,e){let n=St(t);return this.softmax(n,this.axis)}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};uf.className="Softmax";J.registerClass(uf);function zu(r,t,e){if(typeof r=="number")return _o(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n<t;++n){let o=r[n];if(!B$(o))throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function En(r,t,e,n,o=1){if(r==null)return r;let s=t+(t-1)*(o-1),i;return e==="same"?i=r:i=r-s+1,Math.floor((i+n-1)/n)}function gi(r,t,e,n){if(r==null)return null;if(n==="valid")r=r*t+mi([e-t,0]);else if(n==="same")r=r*t;else throw new z(`Unsupport padding mode: ${n}.`);return r}function Bh(r,t){return B(()=>(Oe(t),t==="channelsFirst"?Vt(r,[0,2,3,1]):r))}function WN(r,t){return B(()=>(Oe(t),t==="channelsFirst"?Vt(r,[0,2,3,4,1]):r))}function D7(r,t,e,n=1,o="valid",s,i=1){return B(()=>{if(s==null&&(s=xn()),Oe(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(r=Vt(r,[0,2,1])),o==="causal")throw new Nt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=um(r,t,n,o==="same"?"same":"valid","NWC",i);return e!=null&&(a=yn(a,e)),a})}function ER(r,t,e,n=[1,1],o="valid",s,i,a=null){return B(()=>{if(s==null&&(s=xn()),Oe(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Bh(r,s);if(o==="causal")throw new Nt("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=Ru.conv2d({x:u,filter:t,strides:n,pad:o==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:e,activation:a}),s==="channelsFirst"&&(u=Vt(u,[0,3,1,2])),u})}function $7(r,t,e,n=[1,1,1],o="valid",s,i){return B(()=>{if(s==null&&(s=xn()),Oe(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=WN(r,s);if(o==="causal")throw new Nt("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=$x(a,t,n,o==="same"?"same":"valid","NDHWC",i),e!=null&&(a=yn(a,e)),s==="channelsFirst"&&(a=Vt(a,[0,4,1,2,3])),a})}var Kc=class extends _t{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Kc.verifyArgs(e),this.rank=t,Qe(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Nt(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zu(e.kernelSize,t,"kernelSize"),this.strides=zu(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,hn(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Oe(this.dataFormat),this.activation=hi(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=he(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ve(e.biasConstraint),this.biasRegularizer=Ce(e.biasRegularizer),this.activityRegularizer=Ce(e.activityRegularizer),this.dilationRate=zu(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(co("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!Oy(t.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:di(this.activation),useBias:this.useBias,biasInitializer:_e(this.biasInitializer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),biasConstraint:Be(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},Bu=class extends Kc{constructor(t,e){super(t,e),this.kernel=null,Bu.verifyArgs(e),this.filters=e.filters,Qe(this.filters,"filters"),this.kernelInitializer=he(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ve(e.kernelConstraint),this.kernelRegularizer=Ce(e.kernelRegularizer)}build(t){t=Gt(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return B(()=>{t=St(t);let n,o=this.bias==null?null:this.bias.read(),s=Py(this.activation.getClassName());if(s!=null&&this.rank===2)n=ER(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=D7(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=ER(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=$7(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Nt("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=Gt(t);let e=[],n=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s<n.length;++s){let i=En(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);e.push(i)}let o=[t[0]];return this.dataFormat==="channelsLast"?(o=o.concat(e),o.push(this.filters)):(o.push(this.filters),o=o.concat(e)),o}getConfig(){let t={filters:this.filters,kernelInitializer:_e(this.kernelInitializer),kernelRegularizer:me(this.kernelRegularizer),kernelConstraint:Be(this.kernelConstraint)},e=super.getConfig();return Object.assign(t,e),t}static verifyArgs(t){if(!("filters"in t)||typeof t.filters!="number"||t.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(t.filters)}`)}},El=class extends Bu{constructor(t){super(2,t),El.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Oy(t.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};El.className="Conv2D";J.registerClass(El);var Al=class extends Bu{constructor(t){super(3,t),Al.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};Al.className="Conv3D";J.registerClass(Al);var cf=class extends El{constructor(t){if(super(t),this.inputSpec=[new Ie({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ie({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat==="channelsFirst"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=gi(u,m,c,this.padding),h=gi(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Vt(n,[0,2,3,1]));let x=pm(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Vt(x,[0,3,1,2])),this.bias!=null&&(x=yn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=gi(e[o],u,i,this.padding),e[s]=gi(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};cf.className="Conv2DTranspose";J.registerClass(cf);var pf=class extends Al{constructor(t){if(super(t),this.inputSpec=[new Ie({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Gt(t),t.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ie({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=St(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat==="channelsFirst"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=gi(l,h,m,this.padding),w=gi(c,g,f,this.padding),I=gi(p,x,d,this.padding),N=[s,b,w,I,this.filters];this.dataFormat!=="channelsLast"&&(n=Vt(n,[0,2,3,4,1]));let E=Fx(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(E=Vt(E,[0,4,1,2,3])),this.bias!==null&&(E=yn(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(t){t=Gt(t);let e=t.slice(),n,o,s,i;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=gi(e[o],c,a,this.padding),e[s]=gi(e[s],p,u,this.padding),e[i]=gi(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};pf.className="Conv3DTranspose";J.registerClass(pf);var Tb=class extends Bu{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ce(e.depthwiseRegularizer),this.depthwiseConstraint=Ve(e.depthwiseConstraint),this.pointwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ce(e.pointwiseRegularizer),this.pointwiseConstraint=Ve(e.pointwiseConstraint)}build(t){if(t=Gt(t),t.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(t)}`);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(t[e])}`);let n=t[e],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let a=0;a<this.rank;++a)s.push(1);s.push(n*this.depthMultiplier,this.filters);let i=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,i,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,i,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,i,this.biasConstraint):this.bias=null,this.inputSpec=[new Ie({ndim:this.rank+2,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{t=St(t);let n;if(this.rank===1)throw new Nt("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Vt(t,[0,2,3,1])),n=Im(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Vt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.pointwiseInitializer=_e(this.pointwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.pointwiseRegularizer=me(this.pointwiseRegularizer),t.depthwiseConstraint=Be(this.depthwiseConstraint),t.pointwiseConstraint=Be(this.pointwiseConstraint),t}};Tb.className="SeparableConv";var mf=class extends Tb{constructor(t){super(2,t)}};mf.className="SeparableConv2D";J.registerClass(mf);var Vu=class extends Bu{constructor(t){super(1,t),Vu.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Oy(t.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};Vu.className="Conv1D";J.registerClass(Vu);var ff=class extends _t{constructor(t){super(t),typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return B(()=>{if(t=St(t),this.dataFormat==="channelsLast"){let n=Ah(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Ah(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Ah(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Ah(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};ff.className="Cropping2D";J.registerClass(ff);var df=class extends _t{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),this.interpolation=t.interpolation==null?"nearest":t.interpolation,L$(this.interpolation)}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return B(()=>{let n=St(t),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Vt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation==="nearest"?dn.resizeNearestNeighbor(n,[s,i]):dn.resizeBilinear(n,[s,i]);return Vt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation==="nearest"?dn.resizeNearestNeighbor(n,[s,i]):dn.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};df.className="UpSampling2D";J.registerClass(df);function R7(r,t,e=[1,1],n="valid",o,s){return B(()=>{o==null&&(o=xn()),Oe(o);let i=Bh(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=sa(i,t,e,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(i=Vt(i,[0,3,1,2])),i})}var hf=class extends Kc{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=he(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ve(t.depthwiseConstraint),this.depthwiseRegularizer=Ce(t.depthwiseRegularizer)}build(t){if(t=Gt(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{t=St(t);let n=R7(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=yn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=Gt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=En(e,this.kernelSize[0],this.padding,this.strides[0]),i=En(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.depthwiseConstraint=Be(this.depthwiseRegularizer),t}};hf.className="DepthwiseConv2D";J.registerClass(hf);function UN(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function HN(r,t,e,n=!1,o,s,i=!1,a=!1){return B(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(gn(2,u));if(t=Vt(t,l),s!=null)throw new Nt("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=Q(Q(o,"bool"),"float32"),o.rank===u-1&&(o=ar(o,-1)),o=Vt(o,l)),n&&(t=hr(t,0),o!=null&&(o=hr(o,0)));let c=[],p,m=e,f=t.shape[0],d=xr(t),h;o!=null&&(h=xr(o));for(let x=0;x<f;++x){let b=d[x],w=B(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let I=B(()=>{let N=h[x],E=lt(Ir(N),N),A=Y($(w[0],N),$(m[0],E)),D=m.map((F,P)=>Y($(w[1][P],N),$(F,E)));return{output:A,newStates:D}});p=I.output,m=I.newStates}a&&c.push(p)}let g;return a&&(g=qe(c,1)),[p,g,m]})}var An=class extends _t{constructor(t){super(t);let e;if(t.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new Yc({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new Ie({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return gn(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){Hy(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return B(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;n<t;++n)e.push(null);return e}else return this.states_}set states(t){this.states_=t}build(t){if(this.numConstants!=null)throw new Nt("Constants support is not implemented in RNN yet.");Hy(t)&&(t=t[0]),t=t;let n=this.stateful?t[0]:null,o=t.slice(2);this.inputSpec[0]=new Ie({shape:[n,null,...o]});let s=[t[0]].concat(t.slice(2));this.cell.build(s);let i;if(Array.isArray(this.cell.stateSize)?i=this.cell.stateSize:i=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(a=>a.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new Ie({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new _n("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_=[Te([n,this.cell.stateSize])];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_[0]=Te([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let o=0;o<this.states_.length;++o){let s=t[o],i=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,a=[n,i];if(!y.arraysEqual(s.shape,a))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>$e(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=UN(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ie({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof rn){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=St(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let a={training:o},l=HN((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return B(()=>{let e=Te(t.shape);return e=pt(e,[1,2]),e=kl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Gy(e,[1,n]):e):this.cell.stateSize>1?[Gy(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===An.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),t),e)}static fromConfig(t,e,n={}){let o=e.cell,s=In(o,n);return new t(Object.assign(e,{cell:s}))}};An.className="RNN";J.registerClass(An);var Dl=class extends _t{},jc=class extends Dl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Qe(this.units,"units"),this.activation=hi(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Oc([1,mi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Oc([1,mi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=$o($(t,i),this.kernel.read()):s=$o(t,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),a!=null&&(n=$(n,a));let u=Y(s,$o(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:di(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},t),e)}};jc.className="SimpleRNNCell";J.registerClass(jc);var gf=class extends An{constructor(t){t.cell=new jc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};gf.className="SimpleRNN";J.registerClass(gf);var Xc=class extends Dl{constructor(t){if(super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=t.units,Qe(this.units,"units"),this.activation=hi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=hi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Oc([1,mi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Oc([1,mi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Gt(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0<this.dropout&&this.dropout<1&&(t=$(t,s[0]));let c=$o(t,this.kernel.read());this.useBias&&(c=yn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=$(o,i[0]));let p=this.recurrentKernel.read(),[m,f]=gr(p,[2*this.units,this.units],p.rank-1),d=$o(o,m),[h,g,x]=gr(c,3,c.rank-1),[b,w]=gr(d,2,d.rank-1);a=this.recurrentActivation.apply(Y(h,b)),u=this.recurrentActivation.apply(Y(g,w));let I=$o($(u,o),f);l=this.activation.apply(Y(x,I));let N=Y($(a,o),$(Y(1,Ut(a)),l));return[N,N]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:di(this.activation),recurrentActivation:di(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},t),e)}};Xc.className="GRUCell";J.registerClass(Xc);var xf=class extends An{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new Xc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};xf.className="GRU";J.registerClass(xf);var $l=class extends Dl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Qe(this.units,"units"),this.activation=hi(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=hi(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Oc([1,mi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Oc([1,mi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Gt(t);let n=t[t.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends bn{apply(u,l){let c=s.apply([i]),p=new Pu().apply([i]),m=s.apply([i*2]);return AN(AN(c,p),m)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0<this.dropout&&this.dropout<1&&(t=$(t,i[0]));let m=$o(t,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=$(o,a[0])),m=Y(m,$o(o,this.recurrentKernel.read())),this.useBias&&(m=yn(m,this.bias.read()));let[f,d,h,g]=gr(m,4,m.rank-1);u=this.recurrentActivation.apply(f),l=this.recurrentActivation.apply(d),c=Y($(l,s),$(u,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=$(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:di(this.activation),recurrentActivation:di(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},t),e)}};$l.className="LSTMCell";J.registerClass($l);var yf=class extends An{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new $l(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};yf.className="LSTM";J.registerClass(yf);var Yc=class extends Dl{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return B(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a<this.cells.length;++a){let u=this.cells[a];n=o[a],a===0?i=[t[0]].concat(n):i=[i[0]].concat(n),i=u.call(i,e),s.push(i.slice(1))}n=[];for(let a of s.slice().reverse())n.push(...a);return[i[0]].concat(n)})}build(t){Hy(t)&&(t=t[0]),t=t;let e;this.cells.forEach((n,o)=>{pi(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign(Object.assign({},t),o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(In(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return $h(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;i<n.weights.length;++i)e.push([n.weights[i],s[i]])}qm(e)}};Yc.className="StackedRNNCells";J.registerClass(Yc);function Rl(r){let{ones:t,rate:e,training:n=!1,count:o=1,dropoutFunc:s}=r,i=()=>s!=null?s(t(),e):Uy(t(),e),a=()=>Ou(i,t,n);return!o||o<=1?$e(a().clone()):Array(o).fill(void 0).map(a).map(l=>$e(l.clone()))}var F7=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)t.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(e[n[o]]=r[n[o]]);return e};var _b=class extends An{constructor(t){if(t.unroll)throw new Nt("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(t.cell))throw new Nt("It is not possible at the moment to stack convolutional cells.");super(t),this.inputSpec=[new Ie({ndim:5})]}call(t,e){return B(()=>{if(this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z("ConvRNN2D cell does not support constants");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return B(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=Te(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new _n("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_=[Te(s)];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_[0]=Te(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let a=0;a<this.states_.length;++a){let u=t[a],l=s;if(!y.arraysEqual(u.shape,l))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${u.shape}`);this.states_[a]=u}}this.states_=this.states_.map(a=>$e(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e==="channelsFirst",l=t[u?3:2],c=t[u?4:3],p=En(l,o[0],s,i[0],a[0]),m=En(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};_b.className="ConvRNN2D";var Zc=class extends $l{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign(Object.assign({},t),{units:e})),this.filters=e,Qe(this.filters,"filters"),this.kernelSize=zu(n,2,"kernelSize"),this.kernelSize.forEach(u=>Qe(u,"kernelSize")),this.strides=zu(o||1,2,"strides"),this.strides.forEach(u=>Qe(u,"strides")),this.padding=s||"valid",hn(this.padding),this.dataFormat=i||"channelsLast",Oe(this.dataFormat),this.dilationRate=zu(a||1,2,"dilationRate"),this.dilationRate.forEach(u=>Qe(u,"dilationRate"))}build(t){var e;t=Gt(t);let n=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends bn{apply(m,f){let d=l.apply([c]),h=dr([c]),g=l.apply([c*2]);return Om([d,h,g])}},e.className="CustomInit",e)}else u=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return B(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(nt,st,at)=>!st||!st[at]?nt:$(st[at],nt),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),x=l(s,d,2),b=l(s,d,3),w=3,[I,N,E,A]=gr(this.kernel.read(),a,w),[D,F,P,V]=this.useBias?gr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,I,D,this.padding),p=this.inputConv(p,N,F,this.padding),m=this.inputConv(m,E,P,this.padding),f=this.inputConv(f,A,V,this.padding);let[G,W,q,H]=gr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,W),x=this.recurrentConv(x,q),b=this.recurrentConv(b,H);let K=this.recurrentActivation.apply(Y(c,h)),X=this.recurrentActivation.apply(Y(p,g)),Z=Y($(X,i),$(K,this.activation.apply(Y(m,x)))),et=$(this.recurrentActivation.apply(Y(f,b)),this.activation.apply(Z));return[et,et,Z]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=F7(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),o)}inputConv(t,e,n,o){let s=kn(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?yn(s,n,this.dataFormat):s}recurrentConv(t,e){return kn(t,e,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Zc.className="ConvLSTM2DCell";J.registerClass(Zc);var bf=class extends _b{constructor(t){let e=new Zc(t);super(Object.assign(Object.assign({},t),{cell:e}))}static fromConfig(t,e){return new t(e)}};bf.className="ConvLSTM2D";J.registerClass(bf);var Jc=class extends _t{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?e[o]:this.noiseShape[o]);return n}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);if(0<this.rate&&this.rate<1){let o=e.training==null?!1:e.training,s=this.getNoiseShape(n);return Ou(()=>Uy(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Jc.className="Dropout";J.registerClass(Jc);var wf=class extends Jc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};wf.className="SpatialDropout1D";J.registerClass(wf);var If=class extends _t{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,Qe(this.units,"units"),this.activation=hi(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ve(t.kernelConstraint),this.biasConstraint=Ve(t.biasConstraint),this.kernelRegularizer=Ce(t.kernelRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.activityRegularizer=Ce(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Gt(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Gt(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),o=Py(this.activation.getClassName()),s;return o!=null?s=$o(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=$o(n,this.kernel.read()),this.bias!=null&&(s=yn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:di(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),biasConstraint:Be(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};If.className="Dense";J.registerClass(If);var Cf=class extends _t{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Gt(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],Do(t,1)]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=Vt(n,o)}return W$(n)})}getConfig(){let t={};this.dataFormat!=null&&(t.dataFormat=this.dataFormat);let e=super.getConfig();return Object.assign(t,e),t}};Cf.className="Flatten";J.registerClass(Cf);var vf=class extends _t{constructor(t){super(t),this.supportsMasking=!0,this.activation=hi(t.activation)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return this.activation.apply(n)})}getConfig(){let t={activation:di(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};vf.className="Activation";J.registerClass(vf);var Sf=class extends _t{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return B(()=>(t=St(t),V$(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};Sf.className="RepeatVector";J.registerClass(Sf);var Nf=class extends _t{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e<this.targetShape.length;++e)this.isUnknown(this.targetShape[e])&&(this.targetShape[e]=null)}isUnknown(t){return t<0||t==null}fixUnknownDimension(t,e){let n="Total size of new array must be unchanged.",o=e.slice(),s=1,i=null;for(let u=0;u<o.length;++u){let l=o[u];if(this.isUnknown(l))if(i===null)i=u;else throw new z("Can only specifiy one unknown dimension.");else s*=l}let a=Do(t);if(i!==null){if(s===0||a%s!==0)throw new z(n);o[i]=a/s}else if(a!==s)throw new z(n);return o}computeOutputShape(t){let e=!1;for(let n=0;n<t.length;++n)if(this.isUnknown(t[n])){e=!0;break}return e?t.slice(0,1).concat(this.targetShape):t.slice(0,1).concat(this.fixUnknownDimension(t.slice(1),this.targetShape))}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};Nf.className="Reshape";J.registerClass(Nf);var kf=class extends _t{constructor(t){if(super(t),t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=gn(1,t.dims.length+1);if(!y.arraysEqual(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ie({ndim:this.dims.length+1})]}computeOutputShape(t){t=Gt(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Vt(St(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};kf.className="Permute";J.registerClass(kf);var Tf=class extends _t{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=St(t),o=-1;return dc(li(n,this.maskValue),o)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t),o=-1,s=!0,i=dc(li(n,this.maskValue),o,s);return $(n,Q(i,n.dtype))})}};Tf.className="Masking";J.registerClass(Tf);var _f=class extends _t{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(we(t.inputLength))}this.inputDim=t.inputDim,Qe(this.inputDim,"inputDim"),this.outputDim=t.outputDim,Qe(this.outputDim,"outputDim"),this.embeddingsInitializer=he(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ce(t.embeddingsRegularizer),this.activityRegularizer=Ce(t.activityRegularizer),this.embeddingsConstraint=Ve(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return B(()=>this.maskZero?(t=St(t),li(t,vt(t))):null)}computeOutputShape(t){if(t=Gt(t),this.inputLength==null)return[...t,this.outputDim];let e=we(this.inputLength);if(e.length!==t.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o<e.length;++o){let s=e[o],i=t[o+1];if(s!=null&&i!=null&&s!==i)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);s==null&&(e[n]=i),n++}}return[t[0],...e,this.outputDim]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);n.dtype!=="int32"&&(n=en(n,"int32"));let o=Wy(this.embeddings.read(),R(n,[n.size]));return R(o,Gt(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_e(this.embeddingsInitializer),embeddingsRegularizer:me(this.embeddingsRegularizer),activityRegularizer:me(this.activityRegularizer),embeddingsConstraint:Be(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};_f.className="Embedding";J.registerClass(_f);var Fl=class extends _t{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new Nt}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length<e.length)return this.computeElementwiseOpOutputShape(e,t);if(e.length===0)return t;let n=t.slice(0,t.length-e.length);for(let o=0;o<e.length;++o){let s=t[t.length-e.length+o],i=e[o];if(s==null||i==null||s<0||i<0)n.push(null);else if(s===1)n.push(i);else if(i===1)n.push(s);else{if(s!==i)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(t)+" "+JSON.stringify(e));n.push(s)}}return n}build(t){if(Array.isArray(t)&&!Array.isArray(t[0])&&(t=[Gt(t)]),t=t,t.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${t.length} input(s).`);let e=[];for(let s of t)s!=null&&s[0]!==null&&e.push(s[0]);if(e=Ao(e),e.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;s<t.length;++s){let i=t[s]==null?null:t[s].slice(1);n=this.computeElementwiseOpOutputShape(n,i)}let o=t.map(s=>s.length);t.indexOf(null)===-1&&Ao(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return B(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=mi(o);for(let i of t){let a=i.rank;for(let u=0;u<s-a;++u)i=kl(i,1);n.push(i)}return this.mergeFunction(n)}else{let s=!1;for(let u of t){let l=u.rank;if(l==null){let c=u.shape,p=c[0],m=c.slice(1).concat([p]),f=R(u,[p].concat(Do(c.slice(1))));f=Vt(f,[1,0]),f=R(f,m),n.push(f),s=!0}else if(l>1){let c=gn(1,l).concat([0]);n.push(Vt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Vt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(gn(0,a-1));i=Vt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o<t.length;++o){let s=t[o]==null?null:t[o].slice(1);e=this.computeElementwiseOpOutputShape(e,s)}let n=[];for(let o of t)o!=null&&o[0]!==null&&n.push(o[0]);return n=Ao(n),n.length===1?e=n.concat(e):e=[null].concat(e),e}computeMask(t,e){return B(()=>{if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an Array");if(!Array.isArray(t))throw new z("`inputs` should be an Array");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:ar(o,0));let n=e[0];for(let o=1;o<e.length-1;++o)n=Or(n,e[o]);return n})}},Ef=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Y(e,t[n]);return e})}};Ef.className="Add";J.registerClass(Ef);var Af=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=$(e,t[n]);return e})}};Af.className="Multiply";J.registerClass(Af);var Df=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Y(e,t[n]);return $(1/t.length,e)})}};Df.className="Average";J.registerClass(Df);var $f=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Tn(e,t[n]);return e})}};$f.className="Maximum";J.registerClass($f);var Rf=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=uo(e,t[n]);return e})}};Rf.className="Minimum";J.registerClass(Rf);var Ff=class extends Fl{constructor(t){super(t),this.DEFAULT_AXIS=-1,t==null&&(t={}),this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){if(!(Array.isArray(t)&&Array.isArray(t[0]))||t.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");t=t;let e=!0;for(let o of t)if(o!=null){e=!1;break}if(e)return;let n=[];for(let o=0;o<t.length;++o){let s=t[o].slice();s.splice(this.axis,1);let i=!1;for(let a of n)if(y.arraysEqual(a,s)){i=!0;break}i||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return B(()=>Om(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new z("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return B(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i<t.length;++i)e[i]==null?o.push(Q(Ir(t[i]),"bool")):e[i].rank<t[i].rank?o.push(ar(e[i],-1)):o.push(e[i]);let s=se(o,this.axis);return am(s,-1,!1)})}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};Ff.className="Concatenate";J.registerClass(Ff);function Vh(r,t){for(;r<0;)r+=t;return r}function O7(r,t,e){if(r.shape.length>3||t.shape.length>3)throw new Nt("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),r.dtype==="complex64"||t.dtype==="complex64")throw new Nt("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return B(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;l<i;++l)u.push(1);t=R(t,t.shape.concat(u))}else if(o>n){i=o-n;let u=[];for(let l=0;l<i;++l)u.push(1);r=R(r,r.shape.concat(u))}else i=0;let a;if(r.shape.length===2&&t.shape.length===2)s[0]===s[1]?a=pt($(r,t),s[0]):a=pt($(Vt(r,[1,0]),t),s[1]);else{let u=s[0]!==r.shape.length-1,l=s[1]===t.shape.length-1;a=Bt(r,t,u,l)}if(i>0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);a=Un(a,l)}return a.shape.length===1&&(a=ar(a,1)),a})}var Of=class extends Fl{constructor(t){super(t),this.axes=t.axes,this.normalize=t.normalize==null?!1:t.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new Nt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>Vh(s,t[i].shape.length)):o=[Vh(this.axes,e.shape.length),Vh(this.axes,n.shape.length)],this.normalize&&(e=Rh(e,o[0]),n=Rh(n,o[1])),O7(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[Vh(this.axes,t.length),Vh(this.axes,e.length)],n}computeOutputShape(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new Nt("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Of.className="Dot";J.registerClass(Of);var Pf=class extends _t{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return Ou(()=>Y(Pm(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};Pf.className="GaussianNoise";J.registerClass(Pf);var Mf=class extends _t{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=St(t);return this.rate>0&&this.rate<1?Ou(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return $(n,Pm(n.shape,1,s))},()=>n,e.training||!1):n})}};Mf.className="GaussianDropout";J.registerClass(Mf);var Lf=class extends _t{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||St(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return Ou(()=>{let s=St(t),i=1.6732632423543772,a=1.0507009873554805,u=-i*a,l=pn(Wn(n),this.rate);l=en(l,"float32");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=Y($(s,l),$(Y(l,-1),u));return Y($(m,c),p)},()=>St(t),e.training||!1)}return t})}};Lf.className="AlphaDropout";J.registerClass(Lf);function Gh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=vx(r,t,e,n,o,s);else if(r.rank===3)i=Sx(r,t,e,n,o,s);else if(r.rank===4)i=Nx(r,t,e,n,o,s);else throw new Nt(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function P7(r,t,e,n,o=.001){return B(()=>{let s=yc(r,n),i=s.mean,a=s.variance;return[Gh(r,i,a,e,t,o),i,a]})}function M7(r,t,e,n,o=.001){return B(()=>{let s=yc(r,n),i=s.mean,a=s.variance,u=[];for(let d of gn(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[Gh(r,l,c,m,p,o),i,a]})}function L7(r,t,e,n,o=.001){return y.arraysEqual(n.slice().sort(),gn(0,r.rank-1))?P7(r,t,e,n,o):M7(r,t,e,n,o)}var zf=class extends _t{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.movingMeanInitializer=he(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=he(t.movingVarianceInitializer||"ones"),this.betaConstraint=Ve(t.betaConstraint),this.gammaConstraint=Ve(t.gammaConstraint),this.betaRegularizer=Ce(t.betaRegularizer),this.gammaRegularizer=Ce(t.gammaRegularizer)}build(t){t=Gt(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new Ie({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training,o=St(t),s=o.shape,i=s.length,a=gn(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=_o(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!y.arraysEqual(c,gn(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),I=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return Gh(o,b,w,I,N,this.epsilon)}else return Gh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=L7(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,I)=>{B(()=>{let N=1-I,E=b.read(),A=$(lt(E,w),N);b.write(lt(E,A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),movingMeanInitializer:_e(this.movingMeanInitializer),movingVarianceInitializer:_e(this.movingVarianceInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer),betaConstraint:Be(this.betaConstraint),gammaConstraint:Be(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};zf.className="BatchNormalization";J.registerClass(zf);var Bf=class extends _t{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.betaRegularizer=Ce(t.betaRegularizer),this.gammaRegularizer=Ce(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Gt(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=e);for(let s of this.axis)if(s<0||s>=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Ao(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=St(t),o=n.shape,s=o.length;return B(()=>{let{mean:a,variance:u}=yc(n,this.axis,!0),l=_o(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return a=Fr(a,f),u=Fr(u,f),p!=null&&(p=Fr(p,d)),m!=null&&(m=Fr(m,d)),Gh(n,a,u,m,p,this.epsilon)})}getConfig(){let t={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer)},e=super.getConfig();return Object.assign(t,e),t}};Bf.className="LayerNormalization";J.registerClass(Bf);function z7(r,t,e){return B(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=xn()),e!=="channelsLast"&&e!=="channelsFirst")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],fn(r,n)})}var Vf=class extends _t{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?xn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){t=Gt(t);let e,n;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return B(()=>z7(St(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Vf.className="ZeroPadding2D";J.registerClass(Vf);function Fb(r,t,e,n,o,s){return B(()=>{Oe(o),kN(s),hn(n),e==null&&(e=[1,1]),n==null&&(n="valid"),o==null&&(o=xn()),s==null&&(s="max"),r=Bh(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=ku(r,t,e,a):i=bu(r,t,e,a),o==="channelsFirst"&&(i=Vt(i,[0,3,1,2])),i})}function AR(r,t,e,n,o,s){return B(()=>{Oe(o),kN(s),hn(n),e==null&&(e=[1,1,1]),n==null&&(n="valid"),o==null&&(o=xn()),s==null&&(s="max"),r=WN(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=Zx(r,t,e,a):i=Cx(r,t,e,a),o==="channelsFirst"&&(i=Vt(i,[0,4,1,2,3])),i})}var Eb=class extends _t{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(Qe(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,hn(this.padding),this.inputSpec=[new Ie({ndim:3})]}computeOutputShape(t){t=Gt(t);let e=En(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return B(()=>{this.invokeCallHook(t,e),t=kl(St(t),2);let n=this.poolingFunction(St(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Un(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Gf=class extends Eb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),Fb(t,e,n,o,s,"max")}};Gf.className="MaxPooling1D";J.registerClass(Gf);var Wf=class extends Eb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),Fb(t,e,n,o,s,"avg")}};Wf.className="AveragePooling1D";J.registerClass(Wf);var Ab=class extends _t{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];Qe(this.poolSize,"poolSize"),Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),hn(this.padding),this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=En(e,this.poolSize[0],this.padding,this.strides[0]),n=En(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Uf=class extends Ab{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),Fb(t,e,n,o,s,"max")}};Uf.className="MaxPooling2D";J.registerClass(Uf);var Hf=class extends Ab{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),Fb(t,e,n,o,s,"avg")}};Hf.className="AveragePooling2D";J.registerClass(Hf);var Db=class extends _t{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];Qe(this.poolSize,"poolSize"),Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),hn(this.padding),this.inputSpec=[new Ie({ndim:5})]}computeOutputShape(t){t=Gt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=En(e,this.poolSize[0],this.padding,this.strides[0]),n=En(n,this.poolSize[1],this.padding,this.strides[1]),o=En(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(St(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},qf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),AR(t,e,n,o,s,"max")}};qf.className="MaxPooling3D";J.registerClass(qf);var Kf=class extends Db{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),hn(o),AR(t,e,n,o,s,"avg")}};Kf.className="AveragePooling3D";J.registerClass(Kf);var $b=class extends _t{constructor(t){super(t),this.inputSpec=[new Ie({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new Nt}},jf=class extends $b{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return ke(n,1)})}};jf.className="GlobalAveragePooling1D";J.registerClass(jf);var Xf=class extends $b{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=St(t);return Sr(n,1)})}};Xf.className="GlobalMaxPooling1D";J.registerClass(Xf);var Rb=class extends _t{constructor(t){super(t),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new Nt}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Yf=class extends Rb{call(t,e){return B(()=>{let n=St(t);return this.dataFormat==="channelsLast"?ke(n,[1,2]):ke(n,[2,3])})}};Yf.className="GlobalAveragePooling2D";J.registerClass(Yf);var Zf=class extends Rb{call(t,e){return B(()=>{let n=St(t);return this.dataFormat==="channelsLast"?Sr(n,[1,2]):Sr(n,[2,3])})}};Zf.className="GlobalMaxPooling2D";J.registerClass(Zf);var Ob=class extends _t{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=In(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},Jf=class extends Ob{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=Gt(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Gt(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return B(()=>(t=St(t),HN((i,a)=>[St(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};Jf.className="TimeDistributed";J.registerClass(Jf);function B7(r){da(P$,"BidirectionalMergeMode",r)}var V7="concat",Qf=class extends Ob{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=In(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=In(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?V7:t.mergeMode,B7(this.mergeMode),t.weights)throw new Nt("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):kr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=UN(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=n,i.push(...n);let c=n.map(p=>new Ie({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new Nt("Support for constants in Bidirectional layers is not implemented yet.");let u=i[0]instanceof rn;for(let l of i)if(l instanceof rn!==u)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=hr(s,1));let a;return this.mergeMode==="concat"?a=Om([o,s]):this.mergeMode==="sum"?a=Y(o,s):this.mergeMode==="ave"?a=$(.5,Y(o,s)):this.mergeMode==="mul"?a=$(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){pi(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),pi(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=In(e.layer);if(delete e.layer,e.numConstants!=null)throw new Nt("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=n,new t(o)}};Qf.className="Bidirectional";J.registerClass(Qf);var td=class extends _t{constructor(t){super(t),this.scale=t.scale,t.offset?this.offset=t.offset:this.offset=0}getConfig(){let t={scale:this.scale,offset:this.offset},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>(t=St(t),t.dtype!=="float32"&&(t=en(t,"float32")),Y($(t,this.scale),this.offset)))}};td.className="Rescaling";J.registerClass(td);var{resizeBilinear:G7,cropAndResize:W7}=dn,ed=class extends _t{constructor(t){super(t),this.height=t.height,this.width=t.width}centerCrop(t,e,n,o,s,i,a,u){return B(()=>{let l,c=!1,p=e/i,m=n/a,f=(o+e)/i,d=(s+n)/a,h=[p,m,f,d],g=[];t.rank===3?(c=!0,l=qe([t])):l=t;for(let N=0;N<l.shape[0];N++)g.push(h);let x=sr(g,[g.length,4]),b=ca(0,g.length,1,"int32"),I=W7(l,x,b,[o,s],"nearest");return c?en(St(xr(I)),u):en(I,u)})}upsize(t,e,n,o){return B(()=>{let s=G7(t,[e,n]);return en(s,o)})}call(t,e){return B(()=>{let n=St(t),o=n.dtype,s=n.shape,i=s[s.length-3],a=s[s.length-2],u=0;i!==this.height&&(u=Math.floor((i-this.height)/2));let l=0;return a!==this.width&&(l=Math.floor((a-this.width)/2),l===0&&(l=1)),u>=0&&l>=0?this.centerCrop(n,u,l,this.height,this.width,i,a,o):this.upsize(t,this.height,this.width,o)})}getConfig(){let t={height:this.height,width:this.width},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){t=Gt(t);let e=t.length-3,n=t.length-2;return t[e]=this.height,t[n]=this.width,t}};ed.className="CenterCrop";J.registerClass(ed);function DR(r,t,e,n){let o=St(r);if(o.dtype!=="int32"&&(o=en(o,"int32")),t==="int")return o;let s=o.shape;if(o.rank===0&&(o=ar(o,-1)),t==="oneHot"&&o.shape[o.shape.length-1]!==1&&(o=ar(o,-1)),o.rank>2)throw new z(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${o.rank}.`);let i=["multiHot","oneHot"].includes(t),a=o,u;if(typeof n!="undefined"&&t==="count"?u=gh(a,n,e,i):u=gh(a,[],e,i),t!=="tfIdf")return u;if(n)return $(u,n);throw new z("When outputMode is 'tfIdf', weights must be provided.")}var rd=class extends _t{constructor(t){super(t),this.numTokens=t.numTokens,t.outputMode?this.outputMode=t.outputMode:this.outputMode="multiHot"}getConfig(){let t={numTokens:this.numTokens,outputMode:this.outputMode},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){return t=Gt(t),t==null?[this.numTokens]:this.outputMode==="oneHot"&&t[t.length-1]!==1?(t.push(this.numTokens),t):(t[t.length-1]=this.numTokens,t)}call(t,e){return B(()=>{t=St(t),t.dtype!=="int32"&&(t=en(t,"int32"));let n;if(typeof e.countWeights!="undefined"){if(this.outputMode!=="count")throw new z(`countWeights is not used when outputMode !== count.
Received countWeights=${e.countWeights}`);n=St(e.countWeights)}let o=Sr(t),s=xl(t),i=Fe(this.numTokens,o).bufferSync().get(0),a=pn(s,0).bufferSync().get(0);if(!(i&&a))throw new z(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return DR(t,this.outputMode,this.numTokens,n)})}};rd.className="CategoryEncoding";J.registerClass(rd);var H7=["bilinear","nearest"],$R=new Set(H7),nd=class extends _t{constructor(t){if(super(t),this.height=t.height,this.width=t.width,t.interpolation)if($R.has(t.interpolation))this.interpolation=t.interpolation;else throw new z(`Invalid interpolation parameter: ${t.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=!!t.cropToAspectRatio}computeOutputShape(t){t=Gt(t);let e=t[2];return[this.height,this.width,e]}getConfig(){let t={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return dn.resizeBilinear(t,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return dn.resizeNearestNeighbor(t,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...$R]} are supported`)})}};nd.className="Resizing";J.registerClass(nd);var Wh=class{constructor(t){this.seed=t}next(){if(this.seed!==void 0)return this.seed++}};Wh.className="RandomSeed";var Uh=class extends _t{constructor(t){super(t),this.randomGenerator=new Wh(t.seed)}getConfig(){let t={seed:this.randomGenerator.seed},e=super.getConfig();return Object.assign(t,e),t}};Uh.className="BaseRandomLayer";var q7=["bilinear","nearest"],RR=new Set(q7),od=class extends Uh{constructor(t){super(t);let{factor:e,interpolation:n="bilinear"}=t;if(this.factor=e,Array.isArray(this.factor)&&this.factor.length===2)this.widthLower=this.factor[0],this.widthUpper=this.factor[1];else if(!Array.isArray(this.factor)&&this.factor>0)this.widthLower=-this.factor,this.widthUpper=this.factor;else throw new z(`Invalid factor: ${this.factor}. Must be positive number or tuple of 2 numbers`);if(this.widthLower<-1||this.widthUpper<-1)throw new z(`factor must have values larger than -1. Got: ${this.factor}`);if(this.widthUpper<this.widthLower)throw new z(`factor cannot have upper bound less than lower bound.
Got upper bound: ${this.widthUpper}.
