face-api/dist/face-api.js

5002 lines
1.3 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
"use strict";var faceapi=(()=>{var tx=Object.defineProperty;var OD=Object.getOwnPropertyDescriptor;var LD=Object.getOwnPropertyNames;var zD=Object.prototype.hasOwnProperty;var WD=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var _h=(e,t)=>{for(var n in t)tx(e,n,{get:t[n],enumerable:!0})},BD=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of LD(t))!zD.call(e,r)&&r!==n&&tx(e,r,{get:()=>t[r],enumerable:!(a=OD(t,r))||a.enumerable});return e};var VD=e=>BD(tx({},"__esModule",{value:!0}),e);var Sfe={};_h(Sfe,{AgeGenderNet:()=>Ud,BoundingBox:()=>el,Box:()=>ot,ComposableTask:()=>Sa,ComputeAllFaceDescriptorsTask:()=>Kr,ComputeFaceDescriptorsTaskBase:()=>jd,ComputeSingleFaceDescriptorTask:()=>Xr,DetectAllFaceLandmarksTask:()=>Xd,DetectAllFacesTask:()=>Wp,DetectFaceLandmarksTaskBase:()=>Kd,DetectFacesTaskBase:()=>Zd,DetectSingleFaceLandmarksTask:()=>Yd,DetectSingleFaceTask:()=>Jd,Dimensions:()=>wn,FACE_EXPRESSION_LABELS:()=>Ek,FaceDetection:()=>vt,FaceDetectionNet:()=>Pk,FaceExpressionNet:()=>Vd,FaceExpressions:()=>Hr,FaceLandmark68Net:()=>ul,FaceLandmark68TinyNet:()=>Gd,FaceLandmarkNet:()=>Dk,FaceLandmarks:()=>ia,FaceLandmarks5:()=>fk,FaceLandmarks68:()=>nl,FaceMatch:()=>Tp,FaceMatcher:()=>Qd,FaceRecognitionNet:()=>pl,Gender:()=>xg,LabeledBox:()=>Cp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>pn,ObjectDetection:()=>Vr,Point:()=>Re,PredictedBox:()=>gk,Rect:()=>tl,SsdMobilenetv1:()=>Os,SsdMobilenetv1Options:()=>Ia,TinyFaceDetector:()=>fl,TinyFaceDetectorOptions:()=>qd,TinyYolov2:()=>hl,TinyYolov2Options:()=>er,allFaces:()=>wfe,allFacesSsdMobilenetv1:()=>nD,allFacesTinyYolov2:()=>vfe,awaitMediaLoaded:()=>Ik,bufferToImage:()=>Sk,computeFaceDescriptor:()=>ife,createCanvas:()=>il,createCanvasFromMedia:()=>Ld,createFaceDetectionNet:()=>Qme,createFaceRecognitionNet:()=>Vme,createSsdMobilenetv1:()=>B$,createTinyFaceDetector:()=>kfe,createTinyYolov2:()=>nfe,detectAllFaces:()=>_g,detectFaceLandmarks:()=>eD,detectFaceLandmarksTiny:()=>sfe,detectLandmarks:()=>yfe,detectSingleFace:()=>xfe,draw:()=>Fk,env:()=>tt,euclideanDistance:()=>zk,extendWithAge:()=>Ig,extendWithFaceDescriptor:()=>kg,extendWithFaceDetection:()=>al,extendWithFaceExpressions:()=>fg,extendWithFaceLandmarks:()=>Pp,extendWithGender:()=>Sg,extractFaceTensors:()=>Ap,extractFaces:()=>Ep,fetchImage:()=>_me,fetchJson:()=>Ck,fetchNetWeights:()=>Eme,fetchOrThrow:()=>Gr,fetchVideo:()=>Ame,getContext2dOrThrow:()=>Hn,getMediaDimensions:()=>sl,imageTensorToCanvas:()=>Nk,imageToSquare:()=>Tk,inverseSigmoid:()=>wme,iou:()=>ck,isMediaElement:()=>og,isMediaLoaded:()=>Od,isWithAge:()=>Ume,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>Ak,isWithFaceLandmarks:()=>ll,isWithGender:()=>Gme,loadAgeGenderModel:()=>ffe,loadFaceDetectionModel:()=>gfe,loadFaceExpressionModel:()=>mfe,loadFaceLandmarkModel:()=>cfe,loadFaceLandmarkTinyModel:()=>dfe,loadFaceRecognitionModel:()=>hfe,loadSsdMobilenetv1Model:()=>tD,loadTinyFaceDetectorModel:()=>ufe,loadTinyYolov2Model:()=>pfe,loadWeightMap:()=>_k,locateFaces:()=>bfe,matchDimensions:()=>Fme,minBbox:()=>dk,nets:()=>nt,nonMaxSuppression:()=>hk,normalize:()=>Ja,padToSquare:()=>mk,predictAgeAndGender:()=>lfe,recognizeFaceExpressions:()=>ofe,resizeResults:()=>aD,resolveInput:()=>rl,shuffleArray:()=>vme,sigmoid:()=>Rd,ssdMobilenetv1:()=>Q$,tf:()=>Oe,tinyFaceDetector:()=>afe,tinyYolov2:()=>rfe,toNetInput:()=>wt,utils:()=>pk,validateConfig:()=>Ok,version:()=>Ife});var Oe={};_h(Oe,{Abs:()=>ru,Acos:()=>Si,Acosh:()=>Ni,AdadeltaOptimizer:()=>Pw,AdagradOptimizer:()=>Ow,AdamOptimizer:()=>Lw,AdamaxOptimizer:()=>zw,Add:()=>ks,AddN:()=>Ti,All:()=>su,Any:()=>iu,ArgMax:()=>ou,ArgMin:()=>lu,Asin:()=>Ci,Asinh:()=>_i,Atan:()=>Ei,Atan2:()=>Fi,Atanh:()=>Ai,AvgPool:()=>$i,AvgPool3D:()=>uu,AvgPool3DGrad:()=>Rc,AvgPoolGrad:()=>$m,BackendWasm:()=>g$,BatchMatMul:()=>Di,BatchToSpaceND:()=>pu,Bincount:()=>cu,BitwiseAnd:()=>Dm,BroadcastArgs:()=>Mc,BroadcastTo:()=>KS,Callback:()=>IC,CallbackList:()=>N2,Cast:()=>Ri,Ceil:()=>Mi,ClipByValue:()=>Is,Complex:()=>Rm,ComplexAbs:()=>Pc,Concat:()=>du,Conv2D:()=>Pi,Conv2DBackpropFilter:()=>Mm,Conv2DBackpropInput:()=>Oi,Conv3D:()=>Li,Conv3DBackpropFilterV2:()=>hu,Conv3DBackpropInputV2:()=>mu,Cos:()=>zi,Cosh:()=>Wi,CropAndResize:()=>gu,Cumprod:()=>fu,Cumsum:()=>Bi,CustomCallback:()=>C2,DataStorage:()=>Em,DenseBincount:()=>Oc,DepthToSpace:()=>bu,DepthwiseConv2dNative:()=>Vi,DepthwiseConv2dNativeBackpropFilter:()=>Pm,DepthwiseConv2dNativeBackpropInput:()=>Om,Diag:()=>Lc,Dilation2D:()=>Ui,Dilation2DBackpropFilter:()=>Ll,Dilation2DBackpropInput:()=>Ol,ENV:()=>vv,EarlyStopping:()=>SC,Einsum:()=>Lm,Elu:()=>Hi,EluGrad:()=>yu,Environment:()=>qS,Equal:()=>vu,Erf:()=>xu,Exp:()=>qi,ExpandDims:()=>wu,Expm1:()=>ji,FFT:()=>zm,Fill:()=>zc,FlipLeftRight:()=>ku,Floor:()=>Ki,FloorDiv:()=>Xi,FromPixels:()=>tm,FusedBatchNorm:()=>Yi,FusedConv2D:()=>oi,FusedDepthwiseConv2D:()=>li,GPGPUContext:()=>Yh,GatherNd:()=>Su,GatherV2:()=>Iu,GraphModel:()=>S1,Greater:()=>Nu,GreaterEqual:()=>Zi,History:()=>T2,IFFT:()=>Wm,Identity:()=>Ji,Imag:()=>Bm,InputSpec:()=>Bt,IsFinite:()=>Qi,IsInf:()=>eo,IsNan:()=>to,KernelBackend:()=>$c,LRN:()=>so,LRNGrad:()=>$u,LayerVariable:()=>y2,LayersModel:()=>$r,LeakyRelu:()=>no,Less:()=>Tu,LessEqual:()=>Cu,LinSpace:()=>_u,Log:()=>ao,Log1p:()=>ro,LogSoftmax:()=>YS,LogicalAnd:()=>Eu,LogicalNot:()=>Au,LogicalOr:()=>Fu,LogicalXor:()=>XS,LowerBound:()=>DR,MathBackendCPU:()=>Xf,MathBackendWebGL:()=>Jf,MatrixBandPart:()=>RR,Max:()=>io,MaxPool:()=>lo,MaxPool3D:()=>Du,MaxPool3DGrad:()=>Wc,MaxPoolGrad:()=>Vm,MaxPoolWithArgmax:()=>Um,Maximum:()=>oo,Mean:()=>uo,Min:()=>po,Minimum:()=>co,MirrorPad:()=>ho,Mod:()=>Ru,MomentumOptimizer:()=>Ww,Multinomial:()=>Mu,Multiply:()=>mo,Neg:()=>Pu,NonMaxSuppressionV3:()=>Lu,NonMaxSuppressionV4:()=>zu,NonMaxSuppressionV5:()=>Wu,NotEqual:()=>Ou,OP_SCOPE_SUFFIX:()=>Sv,OneHot:()=>fo,OnesLike:()=>Bu,Optimizer:()=>Lr,OptimizerConstructors:()=>t2,Pack:()=>Vu,PadV2:()=>go,Pool:()=>MR,Pow:()=>bo,Prelu:()=>yo,Prod:()=>xo,RMSPropOptimizer:()=>Bw,RNN:()=>gr,RaggedGather:()=>Gm,RaggedRange:()=>Hm,RaggedTensorToTensor:()=>qm,Range:()=>Bc,Rank:()=>vx,Real:()=>jm,RealDiv:()=>Gi,Reciprocal:()=>vo,Reduction:()=>In,Relu:()=>wo,Relu6:()=>So,Reshape:()=>Uu,ResizeBilinear:()=>Io,ResizeBilinearGrad:()=>Hu,ResizeNearestNeighbor:()=>ko,ResizeNearestNeighborGrad:()=>Gu,Reverse:()=>No,RotateWithOffset:()=>op,Round:()=>To,Rsqrt:()=>Co,SGDOptimizer:()=>Ef,ScatterNd:()=>qu,SearchSorted:()=>Ku,Select:()=>Xu,Selu:()=>_o,Sequential:()=>Yl,Sigmoid:()=>Fo,Sign:()=>Ao,Sin:()=>Eo,Sinh:()=>Zu,Slice:()=>Yu,Softmax:()=>Mo,Softplus:()=>$o,SpaceToBatchND:()=>Ju,SparseFillEmptyRows:()=>Vc,SparseReshape:()=>ep,SparseSegmentMean:()=>Uc,SparseSegmentSum:()=>Gc,SparseToDense:()=>tp,SplitV:()=>Qu,Sqrt:()=>Do,Square:()=>Hc,SquaredDifference:()=>Po,StaticRegexReplace:()=>qc,Step:()=>Ns,StridedSlice:()=>np,StringNGrams:()=>jc,StringSplit:()=>Kc,StringToHashBucketFast:()=>Xc,Sub:()=>Oo,Sum:()=>Ro,SymbolicTensor:()=>Va,Tan:()=>Lo,Tanh:()=>zo,Tensor:()=>Ce,TensorBuffer:()=>Vt,TensorScatterUpdate:()=>ju,Tile:()=>Ss,TopK:()=>ap,Transform:()=>rp,Transpose:()=>Fr,Unique:()=>Yc,Unpack:()=>sp,UnsortedSegmentSum:()=>Zc,UpperBound:()=>PR,Variable:()=>ds,ZerosLike:()=>ip,_FusedMatMul:()=>ii,abs:()=>Wt,acos:()=>Av,acosh:()=>Fv,add:()=>X,addN:()=>wN,all:()=>Jm,any:()=>xc,argMax:()=>ci,argMin:()=>$v,asin:()=>Dv,asinh:()=>Rv,atan:()=>Mv,atan2:()=>Pv,atanh:()=>Ov,avgPool:()=>xa,avgPool3d:()=>zv,backend:()=>vN,backend_util:()=>N,basicLSTMCell:()=>NN,batchNorm:()=>Cs,batchNorm2d:()=>Wv,batchNorm3d:()=>Bv,batchNorm4d:()=>Vv,batchToSpaceND:()=>rd,bincount:()=>Uv,bitwiseAnd:()=>TN,booleanMaskAsync:()=>gT,broadcastArgs:()=>CN,broadcastTo:()=>ai,broadcast_util:()=>lp,browser:()=>Uo,buffer:()=>ze,callbacks:()=>yq,cast:()=>ie,ceil:()=>Gv,clipByValue:()=>rn,clone:()=>or,complex:()=>Dr,concat:()=>Qe,concat1d:()=>Hv,concat2d:()=>qv,concat3d:()=>jv,concat4d:()=>Kv,constraints:()=>w2,conv1d:()=>Qm,conv2d:()=>Rt,conv2dTranspose:()=>ef,conv3d:()=>Yv,conv3dTranspose:()=>Zv,copyRegisteredKernels:()=>WR,cos:()=>sd,cosh:()=>tf,cosineWindow:()=>Sf,cumprod:()=>kc,cumsum:()=>nf,customGrad:()=>cr,data:()=>jC,denseBincount:()=>om,deprecationWarn:()=>Ev,depthToSpace:()=>Jv,depthwiseConv2d:()=>_s,deregisterOp:()=>wq,device_util:()=>td,diag:()=>EN,dilation2d:()=>Qv,disableDeprecationWarnings:()=>YM,dispose:()=>_e,disposeVariables:()=>ZM,div:()=>he,divNoNan:()=>ew,dot:()=>tw,dropout:()=>Fw,einsum:()=>FN,elu:()=>up,enableDebugMode:()=>XM,enableProdMode:()=>KM,enclosingPowerOfTwo:()=>$w,engine:()=>Aa,ensureShape:()=>$N,env:()=>G,equal:()=>ta,erf:()=>nw,euclideanNorm:()=>sw,exp:()=>yn,expandDims:()=>tn,expm1:()=>iw,eye:()=>af,fft:()=>md,fill:()=>xn,findBackend:()=>rP,findBackendFactory:()=>sP,floor:()=>cp,floorDiv:()=>Zm,forceHalfFloat:()=>hA,fused:()=>ql,gather:()=>dp,gatherND:()=>vT,gather_util:()=>Gw,getBackend:()=>nP,getGradient:()=>yx,getKernel:()=>nm,getKernelsForBackend:()=>am,getThreadsCount:()=>cme,gpgpu_util:()=>HE,grad:()=>t3,grads:()=>n3,greater:()=>_n,greaterEqual:()=>Pr,ifft:()=>Hl,imag:()=>id,image:()=>ea,inTopKAsync:()=>wT,initializers:()=>k2,input:()=>B2,io:()=>qt,irfft:()=>yf,isFinite:()=>ow,isInf:()=>lw,isNaN:()=>uw,keep:()=>Ht,kernel_impls:()=>fr,layers:()=>I2,leakyRelu:()=>od,less:()=>Bl,lessEqual:()=>Es,linalg:()=>Mw,linspace:()=>ON,loadGraphModel:()=>Cj,loadGraphModelSync:()=>_j,loadLayersModel:()=>mH,localResponseNormalization:()=>pw,log:()=>na,log1p:()=>ld,logSigmoid:()=>cw,logSoftmax:()=>sf,logSumExp:()=>of,logicalAnd:()=>Da,logicalNot:()=>ud,logicalOr:()=>lf,logicalXor:()=>dw,losses:()=>DT,lowerBound:()=>zN,matMul:()=>$e,math:()=>UT,max:()=>ga,maxPool:()=>Mt,maxPool3d:()=>hw,maxPoolWithArgmax:()=>WN,maximum:()=>mr,mean:()=>Et,memory:()=>im,meshgrid:()=>BN,metrics:()=>vC,min:()=>Wl,minimum:()=>ms,mirrorPad:()=>mw,mod:()=>fw,model:()=>bH,models:()=>wC,moments:()=>pd,movingAverage:()=>bT,mul:()=>z,multiRNNCell:()=>VN,multinomial:()=>UN,neg:()=>yt,nextFrame:()=>Hw,norm:()=>pp,notEqual:()=>fi,oneHot:()=>Vl,ones:()=>Qn,onesLike:()=>aa,op:()=>L,outerProduct:()=>GN,pad:()=>va,pad1d:()=>HN,pad2d:()=>qN,pad3d:()=>jN,pad4d:()=>KN,pool:()=>gw,pow:()=>Rr,prelu:()=>dd,print:()=>_v,prod:()=>bw,profile:()=>JM,raggedGather:()=>XN,raggedRange:()=>YN,raggedTensorToTensor:()=>ZN,rand:()=>JN,randomGamma:()=>nT,randomNormal:()=>pf,randomStandardNormal:()=>aT,randomUniform:()=>As,randomUniformInt:()=>rT,range:()=>gi,ready:()=>tP,real:()=>Ul,reciprocal:()=>kw,registerBackend:()=>Ym,registerCallbackConstructor:()=>xH,registerGradient:()=>ZS,registerKernel:()=>Jc,registerOp:()=>vq,regularizers:()=>kC,relu:()=>Ke,relu6:()=>cf,removeBackend:()=>aP,reshape:()=>W,reverse:()=>ya,reverse1d:()=>sT,reverse2d:()=>iT,reverse3d:()=>oT,reverse4d:()=>lT,rfft:()=>fd,round:()=>df,rsqrt:()=>hf,scalar:()=>ve,scatterND:()=>yT,scatter_util:()=>vf,searchSorted:()=>uf,selu:()=>mf,separableConv2d:()=>Fs,sequential:()=>yH,serialization:()=>ne,setBackend:()=>eP,setPlatform:()=>iP,setThreadsCount:()=>pme,setWasmPath:()=>lme,setWasmPaths:()=>ume,setWebGLContext:()=>fE,setdiff1dAsync:()=>uT,shared:()=>_1,sigmoid:()=>fa,sign:()=>Iw,signal:()=>$T,sin:()=>ff,sinh:()=>gf,slice:()=>Ue,slice1d:()=>hd,slice2d:()=>bf,slice3d:()=>Bo,slice4d:()=>Gl,slice_util:()=>Kt,softmax:()=>Xa,softplus:()=>Wo,spaceToBatchND:()=>cd,sparse:()=>RT,sparseToDense:()=>xT,spectral:()=>FT,split:()=>zn,sqrt:()=>mn,square:()=>ut,squaredDifference:()=>xf,squeeze:()=>$s,stack:()=>Dt,step:()=>Vo,stridedSlice:()=>Sw,string:()=>MT,sub:()=>pe,sum:()=>fe,sumOutType:()=>Xm,tan:()=>Nw,tanh:()=>hi,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>$a,tensor3d:()=>gd,tensor4d:()=>Ma,tensor5d:()=>pT,tensor6d:()=>cT,tensorScatterUpdate:()=>hT,tensor_util:()=>Ua,test_util:()=>QN,tidy:()=>P,tile:()=>Ln,time:()=>QM,topk:()=>Cw,train:()=>Ks,transpose:()=>De,truncatedNormal:()=>kf,unique:()=>_w,unregisterGradient:()=>zR,unregisterKernel:()=>LR,unsortedSegmentSum:()=>If,unstack:()=>ct,upcastType:()=>ba,upperBound:()=>mT,util:()=>v,valueAndGrad:()=>a3,valueAndGrads:()=>r3,variable:()=>Ew,variableGrads:()=>LN,version:()=>yme,version_converter:()=>Aj,version_core:()=>IB,version_cpu:()=>_K,version_layers:()=>h0,version_wasm:()=>dme,version_webgl:()=>mQ,webgl:()=>fQ,webgl_util:()=>mE,where:()=>an,whereAsync:()=>Aw,zeros:()=>Nt,zerosLike:()=>qe});var UD=Object.create,gv=Object.defineProperty,GD=Object.getOwnPropertyDescriptor,HD=Object.getOwnPropertyNames,qD=Object.getPrototypeOf,jD=Object.prototype.hasOwnProperty,Gt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ee=(e,t)=>{for(var n in t)gv(e,n,{get:t[n],enumerable:!0})},KD=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of HD(t))!jD.call(e,r)&&r!==n&&gv(e,r,{get:()=>t[r],enumerable:!(a=GD(t,r))||a.enumerable});return e},ws=(e,t,n)=>(n=e!=null?UD(qD(e)):{},KD(t||!e||!e.__esModule?gv(n,"default",{value:e,enumerable:!0}):n,e)),XD=Gt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,H;return M?(S>>>=0,(H=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),H&&(i[S]=B),B)):(S|=0,(H=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),H&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return F}else{if(S<=-b)return D;if(S+1>=b)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||36<B)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var H=l(p(B,8)),j=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),J=parseInt(S.substring(K,K+Z),B);if(Z<8){var ee=l(p(B,Z));j=j.mul(ee).add(l(J))}else j=j.mul(H),j=j.add(l(J))}return j.unsigned=M,j}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var F=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=F;var D=u(0,-2147483648,!1);a.MIN_VALUE=D;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(D)){var M=l(S),B=this.div(M),U=B.mul(M).sub(this);return B.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var H=l(p(S,6),this.unsigned),j=this,K="";;){var Z=j.div(H),J=j.sub(Z.mul(H)).toInt()>>>0,ee=J.toString(S);if(j=Z,j.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&!(S&1<<M);M--);return this.high!=0?M+33:M+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,H=this.low&65535,j=S.high>>>16,K=S.high&65535,Z=S.low>>>16,J=S.low&65535,ee=0,ae=0,te=0,re=0;return re+=H+J,te+=re>>>16,re&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+j,ee&=65535,u(te<<16|re,ee<<16|ae,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(D))return S.isOdd()?D:x;if(S.eq(D))return this.isOdd()?D:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(y)&&S.lt(y))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,H=this.low>>>16,j=this.low&65535,K=S.high>>>16,Z=S.high&65535,J=S.low>>>16,ee=S.low&65535,ae=0,te=0,re=0,se=0;return se+=j*ee,re+=se>>>16,se&=65535,re+=H*ee,te+=re>>>16,re&=65535,re+=j*J,te+=re>>>16,re&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=H*J,ae+=te>>>16,te&=65535,te+=j*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*J+H*Z+j*K,ae&=65535,u(re<<16|se,ae<<16|te,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,H;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;H=w}else{if(this.eq(D)){if(S.eq(I)||S.eq(C))return D;if(S.eq(D))return I;var j=this.shr(1);return B=j.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),H=B.add(U.div(S)),H)}else if(S.eq(D))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();H=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),J=l(B),ee=J.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,J=l(B,this.unsigned),ee=J.mul(S);J.isZero()&&(J=I),H=H.add(J),U=U.sub(ee)}return H},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),YD=Gt(()=>{}),ZD=Gt(()=>{}),JD=Gt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),QD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eR=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tR=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nR=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aR=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rR=Gt(()=>{}),sR=Gt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var F=y(b(T.entropy?[I,w(a)]:I==null?x():I,3),E),D=new f(E),$=function(){for(var S=D.g(i),M=u,B=0;S<p;)S=(S+B)*s,M*=s,B=D.g(1);for(;S>=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return $.int32=function(){return D.g(4)|0},$.quick=function(){return D.g(4)/4294967296},$.double=$,y(w(D.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,D),S.state=function(){return g(D,{})}),B?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,F=0,D=E.i=E.j=0,$=E.S=[];for(C||(I=[C++]);F<s;)$[F]=F++;for(F=0;F<s;F++)$[F]=$[D=c&D+I[F%C]+(T=$[F])],$[D]=T;(E.g=function(S){for(var M,B=0,U=E.i,H=E.j,j=E.S;S--;)M=j[U=c&U+1],B=B*s+j[c&(j[U]=j[H=c&H+M])+(j[H]=M)];return E.i=U,E.j=H,B})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function b(I,T){var C=[],E=typeof I,F;if(T&&E=="object")for(F in I)try{C.push(b(I[F],T-1))}catch(D){}return C.length?C:E=="string"?I:I+"\0"}function y(I,T){for(var C=I+"",E,F=0;F<C.length;)T[c&F]=c&(E^=T[c&F]*19)+C.charCodeAt(F++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=rR()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),_m=Gt((e,t)=>{var n=JD(),a=QD(),r=eR(),s=tR(),i=nR(),o=aR(),l=sR();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),RS=Gt(()=>{}),bv=Gt(()=>{}),MS=Gt(()=>{}),iR=Gt(()=>{}),oR=Gt(()=>{}),lR=Gt(()=>{}),uR=Gt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=Me&&lt(ue.buffer),ft}function i(){return ue.buffer!=Me&&lt(ue.buffer),jn}function o(){return ue.buffer!=Me&&lt(ue.buffer),Lt}function l(){return ue.buffer!=Me&&lt(ue.buffer),cn}function u(){return ue.buffer!=Me&&lt(ue.buffer),$n}function p(){return ue.buffer!=Me&&lt(ue.buffer),ua}function d(){return ue.buffer!=Me&&lt(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(R,q){h=R,m=q});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(R,q)=>{throw q},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function F(R){return c.locateFile?c.locateFile(R,E):E+R}var D,$,S,M;function B(R){R instanceof Us||J("exiting due to exception: "+R)}if(T){var U=bv(),H=MS();I?E=H.dirname(E)+"/":E=__dirname+"/",D=(q,le)=>(q=kl(q)?new URL(q):H.normalize(q),U.readFileSync(q,le?void 0:"utf8")),S=q=>{var le=D(q,!0);return le.buffer||(le=new Uint8Array(le)),le},$=(q,le,Ne)=>{q=kl(q)?new URL(q):H.normalize(q),U.readFile(q,function(Pe,Fe){Pe?Ne(Pe):le(Fe.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Us))throw q}),process.on("unhandledRejection",function(q){throw q}),x=(q,le)=>{if(Na())throw process.exitCode=q,le;B(le),process.exit(q)},c.inspect=function(){return"[Emscripten Module object]"};let R;try{R=iR()}catch(q){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),q}global.Worker=R.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(D=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.send(null),q.responseText},I&&(S=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.responseType="arraybuffer",q.send(null),new Uint8Array(q.response)}),$=(R,q,le)=>{var Ne=new XMLHttpRequest;Ne.open("GET",R,!0),Ne.responseType="arraybuffer",Ne.onload=()=>{if(Ne.status==200||Ne.status==0&&Ne.response){q(Ne.response);return}le()},Ne.onerror=le,Ne.send(null)}),M=R=>document.title=R);T&&typeof performance=="undefined"&&(global.performance=oR().performance);var j=console.log.bind(console),K=console.warn.bind(console);T&&(j=R=>U.writeSync(1,R+`
`),K=R=>U.writeSync(2,R+`
`));var Z=c.print||j,J=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,re=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var ye=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Vs("no native wasm support detected");var ue,be,ke=!1,Se;function We(R,q){R||Vs(q)}var Ge=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ht(R,q,le){q>>>=0;for(var Ne=q+le,Pe=q;R[Pe]&&!(Pe>=Ne);)++Pe;if(Pe-q>16&&R.buffer&&Ge)return Ge.decode(R.buffer instanceof SharedArrayBuffer?R.slice(q,Pe):R.subarray(q,Pe));for(var Fe="";q<Pe;){var me=R[q++];if(!(me&128)){Fe+=String.fromCharCode(me);continue}var we=R[q++]&63;if((me&224)==192){Fe+=String.fromCharCode((me&31)<<6|we);continue}var _t=R[q++]&63;if((me&240)==224?me=(me&15)<<12|we<<6|_t:me=(me&7)<<18|we<<12|_t<<6|R[q++]&63,me<65536)Fe+=String.fromCharCode(me);else{var ca=me-65536;Fe+=String.fromCharCode(55296|ca>>10,56320|ca&1023)}}return Fe}function st(R,q){return R>>>=0,R?ht(i(),R,q):""}function at(R,q,le,Ne){if(le>>>=0,!(Ne>0))return 0;for(var Pe=le,Fe=le+Ne-1,me=0;me<R.length;++me){var we=R.charCodeAt(me);if(we>=55296&&we<=57343){var _t=R.charCodeAt(++me);we=65536+((we&1023)<<10)|_t&1023}if(we<=127){if(le>=Fe)break;q[le++>>>0]=we}else if(we<=2047){if(le+1>=Fe)break;q[le++>>>0]=192|we>>6,q[le++>>>0]=128|we&63}else if(we<=65535){if(le+2>=Fe)break;q[le++>>>0]=224|we>>12,q[le++>>>0]=128|we>>6&63,q[le++>>>0]=128|we&63}else{if(le+3>=Fe)break;q[le++>>>0]=240|we>>18,q[le++>>>0]=128|we>>12&63,q[le++>>>0]=128|we>>6&63,q[le++>>>0]=128|we&63}}return q[le>>>0]=0,le-Pe}function rt(R,q,le){return at(R,i(),q,le)}var Me,ft,jn,Lt,la,cn,$n,ua,Dn;C&&(Me=c.buffer);function lt(R){Me=R,c.HEAP8=ft=new Int8Array(R),c.HEAP16=Lt=new Int16Array(R),c.HEAP32=cn=new Int32Array(R),c.HEAPU8=jn=new Uint8Array(R),c.HEAPU16=la=new Uint16Array(R),c.HEAPU32=$n=new Uint32Array(R),c.HEAPF32=ua=new Float32Array(R),c.HEAPF64=Dn=new Float64Array(R)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,Me=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:65536,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&J("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");ue&&(Me=ue.buffer),Rn=Me.byteLength,lt(Me);var Kn,kr=[],vl=[],tr=[],Bp=!1;function Na(){return ye}function Yr(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Eg(c.preRun.shift());Up(kr)}function Jt(){Bp=!0,!C&&Up(vl)}function eh(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Wk(c.postRun.shift());Up(tr)}}function Eg(R){kr.unshift(R)}function Ag(R){vl.unshift(R)}function Wk(R){tr.unshift(R)}var Zr=0,wl=null,Ir=null;function Fg(R){Zr++,c.monitorRunDependencies&&c.monitorRunDependencies(Zr)}function th(R){if(Zr--,c.monitorRunDependencies&&c.monitorRunDependencies(Zr),Zr==0&&(wl!==null&&(clearInterval(wl),wl=null),Ir)){var q=Ir;Ir=null,q()}}function Vs(R){c.onAbort&&c.onAbort(R),R="Aborted("+R+")",J(R),ke=!0,Se=1,R+=". Build with -sASSERTIONS for more info.";var q=new WebAssembly.RuntimeError(R);throw m(q),q}var $g="data:application/octet-stream;base64,";function nh(R){return R.startsWith($g)}function kl(R){return R.startsWith("file://")}var gn;gn="tfjs-backend-wasm-threaded-simd.wasm",nh(gn)||(gn=F(gn));function ah(R){try{if(R==gn&&se)return new Uint8Array(se);if(S)return S(R);throw"both async and sync fetching of the wasm failed"}catch(q){Vs(q)}}function Dg(){if(!se&&(w||I)){if(typeof fetch=="function"&&!kl(gn))return fetch(gn,{credentials:"same-origin"}).then(function(R){if(!R.ok)throw"failed to load wasm binary file at '"+gn+"'";return R.arrayBuffer()}).catch(function(){return ah(gn)});if($)return new Promise(function(R,q){$(gn,function(le){R(new Uint8Array(le))},q)})}return Promise.resolve().then(function(){return ah(gn)})}function Rg(){var R={env:gh,wasi_snapshot_preview1:gh};function q(me,we){var _t=me.exports;if(c.asm=_t,Ug(c.asm._emscripten_tls_init),Kn=c.asm.__indirect_function_table,Ag(c.asm.__wasm_call_ctors),be=we,!C){var ca=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(Nr){Ae.loadWasmModuleToWorker(Nr,function(){--ca||th("wasm-instantiate")})})}}C||Fg("wasm-instantiate");function le(me){q(me.instance,me.module)}function Ne(me){return Dg().then(function(we){return WebAssembly.instantiate(we,R)}).then(function(we){return we}).then(me,function(we){J("failed to asynchronously prepare wasm: "+we),Vs(we)})}function Pe(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!nh(gn)&&!kl(gn)&&!T&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(me){var we=WebAssembly.instantiateStreaming(me,R);return we.then(le,function(_t){return J("wasm streaming compile failed: "+_t),J("falling back to ArrayBuffer instantiation"),Ne(le)})}):Ne(le)}if(c.instantiateWasm)try{var Fe=c.instantiateWasm(R,q);return Fe}catch(me){J("Module.instantiateWasm callback failed with error: "+me),m(me)}return Pe().catch(m),{}}var Bk,Vk,rh={};function Us(R){this.name="ExitStatus",this.message="Program terminated with exit("+R+")",this.status=R}function Mg(R){var q=Ae.pthreads[R];delete Ae.pthreads[R],q.terminate(),Jy(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(q),1),q.pthread_ptr=0}function Pg(R){var q=Ae.pthreads[R];q.postMessage({cmd:"cancel"})}function Vp(R){var q=Ae.pthreads[R];We(q),Ae.returnWorkerToPool(q)}function Og(R){var q=Ae.getNewWorker();if(!q)return 6;Ae.runningWorkers.push(q),Ae.pthreads[R.pthread_ptr]=q,q.pthread_ptr=R.pthread_ptr;var le={cmd:"run",start_routine:R.startRoutine,arg:R.arg,pthread_ptr:R.pthread_ptr};return q.runPthread=()=>{T&&q.ref(),q.postMessage(le,R.transferList),delete q.runPthread},q.loaded&&q.runPthread(),0}var sh={varargs:void 0,get:function(){sh.varargs+=4;var R=l()[sh.varargs-4>>>2];return R},getStr:function(R){var q=st(R);return q}};function ih(R){if(C)return Jr(1,1,R);Se=R,Na()||(Ae.terminateAllThreads(),c.onExit&&c.onExit(R),ke=!0),x(R,new Us(R))}function Lg(R,q){if(Se=R,!q&&C)throw lh(R),"unwind";ih(R)}var oh=Lg;function zg(R){if(R instanceof Us||R=="unwind")return Se;x(1,R)}var Ae={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Ae.initWorker():Ae.initMainThread()},initMainThread:function(){for(var R=8;R--;)Ae.allocateUnusedWorker()},initWorker:function(){ye=!1},setExitStatus:function(R){Se=R},terminateAllThreads:function(){for(var R of Object.values(Ae.pthreads))Ae.returnWorkerToPool(R);for(var R of Ae.unusedWorkers)R.terminate();Ae.unusedWorkers=[]},returnWorkerToPool:function(R){var q=R.pthread_ptr;delete Ae.pthreads[q],Ae.unusedWorkers.push(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(R),1),R.pthread_ptr=0,T&&R.unref(),Jy(q)},receiveObjectTransfer:function(R){},threadInitTLS:function(){Ae.tlsInitFunctions.forEach(R=>R())},loadWasmModuleToWorker:function(R,q){R.onmessage=Fe=>{var me=Fe.data,we=me.cmd;if(R.pthread_ptr&&(Ae.currentProxiedOperationCallerThread=R.pthread_ptr),me.targetThread&&me.targetThread!=kh()){var _t=Ae.pthreads[me.targetThread];_t?_t.postMessage(me,me.transferList):J('Internal error! Worker sent a message "'+we+'" to target pthread '+me.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}we==="processProxyingQueue"?Gp(me.queue):we==="spawnThread"?Og(me):we==="cleanupThread"?Vp(me.thread):we==="killThread"?Mg(me.thread):we==="cancelThread"?Pg(me.thread):we==="loaded"?(R.loaded=!0,T&&R.unref(),q&&q(R),R.runPthread&&R.runPthread()):we==="print"?Z("Thread "+me.threadId+": "+me.text):we==="printErr"?J("Thread "+me.threadId+": "+me.text):we==="alert"?alert("Thread "+me.threadId+": "+me.text):me.target==="setimmediate"?R.postMessage(me):we==="callHandler"?c[me.handler](...me.args):we&&J("worker sent an unknown command "+we),Ae.currentProxiedOperationCallerThread=void 0},R.onerror=Fe=>{var me="worker sent an error!";throw J(me+" "+Fe.filename+":"+Fe.lineno+": "+Fe.message),Fe},T&&(R.on("message",function(Fe){R.onmessage({data:Fe})}),R.on("error",function(Fe){R.onerror(Fe)}),R.on("detachedExit",function(){}));var le=[],Ne=["onExit","onAbort","print","printErr"];for(var Pe of Ne)c.hasOwnProperty(Pe)&&le.push(Pe);R.postMessage({cmd:"load",handlers:le,urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:be})},allocateUnusedWorker:function(){var R,q=F("tfjs-backend-wasm-threaded-simd.worker.js");R=new Worker(q),Ae.unusedWorkers.push(R)},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.pop()}};c.PThread=Ae;function Up(R){for(;R.length>0;)R.shift()(c)}function Wg(){var R=kh(),q=l()[R+52>>>2],le=l()[R+56>>>2],Ne=q-le;Kk(q,Ne),Ih(q)}c.establishStackSpace=Wg;function lh(R){if(C)return Jr(2,0,R);try{oh(R)}catch(q){zg(q)}}var Il=[];function Bg(R){var q=Il[R];return q||(R>=Il.length&&(Il.length=R+1),Il[R]=q=Kn.get(R)),q}function Vg(R,q){var le=Bg(R)(q);Na()?Ae.setExitStatus(le):jk(le)}c.invokeEntryPoint=Vg;function Ug(R){Ae.tlsInitFunctions.push(R)}function Gg(R){Gk(R,!I,1,!w),Ae.threadInitTLS()}function Hg(R){C?postMessage({cmd:"cleanupThread",thread:R}):Vp(R)}function uh(R,q,le,Ne){return C?Jr(3,1,R,q,le,Ne):ph(R,q,le,Ne)}function ph(R,q,le,Ne){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Pe=[],Fe=0;if(C&&(Pe.length===0||Fe))return uh(R,q,le,Ne);if(Fe)return Fe;var me={startRoutine:le,pthread_ptr:R,arg:Ne,transferList:Pe};return C?(me.cmd="spawnThread",postMessage(me,Pe),0):Og(me)}function qg(){return 65536}var jg=!0;function Kg(){return jg}function Gp(R){Atomics.store(l(),R>>2,1),kh()&&qk(R),Atomics.compareExchange(l(),R>>2,1,0)}c.executeNotifiedProxyingQueue=Gp;function Xg(R,q,le,Ne){if(R==q)setTimeout(()=>Gp(Ne));else if(C)postMessage({targetThread:R,cmd:"processProxyingQueue",queue:Ne});else{var Pe=Ae.pthreads[R];if(!Pe)return;Pe.postMessage({cmd:"processProxyingQueue",queue:Ne})}return 1}function Yg(R,q,le){return-1}function Zg(){Vs("")}function Gs(R){Gs.shown||(Gs.shown={}),Gs.shown[R]||(Gs.shown[R]=1,T&&(R="warning: "+R),J(R))}function Jg(){T||I||Gs("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Qg(){return Date.now()}function ch(){return 4294901760}function eb(){return ch()}var Hp;T?Hp=()=>{var R=process.hrtime();return R[0]*1e3+R[1]/1e6}:Hp=()=>performance.timeOrigin+performance.now();function tb(R,q,le){i().copyWithin(R>>>0,q>>>0,q+le>>>0)}function nb(){return T?lR().cpus().length:navigator.hardwareConcurrency}function ab(R){var q=Qy(),le=R();return Ih(q),le}function Jr(R,q){var le=arguments.length-2,Ne=arguments;return ab(()=>{for(var Pe=le,Fe=Sh(Pe*8),me=Fe>>3,we=0;we<le;we++){var _t=Ne[2+we];d()[me+we>>>0]=_t}return Hk(R,Pe,Fe,q)})}var qp=[];function rb(R,q,le){qp.length=q;for(var Ne=le>>3,Pe=0;Pe<q;Pe++)qp[Pe]=d()[Ne+Pe>>>0];var Fe=R<0,me=Fe?rh[-R-1]:hb[R];return me.apply(null,qp)}function sb(R){try{return ue.grow(R-Me.byteLength+65535>>>16),lt(ue.buffer),1}catch(q){}}function ib(R){var q=i().length;if(R=R>>>0,R<=q)return!1;var le=ch();if(R>le)return!1;let Ne=(_t,ca)=>_t+(ca-_t%ca)%ca;for(var Pe=1;Pe<=4;Pe*=2){var Fe=q*(1+.2/Pe);Fe=Math.min(Fe,R+100663296);var me=Math.min(le,Ne(Math.max(R,Fe),65536)),we=sb(me);if(we)return!0}return!1}function ob(){throw"unwind"}function dh(R){return C?Jr(4,1,R):52}function hh(R,q,le,Ne,Pe){return C?Jr(5,1,R,q,le,Ne,Pe):70}var lb=[null,[],[]];function ub(R,q){var le=lb[R];q===0||q===10?((R===1?Z:J)(ht(le,0)),le.length=0):le.push(q)}function mh(R,q,le,Ne){if(C)return Jr(6,1,R,q,le,Ne);for(var Pe=0,Fe=0;Fe<le;Fe++){var me=u()[q>>>2],we=u()[q+4>>>2];q+=8;for(var _t=0;_t<we;_t++)ub(R,i()[me+_t>>>0]);Pe+=we}return u()[Ne>>>2]=Pe,0}function fh(R){var q=c["_"+R];return q}function pb(R,q){s().set(R,q>>>0)}function cb(R,q,le,Ne,Pe){var Fe={string:da=>{var Cl=0;if(da!=null&&da!==0){var Zk=(da.length<<2)+1;Cl=Sh(Zk),rt(da,Cl,Zk)}return Cl},array:da=>{var Cl=Sh(da.length);return pb(da,Cl),Cl}};function me(da){return q==="string"?st(da):q==="boolean"?!!da:da}var we=fh(R),_t=[],ca=0;if(Ne)for(var Nr=0;Nr<Ne.length;Nr++){var Yk=Fe[le[Nr]];Yk?(ca===0&&(ca=Qy()),_t[Nr]=Yk(Ne[Nr])):_t[Nr]=Ne[Nr]}var ex=we.apply(null,_t);function PD(da){return ca!==0&&Ih(ca),me(da)}return ex=PD(ex),ex}function db(R,q,le,Ne){le=le||[];var Pe=le.every(me=>me==="number"||me==="boolean"),Fe=q!=="string";return Fe&&Pe&&!Ne?fh(R):function(){return cb(R,q,le,arguments,Ne)}}Ae.init();var hb=[null,ih,lh,uh,dh,hh,mh],gh={__emscripten_init_main_thread_js:Gg,__emscripten_thread_cleanup:Hg,__pthread_create_js:ph,_emscripten_default_pthread_stack_size:qg,_emscripten_get_now_is_monotonic:Kg,_emscripten_notify_task_queue:Xg,_emscripten_set_offscreencanvas_size:Yg,abort:Zg,emscripten_check_blocking_allowed:Jg,emscripten_date_now:Qg,emscripten_get_heap_max:eb,emscripten_get_now:Hp,emscripten_memcpy_big:tb,emscripten_num_logical_cores:nb,emscripten_receive_on_main_thread_js:rb,emscripten_resize_heap:ib,emscripten_unwind_to_js_event_loop:ob,exit:oh,fd_close:dh,fd_seek:hh,fd_write:mh,memory:ue||c.wasmMemory},Uk=Rg(),mb=c.___wasm_call_ctors=function(){return(mb=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},fb=c._init=function(){return(fb=c._init=c.asm.init).apply(null,arguments)},gb=c._init_with_threads_count=function(){return(gb=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},bb=c._get_threads_count=function(){return(bb=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},yb=c._register_tensor=function(){return(yb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},xb=c._dispose_data=function(){return(xb=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},vb=c._dispose=function(){return(vb=c._dispose=c.asm.dispose).apply(null,arguments)},wb=c._Abs=function(){return(wb=c._Abs=c.asm.Abs).apply(null,arguments)},kb=c._Acos=function(){return(kb=c._Acos=c.asm.Acos).apply(null,arguments)},Ib=c._Acosh=function(){return(Ib=c._Acosh=c.asm.Acosh).apply(null,arguments)},Sb=c._Add=function(){return(Sb=c._Add=c.asm.Add).apply(null,arguments)},Nb=c._AddN=function(){return(Nb=c._AddN=c.asm.AddN).apply(null,arguments)},Tb=c._All=function(){return(Tb=c._All=c.asm.All).apply(null,arguments)},Cb=c._Any=function(){return(Cb=c._Any=c.asm.Any).apply(null,arguments)},_b=c._ArgMax=function(){return(_b=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Eb=c._ArgMin=function(){return(Eb=c._ArgMin=c.asm.ArgMin).apply(null,arguments)},Ab=c._Asin=function(){return(Ab=c._Asin=c.asm.Asin).apply(null,arguments)},Fb=c._Asinh=function(){return(Fb=c._Asinh=c.asm.Asinh).apply(null,arguments)},$b=c._Atan=function(){return($b=c._Atan=c.asm.Atan).apply(null,arguments)},Db=c._Atan2=function(){return(Db=c._Atan2=c.asm.Atan2).apply(null,arguments)},Rb=c._Atanh=function(){return(Rb=c._Atanh=c.asm.Atanh).apply(null,arguments)},Mb=c._AvgPool=function(){return(Mb=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Pb=c._AvgPool3D=function(){return(Pb=c._AvgPool3D=c.asm.AvgPool3D).apply(null,arguments)},Ob=c._AvgPool3DGrad=function(){return(Ob=c._AvgPool3DGrad=c.asm.AvgPool3DGrad).apply(null,arguments)},Lb=c._BatchMatMul=function(){return(Lb=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},zb=c._Bincount=function(){return(zb=c._Bincount=c.asm.Bincount).apply(null,arguments)},Wb=c._Ceil=function(){return(Wb=c._Ceil=c.asm.Ceil).apply(null,arguments)},Bb=c._ClipByValue=function(){return(Bb=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Vb=c._Conv2D=function(){return(Vb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},Ub=c._Conv2DBackpropInput=function(){return(Ub=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Gb=c._Conv3D=function(){return(Gb=c._Conv3D=c.asm.Conv3D).apply(null,arguments)},Hb=c._Conv3DBackpropFilterV2=function(){return(Hb=c._Conv3DBackpropFilterV2=c.asm.Conv3DBackpropFilterV2).apply(null,arguments)},qb=c._Conv3DBackpropInputV2=function(){return(qb=c._Conv3DBackpropInputV2=c.asm.Conv3DBackpropInputV2).apply(null,arguments)},jb=c._Cos=function(){return(jb=c._Cos=c.asm.Cos).apply(null,arguments)},Kb=c._Cosh=function(){return(Kb=c._Cosh=c.asm.Cosh).apply(null,arguments)},Xb=c._CropAndResize=function(){return(Xb=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Yb=c._Cumprod=function(){return(Yb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Zb=c._Cumsum=function(){return(Zb=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Jb=c._DenseBincount=function(){return(Jb=c._DenseBincount=c.asm.DenseBincount).apply(null,arguments)},Qb=c._DepthToSpace=function(){return(Qb=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},ey=c._DepthwiseConv2dNative=function(){return(ey=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},ty=c._Diag=function(){return(ty=c._Diag=c.asm.Diag).apply(null,arguments)},ny=c._Dilation2D=function(){return(ny=c._Dilation2D=c.asm.Dilation2D).apply(null,arguments)},ay=c._Dilation2DBackpropFilter=function(){return(ay=c._Dilation2DBackpropFilter=c.asm.Dilation2DBackpropFilter).apply(null,arguments)},ry=c._Dilation2DBackpropInput=function(){return(ry=c._Dilation2DBackpropInput=c.asm.Dilation2DBackpropInput).apply(null,arguments)},sy=c._Elu=function(){return(sy=c._Elu=c.asm.Elu).apply(null,arguments)},iy=c._EluGrad=function(){return(iy=c._EluGrad=c.asm.EluGrad).apply(null,arguments)},oy=c._Equal=function(){return(oy=c._Equal=c.asm.Equal).apply(null,arguments)},ly=c._Exp=function(){return(ly=c._Exp=c.asm.Exp).apply(null,arguments)},uy=c._Expm1=function(){return(uy=c._Expm1=c.asm.Expm1).apply(null,arguments)},py=c._FlipLeftRight=function(){return(py=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},cy=c._Floor=function(){return(cy=c._Floor=c.asm.Floor).apply(null,arguments)},dy=c._FloorDiv=function(){return(dy=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},hy=c._FusedBatchNorm=function(){return(hy=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},my=c._FusedConv2D=function(){return(my=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},fy=c._FusedDepthwiseConv2D=function(){return(fy=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},gy=c._Gather=function(){return(gy=c._Gather=c.asm.Gather).apply(null,arguments)},by=c._GatherNd=function(){return(by=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},yy=c._Greater=function(){return(yy=c._Greater=c.asm.Greater).apply(null,arguments)},xy=c._GreaterEqual=function(){return(xy=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},vy=c._IsFinite=function(){return(vy=c._IsFinite=c.asm.IsFinite).apply(null,arguments)},wy=c._IsInf=function(){return(wy=c._IsInf=c.asm.IsInf).apply(null,arguments)},ky=c._IsNan=function(){return(ky=c._IsNan=c.asm.IsNan).apply(null,arguments)},Iy=c._LRN=function(){return(Iy=c._LRN=c.asm.LRN).apply(null,arguments)},Sy=c._LRNGrad=function(){return(Sy=c._LRNGrad=c.asm.LRNGrad).apply(null,arguments)},Ny=c._LeakyRelu=function(){return(Ny=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Ty=c._Less=function(){return(Ty=c._Less=c.asm.Less).apply(null,arguments)},Cy=c._LessEqual=function(){return(Cy=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},_y=c._LinSpace=function(){return(_y=c._LinSpace=c.asm.LinSpace).apply(null,arguments)},Ey=c._Log=function(){return(Ey=c._Log=c.asm.Log).apply(null,arguments)},Ay=c._Log1p=function(){return(Ay=c._Log1p=c.asm.Log1p).apply(null,arguments)},Fy=c._LogicalAnd=function(){return(Fy=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},$y=c._LogicalNot=function(){return($y=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},Dy=c._LogicalOr=function(){return(Dy=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},Ry=c._LogicalXor=function(){return(Ry=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},My=c._Max=function(){return(My=c._Max=c.asm.Max).apply(null,arguments)},Py=c._MaxPool=function(){return(Py=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Oy=c._MaxPool3D=function(){return(Oy=c._MaxPool3D=c.asm.MaxPool3D).apply(null,arguments)},Ly=c._MaxPool3DGrad=function(){return(Ly=c._MaxPool3DGrad=c.asm.MaxPool3DGrad).apply(null,arguments)},zy=c._Maximum=function(){return(zy=c._Maximum=c.asm.Maximum).apply(null,arguments)},Wy=c._Mean=function(){return(Wy=c._Mean=c.asm.Mean).apply(null,arguments)},By=c._Min=function(){return(By=c._Min=c.asm.Min).apply(null,arguments)},Vy=c._Minimum=function(){return(Vy=c._Minimum=c.asm.Minimum).apply(null,arguments)},Uy=c._MirrorPad=function(){return(Uy=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Gy=c._Multinomial=function(){return(Gy=c._Multinomial=c.asm.Multinomial).apply(null,arguments)},Hy=c._Multiply=function(){return(Hy=c._Multiply=c.asm.Multiply).apply(null,arguments)},qy=c._Neg=function(){return(qy=c._Neg=c.asm.Neg).apply(null,arguments)},jy=c._NonMaxSuppressionV3=function(){return(jy=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},bh=c._NonMaxSuppressionV4=function(){return(bh=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},yh=c._NonMaxSuppressionV5=function(){return(yh=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},jp=c._NotEqual=function(){return(jp=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Ky=c._OneHot=function(){return(Ky=c._OneHot=c.asm.OneHot).apply(null,arguments)},Xy=c._PadV2=function(){return(Xy=c._PadV2=c.asm.PadV2).apply(null,arguments)},Sl=c._Pow=function(){return(Sl=c._Pow=c.asm.Pow).apply(null,arguments)},xh=c._Prelu=function(){return(xh=c._Prelu=c.asm.Prelu).apply(null,arguments)},Nl=c._Prod=function(){return(Nl=c._Prod=c.asm.Prod).apply(null,arguments)},Tl=c._RealDiv=function(){return(Tl=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Yy=c._Reciprocal=function(){return(Yy=c._Reciprocal=c.asm.Reciprocal).apply(null,arguments)},Y=c._Relu=function(){return(Y=c._Relu=c.asm.Relu).apply(null,arguments)},oe=c._Relu6=function(){return(oe=c._Relu6=c.asm.Relu6).apply(null,arguments)},Ie=c._ResizeBilinear=function(){return(Ie=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Xe=c._ResizeBilinearGrad=function(){return(Xe=c._ResizeBilinearGrad=c.asm.ResizeBilinearGrad).apply(null,arguments)},It=c._ResizeNearestNeighbor=function(){return(It=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},St=c._ResizeNearestNeighborGrad=function(){return(St=c._ResizeNearestNeighborGrad=c.asm.ResizeNearestNeighborGrad).apply(null,arguments)},He=c._Reverse=function(){return(He=c._Reverse=c.asm.Reverse).apply(null,arguments)},Ve=c._RotateWithOffset=function(){return(Ve=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},zt=c._Round=function(){return(zt=c._Round=c.asm.Round).apply(null,arguments)},pa=c._Rsqrt=function(){return(pa=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Sr=c._ScatterNd=function(){return(Sr=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},vh=c._SearchSorted=function(){return(vh=c._SearchSorted=c.asm.SearchSorted).apply(null,arguments)},Kp=c._SelectV2=function(){return(Kp=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},Zy=c._Selu=function(){return(Zy=c._Selu=c.asm.Selu).apply(null,arguments)},Mn=c._Sigmoid=function(){return(Mn=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},Qr=c._Sign=function(){return(Qr=c._Sign=c.asm.Sign).apply(null,arguments)},wh=c._Sin=function(){return(wh=c._Sin=c.asm.Sin).apply(null,arguments)},rD=c._Softmax=function(){return(rD=c._Softmax=c.asm.Softmax).apply(null,arguments)},sD=c._Softplus=function(){return(sD=c._Softplus=c.asm.Softplus).apply(null,arguments)},iD=c._SparseFillEmptyRows=function(){return(iD=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},oD=c._SparseReshape=function(){return(oD=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},lD=c._SparseSegmentReduction=function(){return(lD=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},uD=c._SparseToDense=function(){return(uD=c._SparseToDense=c.asm.SparseToDense).apply(null,arguments)},pD=c._Sqrt=function(){return(pD=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},cD=c._Square=function(){return(cD=c._Square=c.asm.Square).apply(null,arguments)},dD=c._SquaredDifference=function(){return(dD=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},hD=c._Step=function(){return(hD=c._Step=c.asm.Step).apply(null,arguments)},mD=c._StridedSlice=function(){return(mD=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},fD=c._Sub=function(){return(fD=c._Sub=c.asm.Sub).apply(null,arguments)},gD=c._Sum=function(){return(gD=c._Sum=c.asm.Sum).apply(null,arguments)},bD=c._Tan=function(){return(bD=c._Tan=c.asm.Tan).apply(null,arguments)},yD=c._Tanh=function(){return(yD=c._Tanh=c.asm.Tanh).apply(null,arguments)},xD=c._TensorScatterUpdate=function(){return(xD=c._TensorScatterUpdate=c.asm.TensorScatterUpdate).apply(null,arguments)},vD=c._Tile=function(){return(vD=c._Tile=c.asm.Tile).apply(null,arguments)},wD=c._TopK=function(){return(wD=c._TopK=c.asm.TopK).apply(null,arguments)},kD=c._Transform=function(){return(kD=c._Transform=c.asm.Transform).apply(null,arguments)},ID=c._Transpose=function(){return(ID=c._Transpose=c.asm.Transpose).apply(null,arguments)},SD=c.__FusedMatMul=function(){return(SD=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},ND=c._malloc=function(){return(ND=c._malloc=c.asm.malloc).apply(null,arguments)},TD=c._free=function(){return(TD=c._free=c.asm.free).apply(null,arguments)},CD=c.__emscripten_tls_init=function(){return(CD=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},kh=c._pthread_self=function(){return(kh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},_D=c.___errno_location=function(){return(_D=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Gk=c.__emscripten_thread_init=function(){return(Gk=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},ED=c.__emscripten_thread_crashed=function(){return(ED=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},AD=c._emscripten_main_thread_process_queued_calls=function(){return(AD=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},FD=c._emscripten_main_browser_thread_id=function(){return(FD=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},Hk=c._emscripten_run_in_main_runtime_thread_js=function(){return(Hk=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},$D=c._emscripten_dispatch_to_thread_=function(){return($D=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},qk=c.__emscripten_proxy_execute_task_queue=function(){return(qk=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Jy=c.__emscripten_thread_free_data=function(){return(Jy=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},jk=c.__emscripten_thread_exit=function(){return(jk=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},Kk=c._emscripten_stack_set_limits=function(){return(Kk=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Qy=c.stackSave=function(){return(Qy=c.stackSave=c.asm.stackSave).apply(null,arguments)},Ih=c.stackRestore=function(){return(Ih=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Sh=c.stackAlloc=function(){return(Sh=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},DD=c.dynCall_iijjiiii=function(){return(DD=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},RD=c.dynCall_jiji=function(){return(RD=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=Na,c.wasmMemory=ue,c.cwrap=db,c.ExitStatus=Us,c.PThread=Ae;var Nh;Ir=function R(){Nh||Xk(),Nh||(Ir=R)};function Xk(R){if(R=R||b,Zr>0)return;if(C){h(c),Jt(),startWorker(c);return}if(Yr(),Zr>0)return;function q(){Nh||(Nh=!0,c.calledRun=!0,!ke&&(Jt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),eh()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),q()},1)):q()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();Xk();var Th;f&&(Th={uncaughtException:process.listeners("uncaughtException").filter(function(R){return!f.uncaughtException.indexOf(R)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(R){return!f.unhandledRejection.indexOf(R)>-1})});var Ch;if(typeof WasmBackendModule!="undefined")Ch=WasmBackendModule;else if(typeof r!="undefined")Ch=r;else throw new Error("Could not find wasm module in post.js");if(Th){var MD=Ch._dispose;Ch._dispose=function(){MD(),Th.uncaughtException.forEach(function(R){process.removeListener("uncaughtException",R)}),Th.unhandledRejection.forEach(function(R){process.removeListener("unhandledRejection",R)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),pR=Gt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),cR=Gt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(Y,oe){i=Y,o=oe});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(Y,oe)=>{throw oe},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(Y){return s.locateFile?s.locateFile(Y,g):g+Y}var y,x,w,I;function T(Y){Y instanceof wl||D("exiting due to exception: "+Y)}if(f){var C=bv(),E=MS();m?g=E.dirname(g)+"/":g=__dirname+"/",y=(Y,oe)=>(Y=Yr(Y)?new URL(Y):E.normalize(Y),C.readFileSync(Y,oe?void 0:"utf8")),w=Y=>{var oe=y(Y,!0);return oe.buffer||(oe=new Uint8Array(oe)),oe},x=(Y,oe,Ie)=>{Y=Yr(Y)?new URL(Y):E.normalize(Y),C.readFile(Y,function(Xe,It){Xe?Ie(Xe):oe(It.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof wl))throw Y}),process.on("unhandledRejection",function(Y){throw Y}),c=(Y,oe)=>{if(jn())throw process.exitCode=Y,oe;T(oe),process.exit(Y)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.send(null),oe.responseText},m&&(w=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),x=(Y,oe,Ie)=>{var Xe=new XMLHttpRequest;Xe.open("GET",Y,!0),Xe.responseType="arraybuffer",Xe.onload=()=>{if(Xe.status==200||Xe.status==0&&Xe.response){oe(Xe.response);return}Ie()},Xe.onerror=Ie,Xe.send(null)},I=Y=>document.title=Y);var F=s.print||console.log.bind(console),D=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var $=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&tr("no native wasm support detected");var B,U=!1,H;function j(Y,oe){Y||tr(oe)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(Y,oe,Ie){oe>>>=0;for(var Xe=oe+Ie,It=oe;Y[It]&&!(It>=Xe);)++It;if(It-oe>16&&Y.buffer&&K)return K.decode(Y.subarray(oe,It));for(var St="";oe<It;){var He=Y[oe++];if(!(He&128)){St+=String.fromCharCode(He);continue}var Ve=Y[oe++]&63;if((He&224)==192){St+=String.fromCharCode((He&31)<<6|Ve);continue}var zt=Y[oe++]&63;if((He&240)==224?He=(He&15)<<12|Ve<<6|zt:He=(He&7)<<18|Ve<<12|zt<<6|Y[oe++]&63,He<65536)St+=String.fromCharCode(He);else{var pa=He-65536;St+=String.fromCharCode(55296|pa>>10,56320|pa&1023)}}return St}function J(Y,oe){return Y>>>=0,Y?Z(se,Y,oe):""}function ee(Y,oe,Ie,Xe){if(Ie>>>=0,!(Xe>0))return 0;for(var It=Ie,St=Ie+Xe-1,He=0;He<Y.length;++He){var Ve=Y.charCodeAt(He);if(Ve>=55296&&Ve<=57343){var zt=Y.charCodeAt(++He);Ve=65536+((Ve&1023)<<10)|zt&1023}if(Ve<=127){if(Ie>=St)break;oe[Ie++>>>0]=Ve}else if(Ve<=2047){if(Ie+1>=St)break;oe[Ie++>>>0]=192|Ve>>6,oe[Ie++>>>0]=128|Ve&63}else if(Ve<=65535){if(Ie+2>=St)break;oe[Ie++>>>0]=224|Ve>>12,oe[Ie++>>>0]=128|Ve>>6&63,oe[Ie++>>>0]=128|Ve&63}else{if(Ie+3>=St)break;oe[Ie++>>>0]=240|Ve>>18,oe[Ie++>>>0]=128|Ve>>12&63,oe[Ie++>>>0]=128|Ve>>6&63,oe[Ie++>>>0]=128|Ve&63}}return oe[Ie>>>0]=0,Ie-It}function ae(Y,oe,Ie){return ee(Y,se,oe,Ie)}var te,re,se,ye,ue,be,ke,Se,We;function Ge(Y){te=Y,s.HEAP8=re=new Int8Array(Y),s.HEAP16=ye=new Int16Array(Y),s.HEAP32=be=new Int32Array(Y),s.HEAPU8=se=new Uint8Array(Y),s.HEAPU16=ue=new Uint16Array(Y),s.HEAPU32=ke=new Uint32Array(Y),s.HEAPF32=Se=new Float32Array(Y),s.HEAPF64=We=new Float64Array(Y)}var ht=s.INITIAL_MEMORY||16777216,st,at=[],rt=[],Me=[],ft=!1;function jn(){return M}function Lt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)$n(s.preRun.shift());Ir(at)}function la(){ft=!0,Ir(rt)}function cn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());Ir(Me)}function $n(Y){at.unshift(Y)}function ua(Y){rt.unshift(Y)}function Dn(Y){Me.unshift(Y)}var lt=0,Rn=null,Kn=null;function kr(Y){lt++,s.monitorRunDependencies&&s.monitorRunDependencies(lt)}function vl(Y){if(lt--,s.monitorRunDependencies&&s.monitorRunDependencies(lt),lt==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),Kn)){var oe=Kn;Kn=null,oe()}}function tr(Y){s.onAbort&&s.onAbort(Y),Y="Aborted("+Y+")",D(Y),U=!0,H=1,Y+=". Build with -sASSERTIONS for more info.";var oe=new WebAssembly.RuntimeError(Y);throw o(oe),oe}var Bp="data:application/octet-stream;base64,";function Na(Y){return Y.startsWith(Bp)}function Yr(Y){return Y.startsWith("file://")}var Jt;Jt="tfjs-backend-wasm.wasm",Na(Jt)||(Jt=b(Jt));function eh(Y){try{if(Y==Jt&&S)return new Uint8Array(S);if(w)return w(Y);throw"both async and sync fetching of the wasm failed"}catch(oe){tr(oe)}}function Eg(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Yr(Jt))return fetch(Jt,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Jt+"'";return Y.arrayBuffer()}).catch(function(){return eh(Jt)});if(x)return new Promise(function(Y,oe){x(Jt,function(Ie){Y(new Uint8Array(Ie))},oe)})}return Promise.resolve().then(function(){return eh(Jt)})}function Ag(){var Y={env:Vp,wasi_snapshot_preview1:Vp};function oe(He,Ve){var zt=He.exports;s.asm=zt,B=s.asm.memory,Ge(B.buffer),st=s.asm.__indirect_function_table,ua(s.asm.__wasm_call_ctors),vl("wasm-instantiate")}kr("wasm-instantiate");function Ie(He){oe(He.instance)}function Xe(He){return Eg().then(function(Ve){return WebAssembly.instantiate(Ve,Y)}).then(function(Ve){return Ve}).then(He,function(Ve){D("failed to asynchronously prepare wasm: "+Ve),tr(Ve)})}function It(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!Na(Jt)&&!Yr(Jt)&&!f&&typeof fetch=="function"?fetch(Jt,{credentials:"same-origin"}).then(function(He){var Ve=WebAssembly.instantiateStreaming(He,Y);return Ve.then(Ie,function(zt){return D("wasm streaming compile failed: "+zt),D("falling back to ArrayBuffer instantiation"),Xe(Ie)})}):Xe(Ie)}if(s.instantiateWasm)try{var St=s.instantiateWasm(Y,oe);return St}catch(He){D("Module.instantiateWasm callback failed with error: "+He),o(He)}return It().catch(o),{}}var Wk,Zr;function wl(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}function Ir(Y){for(;Y.length>0;)Y.shift()(s)}function Fg(){tr("")}function th(){return 4294901760}function Vs(){return th()}function $g(Y,oe,Ie){se.copyWithin(Y>>>0,oe>>>0,oe+Ie>>>0)}function nh(Y){try{return B.grow(Y-te.byteLength+65535>>>16),Ge(B.buffer),1}catch(oe){}}function kl(Y){var oe=se.length;Y=Y>>>0;var Ie=th();if(Y>Ie)return!1;let Xe=(zt,pa)=>zt+(pa-zt%pa)%pa;for(var It=1;It<=4;It*=2){var St=oe*(1+.2/It);St=Math.min(St,Y+100663296);var He=Math.min(Ie,Xe(Math.max(Y,St),65536)),Ve=nh(He);if(Ve)return!0}return!1}var gn={varargs:void 0,get:function(){gn.varargs+=4;var Y=be[gn.varargs-4>>>2];return Y},getStr:function(Y){var oe=J(Y);return oe}};function ah(Y){return 52}function Dg(Y,oe,Ie,Xe,It){return 70}var Rg=[null,[],[]];function Bk(Y,oe){var Ie=Rg[Y];oe===0||oe===10?((Y===1?F:D)(Z(Ie,0)),Ie.length=0):Ie.push(oe)}function Vk(Y,oe,Ie,Xe){for(var It=0,St=0;St<Ie;St++){var He=ke[oe>>>2],Ve=ke[oe+4>>>2];oe+=8;for(var zt=0;zt<Ve;zt++)Bk(Y,se[He+zt>>>0]);It+=Ve}return ke[Xe>>>2]=It,0}function rh(Y){var oe=s["_"+Y];return oe}function Us(Y,oe){re.set(Y,oe>>>0)}function Mg(Y,oe,Ie,Xe,It){var St={string:Mn=>{var Qr=0;if(Mn!=null&&Mn!==0){var wh=(Mn.length<<2)+1;Qr=jp(wh),ae(Mn,Qr,wh)}return Qr},array:Mn=>{var Qr=jp(Mn.length);return Us(Mn,Qr),Qr}};function He(Mn){return oe==="string"?J(Mn):oe==="boolean"?!!Mn:Mn}var Ve=rh(Y),zt=[],pa=0;if(Xe)for(var Sr=0;Sr<Xe.length;Sr++){var vh=St[Ie[Sr]];vh?(pa===0&&(pa=bh()),zt[Sr]=vh(Xe[Sr])):zt[Sr]=Xe[Sr]}var Kp=Ve.apply(null,zt);function Zy(Mn){return pa!==0&&yh(pa),He(Mn)}return Kp=Zy(Kp),Kp}function Pg(Y,oe,Ie,Xe){Ie=Ie||[];var It=Ie.every(He=>He==="number"||He==="boolean"),St=oe!=="string";return St&&It&&!Xe?rh(Y):function(){return Mg(Y,oe,Ie,arguments,Xe)}}var Vp={abort:Fg,emscripten_get_heap_max:Vs,emscripten_memcpy_big:$g,emscripten_resize_heap:kl,fd_close:ah,fd_seek:Dg,fd_write:Vk},Og=Ag(),sh=s.___wasm_call_ctors=function(){return(sh=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},ih=s._init=function(){return(ih=s._init=s.asm.init).apply(null,arguments)},Lg=s._init_with_threads_count=function(){return(Lg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},oh=s._get_threads_count=function(){return(oh=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},zg=s._register_tensor=function(){return(zg=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Ae=s._dispose_data=function(){return(Ae=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Up=s._dispose=function(){return(Up=s._dispose=s.asm.dispose).apply(null,arguments)},Wg=s._Abs=function(){return(Wg=s._Abs=s.asm.Abs).apply(null,arguments)},lh=s._Acos=function(){return(lh=s._Acos=s.asm.Acos).apply(null,arguments)},Il=s._Acosh=function(){return(Il=s._Acosh=s.asm.Acosh).apply(null,arguments)},Bg=s._Add=function(){return(Bg=s._Add=s.asm.Add).apply(null,arguments)},Vg=s._AddN=function(){return(Vg=s._AddN=s.asm.AddN).apply(null,arguments)},Ug=s._All=function(){return(Ug=s._All=s.asm.All).apply(null,arguments)},Gg=s._Any=function(){return(Gg=s._Any=s.asm.Any).apply(null,arguments)},Hg=s._ArgMax=function(){return(Hg=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},uh=s._ArgMin=function(){return(uh=s._ArgMin=s.asm.ArgMin).apply(null,arguments)},ph=s._Asin=function(){return(ph=s._Asin=s.asm.Asin).apply(null,arguments)},qg=s._Asinh=function(){return(qg=s._Asinh=s.asm.Asinh).apply(null,arguments)},jg=s._Atan=function(){return(jg=s._Atan=s.asm.Atan).apply(null,arguments)},Kg=s._Atan2=function(){return(Kg=s._Atan2=s.asm.Atan2).apply(null,arguments)},Gp=s._Atanh=function(){return(Gp=s._Atanh=s.asm.Atanh).apply(null,arguments)},Xg=s._AvgPool=function(){return(Xg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Yg=s._AvgPool3D=function(){return(Yg=s._AvgPool3D=s.asm.AvgPool3D).apply(null,arguments)},Zg=s._AvgPool3DGrad=function(){return(Zg=s._AvgPool3DGrad=s.asm.AvgPool3DGrad).apply(null,arguments)},Gs=s._BatchMatMul=function(){return(Gs=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Jg=s._Bincount=function(){return(Jg=s._Bincount=s.asm.Bincount).apply(null,arguments)},Qg=s._Ceil=function(){return(Qg=s._Ceil=s.asm.Ceil).apply(null,arguments)},ch=s._ClipByValue=function(){return(ch=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},eb=s._Conv2D=function(){return(eb=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Hp=s._Conv2DBackpropInput=function(){return(Hp=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},tb=s._Conv3D=function(){return(tb=s._Conv3D=s.asm.Conv3D).apply(null,arguments)},nb=s._Conv3DBackpropFilterV2=function(){return(nb=s._Conv3DBackpropFilterV2=s.asm.Conv3DBackpropFilterV2).apply(null,arguments)},ab=s._Conv3DBackpropInputV2=function(){return(ab=s._Conv3DBackpropInputV2=s.asm.Conv3DBackpropInputV2).apply(null,arguments)},Jr=s._Cos=function(){return(Jr=s._Cos=s.asm.Cos).apply(null,arguments)},qp=s._Cosh=function(){return(qp=s._Cosh=s.asm.Cosh).apply(null,arguments)},rb=s._CropAndResize=function(){return(rb=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},sb=s._Cumprod=function(){return(sb=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},ib=s._Cumsum=function(){return(ib=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},ob=s._DenseBincount=function(){return(ob=s._DenseBincount=s.asm.DenseBincount).apply(null,arguments)},dh=s._DepthToSpace=function(){return(dh=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},hh=s._DepthwiseConv2dNative=function(){return(hh=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},lb=s._Diag=function(){return(lb=s._Diag=s.asm.Diag).apply(null,arguments)},ub=s._Dilation2D=function(){return(ub=s._Dilation2D=s.asm.Dilation2D).apply(null,arguments)},mh=s._Dilation2DBackpropFilter=function(){return(mh=s._Dilation2DBackpropFilter=s.asm.Dilation2DBackpropFilter).apply(null,arguments)},fh=s._Dilation2DBackpropInput=function(){return(fh=s._Dilation2DBackpropInput=s.asm.Dilation2DBackpropInput).apply(null,arguments)},pb=s._Elu=function(){return(pb=s._Elu=s.asm.Elu).apply(null,arguments)},cb=s._EluGrad=function(){return(cb=s._EluGrad=s.asm.EluGrad).apply(null,arguments)},db=s._Equal=function(){return(db=s._Equal=s.asm.Equal).apply(null,arguments)},hb=s._Exp=function(){return(hb=s._Exp=s.asm.Exp).apply(null,arguments)},gh=s._Expm1=function(){return(gh=s._Expm1=s.asm.Expm1).apply(null,arguments)},Uk=s._FlipLeftRight=function(){return(Uk=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},mb=s._Floor=function(){return(mb=s._Floor=s.asm.Floor).apply(null,arguments)},fb=s._FloorDiv=function(){return(fb=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},gb=s._FusedBatchNorm=function(){return(gb=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},bb=s._FusedConv2D=function(){return(bb=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},yb=s._FusedDepthwiseConv2D=function(){return(yb=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},xb=s._Gather=function(){return(xb=s._Gather=s.asm.Gather).apply(null,arguments)},vb=s._GatherNd=function(){return(vb=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},wb=s._Greater=function(){return(wb=s._Greater=s.asm.Greater).apply(null,arguments)},kb=s._GreaterEqual=function(){return(kb=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Ib=s._IsFinite=function(){return(Ib=s._IsFinite=s.asm.IsFinite).apply(null,arguments)},Sb=s._IsInf=function(){return(Sb=s._IsInf=s.asm.IsInf).apply(null,arguments)},Nb=s._IsNan=function(){return(Nb=s._IsNan=s.asm.IsNan).apply(null,arguments)},Tb=s._LRN=function(){return(Tb=s._LRN=s.asm.LRN).apply(null,arguments)},Cb=s._LRNGrad=function(){return(Cb=s._LRNGrad=s.asm.LRNGrad).apply(null,arguments)},_b=s._LeakyRelu=function(){return(_b=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Eb=s._Less=function(){return(Eb=s._Less=s.asm.Less).apply(null,arguments)},Ab=s._LessEqual=function(){return(Ab=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Fb=s._LinSpace=function(){return(Fb=s._LinSpace=s.asm.LinSpace).apply(null,arguments)},$b=s._Log=function(){return($b=s._Log=s.asm.Log).apply(null,arguments)},Db=s._Log1p=function(){return(Db=s._Log1p=s.asm.Log1p).apply(null,arguments)},Rb=s._LogicalAnd=function(){return(Rb=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Mb=s._LogicalNot=function(){return(Mb=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Pb=s._LogicalOr=function(){return(Pb=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Ob=s._LogicalXor=function(){return(Ob=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Lb=s._Max=function(){return(Lb=s._Max=s.asm.Max).apply(null,arguments)},zb=s._MaxPool=function(){return(zb=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Wb=s._MaxPool3D=function(){return(Wb=s._MaxPool3D=s.asm.MaxPool3D).apply(null,arguments)},Bb=s._MaxPool3DGrad=function(){return(Bb=s._MaxPool3DGrad=s.asm.MaxPool3DGrad).apply(null,arguments)},Vb=s._Maximum=function(){return(Vb=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ub=s._Mean=function(){return(Ub=s._Mean=s.asm.Mean).apply(null,arguments)},Gb=s._Min=function(){return(Gb=s._Min=s.asm.Min).apply(null,arguments)},Hb=s._Minimum=function(){return(Hb=s._Minimum=s.asm.Minimum).apply(null,arguments)},qb=s._MirrorPad=function(){return(qb=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},jb=s._Multinomial=function(){return(jb=s._Multinomial=s.asm.Multinomial).apply(null,arguments)},Kb=s._Multiply=function(){return(Kb=s._Multiply=s.asm.Multiply).apply(null,arguments)},Xb=s._Neg=function(){return(Xb=s._Neg=s.asm.Neg).apply(null,arguments)},Yb=s._NonMaxSuppressionV3=function(){return(Yb=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Zb=s._NonMaxSuppressionV4=function(){return(Zb=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Jb=s._NonMaxSuppressionV5=function(){return(Jb=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Qb=s._NotEqual=function(){return(Qb=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},ey=s._OneHot=function(){return(ey=s._OneHot=s.asm.OneHot).apply(null,arguments)},ty=s._PadV2=function(){return(ty=s._PadV2=s.asm.PadV2).apply(null,arguments)},ny=s._Pow=function(){return(ny=s._Pow=s.asm.Pow).apply(null,arguments)},ay=s._Prelu=function(){return(ay=s._Prelu=s.asm.Prelu).apply(null,arguments)},ry=s._Prod=function(){return(ry=s._Prod=s.asm.Prod).apply(null,arguments)},sy=s._RealDiv=function(){return(sy=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},iy=s._Reciprocal=function(){return(iy=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},oy=s._Relu=function(){return(oy=s._Relu=s.asm.Relu).apply(null,arguments)},ly=s._Relu6=function(){return(ly=s._Relu6=s.asm.Relu6).apply(null,arguments)},uy=s._ResizeBilinear=function(){return(uy=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},py=s._ResizeBilinearGrad=function(){return(py=s._ResizeBilinearGrad=s.asm.ResizeBilinearGrad).apply(null,arguments)},cy=s._ResizeNearestNeighbor=function(){return(cy=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},dy=s._ResizeNearestNeighborGrad=function(){return(dy=s._ResizeNearestNeighborGrad=s.asm.ResizeNearestNeighborGrad).apply(null,arguments)},hy=s._Reverse=function(){return(hy=s._Reverse=s.asm.Reverse).apply(null,arguments)},my=s._RotateWithOffset=function(){return(my=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},fy=s._Round=function(){return(fy=s._Round=s.asm.Round).apply(null,arguments)},gy=s._Rsqrt=function(){return(gy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},by=s._ScatterNd=function(){return(by=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},yy=s._SearchSorted=function(){return(yy=s._SearchSorted=s.asm.SearchSorted).apply(null,arguments)},xy=s._SelectV2=function(){return(xy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},vy=s._Selu=function(){return(vy=s._Selu=s.asm.Selu).apply(null,arguments)},wy=s._Sigmoid=function(){return(wy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ky=s._Sign=function(){return(ky=s._Sign=s.asm.Sign).apply(null,arguments)},Iy=s._Sin=function(){return(Iy=s._Sin=s.asm.Sin).apply(null,arguments)},Sy=s._Softmax=function(){return(Sy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Ny=s._Softplus=function(){return(Ny=s._Softplus=s.asm.Softplus).apply(null,arguments)},Ty=s._SparseFillEmptyRows=function(){return(Ty=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Cy=s._SparseReshape=function(){return(Cy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},_y=s._SparseSegmentReduction=function(){return(_y=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Ey=s._SparseToDense=function(){return(Ey=s._SparseToDense=s.asm.SparseToDense).apply(null,arguments)},Ay=s._Sqrt=function(){return(Ay=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Fy=s._Square=function(){return(Fy=s._Square=s.asm.Square).apply(null,arguments)},$y=s._SquaredDifference=function(){return($y=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Dy=s._Step=function(){return(Dy=s._Step=s.asm.Step).apply(null,arguments)},Ry=s._StridedSlice=function(){return(Ry=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},My=s._Sub=function(){return(My=s._Sub=s.asm.Sub).apply(null,arguments)},Py=s._Sum=function(){return(Py=s._Sum=s.asm.Sum).apply(null,arguments)},Oy=s._Tan=function(){return(Oy=s._Tan=s.asm.Tan).apply(null,arguments)},Ly=s._Tanh=function(){return(Ly=s._Tanh=s.asm.Tanh).apply(null,arguments)},zy=s._TensorScatterUpdate=function(){return(zy=s._TensorScatterUpdate=s.asm.TensorScatterUpdate).apply(null,arguments)},Wy=s._Tile=function(){return(Wy=s._Tile=s.asm.Tile).apply(null,arguments)},By=s._TopK=function(){return(By=s._TopK=s.asm.TopK).apply(null,arguments)},Vy=s._Transform=function(){return(Vy=s._Transform=s.asm.Transform).apply(null,arguments)},Uy=s._Transpose=function(){return(Uy=s._Transpose=s.asm.Transpose).apply(null,arguments)},Gy=s.__FusedMatMul=function(){return(Gy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Hy=s._malloc=function(){return(Hy=s._malloc=s.asm.malloc).apply(null,arguments)},qy=s._free=function(){return(qy=s._free=s.asm.free).apply(null,arguments)},jy=s.