face-api/dist/face-api.esm.js

5003 lines
1.3 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var AD=Object.defineProperty;var FD=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var jy=(e,t)=>{for(var n in t)AD(e,n,{get:t[n],enumerable:!0})};var ze={};jy(ze,{Abs:()=>ql,Acos:()=>Ii,Acosh:()=>Si,AdadeltaOptimizer:()=>_w,AdagradOptimizer:()=>Ew,AdamOptimizer:()=>Aw,AdamaxOptimizer:()=>Fw,Add:()=>bs,AddN:()=>Ni,All:()=>jl,Any:()=>Kl,ArgMax:()=>Xl,ArgMin:()=>Yl,Asin:()=>Ti,Asinh:()=>Ci,Atan:()=>_i,Atan2:()=>Ai,Atanh:()=>Ei,AvgPool:()=>Fi,AvgPool3D:()=>Zl,AvgPool3DGrad:()=>_c,AvgPoolGrad:()=>bm,BackendWasm:()=>XF,BatchMatMul:()=>$i,BatchToSpaceND:()=>Jl,Bincount:()=>Ql,BitwiseAnd:()=>ym,BroadcastArgs:()=>Ec,BroadcastTo:()=>CS,Callback:()=>nC,CallbackList:()=>r2,Cast:()=>Di,Ceil:()=>Ri,ClipByValue:()=>ys,Complex:()=>xm,ComplexAbs:()=>Ac,Concat:()=>eu,Conv2D:()=>Mi,Conv2DBackpropFilter:()=>vm,Conv2DBackpropInput:()=>Pi,Conv3D:()=>Oi,Conv3DBackpropFilterV2:()=>tu,Conv3DBackpropInputV2:()=>nu,Cos:()=>Li,Cosh:()=>zi,CropAndResize:()=>ru,Cumprod:()=>au,Cumsum:()=>Wi,CustomCallback:()=>i2,DataStorage:()=>mm,DenseBincount:()=>Fc,DepthToSpace:()=>su,DepthwiseConv2dNative:()=>Bi,DepthwiseConv2dNativeBackpropFilter:()=>wm,DepthwiseConv2dNativeBackpropInput:()=>km,Diag:()=>$c,Dilation2D:()=>Vi,Dilation2DBackpropFilter:()=>Tl,Dilation2DBackpropInput:()=>Nl,ENV:()=>dv,EarlyStopping:()=>aC,Einsum:()=>Im,Elu:()=>Gi,EluGrad:()=>iu,Environment:()=>NS,Equal:()=>lu,Erf:()=>ou,Exp:()=>Hi,ExpandDims:()=>uu,Expm1:()=>qi,FFT:()=>Sm,Fill:()=>Dc,FlipLeftRight:()=>pu,Floor:()=>ji,FloorDiv:()=>Ki,FromPixels:()=>Wh,FusedBatchNorm:()=>Xi,FusedConv2D:()=>ii,FusedDepthwiseConv2D:()=>oi,GPGPUContext:()=>Mh,GatherNd:()=>du,GatherV2:()=>cu,GraphModel:()=>g1,Greater:()=>hu,GreaterEqual:()=>Yi,History:()=>s2,IFFT:()=>Nm,Identity:()=>Zi,Imag:()=>Tm,InputSpec:()=>Bt,IsFinite:()=>Ji,IsInf:()=>Qi,IsNan:()=>eo,KernelBackend:()=>Tc,LRN:()=>ro,LRNGrad:()=>vu,LayerVariable:()=>ZT,LayersModel:()=>Er,LeakyRelu:()=>to,Less:()=>mu,LessEqual:()=>fu,LinSpace:()=>gu,Log:()=>no,Log1p:()=>ao,LogSoftmax:()=>ES,LogicalAnd:()=>bu,LogicalNot:()=>yu,LogicalOr:()=>xu,LogicalXor:()=>_S,LowerBound:()=>kR,MathBackendCPU:()=>Rf,MathBackendWebGL:()=>Of,MatrixBandPart:()=>IR,Max:()=>so,MaxPool:()=>oo,MaxPool3D:()=>wu,MaxPool3DGrad:()=>Rc,MaxPoolGrad:()=>Cm,MaxPoolWithArgmax:()=>_m,Maximum:()=>io,Mean:()=>lo,Min:()=>uo,Minimum:()=>po,MirrorPad:()=>co,Mod:()=>ku,MomentumOptimizer:()=>$w,Multinomial:()=>Iu,Multiply:()=>ho,Neg:()=>Su,NonMaxSuppressionV3:()=>Tu,NonMaxSuppressionV4:()=>Cu,NonMaxSuppressionV5:()=>_u,NotEqual:()=>Nu,OP_SCOPE_SUFFIX:()=>gv,OneHot:()=>mo,OnesLike:()=>Eu,Optimizer:()=>Mr,OptimizerConstructors:()=>RT,Pack:()=>Au,PadV2:()=>fo,Pool:()=>SR,Pow:()=>go,Prelu:()=>bo,Prod:()=>yo,RMSPropOptimizer:()=>Dw,RNN:()=>mr,RaggedGather:()=>Em,RaggedRange:()=>Am,RaggedTensorToTensor:()=>Fm,Range:()=>Mc,Rank:()=>dx,Real:()=>$m,RealDiv:()=>Ui,Reciprocal:()=>xo,Reduction:()=>kn,Relu:()=>vo,Relu6:()=>Io,Reshape:()=>Fu,ResizeBilinear:()=>ko,ResizeBilinearGrad:()=>Du,ResizeNearestNeighbor:()=>wo,ResizeNearestNeighborGrad:()=>$u,Reverse:()=>So,RotateWithOffset:()=>Xu,Round:()=>No,Rsqrt:()=>To,SGDOptimizer:()=>mf,ScatterNd:()=>Ru,SearchSorted:()=>Pu,Select:()=>Ou,Selu:()=>Co,Sequential:()=>Ll,Sigmoid:()=>Ao,Sign:()=>Eo,Sin:()=>_o,Sinh:()=>zu,Slice:()=>Lu,Softmax:()=>Ro,Softplus:()=>Fo,SpaceToBatchND:()=>Wu,SparseFillEmptyRows:()=>Pc,SparseReshape:()=>Vu,SparseSegmentMean:()=>Oc,SparseSegmentSum:()=>Lc,SparseToDense:()=>Uu,SplitV:()=>Bu,Sqrt:()=>$o,Square:()=>zc,SquaredDifference:()=>Mo,StaticRegexReplace:()=>Wc,Step:()=>vs,StridedSlice:()=>Gu,StringNGrams:()=>Bc,StringSplit:()=>Vc,StringToHashBucketFast:()=>Uc,Sub:()=>Po,Sum:()=>Do,SymbolicTensor:()=>Va,Tan:()=>Oo,Tanh:()=>Lo,Tensor:()=>Ce,TensorBuffer:()=>Vt,TensorScatterUpdate:()=>Mu,Tile:()=>xs,TopK:()=>Hu,Transform:()=>qu,Transpose:()=>_r,Unique:()=>Gc,Unpack:()=>ju,UnsortedSegmentSum:()=>Hc,UpperBound:()=>NR,Variable:()=>os,ZerosLike:()=>Ku,_FusedMatMul:()=>si,abs:()=>Wt,acos:()=>kv,acosh:()=>Iv,add:()=>X,addN:()=>eN,all:()=>Om,any:()=>hc,argMax:()=>pi,argMin:()=>Sv,asin:()=>Nv,asinh:()=>Tv,atan:()=>Cv,atan2:()=>_v,atanh:()=>Ev,avgPool:()=>ya,avgPool3d:()=>Fv,backend:()=>QS,backend_util:()=>N,basicLSTMCell:()=>rN,batchNorm:()=>ks,batchNorm2d:()=>$v,batchNorm3d:()=>Dv,batchNorm4d:()=>Rv,batchToSpaceND:()=>Jc,bincount:()=>Mv,bitwiseAnd:()=>sN,booleanMaskAsync:()=>XN,broadcastArgs:()=>iN,broadcastTo:()=>ni,broadcast_util:()=>Yu,browser:()=>Vo,buffer:()=>Le,callbacks:()=>oq,cast:()=>ie,ceil:()=>Pv,clipByValue:()=>rn,clone:()=>sr,complex:()=>Ar,concat:()=>Qe,concat1d:()=>Ov,concat2d:()=>Lv,concat3d:()=>zv,concat4d:()=>Wv,constraints:()=>e2,conv1d:()=>Lm,conv2d:()=>Rt,conv2dTranspose:()=>zm,conv3d:()=>Vv,conv3dTranspose:()=>Uv,copyRegisteredKernels:()=>ER,cos:()=>Qc,cosh:()=>Wm,cosineWindow:()=>uf,cumprod:()=>gc,cumsum:()=>Bm,customGrad:()=>ur,data:()=>TC,denseBincount:()=>qh,deprecationWarn:()=>wv,depthToSpace:()=>Gv,depthwiseConv2d:()=>Is,deregisterOp:()=>pq,device_util:()=>Xc,diag:()=>lN,dilation2d:()=>Hv,disableDeprecationWarnings:()=>zM,dispose:()=>_e,disposeVariables:()=>WM,div:()=>he,divNoNan:()=>qv,dot:()=>jv,dropout:()=>Iw,einsum:()=>pN,elu:()=>Zu,enableDebugMode:()=>LM,enableProdMode:()=>OM,enclosingPowerOfTwo:()=>Sw,engine:()=>_a,ensureShape:()=>cN,env:()=>G,equal:()=>ea,erf:()=>Kv,euclideanNorm:()=>Zv,exp:()=>yn,expandDims:()=>tn,expm1:()=>Jv,eye:()=>Vm,fft:()=>ld,fill:()=>xn,findBackend:()=>jM,findBackendFactory:()=>KM,floor:()=>Qu,floorDiv:()=>Pm,forceHalfFloat:()=>qE,fused:()=>Rl,gather:()=>ep,gatherND:()=>QN,gather_util:()=>Pw,getBackend:()=>HM,getGradient:()=>px,getKernel:()=>Bh,getKernelsForBackend:()=>Vh,getThreadsCount:()=>eme,gpgpu_util:()=>SE,grad:()=>GO,grads:()=>HO,greater:()=>Cn,greaterEqual:()=>Dr,ifft:()=>Dl,imag:()=>ed,image:()=>Qn,inTopKAsync:()=>eT,initializers:()=>t2,input:()=>v2,io:()=>qt,irfft:()=>nf,isFinite:()=>Qv,isInf:()=>ew,isNaN:()=>tw,keep:()=>Ht,kernel_impls:()=>hr,layers:()=>n2,leakyRelu:()=>td,less:()=>El,lessEqual:()=>Ss,linalg:()=>Cw,linspace:()=>gN,loadGraphModel:()=>gj,loadGraphModelSync:()=>bj,loadLayersModel:()=>aH,localResponseNormalization:()=>nw,log:()=>ta,log1p:()=>nd,logSigmoid:()=>aw,logSoftmax:()=>Gm,logSumExp:()=>Hm,logicalAnd:()=>Fa,logicalNot:()=>ad,logicalOr:()=>qm,logicalXor:()=>rw,losses:()=>dT,lowerBound:()=>yN,matMul:()=>$e,math:()=>kT,max:()=>fa,maxPool:()=>Mt,maxPool3d:()=>sw,maxPoolWithArgmax:()=>xN,maximum:()=>dr,mean:()=>Et,memory:()=>Hh,meshgrid:()=>vN,metrics:()=>Q2,min:()=>_l,minimum:()=>us,mirrorPad:()=>iw,mod:()=>ow,model:()=>iH,models:()=>eC,moments:()=>rd,movingAverage:()=>YN,mul:()=>z,multiRNNCell:()=>wN,multinomial:()=>kN,neg:()=>yt,nextFrame:()=>Ow,norm:()=>Ju,notEqual:()=>mi,oneHot:()=>Al,ones:()=>Jn,onesLike:()=>na,op:()=>L,outerProduct:()=>IN,pad:()=>xa,pad1d:()=>SN,pad2d:()=>NN,pad3d:()=>TN,pad4d:()=>CN,pool:()=>lw,pow:()=>Fr,prelu:()=>id,print:()=>vv,prod:()=>uw,profile:()=>BM,raggedGather:()=>_N,raggedRange:()=>EN,raggedTensorToTensor:()=>AN,rand:()=>FN,randomGamma:()=>MN,randomNormal:()=>Km,randomStandardNormal:()=>PN,randomUniform:()=>Ns,randomUniformInt:()=>ON,range:()=>fi,ready:()=>GM,real:()=>Fl,reciprocal:()=>mw,registerBackend:()=>Mm,registerCallbackConstructor:()=>lH,registerGradient:()=>AS,registerKernel:()=>qc,registerOp:()=>uq,regularizers:()=>tC,relu:()=>Ke,relu6:()=>Xm,removeBackend:()=>qM,reshape:()=>W,reverse:()=>ba,reverse1d:()=>LN,reverse2d:()=>zN,reverse3d:()=>WN,reverse4d:()=>BN,rfft:()=>ud,round:()=>Ym,rsqrt:()=>Zm,scalar:()=>ve,scatterND:()=>ZN,scatter_util:()=>rf,searchSorted:()=>jm,selu:()=>Jm,separableConv2d:()=>Ts,sequential:()=>oH,serialization:()=>ne,setBackend:()=>UM,setPlatform:()=>XM,setThreadsCount:()=>Qhe,setWasmPath:()=>Zhe,setWasmPaths:()=>Jhe,setWebGLContext:()=>K_,setdiff1dAsync:()=>VN,shared:()=>v1,sigmoid:()=>ma,sign:()=>fw,signal:()=>cT,sin:()=>Qm,sinh:()=>ef,slice:()=>Ue,slice1d:()=>od,slice2d:()=>tf,slice3d:()=>Wo,slice4d:()=>$l,slice_util:()=>Kt,softmax:()=>Xa,softplus:()=>zo,spaceToBatchND:()=>sd,sparse:()=>hT,sparseToDense:()=>JN,spectral:()=>pT,split:()=>zn,sqrt:()=>hn,square:()=>lt,squaredDifference:()=>af,squeeze:()=>Cs,stack:()=>Dt,step:()=>Bo,stridedSlice:()=>gw,string:()=>mT,sub:()=>pe,sum:()=>fe,sumOutType:()=>Rm,tan:()=>bw,tanh:()=>di,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>Aa,tensor3d:()=>pd,tensor4d:()=>Da,tensor5d:()=>UN,tensor6d:()=>GN,tensorScatterUpdate:()=>qN,tensor_util:()=>Ua,test_util:()=>$N,tidy:()=>P,tile:()=>Ln,time:()=>VM,topk:()=>xw,train:()=>js,transpose:()=>De,truncatedNormal:()=>of,unique:()=>vw,unregisterGradient:()=>_R,unregisterKernel:()=>CR,unsortedSegmentSum:()=>lf,unstack:()=>pt,upcastType:()=>ga,upperBound:()=>jN,util:()=>v,valueAndGrad:()=>qO,valueAndGrads:()=>jO,variable:()=>ww,variableGrads:()=>bN,version:()=>ome,version_converter:()=>xj,version_core:()=>dB,version_cpu:()=>bK,version_layers:()=>s0,version_wasm:()=>tme,version_webgl:()=>aQ,webgl:()=>rQ,webgl_util:()=>j_,where:()=>an,whereAsync:()=>kw,zeros:()=>Nt,zerosLike:()=>qe});var $D=Object.create,lv=Object.defineProperty,DD=Object.getOwnPropertyDescriptor,RD=Object.getOwnPropertyNames,MD=Object.getPrototypeOf,PD=Object.prototype.hasOwnProperty,Gt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ee=(e,t)=>{for(var n in t)lv(e,n,{get:t[n],enumerable:!0})},OD=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of RD(t))!PD.call(e,r)&&r!==n&&lv(e,r,{get:()=>t[r],enumerable:!(a=DD(t,r))||a.enumerable});return e},gs=(e,t,n)=>(n=e!=null?$D(MD(e)):{},OD(t||!e||!e.__esModule?lv(n,"default",{value:e,enumerable:!0}):n,e)),LD=Gt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,H;return M?(S>>>=0,(H=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),H&&(i[S]=B),B)):(S|=0,(H=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),H&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return F}else{if(S<=-b)return D;if(S+1>=b)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||36<B)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var H=l(p(B,8)),j=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),J=parseInt(S.substring(K,K+Z),B);if(Z<8){var ee=l(p(B,Z));j=j.mul(ee).add(l(J))}else j=j.mul(H),j=j.add(l(J))}return j.unsigned=M,j}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var F=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=F;var D=u(0,-2147483648,!1);a.MIN_VALUE=D;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(D)){var M=l(S),B=this.div(M),U=B.mul(M).sub(this);return B.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var H=l(p(S,6),this.unsigned),j=this,K="";;){var Z=j.div(H),J=j.sub(Z.mul(H)).toInt()>>>0,ee=J.toString(S);if(j=Z,j.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&!(S&1<<M);M--);return this.high!