Got lower bound: ${this.widthLower}
`);if(n)if(RR.has(n))this.interpolation=n;else throw new z(`Invalid interpolation parameter: ${n} is not implemented`)}getConfig(){let t={factor:this.factor,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){t=Gt(t);let e=t[2];return[this.imgHeight,-1,e]}call(t,e){return B(()=>{let n=St(t);this.imgHeight=n.shape[n.shape.length-3];let o=n.shape[n.shape.length-2];this.widthFactor=Wn([1],1+this.widthLower,1+this.widthUpper,"float32",this.randomGenerator.next());let s=this.widthFactor.dataSync()[0]*o;s=Math.round(s);let i=[this.imgHeight,s];switch(this.interpolation){case"bilinear":return dn.resizeBilinear(t,i);case"nearest":return dn.resizeNearestNeighbor(t,i);default:throw new Error(`Interpolation is ${this.interpolation}
but only ${[...RR]} are supported`)}})}};od.className="RandomWidth";J.registerClass(od);function K7(r){return new fi(r)}function j7(r){return new af(r)}function X7(r){return new nf(r)}function Y7(r){return new of(r)}function Z7(r){return new sf(r)}function J7(r){return new uf(r)}function Q7(r){return new lf(r)}function tJ(r){return new Vu(r)}function eJ(r){return new El(r)}function rJ(r){return new cf(r)}function nJ(r){return new Al(r)}function oJ(r){return new pf(r)}function sJ(r){return new mf(r)}function iJ(r){return new ff(r)}function aJ(r){return new df(r)}function lJ(r){return new hf(r)}function uJ(r){return new vf(r)}function cJ(r){return new If(r)}function pJ(r){return new Jc(r)}function mJ(r){return new wf(r)}function fJ(r){return new Cf(r)}function dJ(r){return new Sf(r)}function hJ(r){return new Nf(r)}function gJ(r){return new kf(r)}function xJ(r){return new _f(r)}function yJ(r){return new Ef(r)}function bJ(r){return new Df(r)}function wJ(r){return new Ff(r)}function IJ(r){return new $f(r)}function CJ(r){return new Rf(r)}function vJ(r){return new Af(r)}function SJ(r){return new Of(r)}function NJ(r){return new zf(r)}function kJ(r){return new Bf(r)}function TJ(r){return new Vf(r)}function qN(r){return new Wf(r)}function _J(r){return qN(r)}function EJ(r){return qN(r)}function KN(r){return new Hf(r)}function AJ(r){return KN(r)}function DJ(r){return KN(r)}function jN(r){return new Kf(r)}function $J(r){return jN(r)}function RJ(r){return jN(r)}function FJ(r){return new jf(r)}function OJ(r){return new Yf(r)}function FR(r){return new Xf(r)}function OR(r){return new Zf(r)}function PR(r){return new Gf(r)}function MR(r){return new Uf(r)}function PJ(r){return new qf(r)}function MJ(r){return new xf(r)}function LJ(r){return new Xc(r)}function zJ(r){return new yf(r)}function BJ(r){return new $l(r)}function VJ(r){return new gf(r)}function GJ(r){return new jc(r)}function WJ(r){return new bf(r)}function UJ(r){return new Zc(r)}function HJ(r){return new An(r)}function qJ(r){return new Yc(r)}function KJ(r){return new Qf(r)}function jJ(r){return new Jf(r)}var XJ=FR,YJ=OR,ZJ=PR,JJ=MR;function QJ(r){return new Pf(r)}function t9(r){return new Mf(r)}function e9(r){return new Lf(r)}function r9(r){return new Tf(r)}function n9(r){return new td(r)}function o9(r){return new ed(r)}function s9(r){return new nd(r)}function i9(r){return new rd(r)}function a9(r){return new od(r)}var zR={};Kt(zR,{MAPE:()=>y9,MSE:()=>I9,binaryAccuracy:()=>l9,binaryCrossentropy:()=>u9,categoricalAccuracy:()=>p9,categoricalCrossentropy:()=>m9,cosineProximity:()=>h9,mape:()=>b9,meanAbsoluteError:()=>g9,meanAbsolutePercentageError:()=>x9,meanSquaredError:()=>w9,mse:()=>C9,precision:()=>f9,recall:()=>d9,sparseCategoricalAccuracy:()=>c9});function l9(r,t){return Ph(r,t)}function u9(r,t){return nb(r,t)}function c9(r,t){return ob(r,t)}function p9(r,t){return Mh(r,t)}function m9(r,t){return Lh(r,t)}function f9(r,t){return FN(r,t)}function d9(r,t){return lR(r,t)}function h9(r,t){return Oh(r,t)}function g9(r,t){return Zm(r,t)}function x9(r,t){return Mu(r,t)}function y9(r,t){return Mu(r,t)}function b9(r,t){return Mu(r,t)}function w9(r,t){return ga(r,t)}function I9(r,t){return ga(r,t)}function C9(r,t){return ga(r,t)}var BR={};Kt(BR,{modelFromJSON:()=>vR});var VR={};Kt(VR,{l1:()=>S9,l1l2:()=>v9,l2:()=>N9});function v9(r){return new Lu(r)}function S9(r){return TR(r)}function N9(r){return _R(r)}var Mb=class extends _l{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof qn))throw new Error("model must be a LayersModel, not some other Container");this.model=t}};function Pb(r,t){return r<t}function GR(r,t){return r>t}var Lb=class extends Mb{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new Nt("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Pb:this.mode==="max"?this.monitorFunc=GR:this.monitor.indexOf("acc")!==-1?this.monitorFunc=GR:this.monitorFunc=Pb,this.monitorFunc===Pb&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Pb?1/0:-1/0}async onEpochEnd(t,e){await ha(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function k9(r){return new Lb(r)}var T9={earlyStopping:k9};var _9=L();_9.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var po;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(po||(po={}));var WR;(function(r){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(WR||(WR={}));var XN={};function A9(r,t){let e={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:t};XN[r]=e}function zb(r){return XN[r]}function D9(r){delete XN[r]}function C(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd,l=a<0?t.inputNames.length+a:a;if(s.type==="tensor")return pr(t.inputNames[l],e,n,o);if(s.type==="tensors"){let m=t.inputs.slice(a,u);return t.inputNames.slice(a,u).filter((d,h)=>{var g;return((g=m[h])===null||g===void 0?void 0:g.op)!=="NoOp"}).map(d=>pr(d,e,n,o))}let c=pr(t.inputNames[l],e,n,o),p=c.dataSync();return s.type==="number"?p[0]:y.toNestedArray(c.shape,p)}let i=t.attrParams[r];return i&&i.value}function pr(r,t,e,n){let[o,s]=Cn(r,e);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Bb(o,a)]);return i!==void 0?t[Bb(o,i)][s]:void 0}function YN(r,t,e){return t[Bb(r,e.currentContextId)]}function xi(r,t){let[e,n,o]=Cn(r,t);return[Bb(e,t&&t.currentContextId),n,o]}function Bb(r,t){return t?`${r}-${t}`:r}function Cn(r,t){if(r==="")return["",0,void 0];let e=t!=null&&t.parseNodeNameCache!=null;if(e){let s=t.parseNodeNameCache.get(r);if(s!=null)return s}let n=r.split(":"),o;if(n.length===1)o=[r,0,void 0];else{let s=n[0],i=n.length===3?n[1]:void 0,a=Number(n[n.length-1]);o=[s,a,i]}return e&&t.parseNodeNameCache.set(r,o),o}function Hh(r,t,e){let n=C("pad",r,t,e);if(n==="explicit"){n=C("explicitPaddings",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function yi(r){return r.kept?r:un(r)}var ZN={};Kt(ZN,{json:()=>$9});var $9=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var JN={};Kt(JN,{json:()=>R9});var R9=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var QN={};Kt(QN,{json:()=>F9});var F9=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var tk={};Kt(tk,{json:()=>O9});var O9=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var ek={};Kt(ek,{json:()=>P9});var P9=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniformInt",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number"},{tfName:"maxval",name:"maxval",type:"number"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var rk={};Kt(rk,{json:()=>M9});var M9=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var nk={};Kt(nk,{json:()=>L9});var L9=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var ok={};Kt(ok,{json:()=>z9});var z9=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var sk={};Kt(sk,{json:()=>B9});var B9=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var ik={};Kt(ik,{json:()=>V9});var V9=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var ak={};Kt(ak,{json:()=>G9});var G9=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BitwiseAnd",category:"logical",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}]}];var lk={};Kt(lk,{json:()=>W9});var W9=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}];var uk={};Kt(uk,{json:()=>U9});var U9=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]}];var ck={};Kt(ck,{json:()=>H9});var H9=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var pk={};Kt(pk,{json:()=>q9});var q9=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var mk={};Kt(mk,{json:()=>K9});var K9=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var fk={};Kt(fk,{json:()=>j9});var j9=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var dk={};Kt(dk,{json:()=>X9});var X9=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var hk={};Kt(hk,{json:()=>Y9});var Y9=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"EnsureShape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var qh=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[ZN,JN,QN,tk,ek,rk,nk,ok,sk,ik,ak,lk,uk,ck,pk,mk,fk,dk,hk],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((x,b)=>{let[w,,I]=xi(x),N=a[w];if(N.outputs!=null){let E=N.outputs.indexOf(I);if(E!==-1){let A=`${w}:${E}`;g.inputNames[b]=A}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=xi(h),x=a[g];x!=null&&(x.signatureKey=p[h],l.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=xi(h),x=a[g];x&&(x.signatureKey=c[h],u.push(x))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=zb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case"string":a=Vb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Vb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":a=jb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=jb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":a=Wb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&s.tfDeprecatedName&&(a=Wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":a=Kb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Kb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":a=Gb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Gb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":a=Yb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Yb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":a=qb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=qb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":a=Xb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Xb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":a=Ub(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Ub(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":a=Hb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Hb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":a=UR(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=UR(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=xi(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:gk(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=xi(f),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(x),x.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=xi(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function Z9(r){let t=L().global;if(typeof t.atob!="undefined")return t.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function HR(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):Z9(r);return t?e:e.toLowerCase()}function Vb(r,t,e,n=!1){let o=r[t];return o!=null?HR(o.s,n):e}function Gb(r,t,e){let n=r[t];return n?n.b:e}function Wb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o=="number"?o:parseInt(o,10)}function gk(r){switch(typeof r=="string"&&(r=po[r]),r){case po.DT_FLOAT:case po.DT_HALF:return"float32";case po.DT_INT32:case po.DT_INT64:case po.DT_INT8:case po.DT_UINT8:return"int32";case po.DT_BOOL:return"bool";case po.DT_DOUBLE:return"float32";case po.DT_STRING:return"string";default:return null}}function UR(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function Ub(r,t,e){let n=r[t];return n&&n.type?gk(n.type):e}function Hb(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>gk(o)):e}function qR(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function qb(r,t,e){let n=r[t];return n&&n.shape?qR(n.shape):e}function Kb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function jb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>HR(s,n)):e}function Xb(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>qR(o)):e}function Yb(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Zb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return pr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return pr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Wb(this.node.rawAttrs,t,e);if(n.s!=null)return Vb(this.node.rawAttrs,t,e);if(n.b!=null)return Gb(this.node.rawAttrs,t,e);if(n.shape!=null)return qb(this.node.rawAttrs,t,e);if(n.type!=null)return Ub(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Kb(this.node.rawAttrs,t,e);if(n.list.s!=null)return jb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Xb(this.node.rawAttrs,t,e);if(n.list.b!=null)return Yb(this.node.rawAttrs,t,e);if(n.list.type!=null)return Hb(this.node.rawAttrs,t,e)}return e}};var ie={};Kt(ie,{OP_SCOPE_SUFFIX:()=>A0,abs:()=>Ee,acos:()=>dx,acosh:()=>hx,add:()=>Y,addN:()=>fE,all:()=>am,any:()=>dc,argMax:()=>ta,argMin:()=>gx,asin:()=>xx,asinh:()=>yx,atan:()=>bx,atan2:()=>wx,atanh:()=>Ix,avgPool:()=>bu,avgPool3d:()=>Cx,basicLSTMCell:()=>gE,batchNorm:()=>na,batchNorm2d:()=>vx,batchNorm3d:()=>Sx,batchNorm4d:()=>Nx,batchToSpaceND:()=>wu,bincount:()=>kx,bitwiseAnd:()=>yE,booleanMaskAsync:()=>c5,broadcastArgs:()=>bE,broadcastTo:()=>oa,buffer:()=>bt,cast:()=>Q,ceil:()=>Tx,clipByValue:()=>vr,clone:()=>un,complex:()=>Nn,concat:()=>se,concat1d:()=>_x,concat2d:()=>Ex,concat3d:()=>Ax,concat4d:()=>Dx,conv1d:()=>um,conv2d:()=>kn,conv2dTranspose:()=>pm,conv3d:()=>$x,conv3dTranspose:()=>Fx,cos:()=>Iu,cosh:()=>mm,cosineWindow:()=>Ih,cumprod:()=>gc,cumsum:()=>fm,denseBincount:()=>gh,depthToSpace:()=>Ox,depthwiseConv2d:()=>sa,diag:()=>wE,dilation2d:()=>Px,div:()=>ct,divNoNan:()=>Mx,dot:()=>Lx,dropout:()=>nN,einsum:()=>CE,elu:()=>ia,enclosingPowerOfTwo:()=>oN,ensureShape:()=>vE,equal:()=>Rr,erf:()=>zx,euclideanNorm:()=>Bx,exp:()=>ir,expandDims:()=>ar,expm1:()=>Vx,eye:()=>xc,fft:()=>Au,fill:()=>vo,floor:()=>aa,floorDiv:()=>im,fused:()=>Ru,gather:()=>la,gatherND:()=>w5,greater:()=>Fe,greaterEqual:()=>pn,ifft:()=>Il,imag:()=>Cu,image:()=>dn,inTopKAsync:()=>v5,irfft:()=>km,isFinite:()=>Gx,isInf:()=>Wx,isNaN:()=>Ux,leakyRelu:()=>vu,less:()=>bl,lessEqual:()=>Gn,linalg:()=>iN,linspace:()=>kE,localResponseNormalization:()=>Hx,log:()=>Nr,log1p:()=>Su,logSigmoid:()=>jx,logSoftmax:()=>dm,logSumExp:()=>hm,logicalAnd:()=>Or,logicalNot:()=>Nu,logicalOr:()=>gm,logicalXor:()=>Xx,losses:()=>S8,lowerBound:()=>TE,matMul:()=>Bt,max:()=>Sr,maxPool:()=>ku,maxPool3d:()=>Zx,maxPoolWithArgmax:()=>_E,maximum:()=>Tn,mean:()=>ke,meshgrid:()=>EE,min:()=>xl,minimum:()=>uo,mirrorPad:()=>Jx,mod:()=>Qx,moments:()=>yc,movingAverage:()=>f5,mul:()=>$,multiRNNCell:()=>AE,multinomial:()=>DE,neg:()=>Ut,norm:()=>yl,notEqual:()=>li,oneHot:()=>ua,ones:()=>dr,onesLike:()=>Ir,op:()=>k,outerProduct:()=>$E,pad:()=>fn,pad1d:()=>RE,pad2d:()=>FE,pad3d:()=>OE,pad4d:()=>PE,pool:()=>ty,pow:()=>cn,prelu:()=>_u,print:()=>fx,prod:()=>ey,raggedGather:()=>ME,raggedRange:()=>LE,raggedTensorToTensor:()=>zE,rand:()=>BE,randomGamma:()=>aA,randomNormal:()=>Ic,randomStandardNormal:()=>lA,randomUniform:()=>Wn,randomUniformInt:()=>uA,range:()=>ca,real:()=>wl,reciprocal:()=>ay,relu:()=>Pr,relu6:()=>xm,reshape:()=>R,reverse:()=>hr,reverse1d:()=>cA,reverse2d:()=>pA,reverse3d:()=>mA,reverse4d:()=>fA,rfft:()=>Du,round:()=>ym,rsqrt:()=>bm,scalar:()=>ft,scatterND:()=>h5,searchSorted:()=>yh,selu:()=>wm,separableConv2d:()=>Im,setdiff1dAsync:()=>dA,sigmoid:()=>tn,sign:()=>ly,signal:()=>v8,sin:()=>Cm,sinh:()=>vm,slice:()=>Ot,slice1d:()=>Sm,slice2d:()=>wh,slice3d:()=>Nm,slice4d:()=>Cc,softmax:()=>Eu,softplus:()=>ai,spaceToBatchND:()=>Tu,sparse:()=>N8,sparseToDense:()=>y5,spectral:()=>C8,split:()=>gr,sqrt:()=>Ne,square:()=>Wt,squaredDifference:()=>Tm,squeeze:()=>Un,stack:()=>qe,step:()=>No,stridedSlice:()=>uy,string:()=>k8,sub:()=>lt,sum:()=>pt,tan:()=>cy,tanh:()=>ra,tensor:()=>sr,tensor1d:()=>Ke,tensor2d:()=>ui,tensor3d:()=>py,tensor4d:()=>hA,tensor5d:()=>gA,tensor6d:()=>xA,tensorScatterUpdate:()=>bA,tile:()=>Fr,topk:()=>my,transpose:()=>Vt,truncatedNormal:()=>Em,unique:()=>fy,unsortedSegmentSum:()=>Am,unstack:()=>xr,upperBound:()=>wA,variable:()=>dy,where:()=>be,whereAsync:()=>gy,zeros:()=>Te,zerosLike:()=>vt});var KR=(r,t,e,n=ie)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(C("a",r,t,e),C("b",r,t,e))];case"AddN":return[n.addN(C("tensors",r,t,e))];case"FloorMod":case"Mod":return[n.mod(C("a",r,t,e),C("b",r,t,e))];case"Mul":return[n.mul(C("a",r,t,e),C("b",r,t,e))];case"RealDiv":case"Div":return[n.div(C("a",r,t,e),C("b",r,t,e))];case"DivNoNan":return[n.divNoNan(C("a",r,t,e),C("b",r,t,e))];case"FloorDiv":return[n.floorDiv(C("a",r,t,e),C("b",r,t,e))];case"Sub":return[n.sub(C("a",r,t,e),C("b",r,t,e))];case"Minimum":return[n.minimum(C("a",r,t,e),C("b",r,t,e))];case"Maximum":return[n.maximum(C("a",r,t,e),C("b",r,t,e))];case"Pow":return[n.pow(C("a",r,t,e),C("b",r,t,e))];case"SquaredDifference":return[n.squaredDifference(C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jR=(r,t,e,n=ie)=>{switch(r.op){case"Abs":case"ComplexAbs":return[n.abs(C("x",r,t,e))];case"Acos":return[n.acos(C("x",r,t,e))];case"Acosh":return[n.acosh(C("x",r,t,e))];case"Asin":return[n.asin(C("x",r,t,e))];case"Asinh":return[n.asinh(C("x",r,t,e))];case"Atan":return[n.atan(C("x",r,t,e))];case"Atan2":return[n.atan2(C("x",r,t,e),C("y",r,t,e))];case"Atanh":return[n.atanh(C("x",r,t,e))];case"Ceil":return[n.ceil(C("x",r,t,e))];case"Complex":return[n.complex(C("real",r,t,e),C("imag",r,t,e))];case"Cos":return[n.cos(C("x",r,t,e))];case"Cosh":return[n.cosh(C("x",r,t,e))];case"Elu":return[n.elu(C("x",r,t,e))];case"Erf":return[n.erf(C("x",r,t,e))];case"Exp":return[n.exp(C("x",r,t,e))];case"Expm1":return[n.expm1(C("x",r,t,e))];case"Floor":return[n.floor(C("x",r,t,e))];case"Log":return[n.log(C("x",r,t,e))];case"Log1p":return[n.log1p(C("x",r,t,e))];case"Imag":return[n.imag(C("x",r,t,e))];case"Neg":return[n.neg(C("x",r,t,e))];case"Reciprocal":return[n.reciprocal(C("x",r,t,e))];case"Real":return[n.real(C("x",r,t,e))];case"Relu":return[n.relu(C("x",r,t,e))];case"Round":return[n.round(C("x",r,t,e))];case"Selu":return[n.selu(C("x",r,t,e))];case"Sigmoid":return[n.sigmoid(C("x",r,t,e))];case"Sin":return[n.sin(C("x",r,t,e))];case"Sign":return[n.sign(C("x",r,t,e))];case"Sinh":return[n.sinh(C("x",r,t,e))];case"Softplus":return[n.softplus(C("x",r,t,e))];case"Sqrt":return[n.sqrt(C("x",r,t,e))];case"Square":return[n.square(C("x",r,t,e))];case"Tanh":return[n.tanh(C("x",r,t,e))];case"Tan":return[n.tan(C("x",r,t,e))];case"ClipByValue":return[n.clipByValue(C("x",r,t,e),C("clipValueMin",r,t,e),C("clipValueMax",r,t,e))];case"Relu6":return[n.relu6(C("x",r,t,e))];case"Rsqrt":return[n.rsqrt(pr(r.inputNames[0],t,e))];case"LeakyRelu":return[n.leakyRelu(C("x",r,t,e),C("alpha",r,t,e))];case"Prelu":return[n.prelu(C("x",r,t,e),C("alpha",r,t,e))];case"IsNan":return[n.isNaN(pr(r.inputNames[0],t,e))];case"IsInf":return[n.isInf(pr(r.inputNames[0],t,e))];case"IsFinite":return[n.isFinite(pr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Kn(r,t,e=""){if(!(typeof r=="number"||typeof t=="number")){y.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=t[n];y.assert(o<0||s<0||o===s,()=>e+` Shapes ${r} and ${t} must match`)}}}function XR(r){return!(typeof r=="number"||r.some(t=>t<0))}function sd(r,t,e){let n=Jb(r,e),o=!XR(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=Jb(s.shape,n)}),!XR(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function Jb(r,t){if(typeof r=="number")return t;if(typeof t=="number")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n<r.length;++n){let o=r[n],s=t[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var Qb=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=ft(0),$e(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},
because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Kn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,$e(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o<this.size();o++)t.push(o)}if(t.length===0)return sr([],[0].concat(this.elementShape));let n=this.readMany(t);return Kn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),qe(n,0)}concat(t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${t}`);if(this.size()===0)return sr([],[0].concat(this.elementShape));let e=[];for(let o=0;o<this.size();o++)e.push(o);let n=this.readMany(e);return Kn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),se(n,0)}scatter(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let n=Math.max(...t);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,xr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];B(()=>{e=R(e,[1,n,s]);for(let u=0;u<t.length;++u){let c=[0,u===0?0:o[u-1],0],p=[1,t[u],s];i[u]=R(Ot(e,c,p),this.elementShape)}return i});let a=[];for(let u=0;u<t.length;u++)a[u]=u;this.writeMany(a,i)}};var Ol=class{get id(){return this.idTensor.id}constructor(t,e,n,o=-1){this.tensors=t,this.elementShape=e,this.elementDtype=n,t!=null&&t.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Kn(e,s.shape,"TensorList shape mismatch: "),$e(s)}),this.idTensor=ft(0),this.maxNumElements=o,$e(this.idTensor)}copy(){return new Ol([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Kn(t,this.elementShape,"TensorList shape mismatch: ");let o=sd(this.elementShape,this.tensors,t);return B(()=>{let s=this.tensors.map(i=>R(i,o));return qe(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=sd(this.elementShape,this.tensors,t),o=this.tensors.pop();return o.kept=!1,Kn(o.shape,t,"TensorList shape mismatch: "),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Kn(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");$e(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new Ol([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;n<Math.min(this.tensors.length,t);++n)e.tensors[n]=this.tensors[n];return e}getItem(t,e,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Kn(this.tensors[t].shape,e,"TensorList shape mismatch: ");let o=sd(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Kn(this.elementShape,e.shape,"TensorList shape mismatch: "),$e(e),this.tensors[t]!=null&&(this.tensors[t].kept=!1),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Kn(this.elementShape,n,"TensorList shape mismatch: "),t=t.slice(0,this.size());let o=sd(this.elementShape,this.tensors,n);return t.length===0?sr([],[0].concat(o)):B(()=>{let s=t.map(i=>R(this.tensors[i],o));return qe(s,0)})}concat(t,e){if(t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Kn(this.elementShape,e,"TensorList shape mismatch: ");let n=sd(this.elementShape,this.tensors,e);return this.size()===0?sr([],[0].concat(n)):B(()=>{let o=this.tensors.map(s=>R(s,n));return se(o,0)})}};function YR(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Kn(o,t,"TensorList shape mismatch: ");let s=xr(r);return new Ol(s,t,n)}function ZR(r,t,e,n){return new Ol([],r,t,n)}function JR(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new Ol([],e,r.dtype,n),i=xr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function QR(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=Jb(s,e),a=n===0?0:r.size/n,u=B(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p<t.length;++p){let f=[0,p===0?0:o[p-1],0],d=[1,t[p],a];c[p]=R(Ot(r,f,d),i)}return r.dispose(),c}),l=new Ol([],e,r.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var tF=async(r,t,e)=>{switch(r.op){case"If":case"StatelessIf":{let n=C("thenBranch",r,t,e),o=C("elseBranch",r,t,e),s=C("cond",r,t,e),i=C("args",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let n=C("body",r,t,e),o=C("cond",r,t,e),s=C("args",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case"LoopCond":{let n=C("pred",r,t,e);return[yi(n)]}case"Switch":{let n=C("pred",r,t,e),o=C("data",r,t,e);return o.kept||(o=yi(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>pr(o,t,e)!==void 0);if(n){let o=pr(n,t,e);return[yi(o)]}return}case"Enter":{let n=C("frameName",r,t,e),o=C("tensor",r,t,e);return e.enterFrame(n),[yi(o)]}case"Exit":{let n=C("tensor",r,t,e);return e.exitFrame(),[yi(n)]}case"NextIteration":{let n=C("tensor",r,t,e);return e.nextIteration(),[yi(n)]}case"TensorArrayV3":{let n=C("size",r,t,e),o=C("dtype",r,t,e),s=C("elementShape",r,t,e),i=C("dynamicSize",r,t,e),a=C("clearAfterRead",r,t,e),u=C("identicalElementShapes",r,t,e),l=C("name",r,t,e),c=new Qb(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,ft(1)]}case"TensorArrayWriteV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case"TensorArrayReadV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e);return[e.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("dtype",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id),s=C("dtype",r,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let n=C("tensorArrayId",r,t,e),o=C("tensor",r,t,e),s=C("lengths",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case"TensorArraySizeV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return[ft(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case"TensorListGetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=C("indices",r,t,e),o=C("tensor",r,t,e),s=C("elementShape",r,t,e),i=C("numElements",r,t,e),a=JR(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=C("elementShape",r,t,e),o=C("elementDType",r,t,e),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=C(s,r,t,e),a=r.op==="TensorListReserve"?-1:i,u=ZR(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case"TensorListGather":{let n=C("tensorListId",r,t,e),o=C("indices",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case"TensorListStack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=C("numElements",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case"TensorListFromTensor":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=YR(n,o,s);return e.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id),s=C("dtype",r,t,e),i=C("elementShape",r,t,e);return[o.concat(s,i)]}case"TensorListPushBack":{let n=C("tensorListId",r,t,e),o=C("tensor",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("lengths",r,t,e),i=QR(n,s,o);return e.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id);return[ft(o.size(),"int32")]}case"TensorListResize":{let n=C("tensorListId",r,t,e),o=C("size",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function eF(r,t,e){let[n,o]=C("fusedOps",r,t,e),s=n==="biasadd",i=!s,a=o==="prelu",u=n==="fusedbatchnorm",l=C("numArgs",r,t,e);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&s&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=C("strides",r,t,e),p=Hh(r,t,e),m=C("dataFormat",r,t,e).toUpperCase(),f=C("dilations",r,t,e),[d,h]=C("args",r,t,e);i&&(h=d,d=void 0);let g=C("leakyreluAlpha",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var rF=(r,t,e,n=ie)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilation",r,t,e);return[n.conv1d(C("x",r,t,e),C("filter",r,t,e),o,s,i,a)]}case"Conv2D":{let o=C("strides",r,t,e),s=Hh(r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv2d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=eF(r,t,e);return[n.fused.conv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=eF(r,t,e);return[n.fused.depthwiseConv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,t,e),s=C("strides",r,t,e),i=Hh(r,t,e);return[n.conv2dTranspose(C("x",r,t,e),C("filter",r,t,e),o,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,t,e),s=Hh(r,t,e),i=C("dilations",r,t,e),a=C("dataFormat",r,t,e).toUpperCase();return[n.depthwiseConv2d(C("input",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case"Conv3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv3d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPoolWithArgmax":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e),a=C("includeBatchInIndex",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case"AvgPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"MaxPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"Dilation2D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dilations",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(C("x",r,t,e),C("filter",r,t,e),[a,u],s,[l,c],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nF=(r,t,e,n=ie)=>{switch(r.op){case"Fill":{let o=C("shape",r,t,e),s=C("dtype",r,t,e),i=C("value",r,t,e);return[n.fill(o,i,s)]}case"LinSpace":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("num",r,t,e);return[n.linspace(o,s,i)]}case"Multinomial":{let o=C("logits",r,t,e),s=C("numSamples",r,t,e),i=C("seed",r,t,e);return[n.multinomial(o,s,i)]}case"OneHot":{let o=C("indices",r,t,e),s=C("depth",r,t,e),i=C("onValue",r,t,e),a=C("offValue",r,t,e),u=C("dtype",r,t,e);return[n.oneHot(o,s,i,a,u)]}case"Ones":return[n.ones(C("shape",r,t,e),C("dtype",r,t,e))];case"OnesLike":return[n.onesLike(C("x",r,t,e))];case"RandomStandardNormal":return[n.randomStandardNormal(C("shape",r,t,e),C("dtype",r,t,e),C("seed",r,t,e))];case"RandomUniform":return[n.randomUniform(C("shape",r,t,e),C("minval",r,t,e),C("maxval",r,t,e),C("dtype",r,t,e))];case"RandomUniformInt":return[n.randomUniformInt(C("shape",r,t,e),C("minval",r,t,e),C("maxval",r,t,e),C("seed",r,t,e))];case"Range":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("step",r,t,e);return[n.range(o,s,i,C("dtype",r,t,e))]}case"TruncatedNormal":{let o=C("shape",r,t,e),s=C("mean",r,t,e),i=C("stdDev",r,t,e),a=C("seed",r,t,e);return[n.truncatedNormal(o,s,i,C("dtype",r,t,e),a)]}case"Zeros":return[n.zeros(C("shape",r,t,e),C("dtype",r,t,e))];case"ZerosLike":return[n.zerosLike(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function xk(r,t,e){let n=C("boxes",r,t,e),o=C("scores",r,t,e),s=C("maxOutputSize",r,t,e),i=C("iouThreshold",r,t,e),a=C("scoreThreshold",r,t,e),u=C("softNmsSigma",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var oF=async(r,t,e,n,o=ie)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=xk(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=xk(r,t,e),c=C("padToMaxOutputSize",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=xk(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case"Where":{let s=o.cast(C("condition",r,t,e),"bool"),i=[await o.whereAsync(s)];return s.dispose(),i}case"ListDiff":return o.setdiff1dAsync(C("x",r,t,e),C("y",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sF=(r,t,e,n=ie)=>{switch(r.op){case"LowerBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.lowerBound(o,s)]}case"TopKV2":{let o=C("x",r,t,e),s=C("k",r,t,e),i=C("sorted",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case"UpperBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.upperBound(o,s)]}case"Unique":{let o=C("x",r,t,e),s=n.unique(o);return[s.values,s.indices]}case"UniqueV2":{let o=C("x",r,t,e),s=C("axis",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iF=(r,t,e,n=ie)=>{switch(r.op){case"Const":return t[r.name];case"PlaceholderWithDefault":let o=C("default",r,t,e);return[pr(r.name,t,e)||o];case"Placeholder":return[pr(r.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=C("x",r,t,e);return[yi(c)]}case"IdentityN":return C("x",r,t,e).map(c=>yi(c));case"Snapshot":let s=C("x",r,t,e);return[yi(s)];case"Shape":return[n.tensor1d(C("x",r,t,e).shape,"int32")];case"ShapeN":return C("x",r,t,e).map(c=>n.tensor1d(c.shape));case"Size":return[n.scalar(C("x",r,t,e).size,"int32")];case"Rank":return[n.scalar(C("x",r,t,e).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=C("x",r,t,e),a=C("data",r,t,e),u=C("message",r,t,e),l=C("summarize",r,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(u);for(let c=0;c<a.length;c++)console.log(Array.prototype.slice.call(a[c].dataSync()).slice(0,l));return[i];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tw=class{get id(){return this.handle.id}constructor(t,e){this.keyDType=t,this.valueDType=e,this.handle=ft(0),this.tensorMap=new Map,$e(this.handle)}clearAndClose(){this.tensorMap.forEach(t=>t.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ft(this.size(),"int32")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),B(()=>{let o=xr(e),s=n.length,i=o.length;y.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a<s;a++){let u=n[a],l=o[a];$e(l),this.tensorMap.set(u,l)}return this.handle})}async find(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return B(()=>{let o=[];for(let s=0;s<n.length;s++){let i=n[s],a=this.findWithDefault(i,e);o.push(a)}return qe(o)})}findWithDefault(t,e){let n=this.tensorMap.get(t);return n!=null?n:e}checkKeyAndValueTensor(t,e){if(t.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${t.dtype}`);if(e.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${e.dtype}`)}};var aF=async(r,t,e,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=n.getHashTableHandleByName(r.name);if(o!=null)return[o];{let s=C("keyDType",r,t,e),i=C("valueDType",r,t,e),a=new tw(s,i);return n.addHashTable(r.name,a),[a.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("values",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("defaultValue",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=C("tableHandle",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var lF=(r,t,e,n=ie)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case"CropAndResize":{let o=C("image",r,t,e),s=C("boxes",r,t,e),i=C("boxInd",r,t,e),a=C("cropSize",r,t,e),u=C("method",r,t,e),l=C("extrapolationValue",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case"ImageProjectiveTransformV3":{let o=C("images",r,t,e),s=C("transforms",r,t,e),i=C("outputShape",r,t,e),a=C("fillValue",r,t,e),u=C("interpolation",r,t,e),l=C("fillMode",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var uF=(r,t,e,n=ie)=>{switch(r.op){case"Equal":return[n.equal(C("a",r,t,e),C("b",r,t,e))];case"NotEqual":return[n.notEqual(C("a",r,t,e),C("b",r,t,e))];case"Greater":return[n.greater(C("a",r,t,e),C("b",r,t,e))];case"GreaterEqual":return[n.greaterEqual(C("a",r,t,e),C("b",r,t,e))];case"Less":return[n.less(C("a",r,t,e),C("b",r,t,e))];case"LessEqual":return[n.lessEqual(C("a",r,t,e),C("b",r,t,e))];case"LogicalAnd":return[n.logicalAnd(C("a",r,t,e),C("b",r,t,e))];case"LogicalNot":return[n.logicalNot(C("a",r,t,e))];case"LogicalOr":return[n.logicalOr(C("a",r,t,e),C("b",r,t,e))];case"Select":case"SelectV2":return[n.where(C("condition",r,t,e),C("a",r,t,e),C("b",r,t,e))];case"BitwiseAnd":return[n.bitwiseAnd(C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var cF=(r,t,e,n=ie)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(C("a",r,t,e),C("b",r,t,e),C("transposeA",r,t,e),C("transposeB",r,t,e))];case"Einsum":return[n.einsum(C("equation",r,t,e),...C("tensors",r,t,e))];case"Transpose":return[n.transpose(C("x",r,t,e),C("perm",r,t,e))];case"_FusedMatMul":let[o,s]=C("fusedOps",r,t,e),i=o==="biasadd",a=s==="prelu",u=C("numArgs",r,t,e),l=C("leakyreluAlpha",r,t,e);if(i){if(a&&u!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&u!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=C("args",r,t,e);return[n.fused.matMul({a:C("a",r,t,e),b:C("b",r,t,e),transposeA:C("transposeA",r,t,e),transposeB:C("transposeB",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];case"MatrixBandPart":return[n.linalg.bandPart(C("a",r,t,e),C("numLower",r,t,e),C("numUpper",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var pF=(r,t,e,n=ie)=>{switch(r.op){case"EuclideanNorm":return[n.euclideanNorm(C("x",r,t,e),C("axis",r,t,e),C("keepDims",r,t,e))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"FusedBatchNormV3":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"LRN":return[n.localResponseNormalization(C("x",r,t,e),C("radius",r,t,e),C("bias",r,t,e),C("alpha",r,t,e),C("beta",r,t,e))];case"Softmax":return[n.softmax(C("x",r,t,e))];case"LogSoftmax":return[n.logSoftmax(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var mF=(r,t,e,n=ie)=>{switch(r.op){case"RaggedGather":{let{outputNestedSplits:o,outputDenseValues:s}=n.raggedGather(C("paramsNestedSplits",r,t,e),C("paramsDenseValues",r,t,e),C("indices",r,t,e),C("outputRaggedRank",r,t,e));return o.concat(s)}case"RaggedRange":{let{rtNestedSplits:o,rtDenseValues:s}=n.raggedRange(C("starts",r,t,e),C("limits",r,t,e),C("splits",r,t,e));return[o,s]}case"RaggedTensorToTensor":return[n.raggedTensorToTensor(C("shape",r,t,e),C("values",r,t,e),C("defaultValue",r,t,e),C("rowPartitionTensors",r,t,e),C("rowPartitionTypes",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var fF=(r,t,e,n=ie)=>{switch(r.op){case"Max":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.max(C("x",r,t,e),a,u)]}case"Mean":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.mean(C("x",r,t,e),a,u)]}case"Min":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.min(C("x",r,t,e),a,u)]}case"Sum":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.sum(C("x",r,t,e),a,u)]}case"All":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.all(C("x",r,t,e),a,u)]}case"Any":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.any(C("x",r,t,e),a,u)]}case"ArgMax":{let a=C("axis",r,t,e);return[n.argMax(C("x",r,t,e),a)]}case"ArgMin":{let a=C("axis",r,t,e);return[n.argMin(C("x",r,t,e),a)]}case"Prod":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.prod(C("x",r,t,e),a,u)]}case"Cumprod":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumprod(C("x",r,t,e),a,u,l)]}case"Cumsum":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumsum(C("x",r,t,e),a,u,l)]}case"Bincount":let o=C("x",r,t,e),s=C("weights",r,t,e),i=C("size",r,t,e);return[n.bincount(o,s,i)];case"DenseBincount":{let a=C("x",r,t,e),u=C("weights",r,t,e),l=C("size",r,t,e),c=C("binaryOutput",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var dF=(r,t,e,n=ie)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,t,e),s=C("axis",r,t,e),i=C("tensors",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case"Gather":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gather(o,n.cast(s,"int32"),0)]}case"GatherV2":{let o=C("axis",r,t,e),s=C("batchDims",r,t,e),i=C("x",r,t,e),a=C("indices",r,t,e);return[n.gather(i,n.cast(a,"int32"),o,s)]}case"Reverse":{let o=C("dims",r,t,e),s=[];for(let a=0;a<o.length;a++)o[a]&&s.push(a);let i=C("x",r,t,e);return[n.reverse(i,s)]}case"ReverseV2":{let o=C("axis",r,t,e),s=C("x",r,t,e);return[n.reverse(s,o)]}case"Slice":{let o=C("begin",r,t,e),s=C("size",r,t,e);return[n.slice(C("x",r,t,e),o,s)]}case"StridedSlice":{let o=C("begin",r,t,e),s=C("end",r,t,e),i=C("strides",r,t,e),a=C("beginMask",r,t,e),u=C("endMask",r,t,e),l=C("ellipsisMask",r,t,e),c=C("newAxisMask",r,t,e),p=C("shrinkAxisMask",r,t,e),m=C("x",r,t,e);return[n.stridedSlice(m,o,s,i,a,u,l,c,p)]}case"Pack":return B(()=>{let o=C("axis",r,t,e),s=C("tensors",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=y.arraysEqual(l.shape,i);if(!c&&!y.arraysEqual(n.squeeze(l).shape,a))throw new Error("the input tensors shape does not match");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case"Unpack":{let o=C("axis",r,t,e),s=C("tensor",r,t,e);return n.unstack(s,o)}case"Tile":{let o=C("reps",r,t,e);return[n.tile(C("x",r,t,e),o)]}case"Split":case"SplitV":{let o=C("axis",r,t,e),s=C("numOrSizeSplits",r,t,e),i=C("x",r,t,e);return n.split(i,s,o)}case"ScatterNd":{let o=C("indices",r,t,e),s=C("values",r,t,e),i=C("shape",r,t,e);return[n.scatterND(o,s,i)]}case"GatherNd":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gatherND(o,s)]}case"SparseToDense":{let o=C("sparseIndices",r,t,e),s=C("outputShape",r,t,e),i=C("sparseValues",r,t,e),a=C("defaultValue",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}case"TensorScatterUpdate":{let o=C("indices",r,t,e),s=C("values",r,t,e),i=C("tensor",r,t,e);return[n.tensorScatterUpdate(i,o,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var hF=(r,t,e,n=ie)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(C("indices",r,t,e),C("values",r,t,e),C("denseShape",r,t,e),C("defaultValue",r,t,e));return[o,s,i,a]}case"SparseReshape":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(C("inputIndices",r,t,e),C("inputShape",r,t,e),C("newShape",r,t,e));return[o,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var gF=(r,t,e,n=ie)=>{switch(r.op){case"FFT":return[n.fft(C("x",r,t,e))];case"IFFT":return[n.ifft(C("x",r,t,e))];case"RFFT":return[n.rfft(C("x",r,t,e))];case"IRFFT":return[n.irfft(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var xF=(r,t,e,n=ie)=>{switch(r.op){case"StaticRegexReplace":return[n.string.staticRegexReplace(C("input",r,t,e),C("pattern",r,t,e),C("rewrite",r,t,e),C("replaceGlobal",r,t,e))];case"StringNGrams":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(C("data",r,t,e),C("dataSplits",r,t,e),C("separator",r,t,e),C("nGramWidths",r,t,e),C("leftPad",r,t,e),C("rightPad",r,t,e),C("padWidth",r,t,e),C("preserveShortSequences",r,t,e));return[o,s]}case"StringSplit":{let{indices:o,values:s,shape:i}=n.string.stringSplit(C("input",r,t,e),C("delimiter",r,t,e),C("skipEmpty",r,t,e));return[o,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(C("input",r,t,e),C("numBuckets",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var yF=(r,t,e,n=ie)=>{switch(r.op){case"Cast":return[n.cast(C("x",r,t,e),C("dtype",r,t,e))];case"ExpandDims":{let o=C("axis",r,t,e);return[n.expandDims(C("x",r,t,e),o)]}case"Squeeze":{let o=C("axis",r,t,e);return[n.squeeze(C("x",r,t,e),o)]}case"Reshape":return[n.reshape(C("x",r,t,e),C("shape",r,t,e))];case"EnsureShape":return[n.ensureShape(C("x",r,t,e),C("shape",r,t,e))];case"MirrorPad":return[n.mirrorPad(C("x",r,t,e),C("padding",r,t,e),C("mode",r,t,e))];case"PadV2":case"Pad":return[n.pad(C("x",r,t,e),C("padding",r,t,e),C("constantValue",r,t,e))];case"SpaceToBatchND":{let o=C("blockShape",r,t,e),s=C("paddings",r,t,e);return[n.spaceToBatchND(C("x",r,t,e),o,s)]}case"BatchToSpaceND":{let o=C("blockShape",r,t,e),s=C("crops",r,t,e);return[n.batchToSpaceND(C("x",r,t,e),o,s)]}case"DepthToSpace":{let o=C("blockSize",r,t,e),s=C("dataFormat",r,t,e).toUpperCase();return[n.depthToSpace(C("x",r,t,e),o,s)]}case"BroadcastTo":return[n.broadcastTo(C("x",r,t,e),C("shape",r,t,e))];case"BroadcastArgs":return[n.broadcastArgs(C("s0",r,t,e),C("s1",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function yk(r,t,e,n,o=B){let s=((i,a,u)=>{switch(i.category){case"arithmetic":return o(()=>KR(i,a,u));case"basic_math":return o(()=>jR(i,a,u));case"control":return tF(i,a,u);case"convolution":return o(()=>rF(i,a,u));case"creation":return o(()=>nF(i,a,u));case"dynamic":return oF(i,a,u);case"evaluation":return o(()=>sF(i,a,u));case"image":return o(()=>lF(i,a,u));case"graph":return o(()=>iF(i,a,u));case"logical":return o(()=>uF(i,a,u));case"matrices":return o(()=>cF(i,a,u));case"normalization":return o(()=>pF(i,a,u));case"ragged":return o(()=>mF(i,a,u));case"reduction":return o(()=>fF(i,a,u));case"slice_join":return o(()=>dF(i,a,u));case"sparse":return o(()=>hF(i,a,u));case"spectral":return o(()=>gF(i,a,u));case"string":return o(()=>xF(i,a,u));case"transformation":return o(()=>yF(i,a,u));case"hash_table":return aF(i,a,u,n);case"custom":let l=zb(i.op);if(l&&l.customExecutor)return l.customExecutor(new Zb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return y.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Kh=class{constructor(t={},e={},n={},o={},s){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.parseNodeNameCache=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;e<this.contexts.length-1;e++){let n=this.contexts.slice(0,this.contexts.length-e);t.push(this.contextIdforContexts(n))}t.push(""),this._currentContextIds=t}contextIdforContexts(t){return t?t.map(e=>e.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function bk(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=new Set(Object.keys(r).map(m=>Cn(m)[0]));n=n||[];let c=new Set(n.map(m=>Cn(m.name)[0])),p=[...t];for(;p.length>0;){let m=p.pop();if((Gu(m)||vQ(m)||SQ(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&!l.has(m.name)&&!c.has(m.name)){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function bF(r,t){let{usedNodes:e,inputs:n}=t,o=Object.keys(n).map(g=>Cn(g)[0]).map(g=>r.nodes[g]),s=r.initNodes||[],i=g=>e.has(typeof g=="string"?g:g.name);function a(g){return[...new Map(g.map(x=>[x.name,x])).values()]}let u=a([...o,...r.weights,...s]).filter(i),l=a([...u,...Object.values(r.nodes)]).filter(i),c=new Map(l.map(g=>[g.name,g])),p={};for(let g of l){p[g.name]=p[g.name]||0;for(let x of g.children)i(x)||(p[x.name]=Number.POSITIVE_INFINITY),p[x.name]=(p[x.name]||0)+1}let m=Object.entries(p).filter(([,g])=>g===0).map(([g])=>g),f=[...m];for(;m.length>0;){let g=m.pop(),x=c.get(g);for(let b of x.children.filter(i))--p[b.name]===0&&(f.push(b.name),m.push(b.name))}let d=f.map(g=>c.get(g)),h=yQ(d,u);return bQ(h,u),h}function yQ(r,t){let e=new Map(r.map(i=>[i.name,i])),n=t.map(i=>i.name),o=new Set(n);for(;n.length>0;){let i=n.pop(),a=e.get(i);for(let u of a.children)!e.has(u.name)||o.has(u.name)||(o.add(u.name),n.push(u.name))}return r.filter(i=>o.has(i.name))}var id=class extends Error{constructor(t){super(`NodesExecutionOrderError: ${t}`)}};function bQ(r,t){let e=new Map(r.map((a,u)=>[a.name,u])),n=new Set(t.map(a=>a.name)),o=a=>n.has(typeof a=="string"?a:a.name),s=new Set(r.map(a=>a.name)),i=a=>s.has(typeof a=="string"?a:a.name);for(let a of r){for(let u of a.children.filter(i)){if(!e.has(u.name))throw new id(`Child ${u.name} of node ${a.name} is unreachable.`);if(e.get(a.name)>e.get(u.name))throw new id(`Node ${a.name} is scheduled to run after its child ${u.name}.`)}if(!o(a))for(let u of a.inputs){if(!e.has(u.name))throw new id(`Input ${u.name} of node ${a.name} is unreachable.`);if(e.get(u.name)>e.get(a.name))throw new id(`Node ${a.name} is scheduled to run before its input ${u.name}.`)}}}function wF(r){let t=new Map(r.map((a,u)=>[a.name,u])),e=Number.MAX_SAFE_INTEGER,n=r.map((a,u)=>Gu(a)?e:u),o=a=>{let u=n[t.get(a.name)];return u==null?-1:u},s=r.map((a,u)=>a.children.map(o).reduce((l,c)=>Math.max(l,c),n[u])),i=new Map;for(let a=0;a<r.length;++a){let u=s[a];if(u===e)continue;let l=r[a],c=r[u];i.has(c.name)||i.set(c.name,[]),i.get(c.name).push(l)}return i}var wQ=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),IQ=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),CQ=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function Gu(r){return wQ.has(r.op)}function vQ(r){return IQ.has(r.op)}function SQ(r){return CQ.has(r.op)}var Qc=class{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(n=>t[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new Qc(t.functions[n],this)})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPARATOR)+"--"+o.join(this.SEPARATOR)}compile(t,e){let n=bk(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let l=e.map(p=>p.name),c=Object.keys(t);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${c}]. Missing the following inputs: [${o}]`)}let a=bF(this.graph,n),u=wF(a);return{orderedNodes:a,nodeLiveUntilMap:u}}cloneAndKeepTensor(t){if(t==null)return null;let e=t.clone();return $e(e),e}cloneTensorList(t){return t?t.map(n=>this.cloneAndKeepTensor(n)):null}cloneTensorMap(t){return Object.fromEntries(Object.entries(t).map(([e,n])=>[e,this.cloneTensorList(n)]))}execute(t,e){this.disposeIntermediateTensors(),t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(m=>this.graph.nodes[Cn(m)[0]]),s=e.map(m=>Cn(m)[0]),i=new Set(s),a=s.map(m=>this.graph.nodes[m]);a.length===0&&(a=this._outputs);let u=this.getCompilationKey(o,a),l=this.compiledMap.get(u);l==null&&(l=this.compile(t,a),this.compiledMap.set(u,l));try{this.keepIntermediateTensors=L().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let c={},p={};return B(()=>{let m=new Kh(this.weightMap,c,p,this.functionExecutorMap,this.parseNodeNameCache),f=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(t).forEach(x=>{let[b,w]=Cn(x,m),I=[];I[w]=t[x],f[b]=I,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(I))});let d=this.getFrozenTensorIds(f),{orderedNodes:h,nodeLiveUntilMap:g}=l;for(let x of h){if(f[x.name])continue;let b=yk(x,f,m,this._resourceManager);if(y.isPromise(b))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);f[x.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[x.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(x,f,m,d,i,g.get(x.name))}return this.parent==null&&m.dispose(d),e.map(x=>pr(x,f,m))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){if(!(Gu(e)||i.has(t))){for(let u of n[t])u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length);for(let u of e.inputs){if(Gu(u))continue;let l=YN(u.name,n,o);if(l!=null)for(let c of l){if(!c||c.kept||s.has(c.id))continue;let p=a[c.id];p===1?(c.dispose(),delete a[c.id]):p!=null&&a[c.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(t,e,n,o,s,i){function a(u){return Gu(u)||s.has(u.name)}if(!(Gu(t)||i==null))for(let u of i){if(a(u))continue;let l=YN(u.name,e,n);for(let c of l)!c||c.kept||o.has(c.id)||c.dispose()}}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(t=>{for(let e of t)e&&!e.isDisposed&&e.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(t,e,n=!1,o={},s={}){this.disposeIntermediateTensors(),n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepIntermediateTensors=L().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let i=new Kh(this.weightMap,o,s,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let a=await this.executeWithControlFlow(t,i,e,n),u=e.map(m=>pr(m,a,i)),l=u.map(m=>m.id),c=Object.keys(t).map(m=>t[m].id),p=new Set([...l,...c,...this.weightIds]);return Object.values(a).forEach(m=>{m.forEach(f=>{f&&!f.isDisposed&&!p.has(f.id)&&f.dispose()})}),this.parent==null&&i.dispose(p),u}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(I=>this.graph.nodes[Cn(I)[0]]),a=n.map(I=>Cn(I)[0]),u=new Set(a),l=a.map(I=>this.graph.nodes[I]);l.length===0&&(l=this._outputs);let{usedNodes:c,missingInputs:p,dynamicNode:m,syncInputs:f}=bk(t,l,this.weightMap,this._initNodes),d=[...i,...this.graph.weights,...this._initNodes||[]].map(I=>({node:I,contexts:e.currentContext})),h=Object.assign({},this.weightMap);Object.keys(t).forEach(I=>{let[N,E]=Cn(I),A=[];A[E]=t[I],h[N]=A});let g={},x=this.getFrozenTensorIds(h),b={};for(;d.length>0;){let I=this.processStack(i,d,e,h,b,x,u,g,c);await Promise.all(I)}m==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let w=l.filter(I=>!Gu(I)&&!pr(I.name,h,e)).map(I=>I.name);if(w.length>0){let I="";throw m!