___errno_location=function(){return(jy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},bh=s.stackSave=function(){return(bh=s.stackSave=s.asm.stackSave).apply(null,arguments)},yh=s.stackRestore=function(){return(yh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},jp=s.stackAlloc=function(){return(jp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Ky=s.dynCall_iijjiiii=function(){return(Ky=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Xy=s.dynCall_jiji=function(){return(Xy=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Pg;var Sl;Kn=function Y(){Sl||xh(),Sl||(Kn=Y)};function xh(Y){if(Y=Y||p,lt>0||(Lt(),lt>0))return;function oe(){Sl||(Sl=!0,s.calledRun=!0,!U&&(la(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),cn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),oe()},1)):oe()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();xh();var Nl;l&&(Nl={uncaughtException:process.listeners("uncaughtException").filter(function(Y){return!l.uncaughtException.indexOf(Y)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(Y){return!l.unhandledRejection.indexOf(Y)>-1})});var Tl;if(typeof r!="undefined")Tl=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Tl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Nl){var Yy=Tl._dispose;Tl._dispose=function(){Yy(),Nl.uncaughtException.forEach(function(Y){process.removeListener("uncaughtException",Y)}),Nl.unhandledRejection.forEach(function(Y){process.removeListener("unhandledRejection",Y)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Em=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$c=class{refCount(e){return Xn("refCount")}incRef(e){return Xn("incRef")}timerAvailable(){return!0}time(e){return Xn("time")}read(e){return Xn("read")}readSync(e){return Xn("readSync")}readToGPU(e,t){return Xn("readToGPU")}numDataIds(){return Xn("numDataIds")}disposeData(e,t){return Xn("disposeData")}write(e,t,n){return Xn("write")}move(e,t,n,a,r){return Xn("move")}createTensorFromGPUData(e,t,n){return Xn("createTensorFromGPUData")}memory(){return Xn("memory")}floatPrecision(){return Xn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Xn("dispose")}};function Xn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function PS(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Jh(e,t,n)}function dR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Jh(e,n,a),Jh(t,n,a)}function mc(e,t,n){return Math.max(e,Math.min(t,n))}function hR(e){return e%2===0?e:e+1}function Jh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function mR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function fR(e,t){let n=Math.random();return t*n+(1-n)*e}function gR(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Tn(e,t,n=""){A(Mr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ii(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function bR(e){return e.length===0}function OS(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==null&&t[n]!==null&&e[n]!==t[n])return!1;return!0}function Mr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Pl(e){return e%1===0}function yR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function xR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function vR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return PS(t),t}function pc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function wR(e,t=r=>0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function kR(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ra(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>Pl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function LS(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ra(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function zS(e,t){return yv(e,t)}function yv(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function WS(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function BS(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function IR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Qh(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function VS(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function as(e){return typeof e=="string"||e instanceof String}function US(e){return typeof e=="boolean"}function GS(e){return typeof e=="number"}function Dc(e){return Array.isArray(e)?Dc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":GS(e)?"float32":as(e)?"string":US(e)?"bool":"float32"}function ps(e){return!!(e&&e.constructor&&e.call&&e.apply)}function em(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function au(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function HS(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=HS(e+l*o,i,n,a)}return r}function $l(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return HS(0,e,t,n)}function SR(e,t){if(Array.isArray(e))return e;if(t==="float32")return e instanceof Float32Array?e:new Float32Array(e);if(t==="int32")return e instanceof Int32Array?e:new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function xv(e,t){let n=Am(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Am(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function NR(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return $l(e,new Float32Array(n));if(t==="int32")return $l(e,new Int32Array(n));if(t==="bool")return $l(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function sa(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function TR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function CR(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Fm(e){return e&&e.then&&typeof e.then=="function"}var Jk="tfjsflags",qS=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=_R,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Fm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getString(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Jk in e&&e[Jk].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=AR(n,a)})}};function _R(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(ER(t,a[0],a[1]),a.join("="))),t}function ER(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function AR(e,t){let n=t.toLowerCase();return n==="true"||n==="false"?n==="true":`${+n}`===n?+n:t}function G(){return vv}var vv=null;function FR(e){vv=e}var nx;function jS(){if(nx==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");nx=e}return nx}function $R(){let e=jS();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function wv(e,t){let n=$R();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var ru="Abs",Si="Acos",Ni="Acosh",ks="Add",Ti="AddN",su="All",iu="Any",ou="ArgMax",lu="ArgMin",Ci="Asin",_i="Asinh",Ei="Atan",Ai="Atanh",Fi="Atan2",$i="AvgPool",$m="AvgPoolGrad",uu="AvgPool3D",Rc="AvgPool3DGrad",Di="BatchMatMul",pu="BatchToSpaceND",cu="Bincount",Dm="BitwiseAnd",KS="BroadcastTo",Mc="BroadcastArgs",Ri="Cast",Mi="Ceil",Is="ClipByValue",Rm="Complex",Pc="ComplexAbs",du="Concat",Pi="Conv2D",Mm="Conv2DBackpropFilter",Oi="Conv2DBackpropInput",Li="Conv3D",hu="Conv3DBackpropFilterV2",mu="Conv3DBackpropInputV2",zi="Cos",Wi="Cosh",fu="Cumprod",Bi="Cumsum",gu="CropAndResize",Oc="DenseBincount",bu="DepthToSpace",Vi="DepthwiseConv2dNative",Pm="DepthwiseConv2dNativeBackpropFilter",Om="DepthwiseConv2dNativeBackpropInput",Lc="Diag",Ui="Dilation2D",Ol="Dilation2DBackpropInput",Ll="Dilation2DBackpropFilter",Gi="RealDiv",Lm="Einsum",Hi="Elu",yu="EluGrad",xu="Erf",vu="Equal",qi="Exp",wu="ExpandDims",ji="Expm1",zm="FFT",zc="Fill",ku="FlipLeftRight",Ki="Floor",Xi="FloorDiv",Yi="FusedBatchNorm",Iu="GatherV2",Su="GatherNd",Nu="Greater",Zi="GreaterEqual",Ji="Identity",Wm="IFFT",Bm="Imag",Qi="IsFinite",eo="IsInf",to="IsNan",no="LeakyRelu",Tu="Less",Cu="LessEqual",_u="LinSpace",ao="Log",ro="Log1p",Eu="LogicalAnd",Au="LogicalNot",Fu="LogicalOr",XS="LogicalXor",YS="LogSoftmax",DR="LowerBound",so="LRN",$u="LRNGrad",RR="MatrixBandPart",io="Max",oo="Maximum",lo="MaxPool",Vm="MaxPoolGrad",Du="MaxPool3D",Wc="MaxPool3DGrad",Um="MaxPoolWithArgmax",uo="Mean",po="Min",co="Minimum",ho="MirrorPad",Ru="Mod",Mu="Multinomial",mo="Multiply",Pu="Neg",Ou="NotEqual",Lu="NonMaxSuppressionV3",zu="NonMaxSuppressionV4",Wu="NonMaxSuppressionV5",Bu="OnesLike",fo="OneHot",Vu="Pack",go="PadV2",MR="Pool",bo="Pow",yo="Prelu",xo="Prod",Gm="RaggedGather",Hm="RaggedRange",qm="RaggedTensorToTensor",Bc="Range",jm="Real",vo="Reciprocal",wo="Relu",Uu="Reshape",ko="ResizeNearestNeighbor",Gu="ResizeNearestNeighborGrad",Io="ResizeBilinear",Hu="ResizeBilinearGrad",So="Relu6",No="Reverse",To="Round",Co="Rsqrt",qu="ScatterNd",ju="TensorScatterUpdate",Ku="SearchSorted",Xu="Select",_o="Selu",Yu="Slice",Eo="Sin",Zu="Sinh",Ao="Sign",Fo="Sigmoid",$o="Softplus",Do="Sqrt",Ro="Sum",Ju="SpaceToBatchND",Qu="SplitV",Mo="Softmax",Vc="SparseFillEmptyRows",ep="SparseReshape",Uc="SparseSegmentMean",Gc="SparseSegmentSum",tp="SparseToDense",Po="SquaredDifference",Hc="Square",qc="StaticRegexReplace",np="StridedSlice",jc="StringNGrams",Kc="StringSplit",Xc="StringToHashBucketFast",Oo="Sub",Lo="Tan",zo="Tanh",Ss="Tile",ap="TopK",rp="Transform",Fr="Transpose",Yc="Unique",sp="Unpack",Zc="UnsortedSegmentSum",PR="UpperBound",ip="ZerosLike",Ns="Step",tm="FromPixels",op="RotateWithOffset",ii="_FusedMatMul",oi="FusedConv2D",li="FusedDepthwiseConv2D";function ns(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(...e)}function OR(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.log(...e)}var zl=wv("kernelRegistry",()=>new Map),fc=wv("gradRegistry",()=>new Map);function nm(e,t){let n=kv(e,t);return zl.get(n)}function yx(e){return fc.get(e)}function am(e){let t=zl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Jc(e){let{kernelName:t,backendName:n}=e,a=kv(t,n);zl.has(a)&&ns(`The kernel '${t}' for backend '${n}' is already registered`),zl.set(a,e)}function ZS(e){let{kernelName:t}=e;fc.has(t)&&G().getBool("DEBUG")&&ns(`Overriding the gradient for '${t}'`),fc.set(t,e)}function LR(e,t){let n=kv(e,t);if(!zl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);zl.delete(n)}function zR(e){if(!fc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);fc.delete(e)}function WR(e,t){am(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Jc(a)})}function kv(e,t){return`${t}_${e}`}var v={};Ee(v,{arraysEqual:()=>Mr,arraysEqualWithNull:()=>OS,assert:()=>A,assertNonNegativeIntegerDimensions:()=>sa,assertNonNull:()=>Ii,assertShapesMatch:()=>Tn,bytesFromStringArray:()=>VS,bytesPerElement:()=>Qh,checkConversionForErrors:()=>WS,clamp:()=>mc,computeStrides:()=>au,convertBackendValuesAndArrayBuffer:()=>SR,createScalarValue:()=>qR,createShuffledIndices:()=>vR,decodeString:()=>rm,distSquared:()=>gR,encodeString:()=>ed,fetch:()=>KR,fingerPrint64:()=>HR,flatten:()=>cs,getArrayFromDType:()=>yv,getTypedArrayFromDType:()=>zS,hasEncodingLoss:()=>IR,hexToLong:()=>Qc,indexToLoc:()=>CR,inferDtype:()=>Dc,inferFromImplicitShape:()=>kR,isBoolean:()=>US,isFunction:()=>ps,isInt:()=>Pl,isNumber:()=>GS,isPromise:()=>Fm,isScalarShape:()=>bR,isString:()=>as,isTypedArray:()=>en,isValidDtype:()=>BS,locToIndex:()=>TR,makeOnesTypedArray:()=>xv,makeZerosNestedTypedArray:()=>NR,makeZerosTypedArray:()=>Am,nearestDivisor:()=>em,nearestLargerEven:()=>hR,now:()=>gc,parseAxisParam:()=>Ra,randUniform:()=>fR,repeatedTry:()=>wR,rightPad:()=>pc,shuffle:()=>PS,shuffleCombo:()=>dR,sizeFromShape:()=>bt,sizeToSquarishShape:()=>xR,squeezeShape:()=>LS,sum:()=>mR,swap:()=>Jh,tanh:()=>yR,toNestedArray:()=>$l,toTypedArray:()=>Km});function JS(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}var Qk=ws(XD()),Xs=Qk.default||Qk;function Qc(e){return Xs.fromString(e,!0,16)}var QS=Qc("c3a5c85c97cb3127"),js=Qc("b492b66fbe98f273"),kn=Qc("9ae16a3b2f90404f");function xx(e){return e.xor(e.shru(47))}function eN(e,t,n){let a=e.slice(t,t+n);return Xs.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return eN(e,t,8)}function eI(e,t){return eN(e,t,4)}function Qt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function os(e,t,n=Qc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function BR(e,t,n,a,r,s){r=r.add(e),s=Qt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Qt(r,44)),[r.add(a),s.add(i)]}function Eh(e,t,n,a){return BR(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function VR(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=gt(e,0).add(kn),r=gt(e,t-8),s=Qt(r,37).mul(n).add(a),i=Qt(a,25).add(r).mul(n);return os(s,i,n)}if(t>=4){let n=kn.add(t*2),a=eI(e,0);return os(a.shl(3).add(t),eI(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return xx(kn.mul(s).xor(QS.mul(i))).mul(kn)}return kn}function UR(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(js),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn);return os(Qt(a.add(r),43).add(Qt(s,30)).add(i),a.add(Qt(r.add(kn),18)).add(s),n)}function GR(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(kn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn),o=Qt(a.add(r),43).add(Qt(s,30)).add(i),l=os(o,a.add(Qt(r.add(kn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return os(Qt(u.add(p),43).add(Qt(d,30)).add(c),u.add(Qt(p.add(a),18)).add(d),n)}function HR(e,t=e.length){let n=Xs.fromNumber(81,!0);if(t<=32)return t<=16?VR(e,t):UR(e,t);if(t<=64)return GR(e,t);let a=n,r=n.mul(js).add(113),s=xx(r.mul(kn).add(113)).mul(kn),i=[Xs.UZERO,Xs.UZERO],o=[Xs.UZERO,Xs.UZERO];a=a.mul(kn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Qt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(js),r=Qt(r.add(i[1]).add(gt(e,l+48)),42).mul(js),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Qt(s.add(o[0]),33).mul(js),i=Eh(e,l,i[1].mul(js),a.add(o[0])),o=Eh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=js.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Qt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Qt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Qt(s.add(o[0]),33).mul(d),i=Eh(e,l,i[1].mul(d),a.add(o[0])),o=Eh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],os(os(i[0],o[0],d).add(xx(r).mul(QS)).add(s),os(i[1],o[1],d).add(a),d)}function qR(e,t){return t==="string"?ed(e):Km([e],t)}function jR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Km(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=cs(e)),G().getBool("DEBUG")&&WS(e,t),jR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function gc(){return G().platform.now()}function KR(e,t){return G().platform.fetch(e,t)}function ed(e,t="utf-8"){return t=t||"utf-8",G().platform.encode(e,t)}function rm(e,t="utf-8"){return t=t||"utf-8",G().platform.decode(e,t)}function en(e){return G().platform.isTypedArray!=null?G().platform.isTypedArray(e):JS(e)}function cs(e,t=[],n=!1){if(t==null&&(t=[]),typeof e=="boolean"||typeof e=="number"||typeof e=="string"||Fm(e)||e==null||en(e)&&n)t.push(e);else if(Array.isArray(e)||en(e))for(let a=0;a<e.length;++a)cs(e[a],t,n);else{let a=-1;for(let r of Object.keys(e))/^([1-9]+[0-9]*|0)$/.test(r)&&(a=Math.max(a,Number(r)));for(let r=0;r<=a;r++)cs(e[r],t,n)}return t}var XR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new ZR)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=gc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:gc()-i})}if(G().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{YR(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function YR(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var ZR=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?pc(`${a}ms`,9):a.error,o=pc(e,25),l=t.rank,u=t.size,p=pc(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function JR(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function QR(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!Mr(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var tI=20,Xp=3,ax=7;function eM(e,t,n,a){let r=au(t),s=tM(e,t,n,r),i=t.length,o=Uh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function tM(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?tc(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],ec(l[p+d],0,n).length)}return i}function ec(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(ax))} + ${parseFloat(e[1].toFixed(ax))}j`:as(e)?a=`'${e}'`:n==="bool"?a=tN(e):a=parseFloat(e.toFixed(ax)).toString(),pc(a,t)}function tN(e){return e===0?"false":"true"}function Uh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=tc(e);return[ec(f[0],0,n)]}return n==="bool"?[tN(e[0])]:[e[0].toString()]}if(l===1){if(o>tI){let f=Xp*i,g=Array.from(e.slice(0,f)),b=Array.from(e.slice((o-Xp)*i,o*i));return n==="complex64"&&(g=tc(g),b=tc(b)),["["+g.map((y,x)=>ec(y,r[x],n)).join(", ")+", ..., "+b.map((y,x)=>ec(y,r[o-Xp+x],n)).join(", ")+"]"]}return["["+(n==="complex64"?tc(e):Array.from(e)).map((f,g)=>ec(f,r[g],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>tI){for(let f=0;f<Xp;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-Xp;f<o;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+(o>0?c[0]+h:"");for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function tc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Vt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;A(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||yv(t,this.size),this.strides=au(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Wa().makeTensor(this.values,this.shape,this.dtype)}},Wa=null,Al=null,nM=null;function aM(e){Wa=e}function rM(e){Al=e}function sM(e){nM=e}var Ce=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=au(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Al.buffer(this.shape,this.dtype,e)}bufferSync(){return Al.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return $l(this.shape,e,this.dtype==="complex64")}arraySync(){return $l(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Wa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>rm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Wa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Wa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>rm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Wa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Wa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Al.print(this,e)}clone(){return this.throwIfDisposed(),Al.clone(this)}toString(e=!1){let t=this.dataSync();return eM(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Al.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Wa().makeVariable(this,e,t,n)}};Object.defineProperty(Ce,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return wv("Tensor",()=>Ce)}Q();var ds=class extends Ce{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Mr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Wa().disposeTensor(this),this.dataId=e.dataId,Wa().incRef(this,null)}dispose(){Wa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ds,Symbol.hasInstance,{value:e=>e instanceof Ce&&e.assign!=null&&e.assign instanceof Function});var Ua={};Ee(Ua,{assertTypesMatch:()=>rN,getTensorsInContainer:()=>Iv,isTensorInList:()=>oM,makeTypesMatch:()=>Ft});var vx;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(vx||(vx={}));var wx;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(wx||(wx={}));var kx;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(kx||(kx={}));var Ix;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Ix||(Ix={}));var Sx;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Sx||(Sx={}));var iM={float32:Ix,int32:wx,bool:kx,complex64:Sx};function ba(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return iM[e][t]}function Xm(e){return ba(e,"int32")}function nN(e){return e!=null&&typeof e=="object"&&"texture"in e&&e.texture instanceof WebGLTexture}function aN(e){return typeof GPUBuffer!="undefined"&&e!=null&&typeof e=="object"&&"buffer"in e&&e.buffer instanceof GPUBuffer}function Ft(e,t){if(e.dtype===t.dtype)return[e,t];let n=ba(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function rN(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function oM(e,t){return t.some(n=>n.id===e.id)}function Iv(e){let t=[];return sN(e,t,new Set),t}function sN(e,t,n){if(e==null)return;if(e instanceof Ce){t.push(e);return}if(!lM(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),sN(s,t,n))}}function lM(e){return Array.isArray(e)||typeof e=="object"}function rx(e){return e.kernelName!=null}var nI=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},bc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new nI}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ns(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new XR(this.backendInstance),!0}setupRegisteredKernels(){am(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){am(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof $c)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,ns(`Initialization of backend ${e} failed`),ns(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ns(`Initialization of backend ${e} failed`),ns(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return bc.nextTensorId++}nextVariableId(){return bc.nextVariableId++}clone(e){let t=O.runKernel(Ji,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(Ri,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,nm(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=rx(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(rx(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=nm(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{a&&(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=rx(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=yx(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&as(e[0])&&(r=e.map(o=>ed(o)));let s=a.write(r,t,n),i=new Ce(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=VS(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Ce(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ds(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Qh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ds||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Qh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=yx(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=Am(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Iv(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Ce,()=>"The result y returned by f() must be a tensor.");let s=JR(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?uM(r.shape):n,QR(i,s,l=>this.tidy(l),pM);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(ps(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ce),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Ce,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(ps(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];A(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(u.every(d=>d instanceof Ce),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=gc(),n=await this.backend.time(e);return n.wallMs=gc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new nI;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};bc.nextTensorId=0;bc.nextVariableId=0;function uM(e){let t=xv(bt(e),"float32");return O.makeTensor(t,e,"float32")}function iN(){let e=jS();if(e._tfengine==null){let t=new qS(e);e._tfengine=new bc(t)}return FR(e._tfengine.ENV),aM(()=>e._tfengine),e._tfengine}var O=iN();function pM(e,t){let n={a:e,b:t};return O.runKernel(ks,n)}var td={};Ee(td,{isBrowser:()=>oN,isMobile:()=>hM,mockIsMobile:()=>dM});function cM(){return typeof navigator!="undefined"&&navigator!=null}var Nx;function dM(e){Nx=e}function hM(e){if(Nx!==void 0)return Nx;if(e||cM()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function oN(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Bn=G();Bn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Bn.registerFlag("IS_BROWSER",()=>oN());Bn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Bn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Bn.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));Bn.registerFlag("PROD",()=>!1);Bn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Bn.getBool("DEBUG"));Bn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Bn.registerFlag("IS_TEST",()=>!1);Bn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>Bn.getBool("DEBUG"));Bn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Bn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Bn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function pr(e,t){let n=e;if(en(e))return t==="string"?[]:[e.length];if(nN(e)){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}else if(aN(e))return[e.buffer.size/(t==null?4:Qh(t))];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||en(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&G().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&lN(e,a,[]),a}function lN(e,t,n){if(n=n||[],!Array.isArray(e)&&!en(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)lN(e[r],a,n.concat(r))}function aI(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Ce)return aI(a,e.dtype,t,n),e;let r=Dc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),aI(a,r,t,n),e==null||!en(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=pr(e,r);!en(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Km(e,r):cs(e,[],!0);return O.makeTensor(i,s,r)}function yc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var Sv="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Sv;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return Fm(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function mM(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");Tn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(Rm,r)}var Dr=L({complex_:mM});function Ts(e,t,n,a){if(a==null)a=Dc(e);else if(a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(aN(e)||nN(e)){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return O.backend.createTensorFromGPUData(e,t||n,a)}if(!en(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){sa(t);let r=bt(t),s=bt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;A(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!en(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Km(e,a):cs(e,[],!0),O.makeTensor(e,t,a)}function bn(e,t,n){let a=pr(e,n);return Ts(e,t,a,n)}var Tx={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},sm=4;async function fM(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+sm*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=sm,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:gM(s),specs:n}}function uN(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Tx[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=kM()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+sm))[0];r+=sm;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Tx[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=bn(h,l,"float32"),g=bn(m,l,"float32");n[i]=Dr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=bn(p,l,o))}return n}function gM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Nv=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function rI(e){return Nv?Buffer.byteLength(e):new Blob([e]).size}function bM(e){if(Nv)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function yM(e){if(Nv){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Tv(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function sI(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function pN(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function cN(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function Cv(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),cN(e,n,a)}function nd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:rI(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:rI(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function dN(e){let t=[];for(let n of e)t.push(...n.weights);return t}function xM(){let e=n=>{let a=n<<13,r=0;for(;!(a&8388608);)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function vM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function wM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function kM(){let e=xM(),t=vM(),n=wM();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var $t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return $t.instance==null&&($t.instance=new $t),$t.instance}static registerSaveRouter(e){$t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){$t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return $t.getHandlers(e,"save")}static getLoadHandlers(e,t){return $t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?$t.getInstance().loadRouters:$t.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},IM=e=>$t.registerSaveRouter(e),SM=e=>$t.registerLoadRouter(e),NM=e=>$t.getSaveHandlers(e),TM=(e,t)=>$t.getLoadHandlers(e,t),Cx="tensorflowjs",_x=1,ei="models_store",rs="model_info_store";function hN(){if(!G().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ex(e){let t=e.result;t.createObjectStore(ei,{keyPath:"modelPath"}),t.createObjectStore(rs,{keyPath:"modelPath"})}var ui=class{constructor(e){if(this.indexedDB=hN(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Cx,_x);r.onupgradeneeded=()=>Ex(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(ei,"readonly"),o=i.objectStore(ei).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=nd(t),o=s.transaction(rs,"readwrite"),l=o.objectStore(rs),u;try{u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i})}catch(d){return a(d)}let p;u.onsuccess=()=>{p=s.transaction(ei,"readwrite");let d=p.objectStore(ei),c;try{c=d.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i})}catch(h){return a(h)}c.onsuccess=()=>n({modelArtifactsInfo:i}),c.onerror=h=>{l=o.objectStore(rs);let m=l.delete(this.modelPath);m.onsuccess=()=>(s.close(),a(c.error)),m.onerror=f=>(s.close(),a(c.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ui.URL_SCHEME="indexeddb://";var mN=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ui.URL_SCHEME)?CM(e.slice(ui.URL_SCHEME.length)):null;$t.registerSaveRouter(mN);$t.registerLoadRouter(mN);function CM(e){return new ui(e)}function _M(e){return e.startsWith(ui.URL_SCHEME)?e.slice(ui.URL_SCHEME.length):e}var EM=class{constructor(){this.indexedDB=hN()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Cx,_x);n.onupgradeneeded=()=>Ex(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(rs,"readonly"),s=r.objectStore(rs).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=_M(e),new Promise((t,n)=>{let a=this.indexedDB.open(Cx,_x);a.onupgradeneeded=()=>Ex(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(rs,"readwrite"),i=s.objectStore(rs),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(ei,"readwrite");let d=l.objectStore(ei).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Ar="/",Fl="tensorflowjs_models",fN="info",AM="model_topology",FM="weight_specs",$M="weight_data",DM="model_metadata";function gN(e){return{info:[Fl,e,fN].join(Ar),topology:[Fl,e,AM].join(Ar),weightSpecs:[Fl,e,FM].join(Ar),weightData:[Fl,e,$M].join(Ar),modelMetadata:[Fl,e,DM].join(Ar)}}function bN(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function RM(e){let t=e.split(Ar);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ar)}function MM(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!G().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=gN(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=nd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,bM(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw bN(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=yM(s),t}};pi.URL_SCHEME="localstorage://";var yN=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?PM(e.slice(pi.URL_SCHEME.length)):null;$t.registerSaveRouter(yN);$t.registerLoadRouter(yN);function PM(e){return new pi(e)}var OM=class{constructor(){A(G().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Fl+Ar,n=Ar+fN;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=RM(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=MM(e);let t=gN(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return bN(t),n}},Dl="://",Pn=class{constructor(){this.managers={}}static getInstance(){return Pn.instance==null&&(Pn.instance=new Pn),Pn.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Dl)&&(e=e.slice(0,e.indexOf(Dl))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function Gh(e){if(e.indexOf(Dl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split(Dl)[0],path:e.split(Dl)[1]}}async function xN(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=$t.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=$t.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Gh(e).scheme,l=Gh(e).path,u=o===Gh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function LM(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+Dl+r;t[s]=a[r]}}return t}async function zM(e){let t=Gh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function WM(e,t){return xN(e,t,!1)}async function BM(e,t){return xN(e,t,!0)}var VM=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!G().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(e){return JS(e)}};if(G().get("IS_BROWSER")){G().setPlatform("browser",new VM);try{Pn.registerManager(pi.URL_SCHEME,new OM)}catch(e){}try{Pn.registerManager(ui.URL_SCHEME,new EM)}catch(e){}}var UM={importFetch:()=>YD()},sx,GM=class{constructor(){this.util=ZD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return G().global.fetch!=null?G().global.fetch(e,t):(sx==null&&(sx=UM.importFetch()),sx(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}isTypedArray(e){return this.util.types.isFloat32Array(e)||this.util.types.isInt32Array(e)||this.util.types.isUint8Array(e)||this.util.types.isUint8ClampedArray(e)}};G().get("IS_NODE")&&!G().get("IS_BROWSER")&&G().setPlatform("node",new GM);function ze(e,t="float32",n){return t=t||"float32",sa(e),new Vt(e,t,n)}function HM(e,t){let n=_(e,"x","cast");if(!BS(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(Ri,a,r)}var ie=L({cast_:HM});function qM(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Ji,t)}var or=L({clone_:qM});function _v(e,t=!1){console.log(e.toString(t))}iN();var jM={buffer:ze,cast:ie,clone:or,print:_v};rM(jM);function KM(){G().set("PROD",!0)}function XM(){G().set("DEBUG",!0)}function YM(){G().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ev(e){G().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}sM(Ev);function ZM(){O.disposeVariables()}function Aa(){return O}function im(){return O.memory()}function JM(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function _e(e){Iv(e).forEach(t=>t.dispose())}function Ht(e){return O.keep(e)}function QM(e){return O.time(e)}function eP(e){return O.setBackend(e)}function tP(){return O.ready()}function nP(){return O.backendName}function aP(e){O.removeBackend(e)}function rP(e){return O.findBackend(e)}function sP(e){return O.findBackendFactory(e)}function Ym(e,t,n=1){return O.registerBackend(e,t,n)}function vN(){return O.backend}function iP(e,t){G().setPlatform(e,t)}function oP(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(ks,r)}var X=L({add_:oP});function lP(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Xi,r)}var Zm=L({floorDiv_:lP});function uP(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=Ft(n,a),n.dtype==="int32"&&a.dtype==="int32")return Zm(n,a);let r={a:n,b:a},s={};return O.runKernel(Gi,r,s)}var he=L({div_:uP});function pP(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(mo,r)}var z=L({mul_:pP});function cP(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(Pc,n)}else{let n={x:t};return O.runKernel(ru,n)}}var Wt=L({abs_:cP});function dP(e){let t={x:_(e,"x","acos")};return O.runKernel(Si,t)}var Av=L({acos_:dP});function hP(e){let t={x:_(e,"x","acosh")};return O.runKernel(Ni,t)}var Fv=L({acosh_:hP});function mP(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Mr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(Ti,a)}var wN=L({addN_:mP});function fP(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(su,a,r)}var Jm=L({all_:fP});function gP(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(iu,a,r)}var xc=L({any_:gP});function bP(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(ou,n,a)}var ci=L({argMax_:bP});function yP(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(lu,n,a)}var $v=L({argMin_:yP});function xP(e){let t={x:_(e,"x","asin")};return O.runKernel(Ci,t)}var Dv=L({asin_:xP});function vP(e){let t={x:_(e,"x","asinh")};return O.runKernel(_i,t)}var Rv=L({asinh_:vP});function wP(e){let t={x:_(e,"x","atan")};return O.runKernel(Ei,t)}var Mv=L({atan_:wP});function kP(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Fi,r)}var Pv=L({atan2_:kP});function IP(e){let t={x:_(e,"x","atanh")};return O.runKernel(Ai,t)}var Ov=L({atanh_:IP});function SP(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=SN(r);return ad(e,o,n,s,a,null,null,l)}function kN(e,t,n,a,r,s,i="channelsLast"){let[o,l]=vc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ad(e,u,n,a,r,s,!1,i)}function NP(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Ax(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return IN(e,p,n,a,r,!1,d,s)}function ad(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=vc(n),[b,y]=vc(a),x=Rl(c,b),w=Rl(h,y),{padInfo:I,outHeight:T,outWidth:C}=_P(r,u,p,f,g,x,w,s,o),E=i?m*d:m,F;return o==="channelsFirst"?F=[l,E,T,C]:o==="channelsLast"&&(F=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:F,filterShape:t}}function IN(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=Ax(n),[w,I,T]=Ax(a),C=Rl(h,w),E=Rl(m,I),F=Rl(f,T),{padInfo:D,outDepth:$,outHeight:S,outWidth:M}=EP(r,u,p,d,b,y,x,C,E,F,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,$,S,M]:i==="channelsLast"&&(U=[l,$,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:M,outChannels:B,padInfo:D,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:F,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function TP(e,t,n,a,r){a==null&&(a=Lv(e,t,n));let s=e[0],i=e[1],o=wc((s-t+2*a)/n+1,r),l=wc((i-t+2*a)/n+1,r);return[o,l]}function CP(e,t,n,a,r,s){r==null&&(r=Lv(e,t[0],a[0]));let i=[0,0,0,n];for(let o=0;o<3;o++)e[o]+2*r>=t[o]&&(i[o]=wc((e[o]-t[o]+2*r)/a[o]+1,s));return i}function Lv(e,t,n,a=1){let r=Rl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function vc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Ax(e){return typeof e=="number"?[e,e,e]:e}function Rl(e,t){return t<=1?e:e+(e-1)*(t-1)}function _P(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=TP([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=wc((t-s+c+h)/a+1,o),d=wc((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function EP(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(e==="valid"&&(e=0),typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=CP([t,n,a,1],[o,l,u],1,[r,s,i],e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,T=Math.floor(b/2),C=b-T;d={top:w,bottom:I,left:T,right:C,front:y,back:x,type:"SAME"}}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function wc(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function hs(e){let[t,n,a]=vc(e);return t===1&&n===1&&a===1}function hr(e,t){return hs(e)||hs(t)}function di(e){return vc(e).every(t=>t>0)}function SN(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Cn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")A(Pl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{A(Pl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function AP(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(Uu,n,a)}var W=L({reshape_:AP});function FP(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;A(hr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Cn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel($i,u,p);return d=ie(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var xa=L({avgPool_:FP});function $P(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),A(typeof n=="number"&&n>0||Array.isArray(n)&&n[0]>0&&n[1]>0&&n[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${n}'`),Cn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(uu,u,p);return d=ie(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var zv=L({avgPool3d_:$P});function DP(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=yc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return or(n[0]);let a=n,r={axis:t};return O.runKernel(du,a,r)}var Qe=L({concat_:DP});function RP(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=Ft(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(Di,i,o)}var $e=L({matMul_:RP});function MP(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(Fo,t)}var fa=L({sigmoid_:MP});function PP(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(Yu,r,s)}var Ue=L({slice_:PP});function OP(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(zo,t)}var hi=L({tanh_:OP});function LP(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=$e(c,o),m=X(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=Ue(m,[0,0],b),x=Ue(m,[0,g],b),w=Ue(m,[0,g*2],b),I=Ue(m,[0,g*3],b),T=X(z(fa(y),hi(x)),z(p,fa(X(i,w)))),C=z(hi(T),fa(I));return[T,C]}var NN=L({basicLSTMCell_:LP});function zP(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(pu,s,i)}var rd=L({batchToSpaceND_:zP});function WP(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function BP(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:WP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Yi,d,c);return W(h,i.shape)}var Cs=L({batchNorm_:BP});function VP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var Wv=L({batchNorm2d_:VP});function UP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var Bv=L({batchNorm3d_:UP});function GP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var Vv=L({batchNorm4d_:GP});function HP(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(cu,s,i)}var Uv=L({bincount_:HP});function qP(e,t){let n=_(e,"x","bitwiseAnd"),a=_(t,"y","bitwiseAnd");if(!Mr(n.shape,a.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${n.shape}, y: ${a.shape}`);if(n.dtype!=="int32"||a.dtype!=="int32")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${n.dtype} and type of y: ${a.dtype}`);let r={a:n,b:a};return O.runKernel(Dm,r)}var TN=L({bitwiseAnd_:qP});function jP(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Mc,r)}var CN=L({broadcastArgs_:jP});function KP(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(sa(t),t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return or(n);let i={x:n},o={reps:s};return O.runKernel(Ss,i,o)}var ai=L({broadcastTo_:KP});function XP(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(Mi,t)}var Gv=L({ceil_:XP});function xn(e,t,n){sa(e),n=n||Dc(t);let a={shape:e,value:t,dtype:n};return O.runKernel(zc,{},a)}function YP(e,t,n){let a=_(e,"x","clipByValue");if(A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return xn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(Is,r,s)}var rn=L({clipByValue_:YP});function ZP(e){return Qe(e,0)}var Hv=L({concat1d_:ZP});function JP(e,t){return Qe(e,t)}var qv=L({concat2d_:JP});function QP(e,t){return Qe(e,t)}var jv=L({concat3d_:QP});function eO(e,t){return Qe(e,t)}var Kv=L({concat4d_:eO});function tO(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Cn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),A(hr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(di(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),A(di(n),()=>"Error in conv2D: Strides should be larger than 0.");let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Pi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=L({conv2d_:tO});function nO(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Cn("conv1d",a,i),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(hr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(di(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),A(di(n),()=>"Error in conv1D: Stride should be larger than 0."),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Qm=L({conv1d_:nO});function aO(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];A(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),A(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Cn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(Oi,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Xv=L({conv2DBackpropInput_:aO});function rO(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return Xv(n,i,o,a,r,"NHWC",s)}var ef=L({conv2dTranspose_:rO});function sO(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(hr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`),A(di(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),A(di(n),()=>"Error in conv3D: Strides should be larger than 0.");let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(Li,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Yv=L({conv3d_:sO});function iO(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(mu,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var _N=L({conv3DBackpropInput_:iO});function oO(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return _N(n,s,i,a,r)}var Zv=L({conv3dTranspose_:oO});function lO(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(zi,t)}var sd=L({cos_:lO});function uO(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(Wi,t)}var tf=L({cosh_:uO});function pO(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(fu,r,s)}var kc=L({cumprod_:pO});function cO(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Bi,r,s)}var nf=L({cumsum_:cO});function dO(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(Oc,i,o)}var om=L({denseBincount_:dO});function hO(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(bu,o,l)}var Jv=L({depthToSpace_:hO});function mO(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Cn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Vi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var _s=L({depthwiseConv2d_:mO});function fO(e){let t={x:_(e,"x","diag")};return O.runKernel(Lc,t)}var EN=L({diag_:fO});function gO(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0),A(l.shape[3]===o.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${l.shape[3]} vs ${o.shape[2]}`);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(Ui,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Qv=L({dilation2d_:gO}),lp={};Ee(lp,{assertAndGetBroadcastShape:()=>pt,getBroadcastDims:()=>AN,getReductionAxes:()=>Ut});function AN(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Ut(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=Math.max(e.length,t.length),a=new Array(n);for(let r=0;r<n;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)a[n-r-1]=i;else if(i===1)a[n-r-1]=s;else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else a[n-r-1]=s}return a}function bO(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(vu,r)}var ta=L({equal_:bO});function yO(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=ai(s,i),l=ai(a,i),u=ai(r,i),p={condition:o,t:l,e:u};return O.runKernel(Xu,p)}var an=L({where_:yO});function xO(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(ip,t)}var qe=L({zerosLike_:xO});function vO(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=Ft(n,a);let r=he(n,a),s=qe(r),i=ta(a,s);return an(i,s,r)}var ew=L({divNoNan_:vO});function wO(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=$e(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=$e(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=$e(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return $e(n,i)}}var tw=L({dot_:wO});function kO(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(Lm,n,a)}var FN=L({einsum_:kO});function IO(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(Hi,t)}var up=L({elu_:IO});function SO(e,t){let n=_(e,"x","ensureShape","string_or_numeric");if(!OS(n.shape,t))throw new Error(`EnsureShape: Shape of tensor ${n.shape} is not compatible with expected shape ${t}`);return e}var $N=L({ensureShape_:SO});function NO(e){let t=_(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ie(t,"float32"));let n={x:t};return O.runKernel(xu,n)}var nw=L({erf_:NO});function aw(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function DN(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function RN(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function mi(e,t){let n=t.map(a=>1);return DN(e,n,t)}function TO(e,t,n){A(aw(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function MN(e,t){if(aw(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function rw(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function CO(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function _O(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(io,a,r)}var ga=L({max_:_O});function EO(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(po,a,r)}var Wl=L({min_:EO});function AO(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(bo,r)}var Rr=L({pow_:AO});function ve(e,t){if((en(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&en(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ts(e,[],[],t)}function FO(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel(Do,t)}var mn=L({sqrt_:FO});function $O(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var ut=L({square_:$O});function DO(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Ro,r,s)}var fe=L({sum_:DO});function RO(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=PN(e,t,n),s=r.shape;if(a){let i=Ra(n,e.shape);s=mi(r.shape,i)}return W(r,s)}function PN(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return PN(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(Wt(e),n);if(t===1/0)return ga(Wt(e),n);if(t===-1/0)return Wl(Wt(e),n);if(t==="euclidean"||t===2)return mn(fe(Rr(Wt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ga(fe(Wt(e),n[0]),n[1]-1);if(t===1/0)return ga(fe(Wt(e),n[1]),n[0]);if(t===-1/0)return Wl(fe(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return mn(fe(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var pp=L({norm_:RO});function MO(e,t=null,n=!1){return pp(e,"euclidean",t,n)}var sw=L({euclideanNorm_:MO});function PO(e){let t={x:_(e,"x","exp")};return O.runKernel(qi,t)}var yn=L({exp_:PO});function OO(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(wu,a,r)}var tn=L({expandDims_:OO});function LO(e){let t={x:_(e,"x","expm1")};return O.runKernel(ji,t)}var iw=L({expm1_:LO});function zO(e,t){let n=_(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(Ss,a,r)}var Ln=L({tile_:zO});function WO(e,t,n,a="float32"){t==null&&(t=e);let r=ze([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ln(tn(i,0),[n[0],1,1]);if(n.length===2)return Ln(tn(tn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ln(tn(tn(tn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var af=L({eye_:WO});function BO(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(Ki,t)}var cp=L({floor_:BO});function VO(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(Iu,i,o)}var dp=L({gather_:VO});function UO(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Nu,r)}var _n=L({greater_:UO});function GO(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Zi,r)}var Pr=L({greaterEqual_:GO});function HO(e){let t={input:_(e,"input","imag")};return O.runKernel(Bm,t)}var id=L({imag_:HO});function qO(e){let t={x:_(e,"x","isFinite")};return O.runKernel(Qi,t)}var ow=L({isFinite_:qO});function jO(e){let t={x:_(e,"x","isInf")};return O.runKernel(eo,t)}var lw=L({isInf_:jO});function KO(e){let t={x:_(e,"x","isNaN")};return O.runKernel(to,t)}var uw=L({isNaN_:KO});function XO(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(no,n,a)}var od=L({leakyRelu_:XO});function YO(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Tu,r)}var Bl=L({less_:YO});function ZO(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Cu,r)}var Es=L({lessEqual_:ZO});function ON(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(_u,{},a)}function JO(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(Pl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(so,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var pw=L({localResponseNormalization_:JO});function QO(e){let t={x:_(e,"x","log","float32")};return O.runKernel(ao,t)}var na=L({log_:QO});function e3(e){let t={x:_(e,"x","log1p")};return O.runKernel(ro,t)}var ld=L({log1p_:e3});function t3(e){return A(ps(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),rf(i),i[0]})}}function n3(e){return A(ps(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=yc(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rf(i),i})}}function a3(e){return A(ps(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Ce,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Ce,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return rf(a),{grad:a[0],value:r}}}function r3(e){return A(ps(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Ce),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Ce,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Tn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),rf(a.grads),a}}function LN(e,t){A(ps(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(u=>u instanceof ds),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);A(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function cr(e){return O.customGrad(e)}function rf(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function s3(e){let t={x:_(e,"x","neg")};return O.runKernel(Pu,t)}var yt=L({neg_:s3});function i3(e){let t={x:_(e,"x","softplus")};return O.runKernel($o,t)}var Wo=L({softplus_:i3});function o3(e){let t=_(e,"x","logSigmoid");return cr(n=>({value:yt(Wo(yt(n))),gradFunc:a=>z(a,fa(yt(n)))}))(t)}var cw=L({logSigmoid_:o3});function l3(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Oo,r)}var pe=L({sub_:l3});function u3(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return cr((a,r)=>{let s=ga(a,t,!0),i=pe(a,s),o=pe(ie(i,"float32"),na(fe(yn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=yn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var sf=L({logSoftmax_:u3});function p3(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=Ra(t,a.shape),s=ga(a,r,!0),i=pe(a,s),o=yn(i),l=fe(o,r),u=na(l),p=X(W(s,u.shape),u);if(n){let d=mi(p.shape,r);return W(p,d)}return p}var of=L({logSumExp_:p3});function c3(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Eu,r)}var Da=L({logicalAnd_:c3});function d3(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(Au,t)}var ud=L({logicalNot_:d3});function h3(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Fu,r)}var lf=L({logicalOr_:h3});function m3(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return pt(n.shape,a.shape),Da(lf(e,t),ud(Da(e,t)))}var dw=L({logicalXor_:m3}),Ah=2147483648;function f3(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=Ah)throw new Error(`values tensor size must less than ${Ah}`);if(o.shape[1]>=Ah)throw new Error(`trailing dim_size must less than ${Ah} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(Ku,u,p)}var uf=L({searchSorted_:f3});function zN(e,t){return uf(e,t,"left")}function g3(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(hr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Cn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(lo,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mt=L({maxPool_:g3});function b3(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(Du,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var hw=L({maxPool3d_:b3});function y3(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(Um,s,i);return{result:o[0],indexes:o[1]}}var WN=L({maxPoolWithArgmax_:y3});function x3(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(oo,r)}var mr=L({maximum_:x3});function v3(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(uo,a,r)}var Et=L({mean_:v3});function Nt(e,t="float32"){if(sa(e),t==="complex64"){let a=Nt(e,"float32"),r=Nt(e,"float32");return Dr(a,r)}let n=Am(bt(e),t);return O.makeTensor(n,e,t)}function Qn(e,t="float32"){if(sa(e),t==="complex64"){let a=Qn(e,"float32"),r=Nt(e,"float32");return Dr(a,r)}let n=xv(bt(e),t);return O.makeTensor(n,e,t)}function BN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Ce?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Ce?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[$e(Qn([i,1],a.dtype),a),$e(r,Qn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[$e(a,Qn([1,i],a.dtype)),$e(Qn([s,1],r.dtype),r)])}function w3(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(co,r)}var ms=L({minimum_:w3});function k3(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)A(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(ho,i,s)}var mw=L({mirrorPad_:k3});function I3(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Ru,r)}var fw=L({mod_:I3});function S3(e,t=null,n=!1){e=_(e,"x","moments");let a=Ra(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=mi(r.shape,a));let i=ut(pe(ie(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var pd=L({moments_:S3});function N3(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=yc(n,"c","multiRNNCell"),i=yc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var VN=L({multiRNNCell_:N3});function T3(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(Mu,o,l);return i===1?W(u,[u.size]):u}var UN=L({multinomial_:T3});function C3(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Ou,r)}var fi=L({notEqual_:C3});function _3(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(fo,s,i)}var Vl=L({oneHot_:_3});function E3(e){let t={x:_(e,"x","onesLike")};return O.runKernel(Bu,t)}var aa=L({onesLike_:E3});function A3(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return $e(r,s)}var GN=L({outerProduct_:A3});function F3(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(go,s,r)}var va=L({pad_:F3});function $3(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),va(e,[t],n)}var HN=L({pad1d_:$3});function D3(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),va(e,t,n)}var qN=L({pad2d_:D3});function R3(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),va(e,t,n)}var jN=L({pad3d_:R3});function M3(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),va(e,t,n)}var KN=L({pad4d_:M3});function P3(e,t,n){let a=_(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(Ju,r,s)}var cd=L({spaceToBatchND_:P3});function O3(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(hr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=kN(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=z3([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=L3([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:cd(l,d,m),y=(n==="avg"?()=>xa(b,t,s,g,i):()=>Mt(b,t,s,g,i))(),x=h?y:rd(y,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function L3(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function z3(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var gw=L({pool_:O3});function W3(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(yo,r)}var dd=L({prelu_:W3});function B3(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(xo,r,s)}var bw=L({prod_:B3});function V3(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(Gm,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var XN=L({raggedGather_:V3});function U3(e,t,n){let a=_(e,"starts","raggedRange"),r=_(t,"limits","raggedRange",a.dtype),s=_(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(Hm,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var YN=L({raggedRange_:U3});function G3(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(qm,u,p)}var ZN=L({raggedTensorToTensor_:G3});function H3(e,t,n){sa(e);let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var JN=L({rand_:H3}),yw=ws(_m()),QN={};Ee(QN,{TEST_EPSILON_FLOAT16:()=>eT,createVideoElement:()=>Q3,encodeStrings:()=>tT,expectArrayBuffersEqual:()=>J3,expectArraysClose:()=>j3,expectArraysEqual:()=>X3,expectNumbersClose:()=>Y3,expectPromiseToFail:()=>K3,expectValuesInRange:()=>Z3,play:()=>eL,testEpsilon:()=>xw});var q3=.001,eT=.1;function j3(e,t,n){return n==null&&(n=xw()),Fx(e,t,(a,r)=>vw(a,r,n))}function xw(){return O.backend.floatPrecision()===32?q3:eT}function Fx(e,t,n){let a=!0;if((en(e)||en(t))&&(a=!1),en(e)&&en(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=pr(e),o=pr(t);if(!Mr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=en(e)?e:cs(e),s=en(t)?t:cs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function K3(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function X3(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return as(e)||as(e[0])||as(t)||as(t[0])?Fx(e,n,(a,r)=>a==r):Fx(e,t,(a,r)=>vw(a,r,0))}function Y3(e,t,n){if(n==null&&(n=xw()),!vw(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function vw(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function Z3(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function J3(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function tT(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?tT(n):e[t]=ed(n)}return e}function Q3(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function eL(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var ww=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=yw.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},tL=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=yw.alea(r.toString()),this.randn=new ww(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},nL=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=yw.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function aL(e,t,n=1,a="float32",r){if(sa(e),n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new tL(t,n,a,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var nT=L({randomGamma_:aL});function rL(e,t=0,n=1,a,r){if(sa(e),a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new ww(t,n,a,!1,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var pf=L({randomNormal_:rL});function sL(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return pf(e,0,1,t,n)}var aT=L({randomStandardNormal_:sL});function iL(e,t=0,n=1,a="float32",r){sa(e);let s=ze(e,a),i=new nL(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var As=L({randomUniform_:iL});function oL(e,t,n,a){return As(e,t,n,"int32",a)}var rT=L({randomUniformInt_:oL});function gi(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(Bc,{},r)}function lL(e){let t={input:_(e,"input","real")};return O.runKernel(jm,t)}var Ul=L({real_:lL});function uL(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(vo,t)}var kw=L({reciprocal_:uL});function pL(e){let t={x:_(e,"x","relu")};return O.runKernel(wo,t)}var Ke=L({relu_:pL});function cL(e){let t={x:_(e,"x","relu6")};return O.runKernel(So,t)}var cf=L({relu6_:cL});function dL(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(No,n,a)}var ya=L({reverse_:dL});function hL(e){let t=_(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ya(t,0)}var sT=L({reverse1d_:hL});function mL(e,t){let n=_(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ya(n,t)}var iT=L({reverse2d_:mL});function fL(e,t){let n=_(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ya(n,t)}var oT=L({reverse3d_:fL});function gL(e,t){let n=_(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ya(n,t)}var lT=L({reverse4d_:gL});function bL(e){let t={x:_(e,"x","round")};return O.runKernel(To,t)}var df=L({round_:bL});function yL(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(Co,t)}var hf=L({rsqrt_:yL});function xL(e){let t={x:_(e,"x","selu")};return O.runKernel(_o,t)}var mf=L({selu_:xL});function vL(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];A(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=_s(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Fs=L({separableConv2d_:vL});async function wL(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Vt([o],n.dtype),u=new Vt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var uT=wL;function kL(e){let t={x:_(e,"x","sign")};return O.runKernel(Ao,t)}var Iw=L({sign_:kL});function IL(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(Eo,t)}var ff=L({sin_:IL});function SL(e){let t={x:_(e,"x","sinh")};return O.runKernel(Zu,t)}var gf=L({sinh_:SL});function NL(e,t,n){let a=_(e,"x","slice1d");return A(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ue(a,[t],[n])}var hd=L({slice1d_:NL});function TL(e,t,n){let a=_(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var bf=L({slice2d_:TL});function CL(e,t,n){let a=_(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var Bo=L({slice3d_:CL});function _L(e,t,n){let a=_(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var Gl=L({slice4d_:_L});function EL(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(Mo,a,r)}var Xa=L({softmax_:EL});function AL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(zm,t)}var md=L({fft_:AL});function FL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Wm,t)}var Hl=L({ifft_:FL});function $L(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=Hl(r)}else{let r=[n,2*(t-1)],s=W(Ul(e),[n,t]),i=W(id(e),[n,t]),o=ya(Ue(s,[0,1],[n,t-2]),1),l=z(ya(Ue(i,[0,1],[n,t-2]),1),ve(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=W(Dr(u,p),[r[0],r[1]]);a=Hl(d)}if(a=Ul(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var yf=L({irfft_:$L});function DL(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(Qu,a,r)}var zn=L({split_:DL});function RL(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ue(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,Nt(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(Dr(r,s),[a,n]),o=md(i),l=Math.floor(n/2)+1,u=Ul(o),p=id(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Dr(d[0],c[0]),h)}var fd=L({rfft_:RL});function ML(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(Po,r,s)}var xf=L({squaredDifference_:ML});function PL(e,t){let n=_(e,"x","squeeze","string_or_numeric");return W(n,LS(n.shape,t).newShape)}var $s=L({squeeze_:PL});function OL(e,t=0){let n=yc(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(Vu,a,r)}var Dt=L({stack_:OL});function LL(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(Ns,n,a)}var Vo=L({step_:LL});function zL(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(np,u,p)}var Sw=L({stridedSlice_:zL});function WL(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(Lo,t)}var Nw=L({tan_:WL});function je(e,t){Ii(e);let n=pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ts(e,null,n,t)}function $a(e,t,n){if(Ii(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=pr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ts(e,t,a,n)}function gd(e,t,n){if(Ii(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=pr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function Ma(e,t,n){if(Ii(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=pr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function pT(e,t,n){if(Ii(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=pr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function cT(e,t,n){if(Ii(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=pr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Ts(e,t,a,n)}var vf={};Ee(vf,{calculateShapes:()=>dT,validateInput:()=>wf,validateUpdateShape:()=>Tw});function Tw(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function wf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Tw(n,t,e)}function dT(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...au(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}function BL(e,t,n){let a=_(e,"tensor","tensorScatterupdate"),r=_(t,"indices","tensorScatterupdate","int32"),s=_(n,"updates","tensorScatterupdate");if(wf(s,r,a.shape),a.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${a.dtype} and ${s.dtype}.