=0?M+33:M+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,H=this.low&65535,j=S.high>>>16,K=S.high&65535,Z=S.low>>>16,J=S.low&65535,ee=0,ae=0,te=0,re=0;return re+=H+J,te+=re>>>16,re&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+j,ee&=65535,u(te<<16|re,ee<<16|ae,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(D))return S.isOdd()?D:x;if(S.eq(D))return this.isOdd()?D:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(y)&&S.lt(y))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,H=this.low>>>16,j=this.low&65535,K=S.high>>>16,Z=S.high&65535,J=S.low>>>16,ee=S.low&65535,ae=0,te=0,re=0,se=0;return se+=j*ee,re+=se>>>16,se&=65535,re+=H*ee,te+=re>>>16,re&=65535,re+=j*J,te+=re>>>16,re&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=H*J,ae+=te>>>16,te&=65535,te+=j*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*J+H*Z+j*K,ae&=65535,u(re<<16|se,ae<<16|te,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,H;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;H=w}else{if(this.eq(D)){if(S.eq(I)||S.eq(C))return D;if(S.eq(D))return I;var j=this.shr(1);return B=j.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),H=B.add(U.div(S)),H)}else if(S.eq(D))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();H=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),J=l(B),ee=J.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,J=l(B,this.unsigned),ee=J.mul(S);J.isZero()&&(J=I),H=H.add(J),U=U.sub(ee)}return H},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),zD=Gt(()=>{}),WD=Gt(()=>{}),BD=Gt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),UD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),GD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),HD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qD=Gt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jD=Gt(()=>{}),KD=Gt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var F=y(b(T.entropy?[I,w(a)]:I==null?x():I,3),E),D=new f(E),$=function(){for(var S=D.g(i),M=u,B=0;S<p;)S=(S+B)*s,M*=s,B=D.g(1);for(;S>=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return $.int32=function(){return D.g(4)|0},$.quick=function(){return D.g(4)/4294967296},$.double=$,y(w(D.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,D),S.state=function(){return g(D,{})}),B?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,F=0,D=E.i=E.j=0,$=E.S=[];for(C||(I=[C++]);F<s;)$[F]=F++;for(F=0;F<s;F++)$[F]=$[D=c&D+I[F%C]+(T=$[F])],$[D]=T;(E.g=function(S){for(var M,B=0,U=E.i,H=E.j,j=E.S;S--;)M=j[U=c&U+1],B=B*s+j[c&(j[U]=j[H=c&H+M])+(j[H]=M)];return E.i=U,E.j=H,B})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function b(I,T){var C=[],E=typeof I,F;if(T&&E=="object")for(F in I)try{C.push(b(I[F],T-1))}catch(D){}return C.length?C:E=="string"?I:I+"\0"}function y(I,T){for(var C=I+"",E,F=0;F<C.length;)T[c&F]=c&(E^=T[c&F]*19)+C.charCodeAt(F++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=jD()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),hm=Gt((e,t)=>{var n=BD(),a=VD(),r=UD(),s=GD(),i=HD(),o=qD(),l=KD();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),hS=Gt(()=>{}),uv=Gt(()=>{}),mS=Gt(()=>{}),XD=Gt(()=>{}),YD=Gt(()=>{}),ZD=Gt(()=>{}),JD=Gt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=Re&&ot(ue.buffer),ft}function i(){return ue.buffer!=Re&&ot(ue.buffer),qn}function o(){return ue.buffer!=Re&&ot(ue.buffer),Lt}function l(){return ue.buffer!=Re&&ot(ue.buffer),pn}function u(){return ue.buffer!=Re&&ot(ue.buffer),$n}function p(){return ue.buffer!=Re&&ot(ue.buffer),la}function d(){return ue.buffer!=Re&&ot(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(R,q){h=R,m=q});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(R,q)=>{throw q},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function F(R){return c.locateFile?c.locateFile(R,E):E+R}var D,$,S,M;function B(R){R instanceof Vs||J("exiting due to exception: "+R)}if(T){var U=uv(),H=mS();I?E=H.dirname(E)+"/":E=__dirname+"/",D=(q,le)=>(q=pl(q)?new URL(q):H.normalize(q),U.readFileSync(q,le?void 0:"utf8")),S=q=>{var le=D(q,!0);return le.buffer||(le=new Uint8Array(le)),le},$=(q,le,Ne)=>{q=pl(q)?new URL(q):H.normalize(q),U.readFile(q,function(Me,Fe){Me?Ne(Me):le(Fe.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Vs))throw q}),process.on("unhandledRejection",function(q){throw q}),x=(q,le)=>{if(Ia())throw process.exitCode=q,le;B(le),process.exit(q)},c.inspect=function(){return"[Emscripten Module object]"};let R;try{R=XD()}catch(q){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),q}global.Worker=R.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(D=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.send(null),q.responseText},I&&(S=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.responseType="arraybuffer",q.send(null),new Uint8Array(q.response)}),$=(R,q,le)=>{var Ne=new XMLHttpRequest;Ne.open("GET",R,!0),Ne.responseType="arraybuffer",Ne.onload=()=>{if(Ne.status==200||Ne.status==0&&Ne.response){q(Ne.response);return}le()},Ne.onerror=le,Ne.send(null)}),M=R=>document.title=R);T&&typeof performance=="undefined"&&(global.performance=YD().performance);var j=console.log.bind(console),K=console.warn.bind(console);T&&(j=R=>U.writeSync(1,R+`
`),K=R=>U.writeSync(2,R+`
`));var Z=c.print||j,J=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,re=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var ye=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Bs("no native wasm support detected");var ue,be,ke=!1,Se;function We(R,q){R||Bs(q)}var Ge=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ht(R,q,le){q>>>=0;for(var Ne=q+le,Me=q;R[Me]&&!(Me>=Ne);)++Me;if(Me-q>16&&R.buffer&&Ge)return Ge.decode(R.buffer instanceof SharedArrayBuffer?R.slice(q,Me):R.subarray(q,Me));for(var Fe="";q<Me;){var me=R[q++];if(!(me&128)){Fe+=String.fromCharCode(me);continue}var we=R[q++]&63;if((me&224)==192){Fe+=String.fromCharCode((me&31)<<6|we);continue}var _t=R[q++]&63;if((me&240)==224?me=(me&15)<<12|we<<6|_t:me=(me&7)<<18|we<<12|_t<<6|R[q++]&63,me<65536)Fe+=String.fromCharCode(me);else{var pa=me-65536;Fe+=String.fromCharCode(55296|pa>>10,56320|pa&1023)}}return Fe}function st(R,q){return R>>>=0,R?ht(i(),R,q):""}function tt(R,q,le,Ne){if(le>>>=0,!(Ne>0))return 0;for(var Me=le,Fe=le+Ne-1,me=0;me<R.length;++me){var we=R.charCodeAt(me);if(we>=55296&&we<=57343){var _t=R.charCodeAt(++me);we=65536+((we&1023)<<10)|_t&1023}if(we<=127){if(le>=Fe)break;q[le++>>>0]=we}else if(we<=2047){if(le+1>=Fe)break;q[le++>>>0]=192|we>>6,q[le++>>>0]=128|we&63}else if(we<=65535){if(le+2>=Fe)break;q[le++>>>0]=224|we>>12,q[le++>>>0]=128|we>>6&63,q[le++>>>0]=128|we&63}else{if(le+3>=Fe)break;q[le++>>>0]=240|we>>18,q[le++>>>0]=128|we>>12&63,q[le++>>>0]=128|we>>6&63,q[le++>>>0]=128|we&63}}return q[le>>>0]=0,le-Me}function nt(R,q,le){return tt(R,i(),q,le)}var Re,ft,qn,Lt,oa,pn,$n,la,Dn;C&&(Re=c.buffer);function ot(R){Re=R,c.HEAP8=ft=new Int8Array(R),c.HEAP16=Lt=new Int16Array(R),c.HEAP32=pn=new Int32Array(R),c.HEAPU8=qn=new Uint8Array(R),c.HEAPU16=oa=new Uint16Array(R),c.HEAPU32=$n=new Uint32Array(R),c.HEAPF32=la=new Float32Array(R),c.HEAPF64=Dn=new Float64Array(R)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,Re=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:65536,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&J("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");ue&&(Re=ue.buffer),Rn=Re.byteLength,ot(Re);var jn,xr=[],ll=[],Qa=[],Mp=!1;function Ia(){return ye}function Hr(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)wg(c.preRun.shift());Op(xr)}function Jt(){Mp=!0,!C&&Op(ll)}function Wd(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)xk(c.postRun.shift());Op(Qa)}}function wg(R){xr.unshift(R)}function kg(R){ll.unshift(R)}function xk(R){Qa.unshift(R)}var qr=0,ul=null,vr=null;function Ig(R){qr++,c.monitorRunDependencies&&c.monitorRunDependencies(qr)}function Bd(R){if(qr--,c.monitorRunDependencies&&c.monitorRunDependencies(qr),qr==0&&(ul!==null&&(clearInterval(ul),ul=null),vr)){var q=vr;vr=null,q()}}function Bs(R){c.onAbort&&c.onAbort(R),R="Aborted("+R+")",J(R),ke=!0,Se=1,R+=". Build with -sASSERTIONS for more info.";var q=new WebAssembly.RuntimeError(R);throw m(q),q}var Sg="data:application/octet-stream;base64,";function Vd(R){return R.startsWith(Sg)}function pl(R){return R.startsWith("file://")}var gn;gn="tfjs-backend-wasm-threaded-simd.wasm",Vd(gn)||(gn=F(gn));function Ud(R){try{if(R==gn&&se)return new Uint8Array(se);if(S)return S(R);throw"both async and sync fetching of the wasm failed"}catch(q){Bs(q)}}function Ng(){if(!se&&(w||I)){if(typeof fetch=="function"&&!pl(gn))return fetch(gn,{credentials:"same-origin"}).then(function(R){if(!R.ok)throw"failed to load wasm binary file at '"+gn+"'";return R.arrayBuffer()}).catch(function(){return Ud(gn)});if($)return new Promise(function(R,q){$(gn,function(le){R(new Uint8Array(le))},q)})}return Promise.resolve().then(function(){return Ud(gn)})}function Tg(){var R={env:nh,wasi_snapshot_preview1:nh};function q(me,we){var _t=me.exports;if(c.asm=_t,Mg(c.asm._emscripten_tls_init),jn=c.asm.__indirect_function_table,kg(c.asm.__wasm_call_ctors),be=we,!C){var pa=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(kr){Ae.loadWasmModuleToWorker(kr,function(){--pa||Bd("wasm-instantiate")})})}}C||Ig("wasm-instantiate");function le(me){q(me.instance,me.module)}function Ne(me){return Ng().then(function(we){return WebAssembly.instantiate(we,R)}).then(function(we){return we}).then(me,function(we){J("failed to asynchronously prepare wasm: "+we),Bs(we)})}function Me(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!Vd(gn)&&!pl(gn)&&!T&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(me){var we=WebAssembly.instantiateStreaming(me,R);return we.then(le,function(_t){return J("wasm streaming compile failed: "+_t),J("falling back to ArrayBuffer instantiation"),Ne(le)})}):Ne(le)}if(c.instantiateWasm)try{var Fe=c.instantiateWasm(R,q);return Fe}catch(me){J("Module.instantiateWasm callback failed with error: "+me),m(me)}return Me().catch(m),{}}var vk,wk,Gd={};function Vs(R){this.name="ExitStatus",this.message="Program terminated with exit("+R+")",this.status=R}function Cg(R){var q=Ae.pthreads[R];delete Ae.pthreads[R],q.terminate(),Gy(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(q),1),q.pthread_ptr=0}function _g(R){var q=Ae.pthreads[R];q.postMessage({cmd:"cancel"})}function Pp(R){var q=Ae.pthreads[R];We(q),Ae.returnWorkerToPool(q)}function Eg(R){var q=Ae.getNewWorker();if(!q)return 6;Ae.runningWorkers.push(q),Ae.pthreads[R.pthread_ptr]=q,q.pthread_ptr=R.pthread_ptr;var le={cmd:"run",start_routine:R.startRoutine,arg:R.arg,pthread_ptr:R.pthread_ptr};return q.runPthread=()=>{T&&q.ref(),q.postMessage(le,R.transferList),delete q.runPthread},q.loaded&&q.runPthread(),0}var Hd={varargs:void 0,get:function(){Hd.varargs+=4;var R=l()[Hd.varargs-4>>>2];return R},getStr:function(R){var q=st(R);return q}};function qd(R){if(C)return jr(1,1,R);Se=R,Ia()||(Ae.terminateAllThreads(),c.onExit&&c.onExit(R),ke=!0),x(R,new Vs(R))}function Ag(R,q){if(Se=R,!q&&C)throw Kd(R),"unwind";qd(R)}var jd=Ag;function Fg(R){if(R instanceof Vs||R=="unwind")return Se;x(1,R)}var Ae={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Ae.initWorker():Ae.initMainThread()},initMainThread:function(){for(var R=8;R--;)Ae.allocateUnusedWorker()},initWorker:function(){ye=!1},setExitStatus:function(R){Se=R},terminateAllThreads:function(){for(var R of Object.values(Ae.pthreads))Ae.returnWorkerToPool(R);for(var R of Ae.unusedWorkers)R.terminate();Ae.unusedWorkers=[]},returnWorkerToPool:function(R){var q=R.pthread_ptr;delete Ae.pthreads[q],Ae.unusedWorkers.push(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(R),1),R.pthread_ptr=0,T&&R.unref(),Gy(q)},receiveObjectTransfer:function(R){},threadInitTLS:function(){Ae.tlsInitFunctions.forEach(R=>R())},loadWasmModuleToWorker:function(R,q){R.onmessage=Fe=>{var me=Fe.data,we=me.cmd;if(R.pthread_ptr&&(Ae.currentProxiedOperationCallerThread=R.pthread_ptr),me.targetThread&&me.targetThread!