=null&&(I=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${f}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${p}]. ${I}`)}return h}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,o,n)&&([m]=xi(p.node.name,n)),o[p.node.name]==null){let f=yk(p.node,o,n,this._resourceManager);m||([m]=xi(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(h)),n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(f)),this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=xi(a.name,n);s[u]||!i.has(a.name)||(a.op==="Merge"?a.inputNames.some(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!pr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=Cn(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);y.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){var e,n;let o={};for(let s in t){let i=(n=(e=this._signature)===null||e===void 0?void 0:e.inputs)===null||n===void 0?void 0:n[s];i!=null?o[i.name]=t[s]:o[s]=t[s]}return o}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=Cn(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>{var n,o;let s=(o=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||o===void 0?void 0:o[e];return s!=null?s.name:e},{})}checkOutputs(t){t.forEach(e=>{let[n]=Cn(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var ew=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var NQ="?tfjs-format=file",kQ="model.json",jh=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(t,e={},n=Mr){this.modelUrl=t,this.loadOptions=e,this.version="n/a",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new ew}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=this.handler.load();return y.isPromise(t)?t.then(e=>this.loadSync(e)):this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(n=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}this.signature=n,this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Qc(qh.Instance.transformGraph(e,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=qh.Instance.transformGraph(t.modelInitializer);this.initializer=new Qc(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=t.initializerSignature}return!0}async save(t,e){if(typeof t=="string"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}addStructuredOutputNames(t){if(this.structuredOutputKeys){let e=t instanceof Pt?[t]:t,n={};return e.forEach((o,s)=>n[this.structuredOutputKeys[s]]=o),n}return t}predict(t,e){let n=this.execute(t,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(t,e){let n=await this.executeAsync(t,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(t){var e;if(!(t instanceof Pt)&&!Array.isArray(t)){let s=(e=this.signature)===null||e===void 0?void 0:e.inputs;if(s!=null)for(let i in s){let a=s[i];a.resourceId!=null&&(t[i]=this.resourceIdToCapturedInput[a.resourceId])}return t}t=Array.isArray(t)?t:[t];let n=Object.keys(this.resourceIdToCapturedInput).length;if(t.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${t.length} input tensors provided.`);let o=0;return this.inputNodes.reduce((s,i)=>{var a,u,l;let c=(l=(u=(a=this.signature)===null||a===void 0?void 0:a.inputs)===null||u===void 0?void 0:u[i])===null||l===void 0?void 0:l.resourceId;return c!=null?s[i]=this.resourceIdToCapturedInput[c]:s[i]=t[o++],s},{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(t){if(this.resourceIdToCapturedInput={},this.initializerSignature){let e=this.initializerSignature.outputs,n=Object.keys(e);for(let o=0;o<n.length;o++){let s=n[o],i=e[s];this.resourceIdToCapturedInput[i.resourceId]=t[o]}}}execute(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=this.executor.execute(t,e);return n.length>1?n:n[0]}async executeAsync(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Tt(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function TQ(r,t={},e=Mr){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof r=="string"&&(r=EQ(r));let n=new jh(r,t,e);return await n.load(),n}function _Q(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(r instanceof Array){let[n,o]=r;if(!n)throw new Error("modelJSON must be the first element of the array");if(!o||!(o instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in n))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in n))throw new Error("Model JSON is missing 'weightsManifest'");let s=Mr.getWeightSpecs(n.weightsManifest),i=Mr.getModelArtifactsForJSONSync(n,s,o);t=Mr.fromMemorySync(i)}else if("load"in r)t=r;else if("modelTopology"in r&&"weightSpecs"in r&&"weightData"in r)t=Mr.fromMemorySync(r);else throw new Error("Unknown model format");let e=new jh(t);return e.load(),e}function EQ(r){return r.endsWith("/")||(r=r+"/"),`${r}${kQ}${NQ}`}var IF="4.5.0";var VF={};Kt(VF,{CSVDataset:()=>ud,Dataset:()=>bi,FileDataSource:()=>dd,TextLineDataset:()=>ld,URLDataSource:()=>hd,array:()=>DF,csv:()=>PF,func:()=>MF,generator:()=>LF,microphone:()=>BF,version_data:()=>Bk,webcam:()=>zF,zip:()=>$F});var AF=Kl(bh());var TF=Kl(bh());function CF(r,t){return rw(r,t)}function rw(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob=="function"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error("Circular references are not supported.");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(Wu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=rw(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function vF(r,t=Ik){return SF(r,t)}function SF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error("Circular references are not supported.");let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(Wu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=SF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function Ik(r){return r===null?null:Wu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function nw(r,t){let e=new Map;rw(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(y.isPromise(s)){let i=await s;e.set(o,i)}}return rw(r,t,e)}function Wu(r){let t=!1;if(L().get("IS_BROWSER"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=wk();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Pt)&&!(r instanceof Promise)&&!t)}function NF(r){return r==null||AQ(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Pt||y.isTypedArray(r)}function AQ(r){return r===null||typeof r!="object"&&typeof r!="function"}function kF(r){return CF(r,DQ)}function DQ(r){return r instanceof Pt?{value:r.clone(),recurse:!1}:Wu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var ad=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var tp=class extends ad{constructor(){super(tp.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;o<n;o++)e[o]=this.get(this.wrap(this.begin+o));this.data=e,this.capacity=t,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};tp.INITIAL_CAPACITY=32;function Fk(r){return new Ck(r)}function Xh(r){return new vk(r)}function _F(r,t){return new sw(r,t)}function EF(r,t=Pl.FAIL){return new $k(r,t)}var tr=class{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],n=await t.next();for(;!n.done;)e.push(n.value),n=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),n=t(e.value);for(;!e.done&&n;)e=await this.next(),n=t(e.value)}handleErrors(t){return new Ak(this,t)}filter(t){return new _k(this,t)}map(t){return new Ek(this,t)}mapAsync(t){return new ow(this,t)}serialMapAsync(t){return new ow(this,t).serial()}flatmap(t){return new Dk(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new Tk(this,t,e)}columnMajorBatch(t,e=!0,n=Ik){return this.rowMajorBatch(t,e).map(s=>vF(s,n))}concatenate(t,e){return new sw(Fk([this,t]),e)}take(t){return t<0||t==null?this:new kk(this,t)}skip(t){return t<0||t==null?this:new Nk(this,t)}prefetch(t){return new iw(this,t)}shuffle(t,e){return new Rk(this,t,e)}serial(){return new Sk(this)}},Ck=class extends tr{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:kF(t),done:!1}}},vk=class extends tr{constructor(t){super(),this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},Sk=class extends tr{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Nk=class extends tr{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let t=await this.upstream.next();if(t.done)return t;Tt(t.value)}return this.upstream.next()}},kk=class extends tr{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Tk=class extends tr{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length<this.batchSize;){let e=await this.upstream.next();if(e.done)return this.enableSmallLastBatch&&t.length>0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},_k=class extends tr{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;Tt(t.value)}}},Ek=class extends tr{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Co.getTensorsInContainer(t.value),n=this.transform(t.value),o=Co.getTensorsInContainer(n);for(let s of e)Co.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},Ak=class extends tr{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},ow=class extends tr{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Co.getTensorsInContainer(t.value),n=await this.transform(t.value),o=Co.getTensorsInContainer(n);for(let s of e)Co.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},ep=class extends tr{constructor(){super(),this.outputQueue=new tp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Dk=class extends ep{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=Co.getTensorsInContainer(t.value),n=this.transform(t.value),o=Co.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)Co.isTensorInList(s,o)||s.dispose();return!0}},sw=class extends tr{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},Pl;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Pl||(Pl={}));var $k=class extends tr{constructor(t,e=Pl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof tr?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await nw(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Pl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Pl.SHORTEST:return{value:null,done:!0};case Pl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},iw=class extends tr{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new ad(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},Rk=class extends iw{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=TF.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var bi=class{constructor(){this.size=null}batch(t,e=!0){let n=this;y.assert(t>0,()=>`batchSize needs to be positive, but it is
${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),Dn(async()=>(await n.iterator()).columnMajorBatch(t,e,$Q),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,Dn(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,Dn(async()=>(await e.iterator()).filter(o=>B(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return Dn(async()=>(await e.iterator()).map(n=>B(()=>t(n))),this.size)}mapAsync(t){let e=this;return Dn(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return Dn(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,Dn(async()=>{let o=Xh(async()=>({value:await e.iterator(),done:!1}));return _F(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size<t||t===void 0||t<0)?n=0:n=null,Dn(async()=>(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=AF.alea(e||y.now().toString());return Dn(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,Dn(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};bi.MAX_BUFFER_SIZE=1e4;function Dn(r,t=null){return new class extends bi{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function DF(r){return Dn(async()=>Fk(r),r.length)}function $F(r){if(!Wu(r))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(r))for(let e=0;e<r.length;e++)t=t==null?r[e].size:Math.min(t,r[e].size);else if(r instanceof Object)for(let e in r)t=t==null?r[e].size:Math.min(t,r[e].size);return Dn(async()=>{let e=await nw(r,n=>{if(n instanceof bi)return{value:n.iterator(),recurse:!1};if(Wu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return EF(e,Pl.SHORTEST)},t)}function $Q(r){if(r===null)return null;let t=r[0];return NF(t)?{value:RQ(r),recurse:!1}:{value:null,recurse:!0}}function RQ(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Pt?qe(r):sr(r)}var ld=class extends bi{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var aw='"',Yh=Symbol("out"),RF=Symbol("field"),lw=Symbol("quote"),Ok=Symbol("quoteafterquote"),FF=Symbol("quoteinquote"),ud=class extends bi{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&y.assert(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let n=e.value;return this.parseRow(n,!1)}else return null}constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new ld(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(y.assert(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let i=this.fullColumnNames[s],a=this.columnConfigs?this.columnConfigs[i]:null;if(!(this.configuredColumnsOnly&&!a)){let u=e[s],l=null;if(u==="")if(a&&a.default!==void 0)l=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${i} is empty in this line: ${t}`);l=void 0}else{let c=Number(u);if(isNaN(c))a&&a.dtype==="bool"?l=this.getBoolean(u):l=u;else if(!a||!a.dtype)l=c;else switch(a.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(u);break;default:l=c}}a&&a.isLabel?o[i]=l:n[i]=l}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(t){return t==="1"||t.toLowerCase()==="true"?1:0}parseRow(t,e=!0){let n=[],o=0,s=t.length,i=Yh;for(let a=0;a<s;a++)switch(i){case Yh:switch(t.charAt(a)){case aw:o=a+1,i=lw;break;case this.delimiter:if(o=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),i=Yh;break;default:i=RF,o=a;break}break;case RF:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a)),i=Yh,o=a+1;break;default:}break;case lw:switch(t.charAt(a)){case aw:i=Ok;break;default:}break;case Ok:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a-1)),i=Yh,o=a+1;break;case aw:i=lw;break;default:i=FF;break}break;case FF:switch(t.charAt(a)){case aw:i=lw;break;default:}break;default:}if(i===Ok?n.push(t.substring(o,s-1)):n.push(t.substring(o)),e&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var cd=class extends tr{constructor(t){super(),this.microphoneConfig=t,this.isClosed=!1,this.fftSize=t.fftSize||1024;let e=Math.log2(this.fftSize);if(this.fftSize<0||e<4||e>14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(!L().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let e=new cd(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(y.sizeFromShape(e));return n.set(t,n.length-t.length),sr(n,e)}};var pd=class extends tr{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=ui([i,s,u,a],[1,4])}else this.cropBox=ui([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(!L().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new pd(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=Ay.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return B(()=>{let e=ar(Q(t,"float32"),0),n;n=dn.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var md=class{};var Zh=class extends tr{split(t){return new Pk(this,t)}},Pk=class extends Zh{constructor(t,e){super(),this.upstream=t,this.impl=new Mk(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Mk=class extends ep{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var uw=class extends tr{decodeUTF8(){return new Lk(this)}},Lk=class extends Zh{constructor(t){super(),this.upstream=t,this.impl=new zk(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zk=class extends ep{constructor(t){if(super(),this.upstream=t,L().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=wk();this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return L().get("IS_BROWSER")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var fd=class extends uw{constructor(t,e={}){super(),this.file=t,this.options=e,y.assert(t instanceof Uint8Array||(L().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));e(u)},s.onabort=a=>n(new Error("Aborted")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function OF(r,t={},e){let n,o;typeof r=="string"?n=r:(n=r.url,o=FQ(r));let s=await(e||y.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new fd(i,t)}else throw new Error(s.statusText)}var FQ=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function cw(r){return typeof r=="string"&&r.slice(0,7)==="file://"}var dd=class extends md{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(cw(this.input)&&L().get("IS_NODE")){let t=pw();this.input=t.readFileSync(this.input.slice(7))}return new fd(this.input,this.options)}};var hd=class extends md{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return cw(this.url)?new dd(this.url,this.fileOptions).iterator():OF(this.url,this.fileOptions)}};function PF(r,t={}){return new ud(new hd(r),t)}function MF(r){let t=Xh(r);return Dn(async()=>t)}function LF(r){return Dn(async()=>{let t=await r();return Xh(()=>t.next())})}async function zF(r,t){return pd.create(r,t)}async function BF(r){return cd.create(r)}var Bk="4.5.0";function tt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var OQ=Kr.whereImpl,Uu=class extends Wo{nextDataId(){return Uu.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Ta(this,Vn())}write(t,e,n){this.firstUse&&(this.firstUse=!1,L().get("IS_NODE")&&S.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return y.convertBackendValuesAndArrayBuffer(this.data.get(t).values,e)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return bt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return bt(t.shape,t.dtype,e)}makeOutput(t,e,n){return Vn().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(t){tt([t],"where");let e=this.readSync(t.dataId);return OQ(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Uu.nextDataId=0;var Nw={};Kt(Nw,{addImpl:()=>Wk,bincountImpl:()=>yd,bincountReduceImpl:()=>mw,bitwiseAndImpl:()=>Uk,castImpl:()=>Gk,ceilImpl:()=>Hk,concatImpl:()=>rp,equalImpl:()=>qk,expImpl:()=>jk,expm1Impl:()=>Yk,floorDivImpl:()=>Jk,floorImpl:()=>Zk,gatherNdImpl:()=>fw,gatherV2Impl:()=>dw,greaterEqualImpl:()=>tT,greaterImpl:()=>Qk,lessEqualImpl:()=>rT,lessImpl:()=>eT,linSpaceImpl:()=>hw,logImpl:()=>nT,maxImpl:()=>gw,maximumImpl:()=>oT,minimumImpl:()=>sT,multiplyImpl:()=>Jh,negImpl:()=>iT,notEqualImpl:()=>aT,prodImpl:()=>lT,raggedGatherImpl:()=>xw,raggedRangeImpl:()=>yw,raggedTensorToTensorImpl:()=>bw,rangeImpl:()=>op,rsqrtImpl:()=>uT,scatterImpl:()=>wi,sigmoidImpl:()=>yO,simpleAbsImpl:()=>Vk,sliceImpl:()=>sp,sparseFillEmptyRowsImpl:()=>ww,sparseReshapeImpl:()=>Iw,sparseSegmentReductionImpl:()=>Id,sqrtImpl:()=>IO,squaredDifferenceImpl:()=>pT,staticRegexReplaceImpl:()=>mT,stridedSliceImpl:()=>Cw,stringNGramsImpl:()=>ip,stringSplitImpl:()=>ap,stringToHashBucketFastImpl:()=>lp,subImpl:()=>dT,tileImpl:()=>vw,topKImpl:()=>Sw,transposeImpl:()=>bd,uniqueImpl:()=>up});function Vk(r){let t=new Float32Array(r.length);for(let e=0;e<r.length;++e)t[e]=Math.abs(r[e]);return t}var PQ=r=>{let{x:t}=r.inputs,e=r.backend;tt(t,"abs");let n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=Vk(o),e.makeOutput(n,t.shape,t.dtype)},GF={kernelName:_i,backendName:"cpu",kernelFunc:PQ};function Jt(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=y.computeStrides(i),l=y.sizeFromShape(i),c=y.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=y.computeStrides(t),d=y.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,a,u),w=b.slice(-p);h.forEach(A=>w[A]=0);let I=y.locToIndex(w,p,f),N=b.slice(-m);g.forEach(A=>N[A]=0);let E=y.locToIndex(N,m,d);c[x]=r(n[I],o[E])}return[c,i]}}function Cr(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,"complex64"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",i)},a}var WF={kernelName:Op,backendName:"cpu",kernelFunc:Cr};function gd(r,t,e="float32"){if(e==="complex64"){let o=gd(r,t,"float32"),s=gd(r,t,"float32");return Cr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Yr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var UF={kernelName:xo,backendName:"cpu",kernelFunc:Yr};function Oo(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var HF={kernelName:jp,backendName:"cpu",kernelFunc:Oo};function Gk(r,t,e,n){if(n==="int32"){let o=Int32Array.from(r);return[t,"int32",o]}if(n==="bool"){let o=y.toTypedArray([0],e),[s,i]=Jt((a,u)=>a!==u?1:0)(t,[],r,o,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${e} to ${n}`)}function Po(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Yr({inputs:{x:o},backend:e});let c=gd(e,o.shape,o.dtype),p=Po({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),m=Cr({inputs:{real:p,imag:c},backend:e});return e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),m}if(o.dtype==="complex64"){let c=Oo({inputs:{input:o},backend:e}),p=Po({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),p}if(!y.hasEncodingLoss(o.dtype,s)){let c=Yr({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}let i=e.data.get(o.dataId).values,[a,u,l]=Gk(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}var qF={kernelName:ho,backendName:"cpu",kernelFunc:Po};function ne(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;tt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype==="string"?S.fromUint8ToStringArray(l):l,m=i.dtype==="string"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype==="complex64"||a.dtype==="complex64"){let l=Po({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Po({inputs:{x:a},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(x.dataId).values,I=u.data.get(b.dataId).values,[N,E,A]=e(i.shape,a.shape,f,d,w,I),D=u.makeTensorInfo(A,"float32",N),F=u.makeTensorInfo(A,"float32",E),P=Cr({inputs:{real:D,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(F),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function xd(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=y.sizeFromShape(a),l=a.length,c=y.computeStrides(a),p=y.getTypedArrayFromDType("float32",u),m=y.getTypedArrayFromDType("float32",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),x=t.length,b=y.computeStrides(t),w=e.length,I=y.computeStrides(e);if(f.length+d.length===0)for(let N=0;N<p.length;N++){let E=N%h.length,A=N%g.length,D=r(h[E*2],h[E*2+1],g[A*2],g[A*2+1]);p[N]=D.real,m[N]=D.imag}else for(let N=0;N<p.length;N++){let E=y.indexToLoc(N,l,c),A=E.slice(-x);f.forEach(G=>A[G]=0);let D=y.locToIndex(A,x,b),F=E.slice(-w);d.forEach(G=>F[G]=0);let P=y.locToIndex(F,w,I),V=r(h[D*2],h[D*2+1],g[P*2],g[P*2+1]);p[N]=V.real,m[N]=V.imag}return[p,m,a]}}var Wk=Jt((r,t)=>r+t),MQ=xd((r,t,e,n)=>({real:r+e,imag:t+n})),ya=ne(oo,Wk,MQ),KF={kernelName:oo,backendName:"cpu",kernelFunc:ya};function yd(r,t,e,n,o){let s=y.sizeFromShape(n),i=y.makeZerosTypedArray(o,e);for(let a=0;a<r.length;a++){let u=r[a];if(u<0)throw new Error("Input x must be non-negative!");u>=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function mw(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=bt([o,e],t.dtype);for(let a=0;a<o;a++)for(let u=0;u<s;u++){let l=r.get(a,u);if(l<0)throw new Error("Input x must be non-negative!");l>=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}var Uk=Jt((r,t)=>r&t),LQ=ne(nh,Uk),jF={kernelName:nh,backendName:"cpu",kernelFunc:LQ};function _r(r){return(t,e,n)=>{let o=y.getArrayFromDType(e,t.length);for(let s=0;s<t.length;++s)o[s]=r(t[s],n);return o}}function At(r,t,e){let n=_r(t);return $n(r,n,e)}function $n(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;tt(i,r);let a=s,u=a.data.get(i.dataId).values,l;if(i.dtype==="string"){if(!Array.isArray(u))throw new Error("String tensor's value was not an instance of Array");l=S.fromUint8ToStringArray(u)}else l=u;let c=e||i.dtype,p=t(l,c,o);return a.makeTensorInfo(i.shape,c,p)}}var Hk=_r(r=>Math.ceil(r)),zQ=$n(es,Hk),XF={kernelName:es,backendName:"cpu",kernelFunc:zQ};function rp(r,t,e,n){let o=y.getArrayFromDType(e,y.sizeFromShape(t));if(n&&e!=="string"){let s=0;r.forEach(i=>{let a=y.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e==="string"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+s;for(let p=0;p<i.shape[1];++p)o[c+p]=a[u++]}s+=i.shape[1]})}return o}var qk=Jt((r,t)=>r===t?1:0),Kk=ne(za,qk,null,"bool"),YF={kernelName:za,backendName:"cpu",kernelFunc:Kk};var jk=_r(r=>Math.exp(r)),Xk=$n(ms,jk,"float32"),ZF={kernelName:ms,backendName:"cpu",kernelFunc:Xk};var Yk=_r(r=>Math.expm1(r)),BQ=$n(fs,Yk),JF={kernelName:fs,backendName:"cpu",kernelFunc:BQ};var Zk=_r(r=>Math.floor(r)),VQ=$n(ds,Zk),QF={kernelName:ds,backendName:"cpu",kernelFunc:VQ};var Jk=Jt((r,t)=>Math.floor(r/t)),GQ=ne(hs,Jk,null,"int32"),tO={kernelName:hs,backendName:"cpu",kernelFunc:GQ};function fw(r,t,e,n,o,s,i,a,u){let l=bt([n,s],e);for(let c=0;c<n;c++){let p=[],m=0;for(let f=0;f<o;f++){let d=r[c*o+f];m+=d*i[f],p.push(d)}if(m<0||m>=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;f<s;f++)l.values[c*s+f]=t.get(...t.indexToLoc(m*s+f))}return l}function dw(r,t,e){let n=bt(e,r.dtype);for(let o=0;o<n.size;++o){let i=n.indexToLoc(o).slice(),a=i[0],u=i[2],l=t.locToIndex([a,u]);i[2]=t.values[l];let c=r.locToIndex(i);0<=c&&c<r.values.length&&(n.values[o]=r.values[c])}return n}var Qk=Jt((r,t)=>r>t?1:0),WQ=ne(Ga,Qk,null,"bool"),eO={kernelName:Ga,backendName:"cpu",kernelFunc:WQ};var tT=Jt((r,t)=>r>=t?1:0),UQ=ne(xs,tT,null,"bool"),rO={kernelName:xs,backendName:"cpu",kernelFunc:UQ};var eT=Jt((r,t)=>r<t?1:0),HQ=ne(Wa,eT,null,"bool"),nO={kernelName:Wa,backendName:"cpu",kernelFunc:HQ};var rT=Jt((r,t)=>r<=t?1:0),qQ=ne(Ua,rT,null,"bool"),oO={kernelName:Ua,backendName:"cpu",kernelFunc:qQ};function hw(r,t,e){let n=(t-r)/(e-1),o=y.makeZerosTypedArray(e,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var nT=_r(r=>Math.log(r)),KQ=$n(Cs,nT),sO={kernelName:Cs,backendName:"cpu",kernelFunc:KQ};function gw(r,t,e,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(e));for(let s=0;s<o.length;++s){let i=s*t,a=r[i];for(let u=0;u<t;++u){let l=r[i+u];(Number.isNaN(l)||l>a)&&(a=l)}o[s]=a}return o}var oT=Jt((r,t)=>Math.max(r,t)),jQ=ne(ks,oT),iO={kernelName:ks,backendName:"cpu",kernelFunc:jQ};var sT=Jt((r,t)=>Math.min(r,t)),XQ=ne(As,sT),aO={kernelName:As,backendName:"cpu",kernelFunc:XQ};var Jh=Jt((r,t)=>r*t),YQ=xd((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),np=ne($s,Jh,YQ),lO={kernelName:$s,backendName:"cpu",kernelFunc:np};function iT(r,t,e){let n=y.createScalarValue(-1,e);return Jh([],t,n,r,e)}function ZQ(r){let{inputs:t,backend:e}=r,{x:n}=t;tt(n,"neg");let o=e.data.get(n.dataId).values,[s,i]=iT(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var uO={kernelName:Mi,backendName:"cpu",kernelFunc:ZQ};var aT=Jt((r,t)=>r!==t?1:0),JQ=ne(Ja,aT,null,"bool"),cO={kernelName:Ja,backendName:"cpu",kernelFunc:JQ};function bd(r,t,e,n,o){let s=t.length,i=y.sizeFromShape(t),a=y.computeStrides(t),u=y.computeStrides(o),l=y.getTypedArrayFromDType(e,y.sizeFromShape(o));for(let c=0;c<i;++c){let p=y.indexToLoc(c,s,a),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,u);l[f]=r[c]}return l}function Ge(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{perm:s}=e;tt(o,"transpose");let i=o.shape.length,a=new Array(i);for(let p=0;p<a.length;p++)a[p]=o.shape[s[p]];let u=n.data.get(o.dataId).values,l=bd(u,o.shape,o.dtype,s,a);return{dataId:n.write(l,a,o.dtype),shape:a,dtype:o.dtype}}var pO={kernelName:io,backendName:"cpu",kernelFunc:Ge};function lT(r,t,e,n){let[o,s]=S.computeOutAndReduceShapes(r,n),i=ur(t,"int32"),a=y.makeZerosTypedArray(y.sizeFromShape(o),i),u=y.sizeFromShape(s);for(let l=0;l<a.length;++l){let c=l*u,p=1;for(let m=0;m<u;++m)p*=e[c+m];a[l]=p}return{outVals:a,outShape:o,outDtype:i}}function QQ(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"prod");let a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=S.getAxesPermutation(u,a),c=u,p=o,m=[];l!=null&&(p=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),m.push(p),c=S.getInnerMostAxes(c.length,a));let f=e.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=lT(p.shape,p.dtype,f,c),x=h;return i&&(x=S.expandShapeToKeepDim(h,u)),m.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(x,g,d)}var mO={kernelName:Ms,backendName:"cpu",kernelFunc:QQ};function ttt(r,t,e){r.forEach((n,o)=>{if(n<0||n>=e){let s=y.indexToLoc(o,t.length,y.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${n} is not in [0, ${e})`)}})}function ett(r,t){for(let e=0;e<r.length;++e){let n=r[e],o=e===r.length-1?t:r[e+1].length;if(n.length===0)throw new Error("Ragged splits may not be empty");if(n[0]<0)throw new Error("Ragged splits must be non-negative");if(n[n.length-1]>o)throw new Error("Ragged splits must not point past values");for(let s=1;s<n.length;++s)if(n[s-1]>n[s])throw new Error("Ragged splits must be sorted in ascending order")}}function rtt(r,t,e,n){let o=[],s=0,i=t.length-1+e.length,a=new Array(i).fill(null).map(()=>[0]);ett(e,n);let u=1;for(let l=0;l<t.length-1;++l){u*=t[l];let c=t[l+1];for(let p=1;p<u+1;++p)a[l].push(p*c)}for(let l=0;l<r.length;++l){let c=r[l],p=r[l]+1;for(let m=0;m<e.length;++m){let f=e[m],d=m+t.length-1;if(d>=0){let h=a[d],g=h[h.length-1]-f[c];for(let x=c;x<p;++x)a[d].push(f[x+1]+g)}c=f[c],p=f[p]}p!==c&&(o.push([c,p]),s+=p-c)}return{outSplits:a,valueSlices:o,numValues:s}}function ntt(r){let t=[];for(let e=0;e<r.length;++e){let n=r[e].length,o=y.getArrayFromDType("int32",n);t.push(o),r[e].forEach((s,i)=>o[i]=s)}return t}function fO(r,t){let e=r.slice(0,t);for(;e.length<t;)e.push(1);for(let n=t;n<r.length;n++)e[t-1]*=r[n];return e}function ott(r,t,e,n,o,s){let i=fO(t,2)[1],a=fO(s,2)[1],u=0;for(let l of e)for(let c=l[0];c<l[1];++c){for(let p=0;p<n;++p)o[u*a+p]=r[c*i+p];++u}}function stt(r,t,e,n,o){let s=t.slice();s[0]=o;let i=y.getArrayFromDType(e,y.sizeFromShape(s)),a=r.length,u=a===0?0:a/t[0];return ott(r,t,n,u,i,s),[i,s]}function xw(r,t,e,n,o,s,i,a){if(r.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let u=t[0][0]-1;if(ttt(s,i,u),n.length===0)throw new Error("params.rank must be nonzero");let l=n[0],{outSplits:c,valueSlices:p,numValues:m}=rtt(s,i,r,l),f=ntt(c),d=stt(e,n,o,p,m);return[f,d[0],d[1]]}var dO=2147483647;function yw(r,t,e,n,o,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(o.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let a=t.length===0,u=o.length===0,l=i.length===0,c=[];a||c.push(t[0]),u||c.push(o[0]),l||c.push(i[0]);for(let g=1;g<c.length;++g)if(c[g]!==c[g-1])throw new Error("starts, limits, and deltas must have the same shape");let p=c.length===0?1:c[0],m=y.getArrayFromDType("int32",p+1);m[0]=0;for(let g=0;g<p;++g){let x=a?r[0]:r[g],b=u?n[0]:n[g],w=l?s[0]:s[g];if(w===0)throw new Error("Requires delta != 0");let I;if(w>0&&b<x||w<0&&b>x)I=0;else if(I=Math.ceil(Math.abs((b-x)/w)),I>dO)throw new Error(`Requires ((limit - start) / delta) <= ${dO}`);m[g+1]=m[g]+I}let f=m[p],d=y.getArrayFromDType(e,f),h=0;for(let g=0;g<p;++g){let x=m[g+1]-m[g],b=a?r[0]:r[g],w=l?s[0]:s[g];for(let I=0;I<x;++I)d[h++]=b,b+=w}return[m,d]}var Mo=S.RowPartitionType,wd=class{constructor(t,e,n,o,s,i,a,u,l,c){this.shape=t,this.shapeShape=e,this.values=n,this.valuesShape=o,this.valuesDType=s,this.defaultValue=i,this.defaultValueShape=a,this.rowPartitionValues=u,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=S.getRowPartitionTypesHelper(c),this.raggedRank=S.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(t){return this.rowPartitionTypes[0]===Mo.FIRST_DIM_SIZE?this.rowPartitionTypes[t+1]:this.rowPartitionTypes[t]}getRowPartitionTensor(t){return this.rowPartitionTypes[0]===Mo.FIRST_DIM_SIZE?this.rowPartitionValues[t+1]:this.rowPartitionValues[t]}getMaxWidth(t){let e=this.getRowPartitionTensor(t-1);switch(this.getRowPartitionTypeByDimension(t-1)){case Mo.VALUE_ROWIDS:return wd.getMaxWidthValueRowID(e);case Mo.ROW_SPLITS:return wd.getMaxWidthRowSplit(e);default:throw new Error(`Cannot handle partition type ${Mo[this.getRowPartitionTypeByDimension(t-1)]}`)}}static getMaxWidthRowSplit(t){let e=t.length;if(e===0||e===1)return 0;let n=0;for(let o=0;o<e-1;++o){let s=t[o+1]-t[o];s>n&&(n=s)}return n}static getMaxWidthValueRowID(t){let e=t.length;if(e===0)return 0;let n=0,o=t[0],s=0;for(let i=1;i<e;++i){let a=t[i];a!==o&&(o=a,s=Math.max(i-n,s),n=i)}return Math.max(e-n,s)}tensorShapeFromTensor(t,e,n=!0){if(e.length===0){if(t[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return gO(t,n)}calculateOutputSize(t){let e=this.valuesShape,n=this.defaultValueShape;S.validateDefaultValueShape(n,e);let o=this.tensorShapeFromTensor(this.shape,this.shapeShape),i=S.combineRaggedTensorToTensorShapes(this.raggedRank,o,e);i[0]<0&&(i[0]=t);for(let a=1;a<=this.raggedRank;++a)i[a]<0&&(i[a]=this.getMaxWidth(a));return i}calculateFirstParentOutputIndex(t,e,n){let o=Math.min(t,n),s=[],i=0;for(let a=0;a<o;++a,i+=e)s.push(i);for(let a=o;a<t;++a)s.push(-1);return y.assert(s.length===t,()=>"Final length of result must be equal to firstDimension."),s}calculateOutputIndexRowSplit(t,e,n,o){let s=t.length,i=[];for(let a=0;a<s-1;++a){let u=t[a+1]-t[a],l=Math.min(o,u),c=e[a];c===-1&&(l=0);for(let p=0;p<l;++p)i.push(c),c+=n;for(let p=0;p<u-l;++p)i.push(-1)}if(s>0&&i.length!==t[s-1])throw new Error("Invalid row split size.");return i}calculateOutputIndexValueRowID(t,e,n,o){let s=t.length,i=[];if(s===0)return[];let a=0,u=t[0];if(u>=e.length)throw new Error(`Got currentValueRowId=${u}, which is not less than ${e.length}`);let l=e[u];i.push(l);for(let c=1;c<s;++c){let p=t[c];if(p===u)l>=0&&(++a,a<o?l+=n:l=-1);else{if(a=0,u=p,p>=e.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${e.length}`);l=e[p]}i.push(l)}if(i.length!==t.length)throw new Error("Invalid row ids.");return i}calculateOutputIndex(t,e,n,o){let s=this.getRowPartitionTensor(t),i=this.getRowPartitionTypeByDimension(t);switch(i){case Mo.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,e,n,o);case Mo.ROW_SPLITS:if(s.length-1>e.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${e.length}`);return this.calculateOutputIndexRowSplit(s,e,n,o);default:throw new Error(`Unsupported partition type: ${Mo[i]}`)}}getFirstDimensionSize(){let t=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let e=this.rowPartitionTypes[0];switch(e){case Mo.FIRST_DIM_SIZE:return t[0];case Mo.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Mo.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Mo[e]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),n=this.calculateOutputSize(e),o=new Array(this.raggedRank+1);o[o.length-1]=1;for(let u=o.length-2;u>=0;--u)o[u]=o[u+1]*n[u+1];let s=gO(n,!1),i=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(o[0]*n[0]>0){let u=this.calculateFirstParentOutputIndex(e,o[0],n[0]);for(let l=1;l<=this.raggedRank;++l)u=this.calculateOutputIndex(l-1,u,o[l],n[l]);this.setOutput(this.raggedRank,u,i,s)}return[s,i]}setOutput(t,e,n,o){if(n.length===0)return;let s=this.values,i=n,a=o.slice();a=a.slice(t+1);let u=y.sizeFromShape(a),l=e.length,c=this.defaultValue;if(c.length!==u&&c.length!==1){let d=this.defaultValueShape;B(()=>{let h=R(c,d);c=oa(h,a).dataSync()})}let p=0,m=0,f=0;for(let d=0;d<=l;++d){let h=d<l?e[d]:-1;if(h===f){++f;continue}if(m<f){let g=s.subarray(p*u),x=i.subarray(m*u),b=(f-m)*u;hO(x,g,b)}if(d>=l){let g=n.length;h=Math.floor(g/u)}if(h>f)if(this.defaultValue.length===1)i.subarray(f*u,h*u).fill(this.defaultValue[0]),f=h;else for(;h>f;){let g=i.slice(f*u);hO(g,c,u),++f}h<0?(p=d+1,m=f):(p=d,m=f,f=m+1)}}};function hO(r,t,e){for(let n=0;n<e;n++)r[n]=t[n]}function gO(r,t){let e=[];for(let n of r){if(n<0){if(!t)throw new Error(`Dimension ${n} must be >= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}e.push(n)}return e}function bw(r,t,e,n,o,s,i,a,u,l){return new wd(r,t,e,n,o,s,i,a,u,l).compute()}function op(r,t,e,n){let o=r===t,s=r<t&&e<0,i=t<r&&e>1;if(o||s||i)return y.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=y.makeZerosTypedArray(a,n);t<r&&e===1&&(e=-1),u[0]=r;for(let l=1;l<u.length;l++)u[l]=u[l-1]+e;return u}var uT=_r(r=>1/Math.sqrt(r)),itt=$n(Hs,uT),xO={kernelName:Hs,backendName:"cpu",kernelFunc:itt};function wi(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return bt(e,t.dtype);let f=u instanceof le?u:bt(c,t.dtype);typeof u=="string"||typeof u=="number"?f.values.fill(u):typeof u=="boolean"&&f.values.fill(+u);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<i;x++){let b=p[d*i+x];h.push(b),g+=b*a[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let x=0;x<o;x++)l?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=t.rank===0?m[0]:m[d*o+x]}return f}var yO=_r(r=>1/(1+Math.exp(-r))),cT=At(Xs,r=>1/(1+Math.exp(-r))),bO={kernelName:Xs,backendName:"cpu",kernelFunc:cT};function sp(r,t,e,n,o){let s=ze.isSliceContinous(n,t,e),i=y.sizeFromShape(e),a=y.computeStrides(n);if(s){let p=ze.computeFlatOffset(t,a);return o==="string"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o==="string"?S.fromUint8ToStringArray(r):r,l=bt(n,o,u),c=bt(e,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+t[h]);c.set(l.get(...f),...m)}return o==="string"?S.fromStringArrayToUint8(c.values):c.values}function Lo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;tt(o,"slice");let[a,u]=ze.parseSliceParams(o,s,i);ze.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=sp(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var wO={kernelName:Gi,backendName:"cpu",kernelFunc:Lo};function ww(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=y.getArrayFromDType(e,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g<a;++g){let x=r[g*p];if(x<0)throw new Error(S.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,u));++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g<u;++g){let x=d[g]===0;l[g]=x,h=h&&!x,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b<a;++b)c[b]=b;return[g,[a,p],x,l,c]}else{let g=d[u-1],x=y.getArrayFromDType(e,g*p),b=y.getArrayFromDType(o,g),w=new Array(u).fill(0);for(let I=0;I<a;++I){let N=r[I*p],E=w[N],A=(N===0?0:d[N-1])+E;w[N]++;for(let D=0;D<p;++D)x[A*p+D]=r[I*p+D];b[A]=n[I],c[I]=A}for(let I=0;I<u;++I)if(w[I]===0){let E=I===0?0:d[I-1];x[E*p+0]=I;for(let A=1;A<p;++A)x[E*p+A]=0;b[E]=i}return[x,[g,p],b,l,c]}}function Iw(r,t,e,n,o){let s=y.sizeFromShape(n),i=t[0],a=o.length,u=[],l=1,c=-1;for(let g=0;g<a;++g){let x=o[g];if(x===-1){if(c!==-1)throw new Error(S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(x<0)throw new Error(S.getSparseReshapeNegativeOutputDimErrorMessage(g,x));l*=x,u.push(x)}}if(c!==-1){if(l<=0)throw new Error(S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/l);if(l*g!==s)throw new Error(S.getSparseReshapeInputOutputMultipleErrorMessage(n,u));u[c]=g}if(y.sizeFromShape(u)!==s)throw new Error(S.getSparseReshapeInputOutputMismatchErrorMessage(n,u));let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=y.getArrayFromDType(e,i*a);for(let g=0;g<i;++g){let x=0;for(let b=0;b<m;++b)x+=r[g*m+b]*f[b];for(let b=0;b<a;++b)h[g*a+b]=Math.trunc(x/d[b]),x%=d[b]}return[h,[i,a],u]}function Id(r,t,e,n,o,s=!1,i=0){let a=n.length,u=[t[0],r.length/t[0]],l=u[1],p=a>0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,I)=>w*I,1),d=y.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=o[h];for(;;){let w=0;if(g<a){if(w=o[g],b===w){++g;continue}if(b>=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>x&&d.fill(i,x*l,b*l);for(let I=h;I<g;++I){let N=n[I];if(N<0||N>=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(I,n[I],u[0]));for(let E=0;E<l;E++)d[b*l+E]+=r[N*l+E]}if(s)for(let I=0;I<l;I++)d[b*l+I]/=g-h;if(h=g,++g,x=b+1,b=w,g>a)break}return x<p&&d.fill(i,x*l,p*l),[d,m]}var IO=_r(r=>Math.sqrt(r)),att=At(Zs,r=>Math.sqrt(r)),CO={kernelName:Zs,backendName:"cpu",kernelFunc:att};var pT=Jt((r,t)=>{let e=r-t;return e*e}),ltt=ne(ti,pT),vO={kernelName:ti,backendName:"cpu",kernelFunc:ltt};var mT=_r((r,t)=>{let{pattern:e,replaceGlobal:n,rewrite:o}=t;return r.replace(new RegExp(e,n?"g":""),o)}),utt=$n(sc,mT),SO={kernelName:sc,backendName:"cpu",kernelFunc:utt};function Cw(r,t,e,n){let o=bt(r,t.dtype);for(let s=0;s<o.size;s++){let i=o.indexToLoc(s),a=new Array(i.length);for(let u=0;u<a.length;u++)a[u]=i[u]*e[u]+n[u];o.set(t.get(...a),...i)}return o}var fT=class{constructor(t,e,n,o,s,i){this.separator=y.encodeString(t),this.nGramWidths=e,this.leftPad=y.encodeString(n),this.rightPad=y.encodeString(o),this.padWidth=s,this.preserveShort=i}getPadWidth(t){return Math.min(this.padWidth<0?t-1:this.padWidth,t-1)}getNumNGrams(t,e){let n=this.getPadWidth(e);return Math.max(0,t+2*n-e+1)}createNGrams(t,e,n,o,s,i){for(let a=0;a<s;++a){let u=this.getPadWidth(i),l=Math.max(0,u-a),c=Math.max(0,u-(s-(a+1))),p=i-(l+c),m=e+(l>0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;b<p;++b)f+=t[m+b].length;f+=c*this.rightPad.length;let d=l+c+p-1;f+=d*this.separator.length,n[o+a]=new Uint8Array(f);let h=n[o+a],g=0,x=b=>b.forEach(w=>h[g++]=w);for(let b=0;b<l;++b)x(this.leftPad),x(this.separator);for(let b=0;b<p-1;++b)x(t[m+b]),x(this.separator);if(p>0){x(t[m+p-1]);for(let b=0;b<c;++b)x(this.separator),x(this.rightPad)}else{for(let b=0;b<c-1;++b)x(this.rightPad),x(this.separator);x(this.rightPad)}}}compute(t,e){let n=t.length,o=e.length;if(o>0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l<o;++l){let c=e[l]>=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=y.getArrayFromDType("int32",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u<s;++u){let l=e[u],c=i[u];if(this.nGramWidths.forEach(p=>{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth,f=1;this.createNGrams(t,l,a,c,f,m)}}return[a,i]}};function ip(r,t,e,n,o,s,i,a){return new fT(e,n,o,s,i,a).compute(r,t)}function ctt(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;s<r.length;++s)n.push(r.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=r.indexOf(s);for(;i!==-1;){let a=r.subarray(0,i);(!e||a.length!==0)&&n.push(a),r=r.subarray(i+1),i=r.indexOf(s)}(!e||r.length!==0)&&n.push(r);return}let o=0;for(let s=0;s<r.length+1;s++)if(s===r.length||t.indexOf(r[s])!==-1){let i=r.subarray(o,s);(!e||i.length!==0)&&n.push(i),o=s+1}}function ap(r,t,e){let n=r.length,o=[],s=0,i=0,a=new Array(n);for(let m=0;m<n;++m){let f=o.length;ctt(r[m],t,e,o);let d=o.length-f;a[m]=d,s+=d,i=Math.max(i,d)}let u=y.getArrayFromDType("int32",s*2),l=new Array(s),c=[n,i],p=0;for(let m=0;m<n;++m)for(let f=0;f<a[m];++f)u[p*2]=m,u[p*2+1]=f,l[p]=o[p],++p;return[u,l,c]}function lp(r,t){let e=y.getArrayFromDType("int32",r.length);for(let n=0;n<r.length;++n)e[n]=y.fingerPrint64(r[n]).modulo(t).getLowBitsUnsigned();return e}var dT=Jt((r,t)=>r-t),ptt=xd((r,t,e,n)=>({real:r-e,imag:t-n})),Qh=ne(ei,dT,ptt),NO={kernelName:ei,backendName:"cpu",kernelFunc:Qh};function vw(r,t){let e=new Array(r.rank);for(let o=0;o<e.length;o++)e[o]=r.shape[o]*t[o];let n=bt(e,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),i=new Array(r.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%r.shape[u];let a=r.locToIndex(i);n.values[o]=r.values[a]}return n}var tg=(r,t)=>{let e=t.value-r.value;return e===0?r.index-t.index:e};function kO(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));kO(r,t,m,f)}let o=r[t],s=e,i=n;for(y.swap(r,e,t),tg(r[n],o)>0&&y.swap(r,e,n);s<i;){for(y.swap(r,s,i),s++,i--;tg(r[s],o)<0;)s=s+1;for(;tg(r[i],o)>0;)i=i-1}tg(r[e],o)===0?y.swap(r,e,i):(i=i+1,y.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function Sw(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=y.getTypedArrayFromDType(e,i*n),l=y.getTypedArrayFromDType("int32",i*n);for(let p=0;p<i;p++){let m=p*a,f=r.subarray(m,m+a),d=new Array(f.length);f.forEach((b,w)=>d[w]={value:b,index:w}),n<d.length&&(kO(d,n),d=d.slice(0,n)),o&&d.sort(tg);let h=p*n,g=u.subarray(h,h+n),x=l.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,x[b]=d[b].index}let c=t.slice();return c[c.length-1]=n,[bt(c,e,u),bt(c,"int32",l)]}function up(r,t,e,n){let o=y.parseAxisParam(t,e)[0],s=[1,e[0],1];for(let d=0;d<o;d++)s[0]*=e[d];s[1]=e[o];for(let d=o+1;d<e.length;d++)s[2]*=e[d];let i=new Map,a=new Int32Array(e[o]),u=new le(s,n,r),l=[],c=s[0]===1&&s[2]===1;for(let d=0;d<e[o];d++){let h;if(c)h=r[d].toString();else{let x=[];for(let b=0;b<s[0];b++)for(let w=0;w<s[2];w++)x.push(u.get(b,d,w));h=x.join(",")}let g=i.get(h);if(g!=null)a[d]=g;else{let x=i.size;i.set(h,x),a[d]=x,l.push(d)}}let p=s.slice();p[1]=i.size;let m=new le(p,n);l.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(u.get(g,d,x),g,h,x)});let f=e.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:a}}var TO="4.5.0";sm("cpu",()=>new Uu,1);var hT=At(ps,r=>r>=0?r:Math.exp(r)-1),_O={kernelName:ps,backendName:"cpu",kernelFunc:hT};function gT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;tt([o],"leakyRelu");let i=y.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=y.getTypedArrayFromDType("float32",i);for(let l=0;l<a.length;l++)u[l]=a[l]<0?s*a[l]:a[l];return e.makeTensorInfo(o.shape,"float32",u)}var EO={kernelName:Is,backendName:"cpu",kernelFunc:gT};var mtt=Jt((r,t)=>r<0?t*r:r);function xT(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;tt([n,o],"prelu");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=mtt(n.shape,o.shape,s,i,"float32");return e.makeTensorInfo(u,"float32",a)}var AO={kernelName:Ps,backendName:"cpu",kernelFunc:xT};var yT=At(zs,r=>Math.max(0,r)),DO={kernelName:zs,backendName:"cpu",kernelFunc:yT};var bT=At(Gs,r=>Math.min(Math.max(0,r),6)),$O={kernelName:Gs,backendName:"cpu",kernelFunc:bT};function cp(r,t,e,n,o){if(e==="linear")return Yr({inputs:{x:t},backend:r});if(e==="relu")return yT({inputs:{x:t},backend:r});if(e==="elu")return hT({inputs:{x:t},backend:r});if(e==="relu6")return bT({inputs:{x:t},backend:r});if(e==="prelu")return xT({inputs:{x:t,alpha:n},backend:r});if(e==="leakyrelu")return gT({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e==="sigmoid")return cT({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Qt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(a);y.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var RO={kernelName:Bi,backendName:"cpu",kernelFunc:Qt};function wT(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;tt([o,s],"matMul");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=Qt({inputs:{x:o},backend:e,attrs:{shape:I}}),A=Qt({inputs:{x:s},backend:e,attrs:{shape:N}}),D=i?E.shape[1]:E.shape[2],F=i?E.shape[2]:E.shape[1],P=a?A.shape[1]:A.shape[2],V=Math.max(g,x),G=e.data.get(E.dataId).values,W=e.data.get(A.dataId).values,q=y.computeStrides(E.shape),H=y.computeStrides(A.shape),[K,X,Z]=i?[q[0],1,q[1]]:[q[0],q[1],1],[et,nt,st]=a?[1,H[1],H[0]]:[H[1],1,H[0]],at=F*P,ot=bt([V,F,P],E.dtype),it=ot.values,mt=e.blockSize;for(let gt=0;gt<V;gt++){let It=gt%g,Rt=gt%x;for(let Dt=0;Dt<F;Dt+=mt){let Ht=Math.min(Dt+mt,F);for(let qt=0;qt<P;qt+=mt){let ce=Math.min(qt+mt,P);for(let ge=0;ge<D;ge+=mt){let ee=Math.min(ge+mt,D);for(let xe=Dt;xe<Ht;xe++)for(let fe=qt;fe<ce;fe++){let Ae=0;for(let De=ge;De<ee;De++){let Pn=G[It*K+xe*X+De*Z],lr=W[De*et+fe*nt+Rt*st];Ae+=Pn*lr}it[gt*at+(xe*P+fe)]+=Ae}}}}}return e.disposeIntermediateTensorInfo(E),e.disposeIntermediateTensorInfo(A),e.makeTensorInfo(w,ot.dtype,ot.values)}var FO={kernelName:ts,backendName:"cpu",kernelFunc:wT};function ftt(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=wT({inputs:{a:o,b:s},attrs:{transposeA:u,transposeB:l},backend:e}),i&&(f=ya({inputs:{a:m,b:i},backend:e}),h.push(m),m=f),c&&(d=cp(e,m,c,a,p),h.push(m),m=d);for(let x of h)e.disposeIntermediateTensorInfo(x);return m}var OO={kernelName:Ki,backendName:"cpu",kernelFunc:ftt};var dtt=At(Ho,r=>Math.acos(r)),PO={kernelName:Ho,backendName:"cpu",kernelFunc:dtt};var htt=At(qo,r=>Math.acosh(r)),MO={kernelName:qo,backendName:"cpu",kernelFunc:htt};function gtt(r){let{inputs:t,backend:e}=r,n=t;tt(t,"addN");let o=n.map(a=>e.data.get(a.dataId).values),s=bt(n[0].shape,n[0].dtype),i=s.values;for(let a=0;a<n.length;a++){let u=o[a];for(let l=0;l<i.length;l++)i[l]+=u[l]}return e.makeTensorInfo(s.shape,s.dtype,s.values)}var LO={kernelName:Ko,backendName:"cpu",kernelFunc:gtt};function xtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"all");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];w=w&&N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Qt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var zO={kernelName:Ea,backendName:"cpu",kernelFunc:xtt};function ytt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"any");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];w=w||N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Qt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var BO={kernelName:Aa,backendName:"cpu",kernelFunc:ytt};function btt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMax");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ge({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let I=0;I<d;++I){let N=h[x+I];N>b&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var VO={kernelName:Ei,backendName:"cpu",kernelFunc:btt};function wtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMin");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ge({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let I=0;I<d;++I){let N=h[x+I];N<b&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var GO={kernelName:Ai,backendName:"cpu",kernelFunc:wtt};var Itt=At(jo,r=>Math.asin(r)),WO={kernelName:jo,backendName:"cpu",kernelFunc:Itt};var Ctt=At(Xo,r=>Math.asinh(r)),UO={kernelName:Xo,backendName:"cpu",kernelFunc:Ctt};var vtt=At(Yo,r=>Math.atan(r)),HO={kernelName:Yo,backendName:"cpu",kernelFunc:vtt};var Stt=Jt((r,t)=>Math.atan2(r,t)),Ntt=ne(Jo,Stt),qO={kernelName:Jo,backendName:"cpu",kernelFunc:Ntt};var ktt=At(Zo,r=>Math.atanh(r)),KO={kernelName:Zo,backendName:"cpu",kernelFunc:ktt};function Cd(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=bt(o.outShape,e),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let I=0;I<o.batchSize;++I){let N=I*x,E=I*n[0];for(let A=0;A<o.inChannels;++A)for(let D=0;D<o.outHeight;++D){let F=D*i-m,P=Math.max(0,F),V=Math.min(o.inHeight,c+F),G=N+D*b;for(let W=0;W<o.outWidth;++W){let q=W*a-f,H=Math.max(0,q),K=Math.min(o.inWidth,p+q),X=d,Z=0,et=0;for(let st=P;st<V;st+=u){let at=E+st*n[1];for(let ot=H;ot<K;ot+=l){let it=at+ot*n[2],mt=r[it+A];s==="max"&&mt>X?X=mt:s==="avg"&&(Z+=mt,et++)}if(isNaN(X))break}let nt=G+W*w+A;g[nt]=s==="avg"?Z/et:X}}}return h}function kw(r,t,e,n,o=!1,s=!1){let i=bt(n.outShape,"int32"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=bt(t,e,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let b=0;b<n.outHeight;++b){let w=b*a-f,I=w;for(;I<0;)I+=l;let N=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let A=E*u-d,D=A;for(;D<0;)D+=c;let F=Math.min(n.inWidth,m+A),P=Number.NEGATIVE_INFINITY,V=-1;for(let G=I;G<N;G+=l){let W=G-w;for(let q=D;q<F;q+=c){let H=q-A,K=h.get(g,G,q,x);K>P&&(P=K,o?V=s?