`);let i={tensor:a,indices:r,updates:s},o={};return O.runKernel(ju,i,o)}var hT=L({tensorScatterUpdate_:BL});function VL(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(ap,s,i);return{values:o,indices:l}}var Cw=L({topk_:VL});function UL(e,t=0,n=1,a,r){if(sa(e),a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new ww(t,n,a,!0,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var kf=L({truncatedNormal_:UL});function GL(e,t=0){let n=_(e,"x","unique","string_or_numeric");A(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Yc,a,r);return{values:s,indices:i}}var _w=L({unique_:GL});function HL(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");A(Pl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(Zc,s,i)}var If=L({unsortedSegmentSum_:HL});function qL(e,t=0){let n=_(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(sp,a,r)}var ct=L({unstack_:qL});function mT(e,t){return uf(e,t,"right")}function Ew(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function fT(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function jL(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=fT(t.shape,n);return e!==t&&t.dispose(),a}var Aw=jL;async function KL(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;A(i>0,()=>"mask cannot be scalar"),Tn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await Aw(d),h=$s(c,[1]),m=dp(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var gT=KL;function XL(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),A(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=Ul(a),o=id(a);return i=O.runKernel(Fr,{x:i},s),o=O.runKernel(Fr,{x:o},s),n&&(o=yt(o)),Dr(i,o)}):O.runKernel(Fr,r,s)}var De=L({transpose_:XL});function YL(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");rN(s,i),A(Mr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),u=pe(l,o),p=z(pe(i,s),u);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,Rr(o,d)))}return X(s,p)}var bT=L({movingAverage_:YL});function ZL(e,t,n){sa(n);let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");wf(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(qu,s,i)}var yT=L({scatterND_:ZL});function JL(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function QL(e,t,n,a=0){sa(n);let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);JL(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(tp,o,l)}var xT=L({sparseToDense_:QL});function ez(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(Su,a)}var vT=L({gatherND_:ez});function tz(e,t){if(t==null)return e.shape.slice();if(Mr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function nz(e,t,n,a){let r=_(e,"x","dropout");if(A(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ce?r.clone():r;let s=tz(r,n),i=1-t,o=he(cp(X(As(s,0,1,"float32",a),i)),i);return z(r,o)}var Fw=L({dropout_:nz});function $w(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Sf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return je(r,"float32")}async function az(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");A(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Tn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=zS("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),bn(p,r.shape,"bool")}var wT=az,ql={};Ee(ql,{conv2d:()=>iz,depthwiseConv2d:()=>pz,matMul:()=>dz});function rz(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),A(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Cn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(Mm,d,c)}var Dw=L({conv2DBackpropFilter_:rz});function Nf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Vo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Tf(e,t){let n=t,a=Ut(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function Cf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ke(e);if(t==="elu")return up(e);if(t==="relu6")return cf(e);if(t==="prelu")return dd(e,n);if(t==="leakyrelu")return od(e,a);if(t==="sigmoid")return fa(e);throw new Error(`Unknown fused activation ${t}.`)}var _f=(e,t)=>!(e>0)||t==="linear";function sz({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",_f(O.state.gradientDepth,l)===!1){A(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Rt(e,t,n,a,r,s,i);return o!=null&&(T=X(T,o)),Cf(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Cn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];A(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),A(hr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=ad(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=Ft(b,d),r==="NHWC"?pt(g.outShape,b.shape):(A(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),A(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let T=u.shape;if(A(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)A(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{pt(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{A(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,F,D,$]=C,S=Nf(T,D,l);A(hs(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=Xv(F.shape,S,E,n,a),B=Dw(F,S,E.shape,n,a),U=[M,B];if($!=null){let H=Tf($,S);U.push(H)}return U},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((T,C,E)=>{let F=O.runKernel(oi,w,I);return E([C,T,F]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,c):cr((T,C,E,F)=>{let D=O.runKernel(oi,w,I);return F([C,T,D,E]),m&&(D=W(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,c,b)}var iz=L({fusedConv2d_:sz});function oz(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(Pm,u,p)}var kT=L({depthwiseConv2dNativeBackpropFilter_:oz});function lz(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(Om,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IT=L({depthwiseConv2dNativeBackpropInput_:lz});function uz({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(_f(O.state.gradientDepth,l)===!1){let I=_s(e,t,n,a,r,s,i);return o!=null&&(I=X(I,o)),Cf(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),A(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),A(hr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Cn("fused depthwiseConv2d",a,i);let f=ad(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=Ft(g,d),pt(f.outShape,g.shape));let b;u!=null&&(b=_(u,"prelu weights","fused depthwiseConv2d"));let y=(I,T)=>{A(hs(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,F,D]=T,$=Nf(I,F,l),S=IT(E.shape,$,C,n,a,s,i),M=kT(E,$,C.shape,n,a,s,i);if(D!=null){let B=Tf(g,$);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((I,T,C)=>{let E=O.runKernel(li,x,w);return C([T,I,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c):cr((I,T,C,E)=>{let F=O.runKernel(li,x,w);return E([T,I,F,C]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,c,g)}var pz=L({fusedDepthwiseConv2d_:uz});function cz({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(_f(O.state.gradientDepth,s)===!1){let D=$e(e,t,n,a);return r!=null&&(D=X(D,r)),Cf(D,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=Ft(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),b=bt(f);A(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=pt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[b,h,d]):W(u,[b,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=Ft(I,l),pt(y,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(D,$)=>{let[S,M,B,U]=$,H=Nf(W(D,B.shape),B,s),j,K;if(!n&&!a?(j=$e(H,M,!1,!0),K=$e(S,H,!0,!1)):!n&&a?(j=$e(H,M,!1,!1),K=$e(H,S,!0,!1)):n&&!a?(j=$e(M,H,!1,!0),K=$e(S,H,!1,!1)):(j=$e(M,H,!0,!0),K=$e(H,S,!0,!0)),r!=null){let Z=Tf(U,H);return[j,K,Z]}else return[j,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?cr((D,$,S)=>{let M=O.runKernel(ii,E,F);return S([D,$,M]),{value:W(M,y),gradFunc:C}})(x,w):cr((D,$,S,M)=>{let B=O.runKernel(ii,E,F);return M([D,$,B,S]),{value:W(B,y),gradFunc:C}})(x,w,I)}var dz=L({fusedMatMul_:cz});function hz(e){return Sf(e,.54,.46)}var mz=L({hammingWindow_:hz});function fz(e){return Sf(e,.5,.5)}var ST=L({hannWindow_:fz});function gz(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ue(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([Ue(e,s,t-o),xn([o],r)]);i.push(l),s+=n}return i.length===0?$a([],[0,t]):W(Qe(i),[i.length,t])}var NT=L({frame_:gz});function bz(e,t,n,a,r=ST){a==null&&(a=$w(t));let s=NT(e,t,n),i=z(s,r(t));return fd(i,a)}var yz=L({stft_:bz});function xz(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(gu,p,d)}var vz=L({cropAndResize_:xz});function wz(e){let t=_(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(ku,n,{})}var kz=L({flipLeftRight_:wz});function Iz(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var Sz=L({grayscaleToRGB_:Iz});function Nz(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(op,s,i)}var Tz=L({rotateWithOffset_:Nz});function hp(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function Cz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=hp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(Lu,{boxes:s,scores:i},l)}var _z=L({nonMaxSuppression_:Cz});function Ez(e,t,n){let a=Az(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function Az(e,t,n){return $z(e,t,n||Fz)}function Fz(e,t){return e>t?1:e<t?-1:0}function $z(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function TT(e,t,n,a,r){return Rw(e,t,n,a,r,0)}function CT(e,t,n,a,r,s){return Rw(e,t,n,a,r,0,!1,s,!0)}function _T(e,t,n,a,r,s){return Rw(e,t,n,a,r,s,!0)}function Rw(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(iI);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=Dz(e,y,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*Rz(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&Ez(u,g,iI))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function Dz(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function Rz(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function iI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function Mz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=hp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=TT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),je(d,"int32")}var Pz=Mz;function Oz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=hp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(Wu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var Lz=L({nonMaxSuppressionWithScore_:Oz});async function zz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=hp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=_T(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(c,"int32"),selectedScores:je(h)}}var Wz=zz;function Bz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=hp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(zu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var Vz=L({nonMaxSuppressionPadded_:Bz});async function Uz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=hp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=CT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(m,"int32"),validOutputs:ve(f,"int32")}}var Gz=Uz;function Hz(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(Io,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ET=L({resizeBilinear_:Hz});function qz(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(ko,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var AT=L({resizeNearestNeighbor_:qz});function jz(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(je([a]),255),p,d,c,h;if(A(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),A(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),A(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),b=z(c,o);h=X(X(f,g),b)}else h=e;if(t==="otsu"){let f=Uv(ie(df(h),"int32"),bn([]),256);u=Kz(f,l)}let m=n?Es(h,u):_n(h,u);return ie(z(m,255),"int32")}function Kz(e,t){let n=je([-1]),a=je([0]),r=je([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Ue(e,0,d+1),i=Ue(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,gi(0,s.size)));o=he(c,fe(s));let h=xn(i.shape,s.size),m=X(gi(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),b=pe(o,l),y=z(u,p);r=z(z(y,g),b);let x=_n(r,a);a=an(x,r,a),n=an(x,je([d]),n)}return n}var Xz=L({threshold_:jz});function Yz(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(rp,l,u)}var Zz=L({transform_:Yz});function Jz(e,t,n){let a=_(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2),o,l;typeof t=="number"?(A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),o=_(t<0?s:t,"numLower","bandPart")):(A(t.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),o=an(Bl(t,0),s,ms(t,s))),typeof n=="number"?(A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`),A(n<=i,()=>`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`),l=_(n<0?i:n,"numUpper","bandPart")):(A(n.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),l=an(Bl(n,0),i,ms(n,i)));let u=W(gi(0,s,1,"int32"),[-1,1]),p=gi(0,i,1,"int32"),d=pe(u,p),c=Da(Es(d,o),Pr(d,yt(l))),h=Nt([s,i],a.dtype);return W(Dt(ct(W(a,[-1,s,i])).map(m=>an(c,m,h))),r)}var Qz=L({bandPart_:Jz});function eW(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)A(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>$s(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,pp(s,"euclidean"))}));return t?Dt(n,0):n}var tW=L({gramSchmidt_:eW});function nW(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return oI(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=oI(l,t);r.push(u),s.push(p)});let i=W(Dt(r,0),e.shape),o=W(Dt(s,0),e.shape);return[i,o]}}function oI(e,t=!1){return O.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=af(n),s=or(e),i=$a([[1]],[1,1]),o=or(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=Ue(s,[u,u],[n-u,1]),m=pp(h),f=Ue(s,[u,u],[1,1]),g=an(_n(f,0),$a([[-1]]),$a([[1]])),b=pe(f,z(g,m)),y=he(h,b);y.shape[0]===1?o=or(i):o=Qe([i,Ue(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=yt(he($e(g,b),m)),w=Ue(s,[u,0],[n-u,a]),I=z(x,o),T=De(o);if(u===0)s=pe(w,$e(I,$e(T,w)));else{let F=pe(w,$e(I,$e(T,w)));s=Qe([Ue(s,[0,0],[u,a]),F],0)}let C=De(I),E=Ue(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,$e($e(E,o),C));else{let F=pe(E,$e($e(E,o),C));r=Qe([Ue(r,[0,0],[n,u]),F],1)}return[o,s,r]}),_e([p,d,c])}return!t&&n>a&&(r=Ue(r,[0,0],[n,a]),s=Ue(s,[0,0],[a,a])),[r,s]})}var aW=L({qr_:nW}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function rW(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===In.NONE)return s;if(n===In.SUM)return fe(s);if(n===In.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,ve(i)):o}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),ve(a.size));{let i=z(r,Qn(a.shape)),o=ie(fe(fi(i,ve(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Or=L({computeWeightedLoss_:rW});function sW(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),Tn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Wt(pe(r,s));return Or(o,i,a)}var iW=L({absoluteDifference_:sW});function oW(e,t,n,a,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),Tn(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),u=pe(l,fe(z(s,i),n,!0));return Or(u,o,r)}var lW=L({cosineDistance_:oW});function uW(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),Tn(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=pe(z(ve(2),r),o);let l=Ke(pe(o,z(r,s)));return Or(l,i,a)}var pW=L({hingeLoss_:uW});function cW(e,t,n,a=1,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),Tn(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),u=Wt(pe(i,s)),p=ms(u,l),d=pe(u,p),c=X(z(ve(.5),ut(p)),z(l,d));return Or(c,o,r)}var dW=L({huberLoss_:cW});function hW(e,t,n,a=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),Tn(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),u=ve(a),p=yt(z(s,na(X(i,u)))),d=z(pe(l,s),na(X(pe(l,i),u))),c=pe(p,d);return Or(c,o,r)}var mW=L({logLoss_:hW});function fW(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),Tn(r.shape,s.shape,"Error in meanSquaredError: ");let o=xf(r,s);return Or(o,i,a)}var gW=L({meanSquaredError_:fW});function bW(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");Tn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ke(a),s=z(a,n),i=ld(yn(yt(Wt(a))));return X(pe(r,s),i)}function yW(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),Tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(.5);s=X(z(s,pe(p,u)),z(d,u))}let l=bW(s,i);return Or(l,o,r)}var xW=L({sigmoidCrossEntropy_:yW});function vW(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return cr((a,r,s)=>{let i=of(r,[n],!0),o=pe(ie(r,"float32"),i);s([a,o]);let l=yt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=mi(u.shape,[n]);return[z(W(u,h),pe(ie(d,"float32"),yn(c))),z(W(u,h),pe(yn(c),ie(d,"float32")))]}}})(e,t)}function wW(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),Tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(s.shape[1]);s=X(z(s,pe(p,u)),he(u,d))}let l=vW(s,i);return Or(l,o,r)}var kW=L({softmaxCrossEntropy_:wW});function IW(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(Vc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var SW=L({sparseFillEmptyRows_:IW});function NW(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(ep,i);return{outputIndices:o[0],outputShape:o[1]}}var TW=L({sparseReshape_:NW});function CW(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Uc,i)}var _W=L({sparseSegmentMean_:CW});function EW(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Gc,i)}var AW=L({sparseSegmentSum_:EW});function FW(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(jc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var $W=L({stringNGrams_:FW});function DW(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(Kc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var RW=L({stringSplit_:DW});function MW(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(Xc,r,a)}var PW=L({stringToHashBucketFast_:MW});function OW(e,t,n,a=!0){let r=_(e,"input","staticRegexReplace","string"),s={pattern:t,rewrite:n,replaceGlobal:a};return O.runKernel(qc,{x:r},s)}var LW=L({staticRegexReplace_:OW}),FT={fft:md,ifft:Hl,rfft:fd,irfft:yf},$T={hammingWindow:mz,hannWindow:ST,frame:NT,stft:yz},ea={flipLeftRight:kz,grayscaleToRGB:Sz,resizeNearestNeighbor:AT,resizeBilinear:ET,rotateWithOffset:Tz,cropAndResize:vz,nonMaxSuppression:_z,nonMaxSuppressionAsync:Pz,nonMaxSuppressionWithScore:Lz,nonMaxSuppressionWithScoreAsync:Wz,nonMaxSuppressionPadded:Vz,nonMaxSuppressionPaddedAsync:Gz,threshold:Xz,transform:Zz},Mw={bandPart:Qz,gramSchmidt:tW,qr:aW},DT={absoluteDifference:iW,computeWeightedLoss:Or,cosineDistance:lW,hingeLoss:pW,huberLoss:dW,logLoss:mW,meanSquaredError:gW,sigmoidCrossEntropy:xW,softmaxCrossEntropy:kW},RT={sparseFillEmptyRows:SW,sparseReshape:TW,sparseSegmentMean:_W,sparseSegmentSum:AW},MT={stringNGrams:$W,stringSplit:RW,stringToHashBucketFast:PW,staticRegexReplace:LW},ne={};Ee(ne,{Serializable:()=>PT,SerializationMap:()=>Ys,registerClass:()=>OT});var PT=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function OT(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var Lr=class extends PT{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return _e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return LN(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Lr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Pw=class extends Lr{static get className(){return"Adadelta"}constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=X(z(i,this.rho),z(ut(s),1-this.rho)),u=z(he(mn(X(o,this.epsilon)),mn(X(i,this.epsilon))),s),p=X(z(o,this.rho),z(ut(u),1-this.rho));i.assign(l),o.assign(p);let d=X(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}},Ow=class extends Lr{static get className(){return"Adagrad"}constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>xn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=X(s,ut(r));s.assign(i);let o=X(z(he(r,mn(X(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}},Lw=class extends Lr{static get className(){return"Adam"}constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=X(z(p,this.beta2),z(ut(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=X(z(he(h,X(mn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(Rr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Rr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}},zw=class extends Lr{static get className(){return"Adamax"}constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,X(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Wt(l),m=mr(c,h);u.assign(d),p.assign(m);let f=X(z(he(a,n),he(d,X(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(X(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}},Ef=class extends Lr{static get className(){return"SGD"}constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=X(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}},Ww=class extends Ef{static get className(){return"Momentum"}constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=X(z(this.m,r),s);this.useNesterov?i=X(z(this.c,X(s,z(o,this.m))),a):i=X(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}},Bw=class extends Lr{static get className(){return"RMSProp"}constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=X(z(i,this.decay),z(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=X(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),mn(pe(l,X(ut(p),this.epsilon)))),c=X(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=X(z(i,this.decay),z(ut(s),1-this.decay)),p=X(z(o,this.momentum),he(z(s,this.learningRate),mn(X(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}},zW=[Pw,Ow,Lw,zw,Ww,Bw,Ef];function WW(){for(let e of zW)OT(e)}var qt={};Ee(qt,{browserFiles:()=>jW,browserHTTPRequest:()=>eB,concatenateArrayBuffers:()=>Tv,copyModel:()=>WM,decodeWeights:()=>uN,encodeWeights:()=>fM,fromMemory:()=>nB,fromMemorySync:()=>VT,getLoadHandlers:()=>TM,getModelArtifactsForJSON:()=>Cv,getModelArtifactsForJSONSync:()=>cN,getModelArtifactsInfoForJSON:()=>nd,getSaveHandlers:()=>NM,getWeightSpecs:()=>dN,http:()=>Uw,isHTTPScheme:()=>$x,listModels:()=>LM,loadWeights:()=>YW,moveModel:()=>BM,registerLoadRouter:()=>SM,registerSaveRouter:()=>IM,removeModel:()=>zM,weightsLoaderFactory:()=>zT,withSaveHandler:()=>aB,withSaveHandlerSync:()=>rB});var BW="model",VW=".json",UW=".weights.bin";function lI(e){return new Promise(t=>setTimeout(t)).then(e)}var jl=class{constructor(e){if(!G().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(jl.URL_SCHEME)&&(e=e.slice(jl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=BW),this.modelJsonFileName=e+VW,this.weightDataFileName=e+UW}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=pN(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await lI(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await lI(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:nd(e)}}}};jl.URL_SCHEME="downloads://";var GW=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Cv(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Tv(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>sI(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=sI(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},HW=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(jl.URL_SCHEME)?qW(e.slice(jl.URL_SCHEME.length)):null;$t.registerSaveRouter(HW);function qW(e="model"){return new jl(e)}function jW(e){return new GW(e)}var KW=class{constructor(e){if(this.shards=[],this.previousShardIndex=0,e instanceof Array||(e=[e]),e=e.map(n=>en(n)?n.buffer:n),e.length===0)return;this.bufferUniformSize=e[0].byteLength;let t=0;for(let n=0;n<e.length;n++){let a=e[n];n!==e.length-1&&a.byteLength!==this.bufferUniformSize&&(this.bufferUniformSize=void 0);let r=t+a.byteLength;this.shards.push({buffer:a,start:t,end:r}),t=r}this.shards.length===0&&(this.byteLength=0),this.byteLength=this.shards[this.shards.length-1].end}slice(e=0,t=this.byteLength){if(e=isNaN(Number(e))?0:e,t=isNaN(Number(t))?0:t,e=Math.max(0,e),t=Math.min(this.byteLength,t),t<=e)return new ArrayBuffer(0);let n=this.findShardForByte(e);if(n===-1)throw new Error(`Could not find start shard for byte ${e}`);let a=t-e,r=new ArrayBuffer(a),s=new Uint8Array(r),i=0;for(let o=n;o<this.shards.length;o++){let l=this.shards[o],u=e+i-l.start,p=i,d=Math.min(t,l.end)-l.start,c=new Uint8Array(l.buffer.slice(u,d));if(s.set(c,p),i+=c.length,t<l.end)break}return r}findShardForByte(e){if(this.shards.length===0||e<0||e>=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(e/this.bufferUniformSize),this.previousShardIndex;function t(a){return e<a.start?-1:e>=a.end?1:0}if(t(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let n=XW(this.shards,t);return n===-1?-1:(this.previousShardIndex=n,this.previousShardIndex)}};function XW(e,t){let n=0,a=e.length;for(;n<=a;){let r=Math.floor((a-n)/2)+n,s=t(e[r]);if(s===0)return r;s<0?a=r:n=r+1}return-1}function uI(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function LT(e,t){t==null&&(t={});let n=t.fetchFunc==null?G().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await uI(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await uI(i,t.onProgress,o,l)}async function YW(e,t="",n,a){return zT(r=>LT(r,{requestInit:a}))(e,t,n)}function zT(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=Tx[b]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=new KW(p.slice(c,c+m));s[h].forEach(g=>{let b=f.slice(g.groupOffset,g.groupOffset+g.sizeBytes),y=uN(b,[g.manifestEntry]);for(let x in y)d[x]=y[x]}),c+=m}),d}}var ZW="application/octet-stream",JW="application/json",Vw=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=G().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=pN(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:JW}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:ZW}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:nd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Cv(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=QW(t),r=this.weightPathPrefix||n,s=dN(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await LT(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Tv(l)]}};Vw.URL_SCHEME_REGEX=/^https?:\/\//;function QW(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function $x(e){return e.match(Vw.URL_SCHEME_REGEX)!=null}var WT=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>$x(a)):n=$x(e),n)return Uw(e,t)}return null};$t.registerSaveRouter(WT);$t.registerLoadRouter(WT);function Uw(e,t){return new Vw(e,t)}function eB(e,t){return Uw(e,t)}var ix=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},BT=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},tB=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function nB(e,t,n,a){let r=arguments;return new tB(VT(...r))}function VT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new ix(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ix({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ix({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function aB(e){return new BT(e)}function rB(e){return new BT(e)}var UT={};Ee(UT,{confusionMatrix:()=>iB});function sB(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Vl(ie(a,"int32"),n),i=Vl(ie(r,"int32"),n),o=De(s),l=$e(o,i);return ie(l,"int32")}var iB=L({confusionMatrix_:sB}),Uo={};Ee(Uo,{fromPixels:()=>hB,fromPixelsAsync:()=>cB,toPixels:()=>dB});var Hs;function GT(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(nm(tm,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(tm,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Hs==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Hs=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Hs=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Hs.canvas.width=l,Hs.canvas.height=u,Hs.drawImage(e,0,0,l,u),p=Hs.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return gd(d,[u,l,t],"int32")}function oB(e){return e!=null&&e.data instanceof Uint8Array}function lB(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function uB(e){return e!=null&&e.width!==0&&e.height!==0}function pB(e){return lB()&&!(e instanceof ImageBitmap)&&uB(e)&&!oB(e)}async function cB(e,t=3){let n=null;if(G().getBool("WRAP_TO_IMAGEBITMAP")&&pB(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return GT(n,t)}async function dB(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Ce)){let u=n;n=ie(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var hB=L({fromPixels_:GT}),Gw={};Ee(Gw,{prepareAndValidate:()=>HT});function HT(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...au(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Kt={};Ee(Kt,{assertParamsValid:()=>fB,computeFlatOffset:()=>vB,computeOutShape:()=>bB,getNormalizedAxes:()=>yB,isSliceContinous:()=>xB,maskToAxes:()=>gB,parseSliceParams:()=>e2,sliceInfo:()=>wB,startForAxis:()=>JT,startIndicesWithElidedDims:()=>XT,stopForAxis:()=>QT,stopIndicesWithElidedDims:()=>YT,stridesForAxis:()=>ZT,stridesWithElidedDims:()=>qT});var Dx=-2,mB=-1;function fB(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)A(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function gB(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function bB(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function qT(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function jT(e,t,n){return n<=e?n:n-(t-1)}function KT(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function yB(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=XT(i,h,m,a,e),d=YT(o,h,m,r,e),c=qT(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=JT(i,a,s,e,h,l),d[h]=QT(o,r,s,e,h,l),c[h]=ZT(s,h,l);return{begin:p,end:d,strides:c}}function XT(e,t,n,a,r){let s=[...r],i=KT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=jT(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function YT(e,t,n,a,r){let s=[...r],i=KT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=jT(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=mc(0,s[o],r[o])}return s}function ZT(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function JT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=mc(0,i,l-1),i}function QT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=mc(0,i,l):i=mc(-1,i,l-1),i}function xB(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function vB(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function e2(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function wB(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&1<<y&o&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};kB(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],T=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let C=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let $=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=$,c.end[y]=c.begin[y]+1,$<0||$>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=pI(c.begin[y],0,c.strides[y],w,I,T),c.end[y]=pI(c.end[y],1,c.strides[y],w,I,T);let D=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&D,m=m&&(y===0&&c.strides[y]===1||D)}else h=h&&c.strides[y]===1&&C,m=m&&(y===0&&c.strides[y]===1||C);let E,F=!1;if(c.beginValid&&c.endValid?(E=c.end[y]-c.begin[y],F=!0):x?(E=1,F=!0):C&&w>=0&&(c.strides[y]<0?E=-w:E=w,F=!0),F){let D;E===0||E<0!=c.strides[y]<0?D=0:D=Math.trunc(E/c.strides[y])+(E%c.strides[y]!==0?1:0),g.push(D)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===Dx&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==Dx),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function kB(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Dx),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(mB),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function pI(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var IB="4.5.0",t2=class{static sgd(e){return new Ef(e)}static momentum(e,t,n=!1){return new Ww(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Bw(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Lw(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Pw(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new zw(e,t,n,a,r)}static adagrad(e,t=.1){return new Ow(e,t)}},Ks=t2,SB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Hw(){return new Promise(e=>SB(()=>e()))}var N={};Ee(N,{ERF_A1:()=>zB,ERF_A2:()=>WB,ERF_A3:()=>BB,ERF_A4:()=>VB,ERF_A5:()=>UB,ERF_P:()=>LB,PARALLELIZE_THRESHOLD:()=>qw,RowPartitionType:()=>ar,SELU_SCALE:()=>a2,SELU_SCALEALPHA:()=>n2,applyActivation:()=>Cf,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>TO,assertParamsConsistent:()=>NB,assignToTypedArray:()=>XB,axesAreInnerMostDims:()=>aw,calculateShapes:()=>dT,checkEinsumDimSizes:()=>t4,checkPadOnDimRoundingMode:()=>Cn,combineLocations:()=>DN,combineRaggedTensorToTensorShapes:()=>CB,complexWithEvenIndex:()=>qB,complexWithOddIndex:()=>jB,computeConv2DInfo:()=>ad,computeConv3DInfo:()=>IN,computeDefaultPad:()=>Lv,computeDilation2DInfo:()=>SP,computeOptimalWindowSize:()=>FB,computeOutAndReduceShapes:()=>RN,computeOutShape:()=>TB,computePool2DInfo:()=>kN,computePool3DInfo:()=>NP,convertConv2DDataFormat:()=>SN,decodeEinsumEquation:()=>QB,eitherStridesOrDilationsAreOne:()=>hr,expandShapeToKeepDim:()=>mi,exponent:()=>ZB,exponents:()=>YB,fromStringArrayToUint8:()=>k4,fromUint8ToStringArray:()=>w4,getAxesPermutation:()=>MN,getBroadcastDims:()=>AN,getComplexWithIndex:()=>KB,getEinsumComputePath:()=>n4,getEinsumPermutation:()=>e4,getFusedBiasGradient:()=>Tf,getFusedDyActivation:()=>Nf,getImageCenter:()=>$B,getInnerMostAxes:()=>CO,getPermuted:()=>RB,getRaggedRank:()=>EB,getReductionAxes:()=>Ut,getReshaped:()=>DB,getReshapedPermuted:()=>MB,getRowPartitionTypesHelper:()=>_B,getSliceBeginCoords:()=>PB,getSliceSize:()=>OB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>i4,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>o4,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>l4,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>c4,getSparseReshapeInputOutputMismatchErrorMessage:()=>h4,getSparseReshapeInputOutputMultipleErrorMessage:()=>d4,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>u4,getSparseReshapeNegativeOutputDimErrorMessage:()=>p4,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>b4,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>m4,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>f4,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>g4,getUndoAxesPermutation:()=>rw,isIdentityPermutation:()=>a4,log:()=>OR,mergeRealAndImagArrays:()=>GB,prepareAndValidate:()=>HT,prepareSplitSize:()=>s4,segment_util:()=>r2,shouldFuse:()=>_f,slice_util:()=>Kt,splitRealAndImagArrays:()=>HB,stridesOrDilationsArePositive:()=>di,tupleValuesAreOne:()=>hs,upcastType:()=>ba,validateDefaultValueShape:()=>AB,validateInput:()=>wf,validateUpdateShape:()=>Tw,warn:()=>ns});function NB(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)A(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function TB(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var ar;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(ar||(ar={}));function CB(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function _B(e){let t={FIRST_DIM_SIZE:ar.FIRST_DIM_SIZE,VALUE_ROWIDS:ar.VALUE_ROWIDS,ROW_LENGTHS:ar.ROW_LENGTHS,ROW_SPLITS:ar.ROW_SPLITS,ROW_LIMITS:ar.ROW_LIMITS,ROW_STARTS:ar.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function EB(e){return e.length===0?0:e[0]===ar.FIRST_DIM_SIZE?e.length-1:e.length}function AB(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var qw=30;function FB(e){return e<=qw?e:em(e,Math.floor(Math.sqrt(e)))}function $B(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function DB(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function RB(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function MB(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function PB(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function OB(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var n2=1.7580993408473768,a2=1.0507009873554805,LB=.3275911,zB=.254829592,WB=-.284496736,BB=1.421413741,VB=-1.453152027,UB=1.061405429;function GB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function HB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function qB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function jB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function KB(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function XB(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function YB(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function ZB(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var ox="->",JB=/->/g,cI=",",dI="...";function QB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(JB,"").length)/ox.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${ox}").`);let[a,r]=e.split(ox);A(a.indexOf(dI)===-1,()=>`The ellipsis notation ("${dI}") is not supported yet.`);let s=a.split(cI),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==cI&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function e4(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function t4(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:A(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function n4(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=r4(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function a4(e){return e.every((t,n)=>t===n)}function r4(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function s4(e,t,n=0){let a=[];if(typeof t=="number")A(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function i4(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function o4(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function l4(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function u4(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function p4(e,t){return`size ${e} must be non-negative, not ${t}`}function c4(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function d4(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function h4(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function m4(){return"segment ids must be >= 0"}function f4(){return"segment ids are not increasing"}function g4(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function b4(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var r2={};Ee(r2,{collectGatherOpShapeInfo:()=>v4,computeOutShape:()=>x4,segOpComputeOptimalWindowSize:()=>y4});function y4(e,t){let n=!1,a;for(e<=qw?(a=e,n=!0):a=em(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=em(e,a+1);return a}function x4(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function v4(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function w4(e){try{return e.map(t=>rm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function k4(e){return e.map(t=>ed(t))}var fr={};Ee(fr,{nonMaxSuppressionV3Impl:()=>TT,nonMaxSuppressionV4Impl:()=>CT,nonMaxSuppressionV5Impl:()=>_T,whereImpl:()=>fT});WW();var s2={kernelName:ru,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Vo(ie(n,"float32"),-1))}}},I4={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(ie(n,"float32")),r=mn(pe(ve(1),a));return yt(he(e,r))}}}},S4={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=mn(pe(ut(ie(n,"float32")),1));return he(e,a)}}}},N4={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Ut(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Ut(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},T4={kernelName:Ti,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},C4={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},_4={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},E4={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,mn(pe(ve(1),ut(ie(n,"float32")))))}}},A4={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=mn(X(ve(1),ut(ie(n,"float32"))));return he(e,a)}}}},F4={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=X(ut(n),ut(a)),i=z(e,he(a,s)),o=Ut(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=X(ut(n),ut(a)),i=yt(z(e,he(n,s))),o=Ut(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},$4={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(ut(ie(n,"float32")),1))}}},D4={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(ve(1),ut(ie(n,"float32"))))}}};function R4(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Cn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(Rc,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var M4=L({avgPool3dGrad_:R4}),P4={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>M4(e,a,r,s,i,o)}}};function O4(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel($m,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var L4=L({avgPoolGrad_:O4}),z4={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>L4(e,a,r,s,i)}}},W4={kernelName:Di,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>$e(e,r,!1,!0),b:()=>$e(a,e,!0,!1)}:!s&&i?{a:()=>$e(e,r,!1,!1),b:()=>$e(e,a,!0,!1)}:s&&!i?{a:()=>$e(r,e,!1,!0),b:()=>$e(a,e,!1,!1)}:{a:()=>$e(r,e,!0,!0),b:()=>$e(e,a,!0,!0)}}},B4={kernelName:pu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>cd(e,a,r)}}},V4={kernelName:KS,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},U4={kernelName:Ri,gradFunc:e=>({x:()=>e.clone()})},G4={kernelName:Mi,gradFunc:e=>({x:()=>qe(e)})},H4={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>an(Da(Pr(a,r),Es(a,s)),e,qe(e))}}},q4={kernelName:Pc,inputsToSave:["x"],gradFunc:s2.gradFunc},j4={kernelName:du,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ra(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},K4={kernelName:Pi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(hs(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Xv(a.shape,e,r,i,o,l),filter:()=>Dw(a,e,r.shape,i,o,l)}}},X4={kernelName:Oi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>Dw(e,a,r.shape,s,i,o,l)}}};function Y4(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(hu,o,l)}var Z4=L({conv3DBackpropFilter_:Y4}),J4={kernelName:Li,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(hs(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>_N(i.shape,e,o,r,s),filter:()=>Z4(i,e,o.shape,r,s)}}},Q4={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(yt(ff(ie(n,"float32"))),e)}}},eV={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(gf(ie(n,"float32")),e)}}},tV={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=MN([r],a.rank),l=nf(e,r,s,!i);return o!=null&&(l=De(l,o)),l}}}},nV={kernelName:Vi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(hs(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(hr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Cn("depthwiseConv2d",s,i),{x:()=>IT(l.shape,e,u,r,s,o,i),filter:()=>kT(l,e,u.shape,r,s,o,i)}}},aV={kernelName:Ui,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(Ol,s,n),filter:()=>O.runKernel(Ll,i,n)}}},rV={kernelName:Hi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(yu,a)}}},sV={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(yn(yt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},iV={kernelName:qi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},oV={kernelName:wu,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},lV={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,yn(n))}}},uV={kernelName:Ki,gradFunc:e=>({x:()=>qe(e)})},pV={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ut(a);return yt(he(s,ie(o,"float32")))}}}},cV={kernelName:Yi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,u=Ut(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=hf(X(i,ve(a))),m=z(z(z(h,h),h),ve(-.5));return{x:()=>s.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,ve(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},dV={kernelName:Iu,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ra(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=hI(0,p),m=hI(p+1,p+1+c),f=mI([u,[l],d]),g=W(e,f),b=W(r,[l]),y=mI([[p],h,m]),x=De(g,y),w=If(x,b,a.shape[i]),I=rw(y);return w=De(w,I),w},indices:()=>r}}};function hI(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function mI(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var hV={kernelName:Zi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},mV={kernelName:Ji,gradFunc:e=>({x:()=>ie(e,"float32")})},fV={kernelName:Qi,gradFunc:e=>({x:()=>qe(e)})},gV={kernelName:eo,gradFunc:e=>({x:()=>qe(e)})},bV={kernelName:to,gradFunc:e=>({x:()=>qe(e)})},yV={kernelName:no,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=_n(a,0);return{x:()=>an(s,e,z(e,r))}}},xV={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(n,1))}}},vV={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(n,"float32"))}}},wV={kernelName:YS,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=yn(a);return pe(e,z(fe(e,r,!0),s))}}}};function kV(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel($u,o,l)}var IV=L({localResponseNormalizationBackprop_:kV}),SV={kernelName:so,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>IV(a,r,e,s,i,o,l)}}};function i2(e,t,n,a){return t.rank<n.rank&&(t=W(t,mi(t.shape,a))),e.rank<n.rank&&(e=W(e,mi(e.shape,a))),{x:()=>z(e,ie(ta(n,t),e.dtype))}}var fI={kernelName:io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ra(r,s.shape),l=i2(e,i,s,o);return{x:()=>l.x()}}},NV={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Pr(n,a),"float32")),b:()=>z(e,ie(Bl(n,a),"float32"))}}};function TV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),A(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Cn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(Wc,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var CV=L({maxPool3dGrad_:TV}),_V={kernelName:Du,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>CV(e,a,r,s,i,o,l)}}};function EV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Cn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(Vm,p,d)}var AV=L({maxPoolGrad_:EV}),FV={kernelName:lo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>AV(e,a,r,s,i,o)}}},$V={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ra(r,a.shape),i=RN(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return he(z(u,Qn(a.shape,"float32")),o)}}}},DV={kernelName:po,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ra(r,s.shape),l=i2(e,i,s,o);return{x:()=>l.x()}}},RV={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Es(n,a),"float32")),b:()=>z(e,ie(_n(n,a),"float32"))}}},MV={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ue(e,s,a.shape)}}},PV={kernelName:Ru,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=Ut(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,yt(cp(he(n,a)))),i=Ut(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},OV={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=z(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},LV={kernelName:Pu,gradFunc:e=>({x:()=>yt(e)})},zV={kernelName:fo,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Nt(n.shape,"float32")}}},WV={kernelName:Bu,gradFunc:e=>({x:()=>qe(e)})},BV={kernelName:Vu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},gI={kernelName:go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ue(e,s,a.shape)}}},VV={kernelName:bo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=ie(i,"float32"),u=z(e,z(l,Rr(s,pe(l,ve(1))))),p=Ut(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=_n(s,0),u=an(l,na(s),qe(s)),p=z(e,z(r,u)),d=Ut(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},UV={kernelName:yo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=_n(n,0);return{x:()=>an(r,e,z(e,a)),alpha:()=>{let s=an(r,qe(e),z(e,n)),i=Ut(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function GV(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=kc(e,n,!0,!1),i=kc(e,n,!0,!0),o=z(s,i);return z(r,o)}function HV(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=De(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=GV(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=De(p,d)}return p}var qV={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>HV(a,e,s)}}},jV={kernelName:Gi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ut(a);return yt(he(s,ie(o,"float32")))}}}},KV={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,yt(ut(n)))}}},XV={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Es(n,6),Vo(n));return{x:()=>z(e,ie(a,"float32"))}}},YV={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ie(Vo(n),"float32"))}}},ZV={kernelName:Uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},JV={kernelName:Io,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Hu,r,n)}}},QV={kernelName:ko,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Gu,r,n)}}},eU={kernelName:No,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ra(a,e.shape);return{x:()=>ya(e,r)}}},tU={kernelName:To,gradFunc:e=>({x:()=>qe(e)})},nU={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yt(he(e,z(Rr(n,1.5),2)))}}},aU={kernelName:Xu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ie(qe(n),"float32"),t:()=>z(e,ie(n,e.dtype)),e:()=>z(e,ie(ud(n),e.dtype))}}},rU={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=_n(n,ve(0)),r=ve(n2),s=ve(a2),i=z(e,s),o=z(z(e,r),yn(ie(n,"float32")));return an(a,i,o)}}}},sU={kernelName:Fo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(ve(1),n)))}}},iU={kernelName:Ao,gradFunc:e=>({x:()=>qe(e)})},oU={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(sd(ie(n,"float32")),e)}}},lU={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(tf(ie(n,"float32")),e)}}},uU={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=e2(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>va(e,u)}}},pU={kernelName:Mo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},cU={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,fa(n))}}},bI={kernelName:Ju,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>rd(e,a,r)}}},yI={kernelName:Qu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},dU={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(mn(ie(n,"float32")),2))}}},hU={kernelName:Hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ie(n,"float32"),2))}}},mU={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},fU={kernelName:Ns,gradFunc:e=>({x:()=>qe(e)})},gU={kernelName:Oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Ut(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Ut(a.shape,r);return i.length>0&&(s=fe(s,i)),W(yt(s),a.shape)}}}},bU={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ra(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Qn(a.shape,"float32"));return{x:()=>o}}},yU={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ut(sd(n)))}}},xU={kernelName:zo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(ve(1),ut(n)),e)}}},vU={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=X(s,Ue(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},wU={kernelName:Fr,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=rw(r);return{x:()=>De(e,s)}}},kU={kernelName:sp,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},IU={kernelName:Zc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>SU(e,n)}}};function SU(e,t){let n=mr(t,qe(t)),a=dp(e,n),r=Pr(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=tn(r,o+1);r=Da(r,Qn(a.shape,"bool"));let i=qe(a);return an(r,a,i)}var NU={kernelName:ip,gradFunc:e=>({x:()=>qe(e)})},TU=[s2,I4,S4,N4,T4,C4,_4,E4,A4,F4,$4,D4,P4,z4,W4,B4,V4,U4,G4,H4,q4,j4,X4,K4,J4,Q4,eV,tV,nV,aV,jV,rV,sV,iV,oV,lV,pV,uV,cV,dV,hV,mV,fV,gV,bV,yV,xV,vV,wV,SV,fI,fI,NV,_V,FV,$V,DV,RV,MV,PV,OV,LV,zV,WV,BV,gI,gI,VV,UV,qV,KV,XV,YV,ZV,JV,QV,eU,tU,nU,aU,rU,sU,iU,oU,lU,uU,pU,cU,bI,bI,yI,yI,dU,mU,hU,fU,gU,bU,yU,xU,vU,wU,kU,IU,NU];for(let e of TU)ZS(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Wt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),Av(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),Fv(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),X(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Jm(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),xc(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),ci(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),$v(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),W(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};Q().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),Dv(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),Rv(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),Mv(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),Pv(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Ov(this)};Q().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),xa(this,e,t,n,a)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),rd(this,e,t)};Q().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Cs(this,e,t,n,a,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ai(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),Gv(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),rn(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ce&&(e=[e]),Qe([this,...e],t)};Q().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Qm(this,e,t,n,a,r,s)};Q().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),ef(this,e,t,n,a,r)};Q().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};Q().prototype.cos=function(){return this.throwIfDisposed(),sd(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),tf(this)};Q().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),kc(this,e,t,n)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),nf(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Jv(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),_s(this,e,t,n,a,r,s)};Q().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Qv(this,e,t,n,a,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),ew(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),tw(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),up(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),ta(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),nw(this)};Q().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),sw(this,e,t)};Q().prototype.exp=function(){return this.throwIfDisposed(),yn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),tn(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),iw(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),md(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),cp(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),Zm(this,e)};Q().prototype.gather=function(e,t,n){return this.throwIfDisposed(),dp(this,e,t,n)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Pr(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),_n(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),Hl(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),yf(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),ow(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),lw(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),uw(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),od(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),Es(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Bl(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),pw(this,e,t,n,a)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),cw(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),sf(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),of(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),na(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),ld(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Da(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),ud(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),lf(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),dw(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),$e(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mt(this,e,t,n,a)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),ga(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),mr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),Wl(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),ms(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),mw(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),fw(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),yt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),pp(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),fi(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Vl(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),aa(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),va(this,e,t)};Q().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),gw(this,e,t,n,a,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),Rr(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),dd(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),bw(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),kw(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Ke(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),cf(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),ET(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),AT(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),ya(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),fd(this)};Q().prototype.round=function(){return this.throwIfDisposed(),df(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),hf(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),mf(this)};Q().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Fs(this,e,t,n,a,r,s)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),fa(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),Iw(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),ff(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),gf(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Ue(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Xa(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),Wo(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),cd(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),mn(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ut(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),xf(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),$s(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ce?[this,e]:[this,...e];return Dt(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),Vo(this,e)};Q().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Sw(this,e,t,n,a,r,s,i,o)};Q().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),Nw(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),hi(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),ie(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),ie(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),ie(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),Cw(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),De(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),_w(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),If(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),an(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var Tr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Tr.prototype)}},Ba=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ba.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Le=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Le.prototype)}},o2=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,o2.prototype)}},l2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function bi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new o2(t)}function xI(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function kt(e){return Array.isArray(e)?e:[e]}function Cr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Zs(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ta={};function jw(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Rx(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Rx(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Rx(a))}}}function bd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ta)i=Ta[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ta?[o,l]=Ta.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Ta))u[h]=Ta[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},Ta);for(let h of Object.keys(n))Ta[h]=n[h];Rx(s.config);let c=l(o,s.config,n,r);return Ta=Object.assign({},d),c}else{let u=Object.assign({},Ta);for(let d of Object.keys(n))Ta[d]=n[d];let p=new o(s.config);return Ta=Object.assign({},u),p}}}function CU(e,t){return e<t?-1:e>t?1:0}function Fh(e,t){return-1*CU(e,t)}function ls(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function _U(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Go(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Kw(e,t,n=0,a=1/0){return rr(n>=0),rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function nn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>nn(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${u2(e)}.`)}function u2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>u2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function EU(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function p2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var AU=0;function c2(){return AU++}var $h={};function Af(e=""){return e in $h||($h[e]=0),$h[e]+=1,e+$h[e].toString()}var FU=["channelsFirst","channelsLast"],$U=["nearest","bilinear"],DU=["valid","same","causal"],RU=["max","avg"],MU=["sum","mul","concat","ave"],_l=new Map;function Pt(e){Go(FU,"DataFormat",e)}function PU(e){Go($U,"InterpolationFormat",e)}function wa(e){Go(DU,"PaddingMode",e)}function d2(e){Go(RU,"PoolMode",e)}var cc=[],vI="/";function ri(e,t){cc.push(e);try{let n=t();return cc.pop(),n}catch(n){throw cc.pop(),n}}function OU(){return cc.length===0?"":cc.join(vI)+vI}function h2(e){if(!f2(e))throw new Error("Not a valid tensor name: '"+e+"'");return OU()+e}function m2(e){if(!f2(e))throw new Error("Not a valid tensor name: '"+e+"'");_l.has(e)||_l.set(e,0);let t=_l.get(e);if(_l.set(e,_l.get(e)+1),t>0){let n=`${e}_${t}`;return _l.set(n,1),n}else return e}var LU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function f2(e){return!!e.match(LU)}function zU(e){return e===parseInt(e.toString(),10)}function us(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Kl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function fs(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function qa(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var lx;function jt(){return lx==null&&(lx=vN().epsilon()),lx}function ja(){return"channelsLast"}function lr(e,t){return ie(e,t)}function yd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function WU(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=yd(e,1);return Mx(n,[1,t,1])})}function BU(e){let t=[us(e.shape)];return W(e,t)}function VU(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],us(e.shape,1)];return W(e,t)}function si(e,t,n){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:return bf(e,[t,0],[n,e.shape[1]]);case 3:return Bo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Gl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ue(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ue(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ux(e,t,n){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:return bf(e,[0,t],[e.shape[0],n]);case 3:return Bo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Gl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Dh(e,t,n,a){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:switch(a){case 1:return si(e,t,n);case 2:return ux(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return si(e,t,n);case 2:return Bo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return ux(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return si(e,t,n);case 2:return Gl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Gl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return ux(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function wI(e,t){switch(e.rank){case 1:return Hv([e,t]);case 2:return qv([e,t],0);case 3:return jv([e,t],0);case 4:return Kv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Mx(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function Ff(e,t=0,n=1,a,r){return pf(e,t,n,a,r)}function ur(e,t,n,a){if(e.rank<2||t.rank<2)throw new Le(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Le(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ql.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Px(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(De(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(ql.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Px(e.rank,a,ja()):null,activation:n}),d)}}function g2(e,t,n){return P(()=>(Array.isArray(t)?t=je(t,"int32"):t=ie(t,"int32"),dp(e,t,n)))}function xd(e){return z(e,e)}function Px(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ya(e,t,n){return P(()=>(n==null&&(n=ja()),Pt(n),X(e,Px(e.rank,t,n))))}function UU(e,t=1){if(t!==1)throw new Le(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return up(e)}function GU(e){return P(()=>he(e,X(Wt(e),1)))}function b2(e,t,n,a){return P(()=>Fw(e,t,n,a))}function HU(e){return P(()=>{let t=X(.5,z(.2,e));return rn(t,0,1)})}function vd(e,t,n=!1){return n?e():t()}var qU=["fanIn","fanOut","fanAvg"],jU=["normal","uniform","truncatedNormal"];function KU(e){Go(qU,"FanMode",e)}function XU(e){Go(jU,"Distribution",e)}var Pa=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Yw=class extends Pa{apply(e,t){return Nt(e,t)}};Yw.className="Zeros";ne.registerClass(Yw);var $f=class extends Pa{apply(e,t){return Qn(e,t)}};$f.className="Ones";ne.registerClass($f);var Zw=class extends Pa{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Qn(e,t)))}getConfig(){return{value:this.value}}};Zw.className="Constant";ne.registerClass(Zw);var Jw=class extends Pa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return As(e,this.minval,this.maxval,t,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Jw.className="RandomUniform";ne.registerClass(Jw);var Qw=class extends Pa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`randomNormal does not support dType ${t}.`);return Ff(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Qw.className="RandomNormal";ne.registerClass(Qw);var e0=class extends Pa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`truncatedNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};e0.className="TruncatedNormal";ne.registerClass(e0);var t0=class extends Pa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,af(e[0]))})}getConfig(){return{gain:this.gain}}};t0.className="Identity";ne.registerClass(t0);function YU(e,t="channelsLast"){let n,a;if(Pt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=us(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=us(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=us(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Vn=class extends Pa{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,KU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,XU(this.distribution),this.seed=e.seed}apply(e,t){let n=YU(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`${this.getClassName()} does not support dType ${t}.