=lh()){var _t=Ae.pthreads[me.targetThread];_t?_t.postMessage(me,me.transferList):J('Internal error! Worker sent a message "'+we+'" to target pthread '+me.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}we==="processProxyingQueue"?Lp(me.queue):we==="spawnThread"?Eg(me):we==="cleanupThread"?Pp(me.thread):we==="killThread"?Cg(me.thread):we==="cancelThread"?_g(me.thread):we==="loaded"?(R.loaded=!0,T&&R.unref(),q&&q(R),R.runPthread&&R.runPthread()):we==="print"?Z("Thread "+me.threadId+": "+me.text):we==="printErr"?J("Thread "+me.threadId+": "+me.text):we==="alert"?alert("Thread "+me.threadId+": "+me.text):me.target==="setimmediate"?R.postMessage(me):we==="callHandler"?c[me.handler](...me.args):we&&J("worker sent an unknown command "+we),Ae.currentProxiedOperationCallerThread=void 0},R.onerror=Fe=>{var me="worker sent an error!";throw J(me+" "+Fe.filename+":"+Fe.lineno+": "+Fe.message),Fe},T&&(R.on("message",function(Fe){R.onmessage({data:Fe})}),R.on("error",function(Fe){R.onerror(Fe)}),R.on("detachedExit",function(){}));var le=[],Ne=["onExit","onAbort","print","printErr"];for(var Me of Ne)c.hasOwnProperty(Me)&&le.push(Me);R.postMessage({cmd:"load",handlers:le,urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:be})},allocateUnusedWorker:function(){var R,q=F("tfjs-backend-wasm-threaded-simd.worker.js");R=new Worker(q),Ae.unusedWorkers.push(R)},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.pop()}};c.PThread=Ae;function Op(R){for(;R.length>0;)R.shift()(c)}function $g(){var R=lh(),q=l()[R+52>>>2],le=l()[R+56>>>2],Ne=q-le;Ck(q,Ne),uh(q)}c.establishStackSpace=$g;function Kd(R){if(C)return jr(2,0,R);try{jd(R)}catch(q){Fg(q)}}var cl=[];function Dg(R){var q=cl[R];return q||(R>=cl.length&&(cl.length=R+1),cl[R]=q=jn.get(R)),q}function Rg(R,q){var le=Dg(R)(q);Ia()?Ae.setExitStatus(le):Tk(le)}c.invokeEntryPoint=Rg;function Mg(R){Ae.tlsInitFunctions.push(R)}function Pg(R){Ik(R,!I,1,!w),Ae.threadInitTLS()}function Og(R){C?postMessage({cmd:"cleanupThread",thread:R}):Pp(R)}function Xd(R,q,le,Ne){return C?jr(3,1,R,q,le,Ne):Yd(R,q,le,Ne)}function Yd(R,q,le,Ne){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Me=[],Fe=0;if(C&&(Me.length===0||Fe))return Xd(R,q,le,Ne);if(Fe)return Fe;var me={startRoutine:le,pthread_ptr:R,arg:Ne,transferList:Me};return C?(me.cmd="spawnThread",postMessage(me,Me),0):Eg(me)}function Lg(){return 65536}var zg=!0;function Wg(){return zg}function Lp(R){Atomics.store(l(),R>>2,1),lh()&&Nk(R),Atomics.compareExchange(l(),R>>2,1,0)}c.executeNotifiedProxyingQueue=Lp;function Bg(R,q,le,Ne){if(R==q)setTimeout(()=>Lp(Ne));else if(C)postMessage({targetThread:R,cmd:"processProxyingQueue",queue:Ne});else{var Me=Ae.pthreads[R];if(!Me)return;Me.postMessage({cmd:"processProxyingQueue",queue:Ne})}return 1}function Vg(R,q,le){return-1}function Ug(){Bs("")}function Us(R){Us.shown||(Us.shown={}),Us.shown[R]||(Us.shown[R]=1,T&&(R="warning: "+R),J(R))}function Gg(){T||I||Us("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Hg(){return Date.now()}function Zd(){return 4294901760}function qg(){return Zd()}var zp;T?zp=()=>{var R=process.hrtime();return R[0]*1e3+R[1]/1e6}:zp=()=>performance.timeOrigin+performance.now();function jg(R,q,le){i().copyWithin(R>>>0,q>>>0,q+le>>>0)}function Kg(){return T?ZD().cpus().length:navigator.hardwareConcurrency}function Xg(R){var q=Hy(),le=R();return uh(q),le}function jr(R,q){var le=arguments.length-2,Ne=arguments;return Xg(()=>{for(var Me=le,Fe=ph(Me*8),me=Fe>>3,we=0;we<le;we++){var _t=Ne[2+we];d()[me+we>>>0]=_t}return Sk(R,Me,Fe,q)})}var Wp=[];function Yg(R,q,le){Wp.length=q;for(var Ne=le>>3,Me=0;Me<q;Me++)Wp[Me]=d()[Ne+Me>>>0];var Fe=R<0,me=Fe?Gd[-R-1]:sb[R];return me.apply(null,Wp)}function Zg(R){try{return ue.grow(R-Re.byteLength+65535>>>16),ot(ue.buffer),1}catch(q){}}function Jg(R){var q=i().length;if(R=R>>>0,R<=q)return!1;var le=Zd();if(R>le)return!1;let Ne=(_t,pa)=>_t+(pa-_t%pa)%pa;for(var Me=1;Me<=4;Me*=2){var Fe=q*(1+.2/Me);Fe=Math.min(Fe,R+100663296);var me=Math.min(le,Ne(Math.max(R,Fe),65536)),we=Zg(me);if(we)return!0}return!1}function Qg(){throw"unwind"}function Jd(R){return C?jr(4,1,R):52}function Qd(R,q,le,Ne,Me){return C?jr(5,1,R,q,le,Ne,Me):70}var eb=[null,[],[]];function tb(R,q){var le=eb[R];q===0||q===10?((R===1?Z:J)(ht(le,0)),le.length=0):le.push(q)}function eh(R,q,le,Ne){if(C)return jr(6,1,R,q,le,Ne);for(var Me=0,Fe=0;Fe<le;Fe++){var me=u()[q>>>2],we=u()[q+4>>>2];q+=8;for(var _t=0;_t<we;_t++)tb(R,i()[me+_t>>>0]);Me+=we}return u()[Ne>>>2]=Me,0}function th(R){var q=c["_"+R];return q}function nb(R,q){s().set(R,q>>>0)}function ab(R,q,le,Ne,Me){var Fe={string:ca=>{var fl=0;if(ca!=null&&ca!==0){var Ak=(ca.length<<2)+1;fl=ph(Ak),nt(ca,fl,Ak)}return fl},array:ca=>{var fl=ph(ca.length);return nb(ca,fl),fl}};function me(ca){return q==="string"?st(ca):q==="boolean"?!!ca:ca}var we=th(R),_t=[],pa=0;if(Ne)for(var kr=0;kr<Ne.length;kr++){var Ek=Fe[le[kr]];Ek?(pa===0&&(pa=Hy()),_t[kr]=Ek(Ne[kr])):_t[kr]=Ne[kr]}var qy=we.apply(null,_t);function ED(ca){return pa!==0&&uh(pa),me(ca)}return qy=ED(qy),qy}function rb(R,q,le,Ne){le=le||[];var Me=le.every(me=>me==="number"||me==="boolean"),Fe=q!=="string";return Fe&&Me&&!Ne?th(R):function(){return ab(R,q,le,arguments,Ne)}}Ae.init();var sb=[null,qd,Kd,Xd,Jd,Qd,eh],nh={__emscripten_init_main_thread_js:Pg,__emscripten_thread_cleanup:Og,__pthread_create_js:Yd,_emscripten_default_pthread_stack_size:Lg,_emscripten_get_now_is_monotonic:Wg,_emscripten_notify_task_queue:Bg,_emscripten_set_offscreencanvas_size:Vg,abort:Ug,emscripten_check_blocking_allowed:Gg,emscripten_date_now:Hg,emscripten_get_heap_max:qg,emscripten_get_now:zp,emscripten_memcpy_big:jg,emscripten_num_logical_cores:Kg,emscripten_receive_on_main_thread_js:Yg,emscripten_resize_heap:Jg,emscripten_unwind_to_js_event_loop:Qg,exit:jd,fd_close:Jd,fd_seek:Qd,fd_write:eh,memory:ue||c.wasmMemory},kk=Tg(),ib=c.___wasm_call_ctors=function(){return(ib=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},ob=c._init=function(){return(ob=c._init=c.asm.init).apply(null,arguments)},lb=c._init_with_threads_count=function(){return(lb=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},ub=c._get_threads_count=function(){return(ub=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},pb=c._register_tensor=function(){return(pb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},cb=c._dispose_data=function(){return(cb=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},db=c._dispose=function(){return(db=c._dispose=c.asm.dispose).apply(null,arguments)},hb=c._Abs=function(){return(hb=c._Abs=c.asm.Abs).apply(null,arguments)},mb=c._Acos=function(){return(mb=c._Acos=c.asm.Acos).apply(null,arguments)},fb=c._Acosh=function(){return(fb=c._Acosh=c.asm.Acosh).apply(null,arguments)},gb=c._Add=function(){return(gb=c._Add=c.asm.Add).apply(null,arguments)},bb=c._AddN=function(){return(bb=c._AddN=c.asm.AddN).apply(null,arguments)},yb=c._All=function(){return(yb=c._All=c.asm.All).apply(null,arguments)},xb=c._Any=function(){return(xb=c._Any=c.asm.Any).apply(null,arguments)},vb=c._ArgMax=function(){return(vb=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},wb=c._ArgMin=function(){return(wb=c._ArgMin=c.asm.ArgMin).apply(null,arguments)},kb=c._Asin=function(){return(kb=c._Asin=c.asm.Asin).apply(null,arguments)},Ib=c._Asinh=function(){return(Ib=c._Asinh=c.asm.Asinh).apply(null,arguments)},Sb=c._Atan=function(){return(Sb=c._Atan=c.asm.Atan).apply(null,arguments)},Nb=c._Atan2=function(){return(Nb=c._Atan2=c.asm.Atan2).apply(null,arguments)},Tb=c._Atanh=function(){return(Tb=c._Atanh=c.asm.Atanh).apply(null,arguments)},Cb=c._AvgPool=function(){return(Cb=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},_b=c._AvgPool3D=function(){return(_b=c._AvgPool3D=c.asm.AvgPool3D).apply(null,arguments)},Eb=c._AvgPool3DGrad=function(){return(Eb=c._AvgPool3DGrad=c.asm.AvgPool3DGrad).apply(null,arguments)},Ab=c._BatchMatMul=function(){return(Ab=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Fb=c._Bincount=function(){return(Fb=c._Bincount=c.asm.Bincount).apply(null,arguments)},$b=c._Ceil=function(){return($b=c._Ceil=c.asm.Ceil).apply(null,arguments)},Db=c._ClipByValue=function(){return(Db=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Rb=c._Conv2D=function(){return(Rb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},Mb=c._Conv2DBackpropInput=function(){return(Mb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Pb=c._Conv3D=function(){return(Pb=c._Conv3D=c.asm.Conv3D).apply(null,arguments)},Ob=c._Conv3DBackpropFilterV2=function(){return(Ob=c._Conv3DBackpropFilterV2=c.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Lb=c._Conv3DBackpropInputV2=function(){return(Lb=c._Conv3DBackpropInputV2=c.asm.Conv3DBackpropInputV2).apply(null,arguments)},zb=c._Cos=function(){return(zb=c._Cos=c.asm.Cos).apply(null,arguments)},Wb=c._Cosh=function(){return(Wb=c._Cosh=c.asm.Cosh).apply(null,arguments)},Bb=c._CropAndResize=function(){return(Bb=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Vb=c._Cumprod=function(){return(Vb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Ub=c._Cumsum=function(){return(Ub=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Gb=c._DenseBincount=function(){return(Gb=c._DenseBincount=c.asm.DenseBincount).apply(null,arguments)},Hb=c._DepthToSpace=function(){return(Hb=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},qb=c._DepthwiseConv2dNative=function(){return(qb=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},jb=c._Diag=function(){return(jb=c._Diag=c.asm.Diag).apply(null,arguments)},Kb=c._Dilation2D=function(){return(Kb=c._Dilation2D=c.asm.Dilation2D).apply(null,arguments)},Xb=c._Dilation2DBackpropFilter=function(){return(Xb=c._Dilation2DBackpropFilter=c.asm.Dilation2DBackpropFilter).apply(null,arguments)},Yb=c._Dilation2DBackpropInput=function(){return(Yb=c._Dilation2DBackpropInput=c.asm.Dilation2DBackpropInput).apply(null,arguments)},Zb=c._Elu=function(){return(Zb=c._Elu=c.asm.Elu).apply(null,arguments)},Jb=c._EluGrad=function(){return(Jb=c._EluGrad=c.asm.EluGrad).apply(null,arguments)},Qb=c._Equal=function(){return(Qb=c._Equal=c.asm.Equal).apply(null,arguments)},ey=c._Exp=function(){return(ey=c._Exp=c.asm.Exp).apply(null,arguments)},ty=c._Expm1=function(){return(ty=c._Expm1=c.asm.Expm1).apply(null,arguments)},ny=c._FlipLeftRight=function(){return(ny=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},ay=c._Floor=function(){return(ay=c._Floor=c.asm.Floor).apply(null,arguments)},ry=c._FloorDiv=function(){return(ry=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},sy=c._FusedBatchNorm=function(){return(sy=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},iy=c._FusedConv2D=function(){return(iy=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},oy=c._FusedDepthwiseConv2D=function(){return(oy=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},ly=c._Gather=function(){return(ly=c._Gather=c.asm.Gather).apply(null,arguments)},uy=c._GatherNd=function(){return(uy=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},py=c._Greater=function(){return(py=c._Greater=c.asm.Greater).apply(null,arguments)},cy=c._GreaterEqual=function(){return(cy=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},dy=c._IsFinite=function(){return(dy=c._IsFinite=c.asm.IsFinite).apply(null,arguments)},hy=c._IsInf=function(){return(hy=c._IsInf=c.asm.IsInf).apply(null,arguments)},my=c._IsNan=function(){return(my=c._IsNan=c.asm.IsNan).apply(null,arguments)},fy=c._LRN=function(){return(fy=c._LRN=c.asm.LRN).apply(null,arguments)},gy=c._LRNGrad=function(){return(gy=c._LRNGrad=c.asm.LRNGrad).apply(null,arguments)},by=c._LeakyRelu=function(){return(by=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},yy=c._Less=function(){return(yy=c._Less=c.asm.Less).apply(null,arguments)},xy=c._LessEqual=function(){return(xy=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},vy=c._LinSpace=function(){return(vy=c._LinSpace=c.asm.LinSpace).apply(null,arguments)},wy=c._Log=function(){return(wy=c._Log=c.asm.Log).apply(null,arguments)},ky=c._Log1p=function(){return(ky=c._Log1p=c.asm.Log1p).apply(null,arguments)},Iy=c._LogicalAnd=function(){return(Iy=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},Sy=c._LogicalNot=function(){return(Sy=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},Ny=c._LogicalOr=function(){return(Ny=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},Ty=c._LogicalXor=function(){return(Ty=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},Cy=c._Max=function(){return(Cy=c._Max=c.asm.Max).apply(null,arguments)},_y=c._MaxPool=function(){return(_y=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Ey=c._MaxPool3D=function(){return(Ey=c._MaxPool3D=c.asm.MaxPool3D).apply(null,arguments)},Ay=c._MaxPool3DGrad=function(){return(Ay=c._MaxPool3DGrad=c.asm.MaxPool3DGrad).apply(null,arguments)},Fy=c._Maximum=function(){return(Fy=c._Maximum=c.asm.Maximum).apply(null,arguments)},$y=c._Mean=function(){return($y=c._Mean=c.asm.Mean).apply(null,arguments)},Dy=c._Min=function(){return(Dy=c._Min=c.asm.Min).apply(null,arguments)},Ry=c._Minimum=function(){return(Ry=c._Minimum=c.asm.Minimum).apply(null,arguments)},My=c._MirrorPad=function(){return(My=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Py=c._Multinomial=function(){return(Py=c._Multinomial=c.asm.Multinomial).apply(null,arguments)},Oy=c._Multiply=function(){return(Oy=c._Multiply=c.asm.Multiply).apply(null,arguments)},Ly=c._Neg=function(){return(Ly=c._Neg=c.asm.Neg).apply(null,arguments)},zy=c._NonMaxSuppressionV3=function(){return(zy=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},ah=c._NonMaxSuppressionV4=function(){return(ah=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},rh=c._NonMaxSuppressionV5=function(){return(rh=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},Bp=c._NotEqual=function(){return(Bp=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Wy=c._OneHot=function(){return(Wy=c._OneHot=c.asm.OneHot).apply(null,arguments)},By=c._PadV2=function(){return(By=c._PadV2=c.asm.PadV2).apply(null,arguments)},dl=c._Pow=function(){return(dl=c._Pow=c.asm.Pow).apply(null,arguments)},sh=c._Prelu=function(){return(sh=c._Prelu=c.asm.Prelu).apply(null,arguments)},hl=c._Prod=function(){return(hl=c._Prod=c.asm.Prod).apply(null,arguments)},ml=c._RealDiv=function(){return(ml=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Vy=c._Reciprocal=function(){return(Vy=c._Reciprocal=c.asm.Reciprocal).apply(null,arguments)},Y=c._Relu=function(){return(Y=c._Relu=c.asm.Relu).apply(null,arguments)},oe=c._Relu6=function(){return(oe=c._Relu6=c.asm.Relu6).apply(null,arguments)},Ie=c._ResizeBilinear=function(){return(Ie=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Xe=c._ResizeBilinearGrad=function(){return(Xe=c._ResizeBilinearGrad=c.asm.ResizeBilinearGrad).apply(null,arguments)},It=c._ResizeNearestNeighbor=function(){return(It=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},St=c._ResizeNearestNeighborGrad=function(){return(St=c._ResizeNearestNeighborGrad=c.asm.ResizeNearestNeighborGrad).apply(null,arguments)},He=c._Reverse=function(){return(He=c._Reverse=c.asm.Reverse).apply(null,arguments)},Ve=c._RotateWithOffset=function(){return(Ve=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},zt=c._Round=function(){return(zt=c._Round=c.asm.Round).apply(null,arguments)},ua=c._Rsqrt=function(){return(ua=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},wr=c._ScatterNd=function(){return(wr=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},ih=c._SearchSorted=function(){return(ih=c._SearchSorted=c.asm.SearchSorted).apply(null,arguments)},Vp=c._SelectV2=function(){return(Vp=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},Uy=c._Selu=function(){return(Uy=c._Selu=c.asm.Selu).apply(null,arguments)},Mn=c._Sigmoid=function(){return(Mn=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},Kr=c._Sign=function(){return(Kr=c._Sign=c.asm.Sign).apply(null,arguments)},oh=c._Sin=function(){return(oh=c._Sin=c.asm.Sin).apply(null,arguments)},Z$=c._Softmax=function(){return(Z$=c._Softmax=c.asm.Softmax).apply(null,arguments)},J$=c._Softplus=function(){return(J$=c._Softplus=c.asm.Softplus).apply(null,arguments)},Q$=c._SparseFillEmptyRows=function(){return(Q$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},eD=c._SparseReshape=function(){return(eD=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},tD=c._SparseSegmentReduction=function(){return(tD=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},nD=c._SparseToDense=function(){return(nD=c._SparseToDense=c.asm.SparseToDense).apply(null,arguments)},aD=c._Sqrt=function(){return(aD=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},rD=c._Square=function(){return(rD=c._Square=c.asm.Square).apply(null,arguments)},sD=c._SquaredDifference=function(){return(sD=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},iD=c._Step=function(){return(iD=c._Step=c.asm.Step).apply(null,arguments)},oD=c._StridedSlice=function(){return(oD=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},lD=c._Sub=function(){return(lD=c._Sub=c.asm.Sub).apply(null,arguments)},uD=c._Sum=function(){return(uD=c._Sum=c.asm.Sum).apply(null,arguments)},pD=c._Tan=function(){return(pD=c._Tan=c.asm.Tan).apply(null,arguments)},cD=c._Tanh=function(){return(cD=c._Tanh=c.asm.Tanh).apply(null,arguments)},dD=c._TensorScatterUpdate=function(){return(dD=c._TensorScatterUpdate=c.asm.TensorScatterUpdate).apply(null,arguments)},hD=c._Tile=function(){return(hD=c._Tile=c.asm.Tile).apply(null,arguments)},mD=c._TopK=function(){return(mD=c._TopK=c.asm.TopK).apply(null,arguments)},fD=c._Transform=function(){return(fD=c._Transform=c.asm.Transform).apply(null,arguments)},gD=c._Transpose=function(){return(gD=c._Transpose=c.asm.Transpose).apply(null,arguments)},bD=c.__FusedMatMul=function(){return(bD=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},yD=c._malloc=function(){return(yD=c._malloc=c.asm.malloc).apply(null,arguments)},xD=c._free=function(){return(xD=c._free=c.asm.free).apply(null,arguments)},vD=c.__emscripten_tls_init=function(){return(vD=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},lh=c._pthread_self=function(){return(lh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},wD=c.___errno_location=function(){return(wD=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Ik=c.__emscripten_thread_init=function(){return(Ik=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},kD=c.__emscripten_thread_crashed=function(){return(kD=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},ID=c._emscripten_main_thread_process_queued_calls=function(){return(ID=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},SD=c._emscripten_main_browser_thread_id=function(){return(SD=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},Sk=c._emscripten_run_in_main_runtime_thread_js=function(){return(Sk=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},ND=c._emscripten_dispatch_to_thread_=function(){return(ND=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Nk=c.__emscripten_proxy_execute_task_queue=function(){return(Nk=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Gy=c.__emscripten_thread_free_data=function(){return(Gy=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},Tk=c.__emscripten_thread_exit=function(){return(Tk=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},Ck=c._emscripten_stack_set_limits=function(){return(Ck=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Hy=c.stackSave=function(){return(Hy=c.stackSave=c.asm.stackSave).apply(null,arguments)},uh=c.stackRestore=function(){return(uh=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},ph=c.stackAlloc=function(){return(ph=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},TD=c.dynCall_iijjiiii=function(){return(TD=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},CD=c.dynCall_jiji=function(){return(CD=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=Ia,c.wasmMemory=ue,c.cwrap=rb,c.ExitStatus=Vs,c.PThread=Ae;var ch;vr=function R(){ch||_k(),ch||(vr=R)};function _k(R){if(R=R||b,qr>0)return;if(C){h(c),Jt(),startWorker(c);return}if(Hr(),qr>0)return;function q(){ch||(ch=!0,c.calledRun=!0,!ke&&(Jt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Wd()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),q()},1)):q()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();_k();var dh;f&&(dh={uncaughtException:process.listeners("uncaughtException").filter(function(R){return!f.uncaughtException.indexOf(R)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(R){return!f.unhandledRejection.indexOf(R)>-1})});var hh;if(typeof WasmBackendModule!="undefined")hh=WasmBackendModule;else if(typeof r!="undefined")hh=r;else throw new Error("Could not find wasm module in post.js");if(dh){var _D=hh._dispose;hh._dispose=function(){_D(),dh.uncaughtException.forEach(function(R){process.removeListener("uncaughtException",R)}),dh.unhandledRejection.forEach(function(R){process.removeListener("unhandledRejection",R)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),QD=Gt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),eR=Gt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(Y,oe){i=Y,o=oe});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(Y,oe)=>{throw oe},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(Y){return s.locateFile?s.locateFile(Y,g):g+Y}var y,x,w,I;function T(Y){Y instanceof ul||D("exiting due to exception: "+Y)}if(f){var C=uv(),E=mS();m?g=E.dirname(g)+"/":g=__dirname+"/",y=(Y,oe)=>(Y=Hr(Y)?new URL(Y):E.normalize(Y),C.readFileSync(Y,oe?void 0:"utf8")),w=Y=>{var oe=y(Y,!0);return oe.buffer||(oe=new Uint8Array(oe)),oe},x=(Y,oe,Ie)=>{Y=Hr(Y)?new URL(Y):E.normalize(Y),C.readFile(Y,function(Xe,It){Xe?Ie(Xe):oe(It.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof ul))throw Y}),process.on("unhandledRejection",function(Y){throw Y}),c=(Y,oe)=>{if(qn())throw process.exitCode=Y,oe;T(oe),process.exit(Y)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.send(null),oe.responseText},m&&(w=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),x=(Y,oe,Ie)=>{var Xe=new XMLHttpRequest;Xe.open("GET",Y,!0),Xe.responseType="arraybuffer",Xe.onload=()=>{if(Xe.status==200||Xe.status==0&&Xe.response){oe(Xe.response);return}Ie()},Xe.onerror=Ie,Xe.send(null)},I=Y=>document.title=Y);var F=s.print||console.log.bind(console),D=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var $=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Qa("no native wasm support detected");var B,U=!1,H;function j(Y,oe){Y||Qa(oe)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(Y,oe,Ie){oe>>>=0;for(var Xe=oe+Ie,It=oe;Y[It]&&!