((g*n.inHeight+G)*n.inWidth+q)*n.inChannels+x:(G*n.inWidth+q)*n.inChannels+x:V=W*m+H)}}i.set(V,g,b,E,x)}}return i}function Tw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=bt(o.outShape,e),I=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let F=0;F<o.batchSize;++F){let P=F*N,V=F*n[0];for(let G=0;G<o.inChannels;++G)for(let W=0;W<o.outDepth;++W){let q=W*i-h,H=q;for(;H<0;)H+=l;let K=Math.min(o.inDepth,m+q),X=P+W*E;for(let Z=0;Z<o.outHeight;++Z){let et=Z*a-g,nt=et;for(;nt<0;)nt+=c;let st=Math.min(o.inHeight,f+et),at=X+Z*A;for(let ot=0;ot<o.outWidth;++ot){let it=ot*u-x,mt=it;for(;mt<0;)mt+=p;let gt=Math.min(o.inWidth,d+it),It=at+ot*D,Rt=b,Dt=0,Ht=0;for(let ce=H;ce<K;ce+=l){let ge=V+ce*n[1];for(let ee=nt;ee<st;ee+=c){let xe=ge+ee*n[2];for(let fe=mt;fe<gt;fe+=p){let Ae=xe+fe*n[3],De=r[Ae+G];if(s==="max"&&De>Rt?Rt=De:s==="avg"&&(Dt+=De,Ht++),isNaN(Rt))break}if(isNaN(Rt))break}if(isNaN(Rt))break}let qt=It+G;I[qt]=s==="avg"?Dt/Math.max(Ht,1):Rt}}}}return w}function jO(r,t){let e=bt(t.outShape,"int32"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h<t.batchSize;++h)for(let g=0;g<t.inChannels;++g)for(let x=0;x<t.outDepth;++x){let b=x*n-m,w=b;for(;w<0;)w+=i;let I=Math.min(t.inDepth,l+b);for(let N=0;N<t.outHeight;++N){let E=N*o-f,A=E;for(;A<0;)A+=a;let D=Math.min(t.inHeight,c+E);for(let F=0;F<t.outWidth;++F){let P=F*s-d,V=P;for(;V<0;)V+=u;let G=Math.min(t.inWidth,p+P),W=Number.NEGATIVE_INFINITY,q=-1;for(let H=w;H<I;H+=i){let K=H-b;for(let X=A;X<D;X+=a){let Z=X-E;for(let et=V;et<G;et+=u){let nt=et-P,st=r.get(h,H,X,et,g);st>=W&&(W=st,q=K*c*p+Z*c+nt)}}}e.set(q,h,x,N,F,g)}}}return e}function Ttt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Yr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=Cd(m,o.shape,o.dtype,f,c,"avg");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var XO={kernelName:Qo,backendName:"cpu",kernelFunc:Ttt};function _tt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"avgPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Tw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return e.makeTensorInfo(m.shape,"float32",m.values)}var YO={kernelName:Di,backendName:"cpu",kernelFunc:_tt};function Ett(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,I=c.effectiveFilterDepth,N=c.effectiveFilterHeight,E=c.effectiveFilterWidth,A=I-1-c.padInfo.front,D=E-1-c.padInfo.left,F=N-1-c.padInfo.top,P=bt(s.shape,"float32"),V=1/(d*h*g),G=e.bufferSync(o);for(let W=0;W<c.batchSize;++W)for(let q=0;q<c.inChannels;++q)for(let H=0;H<c.inDepth;++H)for(let K=0;K<c.inHeight;++K)for(let X=0;X<c.inWidth;++X){let Z=H-A,et=K-F,nt=X-D,st=0;for(let at=0;at<I;at+=x){let ot=(Z+at)/p;if(!(ot<0||ot>=c.outDepth||Math.floor(ot)!==ot))for(let it=0;it<N;it+=b){let mt=(et+it)/m;if(!(mt<0||mt>=c.outHeight||Math.floor(mt)!==mt))for(let gt=0;gt<E;gt+=w){let It=(nt+gt)/f;if(It<0||It>=c.outWidth||Math.floor(It)!==It)continue;let Rt=G.get(W,ot,mt,It,q);st+=Rt}}}P.set(st*V,W,H,K,X,q)}return e.makeTensorInfo(P.shape,P.dtype,P.values)}var ZO={kernelName:Xl,backendName:"cpu",kernelFunc:Ett};function Att(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;tt([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,I=x-1-c.padInfo.top,N=bt(i.shape,"float32"),E=1/(f*d),A=e.data.get(o.dataId).values,D=bt(o.shape,"float32",A);for(let F=0;F<c.batchSize;++F)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inHeight;++V)for(let G=0;G<c.inWidth;++G){let W=V-I,q=G-w,H=0;for(let K=0;K<x;K+=h){let X=(W+K)/p;if(!(X<0||X>=c.outHeight||Math.floor(X)!==X))for(let Z=0;Z<b;Z+=g){let et=(q+Z)/m;if(et<0||et>=c.outWidth||Math.floor(et)!==et)continue;let nt=D.get(F,X,et,P);H+=nt}}N.set(H*E,F,V,G,P)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var JO={kernelName:Fp,backendName:"cpu",kernelFunc:Att};function Dtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;y.assert(a.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),tt([o,a,u,s,i],"batchNorm");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,I=0,N=0,E=0,A=0;for(let D=0;D<c.length;++D)h[D]=d[I++]+(c[D]-p[N++])*f[E++]/Math.sqrt(m[A++]+l),I>=g&&(I=0),N>=w&&(N=0),E>=x&&(E=0),A>=b&&(A=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var QO={kernelName:gs,backendName:"cpu",kernelFunc:Dtt};function $tt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;tt([o],"batchToSpaceND");let a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=Qt({inputs:{x:o},backend:e,attrs:{shape:u}}),d=Ge({inputs:{x:f},backend:e,attrs:{perm:l}}),h=Qt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Lo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var tP={kernelName:$i,backendName:"cpu",kernelFunc:$tt};function Rtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=yd(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var eP={kernelName:Da,backendName:"cpu",kernelFunc:Rtt};function Ftt(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var rP={kernelName:Yl,backendName:"cpu",kernelFunc:Ftt};var Ott=At(go,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r<e.clipValueMin?e.clipValueMin:r}),nP={kernelName:go,backendName:"cpu",kernelFunc:Ott};var Ptt=r=>{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;l<a.length;l++){let c=a[l],p=u[l];n[l]=Math.hypot(c,p)}return e.makeOutput(n,t.shape,"float32")},oP={kernelName:Zl,backendName:"cpu",kernelFunc:Ptt};function ba(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.imag,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var sP={kernelName:Gp,backendName:"cpu",kernelFunc:ba};function Hu(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(h=>h.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(h=>y.sizeFromShape(h.shape)>0);if(u.length===1)return Yr({inputs:{x:u[0]},backend:e});if(u[0].dtype==="complex64"){let h=u.map(I=>Oo({inputs:{input:I},backend:e})),g=u.map(I=>ba({inputs:{input:I},backend:e})),x=Hu({inputs:h,backend:e,attrs:{axis:s}}),b=Hu({inputs:g,backend:e,attrs:{axis:s}}),w=Cr({inputs:{real:x,imag:b},backend:e});return h.forEach(I=>e.disposeIntermediateTensorInfo(I)),g.forEach(I=>e.disposeIntermediateTensorInfo(I)),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),w}let l=u.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return Qt({inputs:{x:h},backend:e,attrs:{shape:x}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=rp(c,a,t[0].dtype,p),f=S.computeOutShape(u.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var iP={kernelName:Ri,backendName:"cpu",kernelFunc:Hu};function IT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;tt([o,s],"conv2d");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",I=new le(m.outShape,o.dtype),N=y.computeStrides(o.shape),E=y.computeStrides(s.shape),A=N[0],D=w?N[1]:N[2],F=w?N[2]:1,P=w?1:N[1],V=I.strides[0],G=w?I.strides[1]:I.strides[2],W=w?I.strides[2]:1,q=w?1:I.strides[1],H=e.data.get(o.dataId).values,K=e.data.get(s.dataId).values,X=I.values;for(let Z=0;Z<m.batchSize;++Z){let et=Z*A,nt=Z*V;for(let st=0;st<m.outHeight;++st){let at=nt+st*G,ot=st*m.strideHeight-b;for(let it=0;it<f;++it){let mt=ot+it*h;if(mt<0||mt>=m.inHeight)continue;let gt=it*E[0],It=et+mt*D;for(let Rt=0;Rt<m.outWidth;++Rt){let Dt=at+Rt*W,Ht=Rt*m.strideWidth-x;for(let qt=0;qt<d;++qt){let ce=Ht+qt*g;if(ce<0||ce>=m.inWidth)continue;let ge=gt+qt*E[1],ee=It+ce*F,xe=ge;for(let fe=0;fe<m.inChannels;++fe){let Ae=H[ee+fe*P];for(let De=0;De<m.outChannels;++De)X[Dt+De*q]+=Ae*K[xe+De];xe+=m.outChannels}}}}}}return e.makeTensorInfo(I.shape,I.dtype,X)}var aP={kernelName:rs,backendName:"cpu",kernelFunc:IT};function Mtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new le(m.filterShape,"float32"),w=m.padInfo.left,I=m.padInfo.top,N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,A=new le(o.shape,o.dtype,N),D=new le(s.shape,s.dtype,E);for(let F=0;F<h;++F){let P=Math.max(0,Math.ceil((I-F)/f)),V=Math.min(m.outHeight,(m.inHeight+I-F)/f);for(let G=0;G<g;++G){let W=Math.max(0,Math.ceil((w-G)/d)),q=Math.min(m.outWidth,(m.inWidth+w-G)/d);for(let H=0;H<m.inChannels;++H)for(let K=0;K<m.outChannels;++K){let X=0;for(let Z=0;Z<m.batchSize;++Z)for(let et=P;et<V;++et){let nt=F+et*f-I;for(let st=W;st<q;++st){let at=G+st*d-w;x?X+=A.get(Z,nt,at,H)*D.get(Z,et,st,K):X+=A.get(Z,H,nt,at)*D.get(Z,K,et,st)}}b.set(X,F,G,H,K)}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var lP={kernelName:Pp,backendName:"cpu",kernelFunc:Mtt};function Ltt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n;tt([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,f),h=new le(d.inShape,"float32"),g=h.values,x=e.data.get(o.dataId).values,b=e.data.get(s.dataId).values,[w,I,N]=p,{batchSize:E,filterHeight:A,filterWidth:D,inChannels:F,inHeight:P,inWidth:V,outChannels:G,outHeight:W,outWidth:q,strideHeight:H,strideWidth:K}=d;f=d.dataFormat;let X=A-1-d.padInfo.top,Z=D-1-d.padInfo.left,et=f==="channelsLast",nt=h.strides[0],st=et?h.strides[1]:h.strides[2],at=et?h.strides[2]:1,ot=et?1:h.strides[1],it=m[0],mt=et?m[1]:m[2],gt=et?m[2]:1,It=et?1:m[1];for(let Rt=0;Rt<E;++Rt)for(let Dt=0;Dt<F;++Dt)for(let Ht=0;Ht<P;++Ht){let qt=Ht-X,ce=Math.max(0,Math.ceil(qt/H)),ge=Math.min(W,(A+qt)/H);for(let ee=0;ee<V;++ee){let xe=ee-Z,fe=Math.max(0,Math.ceil(xe/K)),Ae=Math.min(q,(D+xe)/K),De=0;for(let lr=ce;lr<ge;++lr){let Jn=lr*H-qt;for(let Br=fe;Br<Ae;++Br){let je=Br*K-xe,Vr=it*Rt+mt*lr+gt*Br,Gr=w*(A-1-Jn)+I*(D-1-je)+N*Dt;for(let Qn=0;Qn<G;++Qn){let to=x[Vr+It*Qn],Jr=b[Gr+Qn];De+=to*Jr}}}let Pn=nt*Rt+st*Ht+at*ee+ot*Dt;g[Pn]=De}}return e.makeTensorInfo(h.shape,h.dtype,h.values)}var uP={kernelName:ns,backendName:"cpu",kernelFunc:Ltt};function ztt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;tt([o,s],"conv3d");let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=l,x=g.front,b=g.left,w=g.top,I=new le(l.outShape,o.dtype),N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,A=I.values,D=y.computeStrides(o.shape),F=y.computeStrides(s.shape);for(let P=0;P<l.batchSize;++P){let V=P*D[0],G=P*I.strides[0];for(let W=0;W<l.outDepth;++W){let q=G+W*I.strides[1],H=W*l.strideDepth-x;for(let K=0;K<c;++K){let X=H+K*f;if(X<0||X>=l.inDepth)continue;let Z=K*F[0],et=V+X*D[1];for(let nt=0;nt<l.outHeight;++nt){let st=q+nt*I.strides[2],at=nt*l.strideHeight-w;for(let ot=0;ot<p;++ot){let it=at+ot*d;if(it<0||it>=l.inHeight)continue;let mt=Z+ot*F[1],gt=et+it*D[2];for(let It=0;It<l.outWidth;++It){let Rt=st+It*l.outChannels,Dt=It*l.strideWidth-b;for(let Ht=0;Ht<m;++Ht){let qt=Dt+Ht*h;if(qt<0||qt>=l.inWidth)continue;let ce=mt+Ht*F[2],ge=gt+qt*l.inChannels,ee=ce;for(let xe=0;xe<l.inChannels;++xe){let fe=N[ge+xe];for(let Ae=0;Ae<l.outChannels;++Ae)A[Rt+Ae]+=fe*E[ee+Ae];ee+=l.outChannels}}}}}}}}return e.makeTensorInfo(I.shape,I.dtype,I.values)}var cP={kernelName:os,backendName:"cpu",kernelFunc:ztt};function Btt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;tt([o,s],"conv3dBackpropFilterV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(o.shape,u,i,1,a),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new le(p.filterShape,"float32"),w=b.values,[I,N,E,A]=b.strides,D=e.data.get(s.dataId).values,[F,P,V,G]=c,W=e.data.get(o.dataId).values,[q,H,K,X]=l,Z=p.padInfo.front,et=p.padInfo.left,nt=p.padInfo.top;for(let st=0;st<h;++st){let at=Math.max(0,Math.ceil((Z-st)/m)),ot=Math.min(p.outDepth,(p.inDepth+Z-st)/m),it=st*I;for(let mt=0;mt<g;++mt){let gt=Math.max(0,Math.ceil((nt-mt)/f)),It=Math.min(p.outHeight,(p.inHeight+nt-mt)/f),Rt=mt*N+it;for(let Dt=0;Dt<x;++Dt){let Ht=Math.max(0,Math.ceil((et-Dt)/d)),qt=Math.min(p.outWidth,(p.inWidth+et-Dt)/d),ce=Dt*E+Rt;for(let ge=0;ge<p.inChannels;++ge){let ee=ge*A+ce;for(let xe=0;xe<p.outChannels;++xe){let fe=0;for(let Ae=0;Ae<p.batchSize;++Ae){let De=Ae*q,Pn=Ae*F;for(let lr=at;lr<ot;++lr){let Br=(st+lr*m-Z)*H+De,je=lr*P+Pn;for(let Vr=gt;Vr<It;++Vr){let Qn=(mt+Vr*f-nt)*K+Br,to=Vr*V+je;for(let Jr=Ht;Jr<qt;++Jr){let Go=(Dt+Jr*d-et)*X+Qn,Ni=Jr*G+to;fe+=W[Go+ge]*D[Ni+xe]}}}}w[ee+xe]=fe}}}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var pP={kernelName:$a,backendName:"cpu",kernelFunc:Btt};function Vtt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;tt([o],"conv3dBackpropInputV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(u,s.shape,a,1,i),m=new le(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=e.data.get(o.dataId).values,[w,I,N,E]=l,A=e.data.get(s.dataId).values,[D,F,P,V]=c,{batchSize:G,filterDepth:W,filterHeight:q,filterWidth:H,inChannels:K,inDepth:X,inHeight:Z,inWidth:et,outChannels:nt,outDepth:st,outHeight:at,outWidth:ot,strideDepth:it,strideHeight:mt,strideWidth:gt}=p,It=W-1-p.padInfo.front,Rt=q-1-p.padInfo.top,Dt=H-1-p.padInfo.left;for(let Ht=0;Ht<G;++Ht)for(let qt=0;qt<K;++qt)for(let ce=0;ce<X;++ce){let ge=ce-It,ee=Math.max(0,Math.ceil(ge/it)),xe=Math.min(st,(W+ge)/it);for(let fe=0;fe<Z;++fe){let Ae=fe-Rt,De=Math.max(0,Math.ceil(Ae/mt)),Pn=Math.min(at,(q+Ae)/mt);for(let lr=0;lr<et;++lr){let Jn=lr-Dt,Br=Math.max(0,Math.ceil(Jn/gt)),je=Math.min(ot,(H+Jn)/gt),Vr=0;for(let Gr=ee;Gr<xe;++Gr){let Qn=Gr*it-ge;for(let to=De;to<Pn;++to){let Jr=to*mt-Ae;for(let Ca=Br;Ca<je;++Ca){let Go=Ca*gt-Jn,Ni=w*Ht+I*Gr+N*to+E*Ca,Er=D*(W-1-Qn)+F*(q-1-Jr)+P*(H-1-Go)+V*qt;for(let va=0;va<nt;++va){let Hd=b[Ni+va],qd=A[Er+va];Vr+=Hd*qd}}}}f[d*Ht+h*ce+g*fe+x*lr+qt]=Vr}}}return e.makeTensorInfo(m.shape,m.dtype,m.values)}var mP={kernelName:Ra,backendName:"cpu",kernelFunc:Vtt};var Gtt=At(ss,r=>Math.cos(r)),fP={kernelName:ss,backendName:"cpu",kernelFunc:Gtt};var Wtt=At(is,r=>Math.cosh(r)),dP={kernelName:is,backendName:"cpu",kernelFunc:Wtt};function Utt(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,x=bt([d,h,g,f],"float32"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,I=e.data.get(o.dataId).values,N=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let A=0;A<d;A++){let D=A*4,F=b[D],P=b[D+1],V=b[D+2],G=b[D+3],W=w[A];if(W>=c)continue;let q=h>1?(V-F)*(p-1)/(h-1):0,H=g>1?(G-P)*(m-1)/(g-1):0;for(let K=0;K<h;K++){let X=h>1?F*(p-1)+K*q:.5*(F+V)*(p-1);if(X<0||X>p-1){for(let Z=0;Z<g;Z++)for(let et=0;et<f;et++){let nt=et+Z*E[2]+K*E[1]+A*E[0];x.values[nt]=l}continue}if(u==="bilinear"){let Z=Math.floor(X),et=Math.ceil(X),nt=X-Z;for(let st=0;st<g;st++){let at=g>1?P*(m-1)+st*H:.5*(P+G)*(m-1);if(at<0||at>m-1){for(let gt=0;gt<f;gt++){let It=gt+st*E[2]+K*E[1]+A*E[0];x.values[It]=l}continue}let ot=Math.floor(at),it=Math.ceil(at),mt=at-ot;for(let gt=0;gt<f;gt++){let It=gt+ot*N[2]+Z*N[1]+W*N[0],Rt=I[It];It=gt+it*N[2]+Z*N[1]+W*N[0];let Dt=I[It];It=gt+ot*N[2]+et*N[1]+W*N[0];let Ht=I[It];It=gt+it*N[2]+et*N[1]+W*N[0];let qt=I[It],ce=Rt+(Dt-Rt)*mt,ge=Ht+(qt-Ht)*mt;It=gt+st*E[2]+K*E[1]+A*E[0],x.values[It]=ce+(ge-ce)*nt}}}else for(let Z=0;Z<g;++Z){let et=g>1?P*(m-1)+Z*H:.5*(P+G)*(m-1);if(et<0||et>m-1){for(let at=0;at<f;at++){let ot=at+Z*E[2]+K*E[1]+A*E[0];x.values[ot]=l}continue}let nt=Math.round(et),st=Math.round(X);for(let at=0;at<f;at++){let ot=at+nt*N[2]+st*N[1]+W*N[0],it=at+Z*E[2]+K*E[1]+A*E[0];x.values[it]=I[ot]}}}}return e.makeTensorInfo(x.shape,x.dtype,x.values)}var hP={kernelName:Oa,backendName:"cpu",kernelFunc:Utt};function Htt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumprod");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ge({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ur(l.dtype,"int32"),m=y.makeOnesTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?1:f[w];else{let I=h(x,b-1);m[w]=i?f[I]*m[I]:f[w]*m[I]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=S.getUndoAxesPermutation(u),b=Ge({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var gP={kernelName:Fa,backendName:"cpu",kernelFunc:Htt};function qtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumsum");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ge({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ur(l.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?0:f[w];else{let I=h(x,b-1);m[w]=i?f[I]+m[I]:f[w]+m[I]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=S.getUndoAxesPermutation(u),b=Ge({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var xP={kernelName:as,backendName:"cpu",kernelFunc:qtt};function Ktt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=yd(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=mw(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var yP={kernelName:Jl,backendName:"cpu",kernelFunc:Ktt};function jtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n;y.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let x=0;x<a;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),I=b%s;for(let N=0;N<m;++N){let E=Math.floor(N/s),A=N%s,D=(I*s+A)*f;for(let F=0;F<f;++F){let V=F+D+c*(E+l*(w+u*x));h[g++]=d[V]}}}return e.makeTensorInfo([a,p,m,f],o.dtype,h)}var bP={kernelName:Pa,backendName:"cpu",kernelFunc:jtt};function CT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n;tt([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=u;m==null&&(m=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(i,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,I=b.top,N=f.outChannels/f.inChannels,E=new le(f.outShape,o.dtype),A=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,F=E.values;for(let P=0;P<f.batchSize;++P){let V=P*c[0],G=P*E.strides[0];for(let W=0;W<f.outHeight;++W){let q=G+W*E.strides[1],H=W*f.strideHeight-I;for(let K=0;K<d;++K){let X=H+K*g;if(X<0||X>=f.inHeight)continue;let Z=K*p[0],et=V+X*c[1];for(let nt=0;nt<f.outWidth;++nt){let st=q+nt*E.strides[2],at=nt*f.strideWidth-w;for(let ot=0;ot<h;++ot){let it=at+ot*x;if(it<0||it>=f.inWidth)continue;let mt=Z+ot*p[1],gt=et+it*f.inChannels,It=st,Rt=mt;for(let Dt=0;Dt<f.inChannels;++Dt){let Ht=A[gt+Dt];for(let qt=0;qt<N;++qt)F[It+qt]+=Ht*D[Rt+qt];It+=N,Rt+=N}}}}}}return e.makeTensorInfo(E.shape,E.dtype,E.values)}var wP={kernelName:ls,backendName:"cpu",kernelFunc:CT};function Xtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new le(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,I=e.data.get(o.dataId).values,N=new le(o.shape,o.dtype,I),E=e.data.get(s.dataId).values,A=new le(s.shape,s.dtype,E);for(let D=0;D<d;++D){let F=Math.max(0,Math.ceil((b-D)/m)),P=Math.min(p.outHeight,(p.inHeight+b-D)/m);for(let V=0;V<h;++V){let G=Math.max(0,Math.ceil((x-V)/f)),W=Math.min(p.outWidth,(p.inWidth+x-V)/f);for(let q=0;q<p.outChannels;++q){let H=Math.trunc(q/w),K=q%w,X=0;for(let Z=0;Z<p.batchSize;++Z)for(let et=F;et<P;++et){let nt=D+et*m-b;for(let st=G;st<W;++st){let at=V+st*f-x;X+=N.get(Z,nt,at,H)*A.get(Z,et,st,q)}}g.set(X,D,V,H,K)}}}return e.makeTensorInfo(g.shape,g.dtype,g.values)}var IP={kernelName:Mp,backendName:"cpu",kernelFunc:Xtt};function Ytt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n;tt([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),d=new le(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=e.data.get(o.dataId).values,[I,N,E]=p,A=e.data.get(s.dataId).values,[D,F,P]=m,{batchSize:V,filterHeight:G,filterWidth:W,inChannels:q,inHeight:H,inWidth:K,outChannels:X,outHeight:Z,outWidth:et,strideHeight:nt,strideWidth:st}=f,at=G-1-f.padInfo.top,ot=W-1-f.padInfo.left,it=X/q;for(let mt=0;mt<V;++mt)for(let gt=0;gt<q;++gt)for(let It=0;It<H;++It){let Rt=It-at,Dt=Math.max(0,Math.ceil(Rt/nt)),Ht=Math.min(Z,(G+Rt)/nt);for(let qt=0;qt<K;++qt){let ce=qt-ot,ge=Math.max(0,Math.ceil(ce/st)),ee=Math.min(et,(W+ce)/st),xe=0;for(let fe=Dt;fe<Ht;++fe){let Ae=fe*nt-Rt;for(let De=ge;De<ee;++De){let Pn=De*st-ce,lr=I*mt+N*fe+E*De,Jn=D*(G-1-Ae)+F*(W-1-Pn)+P*gt;for(let Br=0;Br<it;++Br){let je=gt*it+Br,Vr=w[lr+je],Gr=A[Jn+Br];xe+=Vr*Gr}}}h[g*mt+x*It+b*qt+gt]=xe}}return e.makeTensorInfo(d.shape,d.dtype,d.values)}var CP={kernelName:Lp,backendName:"cpu",kernelFunc:Ytt};function Ztt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.data.get(n.dataId).values,i=bt([o,o],n.dtype),a=i.values;for(let l=0;l<s.length;l++)a[l*o+l]=s[l];let u=[...n.shape,...n.shape];return e.makeTensorInfo(u,i.dtype,i.values)}var vP={kernelName:Ql,backendName:"cpu",kernelFunc:Ztt};var SP={kernelName:us,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:I,strideWidth:N,filterHeight:E,filterWidth:A,dilationHeight:D,dilationWidth:F,outShape:P}=S.computeDilation2DInfo(n.shape,o.shape,s,i,"NHWC",a),V=y.sizeFromShape(P),G=P.length,W=y.getArrayFromDType(n.dtype,V);for(let H=0;H<f;++H)for(let K=0;K<x;++K){let X=K*I-w.top;for(let Z=0;Z<b;++Z){let et=Z*N-w.left;for(let nt=0;nt<g;++nt){let st=Number.MIN_SAFE_INTEGER;for(let ot=0;ot<E;++ot){let it=X+ot*D;if(it>=0&&it<d)for(let mt=0;mt<A;++mt){let gt=et+mt*F;if(gt>=0&&gt<h){let It=y.locToIndex([H,it,gt,nt],c,y.computeStrides(n.shape)),Rt=y.locToIndex([ot,mt,nt],m,y.computeStrides(o.shape)),Dt=l[It]+p[Rt];Dt>st&&(st=Dt)}}}let at=y.locToIndex([H,K,Z,nt],G,y.computeStrides(P));W[at]=st}}}return{dataId:u.write(y.toTypedArray(W,n.dtype),P,n.dtype),shape:P,dtype:n.dtype}}};var NP={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${eu}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let K=0;K<x;++K){let X=K*I-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,nt=0,st=0;for(let at=0;at<N;++at){let ot=H+at*A;if(ot>=0&&ot<f)for(let it=0;it<E;++it){let mt=X+it*D;if(mt>=0&&mt<d){let gt=c[W][ot][mt][Z]+p[at][it][Z];gt>et&&(et=gt,nt=at,st=it)}}}V[nt][st][Z]+=P[W][q][K][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var kP={kernelName:tu,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${tu}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let K=0;K<x;++K){let X=K*I-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,nt=H<0?0:H,st=X<0?0:X;for(let at=0;at<N;++at){let ot=H+at*A;if(ot>=0&&ot<f)for(let it=0;it<E;++it){let mt=X+it*D;if(mt>=0&&mt<d){let gt=c[W][ot][mt][Z]+p[at][it][Z];gt>et&&(et=gt,nt=ot,st=mt)}}}V[W][nt][st][Z]+=P[W][q][K][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ml(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"sum");let a;o.dtype==="bool"?a=Po({inputs:{x:o},backend:e,attrs:{dtype:"int32"}}):a=Yr({inputs:{x:o},backend:e});let u=a.shape.length,l=y.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=Ge({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=gd(e,f,h),x=y.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let I=0;I<b.length;++I){let N=I*x,E=0;for(let A=0;A<x;++A)E+=w[N+A];b[I]=E}if(i){let I=S.expandShapeToKeepDim(g.shape,l),N=g;g=Qt({inputs:{x:g},backend:e,attrs:{shape:I}}),e.disposeIntermediateTensorInfo(N)}return e.disposeIntermediateTensorInfo(a),c!=null&&e.disposeIntermediateTensorInfo(m),g}var TP={kernelName:Js,backendName:"cpu",kernelFunc:Ml};function Jtt(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(x)?w=s[g]:(w=Ge({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let I=w.shape.slice();for(let N=0;N<b.length;++N)I.splice(b[N],0,1);y.arraysEqual(w.shape,I)||(w=Qt({inputs:{x:w},backend:e,attrs:{shape:I}}),d.push(w)),m===null?m=w:(m=np({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=Ml({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var _P={kernelName:zp,backendName:"cpu",kernelFunc:Jtt};function Qtt(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;tt([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=0?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,"float32",s)}var EP={kernelName:Ma,backendName:"cpu",kernelFunc:Qtt};var tet=S.ERF_P,eet=S.ERF_A1,ret=S.ERF_A2,net=S.ERF_A3,oet=S.ERF_A4,set=S.ERF_A5,iet=At(La,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+tet*e);return t*(1-((((set*n+oet)*n+net)*n+ret)*n+eet)*n*Math.exp(-e*e))}),AP={kernelName:La,backendName:"cpu",kernelFunc:iet};function vd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),Qt({inputs:{x:o},backend:e,attrs:{shape:a}})}var DP={kernelName:Fi,backendName:"cpu",kernelFunc:vd};var aet=Jt((r,t)=>r/t),eg=ne(cs,aet),rg={kernelName:cs,backendName:"cpu",kernelFunc:eg};function _w(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=y.sizeFromShape(l),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=Lo({inputs:{x:a},backend:e,attrs:{begin:[g,0],size:[1,s]}}),b=Lo({inputs:{x:u},backend:e,attrs:{begin:[g,0],size:[1,s]}}),w=Cr({inputs:{real:x,imag:b},backend:e}),{real:I,imag:N}=uet(w,t,e),E=S.mergeRealAndImagArrays(I,N);for(let A=0;A<s;A++){let D=S.getComplexWithIndex(E,A);p[g*s+A]=D.real,m[g*s+A]=D.imag}e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(w)}let f=e.makeTensorInfo(l,"float32",p),d=e.makeTensorInfo(l,"float32",m),h=Cr({inputs:{real:f,imag:d},backend:e});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}function uet(r,t,e){let n=y.sizeFromShape(r.shape),o=e.data.get(r.dataId),s=e.data.get(o.complexTensorInfos.real.dataId).values,i=e.data.get(o.complexTensorInfos.imag.dataId).values;if(cet(n)){let a=vT(s,i,n,t,e),u=[r.shape[0],r.shape[1]];if(t){let l=e.makeTensorInfo(u,"float32",a.real),c=e.makeTensorInfo(u,"float32",a.imag),p=e.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Yr({inputs:{x:p},backend:e}),f=rg.kernelFunc({inputs:{a:l,b:p},backend:e}),d=rg.kernelFunc({inputs:{a:c,b:m},backend:e}),h=e.data.get(f.dataId).values,g=e.data.get(d.dataId).values;return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return a}else{let a=S.mergeRealAndImagArrays(s,i),u=pet(a,n,t);return S.splitRealAndImagArrays(u)}}function cet(r){return(r&r-1)===0}function vT(r,t,e,n,o){if(e===1)return{real:r,imag:t};let s=S.mergeRealAndImagArrays(r,t),i=e/2,a=S.complexWithEvenIndex(s),u=a.real,l=a.imag,c=[u.length],p=o.makeTensorInfo(c,"float32",u),m=o.makeTensorInfo(c,"float32",l),f=Cr({inputs:{real:p,imag:m},backend:o}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=o.makeTensorInfo(x,"float32",h),w=o.makeTensorInfo(x,"float32",g),I=Cr({inputs:{real:b,imag:w},backend:o}),N=vT(u,l,i,n,o),E=N.real,A=N.imag,D=[E.length],F=o.makeTensorInfo(D,"float32",E),P=o.makeTensorInfo(D,"float32",A),V=Cr({inputs:{real:F,imag:P},backend:o}),G=vT(h,g,i,n,o),W=G.real,q=G.imag,H=[W.length],K=o.makeTensorInfo(H,"float32",W),X=o.makeTensorInfo(H,"float32",q),Z=Cr({inputs:{real:K,imag:X},backend:o}),et=S.exponents(e,n),nt=[et.real.length],st=o.makeTensorInfo(nt,"float32",et.real),at=o.makeTensorInfo(nt,"float32",et.imag),ot=Cr({inputs:{real:st,imag:at},backend:o}),it=np({inputs:{a:ot,b:Z},backend:o}),mt=ya({inputs:{a:V,b:it},backend:o}),gt=Qh({inputs:{a:V,b:it},backend:o}),It=Oo({inputs:{input:mt},backend:o}),Rt=Oo({inputs:{input:gt},backend:o}),Dt=ba({inputs:{input:mt},backend:o}),Ht=ba({inputs:{input:gt},backend:o}),qt=Hu({inputs:[It,Rt],backend:o,attrs:{axis:0}}),ce=Hu({inputs:[Dt,Ht],backend:o,attrs:{axis:0}}),ge=o.data.get(qt.dataId).values,ee=o.data.get(ce.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(I),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(P),o.disposeIntermediateTensorInfo(V),o.disposeIntermediateTensorInfo(K),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(Z),o.disposeIntermediateTensorInfo(st),o.disposeIntermediateTensorInfo(at),o.disposeIntermediateTensorInfo(ot),o.disposeIntermediateTensorInfo(it),o.disposeIntermediateTensorInfo(mt),o.disposeIntermediateTensorInfo(gt),o.disposeIntermediateTensorInfo(It),o.disposeIntermediateTensorInfo(Dt),o.disposeIntermediateTensorInfo(Rt),o.disposeIntermediateTensorInfo(Ht),o.disposeIntermediateTensorInfo(qt),o.disposeIntermediateTensorInfo(ce),{real:ge,imag:ee}}function pet(r,t,e){let n=new Float32Array(t*2);for(let o=0;o<t;o++){let s=0,i=0;for(let a=0;a<t;a++){let u=S.exponent(o*a,t,e),l=S.getComplexWithIndex(r,a);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}e&&(s/=t,i/=t),S.assignToTypedArray(n,s,i,o)}return n}function met(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Qt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=_w(a,!1,e),l=Qt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var $P={kernelName:Bp,backendName:"cpu",kernelFunc:met};function ng(r){let{backend:t,attrs:e}=r,{shape:n,value:o,dtype:s}=e,i=s||y.inferDtype(o),a=y.getArrayFromDType(i,y.sizeFromShape(n));return fet(a,o,i),t.makeTensorInfo(n,i,a)}var RP={kernelName:ru,backendName:"cpu",kernelFunc:ng};function fet(r,t,e){r.fill(t)}var FP={kernelName:Ba,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,o=e,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<i;m++){let f=m*u*a*l;for(let d=0;d<a;d++){let h=d*(u*l);for(let g=0;g<u;g++){let x=g*l;for(let b=0;b<l;b++){let w=Math.round(u-g-1),I=f+h+x+b,N=c[I];if(w>=0&&w<u){let E=w*l,A=f+h+E+b;N=c[A]}s[I]=N}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function det(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=IT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let x=Qt({inputs:{x:i},backend:e,attrs:{shape:[i.shape[0],1,1]}});h=ya({inputs:{a:h,b:x},backend:e}),e.disposeIntermediateTensorInfo(x)}else h=ya({inputs:{a:h,b:i},backend:e});e.disposeIntermediateTensorInfo(g)}if(f){let g=h;if(c==="NCHW"&&f==="prelu"&&a.shape.length===1&&a.shape[0]!==1){let x=Qt({inputs:{x:a},backend:e,attrs:{shape:[a.shape[0],1,1]}});h=cp(e,h,f,x,d),e.disposeIntermediateTensorInfo(x)}else h=cp(e,h,f,a,d);e.disposeIntermediateTensorInfo(g)}return h}var OP={kernelName:ji,backendName:"cpu",kernelFunc:det};function het(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=CT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;h=ya({inputs:{a:h,b:i},backend:e}),e.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=cp(e,h,f,a,d),e.disposeIntermediateTensorInfo(g)}return h}var PP={kernelName:Xi,backendName:"cpu",kernelFunc:het};function get(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=y.sizeFromShape(n.shape),i=o.shape,a=i[i.length-1],[u,l,c,p]=S.prepareAndValidate(n,o);if(l===0)return e.makeTensorInfo(u,n.dtype,[]);let m=e.data.get(o.dataId).values,f=e.bufferSync(n),d=fw(m,f,n.dtype,l,a,c,p,n.shape,s);return e.makeTensorInfo(u,n.dtype,d.values)}var MP={kernelName:Va,backendName:"cpu",kernelFunc:get};function xet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n;tt([o,s],"gatherV2");let u=y.parseAxisParam(i,o.shape)[0],l=e.data.get(s.dataId).values,c=o.shape[u];for(let I=0;I<l.length;++I){let N=l[I];y.assert(N<=c-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=y.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=Qt({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=Qt({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],x=e.bufferSync(h),b=e.bufferSync(d),w=dw(b,x,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var LP={kernelName:Oi,backendName:"cpu",kernelFunc:xet};function yet(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Qt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=_w(a,!0,e),l=Qt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var zP={kernelName:Vp,backendName:"cpu",kernelFunc:yet};var bet=At(ys,r=>Number.isFinite(r)?1:0,"bool"),BP={kernelName:ys,backendName:"cpu",kernelFunc:bet};var wet=At(bs,r=>Math.abs(r)===1/0?1:0,"bool"),VP={kernelName:bs,backendName:"cpu",kernelFunc:wet};var Iet=At(ws,r=>Number.isNaN(r)?1:0,"bool"),GP={kernelName:ws,backendName:"cpu",kernelFunc:Iet};function Cet(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=hw(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var WP={kernelName:Ha,backendName:"cpu",kernelFunc:Cet};var vet=At(vs,r=>Math.log1p(r)),UP={kernelName:vs,backendName:"cpu",kernelFunc:vet};var Net=Jt((r,t)=>r&&t),ket=ne(qa,Net,null,"bool"),HP={kernelName:qa,backendName:"cpu",kernelFunc:ket};var Tet=At(Ka,r=>r?0:1,"bool"),qP={kernelName:Ka,backendName:"cpu",kernelFunc:Tet};var _et=Jt((r,t)=>r||t),Eet=ne(ja,_et,null,"bool"),KP={kernelName:ja,backendName:"cpu",kernelFunc:Eet};function Aet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;tt(o,"LRN");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let I=p[x];w+=I*I}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(i+a*g,-u);f[h]=x}return e.makeTensorInfo(o.shape,o.dtype,f)}var jP={kernelName:Ss,backendName:"cpu",kernelFunc:Aet};function Det(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;tt(i,"LRNGrad");let p=y.sizeFromShape(i.shape),m=i.shape[3],f=e.data.get(i.dataId).values,d=e.data.get(o.dataId).values,h=e.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,I=b-w+Math.max(0,w-a),N=b-w+Math.min(m,w+a+1),E=0;for(let A=I;A<N;A++)E+=Math.pow(d[A],2);E=l*E+u;for(let A=I;A<N;A++){let D=-2*l*c*d[A]*h[b]/E;b===A&&(D+=Math.pow(E,-c)),D*=f[b],g[A]+=D}}return e.makeTensorInfo(i.shape,o.dtype,g)}var XP={kernelName:Xa,backendName:"cpu",kernelFunc:Det};function ST(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=e,u=o.shape,l=u.length,c=y.parseAxisParam(s,u),p=c,m=S.getAxesPermutation(p,l),f=a.data.get(o.dataId).values;if(m!=null){let I=new Array(l);for(let N=0;N<I.length;N++)I[N]=u[m[N]];f=bd(f,u,o.dtype,m,I),p=S.getInnerMostAxes(p.length,l),u=I}tt(o,"max"),S.assertAxesAreInnerMostDims("max",p,l);let[d,h]=S.computeOutAndReduceShapes(u,p),g=y.sizeFromShape(h),x=gw(f,g,d,o.dtype),b=a.write(x,d,o.dtype),w=d;return i&&(w=S.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var YP={kernelName:Ns,backendName:"cpu",kernelFunc:ST};function $et(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Yr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=Cd(m,o.shape,o.dtype,f,c,"max");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var ZP={kernelName:Ts,backendName:"cpu",kernelFunc:$et};function Ret(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"maxPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Tw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return e.makeTensorInfo(m.shape,"float32",m.values)}var JP={kernelName:Pi,backendName:"cpu",kernelFunc:Ret};function Fet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=jO(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,I=c.effectiveFilterHeight,N=c.effectiveFilterWidth,E=w-1-c.padInfo.front,A=N-1-c.padInfo.left,D=I-1-c.padInfo.top,F=bt(s.shape,"float32"),P=e.bufferSync(o);for(let V=0;V<c.batchSize;++V)for(let G=0;G<c.inChannels;++G)for(let W=0;W<c.inDepth;++W)for(let q=0;q<c.inHeight;++q)for(let H=0;H<c.inWidth;++H){let K=W-E,X=q-D,Z=H-A,et=0;for(let nt=0;nt<w;nt+=g){let st=(K+nt)/f;if(!(st<0||st>=c.outDepth||Math.floor(st)!==st))for(let at=0;at<I;at+=x){let ot=(X+at)/d;if(!(ot<0||ot>=c.outHeight||Math.floor(ot)!==ot))for(let it=0;it<N;it+=b){let mt=(Z+it)/h;if(mt<0||mt>=c.outWidth||Math.floor(mt)!==mt)continue;let gt=w*I*N-1-m.get(V,st,ot,mt,G),It=nt*I*N+at*N+it,Rt=gt===It?1:0;if(Rt===0)continue;let Dt=P.get(V,st,ot,mt,G);et+=Dt*Rt}}}F.set(et,V,W,q,H,G)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var QP={kernelName:nu,backendName:"cpu",kernelFunc:Fet};function Oet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;tt([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=bt(m.outShape,a.dtype,kw(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,I=m.effectiveFilterWidth,N=I-1-m.padInfo.left,E=w-1-m.padInfo.top,A=bt(a.shape,"float32"),D=e.data.get(o.dataId).values,F=bt(o.shape,"float32",D);for(let P=0;P<m.batchSize;++P)for(let V=0;V<m.inChannels;++V)for(let G=0;G<m.inHeight;++G)for(let W=0;W<m.inWidth;++W){let q=G-E,H=W-N,K=0;for(let X=0;X<w;X+=x){let Z=(q+X)/h;if(!(Z<0||Z>=m.outHeight||Math.floor(Z)!==Z))for(let et=0;et<I;et+=b){let nt=(H+et)/g;if(nt<0||nt>=m.outWidth||Math.floor(nt)!==nt)continue;let st=w*I-1-d.get(P,Z,nt,V),at=X*I+et,ot=st===at?1:0;if(ot===0)continue;let it=F.get(P,Z,nt,V);K+=it*ot}}A.set(K,P,G,W,V)}return e.makeTensorInfo(A.shape,A.dtype,A.values)}var tM={kernelName:Wp,backendName:"cpu",kernelFunc:Oet};function eM(r,t,e,n,o){let s=y.computeStrides(t),i=Cd(r,t,e,s,o,"max"),a=kw(r,t,e,o,!0,n);return[i.values,a.values]}var rM={kernelName:Up,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;tt(n,"MaxPoolWithArgmax");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=eM(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function Pet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=y.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=y.sizeFromShape(l),p=[],m=e.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Po({inputs:{x:o},backend:e,attrs:{dtype:"float32"}});p.push(f);let d=eg({inputs:{a:f,b:m},backend:e});p.push(d);let h=Ml({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var nM={kernelName:_s,backendName:"cpu",kernelFunc:Pet};function Met(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"min");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];(Number.isNaN(N)||N<w)&&(w=N)}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Qt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var oM={kernelName:Es,backendName:"cpu",kernelFunc:Met};function Let(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,mode:i}=n;tt(o,"mirrorPad");let a=s.map((w,I)=>w[0]+o.shape[I]+w[1]),u=s.map(w=>w[0]),l=s.map((w,I)=>w[0]+o.shape[I]),c=i==="reflect"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(a),h=a.length,g=y.computeStrides(a),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let I=y.indexToLoc(w,h,g);for(let E=0;E<h;E++)I[E]<u[E]?I[E]=u[E]*2-I[E]-c:I[E]>=l[E]&&(I[E]=(l[E]-1)*2-I[E]+c);I=I.map((E,A)=>E-u[A]);let N=y.locToIndex(I,m,f);x[w]=p[N]}return{dataId:e.write(x,a,o.dtype),shape:a,dtype:o.dtype}}var sM={kernelName:Ds,backendName:"cpu",kernelFunc:Let};var zet=Jt((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),Bet=ne(Ya,zet),iM={kernelName:Ya,backendName:"cpu",kernelFunc:Bet};var lM=Kl(bh());function NT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=y.parseAxisParam([a],o.shape),l=ST({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=Qt({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Qh({inputs:{a:o,b:p},backend:e}),f=Xk({inputs:{x:m},backend:e}),d=Ml({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=Qt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=eg({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var aM={kernelName:Qs,backendName:"cpu",kernelFunc:NT};function Vet(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;tt(o,"multinomial");let u=a?o:NT({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<l;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=lM.alea(i.toString()),b=d*s;for(let w=0;w<s;++w){let I=x();f[b+w]=g.length;for(let N=0;N<g.length;N++)if(I<g[N]){f[b+w]=N;break}}}return a||e.disposeIntermediateTensorInfo(u),e.makeTensorInfo(m,"int32",f)}var uM={kernelName:Za,backendName:"cpu",kernelFunc:Vet};var Get=Kr.nonMaxSuppressionV3Impl;function Wet(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n;tt(o,"NonMaxSuppression");let l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,{selectedIndices:p}=Get(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var cM={kernelName:Qa,backendName:"cpu",kernelFunc:Wet};var Uet=Kr.nonMaxSuppressionV4Impl;function Het(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n;tt(o,"NonMaxSuppressionPadded");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=Uet(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var pM={kernelName:tl,backendName:"cpu",kernelFunc:Het};var qet=Kr.nonMaxSuppressionV5Impl;function Ket(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n;tt(o,"NonMaxSuppressionWithScore");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=qet(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var mM={kernelName:el,backendName:"cpu",kernelFunc:Ket};function jet(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n;tt(o,"oneHot");let l=y.sizeFromShape(o.shape),c=new Float32Array(l*i);c.fill(u);let p=e.data.get(o.dataId).values;for(let m=0;m<l;++m)p[m]>=0&&p[m]<i&&(c[m*i+p[m]]=a);return e.makeTensorInfo([...o.shape,i],s,c)}var fM={kernelName:Rs,backendName:"cpu",kernelFunc:jet};function og(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Oo({inputs:{input:n},backend:e}),s=og({inputs:{x:o},backend:e}),i=ba({inputs:{input:n},backend:e}),a=og({inputs:{x:i},backend:e}),u=Cr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return ng({backend:e,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var dM={kernelName:qi,backendName:"cpu",kernelFunc:og};function hM(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Oo({inputs:{input:n},backend:e}),s=hM({inputs:{x:o},backend:e}),i=ba({inputs:{input:n},backend:e}),a=og({inputs:{x:i},backend:e}),u=Cr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return ng({backend:e,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var gM={kernelName:Li,backendName:"cpu",kernelFunc:hM};function kT(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return vd({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=vd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Hu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var xM={kernelName:zi,backendName:"cpu",kernelFunc:kT};function Xet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;tt(o,"pad");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(a),d=a.length,h=y.computeStrides(a),g=y.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;b<c;b++){let I=y.indexToLoc(b,p,m).map((E,A)=>E+u[A]),N=y.locToIndex(I,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var Ew={kernelName:Fs,backendName:"cpu",kernelFunc:Xet};var Yet=Jt((r,t)=>Math.pow(r,t)),Zet=ne(Os,Yet),yM={kernelName:Os,backendName:"cpu",kernelFunc:Zet};function Jet(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.data.get(x.dataId).values),l=o.map(x=>x.shape),c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,[m,f,d]=xw(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var bM={kernelName:Hp,backendName:"cpu",kernelFunc:Jet};function Qet(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=yw(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var wM={kernelName:qp,backendName:"cpu",kernelFunc:Qet};function trt(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,m=a.map(g=>e.data.get(g.dataId).values),f=a.map(g=>g.shape),[d,h]=bw(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var IM={kernelName:Kp,backendName:"cpu",kernelFunc:trt};function ert(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=op(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var CM={kernelName:ou,backendName:"cpu",kernelFunc:ert};var rrt=At(Ls,r=>1/r),vM={kernelName:Ls,backendName:"cpu",kernelFunc:rrt};function nrt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeBilinear");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,l,c,d])),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,I=x[0]/b[0],N=x[1]/b[1];for(let E=0;E<p;E++)for(let A=0;A<l;A++){let D;i?D=I*(A+.5)-.5:D=I*A;let F=Math.max(0,Math.floor(D)),P=D-F,V=Math.min(m-1,Math.ceil(D)),G=E*u[0]+F*u[1],W=E*u[0]+V*u[1];for(let q=0;q<c;q++){let H;i?H=N*(q+.5)-.5:H=N*q;let K=Math.max(0,Math.floor(H)),X=H-K,Z=Math.min(f-1,Math.ceil(H)),et=G+K*u[2],nt=W+K*u[2],st=G+Z*u[2],at=W+Z*u[2];for(let ot=0;ot<d;ot++){let it=h[et+ot],mt=h[nt+ot],gt=h[st+ot],It=h[at+ot],Rt=it+(gt-it)*X,Dt=mt+(It-mt)*X,Ht=Rt+(Dt-Rt)*P;g[w++]=Ht}}}return e.makeTensorInfo([p,l,c,d],"float32",g)}var SM={kernelName:Vs,backendName:"cpu",kernelFunc:nrt};function ort(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeBilinearGrad");let a=y.computeStrides(o.shape),[u,l,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(u*l*c*p),h=[i&&m>1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,I=0;for(let N=0;N<u;N++){let E=N*a[0];for(let A=0;A<m;A++){let D=A*x,F=Math.floor(D),P=Math.min(Math.ceil(D),l-1),V=E+F*a[1],G=E+P*a[1],W=D-F,q=1-W;for(let H=0;H<f;H++){let K=H*b,X=Math.floor(K),Z=Math.min(Math.ceil(K),c-1),et=K-X,nt=1-et,st=V+X*a[2],at=V+Z*a[2],ot=G+X*a[2],it=G+Z*a[2],mt=q*nt,gt=q*et,It=W*nt,Rt=W*et;for(let Dt=0;Dt<p;Dt++){let Ht=w[I++];d[st+Dt]+=Ht*mt,d[at+Dt]+=Ht*gt,d[ot+Dt]+=Ht*It,d[it+Dt]+=Ht*Rt}}}}return e.makeTensorInfo([u,c,l,p],"float32",d)}var NM={kernelName:nl,backendName:"cpu",kernelFunc:ort};function srt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeNearestNeighbor");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(p*l*c*d),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=x[0]/b[0],I=x[1]/b[1],N=0;for(let E=0;E<p;E++){let A=E*u[0];for(let D=0;D<l;D++){let F=i?w*(D+.5):w*D,P=Math.min(m-1,s?Math.round(F):Math.floor(F));i&&(P=Math.max(0,P));let V=A+P*u[1];for(let G=0;G<c;G++){let W=i?I*(G+.5):I*G,q=Math.min(f-1,s?Math.round(W):Math.floor(W));i&&(q=Math.max(0,q));let H=V+q*u[2];for(let K=0;K<d;K++){let X=h[H+K];g[N++]=X}}}}return e.makeTensorInfo([p,l,c,d],o.dtype,g)}var kM={kernelName:Bs,backendName:"cpu",kernelFunc:srt};function irt(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeNearestNeighborGrad");let a=y.computeStrides(o.shape),u=y.computeStrides(s.shape),[l,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(l*c*p*m),g=e.data.get(s.dataId).values,x=[i&&f>1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=x[0]/b[0],I=x[1]/b[1],N=1/w,E=1/I,A=Math.ceil(N)*2+2,D=Math.ceil(E)*2+2;for(let F=0;F<l;F++){let P=F*a[0];for(let V=0;V<c;V++){let G=P+V*a[1],W=Math.floor(V*N),q=Math.floor(W-A/2);for(let H=0;H<p;H++){let K=G+H*a[2],X=Math.floor(H*E),Z=Math.floor(X-D/2);for(let et=0;et<m;et++){let nt=0;for(let st=0;st<A;st++){let at=st+q;if(at<0||at>=f)continue;let ot=P+at*u[1],it=at*w,mt=Math.min(c-1,i?Math.round(it):Math.floor(it));if(V===mt)for(let gt=0;gt<D;gt++){let It=gt+Z;if(It<0||It>=d)continue;let Rt=ot+It*u[2],Dt=It*I,Ht=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));H===Ht&&(nt+=g[Rt+et])}}h[K+et]=nt}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var TM={kernelName:rl,backendName:"cpu",kernelFunc:irt};function art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;tt(o,"reverse");let i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return Yr({inputs:{x:o},backend:e});let u=new le(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),m=p.slice();a.forEach(f=>m[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var _M={kernelName:Ws,backendName:"cpu",kernelFunc:art};var EM={kernelName:fl,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=a.data.get(n.dataId).values;for(let I=0;I<l;I++){let N=I*p*c*m;for(let E=0;E<c;E++){let A=E*(p*m);for(let D=0;D<p;D++){let F=D*m;for(let P=0;P<m;P++){let V=[l,E,D,P],G=V[2],W=V[1],q=(G-f)*x-(W-d)*g,H=(G-f)*g+(W-d)*x;q=Math.round(q+f),H=Math.round(H+d);let K=s;if(typeof s!="number"&&(P===3?K=h:K=s[P]),q>=0&&q<p&&H>=0&&H<c){let Z=H*(p*m),et=q*m,nt=N+Z+et+P;K=b[nt]}let X=N+A+F+P;u[X]=K}}}}return{dataId:a.write(u,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var lrt=At(Us,r=>{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),AM={kernelName:Us,backendName:"cpu",kernelFunc:lrt};function urt(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=wi(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var DM={kernelName:ol,backendName:"cpu",kernelFunc:urt};function crt(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<t?e=o+1:n=o;return n}function prt(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<=t?e=o+1:n=o;return n}function $M(r,t,e,n,o,s){let i=y.getArrayFromDType("int32",e*o);for(let a=0;a<e;++a){let u=r.slice(a*n,(a+1)*n),l=a*o;for(let c=0;c<o;++c)i[l+c]=s==="left"?crt(u,t[c+l]):prt(u,t[c+l])}return i}function mrt(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=$M(a,u,o.shape[0],o.shape[1],s.shape[1],i);return e.makeTensorInfo(s.shape,"int32",l)}var RM={kernelName:il,backendName:"cpu",kernelFunc:mrt};function frt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t;tt([n,o,s],"select");let i=n.shape.length,a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=ur(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=i===0||i>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<a.length;d++)for(let h=0;h<f;h++)a[d]===1?p[m++]=u[d]:p[m++]=l[d];return e.makeTensorInfo(o.shape,c,p)}var FM={kernelName:Vi,backendName:"cpu",kernelFunc:frt};var drt=S.SELU_SCALEALPHA,hrt=S.SELU_SCALE,grt=At(qs,r=>r>=0?hrt*r:drt*(Math.exp(r)-1)),OM={kernelName:qs,backendName:"cpu",kernelFunc:grt};var xrt=At(js,r=>r<0?-1:r>0?1:0),PM={kernelName:js,backendName:"cpu",kernelFunc:xrt};var yrt=At(Ks,r=>Math.sin(r)),MM={kernelName:Ks,backendName:"cpu",kernelFunc:yrt};var brt=At(al,r=>Math.sinh(r)),LM={kernelName:al,backendName:"cpu",kernelFunc:brt};var wrt=11920928955078125e-23,zM=Math.log(wrt)+2,Irt=At(Ys,r=>{let t=r>-zM,e=r<zM,n=Math.exp(r),o;return e?o=n:t?o=r:o=Math.log(1+n),o}),BM={kernelName:Ys,backendName:"cpu",kernelFunc:Irt};function Crt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;tt([o],"spaceToBatchND");let a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=Ew.