`);return kf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return As(e,-i,i,t,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Vn.className="VarianceScaling";ne.registerClass(Vn);var Df=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Df.className="GlorotUniform";ne.registerClass(Df);var Rf=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Rf.className="GlorotNormal";ne.registerClass(Rf);var Mf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Mf.className="HeNormal";ne.registerClass(Mf);var Pf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Pf.className="HeUniform";ne.registerClass(Pf);var Of=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Of.className="LeCunNormal";ne.registerClass(Of);var Lf=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Lf.className="LeCunUniform";ne.registerClass(Lf);var n0=class extends Pa{constructor(e){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed}apply(e,t){return P(()=>{if(e.length<2)throw new Le("Shape must be at least 2D.");if(t!=="int32"&&t!=="float32"&&t!==void 0)throw new TypeError(`Unsupported data type ${t}.`);t=t;let n=v.sizeFromShape(e.slice(0,-1)),a=e[e.length-1],r=n*a;r>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${r}) elements: Slowness may result.`);let s=[Math.max(a,n),Math.min(a,n)],i=Ff(s,0,1,t,this.seed),o=Mw.qr(i,!1),l=o[0],u=o[1].flatten().stridedSlice([0],[Math.min(a,n)*Math.min(a,n)],[Math.min(a,n)+1]);return l=z(l,u.sign()),n<a&&(l=l.transpose()),z(ve(this.gain),l.reshape(e))})}getConfig(){return{gain:this.gain,seed:this.seed}}};n0.className="Orthogonal";ne.registerClass(n0);var kI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function II(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return jw(e)}function Tt(e){if(typeof e=="string"){let t=e in kI?kI[e]:e;if(t==="GlorotNormal")return new Rf;if(t==="GlorotUniform")return new Df;if(t==="HeNormal")return new Mf;if(t==="HeUniform")return new Pf;if(t==="LeCunNormal")return new Of;if(t==="LeCunUniform")return new Lf;{let n={};return n.className=t,n.config={},II(n)}}else return e instanceof Pa?e:II(e)}function Ox(e){return Array.isArray(e)&&Array.isArray(e[0])}function lm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Te(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Ze(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function um(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var SI="Variable",y2=class{constructor(e,t="float32",n=SI,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=c2(),n=n==null?SI:n,this.originalName=h2(n),this.name=m2(this.originalName),this.trainable_=a,this.constraint=r,this.val=Ew(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),ZU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function ZU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Lx(e){return e.map(t=>t.read())}function a0(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Va=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=c2(),s!=null&&(this.originalName=h2(s),this.name=m2(this.originalName)),this.rank=t.length}},JU=0,zf=class{constructor(e,t){this.callArgs=t,this.id=JU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},QU=0,Be=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=QU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Cr(n)+"_"+Af(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ba(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Tr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Tr(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Tr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Tr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=kt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=kt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=kt(e),a=!0;for(let s of n)if(!(s instanceof Va)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Va){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of kt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=kt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=eG(e),i=this.computeOutputShape(s),o,l=tG(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Va(l,u,this,kt(e),t,this.name,p)):o=new Va(l,i,this,kt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Tr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Tr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ba(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return um(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Lx(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Lx(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}a0(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():Tt("zeros"));let l=a.apply(t,n),u=new y2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=kt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=kt(e);t=kt(t),n=kt(n),a=kt(a),r=lm(r),s=lm(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new zf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function eG(e){e=kt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function tG(e){return"float32"}function x2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=x2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var mp=class extends Be{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Af("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Va(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};mp.className="InputLayer";ne.registerClass(mp);function v2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new mp({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function nG(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ie(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ti=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ti)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=nG(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},pm=new l2,cm=new l2;function aG(e){pm!=null&&pm.setMaxEntries(e),cm!=null&&cm.setMaxEntries(e)}function nc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=pm.get(p),c;if(d==null){let m=rG(i,t);d=m.sorted,c=m.recipientCounts,pm.put(p,d),cm.put(p,c)}c={},r||Object.assign(c,cm.get(p));let h=new ti(t);for(let m=0;m<d.length;++m){if(a!=null){let F=im().numTensors;F>a.maxNumTensors&&(a.maxNumTensors=F),F<a.minNumTensors&&(a.minNumTensors=F)}let f=d[m],g=f.sourceLayer;if(g instanceof mp)continue;let b=[],y=[],x=[],w=!1;for(let F of f.inputs){let D=h.getValue(F),$=h.getMask(F);b.push(D),y.push($),$!=null&&(w=!0),r||(c[F.name]--,c[F.name]===0&&!t.hasKey(F)&&o.indexOf(F.name)===-1&&!D.isDisposed&&F.sourceLayer.stateful!==!0&&x.push(D))}w&&(n=n||{},n.mask=y[0]);let I=kt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=iG(f),E=Array.isArray(C)?C:[C];for(let F=0;F<E.length;++F){h.hasKey(E[F])||h.add(E[F],I[F],Array.isArray(T)?T[0]:T);let D=o.indexOf(E[F].name);D!==-1&&(l[D]=I[F])}r||_e(x)}return h.disposeMasks(),s?l:l[0]}function rG(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=NI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=NI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:sG(a)}}function sG(e){let t={};for(let n in e)t[n]=e[n].size;return t}function NI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function iG(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var oG=G();oG.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,aG);var w2={};Ee(w2,{maxNorm:()=>lG,minMaxNorm:()=>cG,nonNeg:()=>pG,unitNorm:()=>uG});function r0(e,t){return P(()=>mn(fe(z(e,e),t,!0)))}var wd=class extends ne.Serializable{getConfig(){return{}}},s0=class extends wd{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=r0(e,this.axis),n=rn(t,0,this.maxValue);return z(e,he(n,X(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};s0.className="MaxNorm";ne.registerClass(s0);var i0=class extends wd{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,X(jt(),r0(e,this.axis))))}getConfig(){return{axis:this.axis}}};i0.className="UnitNorm";ne.registerClass(i0);var o0=class extends wd{apply(e){return Ke(e)}};o0.className="NonNeg";ne.registerClass(o0);var l0=class extends wd{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=r0(e,this.axis),n=X(z(this.rate,rn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,X(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};l0.className="MinMaxNorm";ne.registerClass(l0);var TI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Xt(e){return jw(e)}function CI(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in TI?TI[e]:e,config:{}};return CI(t)}else return e instanceof wd?e:CI(e)}function lG(e){return new s0(e)}function uG(e){return new i0(e)}function pG(){return new o0}function cG(e){return new l0(e)}var k2={};Ee(k2,{constant:()=>mG,glorotNormal:()=>wG,glorotUniform:()=>vG,heNormal:()=>kG,heUniform:()=>IG,identity:()=>yG,leCunNormal:()=>SG,leCunUniform:()=>NG,ones:()=>hG,orthogonal:()=>TG,randomNormal:()=>gG,randomUniform:()=>fG,truncatedNormal:()=>bG,varianceScaling:()=>xG,zeros:()=>dG});function dG(){return new Yw}function hG(){return new $f}function mG(e){return new Zw(e)}function fG(e){return new Jw(e)}function gG(e){return new Qw(e)}function bG(e){return new e0(e)}function yG(e){return new t0(e)}function xG(e){return new Vn(e)}function vG(e){return new Df(e)}function wG(e){return new Rf(e)}function kG(e){return new Mf(e)}function IG(e){return new Pf(e)}function SG(e){return new Of(e)}function NG(e){return new Lf(e)}function TG(e){return new n0(e)}var I2={};Ee(I2,{Layer:()=>Be,RNN:()=>gr,RNNCell:()=>Td,activation:()=>e6,add:()=>u6,alphaDropout:()=>q6,average:()=>p6,averagePooling1d:()=>x1,averagePooling2d:()=>v1,averagePooling3d:()=>w1,avgPool1d:()=>x6,avgPool2d:()=>w6,avgPool3d:()=>I6,avgPooling1d:()=>v6,avgPooling2d:()=>k6,avgPooling3d:()=>S6,batchNormalization:()=>g6,bidirectional:()=>L6,categoryEncoding:()=>Z6,centerCrop:()=>X6,concatenate:()=>c6,conv1d:()=>HH,conv2d:()=>qH,conv2dTranspose:()=>jH,conv3d:()=>KH,conv3dTranspose:()=>XH,convLstm2d:()=>R6,convLstm2dCell:()=>M6,cropping2D:()=>ZH,dense:()=>t6,depthwiseConv2d:()=>QH,dot:()=>f6,dropout:()=>n6,elu:()=>zH,embedding:()=>l6,flatten:()=>r6,gaussianDropout:()=>H6,gaussianNoise:()=>G6,globalAveragePooling1d:()=>N6,globalAveragePooling2d:()=>T6,globalMaxPool1d:()=>W6,globalMaxPool2d:()=>B6,globalMaxPooling1d:()=>gC,globalMaxPooling2d:()=>bC,gru:()=>_6,gruCell:()=>E6,input:()=>B2,inputLayer:()=>LH,layerNormalization:()=>b6,leakyReLU:()=>BH,lstm:()=>A6,lstmCell:()=>F6,masking:()=>j6,maxPool1d:()=>V6,maxPool2d:()=>U6,maxPooling1d:()=>yC,maxPooling2d:()=>xC,maxPooling3d:()=>C6,maximum:()=>d6,minimum:()=>h6,multiply:()=>m6,permute:()=>o6,prelu:()=>VH,randomWidth:()=>J6,reLU:()=>WH,repeatVector:()=>s6,rescaling:()=>K6,reshape:()=>i6,resizing:()=>Y6,rnn:()=>P6,separableConv2d:()=>YH,simpleRNN:()=>$6,simpleRNNCell:()=>D6,softmax:()=>UH,spatialDropout1d:()=>a6,stackedRNNCells:()=>O6,thresholdedReLU:()=>GH,timeDistributed:()=>z6,upSampling2d:()=>JH,zeroPadding2d:()=>y6});async function es(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];_e(a)}}function S2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var _I;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(_I||(_I={}));var CG=125,Xl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},N2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},_G=class extends Xl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>X(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Ht(t[n])}))}},T2=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},C2=class extends Xl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Hw,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=CG),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=EU(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await es(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await es(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await es(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await es(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await es(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await es(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await es(e),await this.trainEnd(e))}};function _2(e,t){return e==null&&(e={}),e instanceof Xl?[e]:Array.isArray(e)&&e[0]instanceof Xl?e:kt(e).map(n=>new C2(n,t))}var Ea=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ea.checkForDuplicate(t),Ea.constructors[e]==null&&(Ea.constructors[e]=[]),Ea.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ea.constructors)Ea.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Ea.constructors={}}static createCallbacks(e){let t=[];for(let n in Ea.constructors){let a=+n;e>=a&&t.push(...Ea.constructors[a])}return t.map(n=>new n)}};Ea.constructors={};function E2(e,t,n,a,r,s,i,o,l){let u=new T2,p=[new _G,...Ea.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new N2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ga(e,t={},n=!1){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function dm(e,t){return P(()=>{e.dtype!=="float32"&&(e=ie(e,"float32"));let n=fe(xd(e),t,!0),a=xn(n.shape,jt()),r=mn(mr(n,a));return he(e,r)})}function Ho(e,t){return P(()=>Et(xd(pe(t,e)),-1))}function Wf(e,t){return P(()=>Et(Wt(pe(t,e)),-1))}function fp(e,t){return P(()=>{let n=pe(e,t),a=rn(Wt(e),jt(),Number.MAX_VALUE),r=Wt(he(n,a));return z(100,Et(r,-1))})}function EG(e,t){return P(()=>{let n=rn(t,jt(),Number.MAX_VALUE),a=na(X(1,n)),r=rn(e,jt(),Number.MAX_VALUE),s=na(X(1,r));return Et(xd(pe(a,s)),-1)})}function AG(e,t){return P(()=>{let n=mr(0,pe(1,z(e,t)));return Et(xd(n),-1)})}function FG(e,t){return P(()=>{let n=mr(0,pe(1,z(e,t)));return Et(n,-1)})}function $G(e,t){return P(()=>{let n=fe(z(e,t),-1),a=ga(z(pe(1,e),t),-1);return mr(0,X(1,pe(a,n)))})}function DG(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(X(a,Wo(z(-2,a))),n);return Et(r,-1)})}function Ic(e,t,n=!1){return P(()=>{if(n)t=Xa(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=rn(t,jt(),1-jt()),yt(fe(z(ie(e,"float32"),na(t)),t.shape.length-1))})}function hm(e,t,n=!1){return P(()=>{let a=ie(cp(BU(e)),"int32");t=rn(t,jt(),1-jt());let r=t.shape,s=W(Vl(a,r[r.length-1]),r);return Ic(s,t,n)})}function RG(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Ke(t),a=yt(Wt(t));return X(pe(n,z(t,e)),ld(yn(a)))})}function Bf(e,t){return P(()=>{let n;return n=rn(t,jt(),1-jt()),n=na(he(n,pe(1,n))),Et(RG(e,n),-1)})}function MG(e,t){return P(()=>{let n=rn(e,jt(),1),a=rn(t,jt(),1);return fe(z(e,na(he(n,a))),-1)})}function PG(e,t){return P(()=>{let n=na(X(jt(),t));return Et(pe(t,z(e,n)),-1)})}function u0(e,t){return P(()=>{let n=dm(e,-1),a=dm(t,-1),r=z(n,a);return yt(fe(r,-1))})}var mm={meanSquaredError:Ho,meanAbsoluteError:Wf,meanAbsolutePercentageError:fp,meanSquaredLogarithmicError:EG,squaredHinge:AG,hinge:FG,categoricalHinge:$G,logcosh:DG,categoricalCrossentropy:Ic,sparseCategoricalCrossentropy:hm,binaryCrossentropy:Bf,kullbackLeiblerDivergence:MG,poisson:PG,cosineProximity:u0};function px(e){if(typeof e=="string"){if(e in mm)return mm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function p0(e,t){return P(()=>{let n=z(.5,aa(t)),a=lr(_n(t,n),e.dtype);return Et(ta(e,a),-1)})}function c0(e,t){return P(()=>lr(ta(ci(e,-1),ci(t,-1)),"float32"))}function A2(e,t){return P(()=>ie(fe(Da(ta(e,1),ta(t,1))),"float32"))}function OG(e,t){return P(()=>ie(fe(Da(ta(e,1),ta(t,0))),"float32"))}function LG(e,t){return P(()=>ie(fe(Da(ta(e,0),ta(t,1))),"float32"))}function F2(e,t){return P(()=>{let n=A2(e,t),a=LG(e,t),r=X(n,a);return ie(an(_n(r,0),he(n,r),0),"float32")})}function zG(e,t){return P(()=>{let n=A2(e,t),a=OG(e,t),r=X(n,a);return ie(an(_n(r,0),he(n,r),0),"float32")})}function $2(e,t){return Bf(e,t)}function D2(e,t){return e.rank===t.rank&&(e=$s(e,[e.rank-1])),t=ci(t,-1),t.dtype!==e.dtype&&(t=ie(t,e.dtype)),ie(ta(e,t),"float32")}var WG=Ho,BG=Ho,VG=Wf,UG=Wf,GG=fp,HG=fp,d0=Ic,qG=u0,R2=hm,fm={binaryAccuracy:p0,categoricalAccuracy:c0,precision:F2,categoricalCrossentropy:d0,sparseCategoricalCrossentropy:R2,mse:WG,MSE:BG,mae:VG,MAE:UG,mape:GG,MAPE:HG,cosine:qG};function jG(e){if(typeof e=="string"&&e in fm)return fm[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Rh(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(mm))if(mm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(fm))if(fm[n]===e){t=n;break}return t!==void 0?t:e.name}}function KG(e){let t={Adagrad:()=>Ks.adagrad(.01),Adadelta:()=>Ks.adadelta(1,.95,jt()),Adam:()=>Ks.adam(.001,.9,.999,jt()),Adamax:()=>Ks.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Ks.rmsprop(.001,.9,0,jt()),SGD:()=>Ks.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function EI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!zx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function zx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!zx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!zx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function XG(e,t,n,a=console.log){let r=ZG(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),gm(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?JG(o[p],n,a):QG(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=YG(e),u=um(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function YG(e){let t;return e.collectedTrainableWeights!=null?t=um(e.collectedTrainableWeights):t=um(e.trainableWeights),t}function ZG(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function gm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function JG(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];gm(o,t,n)}function QG(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];gm(p,t,a);for(let d=1;d<i.length;++d)gm(["","","","",i[d]],t,a)}function M2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Sc(e,t){if(e===null)return null;if(typeof e=="string")return Zs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];M2(t,r,s)?n.push(s):n.push(Sc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Zs(a);n[s]=Sc(r,s)}}return n}}function Wx(e,t){if(e==null)return null;if(typeof e=="string")return Cr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];M2(t,r,s)?n.push(s):n.push(Wx(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Cr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Wx(r,a)}return n}}var h0="4.5.0",nr=class extends Be{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Af(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],ls(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);ls(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof mp))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=b.sourceLayer,I=b.nodeIndex,T=b.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Ba(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(nr.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let F=0;F<E;F++){let D=C.inputTensors[F],$=C.inboundLayers[F],S=C.nodeIndices[F],M=C.tensorIndices[F];o(D,y,x,$,S,M)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],T=b.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(Fh);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of y)x instanceof nr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(Fh);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new Ba(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new Ba(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}a0(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${h0}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Wx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=kt(e);let n=new ti;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return nc(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=kt(e);let n;return t==null?n=bi(null,e.length):n=kt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=lm(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Fh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(On(p)),c=lm(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];rr(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=bi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Fh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=kt(p.call(x,m)),y=kt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=kt(p.call(f,m)),y=kt(p.computeMask(f,g));if(p.activityRegularizer)throw new Le("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],T=y[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof nr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=nr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=nr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=nr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=nr.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],T=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];b.push(E.outputTensors[T])}b.length>0&&f.apply(On(b),y)}function l(f){let g=f.name,b=Ga(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!_U(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function eH(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function P2(e,t){return eH(e,t,"classWeight")}async function O2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return or(e);if(e.shape.length===2){if(e.shape[1]>1)return ci(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());_e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),je(i,"float32")}else return null}function tH(e,t){return z(e,t)}var nH=32;function L2(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=AI("input",e.inputNames,n),i=AI("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function AI(e,t,n){if(n instanceof Ce)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function aH(e){if(e.length===3)throw new Le("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function rH(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(FI(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=aH(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=_2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=E2(p,d,n.epochs,null,null,sH(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=L2(e,x.value),T={};T.batch=y,T.size=w[0].shape[0],await c.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let D=P2(n.classWeight,e.outputNames);for(let $=0;$<D.length;++$)C.push(await O2(I[$],null,D[$]))}let E=w.concat(I).concat(C),F=o(E);_e(E);for(let D=0;D<l.length;++D){let $=l[D],S=F[D];T[$]=S,Ht(S)}await c.onBatchEnd(y,T),S2(T),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;FI(n.validationData)?w=kt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=kt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?nH:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function sH(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function FI(e){return typeof e.iterator=="function"}function iH(e){return typeof e.next=="function"}async function oH(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Le("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=iH(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=L2(e,u.value),c=p.concat(d),h=P(()=>r(c));if(_e(c),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=P(()=>X(s[f],z(m,g))),l>0&&_e(b)}_e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),_e(p)}return On(s)}function cx(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Yp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>si(a,t,n-t)):si(e,t,n-t)}function Bx(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>Bx(n,t)):g2(e,t.dtype==="int32"?t:ie(t,"int32")))}function dx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}function z2(e){let t=[];e instanceof Ce&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(yd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function za(e,t){if(e==null)return;let n=[];if(t instanceof Ce)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ce)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function lH(e){return e instanceof Ce}function Vx(e){return Array.isArray(e)}function $I(e){return!lH(e)&&!Vx(e)}function DI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Vx(e)&&e.length>0)i=!0;else if($I(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if($I(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Vx(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=z2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function uH(e,t,n){let a=ls(e.map(s=>s.shape[0]));a.sort();let r=ls(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function pH(e,t,n){let a=[Ho,Bf,Ic];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Ic&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function RI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function cH(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var dH="layers-model",$r=class extends nr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");XG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=KG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Lr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(px(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>px(s))}else{let s=px(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=cH(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Bf?["accuracy","acc"].indexOf(c)!==-1?p=p0:["crossentropy","ce"].indexOf(c)!==-1&&(p=$2):this.lossFunctions[s]===hm?["accuracy","acc"].indexOf(c)!==-1?p=D2:["crossentropy","ce"].indexOf(c)!==-1&&(p=R2):["accuracy","acc"].indexOf(c)!==-1?p=c0:["crossentropy","ce"].indexOf(c)!==-1&&(p=d0);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=jG(c),u=l+Rh(c);let h;ri(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;cx(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{za(s[0],e),za(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),oH(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new ti;if(e instanceof Ce&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=nc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=bi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Le("Verbose predictLoop() is not implemented yet.");let r=dx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=Yp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new ti(p);return nc(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=z2(e);RI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return cx(a),this.predictLoop(n,a)}finally{za(n,e)}}predictOnBatch(e){RI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ba("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===hm?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=DI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=DI(t,this.feedOutputNames,r,!1,"target"),uH(e,t,null),pH(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=P2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await O2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Le("Verbose mode is not implemented yet.");if(r!=null)throw new Le("steps mode in testLoop() is not implemented yet");{let o=dx(s,n),l=je(qa(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=si(l,p,d-p),h=Bx(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=X(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;if(xI(e,a)>1){let s=xI(e.slice(0,n),a);r+=`_${s}`}t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new ti(u),d=nc(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=tH(f,r[h]));let g=Et(f);t.push(g),h===0?c=f:c=X(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}Ht(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=X(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new ti(s),o=nc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=X(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){if(this.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");this.isTraining=!0;let a,r,s,i,o,l,u,p,d;try{let c=n.batchSize==null?32:n.batchSize;cx(c);let h=!1,m=await this.standardizeUserData(e,t,n.sampleWeight,n.classWeight,h,c);a=m[0],r=m[1],d=m[2];let f=!1,g;if(n.validationData!=null&&n.validationData.length>0){if(f=!0,n.validationData.length===2)o=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Le("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let C=!0,E=await this.standardizeUserData(o,l,null,null,C,c);u=E[0],p=E[1],g=u.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){f=!0;let C=Math.floor(a[0].shape[0]*(1-n.validationSplit)),E=a[0].shape[0];u=Yp(a,C,E),s=a,a=Yp(a,0,C),p=Yp(r,C,E),i=r,r=Yp(r,0,C),g=u.concat(p)}else n.validationSteps!=null&&(f=!0);let b=a.concat(r).concat(d);this.checkTrainableWeightsConsistency();let y=this.makeTrainFunction(),x=this.getDedupedMetricsNames(),w,I;f?(this.makeTestFunction(),w=this.testFunction,I=x.slice().concat(x.map(C=>"val_"+C))):(w=null,g=[],I=x.slice());let T=_2(n.callbacks,n.yieldEvery);return await this.fitLoop(y,b,x,c,n.epochs,n.verbose,T,w,g,n.shuffle,I,n.initialEpoch,null,null)}finally{this.isTraining=!1,za(a,e),za(r,t),za(s,e),za(i,t),za(u,o),za(p,l),d!=null&&_e(d)}}async fitLoop(e,t,n,a,r,s,i,o,l,u,p,d,c,h){a==null&&(a=32),r==null&&(r=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(o!=null&&l!=null&&(m=!0),h!=null&&(m=!0,c==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let f=this.checkNumSamples(t,a,c,"steps_per_epoch"),g;f!=null&&(g=qa(0,f)),s==null&&(s=1);let{callbackList:b,history:y}=E2(i,s,r,d,f,c,a,m,p);b.setModel(this),this.history=y,await b.onTrainBegin(),this.stopTraining_=!1;for(let x=d;x<r;++x){await b.onEpochBegin(x);let w={};if(c!=null)throw new Le("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Le("batch shuffling is not implemneted yet");u&&v.shuffle(g);let I=je(g),T=dx(f,a);for(let C=0;C<T.length;++C){let E={};if(await b.onBatchBegin(C,E),P(()=>{let F=T[C][0],D=T[C][1],$=si(I,F,D-F);E.batch=C,E.size=D-F;let S=Bx(t,$),M=e(S);for(let B=0;B<n.length;++B){let U=n[B],H=M[B];E[U]=H,Ht(H)}if(C===T.length-1&&m){let B=this.testLoop(o,l,a);for(let U=0;U<n.length;++U){let H=n[U],j=B[U];Ht(j),w["val_"+H]=j}}}),await b.onBatchEnd(C,E),S2(E),this.stopTraining_)break}I.dispose()}if(await b.onEpochEnd(x,w),this.stopTraining_)break}return await b.onTrainEnd(),await this.history.syncData(),this.history}async fitDataset(e,t){return rH(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),za(n[0],e),za(n[1],t),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=im().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-im().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Cr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Cr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Cr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Cr(Rh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Cr(Rh(e)));{let e={};for(let t in this.metrics)e[t]=Cr(Rh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Sc(e.optimizer_config),n=Ga(t),a;if(typeof e.loss=="string")a=Zs(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Zs(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Zs(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Zs(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Zs(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=qt.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await qt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:dH,generatedBy:`TensorFlow.js tfjs-layers v${h0}`,convertedBy:null};if(t!=null&&t.includeOptimizer&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await qt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=qt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(EI(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){EI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};$r.className="Model";ne.registerClass($r);var W2=class extends $r{};W2.className="Functional";ne.registerClass(W2);async function hH(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Sc(n),r=Ga(a,t);if(e.weightsManifest!=null){let s=await qt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),_e(s)}return r}async function mH(e,t){if(t==null&&(t={}),typeof e=="string"){let n=qt.getLoadHandlers(e,t);if(n.length===0)n.push(qt.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return fH(e,void 0,t)}async function fH(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ga(Sc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=gH(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),_e(u),_e(p.map(d=>d.tensor))}return o}function gH(e,t){let n=qt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Yl=class extends $r{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Af("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Yl||e instanceof $r,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=v2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=x2(this.outputs[0])}this.inboundNodes=[],new zf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:bi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Ze(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new $r({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Yl))throw new Le(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ga(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Yl.className="Sequential";ne.registerClass(Yl);function bH(e){return new $r(e)}function yH(e){return new Yl(e)}function B2(e){return v2(e)}function xH(e,t){Ea.registerCallbackConstructor(e,t)}var Gn=class extends ne.Serializable{getConfig(){return{}}},V2=class extends Gn{apply(e,t=1){return UU(e,t)}};V2.className="elu";ne.registerClass(V2);var U2=class extends Gn{apply(e){return mf(e)}};U2.className="selu";ne.registerClass(U2);var G2=class extends Gn{apply(e){return Ke(e)}};G2.className="relu";ne.registerClass(G2);var H2=class extends Gn{apply(e){return P(()=>ms(6,Ke(e)))}};H2.className="relu6";ne.registerClass(H2);var q2=class extends Gn{apply(e){return e}};q2.className="linear";ne.registerClass(q2);var j2=class extends Gn{apply(e){return fa(e)}};j2.className="sigmoid";ne.registerClass(j2);var K2=class extends Gn{apply(e){return HU(e)}};K2.className="hardSigmoid";ne.registerClass(K2);var X2=class extends Gn{apply(e){return Wo(e)}};X2.className="softplus";ne.registerClass(X2);var Y2=class extends Gn{apply(e){return GU(e)}};Y2.className="softsign";ne.registerClass(Y2);var Z2=class extends Gn{apply(e){return hi(e)}};Z2.className="tanh";ne.registerClass(Z2);var m0=class extends Gn{apply(e,t=-1){return Xa(e,t)}};m0.className="softmax";ne.registerClass(m0);var J2=class extends Gn{apply(e,t=-1){return sf(e,t)}};J2.className="logSoftmax";ne.registerClass(J2);var Q2=class extends Gn{apply(e,t=1){return P(()=>z(fa(z(e,t)),e))}};Q2.className="swish";ne.registerClass(Q2);var eC=class extends Gn{apply(e){return P(()=>z(e,hi(Wo(e))))}};eC.className="mish";ne.registerClass(eC);function gs(e){return e.getClassName()}function hx(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function bs(e){if(e==null){let t={};return t.className="linear",t.config={},hx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},hx(t)}else return e instanceof Gn?e:hx(e)}function f0(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var tC=class extends ne.Serializable{},kd=class extends tC{constructor(e){super(),f0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Nt([1]);return this.hasL1&&(t=X(t,fe(z(this.l1,Wt(e))))),this.hasL2&&(t=X(t,fe(z(this.l2,xd(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kd.className="L1L2";ne.registerClass(kd);function vH(e){return f0(e),new kd({l1:e!=null?e.l1:null,l2:0})}function wH(e){return f0(e),new kd({l2:e!=null?e.l2:null,l1:0})}var MI={l1l2:"L1L2"};function mt(e){return jw(e)}function PI(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ct(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in MI?MI[e]:e,config:{}};return PI(t)}else return e instanceof tC?e:PI(e)}var g0=class extends Be{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Te(e);let n=Ke(e);return this.maxValue!=null&&(n=rn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};g0.className="ReLU";ne.registerClass(g0);var b0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Te(e);return od(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};b0.className="LeakyReLU";ne.registerClass(b0);var y0=class extends Be{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Tt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ct(e.alphaRegularizer),this.alphaConstraint=Yt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Ze(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Te(e),dd(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Xt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};y0.className="PReLU";ne.registerClass(y0);var x0=class extends Be{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Le(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Te(e);return up(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};x0.className="ELU";ne.registerClass(x0);var v0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Te(e);return z(n,ie(_n(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};v0.className="ThresholdedReLU";ne.registerClass(v0);var w0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new m0().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Te(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};w0.className="Softmax";ne.registerClass(w0);function Ml(e,t,n){if(typeof e=="number")return bi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!zU(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ha(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function sr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+fs([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function k0(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,1]):e))}function nC(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,4,1]):e))}function kH(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=De(e,[0,2,1])),r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Qm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ya(o,n)),o})}function OI(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=k0(e,s);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ql.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=De(l,[0,3,1,2])),l})}function IH(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=nC(e,s);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Yv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ya(o,n)),s==="channelsFirst"&&(o=De(o,[0,4,1,2,3])),o})}var I0=class extends Be{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",I0.verifyArgs(t),this.rank=e,nn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Le(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ml(t.kernelSize,e,"kernelSize"),this.strides=Ml(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,wa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=bs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Tt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Yt(t.biasConstraint),this.biasRegularizer=Ct(t.biasRegularizer),this.activityRegularizer=Ct(t.activityRegularizer),this.dilationRate=Ml(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Kw(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:gs(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Id=class extends I0{constructor(e,t){super(e,t),this.kernel=null,Id.verifyArgs(t),this.filters=t.filters,nn(this.filters,"filters"),this.kernelInitializer=Tt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Yt(t.kernelConstraint),this.kernelRegularizer=Ct(t.kernelRegularizer)}build(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Te(e);let n,a=this.bias==null?null:this.bias.read(),r=p2(this.activation.getClassName());if(r!=null&&this.rank===2)n=OI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=kH(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=OI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=IH(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Le("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Ze(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ha(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Xt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sd=class extends Id{constructor(e){super(2,e),Sd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Kw(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Sd.className="Conv2D";ne.registerClass(Sd);var Nd=class extends Id{constructor(e){super(3,e),Nd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Nd.className="Conv3D";ne.registerClass(Nd);var S0=class extends Sd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ze(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Te(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=sr(o,d,u,this.padding),m=sr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,1]));let g=ef(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=De(g,[0,3,1,2])),this.bias!=null&&(g=Ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Ze(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=sr(t[a],o,s,this.padding),t[r]=sr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};S0.className="Conv2DTranspose";ne.registerClass(S0);var N0=class extends Nd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ze(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Te(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=sr(l,m,d,this.padding),y=sr(u,f,c,this.padding),x=sr(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,4,1]));let I=Zv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=De(I,[0,4,1,2,3])),this.bias!==null&&(I=Ya(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=Ze(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=sr(t[a],u,i,this.padding),t[r]=sr(t[r],p,o,this.padding),t[s]=sr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};N0.className="Conv3DTranspose";ne.registerClass(N0);var aC=class extends Id{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ct(t.depthwiseRegularizer),this.depthwiseConstraint=Yt(t.depthwiseConstraint),this.pointwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ct(t.pointwiseRegularizer),this.pointwiseConstraint=Yt(t.pointwiseConstraint)}build(e){if(e=Ze(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Te(e);let n;if(this.rank===1)throw new Le("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=De(e,[0,2,3,1])),n=Fs(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=De(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseConstraint),e.pointwiseConstraint=Xt(this.pointwiseConstraint),e}};aC.className="SeparableConv";var T0=class extends aC{constructor(e){super(2,e)}};T0.className="SeparableConv2D";ne.registerClass(T0);var Vf=class extends Id{constructor(e){super(1,e),Vf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Kw(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Vf.className="Conv1D";ne.registerClass(Vf);var C0=class extends Be{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Te(e),this.dataFormat==="channelsLast"){let n=Dh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Dh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Dh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Dh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};C0.className="Cropping2D";ne.registerClass(C0);var _0=class extends Be{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,PU(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Te(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=De(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?ea.resizeNearestNeighbor(n,[r,s]):ea.resizeBilinear(n,[r,s]);return De(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?ea.resizeNearestNeighbor(n,[r,s]):ea.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};_0.className="UpSampling2D";ne.registerClass(_0);function SH(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=ja()),Pt(r);let i=k0(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=_s(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}var E0=class extends I0{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Tt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Yt(e.depthwiseConstraint),this.depthwiseRegularizer=Ct(e.depthwiseRegularizer)}build(e){if(e=Ze(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Te(e);let n=SH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ha(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ha(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseRegularizer),e}};E0.className="DepthwiseConv2D";ne.registerClass(E0);function rC(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function sC(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(qa(2,l));if(t=De(t,u),s!=null)throw new Le("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ie(ie(r,"bool"),"float32"),r.rank===l-1&&(r=tn(r,-1)),r=De(r,u)),a&&(t=ya(t,0),r!=null&&(r=ya(r,0)));let p=[],d,c=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let b=0;b<h;++b){let y=m[b],x=P(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[b],T=pe(aa(I),I),C=X(z(x[0],I),z(c[0],T)),E=c.map((F,D)=>X(z(x[1][D],I),z(F,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Dt(p,1)),[d,g,c]})}var gr=class extends Be{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Hf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return qa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ox(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Le("Constants support is not implemented in RNN yet.");Ox(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Tr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_=[Nt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_[0]=Nt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Ht(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=rC(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Va){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Te(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=sC((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=Nt(e.shape);return t=fe(t,[1,2]),t=yd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Mx(t,[1,n]):t):this.cell.stateSize>1?[Mx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===gr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ga(a,n);return new e(Object.assign(t,{cell:r}))}};gr.className="RNN";ne.registerClass(gr);var Td=class extends Be{},Uf=class extends Td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=bs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Kl([1,fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Kl([1,fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ys({ones:()=>aa(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ys({ones:()=>aa(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=ur(z(e,s),this.kernel.read()):r=ur(e,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),i!=null&&(n=z(n,i));let o=X(r,ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:gs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};Uf.className="SimpleRNNCell";ne.registerClass(Uf);var A0=class extends gr{constructor(e){e.cell=new Uf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};A0.className="SimpleRNN";ne.registerClass(A0);var Gf=class extends Td{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,nn(this.units,"units"),this.activation=bs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=bs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Kl([1,fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Kl([1,fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ys({ones:()=>aa(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ys({ones:()=>aa(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=ur(e,this.kernel.read());this.useBias&&(u=Ya(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=ur(a,d),[m,f,g]=zn(u,3,u.rank-1),[b,y]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(X(m,b)),o=this.recurrentActivation.apply(X(f,y));let x=ur(z(o,a),c);l=this.activation.apply(X(g,x));let w=X(z(i,a),z(X(1,yt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:gs(this.activation),recurrentActivation:gs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},e),t)}};Gf.className="GRUCell";ne.registerClass(Gf);var F0=class extends gr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Gf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};F0.className="GRU";ne.registerClass(F0);var Cd=class extends Td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=bs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=bs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Kl([1,fs([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Kl([1,fs([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Ze(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Pa{apply(i,o){let l=r.apply([s]),u=new $f().apply([s]),p=r.apply([s*2]);return wI(wI(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ys({ones:()=>aa(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ys({ones:()=>aa(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=X(d,ur(a,this.recurrentKernel.read())),this.useBias&&(d=Ya(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=X(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:gs(this.activation),recurrentActivation:gs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},e),t)}};Cd.className="LSTMCell";ne.registerClass(Cd);var $0=class extends gr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Cd(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$0.className="LSTM";ne.registerClass($0);var Hf=class extends Td{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Ox(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ga(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Lx(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}a0(t)}};Hf.className="StackedRNNCells";ne.registerClass(Hf);function ys(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):b2(t(),n),o=()=>vd(i,t,a);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var NH=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},iC=class extends gr{constructor(e){if(e.unroll)throw new Le("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Le("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Bt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Nt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Tr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_=[Nt(r)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_[0]=Nt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ha(l,a[0],r,s[0],i[0]),d=Ha(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};iC.className="ConvRNN2D";var qf=class extends Cd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,nn(this.filters,"filters"),this.kernelSize=Ml(n,2,"kernelSize"),this.kernelSize.forEach(o=>nn(o,"kernelSize")),this.strides=Ml(a||1,2,"strides"),this.strides.forEach(o=>nn(o,"strides")),this.padding=r||"valid",wa(this.padding),this.dataFormat=s||"channelsLast",Pt(this.dataFormat),this.dilationRate=Ml(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>nn(o,"dilationRate"))}build(e){var t;e=Ze(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Pa{apply(p,d){let c=l.apply([u]),h=Qn([u]),m=l.apply([u*2]);return Xw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ys({ones:()=>aa(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:z(J[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ys({ones:()=>aa(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,T]=zn(this.kernel.read(),i,y),[C,E,F,D]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,F,this.padding),c=this.inputConv(c,T,D,this.padding);let[$,S,M,B]=zn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),b=this.recurrentConv(b,B);let U=this.recurrentActivation.apply(X(u,m)),H=this.recurrentActivation.apply(X(p,f)),j=X(z(H,s),z(U,this.activation.apply(X(d,g)))),K=z(this.recurrentActivation.apply(X(c,b)),this.activation.apply(j));return[K,K,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=NH(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ya(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};qf.className="ConvLSTM2DCell";ne.registerClass(qf);var D0=class extends iC{constructor(e){let t=new qf(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};D0.className="ConvLSTM2D";ne.registerClass(D0);var jf=class extends Be{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return vd(()=>b2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};jf.className="Dropout";ne.registerClass(jf);var R0=class extends jf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};R0.className="SpatialDropout1D";ne.registerClass(R0);var M0=class extends Be{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,nn(this.units,"units"),this.activation=bs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Yt(e.kernelConstraint),this.biasConstraint=Yt(e.biasConstraint),this.kernelRegularizer=Ct(e.kernelRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Ze(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Ze(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=p2(this.activation.getClassName()),r;return a!=null?r=ur(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=ur(n,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:gs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};M0.className="Dense";ne.registerClass(M0);var P0=class extends Be{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Ze(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],us(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=De(n,a)}return VU(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};P0.className="Flatten";ne.registerClass(P0);var O0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.activation=bs(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return this.activation.apply(n)})}getConfig(){let e={activation:gs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};O0.className="Activation";ne.registerClass(O0);var L0=class extends Be{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Te(e),WU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};L0.className="RepeatVector";ne.registerClass(L0);var z0=class extends Be{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=us(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};z0.className="Reshape";ne.registerClass(z0);var W0=class extends Be{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=qa(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Ze(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return De(Te(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};W0.className="Permute";ne.registerClass(W0);var B0=class extends Be{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Te(e),a=-1;return xc(fi(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=-1,r=!0,s=xc(fi(n,this.maskValue),a,r);return z(n,ie(s,n.dtype))})}};B0.className="Masking";ne.registerClass(B0);var V0=class extends Be{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(kt(e.inputLength))}this.inputDim=e.inputDim,nn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,nn(this.outputDim,"outputDim"),this.embeddingsInitializer=Tt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ct(e.embeddingsRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.embeddingsConstraint=Yt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Te(e),fi(e,qe(e))):null)}computeOutputShape(e){if(e=Ze(e),this.inputLength==null)return[...e,this.outputDim];let t=kt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);n.dtype!=="int32"&&(n=lr(n,"int32"));let a=g2(this.embeddings.read(),W(n,[n.size]));return W(a,Ze(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Xt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};V0.className="Embedding";ne.registerClass(V0);var qo=class extends Be{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Le}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Ze(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=ls(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&ls(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=fs(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=yd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(us(u.slice(1))));c=De(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=qa(1,l).concat([0]);n.push(De(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(De(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(qa(0,i-1));s=De(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=ls(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:tn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Da(n,t[a]);return n})}},U0=class extends qo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return t})}};U0.className="Add";ne.registerClass(U0);var G0=class extends qo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};G0.className="Multiply";ne.registerClass(G0);var H0=class extends qo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return z(1/e.length,t)})}};H0.className="Average";ne.registerClass(H0);var q0=class extends qo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=mr(t,e[n]);return t})}};q0.className="Maximum";ne.registerClass(q0);var j0=class extends qo{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ms(t,e[n]);return t})}};j0.className="Minimum";ne.registerClass(j0);var K0=class extends qo{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>Xw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(ie(aa(e[s]),"bool")):t[s].rank<e[s].rank?a.push(tn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return Jm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};K0.className="Concatenate";ne.registerClass(K0);function Zp(e,t){for(;e<0;)e+=t;return e}function TH(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Le("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Le("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(De(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=$e(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=$s(o,u)}return o.shape.length===1&&(o=tn(o,1)),o})}var X0=class extends qo{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zp(r,e[s].shape.length)):a=[Zp(this.axes,t.shape.length),Zp(this.axes,n.shape.length)],this.normalize&&(t=dm(t,a[0]),n=dm(n,a[1])),TH(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zp(this.axes,e.length),Zp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};X0.className="Dot";ne.registerClass(X0);var Y0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return vd(()=>X(Ff(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Y0.className="GaussianNoise";ne.registerClass(Y0);var Z0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return this.rate>0&&this.rate<1?vd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,Ff(n.shape,1,a))},()=>n,t.training||!1):n})}};Z0.className="GaussianDropout";ne.registerClass(Z0);var J0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Te(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return vd(()=>{let a=Te(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Pr(As(n),this.rate);o=lr(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=X(z(a,o),z(X(o,-1),i));return X(z(p,l),u)},()=>Te(e),t.training||!1)}return e})}};J0.className="AlphaDropout";ne.registerClass(J0);function Nc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Wv(e,t,n,a,r,s);else if(e.rank===3)i=Bv(e,t,n,a,r,s);else if(e.rank===4)i=Vv(e,t,n,a,r,s);else throw new Le(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function CH(e,t,n,a,r=.001){return P(()=>{let s=pd(e,a),i=s.mean,o=s.variance;return[Nc(e,i,o,n,t,r),i,o]})}function _H(e,t,n,a,r=.001){return P(()=>{let s=pd(e,a),i=s.mean,o=s.variance,l=[];for(let h of qa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[Nc(e,u,p,c,d,r),i,o]})}function EH(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),qa(0,e.rank-1))?CH(e,t,n,a,r):_H(e,t,n,a,r)}var Q0=class extends Be{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Tt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Tt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Yt(e.betaConstraint),this.gammaConstraint=Yt(e.gammaConstraint),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer)}build(e){e=Ze(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Te(e),r=a.shape,s=r.length,i=qa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=bi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,qa(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),b=W(this.movingVariance.read(),l),y=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return Nc(a,g,b,y,x,this.epsilon)}else return Nc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=EH(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{P(()=>{let x=1-y,w=g.read(),I=z(pe(w,b),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Xt(this.betaConstraint),gammaConstraint:Xt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Q0.className="BatchNormalization";ne.registerClass(Q0);var e1=class extends Be{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Ze(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ls(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Te(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=pd(n,this.axis,!0),o=bi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Ln(s,d),i=Ln(i,d),u!=null&&(u=Ln(u,c)),p!=null&&(p=Ln(p,c)),Nc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};e1.className="LayerNormalization";ne.registerClass(e1);function AH(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],va(e,a)})}var t1=class extends Be{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=Ze(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>AH(Te(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};t1.className="ZeroPadding2D";ne.registerClass(t1);function Kf(e,t,n,a,r,s){return P(()=>{Pt(r),d2(s),wa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=k0(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mt(e,t,n,o):i=xa(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}function oC(e,t,n,a,r,s){return P(()=>{Pt(r),d2(s),wa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=nC(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=hw(e,t,n,o):i=zv(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,4,1,2,3])),i})}var lC=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(nn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,wa(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=Ze(e);let t=Ha(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=yd(Te(e),2);let n=this.poolingFunction(Te(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return $s(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},n1=class extends lC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),Kf(e,t,n,a,r,"max")}};n1.className="MaxPooling1D";ne.registerClass(n1);var a1=class extends lC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),Kf(e,t,n,a,r,"avg")}};a1.className="AveragePooling1D";ne.registerClass(a1);var uC=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),wa(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Te(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},r1=class extends uC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),Kf(e,t,n,a,r,"max")}};r1.className="MaxPooling2D";ne.registerClass(r1);var s1=class extends uC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),Kf(e,t,n,a,r,"avg")}};s1.className="AveragePooling2D";ne.registerClass(s1);var pC=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),wa(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),a=Ha(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Te(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},i1=class extends pC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),oC(e,t,n,a,r,"max")}};i1.className="MaxPooling3D";ne.registerClass(i1);var o1=class extends pC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),wa(a),oC(e,t,n,a,r,"avg")}};o1.className="AveragePooling3D";ne.registerClass(o1);var cC=class extends Be{constructor(e){super(e),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Le}},l1=class extends cC{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Te(e);return Et(n,1)})}};l1.className="GlobalAveragePooling1D";ne.registerClass(l1);var u1=class extends cC{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Te(e);return ga(n,1)})}};u1.className="GlobalMaxPooling1D";ne.registerClass(u1);var dC=class extends Be{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Le}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p1=class extends dC{call(e,t){return P(()=>{let n=Te(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};p1.className="GlobalAveragePooling2D";ne.registerClass(p1);var c1=class extends dC{call(e,t){return P(()=>{let n=Te(e);return this.dataFormat==="channelsLast"?ga(n,[1,2]):ga(n,[2,3])})}};c1.className="GlobalMaxPooling2D";ne.registerClass(c1);var hC=class extends Be{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ga(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},d1=class extends hC{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=Ze(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Ze(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Te(e),sC((n,a)=>[Te(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};d1.className="TimeDistributed";ne.registerClass(d1);function FH(e){Go(MU,"BidirectionalMergeMode",e)}var $H="concat",h1=class extends hC{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ga(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ga(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?$H:e.mergeMode,FH(this.mergeMode),e.weights)throw new Le("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=rC(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Le("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Va;for(let l of s)if(l instanceof Va!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ya(r,1));let i;return this.mergeMode==="concat"?i=Xw([a,r]):this.mergeMode==="sum"?i=X(a,r):this.mergeMode==="ave"?i=z(.5,X(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ga(t.layer);if(delete t.layer,t.numConstants!=null)throw new Le("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};h1.className="Bidirectional";ne.registerClass(h1);var m1=class extends Be{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Te(e),e.dtype!=="float32"&&(e=lr(e,"float32")),X(z(e,this.scale),this.offset)))}};m1.className="Rescaling";ne.registerClass(m1);var{resizeBilinear:DH,cropAndResize:RH}=ea,f1=class extends Be{constructor(e){super(e),this.height=e.height,this.width=e.width}centerCrop(e,t,n,a,r,s,i,o){return P(()=>{let l,u=!1,p=t/s,d=n/i,c=(a+t)/s,h=(r+n)/i,m=[p,d,c,h],f=[];e.rank===3?(u=!0,l=Dt([e])):l=e;for(let x=0;x<l.shape[0];x++)f.push(m);let g=bn(f,[f.length,4]),b=gi(0,f.length,1,"int32"),y=RH(l,g,b,[a,r],"nearest");return lr(u?Te(ct(y)):y,o)})}upsize(e,t,n,a){return P(()=>{let r=DH(e,[t,n]);return lr(r,a)})}call(e,t){return P(()=>{let n=Te(e),a=n.dtype,r=n.shape,s=r[r.length-3],i=r[r.length-2],o=0;s!==this.height&&(o=Math.floor((s-this.height)/2));let l=0;return i!==this.width&&(l=Math.floor((i-this.width)/2),l===0&&(l=1)),o>=0&&l>=0?this.centerCrop(n,o,l,this.height,this.width,s,i,a):this.upsize(e,this.height,this.width,a)})}getConfig(){let e={height:this.height,width:this.width},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Ze(e);let t=e.length-3,n=e.length-2;return e[t]=this.height,e[n]=this.width,e}};f1.className="CenterCrop";ne.registerClass(f1);function MH(e,t,n,a){let r=Te(e);if(r.dtype!=="int32"&&(r=lr(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=tn(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=tn(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=om(o,a,n,i):l=om(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var g1=class extends Be{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=Ze(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Te(e),e.dtype!=="int32"&&(e=lr(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count.
Received countWeights=${t.countWeights}`);n=Te(t.countWeights)}let a=ga(e),r=Wl(e),s=_n(this.numTokens,a).bufferSync().get(0),i=Pr(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return MH(e,this.outputMode,this.numTokens,n)})}};g1.className="CategoryEncoding";ne.registerClass(g1);var PH=["bilinear","nearest"],LI=new Set(PH),b1=class extends Be{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(LI.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=!!e.cropToAspectRatio}computeOutputShape(e){e=Ze(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return ea.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return ea.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...LI]} are supported`)})}};b1.className="Resizing";ne.registerClass(b1);var mC=class{constructor(e){this.seed=e}next(){if(this.seed!==void 0)return this.seed++}};mC.className="RandomSeed";var fC=class extends Be{constructor(e){super(e),this.randomGenerator=new mC(e.seed)}getConfig(){let e={seed:this.randomGenerator.seed},t=super.getConfig();return Object.assign(e,t),e}};fC.className="BaseRandomLayer";var OH=["bilinear","nearest"],zI=new Set(OH),y1=class extends fC{constructor(e){super(e);let{factor:t,interpolation:n="bilinear"}=e;if(this.factor=t,Array.isArray(this.factor)&&this.factor.length===2)this.widthLower=this.factor[0],this.widthUpper=this.factor[1];else if(!Array.isArray(this.factor)&&this.factor>0)this.widthLower=-this.factor,this.widthUpper=this.factor;else throw new V(`Invalid factor: ${this.factor}. Must be positive number or tuple of 2 numbers`);if(this.widthLower<-1||this.widthUpper<-1)throw new V(`factor must have values larger than -1. Got: ${this.factor}`);if(this.widthUpper<this.widthLower)throw new V(`factor cannot have upper bound less than lower bound.
Got upper bound: ${this.widthUpper}.
Got lower bound: ${this.widthLower}
`);if(n)if(zI.has(n))this.interpolation=n;else throw new V(`Invalid interpolation parameter: ${n} is not implemented`)}getConfig(){let e={factor:this.factor,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Ze(e);let t=e[2];return[this.imgHeight,-1,t]}call(e,t){return P(()=>{let n=Te(e);this.imgHeight=n.shape[n.shape.length-3];let a=n.shape[n.shape.length-2];this.widthFactor=As([1],1+this.widthLower,1+this.widthUpper,"float32",this.randomGenerator.next());let r=this.widthFactor.dataSync()[0]*a;r=Math.round(r);let s=[this.imgHeight,r];switch(this.interpolation){case"bilinear":return ea.resizeBilinear(e,s);case"nearest":return ea.resizeNearestNeighbor(e,s);default:throw new Error(`Interpolation is ${this.interpolation}
but only ${[...zI]} are supported`)}})}};y1.className="RandomWidth";ne.registerClass(y1);function LH(e){return new mp(e)}function zH(e){return new x0(e)}function WH(e){return new g0(e)}function BH(e){return new b0(e)}function VH(e){return new y0(e)}function UH(e){return new w0(e)}function GH(e){return new v0(e)}function HH(e){return new Vf(e)}function qH(e){return new Sd(e)}function jH(e){return new S0(e)}function KH(e){return new Nd(e)}function XH(e){return new N0(e)}function YH(e){return new T0(e)}function ZH(e){return new C0(e)}function JH(e){return new _0(e)}function QH(e){return new E0(e)}function e6(e){return new O0(e)}function t6(e){return new M0(e)}function n6(e){return new jf(e)}function a6(e){return new R0(e)}function r6(e){return new P0(e)}function s6(e){return new L0(e)}function i6(e){return new z0(e)}function o6(e){return new W0(e)}function l6(e){return new V0(e)}function u6(e){return new U0(e)}function p6(e){return new H0(e)}function c6(e){return new K0(e)}function d6(e){return new q0(e)}function h6(e){return new j0(e)}function m6(e){return new G0(e)}function f6(e){return new X0(e)}function g6(e){return new Q0(e)}function b6(e){return new e1(e)}function y6(e){return new t1(e)}function x1(e){return new a1(e)}function x6(e){return x1(e)}function v6(e){return x1(e)}function v1(e){return new s1(e)}function w6(e){return v1(e)}function k6(e){return v1(e)}function w1(e){return new o1(e)}function I6(e){return w1(e)}function S6(e){return w1(e)}function N6(e){return new l1(e)}function T6(e){return new p1(e)}function gC(e){return new u1(e)}function bC(e){return new c1(e)}function yC(e){return new n1(e)}function xC(e){return new r1(e)}function C6(e){return new i1(e)}function _6(e){return new F0(e)}function E6(e){return new Gf(e)}function A6(e){return new $0(e)}function F6(e){return new Cd(e)}function $6(e){return new A0(e)}function D6(e){return new Uf(e)}function R6(e){return new D0(e)}function M6(e){return new qf(e)}function P6(e){return new gr(e)}function O6(e){return new Hf(e)}function L6(e){return new h1(e)}function z6(e){return new d1(e)}var W6=gC,B6=bC,V6=yC,U6=xC;function G6(e){return new Y0(e)}function H6(e){return new Z0(e)}function q6(e){return new J0(e)}function j6(e){return new B0(e)}function K6(e){return new m1(e)}function X6(e){return new f1(e)}function Y6(e){return new b1(e)}function Z6(e){return new g1(e)}function J6(e){return new y1(e)}var vC={};Ee(vC,{MAPE:()=>uq,MSE:()=>dq,binaryAccuracy:()=>Q6,binaryCrossentropy:()=>eq,categoricalAccuracy:()=>nq,categoricalCrossentropy:()=>aq,cosineProximity:()=>iq,mape:()=>pq,meanAbsoluteError:()=>oq,meanAbsolutePercentageError:()=>lq,meanSquaredError:()=>cq,mse:()=>hq,precision:()=>rq,recall:()=>sq,sparseCategoricalAccuracy:()=>tq});function Q6(e,t){return p0(e,t)}function eq(e,t){return $2(e,t)}function tq(e,t){return D2(e,t)}function nq(e,t){return c0(e,t)}function aq(e,t){return d0(e,t)}function rq(e,t){return F2(e,t)}function sq(e,t){return zG(e,t)}function iq(e,t){return u0(e,t)}function oq(e,t){return Wf(e,t)}function lq(e,t){return fp(e,t)}function uq(e,t){return fp(e,t)}function pq(e,t){return fp(e,t)}function cq(e,t){return Ho(e,t)}function dq(e,t){return Ho(e,t)}function hq(e,t){return Ho(e,t)}var wC={};Ee(wC,{modelFromJSON:()=>hH});var kC={};Ee(kC,{l1:()=>fq,l1l2:()=>mq,l2:()=>gq});function mq(e){return new kd(e)}function fq(e){return vH(e)}function gq(e){return wH(e)}var IC=class extends Xl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof $r))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Mh(e,t){return e<t}function WI(e,t){return e>t}var SC=class extends IC{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Le("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Mh:this.mode==="max"?this.monitorFunc=WI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=WI:this.monitorFunc=Mh,this.monitorFunc===Mh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Mh?1/0:-1/0}async onEpochEnd(e,t){await es(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function bq(e){return new SC(e)}var yq={earlyStopping:bq},xq=G();xq.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var _a;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(_a||(_a={}));var BI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(BI||(BI={}));var k1={};function vq(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};k1[e]=n}function NC(e){return k1[e]}function wq(e){delete k1[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd,u=o<0?t.inputNames.length+o:o;if(s.type==="tensor")return dn(t.inputNames[u],n,a,r);if(s.type==="tensors"){let c=t.inputs.slice(o,l);return t.inputNames.slice(o,l).filter((h,m)=>{var f;return((f=c[m])===null||f===void 0?void 0:f.op)!=="NoOp"}).map(h=>dn(h,n,a,r))}let p=dn(t.inputNames[u],n,a,r),d=p.dataSync();return s.type==="number"?d[0]:v.toNestedArray(p.shape,d)}let i=t.attrParams[e];return i&&i.value}function dn(e,t,n,a){let[r,s]=Zn(e,n);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[bm(r,o)]);return i!==void 0?t[bm(r,i)][s]:void 0}function VI(e,t,n){return t[bm(e,n.currentContextId)]}function _r(e,t){let[n,a,r]=Zn(e,t);return[bm(n,t&&t.currentContextId),a,r]}function bm(e,t){return t?`${e}-${t}`:e}function Zn(e,t){if(e==="")return["",0,void 0];let n=t!=null&&t.parseNodeNameCache!=null;if(n){let s=t.parseNodeNameCache.get(e);if(s!=null)return s}let a=e.split(":"),r;if(a.length===1)r=[e,0,void 0];else{let s=a[0],i=a.length===3?a[1]:void 0,o=Number(a[a.length-1]);r=[s,o,i]}return n&&t.parseNodeNameCache.set(e,r),r}function Hh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Er(e){return e.kept?e:or(e)}var TC={};Ee(TC,{json:()=>kq});var kq=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],CC={};Ee(CC,{json:()=>Iq});var Iq=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_C={};Ee(_C,{json:()=>Sq});var Sq=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],EC={};Ee(EC,{json:()=>Nq});var Nq=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],AC={};Ee(AC,{json:()=>Tq});var Tq=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniformInt",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number"},{tfName:"maxval",name:"maxval",type:"number"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],FC={};Ee(FC,{json:()=>Cq});var Cq=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$C={};Ee($C,{json:()=>_q});var _q=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],DC={};Ee(DC,{json:()=>Eq});var Eq=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],RC={};Ee(RC,{json:()=>Aq});var Aq=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],MC={};Ee(MC,{json:()=>Fq});var Fq=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],PC={};Ee(PC,{json:()=>$q});var $q=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BitwiseAnd",category:"logical",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}]}],OC={};Ee(OC,{json:()=>Dq});var Dq=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}],LC={};Ee(LC,{json:()=>Rq});var Rq=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]}],zC={};Ee(zC,{json:()=>Mq});var Mq=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],WC={};Ee(WC,{json:()=>Pq});var Pq=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],BC={};Ee(BC,{json:()=>Oq});var Oq=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],VC={};Ee(VC,{json:()=>Lq});var Lq=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],UC={};Ee(UC,{json:()=>zq});var zq=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],GC={};Ee(GC,{json:()=>Wq});var Wq=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"EnsureShape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],UI=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[TC,CC,_C,EC,AC,FC,$C,DC,RC,MC,PC,OC,LC,zC,WC,BC,VC,UC,GC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=_r(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${y}:${I}`;f.inputNames[b]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=_r(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=_r(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=NC(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Ux(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Ux(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Yx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Hx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&r.tfDeprecatedName&&(i=Hx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Xx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Xx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Gx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Gx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Jx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Kx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Zx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=qx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=qx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=jx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=GI(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=GI(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=_r(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:I1(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=_r(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=_r(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Bq(e){let t=G().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function HC(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Bq(e);return t?n:n.toLowerCase()}function Ux(e,t,n,a=!1){let r=e[t];return r!=null?HC(r.s,a):n}function Gx(e,t,n){let a=e[t];return a?a.b:n}function Hx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function I1(e){switch(typeof e=="string"&&(e=_a[e]),e){case _a.DT_FLOAT:case _a.DT_HALF:return"float32";case _a.DT_INT32:case _a.DT_INT64:case _a.DT_INT8:case _a.DT_UINT8:return"int32";case _a.DT_BOOL:return"bool";case _a.DT_DOUBLE:return"float32";case _a.DT_STRING:return"string";default:return null}}function GI(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function qx(e,t,n){let a=e[t];return a&&a.type?I1(a.type):n}function jx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>I1(r)):n}function qC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Kx(e,t,n){let a=e[t];return a&&a.shape?qC(a.shape):n}function Xx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Yx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>HC(s,a)):n}function Zx(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>qC(r)):n}function Jx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Vq=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return dn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return dn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Hx(this.node.rawAttrs,e,t);if(n.s!=null)return Ux(this.node.rawAttrs,e,t);if(n.b!=null)return Gx(this.node.rawAttrs,e,t);if(n.shape!=null)return Kx(this.node.rawAttrs,e,t);if(n.type!=null)return qx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Xx(this.node.rawAttrs,e,t);if(n.list.s!=null)return Yx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Zx(this.node.rawAttrs,e,t);if(n.list.b!=null)return Jx(this.node.rawAttrs,e,t);if(n.list.type!=null)return jx(this.node.rawAttrs,e,t)}return t}},on={};Ee(on,{OP_SCOPE_SUFFIX:()=>Sv,abs:()=>Wt,acos:()=>Av,acosh:()=>Fv,add:()=>X,addN:()=>wN,all:()=>Jm,any:()=>xc,argMax:()=>ci,argMin:()=>$v,asin:()=>Dv,asinh:()=>Rv,atan:()=>Mv,atan2:()=>Pv,atanh:()=>Ov,avgPool:()=>xa,avgPool3d:()=>zv,basicLSTMCell:()=>NN,batchNorm:()=>Cs,batchNorm2d:()=>Wv,batchNorm3d:()=>Bv,batchNorm4d:()=>Vv,batchToSpaceND:()=>rd,bincount:()=>Uv,bitwiseAnd:()=>TN,booleanMaskAsync:()=>gT,broadcastArgs:()=>CN,broadcastTo:()=>ai,buffer:()=>ze,cast:()=>ie,ceil:()=>Gv,clipByValue:()=>rn,clone:()=>or,complex:()=>Dr,concat:()=>Qe,concat1d:()=>Hv,concat2d:()=>qv,concat3d:()=>jv,concat4d:()=>Kv,conv1d:()=>Qm,conv2d:()=>Rt,conv2dTranspose:()=>ef,conv3d:()=>Yv,conv3dTranspose:()=>Zv,cos:()=>sd,cosh:()=>tf,cosineWindow:()=>Sf,cumprod:()=>kc,cumsum:()=>nf,denseBincount:()=>om,depthToSpace:()=>Jv,depthwiseConv2d:()=>_s,diag:()=>EN,dilation2d:()=>Qv,div:()=>he,divNoNan:()=>ew,dot:()=>tw,dropout:()=>Fw,einsum:()=>FN,elu:()=>up,enclosingPowerOfTwo:()=>$w,ensureShape:()=>$N,equal:()=>ta,erf:()=>nw,euclideanNorm:()=>sw,exp:()=>yn,expandDims:()=>tn,expm1:()=>iw,eye:()=>af,fft:()=>md,fill:()=>xn,floor:()=>cp,floorDiv:()=>Zm,fused:()=>ql,gather:()=>dp,gatherND:()=>vT,greater:()=>_n,greaterEqual:()=>Pr,ifft:()=>Hl,imag:()=>id,image:()=>ea,inTopKAsync:()=>wT,irfft:()=>yf,isFinite:()=>ow,isInf:()=>lw,isNaN:()=>uw,leakyRelu:()=>od,less:()=>Bl,lessEqual:()=>Es,linalg:()=>Mw,linspace:()=>ON,localResponseNormalization:()=>pw,log:()=>na,log1p:()=>ld,logSigmoid:()=>cw,logSoftmax:()=>sf,logSumExp:()=>of,logicalAnd:()=>Da,logicalNot:()=>ud,logicalOr:()=>lf,logicalXor:()=>dw,losses:()=>DT,lowerBound:()=>zN,matMul:()=>$e,max:()=>ga,maxPool:()=>Mt,maxPool3d:()=>hw,maxPoolWithArgmax:()=>WN,maximum:()=>mr,mean:()=>Et,meshgrid:()=>BN,min:()=>Wl,minimum:()=>ms,mirrorPad:()=>mw,mod:()=>fw,moments:()=>pd,movingAverage:()=>bT,mul:()=>z,multiRNNCell:()=>VN,multinomial:()=>UN,neg:()=>yt,norm:()=>pp,notEqual:()=>fi,oneHot:()=>Vl,ones:()=>Qn,onesLike:()=>aa,op:()=>L,outerProduct:()=>GN,pad:()=>va,pad1d:()=>HN,pad2d:()=>qN,pad3d:()=>jN,pad4d:()=>KN,pool:()=>gw,pow:()=>Rr,prelu:()=>dd,print:()=>_v,prod:()=>bw,raggedGather:()=>XN,raggedRange:()=>YN,raggedTensorToTensor:()=>ZN,rand:()=>JN,randomGamma:()=>nT,randomNormal:()=>pf,randomStandardNormal:()=>aT,randomUniform:()=>As,randomUniformInt:()=>rT,range:()=>gi,real:()=>Ul,reciprocal:()=>kw,relu:()=>Ke,relu6:()=>cf,reshape:()=>W,reverse:()=>ya,reverse1d:()=>sT,reverse2d:()=>iT,reverse3d:()=>oT,reverse4d:()=>lT,rfft:()=>fd,round:()=>df,rsqrt:()=>hf,scalar:()=>ve,scatterND:()=>yT,searchSorted:()=>uf,selu:()=>mf,separableConv2d:()=>Fs,setdiff1dAsync:()=>uT,sigmoid:()=>fa,sign:()=>Iw,signal:()=>$T,sin:()=>ff,sinh:()=>gf,slice:()=>Ue,slice1d:()=>hd,slice2d:()=>bf,slice3d:()=>Bo,slice4d:()=>Gl,softmax:()=>Xa,softplus:()=>Wo,spaceToBatchND:()=>cd,sparse:()=>RT,sparseToDense:()=>xT,spectral:()=>FT,split:()=>zn,sqrt:()=>mn,square:()=>ut,squaredDifference:()=>xf,squeeze:()=>$s,stack:()=>Dt,step:()=>Vo,stridedSlice:()=>Sw,string:()=>MT,sub:()=>pe,sum:()=>fe,tan:()=>Nw,tanh:()=>hi,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>$a,tensor3d:()=>gd,tensor4d:()=>Ma,tensor5d:()=>pT,tensor6d:()=>cT,tensorScatterUpdate:()=>hT,tile:()=>Ln,topk:()=>Cw,transpose:()=>De,truncatedNormal:()=>kf,unique:()=>_w,unsortedSegmentSum:()=>If,unstack:()=>ct,upperBound:()=>mT,variable:()=>Ew,where:()=>an,whereAsync:()=>Aw,zeros:()=>Nt,zerosLike:()=>qe});var Uq=(e,t,n,a=on)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gq=(e,t,n,a=on)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(dn(e.inputNames[0],t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(dn(e.inputNames[0],t,n))];case"IsInf":return[a.isInf(dn(e.inputNames[0],t,n))];case"IsFinite":return[a.isFinite(dn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Fa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function HI(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jp(e,t,n){let a=Qx(e,n),r=!HI(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Qx(s.shape,a)}),!HI(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Qx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Hq=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Fa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return bn([],[0].concat(this.elementShape));let n=this.readMany(e);return Fa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return bn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Fa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:a[o-1],0],u=[1,e[o],r];s[o]=W(Ue(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Zl=class{get id(){return this.idTensor.id}constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Fa(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=ve(0),this.maxNumElements=a,Ht(this.idTensor)}copy(){return new Zl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Fa(e,this.elementShape,"TensorList shape mismatch: ");let a=Jp(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Fa(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Fa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Zl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Fa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Jp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Fa(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Fa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Jp(this.elementShape,this.tensors,n);return e.length===0?bn([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Fa(this.elementShape,t,"TensorList shape mismatch: ");let n=Jp(this.elementShape,this.tensors,t);return this.size()===0?bn([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Qe(a,0)})}};function qq(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Fa(r,t,"TensorList shape mismatch: ");let s=ct(e);return new Zl(s,t,a)}function jq(e,t,n,a){return new Zl([],e,t,a)}function Kq(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Zl([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Xq(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Qx(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=[0,d===0?0:r[d-1],0],h=[1,t[d],o];p[d]=W(Ue(e,c,h),i)}return e.dispose(),p}),u=new Zl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var Yq=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Er(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Er(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>dn(r,t,n)!==void 0);if(a){let r=dn(a,t,n);return[Er(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Er(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Er(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Er(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new Hq(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=Kq(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=jq(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=qq(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=Xq(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ve(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function qI(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=Hh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var Zq=(e,t,n,a=on)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=Hh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=qI(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=qI(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=Hh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=Hh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jq=(e,t,n,a=on)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"RandomUniformInt":return[a.randomUniformInt(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("seed",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mx(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Qq=async(e,t,n,a,r=on)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=mx(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=mx(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=mx(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},ej=(e,t,n,a=on)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},tj=(e,t,n,a=on)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[dn(e.name,t,n)||r];case"Placeholder":return[dn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Er(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Er(p));case"Snapshot":let s=k("x",e,t,n);return[Er(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nj=class{get id(){return this.handle.id}constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,Ht(this.handle)}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ct(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},aj=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new nj(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rj=(e,t,n,a=on)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sj=(e,t,n,a=on)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];case"BitwiseAnd":return[a.bitwiseAnd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ij=(e,t,n,a=on)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];case"MatrixBandPart":return[a.linalg.bandPart(k("a",e,t,n),k("numLower",e,t,n),k("numUpper",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oj=(e,t,n,a=on)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lj=(e,t,n,a=on)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=a.raggedGather(k("paramsNestedSplits",e,t,n),k("paramsDenseValues",e,t,n),k("indices",e,t,n),k("outputRaggedRank",e,t,n));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=a.raggedRange(k("starts",e,t,n),k("limits",e,t,n),k("splits",e,t,n));return[r,s]}case"RaggedTensorToTensor":return[a.raggedTensorToTensor(k("shape",e,t,n),k("values",e,t,n),k("defaultValue",e,t,n),k("rowPartitionTensors",e,t,n),k("rowPartitionTypes",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},uj=(e,t,n,a=on)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pj=(e,t,n,a=on)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}case"TensorScatterUpdate":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("tensor",e,t,n);return[a.tensorScatterUpdate(i,r,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},cj=(e,t,n,a=on)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},dj=(e,t,n,a=on)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hj=(e,t,n,a=on)=>{switch(e.op){case"StaticRegexReplace":return[a.string.staticRegexReplace(k("input",e,t,n),k("pattern",e,t,n),k("rewrite",e,t,n),k("replaceGlobal",e,t,n))];case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},mj=(e,t,n,a=on)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"EnsureShape":return[a.ensureShape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function jI(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>Uq(i,o,l));case"basic_math":return r(()=>Gq(i,o,l));case"control":return Yq(i,o,l);case"convolution":return r(()=>Zq(i,o,l));case"creation":return r(()=>Jq(i,o,l));case"dynamic":return Qq(i,o,l);case"evaluation":return r(()=>ej(i,o,l));case"image":return r(()=>rj(i,o,l));case"graph":return r(()=>tj(i,o,l));case"logical":return r(()=>sj(i,o,l));case"matrices":return r(()=>ij(i,o,l));case"normalization":return r(()=>oj(i,o,l));case"ragged":return r(()=>lj(i,o,l));case"reduction":return r(()=>uj(i,o,l));case"slice_join":return r(()=>pj(i,o,l));case"sparse":return r(()=>cj(i,o,l));case"spectral":return r(()=>dj(i,o,l));case"string":return r(()=>hj(i,o,l));case"transformation":return r(()=>mj(i,o,l));case"hash_table":return aj(i,o,l,a);case"custom":let u=NC(i.op);if(u&&u.customExecutor)return u.customExecutor(new Vq(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var KI=class{constructor(e={},t={},n={},a={},r){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.parseNodeNameCache=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function XI(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=new Set(Object.keys(e).map(c=>Zn(c)[0]));a=a||[];let p=new Set(a.map(c=>Zn(c.name)[0])),d=[...t];for(;d.length>0;){let c=d.pop();if((Js(c)||kj(c)||Ij(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&!u.has(c.name)&&!p.has(c.name)){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function fj(e,t){let{usedNodes:n,inputs:a}=t,r=Object.keys(a).map(g=>Zn(g)[0]).map(g=>e.nodes[g]),s=e.initNodes||[],i=g=>n.has(typeof g=="string"?g:g.name);function o(g){return[...new Map(g.map(b=>[b.name,b])).values()]}let l=o([...r,...e.weights,...s]).filter(i),u=o([...l,...Object.values(e.nodes)]).filter(i),p=new Map(u.map(g=>[g.name,g])),d={};for(let g of u){d[g.name]=d[g.name]||0;for(let b of g.children)i(b)||(d[b.name]=Number.POSITIVE_INFINITY),d[b.name]=(d[b.name]||0)+1}let c=Object.entries(d).filter(([,g])=>g===0).map(([g])=>g),h=[...c];for(;c.length>0;){let g=c.pop(),b=p.get(g);for(let y of b.children.filter(i))--d[y.name]===0&&(h.push(y.name),c.push(y.name))}let m=h.map(g=>p.get(g)),f=gj(m,l);return bj(f,l),f}function gj(e,t){let n=new Map(e.map(s=>[s.name,s])),a=t.map(s=>s.name),r=new Set(a);for(;a.length>0;){let s=a.pop(),i=n.get(s);for(let o of i.children)!n.has(o.name)||r.has(o.name)||(r.add(o.name),a.push(o.name))}return e.filter(s=>r.has(s.name))}var Ph=class extends Error{constructor(e){super(`NodesExecutionOrderError: ${e}`)}};function bj(e,t){let n=new Map(e.map((o,l)=>[o.name,l])),a=new Set(t.map(o=>o.name)),r=o=>a.has(typeof o=="string"?o:o.name),s=new Set(e.map(o=>o.name)),i=o=>s.has(typeof o=="string"?o:o.name);for(let o of e){for(let l of o.children.filter(i)){if(!n.has(l.name))throw new Ph(`Child ${l.name} of node ${o.name} is unreachable.`);if(n.get(o.name)>n.get(l.name))throw new Ph(`Node ${o.name} is scheduled to run after its child ${l.name}.`)}if(!r(o))for(let l of o.inputs){if(!n.has(l.name))throw new Ph(`Input ${l.name} of node ${o.name} is unreachable.`);if(n.get(l.name)>n.get(o.name))throw new Ph(`Node ${o.name} is scheduled to run before its input ${l.name}.`)}}}function yj(e){let t=new Map(e.map((o,l)=>[o.name,l])),n=Number.MAX_SAFE_INTEGER,a=e.map((o,l)=>Js(o)?n:l),r=o=>{let l=a[t.get(o.name)];return l==null?-1:l},s=e.map((o,l)=>o.children.map(r).reduce((u,p)=>Math.max(u,p),a[l])),i=new Map;for(let o=0;o<e.length;++o){let l=s[o];if(l===n)continue;let u=e[o],p=e[l];i.has(p.name)||i.set(p.name,[]),i.get(p.name).push(u)}return i}var xj=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),vj=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),wj=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function Js(e){return xj.has(e.op)}function kj(e){return vj.has(e.op)}function Ij(e){return wj.has(e.op)}var ev=class{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ev(e.functions[n],this)})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPARATOR)+"--"+a.join(this.SEPARATOR)}compile(e,t){let n=XI(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let l=t.map(p=>p.name),u=Object.keys(e);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${u}]. Missing the following inputs: [${a}]`)}let i=fj(this.graph,n),o=yj(i);return{orderedNodes:i,nodeLiveUntilMap:o}}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return Ht(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,n])=>[t,this.cloneTensorList(n)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Zn(d)[0]]),r=t.map(d=>Zn(d)[0]),s=new Set(r),i=r.map(d=>this.graph.nodes[d]);i.length===0&&(i=this._outputs);let o=this.getCompilationKey(a,i),l=this.compiledMap.get(o);l==null&&(l=this.compile(e,i),this.compiledMap.set(o,l));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let u={},p={};return P(()=>{let d=new KI(this.weightMap,u,p,this.functionExecutorMap,this.parseNodeNameCache),c=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(g=>{let[b,y]=Zn(g,d),x=[];x[y]=e[g],c[b]=x,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(x))});let h=this.getFrozenTensorIds(c),{orderedNodes:m,nodeLiveUntilMap:f}=l;for(let g of m){if(c[g.name])continue;let b=jI(g,c,d,this._resourceManager);if(v.isPromise(b))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);c[g.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[g.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(g,c,d,h,s,f.get(g.name))}return this.parent==null&&d.dispose(h),t.map(g=>dn(g,c,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){if(!(Js(t)||s.has(e))){for(let o of n[e])o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length);for(let o of t.inputs){if(Js(o))continue;let l=VI(o.name,n,a);if(l!=null)for(let u of l){if(!u||u.kept||r.has(u.id))continue;let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(e,t,n,a,r,s){function i(o){return Js(o)||r.has(o.name)}if(!(Js(e)||s==null))for(let o of s){if(i(o))continue;let l=VI(o.name,t,n);for(let u of l)!u||u.kept||a.has(u.id)||u.dispose()}}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,n=!1,a={},r={}){this.disposeIntermediateTensors(),n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let s=new KI(this.weightMap,a,r,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,n),o=t.map(d=>dn(d,i,s)),l=o.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(d=>{d.forEach(c=>{c&&!c.isDisposed&&!p.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(x=>this.graph.nodes[Zn(x)[0]]),i=n.map(x=>Zn(x)[0]),o=new Set(i),l=i.map(x=>this.graph.nodes[x]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:p,dynamicNode:d,syncInputs:c}=XI(e,l,this.weightMap,this._initNodes),h=[...s,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),m=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[w,I]=Zn(x),T=[];T[I]=e[x],m[w]=T});let f={},g=this.getFrozenTensorIds(m),b={};for(;h.length>0;){let x=this.processStack(s,h,t,m,b,g,o,f,u);await Promise.all(x)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=l.filter(x=>!Js(x)&&!dn(x.name,m,t)).map(x=>x.name);if(y.length>0){let x="";throw d!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${c}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${p}]. ${x}`)}return m}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=_r(p.node.name,n)),a[p.node.name]==null){let c=jI(p.node,a,n,this._resourceManager);d||([d]=_r(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(m)),n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(c)),this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=_r(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!dn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!dn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Zn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){var t,n;let a={};for(let r in e){let s=(n=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||n===void 0?void 0:n[r];s!=null?a[s.name]=e[r]:a[r]=e[r]}return a}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Zn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var n,a;let r=(a=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||a===void 0?void 0:a[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[n]=Zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Sj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Nj="?tfjs-format=file",Tj="model.json",S1=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(e,t={},n=qt){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new Sj}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ev(UI.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=UI.Instance.transformGraph(e.modelInitializer);this.initializer=new ev(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof Ce?[e]:e,n={};return t.forEach((a,r)=>n[this.structuredOutputKeys[r]]=a),n}return e}predict(e,t){let n=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(e,t){let n=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(e){var t;if(!(e instanceof Ce)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let n=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${e.length} input tensors provided.`);let a=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[a++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,n=Object.keys(t);for(let a=0;a<n.length;a++){let r=n[a],s=t[r];this.resourceIdToCapturedInput[s.resourceId]=e[a]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&_e(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function Cj(e,t={},n=qt){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Ej(e));let a=new S1(e,t,n);return await a.load(),a}function _j(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=qt.getWeightSpecs(a.weightsManifest),i=qt.getModelArtifactsForJSONSync(a,s,r);t=qt.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=qt.fromMemorySync(e);else throw new Error("Unknown model format");let n=new S1(t);return n.load(),n}function Ej(e){return e.endsWith("/")||(e=e+"/"),`${e}${Tj}${Nj}`}var Aj="4.5.0",jC={};Ee(jC,{CSVDataset:()=>n_,Dataset:()=>gp,FileDataSource:()=>u_,TextLineDataset:()=>t_,URLDataSource:()=>p_,array:()=>Qj,csv:()=>p5,func:()=>c5,generator:()=>d5,microphone:()=>m5,version_data:()=>f5,webcam:()=>h5,zip:()=>e5});var Fj=ws(_m()),$j=ws(_m());function Dj(e,t){return ym(e,t)}function ym(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Jl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=ym(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Rj(e,t=XC){return KC(e,t)}function KC(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Jl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=KC(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function XC(e){return e===null?null:Jl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function YC(e,t){let n=new Map;ym(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return ym(e,t,n)}function Jl(e){let t=!1;if(G().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=RS();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ce)&&!(e instanceof Promise)&&!t)}function Mj(e){return e==null||Pj(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ce||v.isTypedArray(e)}function Pj(e){return e===null||typeof e!="object"&&typeof e!="function"}function Oj(e){return Dj(e,Lj)}function Lj(e){return e instanceof Ce?{value:e.clone(),recurse:!1}:Jl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var ZC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},N1=class extends ZC{constructor(){super(N1.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};N1.INITIAL_CAPACITY=32;function JC(e){return new Bj(e)}function T1(e){return new Vj(e)}function zj(e,t){return new QC(e,t)}function Wj(e,t=ss.FAIL){return new Zj(e,t)}var sn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Xj(this,e)}filter(e){return new jj(this,e)}map(e){return new Kj(this,e)}mapAsync(e){return new YI(this,e)}serialMapAsync(e){return new YI(this,e).serial()}flatmap(e){return new Yj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new qj(this,e,t)}columnMajorBatch(e,t=!0,n=XC){return this.rowMajorBatch(e,t).map(a=>Rj(a,n))}concatenate(e,t){return new QC(JC([this,e]),t)}take(e){return e<0||e==null?this:new Hj(this,e)}skip(e){return e<0||e==null?this:new Gj(this,e)}prefetch(e){return new e_(this,e)}shuffle(e,t){return new Jj(this,e,t)}serial(){return new Uj(this)}},Bj=class extends sn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Oj(e),done:!1}}},Vj=class extends sn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Uj=class extends sn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Gj=class extends sn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},Hj=class extends sn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},qj=class extends sn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},jj=class extends sn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},Kj=class extends sn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Xj=class extends sn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},YI=class extends sn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},C1=class extends sn{constructor(){super(),this.outputQueue=new N1,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Yj=class extends C1{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return!0}},QC=class extends sn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ss;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ss||(ss={}));var Zj=class extends sn{constructor(e,t=ss.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof sn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await YC(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ss.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ss.SHORTEST:return{value:null,done:!0};case ss.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},e_=class extends sn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new ZC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Jj=class extends e_{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=$j.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},gp=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Yn(async()=>(await n.iterator()).columnMajorBatch(e,t,t5),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Yn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Yn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Yn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Yn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Yn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Yn(async()=>{let a=T1(async()=>({value:await t.iterator(),done:!1}));return zj(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Yn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Fj.alea(t||v.now().toString());return Yn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Yn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};gp.MAX_BUFFER_SIZE=1e4;function Yn(e,t=null){return new class extends gp{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function Qj(e){return Yn(async()=>JC(e),e.length)}function e5(e){if(!Jl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Yn(async()=>{let n=await YC(e,a=>{if(a instanceof gp)return{value:a.iterator(),recurse:!1};if(Jl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Wj(n,ss.SHORTEST)},t)}function t5(e){if(e===null)return null;let t=e[0];return Mj(t)?{value:n5(e),recurse:!1}:{value:null,recurse:!0}}function n5(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ce?Dt(e):bn(e)}var t_=class extends gp{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Oh='"',Qp=Symbol("out"),ZI=Symbol("field"),Lh=Symbol("quote"),fx=Symbol("quoteafterquote"),JI=Symbol("quoteinquote"),n_=class extends gp{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new t_(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Qp;for(let i=0;i<r;i++)switch(s){case Qp:switch(e.charAt(i)){case Oh:a=i+1,s=Lh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Qp;break;default:s=ZI,a=i;break}break;case ZI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Qp,a=i+1;break;default:}break;case Lh:switch(e.charAt(i)){case Oh:s=fx;break;default:}break;case fx:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Qp,a=i+1;break;case Oh:s=Lh;break;default:s=JI;break}break;case JI:switch(e.charAt(i)){case Oh:s=Lh;break;default:}break;default:}if(s===fx?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},a_=class extends sn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!G().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new a_(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),bn(n,t)}},r_=class extends sn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=je([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=$a([s,r,o,i],[1,4])}else this.cropBox=$a([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!G().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new r_(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Uo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=tn(ie(e,"float32"),0),n;n=ea.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},s_=class{},i_=class extends sn{split(e){return new a5(this,e)}},a5=class extends i_{constructor(e,t){super(),this.upstream=e,this.impl=new r5(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},r5=class extends C1{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},s5=class extends sn{decodeUTF8(){return new i5(this)}},i5=class extends i_{constructor(e){super(),this.upstream=e,this.impl=new o5(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},o5=class extends C1{constructor(e){if(super(),this.upstream=e,G().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=RS();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return G().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},o_=class extends s5{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(G().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function l5(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=u5(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new o_(i,t)}else throw new Error(s.statusText)}var u5=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function l_(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var u_=class extends s_{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(l_(this.input)&&G().get("IS_NODE")){let e=bv();this.input=e.readFileSync(this.input.slice(7))}return new o_(this.input,this.options)}},p_=class extends s_{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return l_(this.url)?new u_(this.url,this.fileOptions).iterator():l5(this.url,this.fileOptions)}};function p5(e,t={}){return new n_(new p_(e),t)}function c5(e){let t=T1(e);return Yn(async()=>t)}function d5(e){return Yn(async()=>{let t=await e();return T1(()=>t.next())})}async function h5(e,t){return r_.create(e,t)}async function m5(e){return a_.create(e)}var f5="4.5.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var g5=fr.whereImpl,Xf=class extends $c{nextDataId(){return Xf.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Em(this,Aa())}write(e,t,n){this.firstUse&&(this.firstUse=!1,G().get("IS_NODE")&&N.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return v.convertBackendValuesAndArrayBuffer(this.data.get(e).values,t)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}makeOutput(e,t,n){return Aa().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return g5(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Xf.nextDataId=0;var _1={};Ee(_1,{addImpl:()=>h_,bincountImpl:()=>A1,bincountReduceImpl:()=>m_,bitwiseAndImpl:()=>f_,castImpl:()=>d_,ceilImpl:()=>g_,concatImpl:()=>F1,equalImpl:()=>b_,expImpl:()=>x_,expm1Impl:()=>w_,floorDivImpl:()=>I_,floorImpl:()=>k_,gatherNdImpl:()=>S_,gatherV2Impl:()=>N_,greaterEqualImpl:()=>C_,greaterImpl:()=>T_,lessEqualImpl:()=>E_,lessImpl:()=>__,linSpaceImpl:()=>A_,logImpl:()=>F_,maxImpl:()=>$_,maximumImpl:()=>D_,minimumImpl:()=>R_,multiplyImpl:()=>$1,negImpl:()=>M_,notEqualImpl:()=>P_,prodImpl:()=>O_,raggedGatherImpl:()=>L_,raggedRangeImpl:()=>z_,raggedTensorToTensorImpl:()=>W_,rangeImpl:()=>R1,rsqrtImpl:()=>B_,scatterImpl:()=>ni,sigmoidImpl:()=>mK,simpleAbsImpl:()=>c_,sliceImpl:()=>vm,sparseFillEmptyRowsImpl:()=>U_,sparseReshapeImpl:()=>G_,sparseSegmentReductionImpl:()=>M1,sqrtImpl:()=>bK,squaredDifferenceImpl:()=>H_,staticRegexReplaceImpl:()=>q_,stridedSliceImpl:()=>j_,stringNGramsImpl:()=>P1,stringSplitImpl:()=>O1,stringToHashBucketFastImpl:()=>L1,subImpl:()=>K_,tileImpl:()=>X_,topKImpl:()=>Z_,transposeImpl:()=>D1,uniqueImpl:()=>W1});function c_(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var b5=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=c_(r),n.makeOutput(a,t.shape,t.dtype)},y5={kernelName:ru,backendName:"cpu",kernelFunc:b5};function Ot(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[b]=e(a[w],r[T])}return[p,i]}}function Jn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var x5={kernelName:Rm,backendName:"cpu",kernelFunc:Jn};function xm(e,t,n="float32"){if(n==="complex64"){let r=xm(e,t,"float32"),s=xm(e,t,"float32");return Jn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function dr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var v5={kernelName:Ji,backendName:"cpu",kernelFunc:dr};function yi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var w5={kernelName:jm,backendName:"cpu",kernelFunc:yi};function d_(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Ot((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function xs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return dr({inputs:{x:r},backend:n});let p=xm(n,r.shape,r.dtype),d=xs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Jn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=yi({inputs:{input:r},backend:n}),d=xs({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=dr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=d_(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var k5={kernelName:Ri,backendName:"cpu",kernelFunc:xs};function Zt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=xs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=xs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),F=l.makeTensorInfo(C,"float32",T),D=Jn({inputs:{real:E,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(F),D}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function E1(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-b);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,b,y),F=T.slice(-x);m.forEach(S=>F[S]=0);let D=v.locToIndex(F,x,w),$=e(f[E*2],f[E*2+1],g[D*2],g[D*2+1]);d[I]=$.real,c[I]=$.imag}return[d,c,o]}}var h_=Ot((e,t)=>e+t),I5=E1((e,t,n,a)=>({real:e+n,imag:t+a})),Ql=Zt(ks,h_,I5),S5={kernelName:ks,backendName:"cpu",kernelFunc:Ql};function A1(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function m_(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=ze([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}var f_=Ot((e,t)=>e&t),N5=Zt(Dm,f_),T5={kernelName:Dm,backendName:"cpu",kernelFunc:N5};function br(e){return(t,n,a)=>{let r=v.getArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){let a=br(t);return Ds(e,a,n)}function Ds(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;ge(i,e);let o=s,l=o.data.get(i.dataId).values,u;if(i.dtype==="string"){if(!Array.isArray(l))throw new Error("String tensor's value was not an instance of Array");u=N.fromUint8ToStringArray(l)}else u=l;let p=n||i.dtype,d=t(u,p,r);return o.makeTensorInfo(i.shape,p,d)}}var g_=br(e=>Math.ceil(e)),C5=Ds(Mi,g_),_5={kernelName:Mi,backendName:"cpu",kernelFunc:C5};function F1(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var b_=Ot((e,t)=>e===t?1:0),y_=Zt(vu,b_,null,"bool"),E5={kernelName:vu,backendName:"cpu",kernelFunc:y_},x_=br(e=>Math.exp(e)),v_=Ds(qi,x_,"float32"),A5={kernelName:qi,backendName:"cpu",kernelFunc:v_},w_=br(e=>Math.expm1(e)),F5=Ds(ji,w_),$5={kernelName:ji,backendName:"cpu",kernelFunc:F5},k_=br(e=>Math.floor(e)),D5=Ds(Ki,k_),R5={kernelName:Ki,backendName:"cpu",kernelFunc:D5},I_=Ot((e,t)=>Math.floor(e/t)),M5=Zt(Xi,I_,null,"int32"),P5={kernelName:Xi,backendName:"cpu",kernelFunc:M5};function S_(e,t,n,a,r,s,i,o,l){let u=ze([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function N_(e,t,n){let a=ze(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var T_=Ot((e,t)=>e>t?1:0),O5=Zt(Nu,T_,null,"bool"),L5={kernelName:Nu,backendName:"cpu",kernelFunc:O5},C_=Ot((e,t)=>e>=t?1:0),z5=Zt(Zi,C_,null,"bool"),W5={kernelName:Zi,backendName:"cpu",kernelFunc:z5},__=Ot((e,t)=>e<t?1:0),B5=Zt(Tu,__,null,"bool"),V5={kernelName:Tu,backendName:"cpu",kernelFunc:B5},E_=Ot((e,t)=>e<=t?1:0),U5=Zt(Cu,E_,null,"bool"),G5={kernelName:Cu,backendName:"cpu",kernelFunc:U5};function A_(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var F_=br(e=>Math.log(e)),H5=Ds(ao,F_),q5={kernelName:ao,backendName:"cpu",kernelFunc:H5};function $_(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var D_=Ot((e,t)=>Math.max(e,t)),j5=Zt(oo,D_),K5={kernelName:oo,backendName:"cpu",kernelFunc:j5},R_=Ot((e,t)=>Math.min(e,t)),X5=Zt(co,R_),Y5={kernelName:co,backendName:"cpu",kernelFunc:X5},$1=Ot((e,t)=>e*t),Z5=E1((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Yf=Zt(mo,$1,Z5),J5={kernelName:mo,backendName:"cpu",kernelFunc:Yf};function M_(e,t,n){let a=v.createScalarValue(-1,n);return $1([],t,a,e,n)}function Q5(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=M_(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var eK={kernelName:Pu,backendName:"cpu",kernelFunc:Q5},P_=Ot((e,t)=>e!==t?1:0),tK=Zt(Ou,P_,null,"bool"),nK={kernelName:Ou,backendName:"cpu",kernelFunc:tK};function D1(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Un(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=D1(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var aK={kernelName:Fr,backendName:"cpu",kernelFunc:Un};function O_(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=ba(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function rK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=O_(d.shape,d.dtype,h,p),b=f;return i&&(b=N.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var sK={kernelName:xo,backendName:"cpu",kernelFunc:rK};function iK(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function oK(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function lK(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);oK(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let b=p;b<d;++b)o[m].push(h[b+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function uK(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function QI(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function pK(e,t,n,a,r,s){let i=QI(t,2)[1],o=QI(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function cK(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return pK(e,t,a,l,i,s),[i,s]}function L_(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(iK(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=lK(s,i,e,u),h=uK(p),m=cK(n,a,r,d,c);return[h,m[0],m[1]]}var eS=2147483647;function z_(e,t,n,a,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let d=p.length===0?1:p[0],c=v.getArrayFromDType("int32",d+1);c[0]=0;for(let g=0;g<d;++g){let b=o?e[0]:e[g],y=l?a[0]:a[g],x=u?s[0]:s[g];if(x===0)throw new Error("Requires delta != 0");let w;if(x>0&&y<b||x<0&&y>b)w=0;else if(w=Math.ceil(Math.abs((y-b)/x)),w>eS)throw new Error(`Requires ((limit - start) / delta) <= ${eS}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;g<d;++g){let b=c[g+1]-c[g],y=o?e[0]:e[g],x=u?s[0]:s[g];for(let w=0;w<b;++w)m[f++]=y,y+=x}return[c,m]}var Ca=N.RowPartitionType,tv=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Ca.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Ca.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Ca.VALUE_ROWIDS:return tv.getMaxWidthValueRowID(t);case Ca.ROW_SPLITS:return tv.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Ca[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return nS(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Ca.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Ca.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Ca[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Ca.FIRST_DIM_SIZE:return e[0];case Ca.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Ca.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Ca[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=nS(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=ai(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;tS(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);tS(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function tS(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function nS(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function W_(e,t,n,a,r,s,i,o,l,u){return new tv(e,t,n,a,r,s,i,o,l,u).compute()}function R1(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var B_=br(e=>1/Math.sqrt(e)),dK=Ds(Co,B_),hK={kernelName:Co,backendName:"cpu",kernelFunc:dK};function ni(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return ze(n,t.dtype);let h=l instanceof Vt?l:ze(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var mK=br(e=>1/(1+Math.exp(-e))),V_=it(Fo,e=>1/(1+Math.exp(-e))),fK={kernelName:Fo,backendName:"cpu",kernelFunc:V_};function vm(e,t,n,a,r){let s=Kt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=Kt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=ze(a,r,l),p=ze(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function xi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=Kt.parseSliceParams(r,s,i);Kt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=vm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var gK={kernelName:Yu,backendName:"cpu",kernelFunc:xi};function U_(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)b[C*d+E]=e[w*d+E];y[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let T=1;T<d;++T)b[I*d+T]=0;y[I]=i}return[b,[g,d],y,u,p]}}function G_(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function M1(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var bK=br(e=>Math.sqrt(e)),yK=it(Do,e=>Math.sqrt(e)),xK={kernelName:Do,backendName:"cpu",kernelFunc:yK},H_=Ot((e,t)=>{let n=e-t;return n*n}),vK=Zt(Po,H_),wK={kernelName:Po,backendName:"cpu",kernelFunc:vK},q_=br((e,t)=>{let{pattern:n,replaceGlobal:a,rewrite:r}=t;return e.replace(new RegExp(n,a?"g":""),r)}),kK=Ds(qc,q_),IK={kernelName:qc,backendName:"cpu",kernelFunc:kK};function j_(e,t,n,a){let r=ze(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var SK=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let b=0;b<p;++b)c+=e[d+b].length;c+=u*this.rightPad.length;let h=l+u+p-1;c+=h*this.separator.length,n[a+i]=new Uint8Array(c);let m=n[a+i],f=0,g=b=>b.forEach(y=>m[f++]=y);for(let b=0;b<l;++b)g(this.leftPad),g(this.separator);for(let b=0;b<p-1;++b)g(e[d+b]),g(this.separator);if(p>0){g(e[d+p-1]);for(let b=0;b<u;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<u-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function P1(e,t,n,a,r,s,i,o){return new SK(n,a,r,s,i,o).compute(e,t)}function NK(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function O1(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;NK(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function L1(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var K_=Ot((e,t)=>e-t),TK=E1((e,t,n,a)=>({real:e-n,imag:t-a})),z1=Zt(Oo,K_,TK),CK={kernelName:Oo,backendName:"cpu",kernelFunc:z1};function X_(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=ze(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var ac=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function Y_(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));Y_(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),ac(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;ac(e[s],r)<0;)s=s+1;for(;ac(e[i],r)>0;)i=i-1}ac(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function Z_(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(Y_(m,a),m=m.slice(0,a)),r&&m.sort(ac);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[ze(p,n,l),ze(p,"int32",u)]}function W1(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i=new Map,o=new Int32Array(n[r]),l=new Vt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let b=[];for(let y=0;y<s[0];y++)for(let x=0;x<s[2];x++)b.push(l.get(y,m,x));f=b.join(",")}let g=i.get(f);if(g!=null)o[m]=g;else{let b=i.size;i.set(f,b),o[m]=b,u.push(m)}}let d=s.slice();d[1]=i.size;let c=new Vt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}var _K="4.5.0";Ym("cpu",()=>new Xf,1);var J_=it(Hi,e=>e>=0?e:Math.exp(e)-1),EK={kernelName:Hi,backendName:"cpu",kernelFunc:J_};function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var AK={kernelName:no,backendName:"cpu",kernelFunc:Q_},FK=Ot((e,t)=>e<0?t*e:e);function eE(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=FK(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var $K={kernelName:yo,backendName:"cpu",kernelFunc:eE},tE=it(wo,e=>Math.max(0,e)),DK={kernelName:wo,backendName:"cpu",kernelFunc:tE},nE=it(So,e=>Math.min(Math.max(0,e),6)),RK={kernelName:So,backendName:"cpu",kernelFunc:nE};function wm(e,t,n,a,r){if(n==="linear")return dr({inputs:{x:t},backend:e});if(n==="relu")return tE({inputs:{x:t},backend:e});if(n==="elu")return J_({inputs:{x:t},backend:e});if(n==="relu6")return nE({inputs:{x:t},backend:e});if(n==="prelu")return eE({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return Q_({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return V_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var MK={kernelName:Uu,backendName:"cpu",kernelFunc:xt};function aE(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=lp.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=xt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=xt({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],F=o?T.shape[1]:T.shape[2],D=Math.max(g,b),$=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,H,j]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,J]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=E*F,ae=ze([D,E,F],I.dtype),te=ae.values,re=n.blockSize;for(let se=0;se<D;se++){let ye=se%g,ue=se%b;for(let be=0;be<E;be+=re){let ke=Math.min(be+re,E);for(let Se=0;Se<F;Se+=re){let We=Math.min(Se+re,F);for(let Ge=0;Ge<C;Ge+=re){let ht=Math.min(Ge+re,C);for(let st=be;st<ke;st++)for(let at=Se;at<We;at++){let rt=0;for(let Me=Ge;Me<ht;Me++){let ft=$[ye*U+st*H+Me*j],jn=S[Me*K+at*Z+ue*J];rt+=ft*jn}te[se*ee+(st*F+at)]+=rt}}}}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(y,ae.dtype,ae.values)}var PK={kernelName:Di,backendName:"cpu",kernelFunc:aE};function OK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=aE({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Ql({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=wm(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var LK={kernelName:ii,backendName:"cpu",kernelFunc:OK},zK=it(Si,e=>Math.acos(e)),WK={kernelName:Si,backendName:"cpu",kernelFunc:zK},BK=it(Ni,e=>Math.acosh(e)),VK={kernelName:Ni,backendName:"cpu",kernelFunc:BK};function UK(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=ze(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var GK={kernelName:Ti,backendName:"cpu",kernelFunc:UK};function HK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var qK={kernelName:su,backendName:"cpu",kernelFunc:HK};function jK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var KK={kernelName:iu,backendName:"cpu",kernelFunc:jK};function XK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var YK={kernelName:ou,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var JK={kernelName:lu,backendName:"cpu",kernelFunc:ZK},QK=it(Ci,e=>Math.asin(e)),e8={kernelName:Ci,backendName:"cpu",kernelFunc:QK},t8=it(_i,e=>Math.asinh(e)),n8={kernelName:_i,backendName:"cpu",kernelFunc:t8},a8=it(Ei,e=>Math.atan(e)),r8={kernelName:Ei,backendName:"cpu",kernelFunc:a8},s8=Ot((e,t)=>Math.atan2(e,t)),i8=Zt(Fi,s8),o8={kernelName:Fi,backendName:"cpu",kernelFunc:i8},l8=it(Ai,e=>Math.atanh(e)),u8={kernelName:Ai,backendName:"cpu",kernelFunc:l8};function B1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=ze(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let F=E*i-c,D=Math.max(0,F),$=Math.min(r.inHeight,p+F),S=I+E*y;for(let M=0;M<r.outWidth;++M){let B=M*o-h,U=Math.max(0,B),H=Math.min(r.inWidth,d+B),j=m,K=0,Z=0;for(let ee=D;ee<$;ee+=l){let ae=T+ee*a[1];for(let te=U;te<H;te+=u){let re=ae+te*a[2],se=e[re+C];s==="max"&&se>j?j=se:s==="avg"&&(K+=se,Z++)}if(isNaN(j))break}let J=S+M*x+C;g[J]=s==="avg"?K/Z:j}}}return f}function rE(e,t,n,a,r=!1,s=!1){let i=ze(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=ze(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let F=Math.min(a.inWidth,c+C),D=Number.NEGATIVE_INFINITY,$=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let B=E;B<F;B+=p){let U=B-C,H=f.get(g,S,B,b);H>D&&(D=H,r?$=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+b:(S*a.inWidth+B)*a.inChannels+b:$=M*c+U)}}i.set($,g,y,T,b)}}return i}function sE(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=ze(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let F=0;F<r.batchSize;++F){let D=F*I,$=F*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let B=M*i-f,U=B;for(;U<0;)U+=u;let H=Math.min(r.inDepth,c+B),j=D+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,J=Z;for(;J<0;)J+=p;let ee=Math.min(r.inHeight,h+Z),ae=j+K*C;for(let te=0;te<r.outWidth;++te){let re=te*l-b,se=re;for(;se<0;)se+=d;let ye=Math.min(r.inWidth,m+re),ue=ae+te*E,be=y,ke=0,Se=0;for(let Ge=U;Ge<H;Ge+=u){let ht=$+Ge*a[1];for(let st=J;st<ee;st+=p){let at=ht+st*a[2];for(let rt=se;rt<ye;rt+=d){let Me=at+rt*a[3],ft=e[Me+S];if(s==="max"&&ft>be?be=ft:s==="avg"&&(ke+=ft,Se++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let We=ue+S;w[We]=s==="avg"?ke/Math.max(Se,1):be}}}}return x}function p8(e,t){let n=ze(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let F=0;F<t.outWidth;++F){let D=F*s-m,$=D;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+D),M=Number.NEGATIVE_INFINITY,B=-1;for(let U=x;U<w;U+=i){let H=U-y;for(let j=C;j<E;j+=o){let K=j-T;for(let Z=$;Z<S;Z+=l){let J=Z-D,ee=e.get(f,U,j,Z,g);ee>=M&&(M=ee,B=H*p*d+K*p+J)}}}n.set(B,f,b,I,F,g)}}}return n}function c8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=dr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=B1(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var d8={kernelName:$i,backendName:"cpu",kernelFunc:c8};function h8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=sE(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var m8={kernelName:uu,backendName:"cpu",kernelFunc:h8};function f8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,F=I-1-p.padInfo.top,D=ze(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let B=0;B<p.inChannels;++B)for(let U=0;U<p.inDepth;++U)for(let H=0;H<p.inHeight;++H)for(let j=0;j<p.inWidth;++j){let K=U-C,Z=H-F,J=j-E,ee=0;for(let ae=0;ae<w;ae+=b){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(Z+re)/c;if(!(se<0||se>=p.outHeight||Math.floor(se)!==se))for(let ye=0;ye<T;ye+=x){let ue=(J+ye)/h;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let be=S.get(M,te,se,ue,B);ee+=be}}}D.set(ee*$,M,U,H,j,B)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var g8={kernelName:Rc,backendName:"cpu",kernelFunc:f8};function b8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=ze(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=ze(r.shape,"float32",C);for(let F=0;F<p.batchSize;++F)for(let D=0;D<p.inChannels;++D)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let M=$-w,B=S-x,U=0;for(let H=0;H<b;H+=f){let j=(M+H)/d;if(!(j<0||j>=p.outHeight||Math.floor(j)!