(It>=Xe);)++It;if(It-oe>16&&Y.buffer&&K)return K.decode(Y.subarray(oe,It));for(var St="";oe<It;){var He=Y[oe++];if(!(He&128)){St+=String.fromCharCode(He);continue}var Ve=Y[oe++]&63;if((He&224)==192){St+=String.fromCharCode((He&31)<<6|Ve);continue}var zt=Y[oe++]&63;if((He&240)==224?He=(He&15)<<12|Ve<<6|zt:He=(He&7)<<18|Ve<<12|zt<<6|Y[oe++]&63,He<65536)St+=String.fromCharCode(He);else{var ua=He-65536;St+=String.fromCharCode(55296|ua>>10,56320|ua&1023)}}return St}function J(Y,oe){return Y>>>=0,Y?Z(se,Y,oe):""}function ee(Y,oe,Ie,Xe){if(Ie>>>=0,!(Xe>0))return 0;for(var It=Ie,St=Ie+Xe-1,He=0;He<Y.length;++He){var Ve=Y.charCodeAt(He);if(Ve>=55296&&Ve<=57343){var zt=Y.charCodeAt(++He);Ve=65536+((Ve&1023)<<10)|zt&1023}if(Ve<=127){if(Ie>=St)break;oe[Ie++>>>0]=Ve}else if(Ve<=2047){if(Ie+1>=St)break;oe[Ie++>>>0]=192|Ve>>6,oe[Ie++>>>0]=128|Ve&63}else if(Ve<=65535){if(Ie+2>=St)break;oe[Ie++>>>0]=224|Ve>>12,oe[Ie++>>>0]=128|Ve>>6&63,oe[Ie++>>>0]=128|Ve&63}else{if(Ie+3>=St)break;oe[Ie++>>>0]=240|Ve>>18,oe[Ie++>>>0]=128|Ve>>12&63,oe[Ie++>>>0]=128|Ve>>6&63,oe[Ie++>>>0]=128|Ve&63}}return oe[Ie>>>0]=0,Ie-It}function ae(Y,oe,Ie){return ee(Y,se,oe,Ie)}var te,re,se,ye,ue,be,ke,Se,We;function Ge(Y){te=Y,s.HEAP8=re=new Int8Array(Y),s.HEAP16=ye=new Int16Array(Y),s.HEAP32=be=new Int32Array(Y),s.HEAPU8=se=new Uint8Array(Y),s.HEAPU16=ue=new Uint16Array(Y),s.HEAPU32=ke=new Uint32Array(Y),s.HEAPF32=Se=new Float32Array(Y),s.HEAPF64=We=new Float64Array(Y)}var ht=s.INITIAL_MEMORY||16777216,st,tt=[],nt=[],Re=[],ft=!1;function qn(){return M}function Lt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)$n(s.preRun.shift());vr(tt)}function oa(){ft=!0,vr(nt)}function pn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());vr(Re)}function $n(Y){tt.unshift(Y)}function la(Y){nt.unshift(Y)}function Dn(Y){Re.unshift(Y)}var ot=0,Rn=null,jn=null;function xr(Y){ot++,s.monitorRunDependencies&&s.monitorRunDependencies(ot)}function ll(Y){if(ot--,s.monitorRunDependencies&&s.monitorRunDependencies(ot),ot==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),jn)){var oe=jn;jn=null,oe()}}function Qa(Y){s.onAbort&&s.onAbort(Y),Y="Aborted("+Y+")",D(Y),U=!0,H=1,Y+=". Build with -sASSERTIONS for more info.";var oe=new WebAssembly.RuntimeError(Y);throw o(oe),oe}var Mp="data:application/octet-stream;base64,";function Ia(Y){return Y.startsWith(Mp)}function Hr(Y){return Y.startsWith("file://")}var Jt;Jt="tfjs-backend-wasm.wasm",Ia(Jt)||(Jt=b(Jt));function Wd(Y){try{if(Y==Jt&&S)return new Uint8Array(S);if(w)return w(Y);throw"both async and sync fetching of the wasm failed"}catch(oe){Qa(oe)}}function wg(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Hr(Jt))return fetch(Jt,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Jt+"'";return Y.arrayBuffer()}).catch(function(){return Wd(Jt)});if(x)return new Promise(function(Y,oe){x(Jt,function(Ie){Y(new Uint8Array(Ie))},oe)})}return Promise.resolve().then(function(){return Wd(Jt)})}function kg(){var Y={env:Pp,wasi_snapshot_preview1:Pp};function oe(He,Ve){var zt=He.exports;s.asm=zt,B=s.asm.memory,Ge(B.buffer),st=s.asm.__indirect_function_table,la(s.asm.__wasm_call_ctors),ll("wasm-instantiate")}xr("wasm-instantiate");function Ie(He){oe(He.instance)}function Xe(He){return wg().then(function(Ve){return WebAssembly.instantiate(Ve,Y)}).then(function(Ve){return Ve}).then(He,function(Ve){D("failed to asynchronously prepare wasm: "+Ve),Qa(Ve)})}function It(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!Ia(Jt)&&!Hr(Jt)&&!f&&typeof fetch=="function"?fetch(Jt,{credentials:"same-origin"}).then(function(He){var Ve=WebAssembly.instantiateStreaming(He,Y);return Ve.then(Ie,function(zt){return D("wasm streaming compile failed: "+zt),D("falling back to ArrayBuffer instantiation"),Xe(Ie)})}):Xe(Ie)}if(s.instantiateWasm)try{var St=s.instantiateWasm(Y,oe);return St}catch(He){D("Module.instantiateWasm callback failed with error: "+He),o(He)}return It().catch(o),{}}var xk,qr;function ul(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}function vr(Y){for(;Y.length>0;)Y.shift()(s)}function Ig(){Qa("")}function Bd(){return 4294901760}function Bs(){return Bd()}function Sg(Y,oe,Ie){se.copyWithin(Y>>>0,oe>>>0,oe+Ie>>>0)}function Vd(Y){try{return B.grow(Y-te.byteLength+65535>>>16),Ge(B.buffer),1}catch(oe){}}function pl(Y){var oe=se.length;Y=Y>>>0;var Ie=Bd();if(Y>Ie)return!1;let Xe=(zt,ua)=>zt+(ua-zt%ua)%ua;for(var It=1;It<=4;It*=2){var St=oe*(1+.2/It);St=Math.min(St,Y+100663296);var He=Math.min(Ie,Xe(Math.max(Y,St),65536)),Ve=Vd(He);if(Ve)return!0}return!1}var gn={varargs:void 0,get:function(){gn.varargs+=4;var Y=be[gn.varargs-4>>>2];return Y},getStr:function(Y){var oe=J(Y);return oe}};function Ud(Y){return 52}function Ng(Y,oe,Ie,Xe,It){return 70}var Tg=[null,[],[]];function vk(Y,oe){var Ie=Tg[Y];oe===0||oe===10?((Y===1?F:D)(Z(Ie,0)),Ie.length=0):Ie.push(oe)}function wk(Y,oe,Ie,Xe){for(var It=0,St=0;St<Ie;St++){var He=ke[oe>>>2],Ve=ke[oe+4>>>2];oe+=8;for(var zt=0;zt<Ve;zt++)vk(Y,se[He+zt>>>0]);It+=Ve}return ke[Xe>>>2]=It,0}function Gd(Y){var oe=s["_"+Y];return oe}function Vs(Y,oe){re.set(Y,oe>>>0)}function Cg(Y,oe,Ie,Xe,It){var St={string:Mn=>{var Kr=0;if(Mn!=null&&Mn!==0){var oh=(Mn.length<<2)+1;Kr=Bp(oh),ae(Mn,Kr,oh)}return Kr},array:Mn=>{var Kr=Bp(Mn.length);return Vs(Mn,Kr),Kr}};function He(Mn){return oe==="string"?J(Mn):oe==="boolean"?!!Mn:Mn}var Ve=Gd(Y),zt=[],ua=0;if(Xe)for(var wr=0;wr<Xe.length;wr++){var ih=St[Ie[wr]];ih?(ua===0&&(ua=ah()),zt[wr]=ih(Xe[wr])):zt[wr]=Xe[wr]}var Vp=Ve.apply(null,zt);function Uy(Mn){return ua!==0&&rh(ua),He(Mn)}return Vp=Uy(Vp),Vp}function _g(Y,oe,Ie,Xe){Ie=Ie||[];var It=Ie.every(He=>He==="number"||He==="boolean"),St=oe!=="string";return St&&It&&!Xe?Gd(Y):function(){return Cg(Y,oe,Ie,arguments,Xe)}}var Pp={abort:Ig,emscripten_get_heap_max:Bs,emscripten_memcpy_big:Sg,emscripten_resize_heap:pl,fd_close:Ud,fd_seek:Ng,fd_write:wk},Eg=kg(),Hd=s.___wasm_call_ctors=function(){return(Hd=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},qd=s._init=function(){return(qd=s._init=s.asm.init).apply(null,arguments)},Ag=s._init_with_threads_count=function(){return(Ag=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},jd=s._get_threads_count=function(){return(jd=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Fg=s._register_tensor=function(){return(Fg=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Ae=s._dispose_data=function(){return(Ae=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Op=s._dispose=function(){return(Op=s._dispose=s.asm.dispose).apply(null,arguments)},$g=s._Abs=function(){return($g=s._Abs=s.asm.Abs).apply(null,arguments)},Kd=s._Acos=function(){return(Kd=s._Acos=s.asm.Acos).apply(null,arguments)},cl=s._Acosh=function(){return(cl=s._Acosh=s.asm.Acosh).apply(null,arguments)},Dg=s._Add=function(){return(Dg=s._Add=s.asm.Add).apply(null,arguments)},Rg=s._AddN=function(){return(Rg=s._AddN=s.asm.AddN).apply(null,arguments)},Mg=s._All=function(){return(Mg=s._All=s.asm.All).apply(null,arguments)},Pg=s._Any=function(){return(Pg=s._Any=s.asm.Any).apply(null,arguments)},Og=s._ArgMax=function(){return(Og=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Xd=s._ArgMin=function(){return(Xd=s._ArgMin=s.asm.ArgMin).apply(null,arguments)},Yd=s._Asin=function(){return(Yd=s._Asin=s.asm.Asin).apply(null,arguments)},Lg=s._Asinh=function(){return(Lg=s._Asinh=s.asm.Asinh).apply(null,arguments)},zg=s._Atan=function(){return(zg=s._Atan=s.asm.Atan).apply(null,arguments)},Wg=s._Atan2=function(){return(Wg=s._Atan2=s.asm.Atan2).apply(null,arguments)},Lp=s._Atanh=function(){return(Lp=s._Atanh=s.asm.Atanh).apply(null,arguments)},Bg=s._AvgPool=function(){return(Bg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Vg=s._AvgPool3D=function(){return(Vg=s._AvgPool3D=s.asm.AvgPool3D).apply(null,arguments)},Ug=s._AvgPool3DGrad=function(){return(Ug=s._AvgPool3DGrad=s.asm.AvgPool3DGrad).apply(null,arguments)},Us=s._BatchMatMul=function(){return(Us=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Gg=s._Bincount=function(){return(Gg=s._Bincount=s.asm.Bincount).apply(null,arguments)},Hg=s._Ceil=function(){return(Hg=s._Ceil=s.asm.Ceil).apply(null,arguments)},Zd=s._ClipByValue=function(){return(Zd=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},qg=s._Conv2D=function(){return(qg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},zp=s._Conv2DBackpropInput=function(){return(zp=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},jg=s._Conv3D=function(){return(jg=s._Conv3D=s.asm.Conv3D).apply(null,arguments)},Kg=s._Conv3DBackpropFilterV2=function(){return(Kg=s._Conv3DBackpropFilterV2=s.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Xg=s._Conv3DBackpropInputV2=function(){return(Xg=s._Conv3DBackpropInputV2=s.asm.Conv3DBackpropInputV2).apply(null,arguments)},jr=s._Cos=function(){return(jr=s._Cos=s.asm.Cos).apply(null,arguments)},Wp=s._Cosh=function(){return(Wp=s._Cosh=s.asm.Cosh).apply(null,arguments)},Yg=s._CropAndResize=function(){return(Yg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Zg=s._Cumprod=function(){return(Zg=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Jg=s._Cumsum=function(){return(Jg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Qg=s._DenseBincount=function(){return(Qg=s._DenseBincount=s.asm.DenseBincount).apply(null,arguments)},Jd=s._DepthToSpace=function(){return(Jd=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Qd=s._DepthwiseConv2dNative=function(){return(Qd=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},eb=s._Diag=function(){return(eb=s._Diag=s.asm.Diag).apply(null,arguments)},tb=s._Dilation2D=function(){return(tb=s._Dilation2D=s.asm.Dilation2D).apply(null,arguments)},eh=s._Dilation2DBackpropFilter=function(){return(eh=s._Dilation2DBackpropFilter=s.asm.Dilation2DBackpropFilter).apply(null,arguments)},th=s._Dilation2DBackpropInput=function(){return(th=s._Dilation2DBackpropInput=s.asm.Dilation2DBackpropInput).apply(null,arguments)},nb=s._Elu=function(){return(nb=s._Elu=s.asm.Elu).apply(null,arguments)},ab=s._EluGrad=function(){return(ab=s._EluGrad=s.asm.EluGrad).apply(null,arguments)},rb=s._Equal=function(){return(rb=s._Equal=s.asm.Equal).apply(null,arguments)},sb=s._Exp=function(){return(sb=s._Exp=s.asm.Exp).apply(null,arguments)},nh=s._Expm1=function(){return(nh=s._Expm1=s.asm.Expm1).apply(null,arguments)},kk=s._FlipLeftRight=function(){return(kk=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},ib=s._Floor=function(){return(ib=s._Floor=s.asm.Floor).apply(null,arguments)},ob=s._FloorDiv=function(){return(ob=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},lb=s._FusedBatchNorm=function(){return(lb=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},ub=s._FusedConv2D=function(){return(ub=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},pb=s._FusedDepthwiseConv2D=function(){return(pb=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},cb=s._Gather=function(){return(cb=s._Gather=s.asm.Gather).apply(null,arguments)},db=s._GatherNd=function(){return(db