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=Qt({inputs:{x:l},backend:e,attrs:{shape:c}}),b=Ge({inputs:{x:h},backend:e,attrs:{perm:p}}),N=Qt({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(b),N}var VM={kernelName:Wi,backendName:"cpu",kernelFunc:Crt};function vrt(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=e.data.get(i.dataId).values[0],[p,m,f,d,h]=ww(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var GM={kernelName:su,backendName:"cpu",kernelFunc:vrt};function Srt(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=Iw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var WM={kernelName:ll,backendName:"cpu",kernelFunc:Srt};function Nrt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=Id(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var UM={kernelName:iu,backendName:"cpu",kernelFunc:Nrt};function krt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=Id(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var HM={kernelName:au,backendName:"cpu",kernelFunc:krt};function Trt(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case"bool":{let g=e.bufferSync(s),x=!!e.data.get(i.dataId).values[0];h=wi(d,g,a,m,c,l,u,p,x,f);break}case"float32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=wi(d,g,a,m,c,l,u,p,x,f);break}case"int32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=wi(d,g,a,m,c,l,u,p,x,f);break}case"string":{let g=e.bufferSync(s),x=y.decodeString(e.data.get(i.dataId).values[0]);h=wi(d,g,a,m,c,l,u,p,x,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var qM={kernelName:ul,backendName:"cpu",kernelFunc:Trt};function _rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Lo({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var KM={kernelName:Ui,backendName:"cpu",kernelFunc:_rt};var jM={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;tt(e,"square");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a<o.length;++a){let u=o[a];s[a]=u*u}return{dataId:n.write(s,e.shape,e.dtype),shape:e.shape,dtype:e.dtype}}};var Ert=At(yo,(r,t)=>{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),XM={kernelName:yo,backendName:"cpu",kernelFunc:Ert};function Art(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;tt(o,"stridedSlice");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=Qt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=ze.computeOutShape(b,w,I),A=Lo({inputs:{x:o},backend:e,attrs:{begin:b,size:E}});N=Qt({inputs:{x:A},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(A)}else{let E=e.bufferSync(o),A=Cw(f,E,I,b);N=e.makeTensorInfo(d,A.dtype,A.values)}return N}var YM={kernelName:cl,backendName:"cpu",kernelFunc:Art};function Drt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=ip(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var ZM={kernelName:uu,backendName:"cpu",kernelFunc:Drt};function $rt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=ap(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var JM={kernelName:cu,backendName:"cpu",kernelFunc:$rt};function Rrt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.data.get(s.dataId).values,a=lp(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var QM={kernelName:pu,backendName:"cpu",kernelFunc:Rrt};var Frt=At(ri,r=>Math.tan(r)),tL={kernelName:ri,backendName:"cpu",kernelFunc:Frt};var Ort=At(ni,r=>Math.tanh(r)),eL={kernelName:ni,backendName:"cpu",kernelFunc:Ort};function Prt(r){let{inputs:t,backend:e}=r,{tensor:n,indices:o,updates:s}=t,{sliceRank:i,numUpdates:a,sliceSize:u,strides:l,outputSize:c}=S.calculateShapes(s,o,n.shape),p=!1,m=e.bufferSync(o),f=e.bufferSync(s),d=e.bufferSync(n),h=wi(m,f,n.shape,c,u,a,i,l,d,p);return e.makeTensorInfo(n.shape,h.dtype,h.values)}var rL={kernelName:sl,backendName:"cpu",kernelFunc:Prt};function Mrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;tt(o,"tile");let i=vw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var nL={kernelName:so,backendName:"cpu",kernelFunc:Mrt};function Lrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;tt(o,"topk");let a=e.data.get(o.dataId).values,[u,l]=Sw(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var oL={kernelName:pl,backendName:"cpu",kernelFunc:Lrt};function zrt(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],I=x[2],N=y.computeStrides(g),E=N[0],A=N[1],D=N[2],F=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));F.fill(u);let P=n.data.get(o.dataId).values,V=n.data.get(s.dataId).values;for(let W=0;W<c;++W){let q=s.shape[0]===1?V:V.subarray(W*8,W*8+8);for(let H=0;H<d;++H)for(let K=0;K<h;++K)for(let X=0;X<f;++X){let Z,et=q[6]*K+q[7]*H+1;if(et===0)continue;let nt=(q[0]*K+q[1]*H+q[2])/et,st=(q[3]*K+q[4]*H+q[5])/et,at=sL(nt,m,a),ot=sL(st,p,a);switch(i){case"nearest":Z=Urt(P,p,m,b,w,I,W,ot,at,X,u);break;case"bilinear":Z=Hrt(P,p,m,b,w,I,W,ot,at,X,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let it=W*E+H*A+K*D+X;F[it]=Z}return n.makeTensorInfo(g,o.dtype,F)}return{dataId:n.write(F,g,o.dtype),shape:o.shape,dtype:o.dtype}}var iL={kernelName:ml,backendName:"cpu",kernelFunc:zrt};function sL(r,t,e){switch(e){case"reflect":return Brt(r,t);case"wrap":return Vrt(r,t);case"nearest":return Wrt(r,t);case"constant":default:return Grt(r,t)}}function Brt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=2*t;e<n&&(e=n*Math.trunc(-e/n)+e),e=e<-t?e+n:-e-1}else if(e>t-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return y.clamp(0,e,t-1)}function Vrt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return y.clamp(0,e,t-1)}function Grt(r,t){return r}function Wrt(r,t){return y.clamp(0,r,t-1)}function sg(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&a<t&&0<=u&&u<e?r[p]:c}function Urt(r,t,e,n,o,s,i,a,u,l,c){let p=Math.round(a),m=Math.round(u);return sg(r,t,e,n,o,s,i,p,m,l,c)}function Hrt(r,t,e,n,o,s,i,a,u,l,c){let p=Math.floor(a),m=Math.floor(u),f=p+1,d=m+1,h=(d-u)*sg(r,t,e,n,o,s,i,p,m,l,c)+(u-m)*sg(r,t,e,n,o,s,i,p,d,l,c),g=(d-u)*sg(r,t,e,n,o,s,i,f,m,l,c)+(u-m)*sg(r,t,e,n,o,s,i,f,d,l,c);return(f-a)*h+(a-p)*g}function qrt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;tt(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:a,outputShape:u,indices:l}=up(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var aL={kernelName:mu,backendName:"cpu",kernelFunc:qrt};function Krt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape.length,a=o.shape[s],u=new Array(i-1),l=0;for(let f=0;f<i;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(a);for(let f=0;f<m.length;f++){c[s]=f;let d=Lo({inputs:{x:o},backend:e,attrs:{begin:c,size:p}});m[f]=Qt({inputs:{x:d},backend:e,attrs:{shape:u}}),e.disposeIntermediateTensorInfo(d)}return m}var lL={kernelName:Hi,backendName:"cpu",kernelFunc:Krt};function jrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n;tt(o,"unsortedSegmentSum");let a=o.shape.length,u=s.shape.length,l=[],c=[],p=a-u,m=s;for(let d=0;d<p;++d){let h=vd({inputs:{input:m},backend:e,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<i;++d){let h=y.createScalarValue(d,"int32"),g=e.makeTensorInfo([],"int32",h),x=Kk({inputs:{a:g,b:m},backend:e}),b=Po({inputs:{x},backend:e,attrs:{dtype:"float32"}}),w=np({inputs:{a:b,b:o},backend:e}),I=Ml({inputs:{x:w},backend:e,attrs:{axis:0,keepDims:!1}});l.push(I),c.push(g),c.push(x),c.push(b),c.push(w),c.push(I)}let f=kT({inputs:l,backend:e,attrs:{axis:0}});return c.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var uL={kernelName:fu,backendName:"cpu",kernelFunc:jrt};var Xrt=[OO,GF,PO,MO,KF,LO,zO,BO,VO,GO,WO,UO,HO,qO,KO,XO,YO,ZO,JO,FO,QO,tP,eP,jF,rP,qF,XF,nP,WF,oP,iP,aP,lP,uP,cP,pP,mP,fP,dP,hP,gP,xP,yP,bP,wP,IP,CP,vP,SP,NP,kP,_P,_O,EP,YF,AP,ZF,DP,JF,$P,RP,FP,QF,tO,OP,PP,MP,LP,eO,rO,UF,zP,sP,BP,VP,GP,EO,nO,oO,WP,sO,UP,HP,qP,KP,jP,XP,YP,iO,ZP,JP,QP,tM,rM,nM,oM,aO,sM,iM,uM,lO,uO,cM,pM,mM,cO,fM,gM,xM,Ew,yM,AO,mO,bM,wM,IM,CM,HF,rg,vM,DO,$O,RO,SM,NM,kM,TM,_M,EM,AM,xO,DM,RM,FM,OM,bO,PM,MM,LM,wO,aM,BM,VM,GM,WM,UM,HM,qM,KM,CO,jM,vO,SO,XM,YM,ZM,JM,QM,NO,TP,tL,eL,rL,nL,oL,iL,pO,aL,lL,uL,dM];for(let r of Xrt)ic(r);var Td={};Kt(Td,{assertNotComplex:()=>Ii,bindCanvasToFramebuffer:()=>ont,bindColorTextureToFramebuffer:()=>ug,bindTextureToProgramUniformSampler:()=>GT,bindTextureUnit:()=>fL,bindVertexBufferToProgramAttribute:()=>Ow,callAndCheck:()=>ht,canBeRepresented:()=>AT,createFragmentShader:()=>$T,createFramebuffer:()=>zT,createProgram:()=>RT,createStaticIndexBuffer:()=>PT,createStaticVertexBuffer:()=>OT,createTexture:()=>MT,createVertexShader:()=>DT,getBatchDim:()=>zl,getExtensionOrThrow:()=>Sd,getFramebufferErrorMessage:()=>dL,getMaxTexturesInShader:()=>HT,getNumChannels:()=>rnt,getProgramUniformLocation:()=>VT,getProgramUniformLocationOrThrow:()=>BT,getRowsCols:()=>Bl,getShapeAs3D:()=>kd,getTextureShapeFromLogicalShape:()=>WT,getWebGLDisjointQueryTimerVersion:()=>qT,getWebGLErrorMessage:()=>mL,getWebGLMaxTextureSize:()=>UT,hasExtension:()=>Xn,isCapableOfRenderingToFloatTexture:()=>KT,isDownloadFloatTextureEnabled:()=>jT,isReshapeFree:()=>Ku,isWebGLFenceEnabled:()=>XT,isWebGLVersionEnabled:()=>Mw,linkProgram:()=>FT,logShaderSourceAndInfoLog:()=>Fw,resetMaxTextureSize:()=>snt,resetMaxTexturesInShader:()=>int,unbindColorTextureFromFramebuffer:()=>Pw,unbindTextureUnit:()=>nnt,validateFramebuffer:()=>Nd,validateProgram:()=>lg,validateTextureSize:()=>LT});var pp={},Aw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function TT(r,t){pp[r]=t}function jn(r,t){if(!(r in pp)||t!=null){let n=Zrt(r,t);if(n!==null)pp[r]=n;else return console.log("Could not get context for WebGL version",r),null}let e=pp[r];return e==null||e.isContextLost()?(delete pp[r],jn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),pp[r])}function Yrt(r){if(!L().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Zrt(r,t){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=t==null?Yrt(r):t;return e.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete pp[r]},!1),L().getBool("SOFTWARE_WEBGL_ENABLED")&&(Aw.failIfMajorPerformanceCaveat=!1),r===1?e.getContext("webgl",Aw)||e.getContext("experimental-webgl",Aw):e.getContext("webgl2",Aw)}var qu;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(qu||(qu={}));var Zr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Zr||(Zr={}));var Lr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Lr||(Lr={}));function mp(r,t){return[t,r]}function cL(r,t){return r*t}function ig(r){let t=y.sizeFromShape(r),e=Math.ceil(t/4);return y.sizeToSquarishShape(e)}function wa(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function pL(r,t){let[e,n]=wa(r,t);return e*n*4}function ag(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return L().getNumber("WEBGL_VERSION")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function ht(r,t){let e=t();return L().getBool("DEBUG")&&Jrt(r),e}function Jrt(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error("WebGL Error: "+mL(r,t))}var Qrt=596e-10,tnt=65504;function AT(r){return!!(L().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||Qrt<Math.abs(r)&&Math.abs(r)<tnt)}function mL(r,t){switch(t){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Sd(r,t){return Ll(r,()=>r.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function DT(r,t){let e=Ll(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function $T(r,t){let e=Ll(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),L().get("ENGINE_COMPILE_ONLY"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw Fw(t,r.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}var ent=/ERROR: [0-9]+:([0-9]+):/g;function Fw(r,t){let e=ent.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`
`),s=o.length.toString().length+2,i=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;p<i.length;p++)a=Math.max(i[p].length,a);let u=i.slice(0,n-1),l=i.slice(n-1,n),c=i.slice(n);console.log(u.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${y.rightPad(l[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function RT(r){return Ll(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function FT(r,t){if(ht(r,()=>r.linkProgram(t)),!L().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function lg(r,t){if(ht(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function OT(r,t){let e=Ll(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function PT(r,t){let e=Ll(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ht(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function rnt(){return L().getNumber("WEBGL_VERSION")===2?1:4}function MT(r){return Ll(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function LT(r,t){let e=L().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function zT(r){return Ll(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ow(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),ht(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),ht(r,()=>r.enableVertexAttribArray(a)),!0)}function fL(r,t,e){hL(r,e),ht(r,()=>r.activeTexture(r.TEXTURE0+e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function nnt(r,t){hL(r,t),ht(r,()=>r.activeTexture(r.TEXTURE0+t)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function BT(r,t,e){return Ll(r,()=>r.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function VT(r,t,e){return r.getUniformLocation(t,e)}function GT(r,t,e,n){ht(r,()=>fL(r,t,n)),ht(r,()=>r.uniform1i(e,n))}function ont(r){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),ht(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),ht(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function ug(r,t,e){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function Pw(r,t){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function Nd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+dL(r,t))}function dL(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ll(r,t,e){let n=ht(r,()=>t());if(n==null)throw new Error(e);return n}function hL(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(n<r.TEXTURE0||n>e){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function zl(r,t=2){return y.sizeFromShape(r.slice(0,r.length-t))}function Bl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function kd(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[zl(r),...Bl(r)]),t}function WT(r,t=!1){let e=L().getNumber("WEBGL_MAX_TEXTURE_SIZE"),n=L().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");n===1/0&&L().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(n=e/2),t&&(e=e*2,n=n*2,r=r.map((a,u)=>u>=r.length-2?y.nearestLargerEven(r[u]):r[u]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r),s=null;r.length<=1&&o<=e?s=[1,o]:r.length===2&&r[0]<=e&&r[1]<=e?s=r:r.length===3&&r[0]*r[1]<=e&&r[2]<=e?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=e&&r[1]*r[2]<=e?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e&&(s=[r[0],r[1]*r[2]*r[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let a=zl(r),u=2,l=2;r.length&&([u,l]=Bl(r)),o=a*(u/2)*(l/2),s=y.sizeToSquarishShape(o).map(c=>c*2)}else s=y.sizeToSquarishShape(o);return s}function Dw(r){return r%2===0}function Ku(r,t){if(r=r.slice(-2),t=t.slice(-2),y.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r[r.length-1],n=t[t.length-1];if(e===n||Dw(e)&&Dw(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&Dw(r[0])&&Dw(t[0])}var $w,Rw;function UT(r){if($w==null){let t=jn(r);$w=t.getParameter(t.MAX_TEXTURE_SIZE)}return $w}function snt(){$w=null}function int(){Rw=null}function HT(r){if(Rw==null){let t=jn(r);Rw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Rw)}function qT(r){if(r===0)return 0;let t,e=jn(r);return Xn(e,"EXT_disjoint_timer_query_webgl2")&&r===2?t=2:Xn(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function Xn(r,t){return r.getExtension(t)!=null}function Mw(r){try{if(jn(r)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function KT(r){if(r===0)return!1;let t=jn(r);if(r===1){if(!Xn(t,"OES_texture_float"))return!1}else if(!Xn(t,"EXT_color_buffer_float"))return!1;return ET(t)}function jT(r){if(r===0)return!1;let t=jn(r);if(r===1){if(!Xn(t,"OES_texture_float")||!Xn(t,"WEBGL_color_buffer_float"))return!1}else{if(Xn(t,"EXT_color_buffer_float"))return ET(t);let n="EXT_color_buffer_half_float";if(Xn(t,n)){let o=t.getExtension(n);return ant(t,o)}return!1}return ET(t)}function ET(r){let t=ag(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,n,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function ant(r,t){let e=ag(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function XT(r){return r!==2?!1:jn(r).fenceSync!=null}function Ii(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Et=L();Et.registerFlag("HAS_WEBGL",()=>Et.getNumber("WEBGL_VERSION")>0);Et.registerFlag("WEBGL_VERSION",()=>Mw(2)?2:Mw(1)?1:0);Et.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Et.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Et.get("WEBGL_VERSION")===2);Et.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Et.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Et.registerFlag("WEBGL_PACK",()=>Et.getBool("HAS_WEBGL"));Et.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_CLIP",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_PACK_REDUCE",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_LAZILY_UNPACK",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_CONV_IM2COL",()=>Et.getBool("WEBGL_PACK"));Et.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>UT(Et.getNumber("WEBGL_VERSION")));Et.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>HT(Et.getNumber("WEBGL_VERSION")));Et.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Et.getNumber("WEBGL_VERSION");return r===0?0:qT(r)});Et.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Et.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!xu.isMobile());Et.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>KT(Et.getNumber("WEBGL_VERSION")));Et.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Et.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Et.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Et.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>jT(Et.getNumber("WEBGL_VERSION")));Et.registerFlag("WEBGL_FENCE_API_ENABLED",()=>XT(Et.getNumber("WEBGL_VERSION")));Et.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Et.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Et.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Et.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>xu.isMobile()?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});Et.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Et.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Et.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Et.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);Et.registerFlag("WEBGL_EXP_CONV",()=>!1);Et.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>Et.getBool("IS_TEST"));Et.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);Et.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);Et.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);Et.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function We(){let r,t,e,n,o,s,i,a,u,l;return L().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",t="in",e="out",n="in",o="texture",s="outputColor",i="out vec4 outputColor;",a=L().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",u="",l=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",t="attribute",e="varying",n="varying",o="texture2D",s="gl_FragColor",i="",a=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,u=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,l=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function Ci(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join("")}function fp(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join("")}function lnt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function gL(r,t,e="index"){let n=r.map((s,i)=>i),o=lnt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join("")}function _d(r){let t=y.computeStrides(r).map(e=>e.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function Ed(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var Lw=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var{getBroadcastDims:xL}=S;function yL(r,t,e){let n=[];if(r.forEach(f=>{let d=y.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:""};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=zw(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:""};`)});let o=n.join(`
`),s=r.map(f=>unt(f,t,e.packedInputs,e.enableShapeUniforms)).join(`
`),i=t.texShape,a=We(),u=mnt(a),l,c,p=hnt(a);return t.isPacked?(l=cnt(t.logicalShape,i,e.enableShapeUniforms),c=dnt(a)):(l=pnt(t.logicalShape,i,e.enableShapeUniforms),c=fnt(a)),e.packedInputs&&(p+=bnt),[p,u,c,o,l,s,e.userCode].join(`
`)}function Dd(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return Dnt(r,t);case 1:return Rnt(r,t);case 2:return Ont(r,t);case 3:return Mnt(r,t);case 4:return znt(r,t);case 5:return Bnt(r);case 6:return Vnt(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function bL(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return Ant(r);case 1:return $nt(r,t);case 2:return Fnt(r,t);case 3:return Pnt(r,t);default:return Lnt(r,t)}}function unt(r,t,e=!1,n){let o="";e?o+=bL(r,n):o+=Dd(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Gnt(r,t):o+=Wnt(r,t)),o}function cnt(r,t,e){switch(r.length){case 0:return wL();case 1:return wnt(r,t,e);case 2:return _nt(r,t,e);case 3:return Cnt(r,t,e);default:return Snt(r,t,e)}}function pnt(r,t,e){switch(r.length){case 0:return wL();case 1:return Int(r,t,e);case 2:return Ent(r,t,e);case 3:return vnt(r,t,e);case 4:return Nnt(r,t,e);case 5:return knt(r,t);case 6:return Tnt(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function mnt(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function fnt(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function dnt(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function hnt(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${gnt}
${xnt}
${ynt}
`}var gnt=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xnt=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ynt=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,bnt=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function wL(){return`
int getOutputCoords() {
return 0;
}
`}function wnt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function Int(r,t,e){return t[0]===1?e?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?e?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function Cnt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function vnt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${fp(["r","c","d"],r)}
return ivec3(r, c, d);
}
`;let n=Ci(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function Snt(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a="",u="b, r, c";for(let l=2;l<r.length-1;l++)i*=r[r.length-l-1],a=`
int b${l} = index / ${i};
index -= b${l} * ${i};
`+a,u=`b${l}, `+u;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${a}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${u});
}
`}function Nnt(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${fp(["r","c","d","d2"],r)}
return ivec4(r, c, d, d2);
}
`;let n=Ci(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function knt(r,t){let e=Ci(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function Tnt(r,t){let e=Ci(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function _nt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(y.arraysEqual(r,t))return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let o=Math.ceil(r[1]/2);return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function Ent(r,t,e){return y.arraysEqual(r,t)?e?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:r[1]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function dp(r){return`offset${r}`}function Ant(r){let t=r.name,e="get"+t.charAt(0).toUpperCase()+t.slice(1),n=We();return`
vec4 ${e}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function Dnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${n}() {return ${e};}`;let[o,s]=r.shapeInfo.texShape;if(o===1&&s===1)return`
float ${n}() {
return sampleTexture(${e}, halfCR);
}
`;let i=dp(e);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], ${i});
return sampleTexture(${e}, uv);
}
`;let[a,u]=r.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${a}, ${u}, ${i});
return sampleTexture(${e}, uv);
}
`}function $nt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,s=We();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${e}, uv);
}
`;let i=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function Rnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${n}(int index) {
${$d(r)}
}
`;let o=r.shapeInfo.texShape,s=o[0],i=o[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=dp(e);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / float(${e}TexShape[0]));
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${s}.0);
return sampleTexture(${e}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / float(${e}TexShape[1]), 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], index + ${a});
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function Fnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=s[0],a=s[1],u=We();if(s!=null&&y.arraysEqual(e,s))return t?`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${u.texture2D}(${n}, uv);
}
`:`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${i}.0);
return ${u.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${o}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${u.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function Ont(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape;if(s!=null&&y.arraysEqual(e,s)){if(t)return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let m=s[0],f=s[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:a}=y.squeezeShape(e),u=i;if(u.length<e.length){let m=Rd(r,u),f=["row","col"];return`
${Dd(m,t)}
float ${o}(int row, int col) {
return ${o}(${Fd(f,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${$d(r)}
}
`;let l=s[0],c=s[1],p=dp(n);return c===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${p};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function Pnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(e[0]===1){let m=e.slice(1),f=[1,2],d=Rd(r,m),h=["b","row","col"];return`
${bL(d,t)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${Fd(h,f)});
}
`}let a=We();if(t)return`
vec4 ${o}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`;let u=i[0],l=i[1],c=Math.ceil(e[2]/2),p=c*Math.ceil(e[1]/2);return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${u}, ${l}, ${p}, ${c}, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`}function Mnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[1]*e[2],i=e[2],{newShape:a,keptDims:u}=y.squeezeShape(e),l=a;if(l.length<e.length){let h=Rd(r,l),g=["row","col","depth"];return`
${Dd(h,t)}
float ${o}(int row, int col, int depth) {
return ${o}(${Fd(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${$d(r)}
}
`;let c=r.shapeInfo.texShape,p=c[0],m=c[1],f=r.shapeInfo.flatOffset;if(m===s&&f==null)return t?`
float ${o}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&f==null)return t?`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let d=dp(n);return t?`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${d};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${d};
vec2 uv = uvFromFlat(${p}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function Lnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=We();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${e}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${e}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${e}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${o.texture2D}(${e}, uv);
}
`;let s=r.shapeInfo.logicalShape,i=s.length,a=r.shapeInfo.texShape,u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=u[0],c=u[1],p=Math.ceil(s[i-1]/2),m=p*Math.ceil(s[i-2]/2),f="int b, int row, int col",d=`b * ${m} + (row / 2) * ${p} + (col / 2)`;for(let h=2;h<i-1;h++)f=`int b${h}, `+f,m*=s[i-h-1],d=`b${h} * ${m} + `+d;return`
vec4 ${n}(${f}) {
int index = ${d};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
return ${o.texture2D}(${e}, uv);
}
`}function znt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[3],i=e[2]*s,a=e[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(e);if(u.length<e.length){let b=Rd(r,u),w=["row","col","depth","depth2"];return`
${Dd(b,t)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${Fd(w,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, 1)));
${$d(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1],d=`int stride2 = ${n}Shape[3];`,h=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(f===a&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
${d}
${h}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;if(f===s&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;let x=dp(n);return t?`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${d}
${h}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${x});
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${m}, ${f}, index + ${x});
return sampleTexture(${n}, uv);
}
`}function Bnt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=t[4],s=t[3]*o,i=t[2]*s,a=t[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(t);if(u.length<t.length){let h=Rd(r,u),g=["row","col","depth","depth2","depth3"];return`
${Dd(h)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${Fd(g,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, ${o})) +
depth3;
${$d(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===a&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;if(f===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;let d=dp(e);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} + depth * ${s} +
depth2 * ${o} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${e}, uv);
}
`}function Vnt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(t);if(o.length<t.length){let g=Rd(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
${Dd(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${Fd(x,s)});
}
`}let i=t[5],a=t[4]*i,u=t[3]*a,l=t[2]*u,c=t[1]*l;if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${l}, ${u}, ${a})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${$d(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${l}, ${u}, ${a}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;if(d===i&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;let h=dp(e);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${l} + depth * ${u} +
depth2 * ${a} + depth3 * ${i} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${e}, uv);
}
`}function $d(r){let t=r.name,e=y.sizeFromShape(r.shapeInfo.logicalShape);return e<2?`return ${t};`:`
for (int i = 0; i < ${e}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Gnt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,i=t.logicalShape.length,a=xL(r.shapeInfo.logicalShape,t.logicalShape),u=zt(i),l=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&a.length>=1?c="coords = 0;":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`
`);let m="";i<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)i===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f="return vec4(outputValue.x);":a.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${o}() {
${u} coords = getOutputCoords();
${c}
vec4 outputValue = get${n}(${m});
${f}
}
`}function Wnt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&y.arraysEqual(i,s))return`
float ${o}() {
return sampleTexture(${e}, resultUV);
}
`;let l=zt(u),c=xL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=["x","y","z","w","u","v"];a===0?m="":u<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return u<2&&a>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${o}() {
${l} coords = getOutputCoords();
${m}
return get${n}(${d});
}
`}function zt(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function zw(r,t,e){let{newShape:n,keptDims:o}=y.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!y.arraysEqual(t,e)&&n.length<s||i;return{useSqueezeShape:u,uniformShape:u?a:t,keptDims:o}}function Rd(r,t){let e=JSON.parse(JSON.stringify(r));return e.shapeInfo.logicalShape=t,e}function Fd(r,t){return t.map(e=>r[e]).join(", ")}function CL(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=yL(o,i,t),u=$T(r.gl,a),l=r.createProgram(u);return L().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(r.buildVao(l),Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},YT(r,t,l)))}function YT(r,t,e){let n=[],o=[],s,i,a,u=null,l=null;l=r.getUniformLocation(e,"NAN",!1),L().getNumber("WEBGL_VERSION")===1&&(u=r.getUniformLocation(e,"INFINITY",!1));let c=!1;for(let p of t.variableNames){let m={name:p,uniform:r.getUniformLocation(e,p,c),offset:r.getUniformLocation(e,`offset${p}`,c)};t.enableShapeUniforms&&(m.shape=r.getUniformLocation(e,`${p}Shape`,c),m.texShape=r.getUniformLocation(e,`${p}TexShape`,c)),n.push(m)}if(t.enableShapeUniforms&&(s=r.getUniformLocation(e,"outShape",c),a=r.getUniformLocation(e,"outShapeStrides",c),i=r.getUniformLocation(e,"outTexShape",c)),t.customUniforms)for(let p of t.customUniforms)o.push(r.getUniformLocation(e,p.name,c));return{variablesLocations:n,customUniformLocations:o,infLoc:u,nanLoc:l,outShapeLocation:s,outShapeStridesLocation:a,outTexShapeLocation:i}}function IL(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!y.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function vL(r,t,e,n,o){t.program.enableShapeUniforms||(IL(t.inShapeInfos,e),IL([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),r.bindVertexArray(t.webGLProgram.vao),L().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN);for(let u=0;u<e.length;++u){let l=e[u],{uniform:c,offset:p,shape:m,texShape:f}=t.variablesLocations[u];if(m){let{uniformShape:d}=zw(t.program.packedInputs,l.shape,l.texData.texShape);switch(d.length){case 1:r.gl.uniform1iv(m,new Int32Array(d));break;case 2:r.gl.uniform2iv(m,new Int32Array(d));break;case 3:r.gl.uniform3iv(m,new Int32Array(d));break;case 4:r.gl.uniform4iv(m,new Int32Array(d));break;default:break}}if(f&&r.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),c!=null){if(l.isUniform){if(y.sizeFromShape(l.shape)<2)r.gl.uniform1f(c,l.uniformValues[0]);else{let d=l.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),r.gl.uniform1fv(c,d)}continue}l.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,l.texData.slice.flatOffset),r.setInputMatrixTexture(l.texData.texture.texture,c,u)}}let a=t.outShapeLocation;if(a)switch(n.shape.length){case 1:r.gl.uniform1iv(a,new Int32Array(n.shape));break;case 2:r.gl.uniform2iv(a,new Int32Array(n.shape));break;case 3:r.gl.uniform3iv(a,new Int32Array(n.shape));break;case 4:r.gl.uniform4iv(a,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let u=y.computeStrides(n.shape);switch(n.shape.length){case 2:r.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:r.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:r.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}if(t.outTexShapeLocation&&r.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&o)for(let u=0;u<t.program.customUniforms.length;++u){let l=t.program.customUniforms[u],c=t.customUniformLocations[u],p=o[u];if(l.type==="float")r.gl.uniform1fv(c,p);else if(l.type==="vec2")r.gl.uniform2fv(c,p);else if(l.type==="vec3")r.gl.uniform3fv(c,p);else if(l.type==="vec4")r.gl.uniform4fv(c,p);else if(l.type==="int")r.gl.uniform1iv(c,p);else if(l.type==="ivec2")r.gl.uniform2iv(c,p);else if(l.type==="ivec3")r.gl.uniform3iv(c,p);else if(l.type==="ivec4")r.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}r.executeProgram()}function SL(r,t,e){let n="";t.concat(e).forEach(i=>{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=zw(r.packedInputs,i.shape,u),m="",f="",d="";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=y.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&y.arraysEqual(i.shape,u),x=y.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&y.arraysEqual(u,e.texData.texShape),I=r.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:""}_${c.length}_${x}_${b}_${g}_${m}_${f}_${d}_${I}_${a}`}else{let u=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o+`${L().getNumber("WEBGL_VERSION")}`,s}function de(r){return L().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var Bw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=qu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?fp(["r","c","d"],t):Ci(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${e.output} = result;
}
`}};var Vw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=qu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?fp(["r","c","d"],t):Ci(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${e.output} = result;
}
`}};var Gw=class{constructor(t){this.variableNames=["A"],this.outTexUsage=Zr.DOWNLOAD;let e=We();this.outputShape=t,this.userCode=`
${Lw}
void main() {
float x = getAAtOutCoords();
${e.output} = encode_float(x);
}
`}};var Ww=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zr.DOWNLOAD;let e=We();this.outputShape=t,this.userCode=`
${Lw}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${e.output} = encode_float(x);
}
`}};var qnt={R:0,G:1,B:2,A:3},cg=class{constructor(t,e=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let o=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let s="result";e&&(s="floor(result * 255. + 0.5)");let i="";for(let a=0;a<n.length;a++){let u=n[a];i+=`
if(offset == ${a}) {
result = values[${qnt[u]}];
}`}this.userCode=`
${this.enableShapeUniforms?Ed():_d(t)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${o.texture2D}(A, uv);
${i}
}
${o.output} = vec4(${s}, 0., 0., 0.);
}
`}};var Uw=class{constructor(t,e=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let o="",s="result";e&&(s="floor(result * 255. + 0.5)");for(let i=0;i<=1;i++)for(let a=0;a<=1;a++){let u=i*2+a;o+=`
localCoords = coords;
if(localCoords[2] + ${a} < ${this.enableShapeUniforms?"outShape[2]":`${t[2]}`}) {
localCoords[2] += ${a};
if (localCoords[1] + ${i} < ${this.enableShapeUniforms?"outShape[1]":`${t[1]}`}) {
localCoords[1] += ${i};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${u}] = values[0];
} else if (offset == 1) {
result[${u}] = values[1];
} else if (offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?Ed():_d(t)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${o}
${n.output} = ${s};
}
`}};var f1={};Kt(f1,{bindVertexProgramAttributeStreams:()=>s1,createBufferFromOutputTexture:()=>l1,createFloat16MatrixTexture:()=>e1,createFloat16PackedMatrixTexture:()=>o1,createFloat32MatrixTexture:()=>t1,createIndexBuffer:()=>QT,createPackedMatrixTexture:()=>n1,createUnsignedBytesMatrixTexture:()=>r1,createVertexBuffer:()=>JT,createVertexShader:()=>ZT,downloadByteEncodedFloatMatrixFromOutputTexture:()=>c1,downloadFloat32MatrixFromBuffer:()=>u1,downloadMatrixFromPackedOutputTexture:()=>m1,downloadPackedMatrixFromBuffer:()=>p1,getInternalFormatForFloat16MatrixTexture:()=>qw,getInternalFormatForFloat16PackedMatrixTexture:()=>Xw,getInternalFormatForFloat32MatrixTexture:()=>Hw,getInternalFormatForPackedMatrixTexture:()=>jw,getInternalFormatForUnsignedBytesMatrixTexture:()=>Kw,uploadDenseMatrixToTexture:()=>i1,uploadPixelDataToTexture:()=>a1});function ZT(r){let t=We(),e=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return DT(r,e)}function JT(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return OT(r,t)}function QT(r){let t=new Uint16Array([0,1,2,2,1,3]);return PT(r,t)}function pg(r,t,e,n,o,s){LT(t,e);let i=MT(r),a=r.TEXTURE_2D;return ht(r,()=>r.bindTexture(a,i)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),L().getNumber("WEBGL_VERSION")===1?ht(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):ht(r,()=>r.texStorage2D(a,1,n,t,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function Hw(r){return r.internalFormatFloat}function t1(r,t,e,n){let[o,s]=mp(t,e);return pg(r,o,s,Hw(n),n.textureFormatFloat,r.FLOAT)}function qw(r){return r.internalFormatHalfFloat}function e1(r,t,e,n){let[o,s]=mp(t,e);return pg(r,o,s,qw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Kw(r){return r.downloadTextureFormat}function r1(r,t,e,n){let[o,s]=mp(t,e);return pg(r,o,s,Kw(n),r.RGBA,r.UNSIGNED_BYTE)}function jw(r){return r.internalFormatPackedFloat}function n1(r,t,e,n){let[o,s]=wa(t,e);return pg(r,o,s,jw(n),r.RGBA,r.FLOAT)}function Xw(r){return r.internalFormatPackedHalfFloat}function o1(r,t,e,n){let[o,s]=wa(t,e);return pg(r,o,s,Xw(n),r.RGBA,n.textureTypeHalfFloat)}function s1(r,t,e){return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),Ow(r,t,"clipSpacePos",e,3,20,0)&&Ow(r,t,"uv",e,2,20,12)}function i1(r,t,e,n,o,s){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function a1(r,t,e){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function l1(r,t,e,n){let o=r.createBuffer();ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return ht(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function u1(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function c1(r,t,e,n){let[o,s]=mp(t,e),i=4,a=new Uint8Array(cL(t*e,i));return ht(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function p1(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array(pL(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function m1(r,t,e){let n=new Float32Array(t*e*4);return ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var hp=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let e=L().getNumber("WEBGL_VERSION");if(t!=null?(this.gl=t,TT(e,t)):this.gl=jn(e),t=this.gl,L().getNumber("WEBGL_VERSION")===2){let s=t;this.createVertexArray=()=>ht(s,()=>s.createVertexArray()),this.bindVertexArray=i=>ht(s,()=>s.bindVertexArray(i)),this.deleteVertexArray=i=>ht(s,()=>s.deleteVertexArray(i)),this.getVertexArray=()=>ht(s,()=>s.getParameter(s.VERTEX_ARRAY_BINDING))}else if(t!=null){let s=t.getExtension("OES_vertex_array_object");if(s==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ht(t,()=>s.createVertexArrayOES()),this.bindVertexArray=i=>ht(t,()=>s.bindVertexArrayOES(i)),this.deleteVertexArray=i=>ht(t,()=>s.deleteVertexArrayOES(i)),this.getVertexArray=()=>ht(t,()=>t.getParameter(s.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),L().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",i="OES_texture_half_float";if(this.textureFloatExtension=Sd(this.gl,s),Xn(this.gl,i))this.textureHalfFloatExtension=Sd(this.gl,i);else if(L().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Xn(this.gl,o))this.colorBufferHalfFloatExtension=Sd(this.gl,o);else if(L().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Xn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Xn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=JT(this.gl),this.indexBuffer=QT(this.gl),this.framebuffer=zT(this.gl),this.textureConfig=ag(this.gl,this.textureHalfFloatExtension)}get debug(){return L().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;ht(t,()=>t.finish()),ht(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),ht(t,()=>t.deleteFramebuffer(this.framebuffer)),ht(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),ht(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),ht(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),t1(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),e1(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),r1(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),a1(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),i1(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),o1(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),n1(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(Pw(this.gl,this.framebuffer),this.outputTexture=null),ht(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>c1(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return p1(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return u1(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=l1(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(L().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>m1(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=ZT(e));let n=RT(e);ht(e,()=>e.attachShader(n,this.vertexShader)),ht(e,()=>e.attachShader(n,t)),FT(e,n);let o=Object.assign(n,{vao:this.createVertexArray()});return this.debug&&lg(e,o),o}buildVao(t){this.setProgram(t),this.bindVertexArray(t.vao);let e=this.gl;ht(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),s1(e,t,this.vertexBuffer)}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&(ht(this.gl,()=>this.gl.deleteProgram(t)),this.deleteVertexArray(t.vao))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&lg(this.gl,this.program),ht(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?BT(this.gl,t,e):VT(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),ht(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),GT(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=wa(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&lg(this.gl,this.program),Nd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;if(this.debug){let e=this.getVertexArray();console.assert(e===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ht(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ht(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Sd(this.gl,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Knt(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in L().platform&&(n=L().platform.setTimeoutCustom.bind(L().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(t){this.throwIfDisposed(),ug(this.gl,t,this.framebuffer),this.debug&&Nd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ug(this.gl,this.outputTexture,this.framebuffer),this.debug&&Nd(this.gl)):Pw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;ug(o,t,this.framebuffer),this.debug&&Nd(o),this.outputTexture=t,ht(o,()=>o.viewport(0,0,e,n)),ht(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),ht(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Knt(r){let t=0;for(;t<r.length&&r[t]();++t);return t-1}var{addImpl:NL,bincountImpl:Yw,bincountReduceImpl:kL,castImpl:TL,ceilImpl:_L,concatImpl:EL,equalImpl:AL,expImpl:DL,expm1Impl:$L,floorImpl:RL,gatherNdImpl:FL,gatherV2Impl:OL,greaterImpl:PL,greaterEqualImpl:ML,lessImpl:LL,lessEqualImpl:zL,linSpaceImpl:BL,logImpl:VL,maxImpl:GL,maximumImpl:WL,minimumImpl:UL,multiplyImpl:HL,negImpl:qL,notEqualImpl:KL,prodImpl:jL,raggedGatherImpl:XL,raggedRangeImpl:YL,raggedTensorToTensorImpl:ZL,rangeImpl:JL,rsqrtImpl:QL,scatterImpl:tz,sigmoidImpl:ez,simpleAbsImpl:Zw,sliceImpl:rz,sparseFillEmptyRowsImpl:nz,sparseReshapeImpl:oz,sparseSegmentReductionImpl:Jw,sqrtImpl:sz,staticRegexReplaceImpl:iz,stridedSliceImpl:az,stringNGramsImpl:lz,stringSplitImpl:uz,stringToHashBucketFastImpl:cz,subImpl:pz,tileImpl:mz,topKImpl:fz,transposeImpl:gp,uniqueImpl:dz}=Nw;function d1(r,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${r}.${e}`)}function er(r,t){return t===1?[r]:d1(r,t)}function hz(r,t){if(r===1)return"rc";let e="";for(let n=0;n<r;n++)e+=t[n],n<r-1&&(e+=",");return e}var Qw=class{constructor(t){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.enableShapeUniforms=de(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let e=er("rc",this.rank),n=zt(this.rank),o=this.getOutOfBoundsCondition(e),s=this.getSetup(e),i=this.getOutput(e);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${o}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}getSourceCoordsArr(t){let e=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let i=2;i<this.rank;i++)s=`${t[t.length-1-i]},`+s;e.push(s)}return e}getOutOfBoundsCondition(t){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let e="";for(let n=this.rank-2;n<this.rank;n++)e+=`${t[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(e+="||");return e}getSetup(t){if(this.rank===1)return"";let e=t.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],o=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${e[0]};
int c = ${e[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${o};
`}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),
cEdge ? 0. : getA(${e[1]}),
rEdge ? 0. : getA(${e[2]}),
rEdge || cEdge ? 0. : getA(${e[3]})`}};var Od=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${o}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${o>0?"}":""}
`}this.userCode=`
${jnt(e,this.enableShapeUniforms)}
${this.enableShapeUniforms?Ed():_d(t)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":t[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":t[2]};
${n}
setOutput(result);
}
`}};function jnt(r,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?gL(["r","c","d"],"inputShape"):Ci(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var tI=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(t,e,n){let o=xz(e,n),s=yz(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=gz(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].pop();return this.usedTextures[s].push(u),u}let a;return o===Lr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Lr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Lr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=xz(n,o),i=yz(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=gz(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=L().get("WEBGL_DELETE_TEXTURE_THRESHOLD");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l&&l.indexOf(t);if(c==null||c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l[c]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Xnt(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function gz(r,t,e,n,o){let s=Ynt(t,n),i;if(o){let[u,l]=wa(r[0],r[1]);i=u*l}else{let[u,l]=mp(r[0],r[1]);i=u*l}let a=Xnt(e,s);return i*a}function Ynt(r,t){switch(r){case Lr.PACKED_2X2_FLOAT32:return jw(t);case Lr.PACKED_2X2_FLOAT16:return Xw(t);case Lr.UNPACKED_FLOAT32:return Hw(t);case Lr.UNPACKED_FLOAT16:return qw(t);case Lr.PACKED_4X1_UNSIGNED_BYTE:return Kw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Znt(r){return L().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Lr.PACKED_2X2_FLOAT32:Lr.UNPACKED_FLOAT32:r?Lr.PACKED_2X2_FLOAT16:Lr.UNPACKED_FLOAT16}function xz(r,t){if(r===Zr.UPLOAD)return Lr.PACKED_2X2_FLOAT32;if(r===Zr.RENDER||r==null)return Znt(t);if(r===Zr.DOWNLOAD||r===Zr.PIXELS)return Lr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function yz(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var zr=class{constructor(t,e){this.variableNames=["A"],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${e}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},yr="if (isnan(x)) return x;",bz="return x;",h1="return abs(x);";var wz="return (x >= 0.0) ? x : (exp(x) - 1.0);",Iz=yr+`
return (x < 0.0) ? 0.0 : x;
`,Cz=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Ia="return x;",vz="return 1.0 / (1.0 + exp(-1.0 * x));";var Nz="return x;",kz=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Tz=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_z=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Ez="return 1.0 / (1.0 + exp(-1.0 * x));",Rn=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${e}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var eI=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let e=t.length,n=er("rc",e),o=zt(e),s=hz(e,n),i=n.slice(-2),a=e<=1?"rc":`vec2(${i.join(",")})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${a}));
}