==j))for(let K=0;K<y;K+=g){let Z=(B+K)/c;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let J=E.get(F,j,Z,D);U+=J}}I.set(U*T,F,$,S,D)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var y8={kernelName:$m,backendName:"cpu",kernelFunc:b8};function x8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var v8={kernelName:Yi,backendName:"cpu",kernelFunc:x8};function w8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:u}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=xi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var k8={kernelName:pu,backendName:"cpu",kernelFunc:w8};function I8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=A1(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var S8={kernelName:cu,backendName:"cpu",kernelFunc:I8};function N8(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var T8={kernelName:Mc,backendName:"cpu",kernelFunc:N8},C8=it(Is,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),_8={kernelName:Is,backendName:"cpu",kernelFunc:C8},E8=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},A8={kernelName:Pc,backendName:"cpu",kernelFunc:E8};function eu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var F8={kernelName:Bm,backendName:"cpu",kernelFunc:eu};function tu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return dr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>yi({inputs:{input:w},backend:n})),g=l.map(w=>eu({inputs:{input:w},backend:n})),b=tu({inputs:f,backend:n,attrs:{axis:s}}),y=tu({inputs:g,backend:n,attrs:{axis:s}}),x=Jn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=l.map(f=>{let g=[-1,v.sizeFromShape(f.shape.slice(s))];return xt({inputs:{x:f},backend:n,attrs:{shape:g}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=F1(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var $8={kernelName:du,backendName:"cpu",kernelFunc:tu};function iE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Vt(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],F=x?I[2]:1,D=x?1:I[1],$=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,H=n.data.get(s.dataId).values,j=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,J=K*$;for(let ee=0;ee<c.outHeight;++ee){let ae=J+ee*S,te=ee*c.strideHeight-y;for(let re=0;re<h;++re){let se=te+re*f;if(se<0||se>=c.inHeight)continue;let ye=re*T[0],ue=Z+se*E;for(let be=0;be<c.outWidth;++be){let ke=ae+be*M,Se=be*c.strideWidth-b;for(let We=0;We<m;++We){let Ge=Se+We*g;if(Ge<0||Ge>=c.inWidth)continue;let ht=ye+We*T[1],st=ue+Ge*F,at=ht;for(let rt=0;rt<c.inChannels;++rt){let Me=U[st+rt*D];for(let ft=0;ft<c.outChannels;++ft)j[ke+ft*B]+=Me*H[at+ft];at+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,j)}var D8={kernelName:Pi,backendName:"cpu",kernelFunc:iE};function R8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new Vt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Vt(r.shape,r.dtype,I),E=new Vt(s.shape,s.dtype,T);for(let F=0;F<f;++F){let D=Math.max(0,Math.ceil((w-F)/h)),$=Math.min(c.outHeight,(c.inHeight+w-F)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),B=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.outChannels;++H){let j=0;for(let K=0;K<c.batchSize;++K)for(let Z=D;Z<$;++Z){let J=F+Z*h-w;for(let ee=M;ee<B;++ee){let ae=S+ee*m-x;b?j+=C.get(K,J,ae,U)*E.get(K,Z,ee,H):j+=C.get(K,U,J,ae)*E.get(K,H,Z,ee)}}y.set(j,F,S,U,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var M8={kernelName:Mm,backendName:"cpu",kernelFunc:R8};function P8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Vt(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:F,inHeight:D,inWidth:$,outChannels:S,outHeight:M,outWidth:B,strideHeight:U,strideWidth:H}=m;h=m.dataFormat;let j=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",J=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],re=c[0],se=Z?c[1]:c[2],ye=Z?c[2]:1,ue=Z?1:c[1];for(let be=0;be<T;++be)for(let ke=0;ke<F;++ke)for(let Se=0;Se<D;++Se){let We=Se-j,Ge=Math.max(0,Math.ceil(We/U)),ht=Math.min(M,(C+We)/U);for(let st=0;st<$;++st){let at=st-K,rt=Math.max(0,Math.ceil(at/H)),Me=Math.min(B,(E+at)/H),ft=0;for(let Lt=Ge;Lt<ht;++Lt){let la=Lt*U-We;for(let cn=rt;cn<Me;++cn){let $n=cn*H-at,ua=re*be+se*Lt+ye*cn,Dn=x*(C-1-la)+w*(E-1-$n)+I*ke;for(let lt=0;lt<S;++lt){let Rn=b[ua+ue*lt],Kn=y[Dn+lt];ft+=Rn*Kn}}}let jn=J*be+ee*Se+ae*st+te*ke;g[jn]=ft}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var O8={kernelName:Oi,backendName:"cpu",kernelFunc:P8};function L8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new Vt(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),F=v.computeStrides(s.shape);for(let D=0;D<u.batchSize;++D){let $=D*E[0],S=D*w.strides[0];for(let M=0;M<u.outDepth;++M){let B=S+M*w.strides[1],U=M*u.strideDepth-b;for(let H=0;H<p;++H){let j=U+H*h;if(j<0||j>=u.inDepth)continue;let K=H*F[0],Z=$+j*E[1];for(let J=0;J<u.outHeight;++J){let ee=B+J*w.strides[2],ae=J*u.strideHeight-x;for(let te=0;te<d;++te){let re=ae+te*m;if(re<0||re>=u.inHeight)continue;let se=K+te*F[1],ye=Z+re*E[2];for(let ue=0;ue<u.outWidth;++ue){let be=ee+ue*u.outChannels,ke=ue*u.strideWidth-y;for(let Se=0;Se<c;++Se){let We=ke+Se*f;if(We<0||We>=u.inWidth)continue;let Ge=se+Se*F[2],ht=ye+We*u.inChannels,st=Ge;for(let at=0;at<u.inChannels;++at){let rt=I[ht+at];for(let Me=0;Me<u.outChannels;++Me)C[be+Me]+=rt*T[st+Me];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var z8={kernelName:Li,backendName:"cpu",kernelFunc:L8};function W8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Vt(d.filterShape,"float32"),x=y.values,[w,I,T,C]=y.strides,E=n.data.get(s.dataId).values,[F,D,$,S]=p,M=n.data.get(r.dataId).values,[B,U,H,j]=u,K=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),re=ee*w;for(let se=0;se<g;++se){let ye=Math.max(0,Math.ceil((J-se)/h)),ue=Math.min(d.outHeight,(d.inHeight+J-se)/h),be=se*I+re;for(let ke=0;ke<b;++ke){let Se=Math.max(0,Math.ceil((Z-ke)/m)),We=Math.min(d.outWidth,(d.inWidth+Z-ke)/m),Ge=ke*T+be;for(let ht=0;ht<d.inChannels;++ht){let st=ht*C+Ge;for(let at=0;at<d.outChannels;++at){let rt=0;for(let Me=0;Me<d.batchSize;++Me){let ft=Me*B,jn=Me*F;for(let Lt=ae;Lt<te;++Lt){let la=(ee+Lt*c-K)*U+ft,cn=Lt*D+jn;for(let $n=ye;$n<ue;++$n){let ua=(se+$n*h-J)*H+la,Dn=$n*$+cn;for(let lt=Se;lt<We;++lt){let Rn=(ke+lt*m-Z)*j+ua,Kn=lt*S+Dn;rt+=M[Rn+ht]*E[Kn+at]}}}}x[st+at]=rt}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var B8={kernelName:hu,backendName:"cpu",kernelFunc:W8};function V8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Vt(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,F,D,$]=p,{batchSize:S,filterDepth:M,filterHeight:B,filterWidth:U,inChannels:H,inDepth:j,inHeight:K,inWidth:Z,outChannels:J,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:re,strideHeight:se,strideWidth:ye}=d,ue=M-1-d.padInfo.front,be=B-1-d.padInfo.top,ke=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let We=0;We<H;++We)for(let Ge=0;Ge<j;++Ge){let ht=Ge-ue,st=Math.max(0,Math.ceil(ht/re)),at=Math.min(ee,(M+ht)/re);for(let rt=0;rt<K;++rt){let Me=rt-be,ft=Math.max(0,Math.ceil(Me/se)),jn=Math.min(ae,(B+Me)/se);for(let Lt=0;Lt<Z;++Lt){let la=Lt-ke,cn=Math.max(0,Math.ceil(la/ye)),$n=Math.min(te,(U+la)/ye),ua=0;for(let Dn=st;Dn<at;++Dn){let lt=Dn*re-ht;for(let Rn=ft;Rn<jn;++Rn){let Kn=Rn*se-Me;for(let kr=cn;kr<$n;++kr){let vl=kr*ye-la,tr=x*Se+w*Dn+I*Rn+T*kr,Bp=E*(M-1-lt)+F*(B-1-Kn)+D*(U-1-vl)+$*We;for(let Na=0;Na<J;++Na){let Yr=y[tr+Na],Jt=C[Bp+Na];ua+=Yr*Jt}}}}h[m*Se+f*Ge+g*rt+b*Lt+We]=ua}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var U8={kernelName:mu,backendName:"cpu",kernelFunc:V8},G8=it(zi,e=>Math.cos(e)),H8={kernelName:zi,backendName:"cpu",kernelFunc:G8},q8=it(Wi,e=>Math.cosh(e)),j8={kernelName:Wi,backendName:"cpu",kernelFunc:q8};function K8(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=ze([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(b.shape);for(let C=0;C<m;C++){let E=C*4,F=y[E],D=y[E+1],$=y[E+2],S=y[E+3],M=x[C];if(M>=p)continue;let B=f>1?($-F)*(d-1)/(f-1):0,U=g>1?(S-D)*(c-1)/(g-1):0;for(let H=0;H<f;H++){let j=f>1?F*(d-1)+H*B:.5*(F+$)*(d-1);if(j<0||j>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let J=Z+K*T[2]+H*T[1]+C*T[0];b.values[J]=u}continue}if(l==="bilinear"){let K=Math.floor(j),Z=Math.ceil(j),J=j-K;for(let ee=0;ee<g;ee++){let ae=g>1?D*(c-1)+ee*U:.5*(D+S)*(c-1);if(ae<0||ae>c-1){for(let ye=0;ye<h;ye++){let ue=ye+ee*T[2]+H*T[1]+C*T[0];b.values[ue]=u}continue}let te=Math.floor(ae),re=Math.ceil(ae),se=ae-te;for(let ye=0;ye<h;ye++){let ue=ye+te*I[2]+K*I[1]+M*I[0],be=w[ue];ue=ye+re*I[2]+K*I[1]+M*I[0];let ke=w[ue];ue=ye+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=ye+re*I[2]+Z*I[1]+M*I[0];let We=w[ue],Ge=be+(ke-be)*se,ht=Se+(We-Se)*se;ue=ye+ee*T[2]+H*T[1]+C*T[0],b.values[ue]=Ge+(ht-Ge)*J}}}else for(let K=0;K<g;++K){let Z=g>1?D*(c-1)+K*U:.5*(D+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+H*T[1]+C*T[0];b.values[te]=u}continue}let J=Math.round(Z),ee=Math.round(j);for(let ae=0;ae<h;ae++){let te=ae+J*I[2]+ee*I[1]+M*I[0],re=ae+K*T[2]+H*T[1]+C*T[0];b.values[re]=w[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var X8={kernelName:gu,backendName:"cpu",kernelFunc:K8};function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ba(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var Z8={kernelName:fu,backendName:"cpu",kernelFunc:Y8};function J8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ba(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var Q8={kernelName:Bi,backendName:"cpu",kernelFunc:J8};function eX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=A1(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=m_(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var tX={kernelName:Oc,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let F=0;F<h;++F){let D=F+E+p*(T+u*(x+l*b));f[g++]=m[D]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var aX={kernelName:bu,backendName:"cpu",kernelFunc:nX};function oE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,T=new Vt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,F=T.values;for(let D=0;D<h.batchSize;++D){let $=D*p[0],S=D*T.strides[0];for(let M=0;M<h.outHeight;++M){let B=S+M*T.strides[1],U=M*h.strideHeight-w;for(let H=0;H<m;++H){let j=U+H*g;if(j<0||j>=h.inHeight)continue;let K=H*d[0],Z=$+j*p[1];for(let J=0;J<h.outWidth;++J){let ee=B+J*T.strides[2],ae=J*h.strideWidth-x;for(let te=0;te<f;++te){let re=ae+te*b;if(re<0||re>=h.inWidth)continue;let se=K+te*d[1],ye=Z+re*h.inChannels,ue=ee,be=se;for(let ke=0;ke<h.inChannels;++ke){let Se=C[ye+ke];for(let We=0;We<I;++We)F[ue+We]+=Se*E[be+We];ue+=I,be+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var rX={kernelName:Vi,backendName:"cpu",kernelFunc:oE};function sX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Vt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Vt(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Vt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((y-E)/c)),D=Math.min(d.outHeight,(d.inHeight+y-E)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((b-$)/h)),M=Math.min(d.outWidth,(d.inWidth+b-$)/h);for(let B=0;B<d.outChannels;++B){let U=Math.trunc(B/x),H=B%x,j=0;for(let K=0;K<d.batchSize;++K)for(let Z=F;Z<D;++Z){let J=E+Z*c-y;for(let ee=S;ee<M;++ee){let ae=$+ee*h-b;j+=I.get(K,J,ae,U)*C.get(K,Z,ee,B)}}g.set(j,E,$,U,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var iX={kernelName:Pm,backendName:"cpu",kernelFunc:sX};function oX(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Vt(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,F,D]=c,{batchSize:$,filterHeight:S,filterWidth:M,inChannels:B,inHeight:U,inWidth:H,outChannels:j,outHeight:K,outWidth:Z,strideHeight:J,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,re=j/B;for(let se=0;se<$;++se)for(let ye=0;ye<B;++ye)for(let ue=0;ue<U;++ue){let be=ue-ae,ke=Math.max(0,Math.ceil(be/J)),Se=Math.min(K,(S+be)/J);for(let We=0;We<H;++We){let Ge=We-te,ht=Math.max(0,Math.ceil(Ge/ee)),st=Math.min(Z,(M+Ge)/ee),at=0;for(let rt=ke;rt<Se;++rt){let Me=rt*J-be;for(let ft=ht;ft<st;++ft){let jn=ft*ee-Ge,Lt=w*se+I*rt+T*ft,la=E*(S-1-Me)+F*(M-1-jn)+D*ye;for(let cn=0;cn<re;++cn){let $n=ye*re+cn,ua=x[Lt+$n],Dn=C[la+cn];at+=ua*Dn}}}f[g*se+b*ue+y*We+ye]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var lX={kernelName:Om,backendName:"cpu",kernelFunc:oX};function uX(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=ze([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var pX={kernelName:Lc,backendName:"cpu",kernelFunc:uX},cX={kernelName:Ui,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:F,outShape:D}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=v.sizeFromShape(D),S=D.length,M=v.getArrayFromDType(a.dtype,$);for(let B=0;B<h;++B)for(let U=0;U<b;++U){let H=U*w-x.top;for(let j=0;j<y;++j){let K=j*I-x.left;for(let Z=0;Z<g;++Z){let J=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=H+ae*E;if(te>=0&&te<m)for(let re=0;re<C;++re){let se=K+re*F;if(se>=0&&se<f){let ye=v.locToIndex([B,te,se,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,re,Z],c,v.computeStrides(r.shape)),be=u[ye]+d[ue];be>J&&(J=be)}}}let ee=v.locToIndex([B,U,j,Z],S,v.computeStrides(D));M[ee]=J}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),D,a.dtype),shape:D,dtype:a.dtype}}},dX={kernelName:Ll,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Ll}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=0,J=0;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ee,J=te)}}}$[Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},hX={kernelName:Ol,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Ol}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=B<0?0:B,J=H<0?0:H;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ae,J=re)}}}$[S][Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function _d(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=xs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=dr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Un({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=xm(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,T=0;for(let C=0;C<b;++C)T+=x[I+C];y[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var mX={kernelName:Ro,backendName:"cpu",kernelFunc:_d};function fX(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Un({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=xt({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Yf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=_d({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var gX={kernelName:Lm,backendName:"cpu",kernelFunc:fX};function bX(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=0?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var yX={kernelName:yu,backendName:"cpu",kernelFunc:bX},xX=N.ERF_P,vX=N.ERF_A1,wX=N.ERF_A2,kX=N.ERF_A3,IX=N.ERF_A4,SX=N.ERF_A5,NX=it(xu,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+xX*n);return t*(1-((((SX*a+IX)*a+kX)*a+wX)*a+vX)*a*Math.exp(-n*n))}),TX={kernelName:xu,backendName:"cpu",kernelFunc:NX};function km(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:o}})}var CX={kernelName:wu,backendName:"cpu",kernelFunc:km},_X=Ot((e,t)=>e/t),V1=Zt(Gi,_X),nv={kernelName:Gi,backendName:"cpu",kernelFunc:V1};function lE(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=xi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=xi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Jn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=EX(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Jn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function EX(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(AX(a)){let o=av(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=dr({inputs:{x:d},backend:n}),h=nv.kernelFunc({inputs:{a:u,b:d},backend:n}),m=nv.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=FX(o,a,t);return N.splitRealAndImagArrays(l)}}function AX(e){return(e&e-1)===0}function av(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Jn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Jn({inputs:{real:y,imag:x},backend:r}),I=av(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],F=r.makeTensorInfo(E,"float32",T),D=r.makeTensorInfo(E,"float32",C),$=Jn({inputs:{real:F,imag:D},backend:r}),S=av(f,g,i,a,r),M=S.real,B=S.imag,U=[M.length],H=r.makeTensorInfo(U,"float32",M),j=r.makeTensorInfo(U,"float32",B),K=Jn({inputs:{real:H,imag:j},backend:r}),Z=N.exponents(n,a),J=[Z.real.length],ee=r.makeTensorInfo(J,"float32",Z.real),ae=r.makeTensorInfo(J,"float32",Z.imag),te=Jn({inputs:{real:ee,imag:ae},backend:r}),re=Yf({inputs:{a:te,b:K},backend:r}),se=Ql({inputs:{a:$,b:re},backend:r}),ye=z1({inputs:{a:$,b:re},backend:r}),ue=yi({inputs:{input:se},backend:r}),be=yi({inputs:{input:ye},backend:r}),ke=eu({inputs:{input:se},backend:r}),Se=eu({inputs:{input:ye},backend:r}),We=tu({inputs:[ue,be],backend:r,attrs:{axis:0}}),Ge=tu({inputs:[ke,Se],backend:r,attrs:{axis:0}}),ht=r.data.get(We.dataId).values,st=r.data.get(Ge.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(Ge),{real:ht,imag:st}}function FX(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function $X(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=lE(o,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var DX={kernelName:zm,backendName:"cpu",kernelFunc:$X};function U1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return MX(o,r,i),t.makeTensorInfo(a,i,o)}var RX={kernelName:zc,backendName:"cpu",kernelFunc:U1};function MX(e,t,n){e.fill(t)}var PX={kernelName:ku,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,T=c+m+I+b;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function OX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=iE({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=xt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Ql({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=Ql({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=xt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=wm(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=wm(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var LX={kernelName:oi,backendName:"cpu",kernelFunc:OX};function zX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=oE({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Ql({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=wm(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var WX={kernelName:li,backendName:"cpu",kernelFunc:zX};function BX(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=S_(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var VX={kernelName:Su,backendName:"cpu",kernelFunc:BX};function UX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=xt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=xt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=N_(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var GX={kernelName:Iu,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=lE(o,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var qX={kernelName:Wm,backendName:"cpu",kernelFunc:HX},jX=it(Qi,e=>Number.isFinite(e)?1:0,"bool"),KX={kernelName:Qi,backendName:"cpu",kernelFunc:jX},XX=it(eo,e=>Math.abs(e)===1/0?1:0,"bool"),YX={kernelName:eo,backendName:"cpu",kernelFunc:XX},ZX=it(to,e=>Number.isNaN(e)?1:0,"bool"),JX={kernelName:to,backendName:"cpu",kernelFunc:ZX};function QX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=A_(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var eY={kernelName:_u,backendName:"cpu",kernelFunc:QX},tY=it(ro,e=>Math.log1p(e)),nY={kernelName:ro,backendName:"cpu",kernelFunc:tY},aY=Ot((e,t)=>e&&t),rY=Zt(Eu,aY,null,"bool"),sY={kernelName:Eu,backendName:"cpu",kernelFunc:rY},iY=it(Au,e=>e?0:1,"bool"),oY={kernelName:Au,backendName:"cpu",kernelFunc:iY},lY=Ot((e,t)=>e||t),uY=Zt(Fu,lY,null,"bool"),pY={kernelName:Fu,backendName:"cpu",kernelFunc:uY};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var dY={kernelName:so,backendName:"cpu",kernelFunc:cY};function hY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[y]/T;y===C&&(E+=Math.pow(T,-p)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var mY={kernelName:$u,backendName:"cpu",kernelFunc:hY};function uE(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=D1(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=$_(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var fY={kernelName:io,backendName:"cpu",kernelFunc:uE};function gY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=dr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=B1(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var bY={kernelName:lo,backendName:"cpu",kernelFunc:gY};function yY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=sE(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var xY={kernelName:Du,backendName:"cpu",kernelFunc:yY};function vY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=p8(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,F=ze(s.shape,"float32"),D=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let B=0;B<p.inHeight;++B)for(let U=0;U<p.inWidth;++U){let H=M-T,j=B-E,K=U-C,Z=0;for(let J=0;J<x;J+=g){let ee=(H+J)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=b){let te=(j+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(K+re)/f;if(se<0||se>=p.outWidth||Math.floor(se)!==se)continue;let ye=x*w*I-1-c.get($,ee,te,se,S),ue=J*w*I+ae*I+re,be=ye===ue?1:0;if(be===0)continue;let ke=D.get($,ee,te,se,S);Z+=ke*be}}}F.set(Z,$,M,B,U,S)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var wY={kernelName:Wc,backendName:"cpu",kernelFunc:vY};function kY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=ze(c.outShape,o.dtype,rE(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=ze(o.shape,"float32"),E=n.data.get(r.dataId).values,F=ze(r.shape,"float32",E);for(let D=0;D<c.batchSize;++D)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let B=S-T,U=M-I,H=0;for(let j=0;j<x;j+=b){let K=(B+j)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=y){let J=(U+Z)/g;if(J<0||J>=c.outWidth||Math.floor(J)!==J)continue;let ee=x*w-1-m.get(D,K,J,$),ae=j*w+Z,te=ee===ae?1:0;if(te===0)continue;let re=F.get(D,K,J,$);H+=re*te}}C.set(H,D,S,M,$)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var IY={kernelName:Vm,backendName:"cpu",kernelFunc:kY};function SY(e,t,n,a,r){let s=v.computeStrides(t),i=B1(e,t,n,s,r,"max"),o=rE(e,t,n,r,!0,a);return[i.values,o.values]}var NY={kernelName:Um,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=SY(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function TY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=xs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=V1({inputs:{a:c,b:d},backend:n});p.push(h);let m=_d({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var CY={kernelName:uo,backendName:"cpu",kernelFunc:TY};function _Y(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var EY={kernelName:po,backendName:"cpu",kernelFunc:_Y};function AY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var FY={kernelName:ho,backendName:"cpu",kernelFunc:AY},$Y=Ot((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),DY=Zt(Ru,$Y),RY={kernelName:Ru,backendName:"cpu",kernelFunc:DY},MY=ws(_m());function pE(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=uE({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=z1({inputs:{a:r,b:d},backend:n}),h=v_({inputs:{x:c},backend:n}),m=_d({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=V1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var PY={kernelName:Mo,backendName:"cpu",kernelFunc:pE};function OY(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:pE({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=MY.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var LY={kernelName:Mu,backendName:"cpu",kernelFunc:OY},zY=fr.nonMaxSuppressionV3Impl;function WY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=zY(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var BY={kernelName:Lu,backendName:"cpu",kernelFunc:WY},VY=fr.nonMaxSuppressionV4Impl;function UY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=VY(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var GY={kernelName:zu,backendName:"cpu",kernelFunc:UY},HY=fr.nonMaxSuppressionV5Impl;function qY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=HY(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var jY={kernelName:Wu,backendName:"cpu",kernelFunc:qY};function KY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var XY={kernelName:fo,backendName:"cpu",kernelFunc:KY};function Im(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=yi({inputs:{input:a},backend:n}),s=Im({inputs:{x:r},backend:n}),i=eu({inputs:{input:a},backend:n}),o=Im({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return U1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var YY={kernelName:ip,backendName:"cpu",kernelFunc:Im};function cE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=yi({inputs:{input:a},backend:n}),s=cE({inputs:{x:r},backend:n}),i=eu({inputs:{input:a},backend:n}),o=Im({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return U1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var ZY={kernelName:Bu,backendName:"cpu",kernelFunc:cE};function dE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return km({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=km({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=tu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var JY={kernelName:Vu,backendName:"cpu",kernelFunc:dE};function QY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var hE={kernelName:go,backendName:"cpu",kernelFunc:QY},e7=Ot((e,t)=>Math.pow(e,t)),t7=Zt(bo,e7),n7={kernelName:bo,backendName:"cpu",kernelFunc:t7};function a7(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.data.get(b.dataId).values),u=r.map(b=>b.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=L_(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var r7={kernelName:Gm,backendName:"cpu",kernelFunc:a7};function s7(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=z_(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var i7={kernelName:Hm,backendName:"cpu",kernelFunc:s7};function o7(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=W_(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var l7={kernelName:qm,backendName:"cpu",kernelFunc:o7};function u7(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=R1(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var p7={kernelName:Bc,backendName:"cpu",kernelFunc:u7},c7=it(vo,e=>1/e),d7={kernelName:vo,backendName:"cpu",kernelFunc:c7};function h7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let F=Math.max(0,Math.floor(E)),D=E-F,$=Math.min(c-1,Math.ceil(E)),S=T*l[0]+F*l[1],M=T*l[0]+$*l[1];for(let B=0;B<p;B++){let U;i?U=I*(B+.5)-.5:U=I*B;let H=Math.max(0,Math.floor(U)),j=U-H,K=Math.min(h-1,Math.ceil(U)),Z=S+H*l[2],J=M+H*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let re=f[Z+te],se=f[J+te],ye=f[ee+te],ue=f[ae+te],be=re+(ye-re)*j,ke=se+(ue-se)*j,Se=be+(ke-be)*D;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var m7={kernelName:Io,backendName:"cpu",kernelFunc:h7};function f7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*b,F=Math.floor(E),D=Math.min(Math.ceil(E),u-1),$=T+F*o[1],S=T+D*o[1],M=E-F,B=1-M;for(let U=0;U<h;U++){let H=U*y,j=Math.floor(H),K=Math.min(Math.ceil(H),p-1),Z=H-j,J=1-Z,ee=$+j*o[2],ae=$+K*o[2],te=S+j*o[2],re=S+K*o[2],se=B*J,ye=B*Z,ue=M*J,be=M*Z;for(let ke=0;ke<d;ke++){let Se=x[w++];m[ee+ke]+=Se*se,m[ae+ke]+=Se*ye,m[te+ke]+=Se*ue,m[re+ke]+=Se*be}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var g7={kernelName:Hu,backendName:"cpu",kernelFunc:f7};function b7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let F=i?x*(E+.5):x*E,D=Math.min(c-1,s?Math.round(F):Math.floor(F));i&&(D=Math.max(0,D));let $=C+D*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,B=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(B=Math.max(0,B));let U=$+B*l[2];for(let H=0;H<m;H++){let j=f[U+H];g[I++]=j}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var y7={kernelName:ko,backendName:"cpu",kernelFunc:b7};function x7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let F=0;F<u;F++){let D=F*o[0];for(let $=0;$<p;$++){let S=D+$*o[1],M=Math.floor($*I),B=Math.floor(M-C/2);for(let U=0;U<d;U++){let H=S+U*o[2],j=Math.floor(U*T),K=Math.floor(j-E/2);for(let Z=0;Z<c;Z++){let J=0;for(let ee=0;ee<C;ee++){let ae=ee+B;if(ae<0||ae>=h)continue;let te=D+ae*l[1],re=ae*x,se=Math.min(p-1,i?Math.round(re):Math.floor(re));if($===se)for(let ye=0;ye<E;ye++){let ue=ye+K;if(ue<0||ue>=m)continue;let be=te+ue*l[2],ke=ue*w,Se=Math.min(d-1,i?Math.round(ke):Math.floor(ke));U===Se&&(J+=g[be+Z])}}f[H+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var v7={kernelName:Gu,backendName:"cpu",kernelFunc:x7};function w7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return dr({inputs:{x:r},backend:n});let l=new Vt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var k7={kernelName:No,backendName:"cpu",kernelFunc:w7},I7={kernelName:op,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let F=0;F<c;F++){let D=[u,I,C,F],$=D[2],S=D[1],M=($-h)*b-(S-m)*g,B=($-h)*g+(S-m)*b;M=Math.round(M+h),B=Math.round(B+m);let U=s;if(typeof s!="number"&&(F===3?U=f:U=s[F]),M>=0&&M<d&&B>=0&&B<p){let j=B*(d*c),K=M*c,Z=w+j+K+F;U=y[Z]}let H=w+T+E+F;l[H]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},S7=it(To,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),N7={kernelName:To,backendName:"cpu",kernelFunc:S7};function T7(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=ni(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var C7={kernelName:qu,backendName:"cpu",kernelFunc:T7};function _7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function E7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function A7(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?_7(l,t[p+u]):E7(l,t[p+u])}return i}function F7(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=A7(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var $7={kernelName:Ku,backendName:"cpu",kernelFunc:F7};function D7(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ba(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var R7={kernelName:Xu,backendName:"cpu",kernelFunc:D7},M7=N.SELU_SCALEALPHA,P7=N.SELU_SCALE,O7=it(_o,e=>e>=0?P7*e:M7*(Math.exp(e)-1)),L7={kernelName:_o,backendName:"cpu",kernelFunc:O7},z7=it(Ao,e=>e<0?-1:e>0?1:0),W7={kernelName:Ao,backendName:"cpu",kernelFunc:z7},B7=it(Eo,e=>Math.sin(e)),V7={kernelName:Eo,backendName:"cpu",kernelFunc:B7},U7=it(Zu,e=>Math.sinh(e)),G7={kernelName:Zu,backendName:"cpu",kernelFunc:U7},H7=11920928955078125e-23,aS=Math.log(H7)+2,q7=it($o,e=>{let t=e>-aS,n=e<aS,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),j7={kernelName:$o,backendName:"cpu",kernelFunc:q7};function K7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=hE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:d}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var X7={kernelName:Ju,backendName:"cpu",kernelFunc:K7};function Y7(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=U_(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Z7={kernelName:Vc,backendName:"cpu",kernelFunc:Y7};function J7(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=G_(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Q7={kernelName:ep,backendName:"cpu",kernelFunc:J7};function eZ(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=M1(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var tZ={kernelName:Uc,backendName:"cpu",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=M1(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var aZ={kernelName:Gc,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=!!n.data.get(i.dataId).values[0];f=ni(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ni(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ni(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=ni(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var sZ={kernelName:tp,backendName:"cpu",kernelFunc:rZ};function iZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=xi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var oZ={kernelName:Qu,backendName:"cpu",kernelFunc:iZ},lZ={kernelName:Hc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},uZ=it(Ns,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),pZ={kernelName:Ns,backendName:"cpu",kernelFunc:uZ};function cZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=xt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=xi({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});I=xt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=j_(h,T,w,y);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var dZ={kernelName:np,backendName:"cpu",kernelFunc:cZ};function hZ(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=P1(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var mZ={kernelName:jc,backendName:"cpu",kernelFunc:hZ};function fZ(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=O1(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var gZ={kernelName:Kc,backendName:"cpu",kernelFunc:fZ};function bZ(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=L1(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var yZ={kernelName:Xc,backendName:"cpu",kernelFunc:bZ},xZ=it(Lo,e=>Math.tan(e)),vZ={kernelName:Lo,backendName:"cpu",kernelFunc:xZ},wZ=it(zo,e=>Math.tanh(e)),kZ={kernelName:zo,backendName:"cpu",kernelFunc:wZ};function IZ(e){let{inputs:t,backend:n}=e,{tensor:a,indices:r,updates:s}=t,{sliceRank:i,numUpdates:o,sliceSize:l,strides:u,outputSize:p}=N.calculateShapes(s,r,a.shape),d=!1,c=n.bufferSync(r),h=n.bufferSync(s),m=n.bufferSync(a),f=ni(c,h,a.shape,p,l,o,i,u,m,d);return n.makeTensorInfo(a.shape,f.dtype,f.values)}var SZ={kernelName:ju,backendName:"cpu",kernelFunc:IZ};function NZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=X_(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var TZ={kernelName:Ss,backendName:"cpu",kernelFunc:NZ};function CZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=Z_(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var _Z={kernelName:ap,backendName:"cpu",kernelFunc:CZ};function EZ(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],F=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));F.fill(l);let D=a.data.get(r.dataId).values,$=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?$:$.subarray(S*8,S*8+8);for(let B=0;B<m;++B)for(let U=0;U<f;++U)for(let H=0;H<h;++H){let j,K=M[6]*U+M[7]*B+1;if(K===0)continue;let Z=(M[0]*U+M[1]*B+M[2])/K,J=(M[3]*U+M[4]*B+M[5])/K,ee=rS(Z,c,o),ae=rS(J,d,o);switch(i){case"nearest":j=MZ(D,d,c,y,x,w,S,ae,ee,H,l);break;case"bilinear":j=PZ(D,d,c,y,x,w,S,ae,ee,H,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+B*C+U*E+H;F[te]=j}return a.makeTensorInfo(g,r.dtype,F)}return{dataId:a.write(F,g,r.dtype),shape:r.shape,dtype:r.dtype}}var AZ={kernelName:rp,backendName:"cpu",kernelFunc:EZ};function rS(e,t,n){switch(n){case"reflect":return FZ(e,t);case"wrap":return $Z(e,t);case"nearest":return RZ(e,t);case"constant":default:return DZ(e,t)}}function FZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function $Z(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function DZ(e,t){return e}function RZ(e,t){return v.clamp(0,e,t-1)}function rc(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function MZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return rc(e,t,n,a,r,s,i,d,c,u,p)}function PZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*rc(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*rc(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*rc(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*rc(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function OZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=W1(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var LZ={kernelName:Yc,backendName:"cpu",kernelFunc:OZ};function zZ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=xi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=xt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var WZ={kernelName:sp,backendName:"cpu",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=km({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=y_({inputs:{a:g,b:c},backend:n}),y=xs({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=Yf({inputs:{a:y,b:r},backend:n}),w=_d({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=dE({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var VZ={kernelName:Zc,backendName:"cpu",kernelFunc:BZ},UZ=[LK,y5,WK,VK,S5,GK,qK,KK,YK,JK,e8,n8,r8,o8,u8,d8,m8,g8,y8,PK,v8,k8,S8,T5,T8,k5,_5,_8,x5,A8,$8,D8,M8,O8,z8,B8,U8,H8,j8,X8,Z8,Q8,tX,aX,rX,iX,lX,pX,cX,dX,hX,gX,EK,yX,E5,TX,A5,CX,$5,DX,RX,PX,R5,P5,LX,WX,VX,GX,L5,W5,v5,qX,F8,KX,YX,JX,AK,V5,G5,eY,q5,nY,sY,oY,pY,dY,mY,fY,K5,bY,xY,wY,IY,NY,CY,EY,Y5,FY,RY,LY,J5,eK,BY,GY,jY,nK,XY,ZY,JY,hE,n7,$K,sK,r7,i7,l7,p7,w5,nv,d7,DK,RK,MK,m7,g7,y7,v7,k7,I7,N7,hK,C7,$7,R7,L7,fK,W7,V7,G7,gK,PY,j7,X7,Z7,Q7,tZ,aZ,sZ,oZ,xK,lZ,wK,IK,pZ,dZ,mZ,gZ,yZ,CK,mX,vZ,kZ,SZ,TZ,_Z,AZ,aK,LZ,WZ,VZ,YY];for(let e of UZ)Jc(e);var mE={};Ee(mE,{assertNotComplex:()=>yp,bindCanvasToFramebuffer:()=>eJ,bindColorTextureToFramebuffer:()=>jh,bindTextureToProgramUniformSampler:()=>AE,bindTextureUnit:()=>CE,bindVertexBufferToProgramAttribute:()=>rv,callAndCheck:()=>de,canBeRepresented:()=>gE,createFragmentShader:()=>xE,createFramebuffer:()=>TE,createProgram:()=>vE,createStaticIndexBuffer:()=>IE,createStaticVertexBuffer:()=>kE,createTexture:()=>SE,createVertexShader:()=>yE,getBatchDim:()=>vi,getExtensionOrThrow:()=>sc,getFramebufferErrorMessage:()=>FE,getMaxTexturesInShader:()=>ME,getNumChannels:()=>JZ,getProgramUniformLocation:()=>EE,getProgramUniformLocationOrThrow:()=>_E,getRowsCols:()=>wi,getShapeAs3D:()=>oc,getTextureShapeFromLogicalShape:()=>DE,getWebGLDisjointQueryTimerVersion:()=>PE,getWebGLErrorMessage:()=>bE,getWebGLMaxTextureSize:()=>RE,hasExtension:()=>ma,isCapableOfRenderingToFloatTexture:()=>OE,isDownloadFloatTextureEnabled:()=>LE,isReshapeFree:()=>Cc,isWebGLFenceEnabled:()=>zE,isWebGLVersionEnabled:()=>iv,linkProgram:()=>wE,logShaderSourceAndInfoLog:()=>H1,resetMaxTextureSize:()=>tJ,resetMaxTexturesInShader:()=>nJ,unbindColorTextureFromFramebuffer:()=>sv,unbindTextureUnit:()=>QZ,validateFramebuffer:()=>ic,validateProgram:()=>qh,validateTextureSize:()=>NE});var Qs={},zh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function fE(e,t){Qs[e]=t}function Ka(e,t){if(!(e in Qs)||t!=null){let a=HZ(e,t);if(a!==null)Qs[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Qs[e];return n==null||n.isContextLost()?(delete Qs[e],Ka(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Qs[e])}function GZ(e){if(!G().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function HZ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?GZ(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Qs[e]},!1),G().getBool("SOFTWARE_WEBGL_ENABLED")&&(zh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",zh)||n.getContext("experimental-webgl",zh):n.getContext("webgl2",zh)}var Tc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Tc||(Tc={}));var ha;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ha||(ha={}));var hn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(hn||(hn={}));function Ed(e,t){return[t,e]}function qZ(e,t){return e*t}function Wh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function bp(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function jZ(e,t){let[n,a]=bp(e,t);return n*a*4}function G1(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return G().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function de(e,t){let n=t();return G().getBool("DEBUG")&&KZ(e),n}function KZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+bE(e,t))}var XZ=596e-10,YZ=65504;function gE(e){return!!(G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||XZ<Math.abs(e)&&Math.abs(e)<YZ)}function bE(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function sc(e,t){return zr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function yE(e,t){let n=zr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function xE(e,t){let n=zr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),G().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw H1(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var ZZ=/ERROR: [0-9]+:([0-9]+):/g;function H1(e,t){let n=ZZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function vE(e){return zr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function wE(e,t){if(de(e,()=>e.linkProgram(t)),!G().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function qh(e,t){if(de(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function kE(e,t){let n=zr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function IE(e,t){let n=zr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function JZ(){return G().getNumber("WEBGL_VERSION")===2?1:4}function SE(e){return zr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function NE(e,t){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function TE(e){return zr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function rv(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),de(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),de(e,()=>e.enableVertexAttribArray(o)),!0)}function CE(e,t,n){$E(e,n),de(e,()=>e.activeTexture(e.TEXTURE0+n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function QZ(e,t){$E(e,t),de(e,()=>e.activeTexture(e.TEXTURE0+t)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function _E(e,t,n){return zr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function EE(e,t,n){return e.getUniformLocation(t,n)}function AE(e,t,n,a){de(e,()=>CE(e,t,a)),de(e,()=>e.uniform1i(n,a))}function eJ(e){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),de(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function jh(e,t,n){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function sv(e,t){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ic(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+FE(e,t))}function FE(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function zr(e,t,n){let a=de(e,()=>t());if(a==null)throw new Error(n);return a}function $E(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function vi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function wi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function oc(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[vi(e),...wi(e)]),t}function DE(e,t=!1){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=G().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&G().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=vi(e),l=2,u=2;e.length&&([l,u]=wi(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function Bh(e){return e%2===0}function Cc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e[e.length-1],a=t[t.length-1];if(n===a||Bh(n)&&Bh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Bh(e[0])&&Bh(t[0])}var Kh,Xh;function RE(e){if(Kh==null){let t=Ka(e);Kh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Kh}function tJ(){Kh=null}function nJ(){Xh=null}function ME(e){if(Xh==null){let t=Ka(e);Xh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Xh)}function PE(e){if(e===0)return 0;let t,n=Ka(e);return ma(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ma(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ma(e,t){return e.getExtension(t)!=null}function iv(e){try{if(Ka(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function OE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ma(t,"OES_texture_float"))return!1}else if(!ma(t,"EXT_color_buffer_float"))return!1;return ov(t)}function LE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ma(t,"OES_texture_float")||!ma(t,"WEBGL_color_buffer_float"))return!1}else{if(ma(t,"EXT_color_buffer_float"))return ov(t);let n="EXT_color_buffer_half_float";if(ma(t,n)){let a=t.getExtension(n);return aJ(t,a)}return!1}return ov(t)}function ov(e){let t=G1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function aJ(e,t){let n=G1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function zE(e){return e!==2?!1:Ka(e).fenceSync!=null}function yp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var xe=G();xe.registerFlag("HAS_WEBGL",()=>xe.getNumber("WEBGL_VERSION")>0);xe.registerFlag("WEBGL_VERSION",()=>iv(2)?2:iv(1)?1:0);xe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);xe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>xe.get("WEBGL_VERSION")===2);xe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);xe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);xe.registerFlag("WEBGL_PACK",()=>xe.getBool("HAS_WEBGL"));xe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_CLIP",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_REDUCE",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_LAZILY_UNPACK",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_CONV_IM2COL",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>RE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>ME(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=xe.getNumber("WEBGL_VERSION");return e===0?0:PE(e)});xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>xe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!td.isMobile());xe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>OE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>xe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:xe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));xe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>LE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>zE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>xe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);xe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});xe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>td.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});xe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);xe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);xe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);xe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);xe.registerFlag("WEBGL_EXP_CONV",()=>!1);xe.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>xe.getBool("IS_TEST"));xe.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);xe.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);xe.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);xe.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function En(){let e,t,n,a,r,s,i,o,l,u;return G().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=G().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function jo(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Zf(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function rJ(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function sJ(e,t,n="index"){let a=e.map((s,i)=>i),r=rJ(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function q1(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function j1(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var WE=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:BE}=N;function iJ(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=K1(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>oJ(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=En(),l=pJ(o),u,p,d=hJ(o);return t.isPacked?(u=lJ(t.logicalShape,i,n.enableShapeUniforms),p=dJ(o)):(u=uJ(t.logicalShape,i,n.enableShapeUniforms),p=cJ(o)),n.packedInputs&&(d+=bJ),[d,l,p,r,u,s,n.userCode].join(`
`)}function xp(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return EJ(e,t);case 1:return FJ(e,t);case 2:return DJ(e,t);case 3:return MJ(e,t);case 4:return OJ(e,t);case 5:return LJ(e);case 6:return zJ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function VE(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return _J(e);case 1:return AJ(e,t);case 2:return $J(e,t);case 3:return RJ(e,t);default:return PJ(e,t)}}function oJ(e,t,n=!1,a){let r="";n?r+=VE(e,a):r+=xp(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=WJ(e,t):r+=BJ(e,t)),r}function lJ(e,t,n){switch(e.length){case 0:return UE();case 1:return yJ(e,t,n);case 2:return TJ(e,t,n);case 3:return vJ(e,t,n);default:return kJ(e,t,n)}}function uJ(e,t,n){switch(e.length){case 0:return UE();case 1:return xJ(e,t,n);case 2:return CJ(e,t,n);case 3:return wJ(e,t,n);case 4:return IJ(e,t,n);case 5:return SJ(e,t);case 6:return NJ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function pJ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function cJ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function dJ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function hJ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${mJ}
${fJ}
${gJ}
`}var mJ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,fJ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,gJ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,bJ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function UE(){return`
int getOutputCoords() {
return 0;
}
`}function yJ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function xJ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function vJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function wJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Zf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=jo(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function kJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function IJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Zf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=jo(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function SJ(e,t){let n=jo(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function NJ(e,t){let n=jo(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function TJ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function CJ(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Ko(e){return`offset${e}`}function _J(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=En();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function EJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=Ko(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function AJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=En();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function FJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${vp(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=Ko(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function $J(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=En();if(s!=null&&v.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function DJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=wp(e,l),h=["row","col"];return`
${xp(c,t)}
float ${r}(int row, int col) {
return ${r}(${kp(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${vp(e)}
}
`;let u=s[0],p=s[1],d=Ko(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function RJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=wp(e,c),f=["b","row","col"];return`
${VE(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${kp(f,h)});
}
`}let o=En();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function MJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=wp(e,u),g=["row","col","depth"];return`
${xp(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${kp(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${vp(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=Ko(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function PJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=En();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function OJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=wp(e,l),x=["row","col","depth","depth2"];return`
${xp(y,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${kp(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${vp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let b=Ko(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
return sampleTexture(${a}, uv);
}
`}function LJ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=wp(e,l),g=["row","col","depth","depth2","depth3"];return`
${xp(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${kp(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${vp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=Ko(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function zJ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=wp(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
${xp(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${kp(b,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${vp(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Ko(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function vp(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function WJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=BE(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function BJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=dt(l),p=BE(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function K1(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function wp(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function kp(e,t){return t.map(n=>e[n]).join(", ")}function VJ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=iJ(r,i,t),l=xE(e.gl,o),u=e.createProgram(l);return G().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(e.buildVao(u),Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},GE(e,t,u)))}function GE(e,t,n){let a=[],r=[],s,i,o,l=null,u=null;u=e.getUniformLocation(n,"NAN",!1),G().getNumber("WEBGL_VERSION")===1&&(l=e.getUniformLocation(n,"INFINITY",!1));let p=!1;for(let d of t.variableNames){let c={name:d,uniform:e.getUniformLocation(n,d,p),offset:e.getUniformLocation(n,`offset${d}`,p)};t.enableShapeUniforms&&(c.shape=e.getUniformLocation(n,`${d}Shape`,p),c.texShape=e.getUniformLocation(n,`${d}TexShape`,p)),a.push(c)}if(t.enableShapeUniforms&&(s=e.getUniformLocation(n,"outShape",p),o=e.getUniformLocation(n,"outShapeStrides",p),i=e.getUniformLocation(n,"outTexShape",p)),t.customUniforms)for(let d of t.customUniforms)r.push(e.getUniformLocation(n,d.name,p));return{variablesLocations:a,customUniformLocations:r,infLoc:l,nanLoc:u,outShapeLocation:s,outShapeStridesLocation:o,outTexShapeLocation:i}}function sS(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function UJ(e,t,n,a,r){t.program.enableShapeUniforms||(sS(t.inShapeInfos,n),sS([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),e.bindVertexArray(t.webGLProgram.vao),G().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN);for(let l=0;l<n.length;++l){let u=n[l],{uniform:p,offset:d,shape:c,texShape:h}=t.variablesLocations[l];if(c){let{uniformShape:m}=K1(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(h&&e.gl.uniform2i(h,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(v.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}continue}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}}let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}if(t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r)for(let l=0;l<t.program.customUniforms.length;++l){let u=t.program.customUniforms[l],p=t.customUniformLocations[l],d=r[l];if(u.type==="float")e.gl.uniform1fv(p,d);else if(u.type==="vec2")e.gl.uniform2fv(p,d);else if(u.type==="vec3")e.gl.uniform3fv(p,d);else if(u.type==="vec4")e.gl.uniform4fv(p,d);else if(u.type==="int")e.gl.uniform1iv(p,d);else if(u.type==="ivec2")e.gl.uniform2iv(p,d);else if(u.type==="ivec3")e.gl.uniform3iv(p,d);else if(u.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${u.type} is not supported yet.`)}e.executeProgram()}function GJ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=K1(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${G().getNumber("WEBGL_VERSION")}`,s}function vn(e){return G().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var HJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Tc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Zf(["r","c","d"],e):jo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},qJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Tc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Zf(["r","c","d"],e):jo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},jJ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ha.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
${WE}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},KJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ha.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
${WE}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},XJ={R:0,G:1,B:2,A:3},iS=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<n.length;i++){let o=n[i];s+=`
if(offset == ${i}) {
result = values[${XJ[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?j1():q1(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${a.texture2D}(A, uv);
${s}
}
${a.output} = vec4(${r}, 0., 0., 0.);
}
`}},YJ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?j1():q1(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},HE={};Ee(HE,{bindVertexProgramAttributeStreams:()=>eA,createBufferFromOutputTexture:()=>aA,createFloat16MatrixTexture:()=>YE,createFloat16PackedMatrixTexture:()=>QE,createFloat32MatrixTexture:()=>XE,createIndexBuffer:()=>KE,createPackedMatrixTexture:()=>JE,createUnsignedBytesMatrixTexture:()=>ZE,createVertexBuffer:()=>jE,createVertexShader:()=>qE,downloadByteEncodedFloatMatrixFromOutputTexture:()=>sA,downloadFloat32MatrixFromBuffer:()=>rA,downloadMatrixFromPackedOutputTexture:()=>oA,downloadPackedMatrixFromBuffer:()=>iA,getInternalFormatForFloat16MatrixTexture:()=>Y1,getInternalFormatForFloat16PackedMatrixTexture:()=>Q1,getInternalFormatForFloat32MatrixTexture:()=>X1,getInternalFormatForPackedMatrixTexture:()=>J1,getInternalFormatForUnsignedBytesMatrixTexture:()=>Z1,uploadDenseMatrixToTexture:()=>tA,uploadPixelDataToTexture:()=>nA});function qE(e){let t=En(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return yE(e,n)}function jE(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return kE(e,t)}function KE(e){let t=new Uint16Array([0,1,2,2,1,3]);return IE(e,t)}function Ad(e,t,n,a,r,s){NE(t,n);let i=SE(e),o=e.TEXTURE_2D;return de(e,()=>e.bindTexture(o,i)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),de(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),G().getNumber("WEBGL_VERSION")===1?de(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):de(e,()=>e.texStorage2D(o,1,a,t,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function X1(e){return e.internalFormatFloat}function XE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,X1(a),a.textureFormatFloat,e.FLOAT)}function Y1(e){return e.internalFormatHalfFloat}function YE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,Y1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Z1(e){return e.downloadTextureFormat}function ZE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,Z1(a),e.RGBA,e.UNSIGNED_BYTE)}function J1(e){return e.internalFormatPackedFloat}function JE(e,t,n,a){let[r,s]=bp(t,n);return Ad(e,r,s,J1(a),e.RGBA,e.FLOAT)}function Q1(e){return e.internalFormatPackedHalfFloat}function QE(e,t,n,a){let[r,s]=bp(t,n);return Ad(e,r,s,Q1(a),e.RGBA,a.textureTypeHalfFloat)}function eA(e,t,n){return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),rv(e,t,"clipSpacePos",n,3,20,0)&&rv(e,t,"uv",n,2,20,12)}function tA(e,t,n,a,r,s){de(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function nA(e,t,n){de(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function aA(e,t,n,a){let r=e.createBuffer();de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return de(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function rA(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function sA(e,t,n,a){let[r,s]=Ed(t,n),i=4,o=new Uint8Array(qZ(t*n,i));return de(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function iA(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(jZ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function oA(e,t,n){let a=new Float32Array(t*n*4);return de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Yh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=G().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,fE(t,e)):this.gl=Ka(t),e=this.gl,G().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>de(r,()=>r.createVertexArray()),this.bindVertexArray=s=>de(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>de(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>de(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>de(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>de(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>de(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>de(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),G().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=sc(this.gl,r),ma(this.gl,s))this.textureHalfFloatExtension=sc(this.gl,s);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ma(this.gl,a))this.colorBufferHalfFloatExtension=sc(this.gl,a);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ma(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ma(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=jE(this.gl),this.indexBuffer=KE(this.gl),this.framebuffer=TE(this.gl),this.textureConfig=G1(this.gl,this.textureHalfFloatExtension)}get debug(){return G().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;de(e,()=>e.finish()),de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.deleteFramebuffer(this.framebuffer)),de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),de(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),XE(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),YE(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),ZE(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),nA(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),tA(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),QE(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),JE(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(sv(this.gl,this.framebuffer),this.outputTexture=null),de(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>sA(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return iA(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return rA(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=aA(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(G().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>oA(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=qE(t));let n=vE(t);de(t,()=>t.attachShader(n,this.vertexShader)),de(t,()=>t.attachShader(n,e)),wE(t,n);let a=Object.assign(n,{vao:this.createVertexArray()});return this.debug&&qh(t,a),a}buildVao(e){this.setProgram(e),this.bindVertexArray(e.vao);let t=this.gl;de(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),eA(t,e,this.vertexBuffer)}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(de(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&qh(this.gl,this.program),de(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?_E(this.gl,e,t):EE(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),de(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),AE(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=bp(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&qh(this.gl,this.program),ic(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}de(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),de(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=sc(this.gl,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=ZJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in G().platform&&(n=G().platform.setTimeoutCustom.bind(G().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),jh(this.gl,e,this.framebuffer),this.debug&&ic(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(jh(this.gl,this.outputTexture,this.framebuffer),this.debug&&ic(this.gl)):sv(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;jh(a,e,this.framebuffer),this.debug&&ic(a),this.outputTexture=e,de(a,()=>a.viewport(0,0,t,n)),de(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),de(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function ZJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:JJ,bincountImpl:lA,bincountReduceImpl:QJ,castImpl:e9,ceilImpl:t9,concatImpl:n9,equalImpl:a9,expImpl:r9,expm1Impl:s9,floorImpl:i9,gatherNdImpl:o9,gatherV2Impl:l9,greaterImpl:u9,greaterEqualImpl:p9,lessImpl:c9,lessEqualImpl:d9,linSpaceImpl:h9,logImpl:m9,maxImpl:f9,maximumImpl:g9,minimumImpl:b9,multiplyImpl:y9,negImpl:x9,notEqualImpl:v9,prodImpl:w9,raggedGatherImpl:k9,raggedRangeImpl:I9,raggedTensorToTensorImpl:S9,rangeImpl:N9,rsqrtImpl:T9,scatterImpl:C9,sigmoidImpl:_9,simpleAbsImpl:uA,sliceImpl:E9,sparseFillEmptyRowsImpl:A9,sparseReshapeImpl:F9,sparseSegmentReductionImpl:pA,sqrtImpl:$9,staticRegexReplaceImpl:D9,stridedSliceImpl:R9,stringNGramsImpl:M9,stringSplitImpl:P9,stringToHashBucketFastImpl:O9,subImpl:L9,tileImpl:z9,topKImpl:W9,transposeImpl:ek,uniqueImpl:B9}=_1;function cA(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Sn(e,t){return t===1?[e]:cA(e,t)}function V9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var U9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=vn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Sn("rc",this.rank),n=dt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},dA=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${G9(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?j1():q1(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function G9(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?sJ(["r","c","d"],"inputShape"):jo(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var H9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(e,t,n){let a=lS(t,n),r=uS(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=oS(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].pop();return this.usedTextures[r].push(o),o}let i;return a===hn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===hn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===hn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===hn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===hn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=lS(n,a),s=uS(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=oS(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=G().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l&&l.indexOf(e);if(u==null||u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l[u]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function q9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function oS(e,t,n,a,r){let s=j9(t,a),i;if(r){let[l,u]=bp(e[0],e[1]);i=l*u}else{let[l,u]=Ed(e[0],e[1]);i=l*u}let o=q9(n,s);return i*o}function j9(e,t){switch(e){case hn.PACKED_2X2_FLOAT32:return J1(t);case hn.PACKED_2X2_FLOAT16:return Q1(t);case hn.UNPACKED_FLOAT32:return X1(t);case hn.UNPACKED_FLOAT16:return Y1(t);case hn.PACKED_4X1_UNSIGNED_BYTE:return Z1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function K9(e){return G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?hn.PACKED_2X2_FLOAT32:hn.UNPACKED_FLOAT32:e?hn.PACKED_2X2_FLOAT16:hn.UNPACKED_FLOAT16}function lS(e,t){if(e===ha.UPLOAD)return hn.PACKED_2X2_FLOAT32;if(e===ha.RENDER||e==null)return K9(t);if(e===ha.DOWNLOAD||e===ha.PIXELS)return hn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function uS(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ir=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Oa="if (isnan(x)) return x;",X9="return x;",pS="return abs(x);",Y9="return (x >= 0.0) ? x : (exp(x) - 1.0);",Z9=Oa+`
return (x < 0.0) ? 0.0 : x;