=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},hb=s._Greater=function(){return(hb=s._Greater=s.asm.Greater).apply(null,arguments)},mb=s._GreaterEqual=function(){return(mb=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},fb=s._IsFinite=function(){return(fb=s._IsFinite=s.asm.IsFinite).apply(null,arguments)},gb=s._IsInf=function(){return(gb=s._IsInf=s.asm.IsInf).apply(null,arguments)},bb=s._IsNan=function(){return(bb=s._IsNan=s.asm.IsNan).apply(null,arguments)},yb=s._LRN=function(){return(yb=s._LRN=s.asm.LRN).apply(null,arguments)},xb=s._LRNGrad=function(){return(xb=s._LRNGrad=s.asm.LRNGrad).apply(null,arguments)},vb=s._LeakyRelu=function(){return(vb=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},wb=s._Less=function(){return(wb=s._Less=s.asm.Less).apply(null,arguments)},kb=s._LessEqual=function(){return(kb=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Ib=s._LinSpace=function(){return(Ib=s._LinSpace=s.asm.LinSpace).apply(null,arguments)},Sb=s._Log=function(){return(Sb=s._Log=s.asm.Log).apply(null,arguments)},Nb=s._Log1p=function(){return(Nb=s._Log1p=s.asm.Log1p).apply(null,arguments)},Tb=s._LogicalAnd=function(){return(Tb=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Cb=s._LogicalNot=function(){return(Cb=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},_b=s._LogicalOr=function(){return(_b=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Eb=s._LogicalXor=function(){return(Eb=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Ab=s._Max=function(){return(Ab=s._Max=s.asm.Max).apply(null,arguments)},Fb=s._MaxPool=function(){return(Fb=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},$b=s._MaxPool3D=function(){return($b=s._MaxPool3D=s.asm.MaxPool3D).apply(null,arguments)},Db=s._MaxPool3DGrad=function(){return(Db=s._MaxPool3DGrad=s.asm.MaxPool3DGrad).apply(null,arguments)},Rb=s._Maximum=function(){return(Rb=s._Maximum=s.asm.Maximum).apply(null,arguments)},Mb=s._Mean=function(){return(Mb=s._Mean=s.asm.Mean).apply(null,arguments)},Pb=s._Min=function(){return(Pb=s._Min=s.asm.Min).apply(null,arguments)},Ob=s._Minimum=function(){return(Ob=s._Minimum=s.asm.Minimum).apply(null,arguments)},Lb=s._MirrorPad=function(){return(Lb=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},zb=s._Multinomial=function(){return(zb=s._Multinomial=s.asm.Multinomial).apply(null,arguments)},Wb=s._Multiply=function(){return(Wb=s._Multiply=s.asm.Multiply).apply(null,arguments)},Bb=s._Neg=function(){return(Bb=s._Neg=s.asm.Neg).apply(null,arguments)},Vb=s._NonMaxSuppressionV3=function(){return(Vb=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Ub=s._NonMaxSuppressionV4=function(){return(Ub=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Gb=s._NonMaxSuppressionV5=function(){return(Gb=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Hb=s._NotEqual=function(){return(Hb=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},qb=s._OneHot=function(){return(qb=s._OneHot=s.asm.OneHot).apply(null,arguments)},jb=s._PadV2=function(){return(jb=s._PadV2=s.asm.PadV2).apply(null,arguments)},Kb=s._Pow=function(){return(Kb=s._Pow=s.asm.Pow).apply(null,arguments)},Xb=s._Prelu=function(){return(Xb=s._Prelu=s.asm.Prelu).apply(null,arguments)},Yb=s._Prod=function(){return(Yb=s._Prod=s.asm.Prod).apply(null,arguments)},Zb=s._RealDiv=function(){return(Zb=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Jb=s._Reciprocal=function(){return(Jb=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},Qb=s._Relu=function(){return(Qb=s._Relu=s.asm.Relu).apply(null,arguments)},ey=s._Relu6=function(){return(ey=s._Relu6=s.asm.Relu6).apply(null,arguments)},ty=s._ResizeBilinear=function(){return(ty=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},ny=s._ResizeBilinearGrad=function(){return(ny=s._ResizeBilinearGrad=s.asm.ResizeBilinearGrad).apply(null,arguments)},ay=s._ResizeNearestNeighbor=function(){return(ay=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},ry=s._ResizeNearestNeighborGrad=function(){return(ry=s._ResizeNearestNeighborGrad=s.asm.ResizeNearestNeighborGrad).apply(null,arguments)},sy=s._Reverse=function(){return(sy=s._Reverse=s.asm.Reverse).apply(null,arguments)},iy=s._RotateWithOffset=function(){return(iy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},oy=s._Round=function(){return(oy=s._Round=s.asm.Round).apply(null,arguments)},ly=s._Rsqrt=function(){return(ly=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},uy=s._ScatterNd=function(){return(uy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},py=s._SearchSorted=function(){return(py=s._SearchSorted=s.asm.SearchSorted).apply(null,arguments)},cy=s._SelectV2=function(){return(cy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},dy=s._Selu=function(){return(dy=s._Selu=s.asm.Selu).apply(null,arguments)},hy=s._Sigmoid=function(){return(hy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},my=s._Sign=function(){return(my=s._Sign=s.asm.Sign).apply(null,arguments)},fy=s._Sin=function(){return(fy=s._Sin=s.asm.Sin).apply(null,arguments)},gy=s._Softmax=function(){return(gy=s._Softmax=s.asm.Softmax).apply(null,arguments)},by=s._Softplus=function(){return(by=s._Softplus=s.asm.Softplus).apply(null,arguments)},yy=s._SparseFillEmptyRows=function(){return(yy=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},xy=s._SparseReshape=function(){return(xy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},vy=s._SparseSegmentReduction=function(){return(vy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},wy=s._SparseToDense=function(){return(wy=s._SparseToDense=s.asm.SparseToDense).apply(null,arguments)},ky=s._Sqrt=function(){return(ky=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Iy=s._Square=function(){return(Iy=s._Square=s.asm.Square).apply(null,arguments)},Sy=s._SquaredDifference=function(){return(Sy=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Ny=s._Step=function(){return(Ny=s._Step=s.asm.Step).apply(null,arguments)},Ty=s._StridedSlice=function(){return(Ty=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Cy=s._Sub=function(){return(Cy=s._Sub=s.asm.Sub).apply(null,arguments)},_y=s._Sum=function(){return(_y=s._Sum=s.asm.Sum).apply(null,arguments)},Ey=s._Tan=function(){return(Ey=s._Tan=s.asm.Tan).apply(null,arguments)},Ay=s._Tanh=function(){return(Ay=s._Tanh=s.asm.Tanh).apply(null,arguments)},Fy=s._TensorScatterUpdate=function(){return(Fy=s._TensorScatterUpdate=s.asm.TensorScatterUpdate).apply(null,arguments)},$y=s._Tile=function(){return($y=s._Tile=s.asm.Tile).apply(null,arguments)},Dy=s._TopK=function(){return(Dy=s._TopK=s.asm.TopK).apply(null,arguments)},Ry=s._Transform=function(){return(Ry=s._Transform=s.asm.Transform).apply(null,arguments)},My=s._Transpose=function(){return(My=s._Transpose=s.asm.Transpose).apply(null,arguments)},Py=s.__FusedMatMul=function(){return(Py=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Oy=s._malloc=function(){return(Oy=s._malloc=s.asm.malloc).apply(null,arguments)},Ly=s._free=function(){return(Ly=s._free=s.asm.free).apply(null,arguments)},zy=s.___errno_location=function(){return(zy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},ah=s.stackSave=function(){return(ah=s.stackSave=s.asm.stackSave).apply(null,arguments)},rh=s.stackRestore=function(){return(rh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Bp=s.stackAlloc=function(){return(Bp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Wy=s.dynCall_iijjiiii=function(){return(Wy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},By=s.dynCall_jiji=function(){return(By=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=_g;var dl;jn=function Y(){dl||sh(),dl||(jn=Y)};function sh(Y){if(Y=Y||p,ot>0||(Lt(),ot>0))return;function oe(){dl||(dl=!0,s.calledRun=!0,!U&&(oa(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),pn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),oe()},1)):oe()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();sh();var hl;l&&(hl={uncaughtException:process.listeners("uncaughtException").filter(function(Y){return!l.uncaughtException.indexOf(Y)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(Y){return!l.unhandledRejection.indexOf(Y)>-1})});var ml;if(typeof r!="undefined")ml=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")ml=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(hl){var Vy=ml._dispose;ml._dispose=function(){Vy(),hl.uncaughtException.forEach(function(Y){process.removeListener("uncaughtException",Y)}),hl.unhandledRejection.forEach(function(Y){process.removeListener("unhandledRejection",Y)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),mm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Tc=class{refCount(e){return Kn("refCount")}incRef(e){return Kn("incRef")}timerAvailable(){return!0}time(e){return Kn("time")}read(e){return Kn("read")}readSync(e){return Kn("readSync")}readToGPU(e,t){return Kn("readToGPU")}numDataIds(){return Kn("numDataIds")}disposeData(e,t){return Kn("disposeData")}write(e,t,n){return Kn("write")}move(e,t,n,a,r){return Kn("move")}createTensorFromGPUData(e,t,n){return Kn("createTensorFromGPUData")}memory(){return Kn("memory")}floatPrecision(){return Kn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Kn("dispose")}};function Kn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function fS(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Oh(e,t,n)}function tR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Oh(e,n,a),Oh(t,n,a)}function lc(e,t,n){return Math.max(e,Math.min(t,n))}function nR(e){return e%2===0?e:e+1}function Oh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function aR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function rR(e,t){let n=Math.random();return t*n+(1-n)*e}function sR(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Nn(e,t,n=""){A($r(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ki(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function iR(e){return e.length===0}function gS(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==null&&t[n]!==null&&e[n]!==t[n])return!1;return!0}function $r(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Sl(e){return e%1===0}function oR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function lR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function uR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return fS(t),t}function rc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function pR(e,t=r=>0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function cR(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function $a(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>Sl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function bS(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:$a(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function yS(e,t){return pv(e,t)}function pv(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function xS(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function vS(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function dR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Lh(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function wS(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Jr(e){return typeof e=="string"||e instanceof String}function kS(e){return typeof e=="boolean"}function IS(e){return typeof e=="number"}function Cc(e){return Array.isArray(e)?Cc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":IS(e)?"float32":Jr(e)?"string":kS(e)?"bool":"float32"}function ss(e){return!!