`}};var Qnt=Kr.whereImpl,tot=1e-7,eot=1e-4,rI={};function rot(r){return r in rI||(rI[r]={}),rI[r]}var not=L().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),oot=600;function sot(){return L().global.screen==null?1024:L().global.screen.height*L().global.screen.width*window.devicePixelRatio*oot/1024/1024}var ju=class extends Wo{nextDataId(){return ju.nextDataId++}constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!L().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let e;if(t!=null){if(t instanceof hp)e=t;else{let n=jn(L().getNumber("WEBGL_VERSION"),t);e=new hp(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=jn(L().getNumber("WEBGL_VERSION"));e=new hp(n),this.binaryCache=rot(L().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new tI(this.gpgpu),this.numMBBeforeWarning=sot(),this.texData=new Ta(this,Vn())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(t,e,n,o,s,i){let a=this.makeTensorInfo(e,n),u=this.texData.get(a.dataId);u.isPacked=!1,u.texture={texture:t,texShape:[o,s]},u.texShape=[o,s];let l=kd(e),c=new cg(l,!1,i),p=this.runWebGLProgram(c,[a],n,[[o,s]]);return p.shape=e,u.texture=null,this.disposeIntermediateTensorInfo(a),p.dataId}write(t,e,n){if((L().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||L().getBool("DEBUG"))&&this.checkNumericalProblems(t),n==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Zr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(L().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Zr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new Rn(a,Ia):m=new zr(a,Ia);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return n;let l=this.activeTimers!=null,c;l&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new Rn(o,Ia):d=new zr(o,Ia);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(L().getBool("DEBUG")&&!L().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&L().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(i!=="complex64"&&L().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...ig(o))}this.pendingRead.set(t,[]),i!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(i==="complex64"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;ht(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&Vn().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(i!=null){let f;u?f=new Rn(s,Ia):f=new zr(s,Ia);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(t,e.customTexShape),p=Vn().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return bt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return bt(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e<t.length;e++){let n=t[e];if(!AT(n))throw L().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(t){let{shape:e,dtype:n,isPacked:o}=this.texData.get(t),s=y.sizeFromShape(e);if(L().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(t),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture.texture,...ig(e)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let i=L().getBool("WEBGL_PACK")&&o===!0,a=i?kd(e):e,u=i?new Ww(a):new Gw(a),l=this.runWebGLProgram(u,[{shape:a,dtype:n,dataId:t}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let u=await Promise.all(s);a.kernelMs=y.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(t){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=y.now(),t)}async getQueryTime(t){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=not){return L().getBool("WEBGL_CPU_FORWARD")&&t.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<e)}getGPGPUContext(){return this.gpgpu}where(t){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return Qnt(t.shape,e)}packedUnaryOp(t,e,n){let o=new Rn(t.shape,e),s=this.compileAndRun(o,[t],n);return Vn().makeTensorFromTensorInfo(s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let o=Zw(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,o)}if(L().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,h1,t.dtype);let e=new zr(t.shape,h1),n=this.compileAndRun(e,[t]);return Vn().makeTensorFromTensorInfo(n)}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return Vn().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new eI(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new Qw(t.shape),n=!0;return this.runWebGLProgram(e,[t],t.dtype,null,n)}packedReshape(t,e){let n=[zl(t.shape),...Bl(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[zl(e),...Bl(e)],i=new Od(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=y.sizeFromShape(s),f=e[0]*e[1]*4;y.assert(m<=f,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let a=kd(s),u;o?u=new Vw(a):u=new Bw(a);let l=!0,c=[e!=null?e:ig(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===qu.DENSE){let x=i!=null?i:ig(t.outputShape);u.texShape=x.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),y.sizeFromShape(a.shape)===0)return u.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(x=>{if(x.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(x.dataId);if(b.texture==null){if(!t.packedInputs&&y.sizeFromShape(x.shape)<=L().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!t.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),l.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!Ku(b.shape,x.shape)){let w=x,I=x.shape;x.shape=b.shape,x=this.packedReshape(x,I),l.push(x),b=this.texData.get(x.dataId),w.shape=I}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=SL(t,c,p),f=this.getAndSaveBinary(m,()=>CL(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),L().get("ENGINE_COMPILE_ONLY")||vL(this.gpgpu,f,c,p,o),l.forEach(x=>this.disposeIntermediateTensorInfo(x)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=L().get("WEBGL_FLUSH_THRESHOLD");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!L().getBool("WEBGL_LAZILY_UNPACK")&&u.isPacked&&s===!1){let x=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),x}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(L().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!L().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=L().getBool("DEBUG");L().set("DEBUG",!1);let e=this.abs(ft(1e-8)).dataSync()[0];if(L().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?tot:eot}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=y.now());let p=e.texShape;if(p==null&&(p=WT(n,u),e.texShape=p),s!=null){let m=kd(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=wa(p[0],p[1])),u?f=new Uw(m,g):f=new cg(m,g);let x=g?[h,d]:p,b=this.makeTensorInfo(x,o),w=this.texData.get(b.dataId);g?w.usage=Zr.PIXELS:w.usage=Zr.UPLOAD,w.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let I=[[h,d]],N=!0,E=this.runWebGLProgram(f,[b],o,I,N),A=this.texData.get(E.dataId);e.texShape=A.texShape,e.isPacked=A.isPacked,e.usage=A.usage,L().get("ENGINE_COMPILE_ONLY")?this.disposeData(E.dataId):(e.texture=A.texture,e.values=null,this.texData.delete(E.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return e!=null&&(n.values=iot(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*y.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await kh(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Fw(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let t of Object.values(this.binaryCache)){this.gpgpu.buildVao(t.webGLProgram);let{variablesLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,outShapeLocation:i,outShapeStridesLocation:a,outTexShapeLocation:u}=YT(this.gpgpu,t.program,t.webGLProgram);t.variablesLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.outShapeLocation=i,t.outShapeStridesLocation=a,t.outTexShapeLocation=u}}createTensorFromGPUData(t,e,n){t.channels=t.channels||"RGBA";let{texture:o,height:s,width:i,channels:a}=t,u=Vn().backend;if(!u.gpgpu.gl.isTexture(o))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=u.writeTexture(o,e,n,s,i,a);return Vn().makeTensorFromDataId(l,e,n,u)}};ju.nextDataId=0;function iot(r,t){if(t==="float32"||t==="complex64")return r;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<e.length;++n)e[n]=Math.round(r[n]);return e}else throw new Error(`Unknown dtype ${t}`)}var Az="4.5.0";function Dz(){L().set("WEBGL_FORCE_F16_TEXTURES",!0)}xu.isBrowser()&&sm("webgl",()=>new ju,2);var aDe={forceHalfFloat:Dz};var Pd=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var mo=class{constructor(t,e,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${t}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var Yn=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`;var zo=class{constructor(t,e,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=de(s);let i="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)i=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(i=`
${zt(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?i+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:i+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let u=er("coords",s);this.enableShapeUniforms?i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${t}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${i}
setOutput(result);
}
`}};function rr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var $z={kernelName:xo,backendName:"webgl",kernelFunc:rr};function Fn(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,"complex64"),i=e.texData.get(s.dataId),a=rr({inputs:{x:n},backend:e}),u=rr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var Rz={kernelName:Op,backendName:"webgl",kernelFunc:Fn};var g1="return (a < 0.) ? b * a : a;",x1=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function aot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),a=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zo(x1,o.shape,i.shape):new mo(g1,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],"float32");return e.disposeIntermediateTensorInfo(i),u}var Fz={kernelName:Is,backendName:"webgl",kernelFunc:aot};var y1="return (a < 0.) ? b * a : a;",b1=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function lot(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zo(b1,n.shape,o.shape):new mo(y1,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],"float32")}var Oz={kernelName:Ps,backendName:"webgl",kernelFunc:lot};var Bo="if (isnan(x)) return x;";function wt({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=L().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new Rn(i.shape,t):c=new zr(i.shape,r),a.runWebGLProgram(c,[i],u)}}function ue({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype==="complex64"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[I,N]=w,E={dataId:I.dataId,dtype:I.dtype,shape:u.shape},A={dataId:N.dataId,dtype:N.dtype,shape:l.shape},D=new mo(r,u.shape,l.shape);return c.runWebGLProgram(D,[E,A],ur(I.dtype,N.dtype))}),b=Fn({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||ur(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype==="string"?S.fromUint8ToStringArray(d):d,x=u.dtype==="string"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,x,p),I=c.makeTensorInfo(w,p),N=c.texData.get(I.dataId);return N.values=b,I}let m=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,f;return m?f=new zo(t,u.shape,l.shape,e):f=new mo(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function Vl(r,t=!1){if(r==="linear")return t?Nz:bz;if(r==="relu")return t?Tz:Iz;if(r==="elu")return t?kz:wz;if(r==="relu6")return t?_z:Cz;if(r==="prelu")return t?b1:y1;if(r==="leakyrelu")return t?x1:g1;if(r==="sigmoid")return t?Ez:vz;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Md=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=de(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";a&&(u?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${a}
}`:l?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${a}
}`:g=`vec4 activation(vec4 x) {
${a}
}`,x="result = activation(result);");let b=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let w="rc.x",I="rc.x";t[0]<e[0]?w=`imod(rc.x, ${t[0]})`:e[0]<t[0]&&(I=`imod(rc.x, ${e[0]})`),this.userCode=`
${g}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${w};
int batchB = ${I};
for (int i = 0; i < ${p}; i++) {
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var w1={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},mg=class{constructor(t,e,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${t}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var Pz="return a * b;";function fg(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=S.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),l=new mg(w1.REAL,n.shape,o.shape),c=new mg(w1.IMAG,n.shape,o.shape),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:n.shape},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:o.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:o.shape}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=Fn({inputs:{real:m,imag:f},backend:e});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}if(e.shouldExecuteOnCPU([n,o])){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),[l,c]=HL(n.shape,o.shape,a.values,u.values,s),p=e.makeTensorInfo(c,s),m=e.texData.get(p.dataId);return m.values=l,p}let i;return L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new zo(Pz,n.shape,o.shape):i=new mo(Pz,n.shape,o.shape),e.runWebGLProgram(i,[n,o],s)}var Mz={kernelName:$s,backendName:"webgl",kernelFunc:fg};function Lz(r,t,e){let n=[zl(r.shape),...Bl(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[zl(t),...Bl(t)],i=new Od(s,n),a=!0,u=[n],l=e.runWebGLProgram(i,[o],r.dtype,u,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=e,a=y.sizeFromShape(o.shape),u=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(u);y.assert(a===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!Ku(o.shape,u)&&!(c.texture!==null&&Ku(c.shape,u))?Lz(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var zz={kernelName:Bi,backendName:"webgl",kernelFunc:rt};var dg=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l="sumValue += dot(values, ones);";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${a}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${a};
if (${u===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}};var nI=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a="0.0",u="";e==="prod"?a="1.0":e==="min"?(a="1.0 / 1e-20",u="min"):e==="max"&&(a="-1.0 / 1e-20",u="max");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?l="sumValue":e==="prod"?l="prodValue":e==="all"?l="allValue":e==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
if (${e==="sum"}) {
sumValue += dot(values, ones);
} else if (${e==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${u}(values, minMaxValue);
if (${e==="min"} || ${e==="max"}) {
minMaxValue = ${u}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,f="vec4";e==="all"?(a="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):e==="any"&&(a="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${a};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${a});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${l});
}
`}};function cot(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Zn(r,t,e,n){let o=cot(r.shape),s=r;for(let i=0;i<o.length;i++){let{inSize:a,windowSize:u,outSize:l}=o[i],c,p;e==="mean"?c=i===0?new dg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},a):new dg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l}):c=new nI({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},e),p=s,s=n.runWebGLProgram(c,[s],t),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var oI=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[e[i]];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=pot(e);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function pot(r){let t=r.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let o=0;o<r.length;o++)n[r[o]]=e[o];return n.join()}var sI=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(t.length);for(let c=0;c<n.length;c++)n[c]=t[e[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=zt(this.rank),s=d1("rc",this.rank),i=new Array(this.rank);for(let c=0;c<e.length;c++)i[e[c]]=s[c];let a=`vec2(${i.slice(-2).join()})`,u=`++${s[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${i.join()}), ${a})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${u}) {
result[1] = ${l};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${u}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Xu(r,t,e){let n=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sI(r.shape,t):new oI(r.shape,t);return e.runWebGLProgram(n,[r],r.dtype)}function Bz(r,t,e,n){let o=t,s=r.shape.length,i=y.parseAxisParam(o,r.shape),a=i,u=S.getAxesPermutation(a,s),l=u!=null,c=r;l&&(c=Xu(r,u,n),a=S.getInnerMostAxes(a.length,s)),S.assertAxesAreInnerMostDims("sum",a,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,a),f=p;e&&(f=S.expandShapeToKeepDim(p,i));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=rt({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=mc(r.dtype),w=Zn(x,b,"sum",n),I=rt({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),l&&n.disposeIntermediateTensorInfo(c),I}function xp(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;return Bz(o,s,i,e)}var Vz={kernelName:Js,backendName:"webgl",kernelFunc:xp};function Pe(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{perm:s}=n,i=e,a=o.shape.length,u=new Array(a);for(let c=0;c<u.length;c++)u[c]=o.shape[s[c]];let l;if(i.shouldExecuteOnCPU([o])){let p=i.texData.get(o.dataId).values,m=gp(p,o.shape,o.dtype,s,u);l=i.makeTensorInfo(u,o.dtype);let f=i.texData.get(l.dataId);f.values=m}else l=Xu(o,s,i);return l}var Gz={kernelName:io,backendName:"webgl",kernelFunc:Pe};var I1=1e3;function yp({a:r,b:t,transposeA:e,transposeB:n,backend:o,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:a=0,activation:u=null}){let l=r.shape.length,c=t.shape.length,p=e?r.shape[l-2]:r.shape[l-1],m=n?t.shape[c-1]:t.shape[c-2],f=e?r.shape[l-1]:r.shape[l-2],d=n?t.shape[c-2]:t.shape[c-1],h=r.shape.slice(0,-2),g=t.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),I=Ur.assertAndGetBroadcastShape(r.shape.slice(0,-2),t.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[x,p,f]:[x,f,p],E=n?[b,d,m]:[b,m,d],A=rt({inputs:{x:r},backend:o,attrs:{shape:N}}),D=rt({inputs:{x:t},backend:o,attrs:{shape:E}}),F=[A,D],P=Math.max(x,b),V=e?A.shape[1]:A.shape[2],G=s!=null,W=i!=null,q=u==="leakyrelu",H=u!=null?Vl(u,!0):null,K=G||W||q||H!=null,X;if((f===1||d===1)&&V>I1&&K===!1){let et=A,nt=D;e&&(et=Pe({inputs:{x:A},backend:o,attrs:{perm:[0,2,1]}}),F.push(et)),n&&(nt=Pe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),F.push(nt));let st=d!==1,at=d===1,ot=et;st&&(ot=rt({inputs:{x:et},backend:o,attrs:{shape:[P,V,1]}}),F.push(ot));let it=d===1?2:1,mt=nt;at&&(mt=rt({inputs:{x:nt},backend:o,attrs:{shape:[P,1,V]}}),F.push(mt));let gt=fg({inputs:{a:ot,b:mt},backend:o});X=xp({inputs:{x:gt},backend:o,attrs:{axis:it,keepDims:!0}}),F.push(gt)}else{let et=ur(r.dtype,t.dtype),nt=new Md(N,E,[P,f,d],e,n,G,H,W,q),st=[A,D];if(s!=null&&st.push(s),W&&st.push(i),q){let at=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));st.push(at),F.push(at)}X=o.runWebGLProgram(nt,st,et)}let Z=rt({inputs:{x:X},backend:o,attrs:{shape:I}});F.push(X);for(let et of F)o.disposeIntermediateTensorInfo(et);return Z}function mot(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return yp({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var Wz={kernelName:Ki,backendName:"webgl",kernelFunc:mot};var Uz="return abs(x);";function fot(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=e.texData.get(n.dataId),i=Zw(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return L().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Rn(n.shape,Uz):o=new zr(n.shape,Uz),e.runWebGLProgram(o,[n],n.dtype)}var Hz={kernelName:_i,backendName:"webgl",kernelFunc:fot};var dot=yr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,hot=wt({opSnippet:dot}),qz={kernelName:Ho,backendName:"webgl",kernelFunc:hot};var got=yr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,xot=wt({opSnippet:got}),Kz={kernelName:qo,backendName:"webgl",kernelFunc:xot};var jz="return a + b;",yot=ue({opSnippet:jz,packedOpSnippet:jz,supportsComplex:!0,cpuKernelImpl:NL}),Xz={kernelName:oo,backendName:"webgl",kernelFunc:yot};var iI=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${o};
setOutput(result);
}
`}};var aI=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${o};
setOutput(result);
}
`}};function lI(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return rr({inputs:{x:n[0]},backend:e});if(n.length>L().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(n.length/2),l=lI({inputs:n.slice(0,u),backend:e}),c=lI({inputs:n.slice(u),backend:e});return lI({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>ur(u,l)),s=n.map(u=>u.shape),a=L().getBool("WEBGL_PACK")?new aI(n[0].shape,s):new iI(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var Yz={kernelName:Ko,backendName:"webgl",kernelFunc:lI};function bot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("all",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Zn(h,h.dtype,"all",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var Zz={kernelName:Ea,backendName:"webgl",kernelFunc:bot};function wot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("any",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Zn(h,h.dtype,"any",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var Jz={kernelName:Aa,backendName:"webgl",kernelFunc:wot};var uI=class{constructor(t,e,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,i];let a=e==="max"?">":"<",u=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${o}; i++) {
int inIdx = ${u};
float candidate = getA(batch, inIdx);
if (candidate ${a} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var cI=class{constructor(t,e,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push("bestIndicesA");let a=this.outputShape,u=a.length,l=zt(u),c=er("coords",u),p,m;if(i===1){m=u+1;let D=zt(m);p=`
${D} sourceLocR = ${D}(${c.join()}, 0);
++${c[u-1]};
${D} sourceLocG = ${D}(${c.join()}, 0);
++${c[u-2]};
${D} sourceLocA = ${D}(${c.join()}, 0);
--${c[u-1]};
${D} sourceLocB = ${D}(${c.join()}, 0);
--${c[u-2]};`}else m=u,p=`
${l} sourceLocR = coords;
++${c[u-1]};
${l} sourceLocG = coords;
++${c[u-2]};
${l} sourceLocA = coords;
--${c[u-1]};
${l} sourceLocB = coords;
--${c[u-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(D=>"int "+D),g=er("sourceLocR",m-1).concat("inIdx.r"),x=er("sourceLocG",m-1).concat("inIdx.g"),b=er("sourceLocB",m-1).concat("inIdx.b"),w=er("sourceLocA",m-1).concat("inIdx.a"),I=n==="max"?"greaterThan":"lessThan",N=o?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,A=o?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${A}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};
bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${e};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${E};
for (int i = 0; i < ${e}; i++) {
inIdx = srcIdx;
${N}
vec4 candidate = ${E};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${I}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function Qz(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new uI(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=Qz(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function t3(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new cI(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,"int32");if(l.shape.length===t.shape.length){let c=t3(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function pI(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!L().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=y.sizeFromShape(c),m=rt({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=Qz(r,m,n);s.push(f);let d=rt({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return t3(r,t,n)}function Iot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=pI(e,u,i[0],"max");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var e3={kernelName:Ei,backendName:"webgl",kernelFunc:Iot};function Cot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=pI(e,u,i[0],"min");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var r3={kernelName:Ai,backendName:"webgl",kernelFunc:Cot};var vot=yr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,Sot=wt({opSnippet:vot}),n3={kernelName:jo,backendName:"webgl",kernelFunc:Sot};var Not=yr+"return log(x + sqrt(x * x + 1.0));",kot=wt({opSnippet:Not}),o3={kernelName:Xo,backendName:"webgl",kernelFunc:kot};var Tot=yr+`
return atan(x);
`,_ot=wt({opSnippet:Tot}),s3={kernelName:Yo,backendName:"webgl",kernelFunc:_ot};var Eot=Pd+`
return atan(a, b);
`,Aot=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Yn+`
return result;
`,Dot=ue({opSnippet:Eot,packedOpSnippet:Aot}),i3={kernelName:Jo,backendName:"webgl",kernelFunc:Dot};var $ot=yr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Rot=wt({opSnippet:$ot}),a3={kernelName:Zo,backendName:"webgl",kernelFunc:Rot};var vi=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e==="avg",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,x=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${D} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(I="avgValue / max(count, 1.0)");let N=Math.floor(i/4)*4,E=i%4,A=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${N}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${A}
}
int xC = xCCorner + ${N};
if (${E===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${A}
} else if (${E===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${A}
} else if (${E===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${A}
}
}
setOutput(${I});
}
`}},Yu=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,x=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e==="avg",I="0.0";if(w||(I="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${P} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let N="max",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(E="avgValue / max(count, 1.0)");let A=Math.floor(i/4)*4,D=i%4,F=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${N}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${I};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${I});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${A}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${F}
}
int xC = xCCorner + ${A};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${F}
}
}
}
setOutput(${E});
}
`}};function Fot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;Ii(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return rr({inputs:{x:o},backend:e});let p=new vi(c,"avg",!1);return e.runWebGLProgram(p,[o],"float32")}var l3={kernelName:Qo,backendName:"webgl",kernelFunc:Fot};function Oot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new Yu(p,"avg",!1);return e.runWebGLProgram(m,[o],"float32")}var u3={kernelName:Di,backendName:"webgl",kernelFunc:Oot};var mI=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${u};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${a}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},fI=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,x=1/(e*n*o);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function Pot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new fI(m);return e.runWebGLProgram(f,[o],i.dtype)}var c3={kernelName:Xl,backendName:"webgl",kernelFunc:Pot};function Mot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;Ii([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new mI(c);return e.runWebGLProgram(p,[o],i.dtype)}var p3={kernelName:Fp,backendName:"webgl",kernelFunc:Mot};function Lot(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return yp({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var m3={kernelName:ts,backendName:"webgl",kernelFunc:Lot};var dI=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="0.0";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="1.0";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${a};
float scale = ${u};
float inv = scale * inversesqrt(variance + float(${i}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var hI=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="vec4(0.0)";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
vec4 offset = ${a};
vec4 scale = ${u};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${i}));
setOutput((x - mean) * inv + offset);
}
`}};var zot=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=L().getBool("WEBGL_PACK_NORMALIZATION")?new hI(n.shape,o.shape,s.shape,c,p,u):new dI(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},f3={kernelName:gs,backendName:"webgl",kernelFunc:zot};var gI=class{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=zt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Bot(this.rank),o,s=t.map((i,a)=>`sourceLoc.${C1[a]} = start[${a}] + coords.${C1[a]};`);o=`
${e} sourceLoc;
${e} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${o}
setOutput(getSource(${n}));
}
`}},C1=["x","y","z","w","u","v"];function Bot(r){if(r===1)return"sourceLoc";if(r<=6)return C1.slice(0,r).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var xI=class{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let e=zt(this.rank),n=er("coords",this.rank),o=er("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`
result.x = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.y = ${i};
--${o[this.rank-1]};
}
`,u=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${t[this.rank-2]}) {
++${o[this.rank-2]};
result.z = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.w = ${i};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${e} coords = getOutputCoords();
${e} sourceLoc;
${l}
vec4 result = vec4(0.);
${a}
${u}
setOutput(result);
}
`}};function Vot(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=ze.computeFlatOffset(t,y.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function Si(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=ze.parseSliceParams(o,s,i);if(ze.assertParamsValid(o,a,u),y.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=e.texData.get(o.dataId),m=rz(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=ze.isSliceContinous(o.shape,a,u);if(l||!c){let p=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xI(u):new gI(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),Vot(o,a,u,e)}var d3={kernelName:Gi,backendName:"webgl",kernelFunc:Si};var Got=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=rt({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:c}}),x=Si({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),x},h3={kernelName:$i,backendName:"webgl",kernelFunc:Got};function Wot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=Yw(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var g3={kernelName:Da,backendName:"webgl",kernelFunc:Wot};function Uot(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var x3={kernelName:Yl,backendName:"webgl",kernelFunc:Uot};var Hot="return float(a != b);",v1=ue({opSnippet:Hot,cpuKernelImpl:KL,dtype:"bool"}),y3={kernelName:Ja,backendName:"webgl",kernelFunc:v1};function Gl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return rr({inputs:{x:o.complexTensorInfos.real},backend:e})}var b3={kernelName:jp,backendName:"webgl",kernelFunc:Gl};var qot="return float(int(x));";function w3(r,t){let e=new zr(r.shape,qot),n=t.runWebGLProgram(e,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function S1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return rr({inputs:{x:o},backend:e});let i=Te(o.shape),a=S1({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=Fn({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=Gl({inputs:{input:o},backend:e}),a=S1({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!y.hasEncodingLoss(o.dtype,s)){let i=rr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(e.shouldExecuteOnCPU([o])){let i=e.texData.get(o.dataId).values,[a,u,l]=TL(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}if(s==="int32")return w3(o,e);if(s==="bool"){let i=e.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),u=v1({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var I3={kernelName:ho,backendName:"webgl",kernelFunc:S1};var C3="return ceil(x);",Kot=wt({opSnippet:C3,packedOpSnippet:C3,cpuKernelImpl:_L}),v3={kernelName:es,backendName:"webgl",kernelFunc:Kot};var yI=class{constructor(t){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}};var bI=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function jot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;L().getBool("WEBGL_PACK_CLIP")?a=new bI(o.shape):a=new yI(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var S3={kernelName:go,backendName:"webgl",kernelFunc:jot};var wI=class{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function N3(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Xot(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new wI(n.shape),i=[N3(n,o.complexTensorInfos.real),N3(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var k3={kernelName:Zl,backendName:"webgl",kernelFunc:Xot};var II=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i<e.length;i++)e[i]=e[i-1]+t[i][1];let n=[`if (yC < ${e[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<e.length;i++){let a=e[i-1];n.push(`else if (yC < ${e[i]}) setOutput(getT${i}(yR, yC-${a}));`)}let o=e.length,s=e[e.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}};var vI=class{constructor(t,e){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(t,e);let n=this.outputShape,o=n.length,s=zt(o),i=er("coords",o),a=["x","y","z","w","u","v"].slice(0,o);this.variableNames=t.map((h,g)=>`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h<u.length;h++)u[h]=u[h-1]+t[h][e];let l=a[e],c=a.slice(-2),p=a.join(),m=`if (${l} < ${u[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<u.length;h++){let g=u[h-1];m+=`
if (${l} < ${u[h]} && ${l} >= ${u[h-1]}) {
return getChannel(
getT${h}(${CI(a,l,g)}),
vec2(${CI(c,l,g)}));
}`}let f=u.length,d=u[u.length-1];m+=`
return getChannel(
getT${f}(${CI(a,l,d)}),
vec2(${CI(c,l,d)}));`,this.userCode=`
float getValue(${a.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${i}), 0., 0., 0.);
${i[o-1]} = ${i[o-1]} + 1;
if (${i[o-1]} < ${n[o-1]}) {
result.g = getValue(${i});
}
${i[o-2]} = ${i[o-2]} + 1;
if (${i[o-2]} < ${n[o-2]}) {
result.a = getValue(${i});
}
${i[o-1]} = ${i[o-1]} - 1;
if (${i[o-2]} < ${n[o-2]} &&
${i[o-1]} < ${n[o-1]}) {
result.b = getValue(${i});
}
setOutput(result);
}
`}};function CI(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function bp(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return rr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var T3={kernelName:Gp,backendName:"webgl",kernelFunc:bp};function Ld(r,t,e){let n=r[0].dtype;if(n==="complex64"){let f=r.map(b=>Gl({inputs:{input:b},backend:e})),d=r.map(b=>bp({inputs:{input:b},backend:e})),h=Ld(f,t,e),g=Ld(d,t,e),x=Fn({inputs:{real:h,imag:g},backend:e});return f.forEach(b=>e.disposeIntermediateTensorInfo(b)),d.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),x}let o=e.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let f=r.map(I=>{let E=[-1,y.sizeFromShape(I.shape.slice(t))];return rt({inputs:{x:I},backend:e,attrs:{shape:E}})}),d=f.map(I=>({vals:e.readSync(I.dataId),shape:I.shape})),h=S.computeOutShape(f.map(I=>I.shape),1),g=f[0].shape[0]===1,x=EL(d,h,n,g),b=S.computeOutShape(r.map(I=>I.shape),t),w=e.makeTensorInfo(b,n,x);return f.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}let s=r.filter(f=>y.sizeFromShape(f.shape)>0),i=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let f=i?new zr(r[0].shape,Ia):new Rn(r[0].shape,Ia);return e.runWebGLProgram(f,r,n)}let a=L().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>a){let f=[];for(let h=0;h<s.length;h+=a){let g=s.slice(h,h+a);f.push(Ld(g,t,e))}let d=Ld(f,t,e);for(let h of f)e.disposeIntermediateTensorInfo(h);return d}if(i){let f=new vI(s.map(d=>d.shape),t);return e.runWebGLProgram(f,s,n)}let{tensors2D:u,outShape:l}=Yot(s,t,e),c=new II(u.map(f=>f.shape)),p=e.runWebGLProgram(c,u,n);u.forEach(f=>e.disposeIntermediateTensorInfo(f));let m=rt({inputs:{x:p},attrs:{shape:l},backend:e});return e.disposeIntermediateTensorInfo(p),m}function Yot(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>rt({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function N1(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(l=>l.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(l=>l.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(l=>y.sizeFromShape(l.shape)>0);return u.length===1?rr({inputs:{x:u[0]},backend:e}):Ld(u,s,e)}var _3={kernelName:Ri,backendName:"webgl",kernelFunc:N1};var zd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,I="",N="";n&&(o?I=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?I=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:I=`
float activation(float x) {
${n}
}
`,N="result = activation(result);");let E=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${I}
const ivec2 strides = ivec2(${u}, ${l});
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${E}
${N}
setOutput(result);
}
`}},SI=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${i}, ${a});
const ivec3 pads = ivec3(${e}, ${n}, ${o});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${u};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var Bd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.padInfo.left,a=t.strideWidth,u=t.dilationWidth,l=t.filterHeight,c=t.filterWidth,p=c,m=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)m+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;m+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${t.inChannels}; d1 += 2) {
`;for(let g=0;g<c;g++)m+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;m+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(p+1)/2;g++){let x=g*2;if(m+=`
xC = xCCorner + ${x*u};
`,a===1){if(x<c&&(i%2===1?(m+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
`,u===1&&x>0?m+=`
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
`:m+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
} else {
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
}
`):m+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xC${x} = xTexelC${x};
`,x+1<c)){let b=i%2===0?y.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(m+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
`,u>1?m+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
} else {
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
}
`:m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
`):b===1?m+=`
xC${x+1} = xTexelC${x};
`:m+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x+1} = xTexelC${x+1};
`}}else x<c&&(i%2===1?(m+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`,x+1<c&&(m+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
`)):(m+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(
xTexelC${x}.xy, xTexelC${x+1}.xy);
`,x+1<c&&(m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`)));x<c&&(m+=`
wTexel = getW(r, ${x}, d1, d2);
dotProd += xC${x}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${t.inChannels}) {
dotProd += xC${x}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,x+1<c&&(m+=`
wTexel = getW(r, ${x+1}, d1, d2);
dotProd += xC${x+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${t.inChannels}) {
dotProd += xC${x+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}m+=`
}
`,m+=`
}
`,m+=`
}
`;let f="",d="";n&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:f=`vec4 activation(vec4 x) {
${n}
}`,d="result = activation(result);");let h=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${f}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${m}
vec4 result = dotProd - vec4(0.000000000000001);
${h}
${d}
setOutput(result);
}
`}};var NI=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let{dataFormat:n}=e,o=We(),s=n==="channelsLast",i=s?1:2,a=s?2:3,u=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${t[2]} && pos < ${t[1]}) {`,l="";for(let c=0;c<=1;c++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${c};
${u}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${i}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${a}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${c*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${o.output} = result;
}
`}};function kI(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function TI({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat==="channelsLast",d=!1,h=!1,g,x=[];if(s!=null){let I=kI(s.shape,f);I!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:I}}),x.push(s))}if(o!=null){let I=kI(o.shape,f);I!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:I}}),x.push(o))}if(!((p===1||m===1)&&c>I1)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&y.arraysEqual(l.shape.slice(-3),u.slice(-3))){let I=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,I,e.inChannels],dtype:r.dtype},E=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,y.assert(Ku(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let A=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});x.push(A);let D=yp({a:N,b:A,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get(D.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=E,F.shape=e.outShape,g=rr({inputs:{x:D},backend:n}),g.shape=e.outShape,x.push(D)}else{let I=e.outHeight*e.outWidth,N=rt({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,I,e.inChannels]:[e.batchSize,e.inChannels,I]}}),E=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),A=yp({a:f?N:E,b:f?E:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=rt({inputs:{x:A},backend:n,attrs:{shape:e.outShape}}),x.push(N),x.push(E),x.push(A)}for(let I of x)n.disposeIntermediateTensorInfo(I);return g}function _I({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f==="channelsLast",h=u*l*c,g=m*p,x=[e.batchSize,h,g],b=!0,w=!1,I=[];if(s!=null){let Z=kI(s.shape,d);Z!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:Z}}),I.push(s))}if(o!=null){let Z=kI(o.shape,d);Z!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:Z}}),I.push(o))}let N=rt({inputs:{x:t},backend:n,attrs:{shape:[1,h,y.sizeFromShape(t.shape)/h]}});I.push(N);let E=new NI(x,e),A=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],D=n.runWebGLProgram(E,[r],"float32",A),F=rt({inputs:{x:D},backend:n,attrs:{shape:x}});I.push(D),I.push(F);let P=o!=null,V=s!=null,G=a==="leakyrelu",W=a?Vl(a,!0):null,q=new Md(d?F.shape:N.shape,d?N.shape:F.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,P,W,V,G),H=d?[F,N]:[N,F];if(o&&H.push(o),V&&H.push(s),G){let Z=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));H.push(Z),I.push(Z)}let K=n.runWebGLProgram(q,H,"float32"),X=rt({inputs:{x:K},backend:n,attrs:{shape:e.outShape}});I.push(K);for(let Z of I)n.disposeIntermediateTensorInfo(Z);return X}function Zot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=TI({x:o,filter:s,convInfo:m,backend:e});else if(m.strideWidth<=2&&p==="channelsLast"&&L().getBool("WEBGL_EXP_CONV")){let h=new Bd(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];f=e.runWebGLProgram(h,[o,s],"float32",g)}else if(L().getBool("WEBGL_CONV_IM2COL"))f=_I({x:o,filter:s,convInfo:m,backend:e});else{let h=new zd(m);f=e.runWebGLProgram(h,[o,s],"float32")}let d=rt({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var E3={kernelName:rs,backendName:"webgl",kernelFunc:Zot};var EI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
${i?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},AI=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat==="channelsLast",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
if (${i}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},DI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yF = 0; yF < ${t.outDepth}; yF++) {
int xF = wF + yF * ${e} - ${s};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${i};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${a};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},$I=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${u}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${e}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${e} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function Jot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new EI(m);return e.runWebGLProgram(f,[o,s],"float32")}var A3={kernelName:Pp,backendName:"webgl",kernelFunc:Jot};var RI=class{constructor(t){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=t.inShape,this.enableShapeUniforms=de(this.outputShape.length);let e=t.filterHeight,n=t.filterWidth,o=e-1-t.padInfo.top,s=n-1-t.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${o}, ${s});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
int wCPerm = ${n} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${t.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${t.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function Qot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p);if(L().getBool("WEBGL_PACK")&&p==="channelsLast"){let f=[[m.strideHeight,m.strideWidth]],d=new RI(m);return e.runWebGLProgram(d,[o,s],"float32",f)}else{let f=new AI(m);return e.runWebGLProgram(f,[o,s],"float32")}}var D3={kernelName:ns,backendName:"webgl",kernelFunc:Qot};function tst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new SI(l);return e.runWebGLProgram(c,[o,s],"float32")}var $3={kernelName:os,backendName:"webgl",kernelFunc:tst};function est(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new DI(l);return e.runWebGLProgram(c,[o,s],"float32")}var R3={kernelName:$a,backendName:"webgl",kernelFunc:est};function rst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new $I(l);return e.runWebGLProgram(c,[o,s],"float32")}var F3={kernelName:Ra,backendName:"webgl",kernelFunc:rst};var nst=Bo+`
return cos(x);
`,ost=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${Yn}
return result;
`,sst=wt({opSnippet:nst,packedOpSnippet:ost}),O3={kernelName:ss,backendName:"webgl",kernelFunc:sst};var ist=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,ast=wt({opSnippet:ist}),P3={kernelName:is,backendName:"webgl",kernelFunc:ast};var FI=class{constructor(t,e,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o==="bilinear"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,x,b]=p>1?[`${(a-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,I,N]=m>1?[`${(u-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${i}) {
return;
}
float height_scale = ${x};
float width_scale = ${I};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${N};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var lst=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new FI(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],"float32")},M3={kernelName:Oa,backendName:"webgl",kernelFunc:lst};var wp;(function(r){r.Prod="*",r.Sum="+"})(wp||(wp={}));var hg=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,i=this.op===wp.Prod?"1.0":"0.0",a=n?i:`getX(${L3(s,"coords",this.op)})`,u=this.outputShape[this.outputShape.length-1],l="",c="";n?(l=o?`end != ${u-1}`:"end != 0",c=o?"end + 1":"end - 1"):(l=o?`end + pow2 < ${u}`:"end >= pow2",c=o?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${zt(s)} coords = getOutputCoords();
int end = ${z3(s,"coords",this.op)};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${c};
${z3(s,"coords",this.op)} = idx;
val ${this.op}= getX(${L3(s,"coords",this.op)});
}
setOutput(val);
}
`}};function L3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function z3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function OI(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=Pe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=rr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new hg(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new hg(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=Pe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function ust(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return OI(wp.Prod,o,e,s,i,a)}var B3={kernelName:Fa,backendName:"webgl",kernelFunc:ust};function cst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return OI(wp.Sum,o,e,s,i,a)}var V3={kernelName:as,backendName:"webgl",kernelFunc:cst};function pst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=Yw(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=kL(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var G3={kernelName:Jl,backendName:"webgl",kernelFunc:pst};var PI=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${e};
int offset_h = imod(h, ${e});
int in_w = w / ${e};
int offset_w = imod(w, ${e});
int offset_d = (offset_h * ${e} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function mst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=new PI(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var W3={kernelName:Pa,backendName:"webgl",kernelFunc:mst};var Vd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l="",c="";n&&(o?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let p=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${u};
int q = d2 - d1 * ${u};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${i}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${a}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${c}
setOutput(result);
}
`}};var Gd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x<p;x++)f+=`
vec4 xTexelC${x*2};
int xTexelC${x*2}Ready;
vec4 xTexelC${x*2+1};
int xTexelC${x*2+1}Ready;
vec4 xC${x};`;f+=`
for (int r = 0; r < ${c}; r++) {
`;for(let x=0;x<p;x++)f+=`
xTexelC${x*2} = vec4(0.0);
xTexelC${x*2}Ready = 0;
xTexelC${x*2+1} = vec4(0.0);
xTexelC${x*2+1}Ready = 0;
xC${x} = vec4(0.0);`;f+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(f+=`
xC = xCCorner + ${b*l};
`,u===1){if(b<p&&(a%2===1?(f+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?f+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:f+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):f+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let w=a%2===0?y.nearestLargerEven(l):l;l%2===0&&a%2===1||l%2!==0&&a%2!==1?(f+=`
xCOffset = xC + imod(pads[1], 2) + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?f+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):w===1?f+=`
xC${b+1} = xTexelC${b};
`:f+=`
xCOffset = xC + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(a%2===1?(f+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(f+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(f+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(f+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(f+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}f+=`
}
`,f+=`
}