`,J9=Oa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,ts="return x;",Q9="return 1.0 / (1.0 + exp(-1.0 * x));",eQ="return x;",tQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,nQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,rQ="return 1.0 / (1.0 + exp(-1.0 * x));",is=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},sQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.length,n=Sn("rc",t),a=dt(t),r=V9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},iQ=fr.whereImpl,oQ=1e-7,lQ=1e-4,gx={};function uQ(e){return e in gx||(gx[e]={}),gx[e]}var pQ=G().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),cQ=600;function dQ(){return G().global.screen==null?1024:G().global.screen.height*G().global.screen.width*window.devicePixelRatio*cQ/1024/1024}var Jf=class extends $c{nextDataId(){return Jf.nextDataId++}constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!G().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Yh)t=e;else{let n=Ka(G().getNumber("WEBGL_VERSION"),e);t=new Yh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ka(G().getNumber("WEBGL_VERSION"));t=new Yh(n),this.binaryCache=uQ(G().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new H9(this.gpgpu),this.numMBBeforeWarning=dQ(),this.texData=new Em(this,Aa())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=oc(t),u=new iS(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((G().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||G().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ha.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(G().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ha.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new is(i,ts):d=new ir(i,ts);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new is(a,ts):h=new ir(a,ts);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(G().getBool("DEBUG")&&!G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&G().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&G().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Wh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;de(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Aa().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new is(r,ts):c=new ir(r,ts);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=Aa().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!gE(n))throw G().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Wh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=G().getBool("WEBGL_PACK")&&a===!0,i=s?oc(t):t,o=s?new KJ(i):new jJ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=pQ){return G().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return iQ(e.shape,t)}packedUnaryOp(e,t,n){let a=new is(e.shape,t),r=this.compileAndRun(a,[e],n);return Aa().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=uA(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(G().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,pS,e.dtype);let t=new ir(e.shape,pS),n=this.compileAndRun(t,[e]);return Aa().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return Aa().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new sQ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new U9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[vi(e.shape),...wi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[vi(t),...wi(t)],s=new dA(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=oc(r),o;a?o=new qJ(i):o=new HJ(i);let l=!0,u=[t!=null?t:Wh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Tc.DENSE){let g=s!=null?s:Wh(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=G().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!Cc(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=GJ(e,u,p),c=this.getAndSaveBinary(d,()=>VJ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),G().get("ENGINE_COMPILE_ONLY")||UJ(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=G().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!G().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(G().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!G().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=G().getBool("DEBUG");G().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(G().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?oQ:lQ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=DE(n,o),t.texShape=p),r!=null){let d=oc(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=bp(p[0],p[1])),o?c=new YJ(d,f):c=new iS(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=ha.PIXELS:y.usage=ha.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,G().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return t!=null&&(n.values=hQ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Hw(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(H1(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let e of Object.values(this.binaryCache)){this.gpgpu.buildVao(e.webGLProgram);let{variablesLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,outShapeLocation:s,outShapeStridesLocation:i,outTexShapeLocation:o}=GE(this.gpgpu,e.program,e.webGLProgram);e.variablesLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.outShapeLocation=s,e.outShapeStridesLocation=i,e.outTexShapeLocation=o}}createTensorFromGPUData(e,t,n){e.channels=e.channels||"RGBA";let{texture:a,height:r,width:s,channels:i}=e,o=Aa().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return Aa().makeTensorFromDataId(l,t,n,o)}};Jf.nextDataId=0;function hQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var mQ="4.5.0";function hA(){G().set("WEBGL_FORCE_F16_TEXTURES",!0)}td.isBrowser()&&Ym("webgl",()=>new Jf,2);var fQ={forceHalfFloat:hA},tk=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,nu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Xo=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,Fd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=vn(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${dt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Sn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function ra(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var gQ={kernelName:Ji,backendName:"webgl",kernelFunc:ra};function Rs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=ra({inputs:{x:a},backend:n}),l=ra({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var bQ={kernelName:Rm,backendName:"webgl",kernelFunc:Rs},mA="return (a < 0.) ? b * a : a;",fA=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(fA,r.shape,i.shape):new nu(mA,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var xQ={kernelName:no,backendName:"webgl",kernelFunc:yQ},gA="return (a < 0.) ? b * a : a;",bA=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function vQ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(bA,a.shape,r.shape):new nu(gA,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var wQ={kernelName:yo,backendName:"webgl",kernelFunc:vQ},Ip="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=G().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new is(i.shape,t):p=new ir(i.shape,e),o.runWebGLProgram(p,[i],l)}}function fn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new nu(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],ba(w.dtype,I.dtype))}),y=Rs({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||ba(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,b=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Fd(t,l.shape,u.shape,n):h=new nu(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function _c(e,t=!1){if(e==="linear")return t?eQ:X9;if(e==="relu")return t?nQ:Z9;if(e==="elu")return t?tQ:Y9;if(e==="relu6")return t?aQ:J9;if(e==="prelu")return t?bA:gA;if(e==="leakyrelu")return t?fA:mA;if(e==="sigmoid")return t?rQ:Q9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var yA=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=vn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`imod(rc.x, ${e[0]})`:t[0]<e[0]&&(x=`imod(rc.x, ${t[0]})`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${y};
int batchB = ${x};
for (int i = 0; i < ${p}; i++) {
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},cS={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},dS=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},hS="return a * b;";function nk(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new dS(cS.REAL,a.shape,r.shape),p=new dS(cS.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Rs({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=y9(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Fd(hS,a.shape,r.shape):i=new nu(hS,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var kQ={kernelName:mo,backendName:"webgl",kernelFunc:nk};function IQ(e,t,n){let a=[vi(e.shape),...wi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[vi(t),...wi(t)],i=new dA(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!Cc(r.shape,l)&&!(p.texture!==null&&Cc(p.shape,l))?IQ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var SQ={kernelName:Uu,backendName:"webgl",kernelFunc:ce},mS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},NQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function TQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Yo(e,t,n,a){let r=TQ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new mS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new mS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new NQ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var CQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=_Q(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function _Q(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var EQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=dt(this.rank),r=cA("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Qf(e,t,n){let a=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new EQ(e.shape,t):new CQ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function AQ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Qf(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=ce({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Xm(e.dtype),y=Yo(g,b,"sum",a),x=ce({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function eg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return AQ(r,s,i,n)}var FQ={kernelName:Ro,backendName:"webgl",kernelFunc:eg};function Nn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=ek(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Qf(r,s,i);return u}var $Q={kernelName:Fr,backendName:"webgl",kernelFunc:Nn},xA=1e3;function Sm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=lp.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],T=ce({inputs:{x:e},backend:r,attrs:{shape:w}}),C=ce({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],F=Math.max(b,y),D=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?_c(l,!0):null,U=$||S||M||B!=null,H;if((h===1||m===1)&&D>xA&&U===!1){let K=T,Z=C;n&&(K=Nn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=Nn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let J=m!==1,ee=m===1,ae=K;J&&(ae=ce({inputs:{x:K},backend:r,attrs:{shape:[F,D,1]}}),E.push(ae));let te=m===1?2:1,re=Z;ee&&(re=ce({inputs:{x:Z},backend:r,attrs:{shape:[F,1,D]}}),E.push(re));let se=nk({inputs:{a:ae,b:re},backend:r});H=eg({inputs:{x:se},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(se)}else{let K=ba(e.dtype,t.dtype),Z=new yA(w,I,[F,h,m],n,a,$,B,S,M),J=[T,C];if(s!=null&&J.push(s),S&&J.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));J.push(ee),E.push(ee)}H=r.runWebGLProgram(Z,J,K)}let j=ce({inputs:{x:H},backend:r,attrs:{shape:x}});E.push(H);for(let K of E)r.disposeIntermediateTensorInfo(K);return j}function DQ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Sm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var RQ={kernelName:ii,backendName:"webgl",kernelFunc:DQ},fS="return abs(x);";function MQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=uA(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new is(a.shape,fS):r=new ir(a.shape,fS),n.runWebGLProgram(r,[a],a.dtype)}var PQ={kernelName:ru,backendName:"webgl",kernelFunc:MQ},OQ=Oa+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,LQ=Ye({opSnippet:OQ}),zQ={kernelName:Si,backendName:"webgl",kernelFunc:LQ},WQ=Oa+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,BQ=Ye({opSnippet:WQ}),VQ={kernelName:Ni,backendName:"webgl",kernelFunc:BQ},gS="return a + b;",UQ=fn({opSnippet:gS,packedOpSnippet:gS,supportsComplex:!0,cpuKernelImpl:JJ}),GQ={kernelName:ks,backendName:"webgl",kernelFunc:UQ},HQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},qQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Zh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return ra({inputs:{x:a[0]},backend:n});if(a.length>G().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Zh({inputs:a.slice(0,o),backend:n}),u=Zh({inputs:a.slice(o),backend:n});return Zh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ba(o,l)),s=a.map(o=>o.shape),i=G().getBool("WEBGL_PACK")?new qQ(a[0].shape,s):new HQ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var jQ={kernelName:Ti,backendName:"webgl",kernelFunc:Zh};function KQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Yo(f,f.dtype,"all",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var XQ={kernelName:su,backendName:"webgl",kernelFunc:KQ};function YQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Yo(f,f.dtype,"any",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var ZQ={kernelName:iu,backendName:"webgl",kernelFunc:YQ},JQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},QQ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),u=Sn("coords",o),p,d;if(s===1){d=o+1;let C=dt(d);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=Sn("sourceLocR",d-1).concat("inIdx.r"),g=Sn("sourceLocG",d-1).concat("inIdx.g"),b=Sn("sourceLocB",d-1).concat("inIdx.b"),y=Sn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function vA(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new JQ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=vA(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function wA(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new QQ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=wA(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function kA(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!G().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=ce({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=vA(e,c,a);s.push(h);let m=ce({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return wA(e,t,a)}function eee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=kA(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var tee={kernelName:ou,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=kA(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var aee={kernelName:lu,backendName:"webgl",kernelFunc:nee},ree=Oa+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,see=Ye({opSnippet:ree}),iee={kernelName:Ci,backendName:"webgl",kernelFunc:see},oee=Oa+"return log(x + sqrt(x * x + 1.0));",lee=Ye({opSnippet:oee}),uee={kernelName:_i,backendName:"webgl",kernelFunc:lee},pee=Oa+`
return atan(x);
`,cee=Ye({opSnippet:pee}),dee={kernelName:Ei,backendName:"webgl",kernelFunc:cee},hee=tk+`
return atan(a, b);
`,mee=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xo+`
return result;
`,fee=fn({opSnippet:hee,packedOpSnippet:mee}),gee={kernelName:Fi,backendName:"webgl",kernelFunc:fee},bee=Oa+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,yee=Ye({opSnippet:bee}),xee={kernelName:Ai,backendName:"webgl",kernelFunc:yee},Ec=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / max(count, 1.0)");let w=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${w};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},ak=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / max(count, 1.0)");let T=Math.floor(s/4)*4,C=s%4,E=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
}
setOutput(${I});
}
`}};function vee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ra({inputs:{x:r},backend:n});let d=new Ec(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var wee={kernelName:$i,backendName:"webgl",kernelFunc:vee};function kee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new ak(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var Iee={kernelName:uu,backendName:"webgl",kernelFunc:kee},See=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Nee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function Tee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new Nee(c);return n.runWebGLProgram(h,[r],i.dtype)}var Cee={kernelName:Rc,backendName:"webgl",kernelFunc:Tee};function _ee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;yp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new See(p);return n.runWebGLProgram(d,[r],i.dtype)}var Eee={kernelName:$m,backendName:"webgl",kernelFunc:_ee};function Aee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Sm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var Fee={kernelName:Di,backendName:"webgl",kernelFunc:Aee},$ee=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},Dee=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},Ree=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=G().getBool("WEBGL_PACK_NORMALIZATION")?new Dee(a.shape,r.shape,s.shape,p,d,l):new $ee(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},Mee={kernelName:Yi,backendName:"webgl",kernelFunc:Ree},Pee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Oee(this.rank),a,r=e.map((s,i)=>`sourceLoc.${lv[i]} = start[${i}] + coords.${lv[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},lv=["x","y","z","w","u","v"];function Oee(e){if(e===1)return"sourceLoc";if(e<=6)return lv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Lee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=dt(this.rank),n=Sn("coords",this.rank),a=Sn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function zee(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Kt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Sp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Kt.parseSliceParams(r,s,i);if(Kt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=E9(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=Kt.isSliceContinous(r.shape,o,l);if(u||!p){let d=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Lee(l):new Pee(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),zee(r,o,l,n)}var Wee={kernelName:Yu,backendName:"webgl",kernelFunc:Sp},Bee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=ce({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:p}}),b=Sp({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},Vee={kernelName:pu,backendName:"webgl",kernelFunc:Bee};function Uee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=lA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var Gee={kernelName:cu,backendName:"webgl",kernelFunc:Uee};function Hee(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var qee={kernelName:Mc,backendName:"webgl",kernelFunc:Hee},jee="return float(a != b);",IA=fn({opSnippet:jee,cpuKernelImpl:v9,dtype:"bool"}),Kee={kernelName:Ou,backendName:"webgl",kernelFunc:IA};function $d(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ra({inputs:{x:r.complexTensorInfos.real},backend:n})}var Xee={kernelName:jm,backendName:"webgl",kernelFunc:$d},Yee="return float(int(x));";function Zee(e,t){let n=new ir(e.shape,Yee),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function uv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ra({inputs:{x:r},backend:n});let i=Nt(r.shape),o=uv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Rs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=$d({inputs:{input:r},backend:n}),o=uv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=ra({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=e9(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return Zee(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=IA({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Jee={kernelName:Ri,backendName:"webgl",kernelFunc:uv},bS="return ceil(x);",Qee=Ye({opSnippet:bS,packedOpSnippet:bS,cpuKernelImpl:t9}),ete={kernelName:Mi,backendName:"webgl",kernelFunc:Qee},tte=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},nte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function ate(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;G().getBool("WEBGL_PACK_CLIP")?o=new nte(r.shape):o=new tte(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var rte={kernelName:Is,backendName:"webgl",kernelFunc:ate},ste=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function yS(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function ite(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new ste(a.shape),i=[yS(a,r.complexTensorInfos.real),yS(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var ote={kernelName:Pc,backendName:"webgl",kernelFunc:ite},lte=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},ute=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=dt(a),s=Sn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Vh(i,l,f)}),
vec2(${Vh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${Vh(i,l,h)}),
vec2(${Vh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Vh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function tg(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ra({inputs:{x:r.complexTensorInfos.imag},backend:n})}var pte={kernelName:Bm,backendName:"webgl",kernelFunc:tg};function lc(e,t,n){let a=e[0].dtype;if(a==="complex64"){let h=e.map(y=>$d({inputs:{input:y},backend:n})),m=e.map(y=>tg({inputs:{input:y},backend:n})),f=lc(h,t,n),g=lc(m,t,n),b=Rs({inputs:{real:f,imag:g},backend:n});return h.forEach(y=>n.disposeIntermediateTensorInfo(y)),m.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),b}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let h=e.map(w=>{let I=[-1,v.sizeFromShape(w.shape.slice(t))];return ce({inputs:{x:w},backend:n,attrs:{shape:I}})}),m=h.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),f=N.computeOutShape(h.map(w=>w.shape),1),g=h[0].shape[0]===1,b=n9(m,f,a,g),y=N.computeOutShape(e.map(w=>w.shape),t),x=n.makeTensorInfo(y,a,b);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new ir(e[0].shape,ts):new is(e[0].shape,ts);return n.runWebGLProgram(h,e,a)}let o=G().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let f=0;f<s.length;f+=o){let g=s.slice(f,f+o);h.push(lc(g,t,n))}let m=lc(h,t,n);for(let f of h)n.disposeIntermediateTensorInfo(f);return m}if(i){let h=new ute(s.map(m=>m.shape),t);return n.runWebGLProgram(h,s,a)}let{tensors2D:l,outShape:u}=cte(s,t,n),p=new lte(l.map(h=>h.shape)),d=n.runWebGLProgram(p,l,a);l.forEach(h=>n.disposeIntermediateTensorInfo(h));let c=ce({inputs:{x:d},attrs:{shape:u},backend:n});return n.disposeIntermediateTensorInfo(d),c}function cte(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ce({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function SA(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?ra({inputs:{x:l[0]},backend:n}):lc(l,s,n)}var dte={kernelName:du,backendName:"webgl",kernelFunc:SA},NA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${w}
setOutput(result);
}
`}},hte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},TA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
vec4 xTexelC${f*2};
int xTexelC${f*2}Ready;
vec4 xTexelC${f*2+1};
int xTexelC${f*2+1}Ready;
vec4 xC${f};`;d+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let f=0;f<u;f++)d+=`
xTexelC${f*2} = vec4(0.0);
xTexelC${f*2}Ready = 0;
xTexelC${f*2+1} = vec4(0.0);
xTexelC${f*2+1}Ready = 0;
xC${f} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?d+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):b===1?d+=`
xC${g+1} = xTexelC${g};
`:d+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(d+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(d+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}d+=`
}
`,d+=`
}
`,d+=`
}
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${h}
setOutput(result);
}
`}},mte=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let{dataFormat:n}=t,a=En(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function Nm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function CA({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=Nm(s.shape,h);y!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=Nm(r.shape,h);y!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>xA)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Cc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let T=Sm({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=ra({inputs:{x:T},backend:a}),g.shape=n.outShape,b.push(T)}else{let y=n.outHeight*n.outWidth,x=ce({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Sm({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ce({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function _A({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let K=Nm(s.shape,m);K!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=Nm(r.shape,m);K!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new mte(b,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),F=ce({inputs:{x:E},backend:a,attrs:{shape:b}});w.push(E),w.push(F);let D=r!=null,$=s!=null,S=o==="leakyrelu",M=o?_c(o,!0):null,B=new yA(m?F.shape:I.shape,m?I.shape:F.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,D,M,$,S),U=m?[F,I]:[I,F];if(r&&U.push(r),$&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let H=a.runWebGLProgram(B,U,"float32"),j=ce({inputs:{x:H},backend:a,attrs:{shape:n.outShape}});w.push(H);for(let K of w)a.disposeIntermediateTensorInfo(K);return j}function fte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=CA({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let f=new TA(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(G().getBool("WEBGL_CONV_IM2COL"))h=_A({x:r,filter:s,convInfo:c,backend:n});else{let f=new NA(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ce({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var gte={kernelName:Pi,backendName:"webgl",kernelFunc:fte},bte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
${s?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},yte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},xte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},vte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function wte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new bte(c);return n.runWebGLProgram(h,[r,s],"float32")}var kte={kernelName:Mm,backendName:"webgl",kernelFunc:wte},Ite=class{constructor(e){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=e.inShape,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.filterHeight,n=e.filterWidth,a=t-1-e.padInfo.top,r=n-1-e.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${a}, ${r});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
int wCPerm = ${n} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${e.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${e.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function Ste(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d);if(G().getBool("WEBGL_PACK")&&d==="channelsLast"){let h=[[c.strideHeight,c.strideWidth]],m=new Ite(c);return n.runWebGLProgram(m,[r,s],"float32",h)}else{let h=new yte(c);return n.runWebGLProgram(h,[r,s],"float32")}}var Nte={kernelName:Oi,backendName:"webgl",kernelFunc:Ste};function Tte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new hte(u);return n.runWebGLProgram(p,[r,s],"float32")}var Cte={kernelName:Li,backendName:"webgl",kernelFunc:Tte};function _te(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new xte(u);return n.runWebGLProgram(p,[r,s],"float32")}var Ete={kernelName:hu,backendName:"webgl",kernelFunc:_te};function Ate(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new vte(u);return n.runWebGLProgram(p,[r,s],"float32")}var Fte={kernelName:mu,backendName:"webgl",kernelFunc:Ate},$te=Ip+`
return cos(x);
`,Dte=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${Xo}
return result;
`,Rte=Ye({opSnippet:$te,packedOpSnippet:Dte}),Mte={kernelName:zi,backendName:"webgl",kernelFunc:Rte},Pte=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Ote=Ye({opSnippet:Pte}),Lte={kernelName:Wi,backendName:"webgl",kernelFunc:Ote},zte=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Wte=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new zte(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},Bte={kernelName:gu,backendName:"webgl",kernelFunc:Wte},Ac;(function(e){e.Prod="*",e.Sum="+"})(Ac||(Ac={}));var xS=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===Ac.Prod?"1.0":"0.0",i=n?s:`getX(${vS(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${dt(r)} coords = getOutputCoords();
int end = ${wS(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${wS(r,"coords",this.op)} = idx;
val ${this.op}= getX(${vS(r,"coords",this.op)});
}
setOutput(val);
}
`}};function vS(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function wS(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function EA(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=Nn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=ra({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new xS(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new xS(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=Nn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function Vte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return EA(Ac.Prod,r,n,s,i,o)}var Ute={kernelName:fu,backendName:"webgl",kernelFunc:Vte};function Gte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return EA(Ac.Sum,r,n,s,i,o)}var Hte={kernelName:Bi,backendName:"webgl",kernelFunc:Gte};function qte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=lA(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=QJ(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var jte={kernelName:Oc,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Xte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new Kte(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Yte={kernelName:bu,backendName:"webgl",kernelFunc:Xte},AA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},FA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
xC = xCCorner + ${b*l};
`,o===1){if(b<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?c+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):y===1?c+=`
xC${b+1} = xTexelC${b};
`:c+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(c+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(c+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function Zte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;G().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new FA(d):c=new AA(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var Jte={kernelName:Vi,backendName:"webgl",kernelFunc:Zte},Qte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},ene=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function tne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new Qte(d);return n.runWebGLProgram(c,[r,s],"float32")}var nne={kernelName:Pm,backendName:"webgl",kernelFunc:tne};function ane(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new ene(d);return n.runWebGLProgram(c,[r,s],"float32")}var rne={kernelName:Om,backendName:"webgl",kernelFunc:ane},sne=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function ine(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=ce({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new sne(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ce({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var one={kernelName:Lc,backendName:"webgl",kernelFunc:ine},lne=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function une(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new lne(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=ce({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var pne={kernelName:Ui,backendName:"webgl",kernelFunc:une};function cne(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Nn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=ce({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=nk({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=eg({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var dne={kernelName:Lm,backendName:"webgl",kernelFunc:cne},hne="return (x >= 0.0) ? x : (exp(x) - 1.0);",mne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,fne=Ye({opSnippet:hne,packedOpSnippet:mne}),gne={kernelName:Hi,backendName:"webgl",kernelFunc:fne},bne="return (b >= 0.0) ? a : a * (b + 1.0);",yne=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,xne=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(yne,a.shape,r.shape):new nu(bne,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},vne={kernelName:yu,backendName:"webgl",kernelFunc:xne},wne=`
return vec4(equal(a, b));
`,kne="return float(a == b);",Ine=fn({opSnippet:kne,packedOpSnippet:wne,dtype:"bool",cpuKernelImpl:a9}),Sne={kernelName:vu,backendName:"webgl",kernelFunc:Ine},Nne=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Tne=Ye({opSnippet:Nne}),Cne={kernelName:xu,backendName:"webgl",kernelFunc:Tne},_ne=Ip+`
return exp(x);
`,Ene=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,$A=Ye({opSnippet:_ne,packedOpSnippet:Ene,cpuKernelImpl:r9,dtype:"float32"}),Ane={kernelName:qi,backendName:"webgl",kernelFunc:$A};function pv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ce({inputs:{x:s},backend:a,attrs:{shape:o}})}var Fne={kernelName:wu,backendName:"webgl",kernelFunc:pv},kS="return exp(x) - 1.0;",$ne=Ye({opSnippet:kS,packedOpSnippet:kS,cpuKernelImpl:s9}),Dne={kernelName:ji,backendName:"webgl",kernelFunc:$ne},IS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function DA(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ce({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new IS("real",l,t),p=new IS("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Rs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=ce({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Rne(e){let{inputs:t,backend:n}=e,{input:a}=t;return DA(a,!1,n)}var Mne={kernelName:zm,backendName:"webgl",kernelFunc:Rne},Pne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Dd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Pne(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var One={kernelName:zc,backendName:"webgl",kernelFunc:Dd},Lne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},zne={kernelName:ku,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Lne(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},SS="return floor(x);",Wne=Ye({opSnippet:SS,packedOpSnippet:SS,cpuKernelImpl:i9}),Bne={kernelName:Ki,backendName:"webgl",kernelFunc:Wne},Vne=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Une=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Gne=fn({opSnippet:Vne,packedOpSnippet:Une,dtype:"int32"}),Hne={kernelName:Xi,backendName:"webgl",kernelFunc:Gne},qne=class{constructor(e){this.variableNames=["A"];let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},jne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Kne={kernelName:tm,backendName:"webgl",kernelFunc:Xne},El,bx=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Xne(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(El==null||f!==bx)&&(bx=f,El=document.createElement("canvas").getContext("2d",{willReadFrequently:bx})),El.canvas.width=l,El.canvas.height=u,El.drawImage(r,0,0,l,u),r=El.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=ha.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=G().getBool("WEBGL_PACK")?new jne(d):new qne(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Yne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],F=(D,$)=>{if($==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let S=ce({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return y.push(S),S}return D};if(x&&E.push(F(i,p)),w&&E.push(F(o,p)),I){let D=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(D),y.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=CA({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let E=h?_c(h,!0):null,F=new TA(g,x,E,w,I),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=T();b=n.runWebGLProgram(F,$,"float32",D)}else if(G().getBool("WEBGL_CONV_IM2COL"))b=_A({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?_c(h,!1):null,F=new NA(g,x,E,w,I),D=T();b=n.runWebGLProgram(F,D,"float32")}let C=ce({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Zne={kernelName:oi,backendName:"webgl",kernelFunc:Yne};function Jne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=G().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?_c(c,b):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(D),m.push(D)}let C;b?C=new FA(g,w,y,I,T):C=new AA(g,w,y,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(C,x,"float32",E);return m.forEach(D=>n.disposeIntermediateTensorInfo(D)),F}var Qne={kernelName:li,backendName:"webgl",kernelFunc:Jne},eae=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(n.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function tae(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=ce({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=ce({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=o9(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new eae(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var nae={kernelName:Su,backendName:"webgl",kernelFunc:tae},aae=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),a=rae(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function rae(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function RA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(G().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=ce({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ce({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=l9(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new aae(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=ce({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var sae={kernelName:Iu,backendName:"webgl",kernelFunc:RA},iae="return float(a > b);",oae=`
return vec4(greaterThan(a, b));
`,lae=fn({opSnippet:iae,packedOpSnippet:oae,cpuKernelImpl:u9,dtype:"bool"}),uae={kernelName:Nu,backendName:"webgl",kernelFunc:lae},pae="return float(a >= b);",cae=`
return vec4(greaterThanEqual(a, b));
`,dae=fn({opSnippet:pae,packedOpSnippet:cae,dtype:"bool",cpuKernelImpl:p9}),hae={kernelName:Zi,backendName:"webgl",kernelFunc:dae};function mae(e){let{inputs:t,backend:n}=e,{input:a}=t;return DA(a,!0,n)}var fae={kernelName:Wm,backendName:"webgl",kernelFunc:mae},gae="return float(!isnan(x) && !isinf(x));",bae=Ye({opSnippet:gae,dtype:"bool"}),yae={kernelName:Qi,backendName:"webgl",kernelFunc:bae},xae="return float(isinf(x));",vae=Ye({opSnippet:xae,dtype:"bool"}),wae={kernelName:eo,backendName:"webgl",kernelFunc:vae},kae="return float(isnan(x));",Iae=Ye({opSnippet:kae,dtype:"bool"}),Sae={kernelName:to,backendName:"webgl",kernelFunc:Iae},Nae="return float(a < b);",Tae=`
return vec4(lessThan(a, b));
`,Cae=fn({opSnippet:Nae,packedOpSnippet:Tae,cpuKernelImpl:c9,dtype:"bool"}),_ae={kernelName:Tu,backendName:"webgl",kernelFunc:Cae},Eae="return float(a <= b);",Aae=`
return vec4(lessThanEqual(a, b));
`,Fae=fn({opSnippet:Eae,packedOpSnippet:Aae,cpuKernelImpl:d9,dtype:"bool"}),$ae={kernelName:Cu,backendName:"webgl",kernelFunc:Fae};function Dae(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=h9(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Rae={kernelName:_u,backendName:"webgl",kernelFunc:Dae},Mae=Ip+`
return x < 0.0 ? 0./0. : log(x);
`,Pae=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Oae=Ye({opSnippet:Mae,packedOpSnippet:Pae,cpuKernelImpl:m9}),Lae={kernelName:ao,backendName:"webgl",kernelFunc:Oae},zae=Ip+`
return log(1.0 + x);
`,Wae=Ye({opSnippet:zae}),Bae={kernelName:ro,backendName:"webgl",kernelFunc:Wae},Vae="return float(a >= 1.0 && b >= 1.0);",Uae=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Gae=fn({opSnippet:Vae,packedOpSnippet:Uae,dtype:"bool"}),Hae={kernelName:Eu,backendName:"webgl",kernelFunc:Gae},qae="return float(!(x >= 1.0));",jae=Ye({opSnippet:qae}),Kae={kernelName:Au,backendName:"webgl",kernelFunc:jae},Xae="return float(a >= 1.0 || b >= 1.0);",Yae=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Zae=fn({opSnippet:Xae,packedOpSnippet:Yae,dtype:"bool"}),Jae={kernelName:Fu,backendName:"webgl",kernelFunc:Zae},Qae=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},ere=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},tre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=G().getBool("WEBGL_PACK_NORMALIZATION")?new ere(r.shape,s,i,o,l):new Qae(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},nre={kernelName:so,backendName:"webgl",kernelFunc:tre},are=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},rre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new are(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},sre={kernelName:$u,backendName:"webgl",kernelFunc:rre};function ire(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Yo(i,e.dtype,"max",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function MA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=ek(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Qf(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=f9(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=ire(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var ore={kernelName:io,backendName:"webgl",kernelFunc:MA},lre=tk+`
return max(a, b);
`,ure=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xo+`
return result;
`,pre=fn({opSnippet:lre,packedOpSnippet:ure,cpuKernelImpl:g9}),cre={kernelName:oo,backendName:"webgl",kernelFunc:pre};function dre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ra({inputs:{x:r},backend:n});let d=new Ec(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var hre={kernelName:lo,backendName:"webgl",kernelFunc:dre};function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new ak(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var fre={kernelName:Du,backendName:"webgl",kernelFunc:mre},gre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},bre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function yre(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new ak(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new bre(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var xre={kernelName:Wc,backendName:"webgl",kernelFunc:yre};function vre(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;yp([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new Ec(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new gre(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var wre={kernelName:Vm,backendName:"webgl",kernelFunc:vre};function kre(e,t,n,a){let r=new Ec(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Ec(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Ire={kernelName:Um,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=kre(a,o,p,l);return[d,c]}};function Sre(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Yo(i,"float32","mean",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Nre={kernelName:uo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=ek(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Qf(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=N.expandShapeToKeepDim(f,l));let y=Sre(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function Tre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Yo(f,f.dtype,"min",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var Cre={kernelName:po,backendName:"webgl",kernelFunc:Tre},_re=tk+`
return min(a, b);
`,Ere=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Xo+`
return result;
`,Are=fn({opSnippet:_re,packedOpSnippet:Ere,cpuKernelImpl:b9}),Fre={kernelName:co,backendName:"webgl",kernelFunc:Are},$re=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=dt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},Dre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=dt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},Rre=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Dre(a.shape,r,s):new $re(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Mre={kernelName:ho,backendName:"webgl",kernelFunc:Rre},Pre=`if (b == 0.0) return NAN;
return mod(a, b);`,Ore=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+Xo+`
return result;
`,Lre=fn({opSnippet:Pre,packedOpSnippet:Ore}),zre={kernelName:Ru,backendName:"webgl",kernelFunc:Lre},Wre=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Bre=`
if (a == b) {
return 1.0;
};
return a / b;`,Vre=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,PA=fn({opSnippet:Bre,packedOpSnippet:Vre,checkOutOfBounds:!0}),Ure={kernelName:Gi,backendName:"webgl",kernelFunc:PA},NS="return a - b;",OA=fn({opSnippet:NS,packedOpSnippet:NS,supportsComplex:!0,cpuKernelImpl:L9}),Gre={kernelName:Oo,backendName:"webgl",kernelFunc:OA};function LA(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=MA({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ce({inputs:{x:o},backend:n,attrs:{shape:l}}),p=OA({inputs:{a:r,b:u},backend:n}),d=$A({inputs:{x:p},backend:n}),c=eg({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=ce({inputs:{x:c},backend:n,attrs:{shape:l}}),m=PA({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Hre={kernelName:Mo,backendName:"webgl",kernelFunc:LA};function qre(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:LA({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Wre(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var jre={kernelName:Mu,backendName:"webgl",kernelFunc:qre},Kre=Oa+`
return -x;
`,Xre=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Yre(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=x9(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new is(a.shape,Xre):r=new ir(a.shape,Kre),n.runWebGLProgram(r,[a],a.dtype)}var Zre={kernelName:Pu,backendName:"webgl",kernelFunc:Yre},Jre=fr.nonMaxSuppressionV3Impl;function Qre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Jre(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var ese={kernelName:Lu,backendName:"webgl",kernelFunc:Qre},tse=fr.nonMaxSuppressionV4Impl;function nse(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=tse(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var ase={kernelName:zu,backendName:"webgl",kernelFunc:nse},rse=fr.nonMaxSuppressionV5Impl;function sse(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=rse(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var ise={kernelName:Wu,backendName:"webgl",kernelFunc:sse},ose=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},lse=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new ose(u,i,o,l),d=ce({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=ce({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},use={kernelName:fo,backendName:"webgl",kernelFunc:lse};function Tm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=$d({inputs:{input:a},backend:n}),s=Tm({inputs:{x:r},backend:n}),i=tg({inputs:{input:a},backend:n}),o=Tm({inputs:{x:i},backend:n}),l=Rs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Dd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var pse={kernelName:ip,backendName:"webgl",kernelFunc:Tm};function zA(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=$d({inputs:{input:a},backend:n}),s=zA({inputs:{x:r},backend:n}),i=tg({inputs:{input:a},backend:n}),o=Tm({inputs:{x:i},backend:n}),l=Rs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Dd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var cse={kernelName:Bu,backendName:"webgl",kernelFunc:zA};function dse(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return pv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=pv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=SA({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var hse={kernelName:Vu,backendName:"webgl",kernelFunc:dse},mse=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=dt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},fse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=dt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},WA=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return Dd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fse(r.shape,s,i):new mse(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},gse={kernelName:go,backendName:"webgl",kernelFunc:WA},bse=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,yse=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+Xo+`
return result;
`,xse=fn({opSnippet:bse,packedOpSnippet:yse}),vse={kernelName:bo,backendName:"webgl",kernelFunc:xse};function wse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=Nn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=w9(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=ce({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Xm(r.dtype),x=Yo(b,y,"prod",n);h=ce({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=ce({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var kse={kernelName:xo,backendName:"webgl",kernelFunc:wse};function Ise(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.readSync(b.dataId)),u=r.map(b=>b.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=k9(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var Sse={kernelName:Gm,backendName:"webgl",kernelFunc:Ise};function Nse(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=I9(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var Tse={kernelName:Hm,backendName:"webgl",kernelFunc:Nse};function Cse(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=S9(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var _se={kernelName:qm,backendName:"webgl",kernelFunc:Cse},BA=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=N9(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Ese={kernelName:Bc,backendName:"webgl",kernelFunc:BA},Ase="return 1.0 / x;",Fse=Ye({opSnippet:Ase}),$se={kernelName:vo,backendName:"webgl",kernelFunc:Fse},Dse=Oa+`
return (x < 0.0) ? 0.0 : x;
`,Rse=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Mse=Ye({opSnippet:Dse,packedOpSnippet:Rse}),Pse={kernelName:wo,backendName:"webgl",kernelFunc:Mse},Ose=Oa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Lse=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,zse=Ye({opSnippet:Ose,packedOpSnippet:Lse}),Wse={kernelName:So,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Vse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Use(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Vse(r.shape,l,u,s,i):new Bse(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Gse={kernelName:Io,backendName:"webgl",kernelFunc:Use},Hse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function qse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Hse(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var jse={kernelName:Hu,backendName:"webgl",kernelFunc:qse},Kse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Xse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Yse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Xse(r.shape,l,u,s,i):new Kse(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Zse={kernelName:ko,backendName:"webgl",kernelFunc:Yse},Jse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Qse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Jse(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var eie={kernelName:Gu,backendName:"webgl",kernelFunc:Qse},tie=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=dt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},nie=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Sn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function aie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return ra({inputs:{x:r},backend:n});let l=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new nie(r.shape,o):new tie(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var rie={kernelName:No,backendName:"webgl",kernelFunc:aie},sie=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},iie={kernelName:op,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new sie(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},oie=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,lie=Ye({opSnippet:oie}),uie={kernelName:To,backendName:"webgl",kernelFunc:lie},pie="return inversesqrt(x);",cie=Ye({opSnippet:pie,cpuKernelImpl:T9}),die={kernelName:Co,backendName:"webgl",kernelFunc:cie},rk=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let l=dt(r.length),u=dt(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${d});
flattenedIndex += index * ${g};
}
if (flattenedIndex == coords[0]) {
sum += ${h};
found = true;
}
}
setOutput(mix(${f}, sum, float(found)));
}
`}},hie=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=s;let l=dt(r.length),u=dt(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides",b=t>1?"strides[j + 1]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${e}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${t}; j+=2) {
ivec4 index = round(${d});
flattenedIndex += index.xz * ${g};
if (j + 1 < ${t}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${h};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${f}, sum, found));
}
`}};function mie(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=ce({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g;G().getBool("WEBGL_PACK")?g=new hie(l,o,h.shape.length,m.shape.length,p,c):g=new rk(l,o,h.shape.length,m.shape.length,p,c);let b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var fie={kernelName:qu,backendName:"webgl",kernelFunc:mie},gie=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=G().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function bie(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new gie(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var yie={kernelName:Ku,backendName:"webgl",kernelFunc:bie},xie=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=dt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function vie(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new xie(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ba(r.dtype,s.dtype))}var wie={kernelName:Xu,backendName:"webgl",kernelFunc:vie},kie=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Iie=Ye({opSnippet:kie}),Sie={kernelName:_o,backendName:"webgl",kernelFunc:Iie},Nie=Ip+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,Tie=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Cie=Ye({opSnippet:Nie,packedOpSnippet:Tie,cpuKernelImpl:_9}),_ie={kernelName:Fo,backendName:"webgl",kernelFunc:Cie},Eie=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Aie=Ye({opSnippet:Eie}),Fie={kernelName:Ao,backendName:"webgl",kernelFunc:Aie},$ie=Ip+`
return sin(x);
`,Die=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${Xo}
return result;
`,Rie=Ye({opSnippet:$ie,packedOpSnippet:Die}),Mie={kernelName:Eo,backendName:"webgl",kernelFunc:Rie},Pie=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Oie=Ye({opSnippet:Pie}),Lie={kernelName:Zu,backendName:"webgl",kernelFunc:Oie},zie=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Wie=Ye({opSnippet:zie}),Bie={kernelName:$o,backendName:"webgl",kernelFunc:Wie},Vie=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=WA({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=ce({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Uie={kernelName:Ju,backendName:"webgl",kernelFunc:Vie};function Gie(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=A9(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Hie={kernelName:Vc,backendName:"webgl",kernelFunc:Gie};function qie(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=F9(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var jie={kernelName:ep,backendName:"webgl",kernelFunc:qie};function Kie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=pA(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Xie={kernelName:Uc,backendName:"webgl",kernelFunc:Kie};function Yie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=pA(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Zie={kernelName:Gc,backendName:"webgl",kernelFunc:Yie};function Jie(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=C9(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new rk(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Qie={kernelName:tp,backendName:"webgl",kernelFunc:Jie};function eoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Sp({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var toe={kernelName:Qu,backendName:"webgl",kernelFunc:eoe},TS="return sqrt(x);",noe=Ye({opSnippet:TS,packedOpSnippet:TS,cpuKernelImpl:$9}),aoe={kernelName:Do,backendName:"webgl",kernelFunc:noe},roe="return x * x;",soe=Ye({opSnippet:roe}),ioe={kernelName:Hc,backendName:"webgl",kernelFunc:soe},CS="return (a - b) * (a - b);",ooe=fn({opSnippet:CS,packedOpSnippet:CS}),loe={kernelName:Po,backendName:"webgl",kernelFunc:ooe};function uoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;if(r.dtype!=="string")throw new Error("Input must be of datatype string");let s=n.readSync(r.dataId),i=N.fromUint8ToStringArray(s),o=D9(i,"string",a);return n.makeTensorInfo(r.shape,"string",o)}var poe={kernelName:qc,backendName:"webgl",kernelFunc:uoe};function coe({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Oa+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new ir(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var doe={kernelName:Ns,backendName:"webgl",kernelFunc:coe},hoe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=dt(n.length),s=dt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function moe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ce({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Kt.computeOutShape(y,x,w),E=Sp({inputs:{x:r},backend:n,attrs:{begin:y,size:C}});I=ce({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=ze(r.shape,r.dtype,C),F=R9(h,E,w,y);I=n.makeTensorInfo(m,r.dtype,F.values)}else{let C=new hoe(y,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=ce({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var foe={kernelName:np,backendName:"webgl",kernelFunc:moe};function goe(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=M9(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var boe={kernelName:jc,backendName:"webgl",kernelFunc:goe};function yoe(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=P9(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var xoe={kernelName:Kc,backendName:"webgl",kernelFunc:yoe};function voe(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=O9(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var woe={kernelName:Xc,backendName:"webgl",kernelFunc:voe},koe="return tan(x);",Ioe=Ye({opSnippet:koe}),Soe={kernelName:Lo,backendName:"webgl",kernelFunc:Ioe},Noe=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Toe=Ye({opSnippet:Noe}),Coe={kernelName:zo,backendName:"webgl",kernelFunc:Toe};function _oe(e){let{inputs:t,backend:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=t,{}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(i,s,r.shape),c=[d/u,u];if(d===0)return n.makeTensorInfo(r.shape,s.dtype);let h=ce({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:i},backend:n,attrs:{shape:[l,u]}}),f=ce({inputs:{x:r},backend:n,attrs:{shape:c}}),g=new rk(l,o,h.shape.length,m.shape.length,p,c,!1,!0),b=n.runWebGLProgram(g,[m,h,f],f.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),y}var Eoe={kernelName:ju,backendName:"webgl",kernelFunc:_oe},Aoe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=Foe(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Foe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function VA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=ze(r.shape,r.dtype,l),p=z9(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Aoe(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var $oe={kernelName:Ss,backendName:"webgl",kernelFunc:VA},Doe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Roe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function qs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function _S(e){let t=1;for(;t<e;)t*=2;return t}function Moe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=G().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=G().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let F=n.readSync(r.dataId),[D,$]=W9(F,u,r.dtype,s,i);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,Dd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=ce({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&qs(n,h);let g=_S(s),b=_S(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(F,D,$)=>{let S=x(),M=new Doe($),B=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[F],[D]],U=y;y=n.runWebGLProgram(M,S,"int32",B),qs(n,U)};for(let F=1;F<g;F*=2){let D=F*2;for(let $=F;$>=1;$/=2)w(D,$,[m,b])}for(let F=b;F>g;F/=2){let D=x(),$=new Roe([m,F/2]),S=[[p],[y===null?1:0],[g]],M=y;y=n.runWebGLProgram($,D,"int32",S),qs(n,M);let B=g/2,U=B*2;for(let H=B;H>=1;H/=2)w(U,H,y.shape)}let I=y;y=Sp({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),qs(n,I);let T=RA({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});qs(n,f);let C=u.slice(0,-1);C.push(s),I=y,y=ce({inputs:{x:y},attrs:{shape:C},backend:n}),qs(n,I);let E=T;return T=ce({inputs:{x:T},attrs:{shape:C},backend:n}),qs(n,E),[T,y]}var Poe={kernelName:ap,backendName:"webgl",kernelFunc:Moe},Ooe=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Loe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Ooe(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var zoe={kernelName:rp,backendName:"webgl",kernelFunc:Loe};function Woe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;yp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=B9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Boe={kernelName:Yc,backendName:"webgl",kernelFunc:Woe};function Voe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=Sp({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=ce({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Uoe={kernelName:sp,backendName:"webgl",kernelFunc:Voe},Goe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Hoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Xm(r.dtype),g=(w,I,T,C,E)=>{let F=w.shape[0],D=w.shape[1],$=N.segment_util.segOpComputeOptimalWindowSize(D,E),S={windowSize:$,inSize:D,batchSize:F,numSegments:E},M=new Goe(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===E)return B;let U=BA({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),H=VA({inputs:{x:U},backend:n,attrs:{reps:[D/$]}});return l.push(U),l.push(H),g(B,I,H,C,E)},b=g(m,"unsortedSegmentSum",s,f,i),y=ce({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=N.getUndoAxesPermutation(p);x=Nn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var qoe={kernelName:Zc,backendName:"webgl",kernelFunc:Hoe},joe=[RQ,PQ,zQ,VQ,GQ,jQ,XQ,ZQ,tee,aee,iee,uee,dee,gee,xee,wee,Iee,Cee,Eee,Fee,Mee,Vee,Gee,qee,Jee,ete,rte,bQ,ote,dte,gte,kte,Nte,Cte,Ete,Fte,Mte,Lte,Bte,Ute,Hte,jte,Yte,Jte,nne,rne,one,pne,dne,gne,vne,Sne,Cne,Ane,Fne,Dne,Mne,One,zne,Bne,Hne,Kne,Zne,Qne,nae,sae,uae,hae,gQ,fae,pte,yae,wae,Sae,xQ,_ae,$ae,Rae,Lae,Bae,Hae,Kae,Jae,nre,sre,ore,cre,hre,fre,xre,wre,Ire,Nre,Cre,Fre,Mre,zre,jre,kQ,Zre,ese,ase,ise,Kee,use,cse,hse,gse,vse,wQ,kse,Sse,Tse,_se,Ese,Xee,Ure,$se,Pse,Wse,SQ,Gse,jse,Zse,eie,rie,iie,uie,die,fie,yie,wie,Sie,_ie,Fie,Mie,Lie,Wee,Hre,Bie,Uie,Hie,jie,Xie,Zie,Qie,toe,aoe,ioe,loe,poe,doe,foe,boe,xoe,woe,Gre,FQ,Soe,Coe,Eoe,$oe,Poe,zoe,$Q,Boe,Uoe,qoe,pse];for(let e of joe)Jc(e);var et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(et||(et={}));var Fc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Fc||(Fc={}));var UA;function Koe(e){UA=e.wasm.cwrap(ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Xoe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Fc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=lp.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return UA(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var Yoe={kernelName:ii,backendName:"wasm",setupFunc:Koe,kernelFunc:Xoe};function Je(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Zoe=Je(ru),Joe=Je(Si),Qoe=Je(Ni);function ln(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,et[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var ele=!0,tle=ln(ks,ele),GA;function nle(e){GA=e.wasm.cwrap(Ti,null,["array","number","number","number"])}function ale(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return GA(s,r.length,et[a.dtype],i),a}var rle={kernelName:Ti,backendName:"wasm",setupFunc:nle,kernelFunc:ale};function ng(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return bn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var sle={kernelName:Ji,backendName:"wasm",kernelFunc:ng},HA;function ile(e){HA=e.wasm.cwrap(Fr,null,["number","array","number","number","number","array","number"])}function vs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=lle(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=ole(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=ng({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return HA(p,h,l.shape.length,et[l.dtype],d,c,s.length),u}function ole(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function lle(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var ule={kernelName:Fr,backendName:"wasm",kernelFunc:vs,setupFunc:ile};function Ms(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=vs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var qA;function ple(e){qA=e.wasm.cwrap(su,null,["number, number, number"])}function cle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ms(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;qA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var dle={kernelName:su,backendName:"wasm",setupFunc:ple,kernelFunc:cle},jA;function hle(e){jA=e.wasm.cwrap(iu,null,["number, number, number"])}function mle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ms(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;jA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var fle={kernelName:iu,backendName:"wasm",setupFunc:hle,kernelFunc:mle};function KA(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number","number","number","number"])}function a(r){let{backend:s,inputs:i,attrs:o}=r,{axis:l}=o,{x:u}=i,p=s.dataIdMap.get(u.dataId).id,d=p,c=u,{transposed:h,axes:m,inputWasTransposed:f}=Ms(u,l,s);if(f){let I=s.dataIdMap.get(h.dataId).id;I!==p&&(c=h,d=I)}let g=c.shape.slice(0,-1),b=s.makeOutput(g,"int32"),y=s.dataIdMap.get(b.dataId).id,x=v.sizeFromShape(b.shape),w=c.shape[m[0]];return t(d,et[c.dtype],x,w,y),f&&s.disposeData(h.dataId),b}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var gle=KA(ou),ble=KA(lu),yle=Je(Ci),xle=Je(_i),vle=Je(Ei),wle=ln(Fi,!1),kle=Je(Ai),XA;function Ile(e){XA=e.wasm.cwrap($i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sle(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return XA(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var Nle={kernelName:$i,backendName:"wasm",setupFunc:Ile,kernelFunc:Sle},YA;function Tle(e){YA=e.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return YA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var _le={kernelName:uu,backendName:"wasm",setupFunc:Tle,kernelFunc:Cle},ZA;function Ele(e){ZA=e.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ale(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return ZA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left,p.filterDepth,p.filterHeight,p.filterWidth),d}var Fle={kernelName:Rc,backendName:"wasm",setupFunc:Ele,kernelFunc:Ale};function Wn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var $le={kernelName:Uu,backendName:"wasm",kernelFunc:Wn},JA;function Dle(e){JA=e.wasm.cwrap(Di,null,["number","array","number","number","array","number","number","number","number"])}function Rle(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=lp.