(e&&e.constructor&&e.call&&e.apply)}function zh(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function Hl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function SS(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=SS(e+l*o,i,n,a)}return r}function vl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return SS(0,e,t,n)}function hR(e,t){if(Array.isArray(e))return e;if(t==="float32")return e instanceof Float32Array?e:new Float32Array(e);if(t==="int32")return e instanceof Int32Array?e:new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function cv(e,t){let n=fm(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function fm(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function mR(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return vl(e,new Float32Array(n));if(t==="int32")return vl(e,new Int32Array(n));if(t==="bool")return vl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ra(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function fR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function gR(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function gm(e){return e&&e.then&&typeof e.then=="function"}var Fk="tfjsflags",NS=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=bR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(gm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getString(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Fk in e&&e[Fk].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=xR(n,a)})}};function bR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(yR(t,a[0],a[1]),a.join("="))),t}function yR(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function xR(e,t){let n=t.toLowerCase();return n==="true"||n==="false"?n==="true":`${+n}`===n?+n:t}function G(){return dv}var dv=null;function vR(e){dv=e}var Ky;function TS(){if(Ky==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Ky=e}return Ky}function wR(){let e=TS();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function hv(e,t){let n=wR();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var ql="Abs",Ii="Acos",Si="Acosh",bs="Add",Ni="AddN",jl="All",Kl="Any",Xl="ArgMax",Yl="ArgMin",Ti="Asin",Ci="Asinh",_i="Atan",Ei="Atanh",Ai="Atan2",Fi="AvgPool",bm="AvgPoolGrad",Zl="AvgPool3D",_c="AvgPool3DGrad",$i="BatchMatMul",Jl="BatchToSpaceND",Ql="Bincount",ym="BitwiseAnd",CS="BroadcastTo",Ec="BroadcastArgs",Di="Cast",Ri="Ceil",ys="ClipByValue",xm="Complex",Ac="ComplexAbs",eu="Concat",Mi="Conv2D",vm="Conv2DBackpropFilter",Pi="Conv2DBackpropInput",Oi="Conv3D",tu="Conv3DBackpropFilterV2",nu="Conv3DBackpropInputV2",Li="Cos",zi="Cosh",au="Cumprod",Wi="Cumsum",ru="CropAndResize",Fc="DenseBincount",su="DepthToSpace",Bi="DepthwiseConv2dNative",wm="DepthwiseConv2dNativeBackpropFilter",km="DepthwiseConv2dNativeBackpropInput",$c="Diag",Vi="Dilation2D",Nl="Dilation2DBackpropInput",Tl="Dilation2DBackpropFilter",Ui="RealDiv",Im="Einsum",Gi="Elu",iu="EluGrad",ou="Erf",lu="Equal",Hi="Exp",uu="ExpandDims",qi="Expm1",Sm="FFT",Dc="Fill",pu="FlipLeftRight",ji="Floor",Ki="FloorDiv",Xi="FusedBatchNorm",cu="GatherV2",du="GatherNd",hu="Greater",Yi="GreaterEqual",Zi="Identity",Nm="IFFT",Tm="Imag",Ji="IsFinite",Qi="IsInf",eo="IsNan",to="LeakyRelu",mu="Less",fu="LessEqual",gu="LinSpace",no="Log",ao="Log1p",bu="LogicalAnd",yu="LogicalNot",xu="LogicalOr",_S="LogicalXor",ES="LogSoftmax",kR="LowerBound",ro="LRN",vu="LRNGrad",IR="MatrixBandPart",so="Max",io="Maximum",oo="MaxPool",Cm="MaxPoolGrad",wu="MaxPool3D",Rc="MaxPool3DGrad",_m="MaxPoolWithArgmax",lo="Mean",uo="Min",po="Minimum",co="MirrorPad",ku="Mod",Iu="Multinomial",ho="Multiply",Su="Neg",Nu="NotEqual",Tu="NonMaxSuppressionV3",Cu="NonMaxSuppressionV4",_u="NonMaxSuppressionV5",Eu="OnesLike",mo="OneHot",Au="Pack",fo="PadV2",SR="Pool",go="Pow",bo="Prelu",yo="Prod",Em="RaggedGather",Am="RaggedRange",Fm="RaggedTensorToTensor",Mc="Range",$m="Real",xo="Reciprocal",vo="Relu",Fu="Reshape",wo="ResizeNearestNeighbor",$u="ResizeNearestNeighborGrad",ko="ResizeBilinear",Du="ResizeBilinearGrad",Io="Relu6",So="Reverse",No="Round",To="Rsqrt",Ru="ScatterNd",Mu="TensorScatterUpdate",Pu="SearchSorted",Ou="Select",Co="Selu",Lu="Slice",_o="Sin",zu="Sinh",Eo="Sign",Ao="Sigmoid",Fo="Softplus",$o="Sqrt",Do="Sum",Wu="SpaceToBatchND",Bu="SplitV",Ro="Softmax",Pc="SparseFillEmptyRows",Vu="SparseReshape",Oc="SparseSegmentMean",Lc="SparseSegmentSum",Uu="SparseToDense",Mo="SquaredDifference",zc="Square",Wc="StaticRegexReplace",Gu="StridedSlice",Bc="StringNGrams",Vc="StringSplit",Uc="StringToHashBucketFast",Po="Sub",Oo="Tan",Lo="Tanh",xs="Tile",Hu="TopK",qu="Transform",_r="Transpose",Gc="Unique",ju="Unpack",Hc="UnsortedSegmentSum",NR="UpperBound",Ku="ZerosLike",vs="Step",Wh="FromPixels",Xu="RotateWithOffset",si="_FusedMatMul",ii="FusedConv2D",oi="FusedDepthwiseConv2D";function Zr(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(...e)}function TR(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.log(...e)}var Cl=hv("kernelRegistry",()=>new Map),uc=hv("gradRegistry",()=>new Map);function Bh(e,t){let n=mv(e,t);return Cl.get(n)}function px(e){return uc.get(e)}function Vh(e){let t=Cl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function qc(e){let{kernelName:t,backendName:n}=e,a=mv(t,n);Cl.has(a)&&Zr(`The kernel '${t}' for backend '${n}' is already registered`),Cl.set(a,e)}function AS(e){let{kernelName:t}=e;uc.has(t)&&G().getBool("DEBUG")&&Zr(`Overriding the gradient for '${t}'`),uc.set(t,e)}function CR(e,t){let n=mv(e,t);if(!Cl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Cl.delete(n)}function _R(e){if(!uc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);uc.delete(e)}function ER(e,t){Vh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});qc(a)})}function mv(e,t){return`${t}_${e}`}var v={};Ee(v,{arraysEqual:()=>$r,arraysEqualWithNull:()=>gS,assert:()=>A,assertNonNegativeIntegerDimensions:()=>ra,assertNonNull:()=>ki,assertShapesMatch:()=>Nn,bytesFromStringArray:()=>wS,bytesPerElement:()=>Lh,checkConversionForErrors:()=>xS,clamp:()=>lc,computeStrides:()=>Hl,convertBackendValuesAndArrayBuffer:()=>hR,createScalarValue:()=>MR,createShuffledIndices:()=>uR,decodeString:()=>Uh,distSquared:()=>sR,encodeString:()=>Kc,fetch:()=>OR,fingerPrint64:()=>RR,flatten:()=>is,getArrayFromDType:()=>pv,getTypedArrayFromDType:()=>yS,hasEncodingLoss:()=>dR,hexToLong:()=>jc,indexToLoc:()=>gR,inferDtype:()=>Cc,inferFromImplicitShape:()=>cR,isBoolean:()=>kS,isFunction:()=>ss,isInt:()=>Sl,isNumber:()=>IS,isPromise:()=>gm,isScalarShape:()=>iR,isString:()=>Jr,isTypedArray:()=>en,isValidDtype:()=>vS,locToIndex:()=>fR,makeOnesTypedArray:()=>cv,makeZerosNestedTypedArray:()=>mR,makeZerosTypedArray:()=>fm,nearestDivisor:()=>zh,nearestLargerEven:()=>nR,now:()=>pc,parseAxisParam:()=>$a,randUniform:()=>rR,repeatedTry:()=>pR,rightPad:()=>rc,shuffle:()=>fS,shuffleCombo:()=>tR,sizeFromShape:()=>bt,sizeToSquarishShape:()=>lR,squeezeShape:()=>bS,sum:()=>aR,swap:()=>Oh,tanh:()=>oR,toNestedArray:()=>vl,toTypedArray:()=>Dm});function FS(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}var $k=gs(LD()),Ks=$k.default||$k;function jc(e){return Ks.fromString(e,!0,16)}var $S=jc("c3a5c85c97cb3127"),qs=jc("b492b66fbe98f273"),wn=jc("9ae16a3b2f90404f");function cx(e){return e.xor(e.shru(47))}function DS(e,t,n){let a=e.slice(t,t+n);return Ks.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return DS(e,t,8)}function Dk(e,t){return DS(e,t,4)}function Qt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ns(e,t,n=jc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function AR(e,t,n,a,r,s){r=r.add(e),s=Qt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Qt(r,44)),[r.add(a),s.add(i)]}function mh(e,t,n,a){return AR(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function FR(e,t=e.length){if(t>=8){let n=wn.add(t*2),a=gt(e,0).add(wn),r=gt(e,t-8),s=Qt(r,37).mul(n).add(a),i=Qt(a,25).add(r).mul(n);return ns(s,i,n)}if(t>=4){let n=wn.add(t*2),a=Dk(e,0);return ns(a.shl(3).add(t),Dk(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return cx(wn.mul(s).xor($S.mul(i))).mul(wn)}return wn}function $R(e,t=e.length){let n=wn.add(t*2),a=gt(e,0).mul(qs),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(wn);return ns(Qt(a.add(r),43).add(Qt(s,30)).add(i),a.add(Qt(r.add(wn),18)).add(s),n)}function DR(e,t=e.length){let n=wn.add(t*2),a=gt(e,0).mul(wn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(wn),o=Qt(a.add(r),43).add(Qt(s,30)).add(i),l=ns(o,a.add(Qt(r.add(wn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return ns(Qt(u.add(p),43).add(Qt(d,30)).add(c),u.add(Qt(p.add(a),18)).add(d),n)}function RR(e,t=e.length){let n=Ks.fromNumber(81,!0);if(t<=32)return t<=16?FR(e,t):$R(e,t);if(t<=64)return DR(e,t);let a=n,r=n.mul(qs).add(113),s=cx(r.mul(wn).add(113)).mul(wn),i=[Ks.UZERO,Ks.UZERO],o=[Ks.UZERO,Ks.UZERO];a=a.mul(wn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Qt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(qs),r=Qt(r.add(i[1]).add(gt(e,l+48)),42).mul(qs),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Qt(s.add(o[0]),33).mul(qs),i=mh(e,l,i[1].mul(qs),a.add(o[0])),o=mh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=qs.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Qt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Qt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Qt(s.add(o[0]),33).mul(d),i=mh(e,l,i[1].mul(d),a.add(o[0])),o=mh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],ns(ns(i[0],o[0],d).add(cx(r).mul($S)).add(s),ns(i[1],o[1],d).add(a),d)}function MR(e,t){return t==="string"?Kc(e):Dm([e],t)}function PR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Dm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=is(e)),G().getBool("DEBUG")&&xS(e,t),PR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function pc(){return G().platform.now()}function OR(e,t){return G().platform.fetch(e,t)}function Kc(e,t="utf-8"){return t=t||"utf-8",G().platform.encode(e,t)}function Uh(e,t="utf-8"){return t=t||"utf-8",G().platform.decode(e,t)}function en(e){return G().platform.isTypedArray!=null?G().platform.isTypedArray(e):FS(e)}function is(e,t=[],n=!1){if(t==null&&(t=[]),typeof e=="boolean"||typeof e=="number"||typeof e=="string"||gm(e)||e==null||en(e)&&n)t.push(e);else if(Array.isArray(e)||en(e))for(let a=0;a<e.length;++a)is(e[a],t,n);else{let a=-1;for(let r of Object.keys(e))/^([1-9]+[0-9]*|0)$/.test(r)&&(a=Math.max(a,Number(r)));for(let r=0;r<=a;r++)is(e[r],t,n)}return t}var LR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new WR)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=pc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:pc()-i})}if(G().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{zR(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function zR(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var WR=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?rc(`${a}ms`,9):a.error,o=rc(e,25),l=t.rank,u=t.size,p=rc(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function BR(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function VR(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!