`;let d="",h="";n&&(o?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:d=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let g=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${f}
vec4 result = dotProd - vec4(0.000000000000001);
${g}
${h}
setOutput(result);
}
`}};function fst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n,c=u;c==null&&(c=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;L().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Gd(p):m=new Vd(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],"float32",f)}var U3={kernelName:ls,backendName:"webgl",kernelFunc:fst};var MI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${i} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},LI=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${u}; dm++) {
int d2 = d1 * ${u} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function dst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new MI(p);return e.runWebGLProgram(m,[o,s],"float32")}var H3={kernelName:Mp,backendName:"webgl",kernelFunc:dst};function hst(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new LI(p);return e.runWebGLProgram(m,[o,s],"float32")}var q3={kernelName:Lp,backendName:"webgl",kernelFunc:hst};var zI=class{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function gst(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),i=rt({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new zI(s),u=e.runWebGLProgram(a,[i],i.dtype),l=rt({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var K3={kernelName:Ql,backendName:"webgl",kernelFunc:gst};var BI=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`
const ivec2 strides = ivec2(${s}, ${i});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${a}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${e}) {
for (int w = 0; w < ${u}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function xst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c,p=new BI(l);c=e.runWebGLProgram(p,[o,s],"float32");let m=rt({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var j3={kernelName:us,backendName:"webgl",kernelFunc:xst};function yst(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(x)?w=s[g]:(w=Pe({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let I=w.shape.slice();for(let N=0;N<b.length;++N)I.splice(b[N],0,1);y.arraysEqual(w.shape,I)||(w=rt({inputs:{x:w},backend:e,attrs:{shape:I}}),d.push(w)),m===null?m=w:(m=fg({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=xp({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var X3={kernelName:zp,backendName:"webgl",kernelFunc:yst};var bst="return (x >= 0.0) ? x : (exp(x) - 1.0);",wst=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Ist=wt({opSnippet:bst,packedOpSnippet:wst}),Y3={kernelName:ps,backendName:"webgl",kernelFunc:Ist};var Cst="return (b >= 0.0) ? a : a * (b + 1.0);",vst=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Sst=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new zo(vst,n.shape,o.shape):new mo(Cst,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},Z3={kernelName:Ma,backendName:"webgl",kernelFunc:Sst};var Nst=`
return vec4(equal(a, b));
`,kst="return float(a == b);",Tst=ue({opSnippet:kst,packedOpSnippet:Nst,dtype:"bool",cpuKernelImpl:AL}),J3={kernelName:za,backendName:"webgl",kernelFunc:Tst};var _st=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${S.ERF_P};
float a1 = ${S.ERF_A1};
float a2 = ${S.ERF_A2};
float a3 = ${S.ERF_A3};
float a4 = ${S.ERF_A4};
float a5 = ${S.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Est=wt({opSnippet:_st}),Q3={kernelName:La,backendName:"webgl",kernelFunc:Est};var Ast=Bo+`
return exp(x);
`,Dst=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,k1=wt({opSnippet:Ast,packedOpSnippet:Dst,cpuKernelImpl:DL,dtype:"float32"}),tB={kernelName:ms,backendName:"webgl",kernelFunc:k1};function VI(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(y.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),rt({inputs:{x:s},backend:n,attrs:{shape:a}})}var eB={kernelName:Fi,backendName:"webgl",kernelFunc:VI};var rB="return exp(x) - 1.0;",$st=wt({opSnippet:rB,packedOpSnippet:rB,cpuKernelImpl:$L}),nB={kernelName:fs,backendName:"webgl",kernelFunc:$st};var gg=class{constructor(t,e,n){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:"1.0",a;if(t==="real")a="return real * expR - imag * expI;";else if(t==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${a}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${o});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${o}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${i};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function GI(r,t,e){let n=e.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=rt({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new gg("real",u,t),c=new gg("imag",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=Fn({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=rt({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function Rst(r){let{inputs:t,backend:e}=r,{input:n}=t;return GI(n,!1,e)}var oB={kernelName:Bp,backendName:"webgl",kernelFunc:Rst};var WI=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=t,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Wl(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||y.inferDtype(o),s==="string"){let i=y.getArrayFromDType(s,y.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new WI(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var sB={kernelName:ru,backendName:"webgl",kernelFunc:Wl};var UI=class{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${e} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${e}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var iB={kernelName:Ba,backendName:"webgl",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new UI(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var aB="return floor(x);",Fst=wt({opSnippet:aB,packedOpSnippet:aB,cpuKernelImpl:RL}),lB={kernelName:ds,backendName:"webgl",kernelFunc:Fst};var Ost=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Pst=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Mst=ue({opSnippet:Ost,packedOpSnippet:Pst,dtype:"int32"}),uB={kernelName:hs,backendName:"webgl",kernelFunc:Mst};var HI=class{constructor(t){this.variableNames=["A"];let e=We(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var qI=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=We(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${e.output} = result;
}
`}};var cB={kernelName:oh,backendName:"webgl",kernelFunc:Lst},Wd,T1=L().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Lst(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];if(a||i){let h=L().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Wd==null||h!==T1)&&(T1=h,Wd=document.createElement("canvas").getContext("2d",{willReadFrequently:T1})),Wd.canvas.width=u,Wd.canvas.height=l,Wd.drawImage(o,0,0,u,l),o=Wd.canvas}let m=e.makeTensorInfo(c,"int32");e.texData.get(m.dataId).usage=Zr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=L().getBool("WEBGL_PACK")?new qI(p):new HI(p),d=e.runWebGLProgram(f,[m],"int32");return e.disposeData(m.dataId),d}function zst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),x,b=[],w=i!=null,I=a!=null,N=f==="leakyrelu",E=()=>{let D=[o,s],F=(P,V)=>{if(V==="NCHW"&&P.shape.length===1&&P.shape[0]!==1){let G=rt({inputs:{x:P},backend:e,attrs:{shape:[P.shape[0],1,1]}});return b.push(G),G}return P};if(w&&D.push(F(i,c)),I&&D.push(F(a,c)),N){let P=e.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));D.push(P),b.push(P)}return D};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=TI({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(g.strideWidth<=2&&h==="channelsLast"&&L().getBool("WEBGL_EXP_CONV")){let D=f?Vl(f,!0):null,F=new Bd(g,w,D,I,N),P=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],V=E();x=e.runWebGLProgram(F,V,"float32",P)}else if(L().getBool("WEBGL_CONV_IM2COL"))x=_I({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let D=f?Vl(f,!1):null,F=new zd(g,w,D,I,N),P=E();x=e.runWebGLProgram(F,P,"float32")}let A=rt({inputs:{x},backend:e,attrs:{shape:g.outShape}});return b.push(x),b.forEach(D=>e.disposeIntermediateTensorInfo(D)),A}var pB={kernelName:ji,backendName:"webgl",kernelFunc:zst};function Bst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),x=L().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?Vl(m,x):null,w=[o,s],I=i!=null,N=a!=null,E=m==="leakyrelu";if(I&&w.push(i),N&&w.push(a),E){let P=e.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(P),d.push(P)}let A;x?A=new Gd(g,I,b,N,E):A=new Vd(g,I,b,N,E);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram(A,w,"float32",D);return d.forEach(P=>e.disposeIntermediateTensorInfo(P)),F}var mB={kernelName:Xi,backendName:"webgl",kernelFunc:Bst};var KI=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=["x","indices"],this.outputShape=n;let s=zt(n.length),i=`
int index;`;for(let a=0;a<this.sliceDim;a++)i+=`
index = round(getIndices(coords[0], ${a}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[a]};
flattenIndex += index * ${this.strides[a]};`;this.userCode=`
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${i}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Vst(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=y.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=rt({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=rt({inputs:{x:n},backend:e,attrs:{shape:[y.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype==="string"){let x=e.readSync(o.dataId),b=e.bufferSync(n),w=FL(x,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new KI(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var fB={kernelName:Va,backendName:"webgl",kernelFunc:Vst};var jI=class{constructor(t,e){this.variableNames=["A","indices"],this.outputShape=e,this.rank=e.length;let n=zt(this.rank),o=Gst(t,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${o}));
}
`}};function Gst(r,t){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("index"):n.push(`${e[o]}`);return n.join()}function _1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0];if(L().get("DEBUG")){let b=e.readSync(s.dataId),w=o.shape[u];for(let I=0;I<b.length;++I){let N=b[I];y.assert(N<=w-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=y.sizeFromShape(s.shape),p=[],m=rt({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=rt({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=e.bufferSync(f),w=e.bufferSync(m),I=OL(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,I.dtype,I.values)}let h=new jI(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=rt({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}var dB={kernelName:Oi,backendName:"webgl",kernelFunc:_1};var Wst="return float(a > b);",Ust=`
return vec4(greaterThan(a, b));
`,Hst=ue({opSnippet:Wst,packedOpSnippet:Ust,cpuKernelImpl:PL,dtype:"bool"}),hB={kernelName:Ga,backendName:"webgl",kernelFunc:Hst};var qst="return float(a >= b);",Kst=`
return vec4(greaterThanEqual(a, b));
`,jst=ue({opSnippet:qst,packedOpSnippet:Kst,dtype:"bool",cpuKernelImpl:ML}),gB={kernelName:xs,backendName:"webgl",kernelFunc:jst};function Xst(r){let{inputs:t,backend:e}=r,{input:n}=t;return GI(n,!0,e)}var xB={kernelName:Vp,backendName:"webgl",kernelFunc:Xst};var Yst="return float(!isnan(x) && !isinf(x));",Zst=wt({opSnippet:Yst,dtype:"bool"}),yB={kernelName:ys,backendName:"webgl",kernelFunc:Zst};var Jst="return float(isinf(x));",Qst=wt({opSnippet:Jst,dtype:"bool"}),bB={kernelName:bs,backendName:"webgl",kernelFunc:Qst};var tit="return float(isnan(x));",eit=wt({opSnippet:tit,dtype:"bool"}),wB={kernelName:ws,backendName:"webgl",kernelFunc:eit};var rit="return float(a < b);",nit=`
return vec4(lessThan(a, b));
`,oit=ue({opSnippet:rit,packedOpSnippet:nit,cpuKernelImpl:LL,dtype:"bool"}),IB={kernelName:Wa,backendName:"webgl",kernelFunc:oit};var sit="return float(a <= b);",iit=`
return vec4(lessThanEqual(a, b));
`,ait=ue({opSnippet:sit,packedOpSnippet:iit,cpuKernelImpl:zL,dtype:"bool"}),CB={kernelName:Ua,backendName:"webgl",kernelFunc:ait};function lit(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=BL(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var vB={kernelName:Ha,backendName:"webgl",kernelFunc:lit};var uit=Bo+`
return x < 0.0 ? 0./0. : log(x);
`,cit=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,pit=wt({opSnippet:uit,packedOpSnippet:cit,cpuKernelImpl:VL}),SB={kernelName:Cs,backendName:"webgl",kernelFunc:pit};var mit=Bo+`
return log(1.0 + x);
`,fit=wt({opSnippet:mit}),NB={kernelName:vs,backendName:"webgl",kernelFunc:fit};var dit="return float(a >= 1.0 && b >= 1.0);",hit=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,git=ue({opSnippet:dit,packedOpSnippet:hit,dtype:"bool"}),kB={kernelName:qa,backendName:"webgl",kernelFunc:git};var xit="return float(!(x >= 1.0));",yit=wt({opSnippet:xit}),TB={kernelName:Ka,backendName:"webgl",kernelFunc:yit};var bit="return float(a >= 1.0 || b >= 1.0);",wit=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Iit=ue({opSnippet:bit,packedOpSnippet:wit,dtype:"bool"}),_B={kernelName:ja,backendName:"webgl",kernelFunc:Iit};var XI=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${i}; j <= ${i}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${a}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${u};
setOutput(val);
}
`}};var YI=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${i};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${i}; j <= ${i}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${u};
setOutput(result);
}
`}};var Cit=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=L().getBool("WEBGL_PACK_NORMALIZATION")?new YI(o.shape,s,i,a,u):new XI(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},EB={kernelName:Ss,backendName:"webgl",kernelFunc:Cit};var ZI=class{constructor(t,e,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${e})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${e} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${o}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${o})
* float(${s})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var vit=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new ZI(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},AB={kernelName:Xa,backendName:"webgl",kernelFunc:vit};function DB(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Zn(a,r.dtype,"max",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function E1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,I=new Array(a);for(let A=0;A<I.length;A++)I[A]=o.shape[c[A]];let N=gp(w,o.shape,o.dtype,c,I);f=e.makeTensorInfo(I,o.dtype);let E=e.texData.get(f.dataId);E.values=N}else f=Xu(o,c,e);l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("max",l,a);let[d,h]=S.computeOutAndReduceShapes(f.shape,l),g=d;i&&(g=S.expandShapeToKeepDim(d,u));let x;if(m){let w=e.texData.get(f.dataId).values,I=GL(w,y.sizeFromShape(h),g,o.dtype);x=e.makeTensorInfo(g,o.dtype);let N=e.texData.get(x.dataId);N.values=I}else x=DB(f,h,g,e);return p&&e.disposeIntermediateTensorInfo(f),x}var $B={kernelName:Ns,backendName:"webgl",kernelFunc:E1};var Sit=Pd+`
return max(a, b);
`,Nit=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Yn+`
return result;
`,kit=ue({opSnippet:Sit,packedOpSnippet:Nit,cpuKernelImpl:WL}),RB={kernelName:ks,backendName:"webgl",kernelFunc:kit};function Tit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;Ii(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return rr({inputs:{x:o},backend:e});let p=new vi(c,"max",!1);return e.runWebGLProgram(p,[o],o.dtype)}var FB={kernelName:Ts,backendName:"webgl",kernelFunc:Tit};function _it(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new Yu(p,"max",!1);return e.runWebGLProgram(m,[o],o.dtype)}var OB={kernelName:Pi,backendName:"webgl",kernelFunc:_it};var JI=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${e}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${i}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${i} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},QI=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${e}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${a}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Eit(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new Yu(m,"max",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new QI(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var PB={kernelName:nu,backendName:"webgl",kernelFunc:Eit};function Ait(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;Ii([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new vi(m,"max",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new JI(m),x=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),x}var MB={kernelName:Wp,backendName:"webgl",kernelFunc:Ait};function LB(r,t,e,n){let o=new vi(e,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new vi(e,"max",!0,!0,t);let i=n.runWebGLProgram(o,[r],"float32");return[s,i]}var zB={kernelName:Up,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=LB(n,a,c,u);return[p,m]}};function BB(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Zn(a,"float32","mean",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var VB={kernelName:_s,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=y.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let I=i.texData.get(d.dataId).values,N=new Array(a);for(let D=0;D<N.length;D++)N[D]=n.shape[c[D]];let E=gp(I,n.shape,n.dtype,c,N);d=i.makeTensorInfo(N,n.dtype);let A=i.texData.get(d.dataId);A.values=E}else d=Xu(n,c,i);f.push(d),l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("sum",l,a);let[h,g]=S.computeOutAndReduceShapes(d.shape,l),x=h;o&&(x=S.expandShapeToKeepDim(h,u));let b=BB(d,g,x,i);for(let w of f)i.disposeIntermediateTensorInfo(w);return b}};function Dit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Zn(h,h.dtype,"min",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var GB={kernelName:Es,backendName:"webgl",kernelFunc:Dit};var $it=Pd+`
return min(a, b);
`,Rit=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Yn+`
return result;
`,Fit=ue({opSnippet:$it,packedOpSnippet:Rit,cpuKernelImpl:UL}),WB={kernelName:As,backendName:"webgl",kernelFunc:Fit};var tC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=e.map((c,p)=>c[0]+t[p]+c[1]);let o=t.length,s=zt(o),i=e.map(c=>c[0]).join(","),a=e.map((c,p)=>c[0]+t[p]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),l=n==="reflect"?0:1;if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${o}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${s} coords = outC - start;
setOutput(getX(${u}));
}
`}};var eC=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=zt(o),i=e.map(d=>d[0]).join(","),a=e.map((d,h)=>d[0]+t[h]).join(","),u=er("rc",o),l=er("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {
${d}
result[2] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var Oit=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eC(n.shape,o,s):new tC(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},UB={kernelName:Ds,backendName:"webgl",kernelFunc:Oit};var Pit=`if (b == 0.0) return NAN;
return mod(a, b);`,Mit=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+Yn+`
return result;
`,Lit=ue({opSnippet:Pit,packedOpSnippet:Mit}),HB={kernelName:Ya,backendName:"webgl",kernelFunc:Lit};var rC=class{constructor(t,e,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[t,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${e-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${e-1}));
}
`}};var zit=`
if (a == b) {
return 1.0;
};
return a / b;`,Bit=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,A1=ue({opSnippet:zit,packedOpSnippet:Bit,checkOutOfBounds:!0}),qB={kernelName:cs,backendName:"webgl",kernelFunc:A1};var KB="return a - b;",D1=ue({opSnippet:KB,packedOpSnippet:KB,supportsComplex:!0,cpuKernelImpl:pz}),jB={kernelName:ei,backendName:"webgl",kernelFunc:D1};function $1(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=y.parseAxisParam([s],o.shape),a=E1({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=rt({inputs:{x:a},backend:e,attrs:{shape:u}}),c=D1({inputs:{a:o,b:l},backend:e}),p=k1({inputs:{x:c},backend:e}),m=xp({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=rt({inputs:{x:m},backend:e,attrs:{shape:u}}),d=A1({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var XB={kernelName:Qs,backendName:"webgl",kernelFunc:$1};function Vit(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:$1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new rC(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],"int32",m);return a||e.disposeIntermediateTensorInfo(u),f}var YB={kernelName:Za,backendName:"webgl",kernelFunc:Vit};var Git=yr+`
return -x;
`,Wit=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Uit(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=qL(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return L().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Rn(n.shape,Wit):o=new zr(n.shape,Git),e.runWebGLProgram(o,[n],n.dtype)}var ZB={kernelName:Mi,backendName:"webgl",kernelFunc:Uit};var Hit=Kr.nonMaxSuppressionV3Impl;function qit(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=Hit(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var JB={kernelName:Qa,backendName:"webgl",kernelFunc:qit};var Kit=Kr.nonMaxSuppressionV4Impl;function jit(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Kit(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var QB={kernelName:tl,backendName:"webgl",kernelFunc:jit};var Xit=Kr.nonMaxSuppressionV5Impl;function Yit(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=Xit(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var tV={kernelName:el,backendName:"webgl",kernelFunc:Yit};var nC=class{constructor(t,e,n,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${o}), float(${n}),
float(index == coords.y)));
}
`}};var Zit=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=y.sizeFromShape(o.shape),c=new nC(l,i,a,u),p=rt({inputs:{x:o},backend:e,attrs:{shape:[l]}}),m=e.runWebGLProgram(c,[p],s);e.disposeIntermediateTensorInfo(p);let f=[...o.shape,i],d=rt({inputs:{x:m},backend:e,attrs:{shape:f}});return e.disposeIntermediateTensorInfo(m),d},eV={kernelName:Rs,backendName:"webgl",kernelFunc:Zit};function xg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="complex64"){let o=Gl({inputs:{input:n},backend:e}),s=xg({inputs:{x:o},backend:e}),i=bp({inputs:{input:n},backend:e}),a=xg({inputs:{x:i},backend:e}),u=Fn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Wl({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:e})}var rV={kernelName:qi,backendName:"webgl",kernelFunc:xg};function nV(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Gl({inputs:{input:n},backend:e}),s=nV({inputs:{x:o},backend:e}),i=bp({inputs:{input:n},backend:e}),a=xg({inputs:{x:i},backend:e}),u=Fn({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Wl({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var oV={kernelName:Li,backendName:"webgl",kernelFunc:nV};function Jit(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return VI({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=VI({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=N1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var sV={kernelName:zi,backendName:"webgl",kernelFunc:Jit};var oC=class{constructor(t,e,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=zt(o),i=e.map(l=>l[0]).join(","),a=e.map((l,c)=>l[0]+t[c]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${u}));
}
}
`}};var sC=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=zt(o),i=e.map(h=>h[0]).join(","),a=e.map((h,g)=>h[0]+t[g]).join(","),u=er("rc",o),l=er("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;
if(${c}) {
`,o===1?"":`}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${u[o-1]} += 1;
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${l.join()}), ${p});
}
`;d+=o===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var R1=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(y.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return Wl({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sC(o.shape,s,i):new oC(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},iV={kernelName:Fs,backendName:"webgl",kernelFunc:R1};var Qit=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,tat=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+Yn+`
return result;
`,eat=ue({opSnippet:Qit,packedOpSnippet:tat}),aV={kernelName:Os,backendName:"webgl",kernelFunc:eat};function rat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=y.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=Pe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims("prod",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=jL(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=rt({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=mc(o.dtype),w=Zn(x,b,"prod",e);f=rt({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(x),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=rt({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var lV={kernelName:Ms,backendName:"webgl",kernelFunc:rat};function nat(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.readSync(x.dataId)),l=o.map(x=>x.shape),c=e.readSync(s.dataId),p=e.readSync(i.dataId),[m,f,d]=XL(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var uV={kernelName:Hp,backendName:"webgl",kernelFunc:nat};function oat(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=YL(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var cV={kernelName:qp,backendName:"webgl",kernelFunc:oat};function sat(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),p=e.readSync(i.dataId),m=a.map(g=>e.readSync(g.dataId)),f=a.map(g=>g.shape),[d,h]=ZL(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var pV={kernelName:Kp,backendName:"webgl",kernelFunc:sat};var F1=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=JL(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},mV={kernelName:ou,backendName:"webgl",kernelFunc:F1};var iat="return 1.0 / x;",aat=wt({opSnippet:iat}),fV={kernelName:Ls,backendName:"webgl",kernelFunc:aat};var lat=yr+`
return (x < 0.0) ? 0.0 : x;
`,uat=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,cat=wt({opSnippet:lat,packedOpSnippet:uat}),dV={kernelName:zs,backendName:"webgl",kernelFunc:cat};var pat=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,mat=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,fat=wt({opSnippet:pat,packedOpSnippet:mat}),hV={kernelName:Gs,backendName:"webgl",kernelFunc:fat};var iC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var aC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function dat(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new aC(o.shape,u,l,s,i):new iC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],"float32")}var gV={kernelName:Vs,backendName:"webgl",kernelFunc:dat};var lC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function hat(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new lC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var xV={kernelName:nl,backendName:"webgl",kernelFunc:hat};var uC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};var cC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function gat(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cC(o.shape,u,l,s,i):new uC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var yV={kernelName:Bs,backendName:"webgl",kernelFunc:gat};var pC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float sourceFracRow =
float(${u[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${u[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${o}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function xat(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new pC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var bV={kernelName:rl,backendName:"webgl",kernelFunc:xat};var mC=class{constructor(t,e){this.variableNames=["x"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${t[0]} - coord - 1));
}
`;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(","),i=zt(n);this.userCode=`
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var fC=class{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=er("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=zt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${t[0]} - rc - 1),
${t[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),
${t[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${u(o.slice())};
if(${s}){
result.g = ${l(o.slice())};
}
if(${i}) {
result.b = ${c(o.slice())};
if(${s}) {
result.a = ${p(o.slice())};
}
}
setOutput(result);
}
`;function u(d){return m(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function yat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return rr({inputs:{x:o},backend:e});let u=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fC(o.shape,a):new mC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var wV={kernelName:Ws,backendName:"webgl",kernelFunc:yat};var dC=class{constructor(t,e){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=t[1],o=t[2];this.outputShape=t;let s="";typeof e=="number"?s=`float outputValue = ${e.toFixed(2)};`:s=`
vec3 fill = vec3(${e.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var IV={kernelName:fl,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new dC(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var bat=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,wat=wt({opSnippet:bat}),CV={kernelName:Us,backendName:"webgl",kernelFunc:wat};var Iat="return inversesqrt(x);",Cat=wt({opSnippet:Iat,cpuKernelImpl:QL}),vV={kernelName:Hs,backendName:"webgl",kernelFunc:Cat};var Zu=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=i;let l=zt(s.length),c=zt(i.length),p="";n===1?p="i":n===2&&(p="i, j");let m=`getIndices(${p})`,f="";o===1?f="i":o===2&&(f="i, coords[1]");let d=`getUpdates(${f})`,h="";u&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=e>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${c} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${t}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${e}; j++) {
int index = round(${m});
flattenedIndex += index * ${x};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(${g}, sum, float(found)));
}
`}};var hC=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=i;let l=zt(s.length),c=zt(i.length),p="";n===1?p="i":n===2&&(p="i, j");let m=`getIndices(${p})`,f="";o===1?f="i":o===2&&(f="i, coords[1]");let d=`getUpdates(${f})`,h="";u&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=e>1?"strides[j]":"strides",b=e>1?"strides[j + 1]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${c} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${t}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${e}; j+=2) {
ivec4 index = round(${m});
flattenedIndex += index.xz * ${x};
if (j + 1 < ${e}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${d};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${g}, sum, found));
}
`}};function vat(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=rt({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],"float32",new Float32Array([0])),g;L().getBool("WEBGL_PACK")?g=new hC(u,a,f.shape.length,d.shape.length,c,m):g=new Zu(u,a,f.shape.length,d.shape.length,c,m);let x=e.runWebGLProgram(g,[d,f,h],d.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(h),b}var SV={kernelName:ol,backendName:"webgl",kernelFunc:vat};var gC=class{constructor(t,e,n,o){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[t,n];let s="while (left < right) {",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=L().getNumber("WEBGL_VERSION")===2?s:i,u=o==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${a}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${u} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Sat(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new gC(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],"int32",u)}var NV={kernelName:il,backendName:"webgl",kernelFunc:Sat};var xC=class{constructor(t,e,n){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],u=[],l=[];for(let c=0;c<e.length;c++)l.push(`${a[c]}`),c<t&&u.push(`${a[c]}`);o=u.join(),s=l.join()}let i=zt(n);this.userCode=`
void main() {
${i} resRC = getOutputCoords();
float cVal = getC(${o});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function Nat(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new xC(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],ur(o.dtype,s.dtype))}var kV={kernelName:Vi,backendName:"webgl",kernelFunc:Nat};var kat=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${S.SELU_SCALEALPHA};
float scale = ${S.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Tat=wt({opSnippet:kat}),TV={kernelName:qs,backendName:"webgl",kernelFunc:Tat};var _at=Bo+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Eat=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Aat=wt({opSnippet:_at,packedOpSnippet:Eat,cpuKernelImpl:ez}),_V={kernelName:Xs,backendName:"webgl",kernelFunc:Aat};var Dat=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,$at=wt({opSnippet:Dat}),EV={kernelName:js,backendName:"webgl",kernelFunc:$at};var Rat=Bo+`
return sin(x);
`,Fat=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${Yn}
return result;
`,Oat=wt({opSnippet:Rat,packedOpSnippet:Fat}),AV={kernelName:Ks,backendName:"webgl",kernelFunc:Oat};var Pat=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Mat=wt({opSnippet:Pat}),DV={kernelName:al,backendName:"webgl",kernelFunc:Mat};var Lat=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,zat=wt({opSnippet:Lat}),$V={kernelName:Ys,backendName:"webgl",kernelFunc:zat};var Bat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((x,b)=>x*b),u=[[0,0]];u.push(...i);for(let x=1+s.length;x<o.shape.length;++x)u.push([0,0]);let l=[],c=R1({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,s,a,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,a,!1),d=rt({inputs:{x:c},backend:e,attrs:{shape:p}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:m}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:f}});return l.push(c),l.push(d),l.push(h),l.forEach(x=>e.disposeIntermediateTensorInfo(x)),g},RV={kernelName:Wi,backendName:"webgl",kernelFunc:Bat};function Vat(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=nz(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var FV={kernelName:su,backendName:"webgl",kernelFunc:Vat};function Gat(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=oz(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var OV={kernelName:ll,backendName:"webgl",kernelFunc:Gat};function Wat(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Jw(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var PV={kernelName:iu,backendName:"webgl",kernelFunc:Wat};function Uat(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=Jw(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var MV={kernelName:au,backendName:"webgl",kernelFunc:Uat};function Hat(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype==="string"){let x=e.bufferSync(o),b=e.bufferSync(s),w=y.decodeString(e.readSync(i.dataId)[0]),I=tz(x,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,I.dtype,I.values)}let d=new Zu(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var LV={kernelName:ul,backendName:"webgl",kernelFunc:Hat};function qat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=Si({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var zV={kernelName:Ui,backendName:"webgl",kernelFunc:qat};var BV="return sqrt(x);",Kat=wt({opSnippet:BV,packedOpSnippet:BV,cpuKernelImpl:sz}),VV={kernelName:Zs,backendName:"webgl",kernelFunc:Kat};var jat="return x * x;",Xat=wt({opSnippet:jat}),GV={kernelName:lu,backendName:"webgl",kernelFunc:Xat};var WV="return (a - b) * (a - b);",Yat=ue({opSnippet:WV,packedOpSnippet:WV}),UV={kernelName:ti,backendName:"webgl",kernelFunc:Yat};function Zat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;if(o.dtype!=="string")throw new Error("Input must be of datatype string");let s=e.readSync(o.dataId),i=S.fromUint8ToStringArray(s),a=iz(i,"string",n);return e.makeTensorInfo(o.shape,"string",a)}var HV={kernelName:sc,backendName:"webgl",kernelFunc:Zat};function Jat({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=yr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new zr(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var qV={kernelName:yo,backendName:"webgl",kernelFunc:Jat};var yC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=zt(n.length),i=zt(n.length),a="";if(o===1)a="coords * strides + begin";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${t});
${s} strides = ${s}(${e});
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}};function Qat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=rt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let A=ze.computeOutShape(b,w,I),D=Si({inputs:{x:o},backend:e,attrs:{begin:b,size:A}});N=rt({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),F=bt(o.shape,o.dtype,D),P=az(f,F,I,b);N=e.makeTensorInfo(d,o.dtype,P.values)}else{let D=new yC(b,I,f);N=e.runWebGLProgram(D,[o],o.dtype)}let E=rt({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),E}var KV={kernelName:cl,backendName:"webgl",kernelFunc:Qat};function tlt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=lz(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var jV={kernelName:uu,backendName:"webgl",kernelFunc:tlt};function elt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=uz(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var XV={kernelName:cu,backendName:"webgl",kernelFunc:elt};function rlt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.readSync(s.dataId),a=cz(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var YV={kernelName:pu,backendName:"webgl",kernelFunc:rlt};var nlt="return tan(x);",olt=wt({opSnippet:nlt}),ZV={kernelName:ri,backendName:"webgl",kernelFunc:olt};var slt=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,ilt=wt({opSnippet:slt}),JV={kernelName:ni,backendName:"webgl",kernelFunc:ilt};function alt(r){let{inputs:t,backend:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=t,{}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(i,s,o.shape),m=[p/l,l];if(p===0)return e.makeTensorInfo(o.shape,s.dtype);let f=rt({inputs:{x:s},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:i},backend:e,attrs:{shape:[u,l]}}),h=rt({inputs:{x:o},backend:e,attrs:{shape:m}}),g=new Zu(u,a,f.shape.length,d.shape.length,c,m,!1,!0),x=e.runWebGLProgram(g,[d,f,h],h.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:o.shape}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(x),b}var QV={kernelName:sl,backendName:"webgl",kernelFunc:alt};var bC=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[i]*e[i];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=llt(t);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function llt(r){let t=r.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${e[o]}, ${r[o]})`);return n.join()}function O1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let u=e.readSync(o.dataId),l=o.dtype==="string"?u.map(m=>y.decodeString(m)):u,c=bt(o.shape,o.dtype,l),p=mz(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new bC(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var tG={kernelName:so,backendName:"webgl",kernelFunc:O1};var wC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},IC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Ip(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function eG(r){let t=1;for(;t<r;)t*=2;return t}function ult(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n,a=L().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=L().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=o.shape,c=l[l.length-1];if(e.shouldExecuteOnCPU([o])||c<a||s>u){let P=e.readSync(o.dataId),[V,G]=fz(P,l,o.dtype,s,i);return[e.makeTensorInfo(V.shape,V.dtype,V.values),e.makeTensorInfo(G.shape,G.dtype,G.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,"int32",[])];if(c===1)return[o,Wl({attrs:{shape:l,dtype:"int32",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=y.sizeFromShape(l)/c,g=rt({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&Ip(e,f);let x=eG(s),b=eG(c),w=null,I=()=>w===null?[g,g]:[g,w],N=(P,V,G)=>{let W=I(),q=new wC(G),K=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[P],[V]],X=w;w=e.runWebGLProgram(q,W,"int32",K),Ip(e,X)};for(let P=1;P<x;P*=2){let V=P*2;for(let G=P;G>=1;G/=2)N(V,G,[h,b])}for(let P=b;P>x;P/=2){let V=I(),G=new IC([h,P/2]),q=[[c],[w===null?1:0],[x]],H=w;w=e.runWebGLProgram(G,V,"int32",q),Ip(e,H);let K=x/2,X=K*2;for(let Z=K;Z>=1;Z/=2)N(X,Z,w.shape)}let E=w;w=Si({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),Ip(e,E);let A=_1({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});Ip(e,g);let D=l.slice(0,-1);D.push(s),E=w,w=rt({inputs:{x:w},attrs:{shape:D},backend:e}),Ip(e,E);let F=A;return A=rt({inputs:{x:A},attrs:{shape:D},backend:e}),Ip(e,F),[A,w]}var rG={kernelName:pl,backendName:"webgl",kernelFunc:ult};var CC=class{constructor(t,e,n,o,s,i){this.variableNames=["Image","Transforms"],this.outputShape=i;let a=n==="nearest"?1:2,u;switch(o){case"constant":u=1;break;case"reflect":u=2;break;case"wrap":u=3;break;case"nearest":u=4;break;default:u=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${u} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${e}));
float mapY = mapCoord(inY, float(${t}));
if (${a} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function clt(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new CC(p,m,i,a,u,g);return e.runWebGLProgram(x,[o,s],"float32")}var nG={kernelName:ml,backendName:"webgl",kernelFunc:clt};function plt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;Ii(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=dz(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var oG={kernelName:mu,backendName:"webgl",kernelFunc:plt};function mlt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;h<a;h++)h!==s&&(l[c++]=i.shape[h]);let p=[],m=new Array(a).fill(0),f=i.shape.slice();f[s]=1;let d=new Array(u);for(let h=0;h<d.length;h++){m[s]=h;let g=Si({inputs:{x:i},backend:e,attrs:{begin:m,size:f}}),x=rt({inputs:{x:g},backend:e,attrs:{shape:l}});d[h]=x,p.push(g)}return p.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var sG={kernelName:Hi,backendName:"webgl",kernelFunc:mlt};var vC=class{constructor(t,e){this.variableNames=["x","segmentIds"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u="0.0",l="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%n>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${u};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${i})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${i})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${l});
}