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,F=i?I.shape[2]:I.shape[1],D=o?T.shape[1]:T.shape[2],$=Math.max(g,b),S=n.makeOutput([$,F,D],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return JA(C,B,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=y,S}var Mle={kernelName:Di,backendName:"wasm",setupFunc:Dle,kernelFunc:Rle};function ki(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=vm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Ple(l,p[0],c,s,i);else if(h===3)Ole(l,p[0],p[1],c,s,i);else if(h===4)Lle(l,p[0],p[1],p[2],c,s,i);else{let m=vm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Ple(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Ole(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Lle(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var zle={kernelName:Yu,backendName:"wasm",kernelFunc:ki};function Wle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=vs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=ki({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var Ble={kernelName:pu,backendName:"wasm",kernelFunc:Wle},QA;function Vle(e){QA=e.wasm.cwrap(cu,null,["number","number","boolean","number","number","number"])}function Ule(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i}=a,o=s.shape.reduce((d,c)=>d*c,1)!==0,l=r.shape.length===1?[i]:[r.shape[0],i],u=t.makeOutput(l,s.dtype);function p(d){return t.dataIdMap.get(d.dataId).id}return QA(p(r),i,o,p(s),et[s.dtype],p(u)),u}var Gle={kernelName:cu,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule};function Hle(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.typedArrayFromHeap(a),i=n.typedArrayFromHeap(r),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeOutput([o.length],"int32",void 0,new Int32Array(o))}var qle={kernelName:Mc,backendName:"wasm",kernelFunc:Hle};function Ps(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var jle={kernelName:Ri,backendName:"wasm",kernelFunc:Ps},Kle=Je(Mi),eF;function Xle(e){eF=e.wasm.cwrap(Is,null,["number","number","number","number"])}function Yle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return eF(o,s,i,u),l}var Zle={kernelName:Is,backendName:"wasm",setupFunc:Xle,kernelFunc:Yle};function tF(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return ng({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=[-1,v.sizeFromShape(x.shape.slice(a))];return Wn({inputs:{x},backend:n,attrs:{shape:w}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=F1(m,s,t[0].dtype,f),b=N.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return o}var Jle={kernelName:du,backendName:"wasm",kernelFunc:tF},nF;function Qle(e){nF=e.wasm.cwrap(Pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function eue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,F=m.inChannels,D=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return nF(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,$,I,T,C,E,F,D,M),S}var tue={kernelName:Pi,backendName:"wasm",setupFunc:Qle,kernelFunc:eue},aF;function nue(e){aF=e.wasm.cwrap(Oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aue(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,F=f-1-h.padInfo.top,D=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[B,U,H]=v.computeStrides(s.shape),j=S[0],K=$?S[1]:S[2],Z=$?S[2]:1,J=$?1:S[1],ee=M[0],ae=$?M[1]:M[2],te=$?M[2]:1,re=$?1:M[1],se=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(se.dataId).id,ue=t.dataIdMap.get(r.dataId).id,be=t.dataIdMap.get(s.dataId).id;return aF(ue,be,m,f,g,y,x,b,I,T,w,C,E,F,D,B,U,H,j,K,Z,J,ee,ae,te,re,ye),se}var rue={kernelName:Oi,backendName:"wasm",setupFunc:nue,kernelFunc:aue},rF;function sue(e){rF=e.wasm.cwrap(Li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function iue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=n.makeOutput(u.outShape,r.dtype);return rF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var oue={kernelName:Li,backendName:"wasm",setupFunc:sue,kernelFunc:iue},sF;function lue(e){sF=e.wasm.cwrap(hu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,l,i,1,o),p=n.makeOutput(u.filterShape,s.dtype);return sF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var pue={kernelName:hu,backendName:"wasm",setupFunc:lue,kernelFunc:uue},iF;function cue(e){iF=e.wasm.cwrap(mu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function due(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(l,s.shape,o,1,i),p=n.makeOutput(u.inShape,r.dtype);return iF(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var hue={kernelName:mu,backendName:"wasm",setupFunc:cue,kernelFunc:due},mue=Je(zi),fue=Je(Wi),cv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(cv||(cv={}));var oF;function gue(e){oF=e.wasm.cwrap(gu,null,["number","number","number","number","array","number","number","number","number","number"])}function bue(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Ps({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return oF(g,b,y,p,I,d,c,cv[r],s,w),f!=null&&t.disposeData(f.dataId),x}var yue={kernelName:gu,backendName:"wasm",setupFunc:gue,kernelFunc:bue},lF;function xue(e){lF=e.wasm.cwrap(fu,null,["number","number","number","number","number","number"])}function vue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=vs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;lF(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=vs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var wue={kernelName:fu,backendName:"wasm",setupFunc:xue,kernelFunc:vue},uF;function kue(e){uF=e.wasm.cwrap(Bi,null,["number","number","number","number","number","number"])}function Iue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=vs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;uF(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=vs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Sue={kernelName:Bi,backendName:"wasm",setupFunc:kue,kernelFunc:Iue},pF;function Nue(e){pF=e.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function Tue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i,binaryOutput:o}=a,l=s.shape.reduce((c,h)=>c*h,1)!==0,u=r.shape.length===1?[i]:[r.shape[0],i],p=t.makeOutput(u,s.dtype);function d(c){return t.dataIdMap.get(c.dataId).id}return pF(d(r),new Uint8Array(new Int32Array(r.shape).buffer),r.shape.length,i,l,d(s),et[s.dtype],o,d(p)),p}var Cue={kernelName:Oc,backendName:"wasm",setupFunc:Nue,kernelFunc:Tue},cF;function _ue(e){cF=e.wasm.cwrap(bu,null,["number","number","number","array","number","array","array","number","number"])}function Eue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return cF(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var Aue={kernelName:bu,backendName:"wasm",setupFunc:_ue,kernelFunc:Eue},dF;function Fue(e){dF=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $ue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return dF(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,D,w,I,T,C,E,F,S),$}var Due={kernelName:Vi,backendName:"wasm",setupFunc:Fue,kernelFunc:$ue},hF;function Rue(e){hF=e.wasm.cwrap("Diag",null,["number","number","number","number"])}function Mue(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.makeOutput([...a.shape,...a.shape],a.dtype);return hF(n.dataIdMap.get(a.dataId).id,et[a.dtype],r,n.dataIdMap.get(s.dataId).id),s}var Pue={kernelName:Lc,backendName:"wasm",setupFunc:Rue,kernelFunc:Mue},mF;function Oue(e){mF=e.wasm.cwrap(Ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Lue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${r.dtype} and ${s.dtype}`);let u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=n.makeOutput(u.outShape,r.dtype);return mF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,et[r.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),p}var zue={kernelName:Ui,backendName:"wasm",setupFunc:Oue,kernelFunc:Lue},fF;function Wue(e){fF=e.wasm.cwrap(Ll,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(s.shape,s.dtype);return fF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Vue={kernelName:Ll,backendName:"wasm",setupFunc:Wue,kernelFunc:Bue},gF;function Uue(e){gF=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(r.shape,r.dtype);return gF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Hue={kernelName:Ol,backendName:"wasm",setupFunc:Uue,kernelFunc:Gue},que=Je(Hi),bF;function jue(e){bF=e.wasm.cwrap(yu,null,["number","number","number"])}function Kue(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=n.makeOutput(r.shape,"float32"),i=o=>n.dataIdMap.get(o.dataId).id;return bF(i(r),i(a),i(s)),s}var Xue={kernelName:yu,backendName:"wasm",setupFunc:jue,kernelFunc:Kue},Yue=!1,Zue=ln(vu,Yue,"bool"),Jue=Je(qi,"float32");function dv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Que={kernelName:wu,backendName:"wasm",kernelFunc:dv},epe=Je(ji,"float32");function yF(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var tpe={kernelName:zc,backendName:"wasm",kernelFunc:yF},xF;function npe(e){xF=e.wasm.cwrap(ku,null,["number","number","number","number","number","number"])}function ape(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return xF(s,o,l,u,p,i),r}var rpe={kernelName:ku,backendName:"wasm",kernelFunc:ape,setupFunc:npe},spe=Je(Ki),ipe=!1,ope=ln(Xi,ipe),vF;function lpe(e){vF=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number","number"])}function upe(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return vF(p,d,c,h,m,r,g),f}var ppe={kernelName:Yi,backendName:"wasm",setupFunc:lpe,kernelFunc:upe},wF;function cpe(e){wF=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=Fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return wF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var hpe={kernelName:oi,backendName:"wasm",setupFunc:cpe,kernelFunc:dpe},kF;function mpe(e){kF=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=Fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return kF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var gpe={kernelName:li,backendName:"wasm",setupFunc:mpe,kernelFunc:fpe},IF;function bpe(e){IF=e.wasm.cwrap(Su,null,["number","number","number","number","number","number","array","number"])}function ype(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Gw.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return IF(c,et[a.dtype],h,i,d,o,m,f),u}var xpe={kernelName:Su,backendName:"wasm",setupFunc:bpe,kernelFunc:ype},SF;function vpe(e){SF=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function wpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return SF(y,et[r.dtype],I,b,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var kpe={kernelName:Iu,backendName:"wasm",setupFunc:vpe,kernelFunc:wpe},Ipe=!1,Spe=ln(Nu,Ipe,"bool"),Npe=!1,Tpe=ln(Zi,Npe,"bool"),Cpe=Je(Qi,"bool"),_pe=Je(eo,"bool"),Epe=Je(to,"bool"),NF;function Ape(e){NF=e.wasm.cwrap(no,null,["number","number","number","number"])}function Fpe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;NF(r,et[t.dtype],n,i)}return s}var $pe={kernelName:no,backendName:"wasm",setupFunc:Ape,kernelFunc:Fpe},Dpe=!1,Rpe=ln(Tu,Dpe,"bool"),Mpe=!1,Ppe=ln(Cu,Mpe,"bool"),TF;function Ope(e){TF=e.wasm.cwrap(_u,null,["number","number","number","number"])}function Lpe(e){let{attrs:t,backend:n}=e,{start:a,stop:r,num:s}=t,i=Math.floor(s),o=n.makeOutput([i],"float32");return TF(n.dataIdMap.get(o.dataId).id,a,r,i),o}var zpe={kernelName:_u,backendName:"wasm",setupFunc:Ope,kernelFunc:Lpe},Wpe=Je(ao),Bpe=Je(ro),Vpe=!1,Upe=ln(Eu,Vpe,"bool"),Gpe=Je(Au),Hpe=!1,qpe=ln(Fu,Hpe,"bool"),jpe=!1,Kpe=ln(XS,jpe,"bool"),CF;function Xpe(e){CF=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number"])}function Ype(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;if(r.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=n.makeOutput(r.shape,r.dtype);return CF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(u.dataId).id,r.shape[3],s,i,o,l),u}var Zpe={kernelName:so,backendName:"wasm",setupFunc:Xpe,kernelFunc:Ype},_F;function Jpe(e){_F=e.wasm.cwrap($u,null,["number","number","number","number","number","number","number","number","number"])}function Qpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;if(r.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let d=n.makeOutput(r.shape,r.dtype);return _F(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,i.shape[3],o,l,u,p),d}var ece={kernelName:$u,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},EF;function tce(e){EF=e.wasm.cwrap(io,null,["number","number","number","number"])}function nce(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Ms(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;EF(o,et[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var ace={kernelName:io,backendName:"wasm",setupFunc:tce,kernelFunc:nce},rce=!1,sce=ln(oo,rce),AF;function ice(e){AF=e.wasm.cwrap(lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oce(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return AF(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,T,E),C}var lce={kernelName:lo,backendName:"wasm",setupFunc:ice,kernelFunc:oce},FF;function uce(e){FF=e.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return FF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var cce={kernelName:Du,backendName:"wasm",setupFunc:uce,kernelFunc:pce},$F;function dce(e){$F=e.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hce(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return $F(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var mce={kernelName:Wc,backendName:"wasm",setupFunc:dce,kernelFunc:hce},DF;function fce(e){DF=e.wasm.cwrap(uo,null,["number, number, number"])}function gce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ms(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Ps({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;DF(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var bce={kernelName:uo,backendName:"wasm",setupFunc:fce,kernelFunc:gce},RF;function yce(e){RF=e.wasm.cwrap(po,null,["number","number","number","number"])}function xce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ms(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;RF(l,et[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var vce={kernelName:po,backendName:"wasm",setupFunc:yce,kernelFunc:xce},wce=!1,kce=ln(co,wce),hv;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(hv||(hv={}));var MF;function Ice(e){MF=e.wasm.cwrap(ho,null,["number","array","number","number","array","array","number","number"])}function Sce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return MF(i,u,t.shape.length,et[t.dtype],c,h,hv[r],l),o}var Nce={kernelName:ho,backendName:"wasm",kernelFunc:Sce,setupFunc:Ice},PF;function Tce(e){PF=e.wasm.cwrap(Mo,null,["number","number","number","number"])}function OF(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||PF(r,i,o,l),s}var Cce={kernelName:Mo,backendName:"wasm",setupFunc:Tce,kernelFunc:OF},LF;function _ce(e){LF=e.wasm.cwrap(Mu,null,["number","number","number","number","number","number"])}function Ece(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;if(r.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${r.dtype}`);let l=o?r:OF({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),[u,p]=l.shape,d=n.makeOutput([u,s],"int32");return LF(n.dataIdMap.get(l.dataId).id,u,p,s,i,n.dataIdMap.get(d.dataId).id),o||n.disposeData(l.dataId),d}var Ace={kernelName:Mu,backendName:"wasm",setupFunc:_ce,kernelFunc:Ece},Fce=!0,$ce=ln(mo,Fce),Dce=Je(Pu);function sk(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var zF;function Rce(e){zF=e.wasm.cwrap(Lu,"number",["number","number","number","number","number"])}function Mce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=zF(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=sk(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Pce={kernelName:Lu,backendName:"wasm",setupFunc:Rce,kernelFunc:Mce},WF;function Oce(e){WF=e.wasm.cwrap(zu,"number",["number","number","number","number","number","bool"])}function Lce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=WF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=sk(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var zce={kernelName:zu,backendName:"wasm",setupFunc:Oce,kernelFunc:Lce},BF;function Wce(e){BF=e.wasm.cwrap(Wu,"number",["number","number","number","number","number","number"])}function Bce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=BF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=sk(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var Vce={kernelName:Wu,backendName:"wasm",setupFunc:Wce,kernelFunc:Bce},Uce=!1,Gce=ln(Ou,Uce,"bool"),VF;function Hce(e){VF=e.wasm.cwrap(fo,null,["number","number","number","number","number"])}function qce(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return VF(d,i,o,l,p),u}var jce={kernelName:fo,backendName:"wasm",setupFunc:Hce,kernelFunc:qce};function Kce(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Xce={kernelName:Bu,backendName:"wasm",kernelFunc:Kce};function Yce(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return dv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=dv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=tF({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Zce={kernelName:Vu,backendName:"wasm",kernelFunc:Yce},UF;function Jce(e){UF=e.wasm.cwrap(go,null,["number","array","number","number","array","array","number","number"])}function Qce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return yF({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return UF(i,u,t.shape.length,et[t.dtype],c,h,r,l),o}var GF={kernelName:go,backendName:"wasm",kernelFunc:Qce,setupFunc:Jce},ede=!1,tde=ln(bo,ede),HF;function nde(e){HF=e.wasm.cwrap(yo,null,["number","number","number"])}function ade(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Ps({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return HF(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var rde={kernelName:yo,backendName:"wasm",setupFunc:nde,kernelFunc:ade},qF;function sde(e){qF=e.wasm.cwrap(xo,null,["number","number","number","number"])}function ide(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ms(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;qF(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var ode={kernelName:xo,backendName:"wasm",setupFunc:sde,kernelFunc:ide},lde=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=R1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},ude={kernelName:Bc,backendName:"wasm",kernelFunc:lde},pde=!0,cde=ln(Gi,pde),dde=Je(vo),hde=Je(wo),mde=Je(So),jF;function fde(e){jF=e.wasm.cwrap(Io,null,["number","number","number","number","number","number","number","number","number","number"])}function gde(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Ps({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return jF(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var bde={kernelName:Io,backendName:"wasm",setupFunc:fde,kernelFunc:gde},KF;function yde(e){KF=e.wasm.cwrap(Hu,null,["number","number","number","array","array","boolean"])}function xde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ps({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),KF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var vde={kernelName:Hu,backendName:"wasm",setupFunc:yde,kernelFunc:xde},XF;function wde(e){XF=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","number","number","number","number"])}function kde(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Ps({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return XF(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var Ide={kernelName:ko,backendName:"wasm",setupFunc:wde,kernelFunc:kde},YF;function Sde(e){YF=e.wasm.cwrap(Gu,null,["number","number","number","array","array","boolean"])}function Nde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ps({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),YF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var Tde={kernelName:Gu,backendName:"wasm",setupFunc:Sde,kernelFunc:Nde},ZF;function Cde(e){ZF=e.wasm.cwrap(No,null,["number","array","number","array","number","number"])}function _de(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return ng({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);ZF(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Ede={kernelName:No,backendName:"wasm",kernelFunc:_de,setupFunc:Cde},JF;function Ade(e){JF=e.wasm.cwrap(op,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Fde(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return JF(u,d,c,h,m,s,f,g,w,x.length,p),l}var $de={kernelName:op,backendName:"wasm",kernelFunc:Fde,setupFunc:Ade},Dde=Je(To),Rde=Je(Co),QF;function Mde(e){QF=e.wasm.cwrap(qu,null,["number","number","number","number","number","number","array","number","number"])}function Pde(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=vf.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return QF(h,m,et[s.dtype],l,u,p,f,c,g),o}var Ode={kernelName:qu,backendName:"wasm",setupFunc:Mde,kernelFunc:Pde},e$;function Lde(e){e$=e.wasm.cwrap(Ku,null,["number","number","number","number","number","number","bool","number"])}function zde(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a;if(r.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${r.dtype} and ${s.dtype}`);let o=n.makeOutput(s.shape,"int32");function l(u){return n.dataIdMap.get(u.dataId).id}return e$(l(r),l(s),r.shape[0],r.shape[1],s.shape[1],et[r.dtype],i==="left",l(o)),o}var Wde={kernelName:Ku,backendName:"wasm",setupFunc:Lde,kernelFunc:zde},t$;function Bde(e){t$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Vde(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return t$(i,o,l,h,p),u}var Ude={kernelName:Xu,backendName:"wasm",kernelFunc:Vde,setupFunc:Bde},Gde=Je(_o),n$;function Hde(e){n$=e.wasm.cwrap(Fo,null,["number","number"])}function qde(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||n$(a,s),r}var jde={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Hde,kernelFunc:qde},Kde=Je(Ao),Xde=Je(Eo),Yde=Je($o);function Zde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=GF.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=Wn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=vs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Jde={kernelName:Ju,backendName:"wasm",kernelFunc:Zde},a$;function Qde(e){a$=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function ehe(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=a$(d,c,et[r.dtype],o,u,l,h,f,b,x,I,C),F=t.readSync(T.dataId),D;switch(F[0]){case 1:{D=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{D=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:D=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:D=""}if(t.disposeData(T.dataId),D)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(D);let $=m,S=g;return E!==p[0]&&($=ki({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=ki({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,y,w]}var the={kernelName:Vc,backendName:"wasm",setupFunc:Qde,kernelFunc:ehe},r$;function nhe(e){r$=e.wasm.cwrap(ep,null,["number","number","number","number","number","number","number"])}function ahe(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;r$(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var rhe={kernelName:ep,backendName:"wasm",setupFunc:nhe,kernelFunc:ahe},s$;function i$(e){s$=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function o$(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;s$(d,et[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function she(e){return o$(e,!0)}var ihe={kernelName:Uc,backendName:"wasm",setupFunc:i$,kernelFunc:she};function ohe(e){return o$(e,!1)}var lhe={kernelName:Gc,backendName:"wasm",setupFunc:i$,kernelFunc:ohe},l$;function uhe(e){l$=e.wasm.cwrap(tp,null,["number","number","number","number","number","number","number","number","array","number","number"])}function phe(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(v.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=N.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return l$(m,f,s.shape.length,g,et[i.dtype],u,p,d,b,h,y),l}var che={kernelName:tp,backendName:"wasm",setupFunc:uhe,kernelFunc:phe};function dhe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=ki({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var hhe={kernelName:Qu,backendName:"wasm",kernelFunc:dhe},mhe=Je(Do),fhe=Je(Hc),ghe=!0,bhe=ln(Po,ghe),u$;function yhe(e){u$=e.wasm.cwrap(Ns,null,["number","number","number","number"])}function xhe(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return u$(i,r,et[s.dtype],l),o}var vhe={kernelName:Ns,backendName:"wasm",setupFunc:yhe,kernelFunc:xhe},p$;function whe(e){p$=e.wasm.cwrap(np,null,["number","array","number","array","array","array","array","array","number","number"])}function khe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=ki({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;p$(C,E,r.shape.length,F,D,$,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var Ihe={kernelName:np,backendName:"wasm",setupFunc:whe,kernelFunc:khe};function She(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=P1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var Nhe={kernelName:jc,backendName:"wasm",kernelFunc:She};function The(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=O1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Che={kernelName:Kc,backendName:"wasm",kernelFunc:The};function _he(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=L1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Ehe={kernelName:Xc,backendName:"wasm",kernelFunc:_he},Ahe=!0,Fhe=ln(Oo,Ahe),c$;function $he(e){c$=e.wasm.cwrap(Ro,null,["number","number","number","number"])}function Dhe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Ms(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;c$(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Rhe={kernelName:Ro,backendName:"wasm",setupFunc:$he,kernelFunc:Dhe},Mhe=Je(Lo),Phe=Je(zo),d$;function Ohe(e){d$=e.wasm.cwrap(ju,null,["number","number","number","number","number","number","array","number","number","number"])}function Lhe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(v.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=vf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return d$(h,m,et[i.dtype],l,u,p,g,c,b,f),o}var zhe={kernelName:ju,backendName:"wasm",setupFunc:Ohe,kernelFunc:Lhe},h$;function Whe(e){h$=e.wasm.cwrap(Ss,null,["number","array","number","array","number","number"])}function Bhe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return h$(s,l,r.shape.length,u,o.length,et[p.dtype],d),p}var Vhe={kernelName:Ss,backendName:"wasm",setupFunc:Whe,kernelFunc:Bhe},m$;function Uhe(e){m$=e.wasm.cwrap(ap,null,["number","array","number","number","number","bool","number","number"])}var Ghe=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return m$(i,o,a.shape.length,et[a.dtype],r,s,p,c),[u,d]},Hhe={kernelName:ap,backendName:"wasm",setupFunc:Uhe,kernelFunc:Ghe},f$;function qhe(e){f$=e.wasm.cwrap(rp,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function jhe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return f$(I,T,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,E,l,w),x}var Khe={kernelName:rp,backendName:"wasm",setupFunc:qhe,kernelFunc:jhe};function Xhe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=W1(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var Yhe={kernelName:Yc,backendName:"wasm",kernelFunc:Xhe};function Zhe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=ki({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Jhe={kernelName:sp,backendName:"wasm",kernelFunc:Zhe};function Qhe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var eme={kernelName:ip,backendName:"wasm",kernelFunc:Qhe},tme=[Yoe,Zoe,Joe,Qoe,tle,rle,dle,fle,gle,ble,yle,xle,vle,wle,kle,Nle,_le,Fle,Mle,Ble,Gle,qle,jle,Kle,Zle,Jle,tue,rue,oue,pue,hue,mue,fue,yue,wue,Sue,Cue,Aue,Due,Pue,zue,Vue,Hue,que,Xue,Zue,Jue,Que,epe,tpe,rpe,spe,ope,ppe,hpe,gpe,xpe,kpe,Spe,Tpe,sle,Cpe,_pe,Epe,$pe,Rpe,Ppe,zpe,Bpe,Wpe,Upe,Gpe,qpe,Kpe,Zpe,ece,ace,sce,lce,cce,mce,bce,vce,kce,Nce,Ace,$ce,Dce,Pce,zce,Vce,Gce,jce,Xce,Zce,GF,tde,rde,ode,ude,cde,dde,hde,mde,$le,bde,vde,Ide,Tde,Ede,$de,Dde,Rde,Ode,Wde,Ude,Gde,jde,Kde,Xde,zle,Cce,Yde,Jde,the,rhe,ihe,lhe,che,hhe,mhe,fhe,bhe,vhe,Ihe,Nhe,Che,Ehe,Fhe,Rhe,Mhe,Phe,zhe,Vhe,Hhe,Khe,ule,Yhe,Jhe,eme];for(let e of tme)Jc(e);var mv=G();mv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});mv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(mv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var ES=ws(uR()),nme=ws(pR()),AS=ws(cR()),FS=ES.default||ES,ame=AS.default||AS,g$=class extends $c{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(b$),fv=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Em(this,Aa())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return ime(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function rme(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function $S(e,t,n){if(Cm!=null)return Cm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),dc!=null&&dc[a]!=null?dc[a]:n+a}async function sme(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=nme.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?$S(e,t,uc!=null?uc:l):l+o},ik&&(r.instantiateWasm=rme($S(e,t,uc!=null?uc:"")));let s=!1;r.onAbort=()=>{s||hc||(hc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Cm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+FS.toString()],{type:"text/javascript"}),i=FS(r)):i=ame(r),i.then(o=>{s=!0,hc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function ime(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ome=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cm=null,uc=null,dc={},hc=!1,ik=!1;function lme(e,t=!1){if(Ev("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cm=e,ik=t}function ume(e,t=!1){if(hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")uc=e;else{dc=e;let n=ome.filter(a=>dc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ik=t}var b$=-1,fv=-1;function pme(e){b$=e}function cme(){if(fv===-1)throw new Error("WASM backend not initialized.");return fv}var dme="4.5.0",hme=2;Ym("wasm",async()=>{let{wasm:e}=await sme();return new g$(e)},hme);var DS="4.5.0",mme="4.5.0",fme="4.5.0",gme="4.5.0",bme="4.5.0",yme={tfjs:DS,"tfjs-core":DS,"tfjs-converter":mme,"tfjs-backend-cpu":fme,"tfjs-backend-webgl":gme,"tfjs-backend-wasm":bme};var Fk={};_h(Fk,{AnchorPosition:()=>kk,DrawBox:()=>Pd,DrawBoxOptions:()=>ig,DrawFaceLandmarks:()=>bg,DrawFaceLandmarksOptions:()=>gg,DrawTextField:()=>Ur,DrawTextFieldOptions:()=>_p,drawContour:()=>Wr,drawDetections:()=>Cme,drawFaceExpressions:()=>$me,drawFaceLandmarks:()=>Rme});function Wr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var pk={};_h(pk,{computeReshapedDimensions:()=>uk,getCenterPoint:()=>Qo,isDimensions:()=>rg,isEven:()=>ag,isFloat:()=>lk,isTensor:()=>Zo,isTensor1D:()=>xme,isTensor2D:()=>ok,isTensor3D:()=>Br,isTensor4D:()=>ka,isValidNumber:()=>Za,isValidProbablitiy:()=>Np,range:()=>yr,round:()=>Jo});var wn=class{constructor(t,n){if(!Za(t)||!Za(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new wn(1/this.width,1/this.height)}};function Zo(e,t){return e instanceof Ce&&e.shape.length===t}function xme(e){return Zo(e,1)}function ok(e){return Zo(e,2)}function Br(e){return Zo(e,3)}function ka(e){return Zo(e,4)}function lk(e){return e%1!==0}function ag(e){return e%2===0}function Jo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function rg(e){return e&&e.width&&e.height}function uk({width:e,height:t},n){let a=n/Math.max(t,e);return new wn(Math.round(e*a),Math.round(t*a))}function Qo(e){return e.reduce((t,n)=>t.add(n),new Re(0,0)).div(new Re(e.length,e.length))}function yr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Za(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Np(e){return Za(e)&&e>=0&&e<=1}var Re=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Re(this.x+t.x,this.y+t.y)}sub(t){return new Re(this.x-t.x,this.y-t.y)}mul(t){return new Re(this.x*t.x,this.y*t.y)}div(t){return new Re(this.x/t.x,this.y/t.y)}abs(){return new Re(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Re(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Za)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Za),s=[a.x,a.y,a.width,a.height].every(Za);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Re(this.left,this.top)}get topRight(){return new Re(this.right,this.top)}get bottomLeft(){return new Re(this.left,this.bottom)}get bottomRight(){return new Re(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ot({x:t,y:n,width:a,height:r})}rescale(t){let n=rg(t)?t.width:t,a=rg(t)?t.height:t;return new ot({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ot({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ot({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ot({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var el=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Vr=class{constructor(t,n,a,r,s){this._imageDims=new wn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Vr(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var vt=class extends Vr{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new vt(a,r,s)}};function ck(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function dk(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new el(a,r,s,i)}function hk(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(ck(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function Ja(e,t){return P(()=>{let[n,a,r]=t,s=xn([...e.shape.slice(0,3),1],n,"float32"),i=xn([...e.shape.slice(0,3),1],a,"float32"),o=xn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return pe(e,l)})}function mk(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,xn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>ie(c,"float32"));return Qe(d,i)})}function vme(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Rd(e){return 1/(1+Math.exp(-e))}function wme(e){return Math.log(e/(1-e))}var tl=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var kme=.5,Ime=.43,Sme=.45,ia=class{constructor(t,n,a=new Re(0,0)){let{width:r,height:s}=n;this._imgDims=new wn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Re(r,s)).add(a))}get shift(){return new Re(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Re(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Re(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof vt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Sme),l=Qo(t),u=Math.floor(Math.max(0,l.x-kme*o)),p=Math.floor(Math.max(0,l.y-Ime*o));return new tl(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=dk(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var fk=class extends ia{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Qo([t[3],t[4]])]}};var nl=class extends ia{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Qo)}};var Tp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Jo(this.distance)})`:""}`}};var Cp=class extends ot{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(ot.assertIsValidBox(n,a),!Za(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var xr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new xr(t.label,n)}};var gk=class extends Cp{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(Cp.assertIsValidLabeledBox(n,a),!Np(n.score)||!Np(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function vr(e){return e.detection instanceof vt}function al(e,t){return{...e,...{detection:t}}}function bk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Md(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function sg(e){let t="";if(!e&&Md())try{e=WD("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function yk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=sg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function xk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var un;function Nme(){if(!un)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return un}function vk(e){un=e}function wk(){return xk()?vk(bk()):Md()?vk(yk()):null}function Tme(e){if(un||wk(),!un)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=un.Canvas,Image:n=un.Image}=e;un.Canvas=t,un.Image=n,un.createCanvasElement=e.createCanvasElement||(()=>new t),un.createImageElement=e.createImageElement||(()=>new n),un.ImageData=e.ImageData||un.ImageData,un.Video=e.Video||un.Video,un.fetch=e.fetch||un.fetch,un.readFile=e.readFile||un.readFile}var tt={getEnv:Nme,setEnv:vk,initialize:wk,createBrowserEnv:bk,createFileSystem:sg,createNodejsEnv:yk,monkeyPatch:Tme,isBrowser:xk,isNodejs:Md};wk();function rl(e){return!tt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Hn(e){let{Canvas:t,CanvasRenderingContext2D:n}=tt.getEnv();if(e instanceof n)return e;let a=rl(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var kk=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(kk||{}),_p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Ur=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Ur?t.text:t,this.anchor=n,this.options=new _p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=rl(t),a=Hn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var ig=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new _p({...i,...s})}},Pd=class{constructor(t,n={}){this.box=new ot(t),this.options=new ig(n)}draw(t){let n=Hn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Ur([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Cme(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof vt?a.score:vr(a)?a.detection.score:void 0,s=a instanceof vt?a.box:vr(a)?a.detection.box:new ot(a),i=r?`${Jo(r)}`:void 0;new Pd(s,{label:i}).draw(e)})}function Od(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Ik(e){return new Promise((t,n)=>{(e instanceof tt.getEnv().Canvas||Od(e))&&t(null);function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function Sk(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=tt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function sl(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t?new wn(e.naturalWidth,e.naturalHeight):e instanceof n?new wn(e.videoWidth,e.videoHeight):new wn(e.width,e.height)}function il({width:e,height:t}){let{createCanvasElement:n}=tt.getEnv(),a=n();return a.width=e,a.height=t,a}function Ld(e,t){let{ImageData:n}=tt.getEnv();if(!(e instanceof n)&&!Od(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||sl(e),s=il({width:a,height:r});return e instanceof n?Hn(s).putImageData(e,0,0):Hn(s).drawImage(e,0,0,a,r),s}async function Nk(e,t){let n=t||tt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ka(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await Uo.toPixels(i,n),i.dispose(),n}function og(e){let{Image:t,Canvas:n,Video:a}=tt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Tk(e,t,n=!1){let{Image:a,Canvas:r}=tt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return il({width:1,height:1});let s=sl(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=il({width:t,height:t}),p=e instanceof r?e:Ld(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&Hn(u).drawImage(p,c,h,o,l),u}var wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Br(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ka(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof tt.getEnv().Canvas?a:Ld(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return yr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return uk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=yr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=ka(i)?i:tn(i);return o=mk(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=ea.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof tt.getEnv().Canvas)return Uo.fromPixels(Tk(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ie(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function wt(e){if(e instanceof wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(rl);return a.forEach((r,s)=>{if(!og(r)&&!Br(r)&&!ka(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ka(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>og(r)&&Ik(r))),new wr(a,Array.isArray(e))}async function Ep(e,t){let{Canvas:n}=tt.getEnv(),a=e;if(!(e instanceof n)){let i=await wt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Nk(o)}let r=Hn(a);return t.map(i=>i instanceof vt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=il({width:l,height:u});return l>0&&u>0&&Hn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Ap(e,t){if(!Br(e)&&!ka(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ka(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(ka(e)?1:0);return t.map(o=>o instanceof vt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Bo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Gr(e,t){let{fetch:n}=tt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function _me(e){let t=await Gr(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Sk(n)}async function Ck(e){return(await Gr(e)).json()}async function Eme(e){return new Float32Array(await(await Gr(e)).arrayBuffer())}function y$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=tt.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function Ame(e){let t=await Gr(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return y$(n)}function lg(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function _k(e,t){let{manifestUri:n,modelBaseUri:a}=lg(e,t),r=await Ck(n);return qt.loadWeights(r,a)}function Fme(e,t,n=!1){let{width:a,height:r}=n?sl(t):t;return e.width=a,e.height=r,{width:a,height:r}}var pn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof ds)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof ds))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await _k(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=tt.getEnv(),{manifestUri:a,modelBaseUri:r}=lg(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=qt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function qn(e,t,n){return P(()=>{let a=Fs(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function ug(e,t,n=!1){return P(()=>{let a=Ke(n?X(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):qn(e,t.conv0,[2,2])),r=qn(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=qn(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function zd(e,t,n=!1,a=!0){return P(()=>{let r=Ke(n?X(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):qn(e,t.conv0,a?[2,2]:[1,1])),s=qn(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=qn(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=qn(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function ol(e,t,n="same",a=!1){return P(()=>{let r=X(Rt(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Fp(e,t){return(n,a,r,s)=>{let i=Ma(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function pg(e,t){return(n,a,r)=>{let s=$a(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Wd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function $p(e,t){return(n,a,r)=>{let s=Ma(e(9*n),[3,3,n,1]),i=Ma(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Wd(s,i,o)}}function Dp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Wd(n,a,r)}}function oa(e,t){return(n,a,r)=>{let s=e[n];if(!Zo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Fn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function cg(e,t){let n=Fp(e,t),a=$p(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function x$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock4Params:r}=cg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function dg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function hg(e,t){let n=oa(e,t),a=dg(n),r=Dp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function v$(e){let t=[],{extractDenseBlock4Params:n}=hg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var Rp=class extends pn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=zd(s,n.dense0,!0);return i=zd(i,n.dense1),i=zd(i,n.dense2),i=zd(i,n.dense3),i=xa(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await wt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return v$(t)}extractParams(t){return x$(t)}};function Bd(e,t){return P(()=>X($e(e,t.weights),t.bias))}function w$(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Fn(e),o=pg(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function k$(e){let t=[],n=oa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function mg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Mp=class extends pn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n;return Bd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return w$(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=mg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),k$(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var Ek=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Hr=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Ek.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Ek.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Vd=class extends Mp{constructor(t=new Rp){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Xa(this.runNet(t)))}async forward(t){return this.forwardInput(await wt(t))}async predictExpressions(t){let n=await wt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Hr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Ak(e){return e.expressions instanceof Hr}function fg(e,t){return{...e,...{expressions:t}}}function $me(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Hr?s:Ak(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=vr(s)?s.detection.box.bottomLeft:a||new Re(0,0);new Ur(l.map(d=>`${d.expression} (${Jo(d.probability)})`),u).draw(e)})}function ll(e){return vr(e)&&e.landmarks instanceof ia&&e.unshiftedLandmarks instanceof ia&&e.alignedRect instanceof vt}function Dme(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l._x-u._x)**2+(l._y-u._y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l._x-u._x),c=Math.floor(u._x-p._x);return d-c},s=(l,u)=>{let p=Math.hypot(u._x-l._x,u._y-l._y),d=u._y-l._y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u._x-l._x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c={_x:(l._x+p._x)/2,_y:(l._y+p._y)/2},h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c._y-u._y<0?-1:1;return f*g};if(!e||!e._positions||e._positions.length!==68)return a;let o=e._positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Pp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new vt(e.detection.score,r.rescale(s.reverse()),s),o=Dme(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var gg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},bg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new gg(n)}draw(t){let n=Hn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof nl&&(n.strokeStyle=i,n.lineWidth=s,Wr(n,this.faceLandmarks.getJawOutline()),Wr(n,this.faceLandmarks.getLeftEyeBrow()),Wr(n,this.faceLandmarks.getRightEyeBrow()),Wr(n,this.faceLandmarks.getNose()),Wr(n,this.faceLandmarks.getLeftEye(),!0),Wr(n,this.faceLandmarks.getRightEye(),!0),Wr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Rme(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ia?a:ll(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new bg(r).draw(e)})}var I$="1.7.11";function Ome(e,t){let n=Fp(e,t),a=$p(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function S$(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Fn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Ome(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};yr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Lme(e,t){let n=oa(e,t),a=dg(n),r=Dp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function N$(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Lme(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};yr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function T$(e,t,n){return X(Rt(e,t.filters,n,"same"),t.bias)}function $k(e,t,n=!0){let a=n?Ke(e):e;return a=qn(a,t.separable_conv0,[1,1]),a=qn(Ke(a),t.separable_conv1,[1,1]),a=Mt(a,[3,3],[2,2],"same"),a=X(a,T$(e,t.expansion_conv,[2,2])),a}function zme(e,t){let n=qn(Ke(e),t.separable_conv0,[1,1]);return n=qn(Ke(n),t.separable_conv1,[1,1]),n=qn(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var yg=class extends pn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=ie(n.toBatchTensor(112,!0),"float32"),i=Ja(r,[122.782,117.001,104.298]).div(255),o=Ke(T$(i,a.entry_flow.conv_in,[2,2]));return o=$k(o,a.entry_flow.reduction_block_0,!1),o=$k(o,a.entry_flow.reduction_block_1),yr(this._numMainBlocks,0,1).forEach(l=>{o=zme(o,a.middle_flow[`main_block_${l}`])}),o=$k(o,a.exit_flow.reduction_block),o=Ke(qn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await wt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return N$(n,this._numMainBlocks)}extractParams(n){return S$(n,this._numMainBlocks)}};function C$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),r=pg(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function _$(e){let t=[],n=oa(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var xg=(n=>(n.FEMALE="female",n.MALE="male",n))(xg||{});var Ud=class extends pn{constructor(n=new yg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n,s=xa(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=Bd(s,a.fc.age).as1D(),o=Bd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Xa(r)}})}async forward(n){return this.forwardInput(await wt(n))}async predictAgeAndGender(n){let a=await wt(n),r=await this.forwardInput(a),s=ct(r.age),i=ct(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return C$(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=mg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),_$(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var Op=class extends Mp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Dt([xn([68],d,"float32"),xn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(xn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Dt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await wt(t))}async detectLandmarks(t){let n=await wt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>ag(d)),u=o.filter((p,d)=>!ag(d));return new nl(Array(68).fill(0).map((p,d)=>new Re(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var ul=class extends Op{constructor(t=new Rp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function E$(e){let t=[],{extractDenseBlock3Params:n}=hg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function A$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock3Params:r}=cg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var vg=class extends pn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=ug(s,n.dense0,!0);return i=ug(i,n.dense1),i=ug(i,n.dense2),i=xa(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await wt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return E$(t)}extractParams(t){return A$(t)}};var Gd=class extends Op{constructor(t=new vg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Dk=class extends ul{};function F$(e,t){return X(z(e,t.weights),t.biases)}function Rk(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=X(o,i),o=F$(o,t.scale),a?Ke(o):o}function $$(e,t){return Rk(e,t,[1,1],!0)}function Mk(e,t){return Rk(e,t,[1,1],!1)}function wg(e,t){return Rk(e,t,[2,2],!0,"valid")}function Wme(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(lk(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>De(Ma(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function D$(e){let{extractWeights:t,getRemainingWeights:n}=Fn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Wme(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>De($a(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Bme(e,t){let n=oa(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function R$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Bme(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!ok(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return An(e,t),{params:w,paramMappings:t}}function Qa(e,t){let n=$$(e,t.conv1);return n=Mk(n,t.conv2),n=X(n,e),n=Ke(n),n}function Hd(e,t){let n=wg(e,t.conv1);n=Mk(n,t.conv2);let a=xa(e,2,2,"valid"),r=Nt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=Nt(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=Nt(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=X(a,n),n=Ke(n),n}var pl=class extends pn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(150,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=wg(s,n.conv32_down);i=Mt(i,3,2,"valid"),i=Qa(i,n.conv32_1),i=Qa(i,n.conv32_2),i=Qa(i,n.conv32_3),i=Hd(i,n.conv64_down),i=Qa(i,n.conv64_1),i=Qa(i,n.conv64_2),i=Qa(i,n.conv64_3),i=Hd(i,n.conv128_down),i=Qa(i,n.conv128_1),i=Qa(i,n.conv128_2),i=Hd(i,n.conv256_down),i=Qa(i,n.conv256_1),i=Qa(i,n.conv256_2),i=Hd(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await wt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await wt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return R$(t)}extractParams(t){return D$(t)}};function Vme(e){let t=new pl;return t.extractWeights(e),t}function kg(e,t){return{...e,...{descriptor:t}}}function Ume(e){return typeof e.age=="number"}function Ig(e,t){return{...e,...{age:t}}}function Gme(e){return(e.gender==="male"||e.gender==="female")&&Np(e.genderProbability)}function Sg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Hme(e,t){function n(l,u){let p=Ma(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Ma(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function M$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Hme(n,t),i=r(),o=s(),u={extra_dim:gd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function qme(e,t){let n=oa(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function P$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qme(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Br(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function La(e,t,n){return P(()=>{let a=Rt(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),rn(a,0,6)})}var jme=.0010000000474974513;function Kme(e,t,n){return P(()=>{let a=_s(e,t.filters,n,"same");return a=Cs(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,jme),rn(a,0,6)})}function Xme(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function O$(e,t){return P(()=>{let n,a=La(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Xme(o);a=Kme(a,s.depthwise_conv,l),a=La(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Yme(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function L$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Yme(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Zme(e){let t=ct(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function Jme(e,t){let{sizes:n,centers:a}=Zme(e),r=ct(De(t,[1,0])),s=he(z(yn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(yn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(Dt([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function z$(e,t,n){return P(()=>{let a=e.shape[0],r=Jme(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=fa(Ue(t,[0,0,1],[-1,-1,-1])),i=Ue(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function cl(e,t){return P(()=>{let n=e.shape[0],a=W(ol(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(ol(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function W$(e,t,n){return P(()=>{let a=La(e,n.conv_0,[1,1]),r=La(a,n.conv_1,[2,2]),s=La(r,n.conv_2,[1,1]),i=La(s,n.conv_3,[2,2]),o=La(i,n.conv_4,[1,1]),l=La(o,n.conv_5,[2,2]),u=La(l,n.conv_6,[1,1]),p=La(u,n.conv_7,[2,2]),d=cl(t,n.box_predictor_0),c=cl(e,n.box_predictor_1),h=cl(r,n.box_predictor_2),m=cl(i,n.box_predictor_3),f=cl(l,n.box_predictor_4),g=cl(p,n.box_predictor_5),b=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Ia=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Os=class extends pn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=O$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=W$(s.out,s.conv11,n.prediction_layer);return z$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await wt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Ia(n),s=await wt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=L$(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(E=>E*g),[T,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(E=>E*f);return new vt(p[x],new tl(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return P$(t)}extractParams(t){return M$(t)}};function B$(e){let t=new Os;return t.extractWeights(e),t}function Qme(e){return B$(e)}var Pk=class extends Os{};var V$=.4,U$=[new Re(.738768,.874946),new Re(2.42204,2.65704),new Re(4.30971,7.04493),new Re(10.246,4.59428),new Re(12.6868,11.8741)],G$=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],H$=[117.001,114.697,97.404],q$="tiny_yolov2_model",j$="tiny_yolov2_separable_conv_model";var Ng=e=>typeof e=="number";function Ok(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Ng(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Ng(t.x)&&Ng(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Ng)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Lp(e){return P(()=>{let t=z(e,ve(.10000000149011612));return X(Ke(pe(e,t)),t)})}function qr(e,t){return P(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Lp(n)})}function jr(e,t){return P(()=>{let n=va(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Fs(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Lp(n)})}function efe(e,t){let n=Fp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=$p(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function K$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Fn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=efe(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function tfe(e,t){let n=oa(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Dp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function X$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=tfe(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var er=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Lk=class extends pn{constructor(n){super("TinyYolov2");Ok(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=qr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=qr(r,a.conv6),r=qr(r,a.conv7),ol(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?Lp(ol(n,a.conv0,"valid",!1)):jr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=jr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=jr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=jr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=jr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=jr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=a.conv6?jr(r,a.conv6):r,r=a.conv7?jr(r,a.conv7):r,ol(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=ie(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?Ja(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await wt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new er(a),i=await wt(n),o=await this.forwardInput(i,r),l=P(()=>ct(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return hk(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new Vr(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return X$(n,this.config)}extractParams(n){let a=this.config.filterSizes||Lk.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return K$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Xa(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ve(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=Rd(g[y][x][w][0]);if(!r||I>r){let T=(x+Rd(b[y][x][w][0]))/p*l,C=(y+Rd(b[y][x][w][1]))/p*u,E=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,F=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,D=T-E/2,$=C-F/2,S={row:y,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new el(D,$,D+E,$+F),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},dl=Lk;dl.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var hl=class extends dl{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:V$,classes:["face"],...t?{anchors:G$,meanRgb:H$}:{anchors:U$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new vt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?j$:q$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function nfe(e,t=!0){let n=new hl(t);return n.extractWeights(e),n}var qd=class extends er{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Sa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ml(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ll(l)?r(l):l.detection),i=a||(t instanceof Ce?await Ap(t,s):await Ep(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function zp(e,t,n,a,r){return ml([e],t,async s=>n(s[0]),a,r)}var Y$=.4,Z$=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],J$=[117.001,114.697,97.404];var fl=class extends dl{constructor(){let t={withSeparableConvs:!0,iouThreshold:Y$,classes:["face"],anchors:Z$,meanRgb:J$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new vt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new Os,tinyFaceDetector:new fl,tinyYolov2:new hl,faceLandmark68Net:new ul,faceLandmark68TinyNet:new Gd,faceRecognitionNet:new pl,faceExpressionNet:new Vd,ageGenderNet:new Ud},Q$=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),afe=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),rfe=(e,t)=>nt.tinyYolov2.locateFaces(e,t),eD=e=>nt.faceLandmark68Net.detectLandmarks(e),sfe=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),ife=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),ofe=e=>nt.faceExpressionNet.predictExpressions(e),lfe=e=>nt.ageGenderNet.predictAgeAndGender(e),tD=e=>nt.ssdMobilenetv1.load(e),ufe=e=>nt.tinyFaceDetector.load(e),pfe=e=>nt.tinyYolov2.load(e),cfe=e=>nt.faceLandmark68Net.load(e),dfe=e=>nt.faceLandmark68TinyNet.load(e),hfe=e=>nt.faceRecognitionNet.load(e),mfe=e=>nt.faceExpressionNet.load(e),ffe=e=>nt.ageGenderNet.load(e),gfe=tD,bfe=Q$,yfe=eD;var Tg=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},gl=class extends Tg{async run(){let t=await this.parentTask,n=await ml(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>fg(a,n[r]))}withAgeAndGender(){return new yl(this,this.input)}},bl=class extends Tg{async run(){let t=await this.parentTask;if(!t)return;let n=await zp(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return fg(t,n)}withAgeAndGender(){return new xl(this,this.input)}},Ls=class extends gl{withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptors(){return new Kr(this,this.input)}},zs=class extends bl{withAgeAndGender(){return new Bs(this,this.input)}withFaceDescriptor(){return new Xr(this,this.input)}};var Cg=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},yl=class extends Cg{async run(){let t=await this.parentTask,n=await ml(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Ig(Sg(a,i,o),s)})}withFaceExpressions(){return new gl(this,this.input)}},xl=class extends Cg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zp(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Ig(Sg(t,a,r),n)}withFaceExpressions(){return new bl(this,this.input)}},Ws=class extends yl{withFaceExpressions(){return new Ls(this,this.input)}withFaceDescriptors(){return new Kr(this,this.input)}},Bs=class extends xl{withFaceExpressions(){return new zs(this,this.input)}withFaceDescriptor(){return new Xr(this,this.input)}};var jd=class extends Sa{constructor(n,a){super();this.parentTask=n;this.input=a}},Kr=class extends jd{async run(){let t=await this.parentTask;return(await ml(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>kg(t[r],a))}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}},Xr=class extends jd{async run(){let t=await this.parentTask;if(!t)return;let n=await zp(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return kg(t,n)}withFaceExpressions(){return new zs(this,this.input)}withAgeAndGender(){return new Bs(this,this.input)}};var Kd=class extends Sa{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},Xd=class extends Kd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Ap(this.input,n):await Ep(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Pp(i,r[o]))}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptors(){return new Kr(this,this.input)}},Yd=class extends Kd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Ap(this.input,[n]):await Ep(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Pp(t,r)}withFaceExpressions(){return new zs(this,this.input)}withAgeAndGender(){return new Bs(this,this.input)}withFaceDescriptor(){return new Xr(this,this.input)}};var Zd=class extends Sa{constructor(n,a=new Ia){super();this.input=n;this.options=a}},Wp=class extends Zd{async run(){let{input:t,options:n}=this,a;if(n instanceof qd)a=nt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Ia)a=nt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof er)a=nt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>al({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Xd(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new gl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new yl(this.runAndExtendWithFaceDetections(),this.input)}},Jd=class extends Zd{async run(){let t=await new Wp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?al({},n):void 0)})}withFaceLandmarks(t=!1){return new Yd(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new bl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new xl(this.runAndExtendWithFaceDetection(),this.input)}};function xfe(e,t=new Ia){return new Jd(e,t)}function _g(e,t=new Ia){return new Wp(e,t)}async function nD(e,t){return _g(e,new Ia(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function vfe(e,t={}){return _g(e,new er(t)).withFaceLandmarks().withFaceDescriptors()}var wfe=nD;function zk(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var Qd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof xr)return i;if(i instanceof Float32Array)return new xr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new xr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>zk(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Tp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new Tp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>xr.fromJSON(a));return new Qd(n,t.distanceThreshold)}};function kfe(e){let t=new fl;return t.extractWeights(e),t}function aD(e,t){let{width:n,height:a}=new wn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>aD(r,{width:n,height:a}));if(ll(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Pp(al(e,r),s)}return vr(e)?al(e,e.detection.forSize(n,a)):e instanceof ia||e instanceof vt?e.forSize(n,a):e}var Ife=I$;return VD(Sfe);})();