`}};function flt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=y.sizeFromShape([p.shape[l]]),d=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=mc(o.dtype),g=(I,N,E,A,D)=>{let F=I.shape[0],P=I.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(P,D),G={windowSize:V,inSize:P,batchSize:F,numSegments:D},W=new vC(G,N),q=e.compileAndRun(W,[I,E],A);if(u.push(q),q.shape[1]===D)return q;let H=F1({backend:e,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),K=O1({inputs:{x:H},backend:e,attrs:{reps:[P/V]}});return u.push(H),u.push(K),g(q,N,K,A,D)},x=g(d,"unsortedSegmentSum",s,h,i),b=rt({inputs:{x},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let I=S.getUndoAxesPermutation(c);w=Pe({inputs:{x:w},backend:e,attrs:{perm:I}})}return u.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}var iG={kernelName:fu,backendName:"webgl",kernelFunc:flt};var dlt=[Wz,Hz,qz,Kz,Xz,Yz,Zz,Jz,e3,r3,n3,o3,s3,i3,a3,l3,u3,c3,p3,m3,f3,h3,g3,x3,I3,v3,S3,Rz,k3,_3,E3,A3,D3,$3,R3,F3,O3,P3,M3,B3,V3,G3,W3,U3,H3,q3,K3,j3,X3,Y3,Z3,J3,Q3,tB,eB,nB,oB,sB,iB,lB,uB,cB,pB,mB,fB,dB,hB,gB,$z,xB,T3,yB,bB,wB,Fz,IB,CB,vB,SB,NB,kB,TB,_B,EB,AB,$B,RB,FB,OB,PB,MB,zB,VB,GB,WB,UB,HB,YB,Mz,ZB,JB,QB,tV,y3,eV,oV,sV,iV,aV,Oz,lV,uV,cV,pV,mV,b3,qB,fV,dV,hV,zz,gV,xV,yV,bV,wV,IV,CV,vV,SV,NV,kV,TV,_V,EV,AV,DV,d3,XB,$V,RV,FV,OV,PV,MV,LV,zV,VV,GV,UV,HV,qV,KV,jV,XV,YV,jB,Vz,ZV,JV,QV,tG,rG,nG,Gz,oG,sG,iG,rV];for(let r of dlt)ic(r);var kt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(kt||(kt={}));var Ju;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})(Ju||(Ju={}));var aG;function hlt(r){aG=r.wasm.cwrap(Ki,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function glt(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=Ju[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),I=e.makeOutput([...w,x,b],o.dtype),N=e.dataIdMap.get(I.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return aG(m,E,o.shape.length,f,A,s.shape.length,u,l,g,d,h,p||0,N),I}var lG={kernelName:Ki,backendName:"wasm",setupFunc:hlt,kernelFunc:glt};function Ct(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,["number","number","number"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(u,kt[a.dtype],c),l}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:o}}var uG=Ct(_i);var cG=Ct(Ho);var pG=Ct(qo);function ae(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return(()=>n(p,g,l.shape.length,m,x,c.shape.length,kt[l.dtype],b))(),h}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var xlt=!0,mG=ae(oo,xlt);var fG;function ylt(r){fG=r.wasm.cwrap(Ko,null,["array","number","number","number"])}function blt(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return fG(s,o.length,kt[n.dtype],i),n}var dG={kernelName:Ko,backendName:"wasm",setupFunc:ylt,kernelFunc:blt};function Cp(r){let{inputs:{x:t},backend:e}=r;if(t.dtype==="string")return sr(e.readSync(t.dataId),t.shape,t.dtype);let n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var hG={kernelName:xo,backendName:"wasm",kernelFunc:Cp};var gG;function wlt(r){gG=r.wasm.cwrap(io,null,["number","array","number","number","number","array","number"])}function fo(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=Clt(t.x.shape,n.perm),i=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(i=!1);let a=Ilt(t.x.shape,n.perm),u={dataId:t.x.dataId,shape:o,dtype:t.x.dtype};if(i){let d=Cp({inputs:t,backend:e});return d.shape=a,d}let l=e.makeOutput(a,u.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(l.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(u.shape).buffer);return gG(c,f,u.shape.length,kt[u.dtype],p,m,s.length),l}function Ilt(r,t){let e=new Array(r.length);for(let n=0;n<e.length;n++)e[n]=r[t[n]];return e}function Clt(r,t){let e=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&e.push(r[o]),r[t[o]]!==1&&n.push(t[o]);for(let o=0;o<n.length;++o){let s=-1;for(let i=0;i<n.length;++i)n[i]>=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var xG={kernelName:io,backendName:"wasm",kernelFunc:fo,setupFunc:wlt};function vn(r,t,e){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[a[f]];i=S.getInnerMostAxes(i.length,o),u=fo({inputs:{x:r},attrs:{perm:a},backend:e});let p=e.dataIdMap.get(r.dataId).id;e.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var yG;function vlt(r){yG=r.wasm.cwrap(Ea,null,["number, number, number"])}function Slt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("all",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;yG(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var bG={kernelName:Ea,backendName:"wasm",setupFunc:vlt,kernelFunc:Slt};var wG;function Nlt(r){wG=r.wasm.cwrap(Aa,null,["number, number, number"])}function klt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("any",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;wG(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var IG={kernelName:Aa,backendName:"wasm",setupFunc:Nlt,kernelFunc:klt};function SC(r){let t;function e(o){t=o.wasm.cwrap(r,null,["number","number","number","number","number"])}function n(o){let{backend:s,inputs:i,attrs:a}=o,{axis:u}=a,{x:l}=i,c=s.dataIdMap.get(l.dataId).id,p=c,m=l,{transposed:f,axes:d,inputWasTransposed:h}=vn(l,u,s);if(h){let N=s.dataIdMap.get(f.dataId).id;N!==c&&(m=f,p=N)}let g=m.shape.slice(0,-1),x=s.makeOutput(g,"int32"),b=s.dataIdMap.get(x.dataId).id,w=y.sizeFromShape(x.shape),I=m.shape[d[0]];return t(p,kt[m.dtype],w,I,b),h&&s.disposeData(f.dataId),x}return{kernelName:r,backendName:"wasm",setupFunc:e,kernelFunc:n}}var CG=SC(Ei);var vG=SC(Ai);var SG=Ct(jo);var NG=Ct(Xo);var kG=Ct(Yo);var TG=ae(Jo,!1);var _G=Ct(Zo);var EG;function Tlt(r){EG=r.wasm.cwrap(Qo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _lt(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let I=n.makeOutput(c.outShape,"float32"),N=n.dataIdMap.get(I.dataId).id;return EG(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,N),I}var AG={kernelName:Qo,backendName:"wasm",setupFunc:Tlt,kernelFunc:_lt};var DG;function Elt(r){DG=r.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Alt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return DG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var $G={kernelName:Di,backendName:"wasm",setupFunc:Elt,kernelFunc:Alt};var RG;function Dlt(r){RG=r.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $lt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return RG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left,c.filterDepth,c.filterHeight,c.filterWidth),p}var FG={kernelName:Xl,backendName:"wasm",setupFunc:Dlt,kernelFunc:$lt};function mr(r){let{inputs:t,attrs:e}=r,{x:n}=t,{shape:o}=e,s=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var OG={kernelName:Bi,backendName:"wasm",kernelFunc:mr};var PG;function Rlt(r){PG=r.wasm.cwrap(ts,null,["number","array","number","number","array","number","number","number","number"])}function Flt(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=mr({inputs:{x:o},backend:e,attrs:{shape:I}}),A=mr({inputs:{x:s},backend:e,attrs:{shape:N}}),D=e.dataIdMap.get(E.dataId).id,F=e.dataIdMap.get(A.dataId).id,P=i?E.shape[2]:E.shape[1],V=a?A.shape[1]:A.shape[2],G=Math.max(g,x),W=e.makeOutput([G,P,V],E.dtype),q=e.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(E.shape).buffer),K=new Uint8Array(new Int32Array(A.shape).buffer);return PG(D,H,E.shape.length,F,K,A.shape.length,i,a,q),e.disposeData(E.dataId),e.disposeData(A.dataId),W.shape=w,W}var MG={kernelName:ts,backendName:"wasm",setupFunc:Rlt,kernelFunc:Flt};function Vo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=ze.parseSliceParams(t,e,n),a=ze.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=y.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=ze.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=u.slice(d,d+y.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+y.sizeFromShape(i))),l}if(t.dtype==="string"){let d=sp(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)Olt(u,c[0],m,s,i);else if(f===3)Plt(u,c[0],c[1],m,s,i);else if(f===4)Mlt(u,c[0],c[1],c[2],m,s,i);else{let d=sp(u,s,i,t.shape,t.dtype);m.set(d)}return l}function Olt(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;l<u;l++){let c=l*t+a;e.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function Plt(r,t,e,n,o,s){let i=0,a=o[0],u=o[1],l=o[2],c=a+s[0],p=u+s[1];for(let m=a;m<c;m++)for(let f=u;f<p;f++){let d=m*t+f*e+l;n.set(r.subarray(d,d+s[2]),i),i+=s[2]}}function Mlt(r,t,e,n,o,s,i){let a=0,u=s[0],l=s[1],c=s[2],p=u+i[0],m=l+i[1],f=c+i[2],d=s[3];for(let h=u;h<p;h++)for(let g=l;g<m;g++)for(let x=c;x<f;x++){let b=h*t+g*e+x*n+d;o.set(r.subarray(b,b+i[3]),a),a+=i[3]}}var LG={kernelName:Gi,backendName:"wasm",kernelFunc:Vo};function Llt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n,a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=mr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=fo({inputs:{x:f},backend:e,attrs:{perm:l}}),h=mr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Vo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(f.dataId),g}var zG={kernelName:$i,backendName:"wasm",kernelFunc:Llt};var BG;function zlt(r){BG=r.wasm.cwrap(Da,null,["number","number","boolean","number","number","number"])}function Blt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i}=n,a=s.shape.reduce((p,m)=>p*m,1)!==0,u=o.shape.length===1?[i]:[o.shape[0],i],l=t.makeOutput(u,s.dtype);function c(p){return t.dataIdMap.get(p.dataId).id}return BG(c(o),i,a,c(s),kt[s.dtype],c(l)),l}var VG={kernelName:Da,backendName:"wasm",setupFunc:zlt,kernelFunc:Blt};function Vlt(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.typedArrayFromHeap(n),i=e.typedArrayFromHeap(o),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeOutput([a.length],"int32",void 0,new Int32Array(a))}var GG={kernelName:Yl,backendName:"wasm",kernelFunc:Vlt};function On(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var WG={kernelName:ho,backendName:"wasm",kernelFunc:On};var UG=Ct(es);var HG;function Glt(r){HG=r.wasm.cwrap(go,null,["number","number","number","number"])}function Wlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return HG(a,s,i,l),u}var qG={kernelName:go,backendName:"wasm",setupFunc:Glt,kernelFunc:Wlt};function P1(r){let{inputs:t,backend:e}=r,n=y.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=t.map(f=>f.shape);S.assertParamsConsistent(o,n);let s=S.computeOutShape(t.map(f=>f.shape),n),i=t.filter(f=>y.sizeFromShape(f.shape)>0);if(i.length===1)return Cp({inputs:{x:i[0]},backend:e});let a=e.makeOutput(s,t[0].dtype);if(y.sizeFromShape(s)===0)return a;if(i[0].dtype==="string"){let f=i.map(w=>{let N=[-1,y.sizeFromShape(w.shape.slice(n))];return mr({inputs:{x:w},backend:e,attrs:{shape:N}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));s=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=rp(d,s,t[0].dtype,h),x=S.computeOutShape(i.map(w=>w.shape),n);a.shape=x;let b=e.dataIdMap.get(a.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),a}let u=y.sizeFromShape(i[0].shape.slice(0,n)),l=0,c=i.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=i.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(a);for(let f=0;f<u;f++){let d=f*l;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var KG={kernelName:Ri,backendName:"wasm",kernelFunc:P1};var jG;function Ult(r){jG=r.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hlt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:m}=e,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(o.shape,s.shape,u,l,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,I=d.padInfo.left,N=d.dilationHeight,E=d.dilationWidth,A=d.strideHeight,D=d.strideWidth,F=d.inChannels,P=d.outChannels,V=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(d.outShape,"float32"),W=n.dataIdMap.get(G.dataId).id;return jG(i,o.shape[0],o.shape[1],o.shape[2],a,h,g,x,b,w,I,V,N,E,A,D,F,P,W),G}var XG={kernelName:rs,backendName:"wasm",setupFunc:Ult,kernelFunc:Hlt};var YG;function qlt(r){YG=r.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Klt(r){let{backend:t,inputs:e,attrs:n}=r,{dy:o,filter:s}=e,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,inputShape:c}=n,p=1,m=S.convertConv2DDataFormat(u),f=S.computeConv2DInfo(c,s.shape,i,p,a,l,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:I,outHeight:N,outWidth:E,strideHeight:A,strideWidth:D}=f,F=h-1-f.padInfo.top,P=g-1-f.padInfo.left,V=f.dataFormat==="channelsLast",G=y.computeStrides(f.inShape),W=y.computeStrides(o.shape),[q,H,K]=y.computeStrides(s.shape),X=G[0],Z=V?G[1]:G[2],et=V?G[2]:1,nt=V?1:G[1],st=W[0],at=V?W[1]:W[2],ot=V?W[2]:1,it=V?1:W[1],mt=t.makeOutput(f.inShape,"float32"),gt=t.dataIdMap.get(mt.dataId).id,It=t.dataIdMap.get(o.dataId).id,Rt=t.dataIdMap.get(s.dataId).id;return YG(It,Rt,d,h,g,b,w,x,N,E,I,A,D,F,P,q,H,K,X,Z,et,nt,st,at,ot,it,gt),mt}var ZG={kernelName:ns,backendName:"wasm",setupFunc:qlt,kernelFunc:Klt};var JG;function jlt(r){JG=r.wasm.cwrap(os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=e.makeOutput(l.outShape,o.dtype);return JG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var QG={kernelName:os,backendName:"wasm",setupFunc:jlt,kernelFunc:Xlt};var tW;function Ylt(r){tW=r.wasm.cwrap($a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(o.shape,u,i,1,a),c=e.makeOutput(l.filterShape,s.dtype);return tW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var eW={kernelName:$a,backendName:"wasm",setupFunc:Ylt,kernelFunc:Zlt};var rW;function Jlt(r){rW=r.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qlt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(u,s.shape,a,1,i),c=e.makeOutput(l.inShape,o.dtype);return rW(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var nW={kernelName:Ra,backendName:"wasm",setupFunc:Jlt,kernelFunc:Qlt};var oW=Ct(ss);var sW=Ct(is);var M1;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(M1||(M1={}));var iW;function tut(r){iW=r.wasm.cwrap(Oa,null,["number","number","number","number","array","number","number","number","number","number"])}function eut(r){let{backend:t,inputs:e,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:i}=n,{image:a,boxes:u,boxInd:l}=e,c=u.shape[0],[p,m]=i,f=[c,p,m,a.shape[3]],d=t.dataIdMap.get(a.dataId),h;a.dtype!=="float32"&&(h=On({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),d=t.dataIdMap.get(h.dataId));let g=d.id,x=t.dataIdMap.get(u.dataId).id,b=t.dataIdMap.get(l.dataId).id,w=t.makeOutput(f,"float32"),I=t.dataIdMap.get(w.dataId).id,N=new Uint8Array(new Int32Array(a.shape).buffer);return iW(g,x,b,c,N,p,m,M1[o],s,I),h!=null&&t.disposeData(h.dataId),w}var aW={kernelName:Oa,backendName:"wasm",setupFunc:tut,kernelFunc:eut};var lW;function rut(r){lW=r.wasm.cwrap(Fa,null,["number","number","number","number","number","number"])}function nut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=fo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumprod",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;lW(d,i?1:0,a?1:0,f,h,kt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=fo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var uW={kernelName:Fa,backendName:"wasm",setupFunc:rut,kernelFunc:nut};var cW;function out(r){cW=r.wasm.cwrap(as,null,["number","number","number","number","number","number"])}function sut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=fo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumsum",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;cW(d,i?1:0,a?1:0,f,h,kt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=fo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var pW={kernelName:as,backendName:"wasm",setupFunc:out,kernelFunc:sut};var mW;function iut(r){mW=r.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function aut(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i,binaryOutput:a}=n,u=s.shape.reduce((m,f)=>m*f,1)!==0,l=o.shape.length===1?[i]:[o.shape[0],i],c=t.makeOutput(l,s.dtype);function p(m){return t.dataIdMap.get(m.dataId).id}return mW(p(o),new Uint8Array(new Int32Array(o.shape).buffer),o.shape.length,i,u,p(s),kt[s.dtype],a,p(c)),c}var fW={kernelName:Jl,backendName:"wasm",setupFunc:iut,kernelFunc:aut};var dW;function lut(r){dW=r.wasm.cwrap(Pa,null,["number","number","number","array","number","array","array","number","number"])}function uut(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,"float32"),x=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),I=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return dW(x,s,i==="NHWC"?1:0,b,o.shape.length-1,w,I,d.length,N),h}var hW={kernelName:Pa,backendName:"wasm",setupFunc:lut,kernelFunc:uut};var gW;function cut(r){gW=r.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function put(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,I=f.dilationHeight,N=f.dilationWidth,E=f.strideHeight,A=f.strideWidth,D=f.inChannels,F=f.outChannels,P=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,"float32"),G=n.dataIdMap.get(V.dataId).id;return gW(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,x,b,w,P,I,N,E,A,D,F,G),V}var xW={kernelName:ls,backendName:"wasm",setupFunc:cut,kernelFunc:put};var yW;function mut(r){yW=r.wasm.cwrap("Diag",null,["number","number","number","number"])}function fut(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.makeOutput([...n.shape,...n.shape],n.dtype);return yW(e.dataIdMap.get(n.dataId).id,kt[n.dtype],o,e.dataIdMap.get(s.dataId).id),s}var bW={kernelName:Ql,backendName:"wasm",setupFunc:mut,kernelFunc:fut};var wW;function dut(r){wW=r.wasm.cwrap(us,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${o.dtype} and ${s.dtype}`);let l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c=e.makeOutput(l.outShape,o.dtype);return wW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,kt[o.dtype],l.batchSize,l.inChannels,l.inHeight,l.inWidth,l.outHeight,l.outWidth,l.strideHeight,l.strideWidth,l.dilationHeight,l.dilationWidth,l.filterHeight,l.filterWidth,l.padInfo.top,l.padInfo.left),c}var IW={kernelName:us,backendName:"wasm",setupFunc:dut,kernelFunc:hut};var CW;function gut(r){CW=r.wasm.cwrap(eu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,"NHWC",l),p=e.makeOutput(s.shape,s.dtype);return CW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,kt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var vW={kernelName:eu,backendName:"wasm",setupFunc:gut,kernelFunc:xut};var SW;function yut(r){SW=r.wasm.cwrap(tu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function but(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,"NHWC",l),p=e.makeOutput(o.shape,o.dtype);return SW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,kt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var NW={kernelName:tu,backendName:"wasm",setupFunc:yut,kernelFunc:but};var kW=Ct(ps);var TW;function wut(r){TW=r.wasm.cwrap(Ma,null,["number","number","number"])}function Iut(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=e.makeOutput(o.shape,"float32"),i=a=>e.dataIdMap.get(a.dataId).id;return TW(i(o),i(n),i(s)),s}var _W={kernelName:Ma,backendName:"wasm",setupFunc:wut,kernelFunc:Iut};var Cut=!1,EW=ae(za,Cut,"bool");var AW=Ct(ms,"float32");function NC(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),mr({inputs:{x:o},backend:n,attrs:{shape:a}})}var DW={kernelName:Fi,backendName:"wasm",kernelFunc:NC};var $W=Ct(fs,"float32");function L1(r){let{attrs:{shape:t,value:e,dtype:n},backend:o}=r,s=o.makeOutput(t,n);return o.typedArrayFromHeap(s).fill(e),s}var RW={kernelName:ru,backendName:"wasm",kernelFunc:L1};var FW;function vut(r){FW=r.wasm.cwrap(Ba,null,["number","number","number","number","number","number"])}function Sut(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return FW(s,a,u,l,c,i),o}var OW={kernelName:Ba,backendName:"wasm",kernelFunc:Sut,setupFunc:vut};var PW=Ct(ds);var Nut=!1,MW=ae(hs,Nut);var LW;function kut(r){LW=r.wasm.cwrap(gs,null,["number","number","number","number","number","number","number"])}function Tut(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return LW(c,p,m,f,d,o,g),h}var zW={kernelName:gs,backendName:"wasm",setupFunc:kut,kernelFunc:Tut};var BW;function _ut(r){BW=r.wasm.cwrap(ji,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Eut(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=Ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,K=h.padInfo.type==="SAME"?1:0,X=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,"float32"),st=n.dataIdMap.get(nt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return BW(x,X,Z,et,b,N,E,I,A,D,F,P,K,V,G,W,q,H,w,g,at,d||0,st),nt}var VW={kernelName:ji,backendName:"wasm",setupFunc:_ut,kernelFunc:Eut};var GW;function Aut(r){GW=r.wasm.cwrap(Xi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dut(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=Ju[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,K=h.padInfo.type==="SAME"?1:0,X=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,"float32"),st=n.dataIdMap.get(nt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return GW(x,X,Z,et,b,N,E,I,A,D,F,P,K,V,G,W,q,H,w,g,at,d||0,st),nt}var WW={kernelName:Xi,backendName:"wasm",setupFunc:Aut,kernelFunc:Dut};var UW;function $ut(r){UW=r.wasm.cwrap(Va,null,["number","number","number","number","number","number","array","number"])}function Rut(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=Dy.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),x=t.dataIdMap.get(l.dataId).id;return UW(f,kt[n.dtype],h,i,p,a,g,x),l}var HW={kernelName:Va,backendName:"wasm",setupFunc:$ut,kernelFunc:Rut};var qW;function Fut(r){qW=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Out(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F<l.length;++F){let P=l[F];y.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=mr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=y.sizeFromShape(s.shape),d=mr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(y.sizeFromShape(o.shape)===0)return g;let x=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,E=t.dataIdMap.get(g.dataId).id,A=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return qW(w,kt[o.dtype],A,x,N,p.batchSize,D,E),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var KW={kernelName:Oi,backendName:"wasm",setupFunc:Fut,kernelFunc:Out};var Put=!1,jW=ae(Ga,Put,"bool");var Mut=!1,XW=ae(xs,Mut,"bool");var YW=Ct(ys,"bool");var ZW=Ct(bs,"bool");var JW=Ct(ws,"bool");var QW;function Lut(r){QW=r.wasm.cwrap(Is,null,["number","number","number","number"])}function zut(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(y.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;QW(o,kt[t.dtype],e,i)}return s}var tU={kernelName:Is,backendName:"wasm",setupFunc:Lut,kernelFunc:zut};var But=!1,eU=ae(Wa,But,"bool");var Vut=!1,rU=ae(Ua,Vut,"bool");var nU;function Gut(r){nU=r.wasm.cwrap(Ha,null,["number","number","number","number"])}function Wut(r){let{attrs:t,backend:e}=r,{start:n,stop:o,num:s}=t,i=Math.floor(s),a=e.makeOutput([i],"float32");return nU(e.dataIdMap.get(a.dataId).id,n,o,i),a}var oU={kernelName:Ha,backendName:"wasm",setupFunc:Gut,kernelFunc:Wut};var sU=Ct(Cs);var iU=Ct(vs);var Uut=!1,aU=ae(qa,Uut,"bool");var lU=Ct(Ka);var Hut=!1,uU=ae(ja,Hut,"bool");var qut=!1,cU=ae(g_,qut,"bool");var pU;function Kut(r){pU=r.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number"])}function jut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;if(o.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let l=e.makeOutput(o.shape,o.dtype);return pU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(l.dataId).id,o.shape[3],s,i,a,u),l}var mU={kernelName:Ss,backendName:"wasm",setupFunc:Kut,kernelFunc:jut};var fU;function Xut(r){fU=r.wasm.cwrap(Xa,null,["number","number","number","number","number","number","number","number","number"])}function Yut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;if(o.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let p=e.makeOutput(o.shape,o.dtype);return fU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,i.shape[3],a,u,l,c),p}var dU={kernelName:Xa,backendName:"wasm",setupFunc:Xut,kernelFunc:Yut};var hU;function Zut(r){hU=r.wasm.cwrap(Ns,null,["number","number","number","number"])}function Jut(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;hU(u,kt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var gU={kernelName:Ns,backendName:"wasm",setupFunc:Zut,kernelFunc:Jut};var Qut=!1,xU=ae(ks,Qut);var yU;function tct(r){yU=r.wasm.cwrap(Ts,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ect(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;y.assert(o.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,I=c.strideWidth,N=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=n.makeOutput(c.outShape,"float32"),D=n.dataIdMap.get(A.dataId).id;return yU(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,I,N,E,D),A}var bU={kernelName:Ts,backendName:"wasm",setupFunc:tct,kernelFunc:ect};var wU;function rct(r){wU=r.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return wU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var IU={kernelName:Pi,backendName:"wasm",setupFunc:rct,kernelFunc:nct};var CU;function oct(r){CU=r.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sct(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return CU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var vU={kernelName:nu,backendName:"wasm",setupFunc:oct,kernelFunc:sct};var SU;function ict(r){SU=r.wasm.cwrap(_s,null,["number, number, number"])}function act(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t),d=p;if(f){let I=t.dataIdMap.get(c.dataId).id;I!==a&&(l=c,u=I,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("mean",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=l;l.dtype!=="float32"&&(b=On({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,"float32");if(y.sizeFromShape(l.shape)!==0){let I=t.dataIdMap.get(w.dataId).id;SU(u,x,I)}if(f&&t.disposeData(c.dataId),s){let I=S.expandShapeToKeepDim(w.shape,m);w.shape=I}return l.dtype!=="float32"&&t.disposeData(b.dataId),w}var NU={kernelName:_s,backendName:"wasm",setupFunc:ict,kernelFunc:act};var kU;function lct(r){kU=r.wasm.cwrap(Es,null,["number","number","number","number"])}function uct(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;kU(u,kt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var TU={kernelName:Es,backendName:"wasm",setupFunc:lct,kernelFunc:uct};var cct=!1,_U=ae(As,cct);var z1;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(z1||(z1={}));var EU;function pct(r){EU=r.wasm.cwrap(Ds,null,["number","array","number","number","array","array","number","number"])}function mct(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return EU(i,l,t.shape.length,kt[t.dtype],m,f,z1[o],u),a}var AU={kernelName:Ds,backendName:"wasm",kernelFunc:mct,setupFunc:pct};var DU;function fct(r){DU=r.wasm.cwrap(Qs,null,["number","number","number","number"])}function B1(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=y.sizeFromShape(e.shape)/a;return y.sizeFromShape(s.shape)===0||DU(o,i,a,u),s}var $U={kernelName:Qs,backendName:"wasm",setupFunc:fct,kernelFunc:B1};var RU;function dct(r){RU=r.wasm.cwrap(Za,null,["number","number","number","number","number","number"])}function hct(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;if(o.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${o.dtype}`);let u=a?o:B1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),[l,c]=u.shape,p=e.makeOutput([l,s],"int32");return RU(e.dataIdMap.get(u.dataId).id,l,c,s,i,e.dataIdMap.get(p.dataId).id),a||e.disposeData(u.dataId),p}var FU={kernelName:Za,backendName:"wasm",setupFunc:dct,kernelFunc:hct};var gct=!0,OU=ae($s,gct);var PU=Ct(Mi);function Ud(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var MU;function xct(r){MU=r.wasm.cwrap(Qa,"number",["number","number","number","number","number"])}function yct(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=MU(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Ud(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],"int32",m)}var LU={kernelName:Qa,backendName:"wasm",setupFunc:xct,kernelFunc:yct};var zU;function bct(r){zU=r.wasm.cwrap(tl,"number",["number","number","number","number","number","bool"])}function wct(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=zU(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Ud(t,m);t.wasm._free(h);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([],"int32",g);return[x,b]}var BU={kernelName:tl,backendName:"wasm",setupFunc:bct,kernelFunc:wct};var VU;function Ict(r){VU=r.wasm.cwrap(el,"number",["number","number","number","number","number","number"])}function Cct(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=VU(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Ud(t,m);t.wasm._free(g);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([d],"float32",h);return[x,b]}var GU={kernelName:el,backendName:"wasm",setupFunc:Ict,kernelFunc:Cct};var vct=!1,WU=ae(Ja,vct,"bool");var UU;function Sct(r){UU=r.wasm.cwrap(Rs,null,["number","number","number","number","number"])}function Nct(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=e.makeOutput([...o.shape,i],s),c=e.dataIdMap.get(l.dataId).id,m=e.dataIdMap.get(o.dataId).id;return UU(m,i,a,u,c),l}var HU={kernelName:Rs,backendName:"wasm",setupFunc:Sct,kernelFunc:Nct};function kct(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var qU={kernelName:Li,backendName:"wasm",kernelFunc:kct};function Tct(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return NC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=NC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=P1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var KU={kernelName:zi,backendName:"wasm",kernelFunc:Tct};var jU;function _ct(r){jU=r.wasm.cwrap(Fs,null,["number","array","number","number","array","array","number","number"])}function Ect(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(y.sizeFromShape(t.shape)===0)return L1({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return jU(i,c,t.shape.length,kt[t.dtype],f,d,o,l),a}var kC={kernelName:Fs,backendName:"wasm",kernelFunc:Ect,setupFunc:_ct};var Act=!1,XU=ae(Os,Act);var YU;function Dct(r){YU=r.wasm.cwrap(Ps,null,["number","number","number"])}function $ct(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!=="float32"&&(l=On({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,"float32"),p=e.dataIdMap.get(c.dataId).id;return YU(a,i,p),u.dtype!=="float32"&&e.disposeData(l.dataId),c}var ZU={kernelName:Ps,backendName:"wasm",setupFunc:Dct,kernelFunc:$ct};var JU;function Rct(r){JU=r.wasm.cwrap(Ms,null,["number","number","number","number"])}function Fct(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("prod",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;JU(u,x,kt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var QU={kernelName:Ms,backendName:"wasm",setupFunc:Rct,kernelFunc:Fct};var Oct=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=op(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},t4={kernelName:ou,backendName:"wasm",kernelFunc:Oct};var Pct=!0,e4=ae(cs,Pct);var r4=Ct(Ls);var n4=Ct(zs);var o4=Ct(Gs);var s4;function Mct(r){s4=r.wasm.cwrap(Vs,null,["number","number","number","number","number","number","number","number","number","number"])}function Lct(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=On({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),h=t.dataIdMap.get(g.dataId));let x=h.id,b=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return s4(x,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var i4={kernelName:Vs,backendName:"wasm",setupFunc:Mct,kernelFunc:Lct};var a4;function zct(r){a4=r.wasm.cwrap(nl,null,["number","number","number","array","array","boolean"])}function Bct(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,"float32"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!=="float32"&&(l=On({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),u=e.dataIdMap.get(l.dataId)),a4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var l4={kernelName:nl,backendName:"wasm",setupFunc:zct,kernelFunc:Bct};var u4;function Vct(r){u4=r.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number"])}function Gct(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),x;g.dtype!=="float32"&&(x=On({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(x.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return u4(b,c,p,m,f,u,l,s?1:0,i?1:0,w),x!=null&&t.disposeData(x.dataId),h}var c4={kernelName:Bs,backendName:"wasm",setupFunc:Vct,kernelFunc:Gct};var p4;function Wct(r){p4=r.wasm.cwrap(rl,null,["number","number","number","array","array","boolean"])}function Uct(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,"float32"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!=="float32"&&(l=On({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),u=e.dataIdMap.get(l.dataId)),p4(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var m4={kernelName:rl,backendName:"wasm",setupFunc:Wct,kernelFunc:Uct};var f4;function Hct(r){f4=r.wasm.cwrap(Ws,null,["number","array","number","array","number","number"])}function qct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return Cp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);f4(u,c,i.length,p,o.shape.length,l);let m=mr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var d4={kernelName:Ws,backendName:"wasm",kernelFunc:qct,setupFunc:Hct};var h4;function Kct(r){h4=r.wasm.cwrap(fl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function jct(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),x=i===0,b=255,w=typeof i=="number"?[i,i,i,x?0:b]:[...i,b],I=new Uint8Array(new Int32Array(w).buffer);return h4(l,p,m,f,d,s,h,g,I,w.length,c),u}var g4={kernelName:fl,backendName:"wasm",kernelFunc:jct,setupFunc:Kct};var x4=Ct(Us);var y4=Ct(Hs);var b4;function Xct(r){b4=r.wasm.cwrap(ol,null,["number","number","number","number","number","number","array","number","number"])}function Yct(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(y.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return b4(d,g,kt[s.dtype],u,l,c,x,m,b),a}var w4={kernelName:ol,backendName:"wasm",setupFunc:Xct,kernelFunc:Yct};var I4;function Zct(r){I4=r.wasm.cwrap(il,null,["number","number","number","number","number","number","bool","number"])}function Jct(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n;if(o.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${o.dtype} and ${s.dtype}`);let a=e.makeOutput(s.shape,"int32");function u(l){return e.dataIdMap.get(l.dataId).id}return I4(u(o),u(s),o.shape[0],o.shape[1],s.shape[1],kt[o.dtype],i==="left",u(a)),a}var C4={kernelName:il,backendName:"wasm",setupFunc:Zct,kernelFunc:Jct};var v4;function Qct(r){v4=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function tpt(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return v4(i,a,u,f,c),l}var S4={kernelName:Vi,backendName:"wasm",kernelFunc:tpt,setupFunc:Qct};var N4=Ct(qs);var k4;function ept(r){k4=r.wasm.cwrap(Xs,null,["number","number"])}function rpt(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||k4(n,s),o}var T4={kernelName:"Sigmoid",backendName:"wasm",setupFunc:ept,kernelFunc:rpt};var _4=Ct(js);var E4=Ct(Ks);var A4=Ct(Ys);function npt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=kC.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=mr({inputs:{x:l},backend:e,attrs:{shape:c}}),b=fo({inputs:{x:h},backend:e,attrs:{perm:p}}),N=mr({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeData(l.dataId),e.disposeData(h.dataId),e.disposeData(b.dataId),N}var D4={kernelName:Wi,backendName:"wasm",kernelFunc:npt};var $4;function opt(r){$4=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function spt(r){let{backend:t,inputs:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=e,a=n.shape[0],u=n.shape[1],l=t.readSync(s.dataId)[0],c=[a+l,u],p=t.dataIdMap.get(n.dataId).id,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(i.dataId).id,d=t.makeOutput(c,n.dtype),h=t.dataIdMap.get(d.dataId).id,g=t.makeOutput(c.slice(0,1),o.dtype),x=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([l],"bool"),w=t.dataIdMap.get(b.dataId).id,I=t.makeOutput([a],n.dtype),N=t.dataIdMap.get(I.dataId).id,E=t.makeOutput([4],"int32"),A=t.dataIdMap.get(E.dataId).id,D=$4(p,m,kt[o.dtype],a,l,u,f,h,x,w,N,A),F=t.readSync(E.dataId),P;switch(F[0]){case 1:{P=S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{P=S.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:P=S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:P=""}if(t.disposeData(E.dataId),P)throw t.disposeData(d.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(I.dataId),new Error(P);let V=d,G=g;return D!==c[0]&&(V=Vo({inputs:{x:d},attrs:{begin:0,size:[D,u]},backend:t}),G=Vo({inputs:{x:g},attrs:{begin:0,size:D},backend:t}),t.disposeData(d.dataId),t.disposeData(g.dataId)),[V,G,b,I]}var R4={kernelName:su,backendName:"wasm",setupFunc:opt,kernelFunc:spt};var F4;function ipt(r){F4=r.wasm.cwrap(ll,null,["number","number","number","number","number","number","number"])}function apt(r){let{backend:t,inputs:e}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(s.dataId).id,l=n.shape[0],c=y.sizeFromShape(s.shape),p=t.makeOutput([l,c],n.dtype),m=t.dataIdMap.get(p.dataId).id,f=t.makeOutput([c],s.dtype),d=t.dataIdMap.get(f.dataId).id,h=t.makeOutput([3],"int32"),g=t.dataIdMap.get(h.dataId).id;F4(i,a,u,l,m,d,g);let x=t.readSync(h.dataId),b;switch(x[0]){case 0:{b=S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{b=S.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:b=S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let w=Array.from(t.readSync(o.dataId)),I=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMultipleErrorMessage(w,I);break}case 4:{let w=Array.from(t.readSync(o.dataId)),I=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMismatchErrorMessage(w,I);break}default:b=""}if(t.disposeData(h.dataId),b)throw t.disposeData(p.dataId),t.disposeData(f.dataId),new Error(b);return[p,f]}var O4={kernelName:ll,backendName:"wasm",setupFunc:ipt,kernelFunc:apt};var P4;function TC(r){P4=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function _C(r,t){let{backend:e,inputs:n}=r,{data:o,indices:s,segmentIds:i}=n,a=s.shape[0],u=e.readSync(i.dataId,a-1,a)[0],c=a>0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,x=e.makeOutput([4],"int32"),b=e.dataIdMap.get(x.dataId).id;P4(m,kt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(x.dataId),I;switch(w[0]){case 0:{I=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{I=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:I=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:I=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:I=""}if(e.disposeData(x.dataId),I)throw e.disposeData(h.dataId),new Error(I);return h}function lpt(r){return _C(r,!0)}var M4={kernelName:iu,backendName:"wasm",setupFunc:TC,kernelFunc:lpt};function upt(r){return _C(r,!1)}var L4={kernelName:au,backendName:"wasm",setupFunc:TC,kernelFunc:upt};var z4;function cpt(r){z4=r.wasm.cwrap(ul,null,["number","number","number","number","number","number","number","number","array","number","number"])}function ppt(r){let{backend:t,inputs:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=e,{outputShape:a}=n,u=t.makeOutput(a,i.dtype);if(y.sizeFromShape(a)===0)return u;let{sliceRank:l,numUpdates:c,sliceSize:p,strides:m,outputSize:f}=S.calculateShapes(s,o,a),d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,x=new Uint8Array(new Int32Array(m).buffer),b=t.dataIdMap.get(u.dataId).id;return z4(d,h,s.shape.length,g,kt[i.dtype],l,c,p,x,f,b),u}var B4={kernelName:ul,backendName:"wasm",setupFunc:cpt,kernelFunc:ppt};function mpt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Vo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var V4={kernelName:Ui,backendName:"wasm",kernelFunc:mpt};var G4=Ct(Zs);var W4=Ct(lu);var fpt=!0,U4=ae(ti,fpt);var H4;function dpt(r){H4=r.wasm.cwrap(yo,null,["number","number","number","number"])}function hpt(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return H4(i,o,kt[s.dtype],u),a}var q4={kernelName:yo,backendName:"wasm",setupFunc:dpt,kernelFunc:hpt};var K4;function gpt(r){K4=r.wasm.cwrap(cl,null,["number","array","number","array","array","array","array","array","number","number"])}function xpt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=mr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=ze.computeOutShape(b,w,I),A=Vo({inputs:{x:o},backend:t,attrs:{begin:b,size:E}});N=mr({inputs:{x:A},backend:t,attrs:{shape:d}}),t.disposeData(A.dataId)}else{let E=t.makeOutput(f,"float32"),A=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(w).buffer),V=new Uint8Array(new Int32Array(I).buffer),G=new Uint8Array(new Int32Array(f).buffer),W=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),q=t.dataIdMap.get(E.dataId).id;K4(A,D,o.shape.length,F,P,V,G,W,f.length,q),N=mr({inputs:{x:E},backend:t,attrs:{shape:d}}),t.disposeData(E.dataId)}return N}var j4={kernelName:cl,backendName:"wasm",setupFunc:gpt,kernelFunc:xpt};function ypt(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=ip(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],"string"),x=t.dataIdMap.get(g.dataId);x.stringBytes=d;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(h),[g,b]}var X4={kernelName:uu,backendName:"wasm",kernelFunc:ypt};function bpt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=ap(a,u[0],i),m=c.length,f=t.makeOutput([m,2],"int32");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],"string"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let x=t.makeOutput([2],"int32");return t.typedArrayFromHeap(x).set(p),[f,h,x]}var Y4={kernelName:cu,backendName:"wasm",kernelFunc:bpt};function wpt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=lp(i,s),u=t.makeOutput(o.shape,"int32");return t.typedArrayFromHeap(u).set(a),u}var Z4={kernelName:pu,backendName:"wasm",kernelFunc:wpt};var Ipt=!0,J4=ae(ei,Ipt);var Q4;function Cpt(r){Q4=r.wasm.cwrap(Js,null,["number","number","number","number"])}function vpt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=vn(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("sum",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;Q4(u,x,kt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var tH={kernelName:Js,backendName:"wasm",setupFunc:Cpt,kernelFunc:vpt};var eH=Ct(ri);var rH=Ct(ni);var nH;function Spt(r){nH=r.wasm.cwrap(sl,null,["number","number","number","number","number","number","array","number","number","number"])}function Npt(r){let{backend:t,inputs:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=e,{}=n,a=t.makeOutput(o.shape,o.dtype);if(y.sizeFromShape(o.shape)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(i,s,o.shape),d=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=t.dataIdMap.get(o.dataId).id,w=new Uint8Array(new Int32Array(p).buffer),I=t.dataIdMap.get(a.dataId).id;return nH(d,g,kt[i.dtype],u,l,c,w,m,I,b),a}var oH={kernelName:sl,backendName:"wasm",setupFunc:Spt,kernelFunc:Npt};var sH;function kpt(r){sH=r.wasm.cwrap(so,null,["number","array","number","array","number","number"])}function Tpt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m<a.length;m++)a[m]=o.shape[m]*i[m];let u=new Uint8Array(new Int32Array(o.shape).buffer),l=new Uint8Array(new Int32Array(a).buffer),c=e.makeOutput(a,o.dtype),p=e.dataIdMap.get(c.dataId).id;return sH(s,u,o.shape.length,l,a.length,kt[c.dtype],p),c}var iH={kernelName:so,backendName:"wasm",setupFunc:kpt,kernelFunc:Tpt};var aH;function _pt(r){aH=r.wasm.cwrap(pl,null,["number","array","number","number","number","bool","number","number"])}var Ept=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),m=t.dataIdMap.get(p.dataId).id;return aH(i,a,n.shape.length,kt[n.dtype],o,s,c,m),[l,p]},lH={kernelName:pl,backendName:"wasm",setupFunc:_pt,kernelFunc:Ept};var uH;function Apt(r){uH=r.wasm.cwrap(ml,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Dpt(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),w=t.makeOutput(g,o.dtype),I=t.dataIdMap.get(w.dataId).id,E=t.dataIdMap.get(o.dataId).id,D=t.dataIdMap.get(s.dataId).id,F=i==="nearest"?1:2,P;switch(a){case"constant":P=1;break;case"reflect":P=2;break;case"wrap":P=3;break;case"nearest":P=4;break;default:P=1;break}return uH(E,D,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,b,g.length-1,F,P,u,I),w}var cH={kernelName:ml,backendName:"wasm",setupFunc:Apt,kernelFunc:Dpt};function $pt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t,{outputValues:i,outputShape:a,indices:u}=up(n.readSync(s.dataId),o,s.shape,s.dtype);return[n.makeOutput(a,s.dtype,void 0,i),n.makeOutput([u.length],"int32",void 0,u)]}var pH={kernelName:mu,backendName:"wasm",kernelFunc:$pt};function Rpt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f<a;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i),p=new Array(a).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Vo({inputs:{x:o},attrs:{begin:p,size:m},backend:e});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:u}))}var mH={kernelName:Hi,backendName:"wasm",kernelFunc:Rpt};function Fpt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var fH={kernelName:qi,backendName:"wasm",kernelFunc:Fpt};var Opt=[lG,uG,cG,pG,mG,dG,bG,IG,CG,vG,SG,NG,kG,TG,_G,AG,$G,FG,MG,zG,VG,GG,WG,UG,qG,KG,XG,ZG,QG,eW,nW,oW,sW,aW,uW,pW,fW,hW,xW,bW,IW,vW,NW,kW,_W,EW,AW,DW,$W,RW,OW,PW,MW,zW,VW,WW,HW,KW,jW,XW,hG,YW,ZW,JW,tU,eU,rU,oU,iU,sU,aU,lU,uU,cU,mU,dU,gU,xU,bU,IU,vU,NU,TU,_U,AU,FU,OU,PU,LU,BU,GU,WU,HU,qU,KU,kC,XU,ZU,QU,t4,e4,r4,n4,o4,OG,i4,l4,c4,m4,d4,g4,x4,y4,w4,C4,S4,N4,T4,_4,E4,LG,$U,A4,D4,R4,O4,M4,L4,B4,V4,G4,W4,U4,q4,j4,X4,Y4,Z4,J4,tH,eH,rH,oH,iH,lH,cH,xG,pH,mH,fH];for(let r of Opt)ic(r);var V1=L();V1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});V1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(V1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var j1=Kl(xH()),vH=Kl(bH()),X1=Kl(wH());var IH=j1.default||j1,Ppt=X1.default||X1,Ig=class extends Wo{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(NH),K1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Ta(this,Vn())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o==="string"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=y.sizeFromShape(n),u=a*y.bytesPerElement(o),l=this.wasm._malloc(u)>>>0;this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s==="string")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||y.sizeFromShape(i);let u=y.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return Lpt(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n,o){let s;if(n==null)s=this.write(o!=null?o:null,t,e);else{let i=this.dataIdNextNumber++;s={id:i},this.dataIdMap.set(s,{id:i,memoryOffset:n,shape:t,dtype:e,refCount:1});let a=y.sizeFromShape(t);this.wasm.tfjs.registerTensor(i,a,n)}return{dataId:s,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=y.sizeFromShape(t);switch(e){case"float32":return new Float32Array(o,s,i);case"int32":return new Int32Array(o,s,i);case"bool":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function Mpt(r){return(t,e)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function CH(r,t,e){if(DC!=null)return DC;let n="tfjs-backend-wasm.wasm";return r&&t?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),bg!=null&&bg[n]!=null?bg[n]:e+n}async function SH(){let[r,t]=await Promise.all([L().getAsync("WASM_HAS_SIMD_SUPPORT"),L().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(".worker.js")){let l=vH.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return a.endsWith(".wasm")?CH(r,t,yg!=null?yg:u):u+a},Y1&&(o.instantiateWasm=Mpt(CH(r,t,yg!=null?yg:"")));let s=!1;o.onAbort=()=>{if(s||wg)return;wg=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&r&&DC==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+IH.toString()],{type:"text/javascript"}),i=IH(o)):i=Ppt(o),i.then(a=>{s=!0,wg=!1;let u=null;a.tfjs={init:a.cwrap("init",null,[]),initWithThreadsCount:a.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:a.cwrap("get_threads_count","number",[]),registerTensor:a.cwrap("register_tensor",null,["number","number","number"]),disposeData:a.cwrap("dispose_data",u,["number"]),dispose:a.cwrap("dispose",u,[])},e({wasm:a})}).catch(n)})}function Lpt(r,t){switch(t){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var zpt=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],DC=null,yg=null,bg={},wg=!1,Y1=!1;function Bpt(r,t=!1){if(B0("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),wg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");DC=r,Y1=t}function Vpt(r,t=!1){if(wg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")yg=r;else{bg=r;let e=zpt.filter(n=>bg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Y1=t}var NH=-1,K1=-1;function Gpt(r){NH=r}function Wpt(){if(K1===-1)throw new Error("WASM backend not initialized.");return K1}var Upt="4.5.0";var Hpt=2;sm("wasm",async()=>{let{wasm:r}=await SH();return new Ig(r)},Hpt);var kH="4.5.0",qpt="4.5.0",Kpt="4.5.0",jpt="4.5.0",Xpt="4.5.0",Ypt={tfjs:kH,"tfjs-core":kH,"tfjs-converter":qpt,"tfjs-backend-cpu":Kpt,"tfjs-backend-webgl":jpt,"tfjs-backend-wasm":Xpt};export{_i as Abs,Ho as Acos,qo as Acosh,Tc as AdadeltaOptimizer,_c as AdagradOptimizer,Ec as AdamOptimizer,Ac as AdamaxOptimizer,oo as Add,Ko as AddN,Ea as All,Aa as Any,Ei as ArgMax,Ai as ArgMin,jo as Asin,Xo as Asinh,Yo as Atan,Jo as Atan2,Zo as Atanh,Qo as AvgPool,Di as AvgPool3D,Xl as AvgPool3DGrad,Fp as AvgPoolGrad,Ig as BackendWasm,ts as BatchMatMul,$i as BatchToSpaceND,Da as Bincount,nh as BitwiseAnd,Yl as BroadcastArgs,h_ as BroadcastTo,Mb as Callback,Yy as CallbackList,ho as Cast,es as Ceil,go as ClipByValue,Op as Complex,Zl as ComplexAbs,Ri as Concat,rs as Conv2D,Pp as Conv2DBackpropFilter,ns as Conv2DBackpropInput,os as Conv3D,$a as Conv3DBackpropFilterV2,Ra as Conv3DBackpropInputV2,ss as Cos,is as Cosh,Oa as CropAndResize,Fa as Cumprod,as as Cumsum,Jy as CustomCallback,Ta as DataStorage,Jl as DenseBincount,Pa as DepthToSpace,ls as DepthwiseConv2dNative,Mp as DepthwiseConv2dNativeBackpropFilter,Lp as DepthwiseConv2dNativeBackpropInput,Ql as Diag,us as Dilation2D,eu as Dilation2DBackpropFilter,tu as Dilation2DBackpropInput,u0 as ENV,Lb as EarlyStopping,zp as Einsum,ps as Elu,Ma as EluGrad,eh as Environment,za as Equal,La as Erf,ms as Exp,Fi as ExpandDims,fs as Expm1,Bp as FFT,ru as Fill,Ba as FlipLeftRight,ds as Floor,hs as FloorDiv,oh as FromPixels,gs as FusedBatchNorm,ji as FusedConv2D,Xi as FusedDepthwiseConv2D,hp as GPGPUContext,Va as GatherNd,Oi as GatherV2,jh as GraphModel,Ga as Greater,xs as GreaterEqual,Zy as History,Vp as IFFT,xo as Identity,Gp as Imag,Ie as InputSpec,ys as IsFinite,bs as IsInf,ws as IsNan,Wo as KernelBackend,Ss as LRN,Xa as LRNGrad,Dh as LayerVariable,qn as LayersModel,Is as LeakyRelu,Wa as Less,Ua as LessEqual,Ha as LinSpace,Cs as Log,vs as Log1p,x_ as LogSoftmax,qa as LogicalAnd,Ka as LogicalNot,ja as LogicalOr,g_ as LogicalXor,rmt as LowerBound,Uu as MathBackendCPU,ju as MathBackendWebGL,nmt as MatrixBandPart,Ns as Max,Ts as MaxPool,Pi as MaxPool3D,nu as MaxPool3DGrad,Wp as MaxPoolGrad,Up as MaxPoolWithArgmax,ks as Maximum,_s as Mean,Es as Min,As as Minimum,Ds as MirrorPad,Ya as Mod,Dc as MomentumOptimizer,Za as Multinomial,$s as Multiply,Mi as Neg,Qa as NonMaxSuppressionV3,tl as NonMaxSuppressionV4,el as NonMaxSuppressionV5,Ja as NotEqual,A0 as OP_SCOPE_SUFFIX,Rs as OneHot,Li as OnesLike,qr as Optimizer,Nh as OptimizerConstructors,zi as Pack,Fs as PadV2,omt as Pool,Os as Pow,Ps as Prelu,Ms as Prod,$c as RMSPropOptimizer,An as RNN,Hp as RaggedGather,qp as RaggedRange,Kp as RaggedTensorToTensor,ou as Range,w0 as Rank,jp as Real,cs as RealDiv,Ls as Reciprocal,Ze as Reduction,zs as Relu,Gs as Relu6,Bi as Reshape,Vs as ResizeBilinear,nl as ResizeBilinearGrad,Bs as ResizeNearestNeighbor,rl as ResizeNearestNeighborGrad,Ws as Reverse,fl as RotateWithOffset,Us as Round,Hs as Rsqrt,Cl as SGDOptimizer,ol as ScatterNd,il as SearchSorted,Vi as Select,qs as Selu,xa as Sequential,Xs as Sigmoid,js as Sign,Ks as Sin,al as Sinh,Gi as Slice,Qs as Softmax,Ys as Softplus,Wi as SpaceToBatchND,su as SparseFillEmptyRows,ll as SparseReshape,iu as SparseSegmentMean,au as SparseSegmentSum,ul as SparseToDense,Ui as SplitV,Zs as Sqrt,lu as Square,ti as SquaredDifference,sc as StaticRegexReplace,yo as Step,cl as StridedSlice,uu as StringNGrams,cu as StringSplit,pu as StringToHashBucketFast,ei as Sub,Js as Sum,rn as SymbolicTensor,ri as Tan,ni as Tanh,Pt as Tensor,le as TensorBuffer,sl as TensorScatterUpdate,so as Tile,pl as TopK,ml as Transform,io as Transpose,mu as Unique,Hi as Unpack,fu as UnsortedSegmentSum,smt as UpperBound,dl as Variable,qi as ZerosLike,Ki as _FusedMatMul,Ee as abs,dx as acos,hx as acosh,Y as add,fE as addN,am as all,dc as any,ta as argMax,gx as argMin,xx as asin,yx as asinh,bx as atan,wx as atan2,Ix as atanh,bu as avgPool,Cx as avgPool3d,mE as backend,S as backend_util,gE as basicLSTMCell,na as batchNorm,vx as batchNorm2d,Sx as batchNorm3d,Nx as batchNorm4d,wu as batchToSpaceND,kx as bincount,yE as bitwiseAnd,c5 as booleanMaskAsync,bE as broadcastArgs,oa as broadcastTo,Ur as broadcast_util,Ay as browser,bt as buffer,T9 as callbacks,Q as cast,Tx as ceil,vr as clipByValue,un as clone,Nn as complex,se as concat,_x as concat1d,Ex as concat2d,Ax as concat3d,Dx as concat4d,nR as constraints,um as conv1d,kn as conv2d,pm as conv2dTranspose,$x as conv3d,Fx as conv3dTranspose,mmt as copyRegisteredKernels,Iu as cos,mm as cosh,Ih as cosineWindow,gc as cumprod,fm as cumsum,mn as customGrad,VF as data,gh as denseBincount,B0 as deprecationWarn,Ox as depthToSpace,sa as depthwiseConv2d,D9 as deregisterOp,xu as device_util,wE as diag,Px as dilation2d,vdt as disableDeprecationWarnings,Tt as dispose,Sdt as disposeVariables,ct as div,Mx as divNoNan,Lx as dot,nN as dropout,CE as einsum,ia as elu,Cdt as enableDebugMode,Idt as enableProdMode,oN as enclosingPowerOfTwo,Vn as engine,vE as ensureShape,L as env,Rr as equal,zx as erf,Bx as euclideanNorm,ir as exp,ar as expandDims,Vx as expm1,xc as eye,Au as fft,vo as fill,Adt as findBackend,Ddt as findBackendFactory,aa as floor,im as floorDiv,Dz as forceHalfFloat,Ru as fused,la as gather,w5 as gatherND,Dy as gather_util,_dt as getBackend,m0 as getGradient,ih as getKernel,Zg as getKernelsForBackend,Wpt as getThreadsCount,f1 as gpgpu_util,f6 as grad,d6 as grads,Fe as greater,pn as greaterEqual,Il as ifft,Cu as imag,dn as image,v5 as inTopKAsync,oR as initializers,BN as input,Mr as io,km as irfft,Gx as isFinite,Wx as isInf,Ux as isNaN,$e as keep,Kr as kernel_impls,LR as layers,vu as leakyRelu,bl as less,Gn as lessEqual,iN as linalg,kE as linspace,TQ as loadGraphModel,_Q as loadGraphModelSync,SR as loadLayersModel,Hx as localResponseNormalization,Nr as log,Su as log1p,jx as logSigmoid,dm as logSoftmax,hm as logSumExp,Or as logicalAnd,Nu as logicalNot,gm as logicalOr,Xx as logicalXor,S8 as losses,TE as lowerBound,Bt as matMul,y2 as math,Sr as max,ku as maxPool,Zx as maxPool3d,_E as maxPoolWithArgmax,Tn as maximum,ke as mean,fh as memory,EE as meshgrid,zR as metrics,xl as min,uo as minimum,Jx as mirrorPad,Qx as mod,T7 as model,BR as models,yc as moments,f5 as movingAverage,$ as mul,AE as multiRNNCell,DE as multinomial,Ut as neg,kh as nextFrame,yl as norm,li as notEqual,ua as oneHot,dr as ones,Ir as onesLike,k as op,$E as outerProduct,fn as pad,RE as pad1d,FE as pad2d,OE as pad3d,PE as pad4d,ty as pool,cn as pow,_u as prelu,fx as print,ey as prod,Ndt as profile,ME as raggedGather,LE as raggedRange,zE as raggedTensorToTensor,BE as rand,aA as randomGamma,Ic as randomNormal,lA as randomStandardNormal,Wn as randomUniform,uA as randomUniformInt,ca as range,Tdt as ready,wl as real,ay as reciprocal,sm as registerBackend,E7 as registerCallbackConstructor,b_ as registerGradient,ic as registerKernel,A9 as registerOp,VR as regularizers,Pr as relu,xm as relu6,Edt as removeBackend,R as reshape,hr as reverse,cA as reverse1d,pA as reverse2d,mA as reverse3d,fA as reverse4d,Du as rfft,ym as round,bm as rsqrt,ft as scalar,h5 as scatterND,$u as scatter_util,yh as searchSorted,wm as selu,Im as separableConv2d,_7 as sequential,J as serialization,bK as setBackend,$dt as setPlatform,Gpt as setThreadsCount,Bpt as setWasmPath,Vpt as setWasmPaths,TT as setWebGLContext,dA as setdiff1dAsync,Nw as shared,tn as sigmoid,ly as sign,v8 as signal,Cm as sin,vm as sinh,Ot as slice,Sm as slice1d,wh as slice2d,Nm as slice3d,Cc as slice4d,ze as slice_util,Eu as softmax,ai as softplus,Tu as spaceToBatchND,N8 as sparse,y5 as sparseToDense,C8 as spectral,gr as split,Ne as sqrt,Wt as square,Tm as squaredDifference,Un as squeeze,qe as stack,No as step,uy as stridedSlice,k8 as string,lt as sub,pt as sum,mc as sumOutType,cy as tan,ra as tanh,sr as tensor,Ke as tensor1d,ui as tensor2d,py as tensor3d,hA as tensor4d,gA as tensor5d,xA as tensor6d,bA as tensorScatterUpdate,Co as tensor_util,iA as test_util,B as tidy,Fr as tile,kdt as time,my as topk,Fc as train,Vt as transpose,Em as truncatedNormal,fy as unique,pmt as unregisterGradient,cmt as unregisterKernel,Am as unsortedSegmentSum,xr as unstack,ur as upcastType,wA as upperBound,y as util,h6 as valueAndGrad,g6 as valueAndGrads,dy as variable,qx as variableGrads,Ypt as version,IF as version_converter,A2 as version_core,TO as version_cpu,tf as version_layers,Upt as version_wasm,Az as version_webgl,aDe as webgl,Td as webgl_util,be as where,gy as whereAsync,Te as zeros,vt as zerosLike};