$r(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var Rk=20,Up=3,Xy=7;function UR(e,t,n,a){let r=Hl(t),s=GR(e,t,n,r),i=t.length,o=_h(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function GR(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Xp(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],Kp(l[p+d],0,n).length)}return i}function Kp(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Xy))} + ${parseFloat(e[1].toFixed(Xy))}j`:Jr(e)?a=`'${e}'`:n==="bool"?a=RS(e):a=parseFloat(e.toFixed(Xy)).toString(),rc(a,t)}function RS(e){return e===0?"false":"true"}function _h(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Xp(e);return[Kp(f[0],0,n)]}return n==="bool"?[RS(e[0])]:[e[0].toString()]}if(l===1){if(o>Rk){let f=Up*i,g=Array.from(e.slice(0,f)),b=Array.from(e.slice((o-Up)*i,o*i));return n==="complex64"&&(g=Xp(g),b=Xp(b)),["["+g.map((y,x)=>Kp(y,r[x],n)).join(", ")+", ..., "+b.map((y,x)=>Kp(y,r[o-Up+x],n)).join(", ")+"]"]}return["["+(n==="complex64"?Xp(e):Array.from(e)).map((f,g)=>Kp(f,r[g],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>Rk){for(let f=0;f<Up;f++){let g=f*d,b=g+d;c.push(..._h(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-Up;f<o;f++){let g=f*d,b=g+d;c.push(..._h(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(..._h(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+(o>0?c[0]+h:"");for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Xp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Vt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;A(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||pv(t,this.size),this.strides=Hl(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Wa().makeTensor(this.values,this.shape,this.dtype)}},Wa=null,yl=null,HR=null;function qR(e){Wa=e}function jR(e){yl=e}function KR(e){HR=e}var Ce=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=Hl(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return yl.buffer(this.shape,this.dtype,e)}bufferSync(){return yl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return vl(this.shape,e,this.dtype==="complex64")}arraySync(){return vl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Wa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Uh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Wa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Wa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Uh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Wa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Wa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return yl.print(this,e)}clone(){return this.throwIfDisposed(),yl.clone(this)}toString(e=!1){let t=this.dataSync();return UR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),yl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Wa().makeVariable(this,e,t,n)}};Object.defineProperty(Ce,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return hv("Tensor",()=>Ce)}Q();var os=class extends Ce{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!$r(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Wa().disposeTensor(this),this.dataId=e.dataId,Wa().incRef(this,null)}dispose(){Wa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(os,Symbol.hasInstance,{value:e=>e instanceof Ce&&e.assign!=null&&e.assign instanceof Function});var Ua={};Ee(Ua,{assertTypesMatch:()=>OS,getTensorsInContainer:()=>fv,isTensorInList:()=>YR,makeTypesMatch:()=>Ft});var dx;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(dx||(dx={}));var hx;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(hx||(hx={}));var mx;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(mx||(mx={}));var fx;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(fx||(fx={}));var gx;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(gx||(gx={}));var XR={float32:fx,int32:hx,bool:mx,complex64:gx};function ga(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return XR[e][t]}function Rm(e){return ga(e,"int32")}function MS(e){return e!=null&&typeof e=="object"&&"texture"in e&&e.texture instanceof WebGLTexture}function PS(e){return typeof GPUBuffer!="undefined"&&e!=null&&typeof e=="object"&&"buffer"in e&&e.buffer instanceof GPUBuffer}function Ft(e,t){if(e.dtype===t.dtype)return[e,t];let n=ga(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function OS(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function YR(e,t){return t.some(n=>n.id===e.id)}function fv(e){let t=[];return LS(e,t,new Set),t}function LS(e,t,n){if(e==null)return;if(e instanceof Ce){t.push(e);return}if(!ZR(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),LS(s,t,n))}}function ZR(e){return Array.isArray(e)||typeof e=="object"}function Yy(e){return e.kernelName!=null}var Mk=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},cc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Mk}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Zr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new LR(this.backendInstance),!0}setupRegisteredKernels(){Vh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Tc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,Zr(`Initialization of backend ${e} failed`),Zr(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Zr(`Initialization of backend ${e} failed`),Zr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return cc.nextTensorId++}nextVariableId(){return cc.nextVariableId++}clone(e){let t=O.runKernel(Zi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(Di,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,Bh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Yy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Yy(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Bh(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{a&&(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=Yy(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=px(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Jr(e[0])&&(r=e.map(o=>Kc(o)));let s=a.write(r,t,n),i=new Ce(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=wS(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Ce(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new os(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Lh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof os||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Lh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=px(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=fm(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=fv(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Ce,()=>"The result y returned by f() must be a tensor.");let s=BR(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?JR(r.shape):n,VR(i,s,l=>this.tidy(l),QR);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(ss(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ce),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Ce,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(ss(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];A(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(u.every(d=>d instanceof Ce),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=pc(),n=await this.backend.time(e);return n.wallMs=pc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Mk;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};cc.nextTensorId=0;cc.nextVariableId=0;function JR(e){let t=cv(bt(e),"float32");return O.makeTensor(t,e,"float32")}function zS(){let e=TS();if(e._tfengine==null){let t=new NS(e);e._tfengine=new cc(t)}return vR(e._tfengine.ENV),qR(()=>e._tfengine),e._tfengine}var O=zS();function QR(e,t){let n={a:e,b:t};return O.runKernel(bs,n)}var Xc={};Ee(Xc,{isBrowser:()=>WS,isMobile:()=>nM,mockIsMobile:()=>tM});function eM(){return typeof navigator!="undefined"&&navigator!=null}var bx;function tM(e){bx=e}function nM(e){if(bx!==void 0)return bx;if(e||eM()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function WS(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Bn=G();Bn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Bn.registerFlag("IS_BROWSER",()=>WS());Bn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Bn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Bn.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));Bn.registerFlag("PROD",()=>!1);Bn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Bn.getBool("DEBUG"));Bn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Bn.registerFlag("IS_TEST",()=>!1);Bn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>Bn.getBool("DEBUG"));Bn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Bn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Bn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function lr(e,t){let n=e;if(en(e))return t==="string"?[]:[e.length];if(MS(e)){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}else if(PS(e))return[e.buffer.size/(t==null?4:Lh(t))];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||en(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&G().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&BS(e,a,[]),a}function BS(e,t,n){if(n=n||[],!Array.isArray(e)&&!en(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)BS(e[r],a,n.concat(r))}function Pk(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Ce)return Pk(a,e.dtype,t,n),e;let r=Cc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Pk(a,r,t,n),e==null||!en(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=lr(e,r);!en(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Dm(e,r):is(e,[],!0);return O.makeTensor(i,s,r)}function dc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var gv="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+gv;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return gm(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function aM(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");Nn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(xm,r)}var Ar=L({complex_:aM});function ws(e,t,n,a){if(a==null)a=Cc(e);else if(a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(PS(e)||MS(e)){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return O.backend.createTensorFromGPUData(e,t||n,a)}if(!en(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ra(t);let r=bt(t),s=bt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;A(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!en(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Dm(e,a):is(e,[],!0),O.makeTensor(e,t,a)}function bn(e,t,n){let a=lr(e,n);return ws(e,t,a,n)}var yx={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Gh=4;async function rM(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+Gh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=Gh,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:sM(s),specs:n}}function VS(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=yx[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=cM()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+Gh))[0];r+=Gh;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=yx[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=bn(h,l,"float32"),g=bn(m,l,"float32");n[i]=Ar(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=bn(p,l,o))}return n}function sM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var bv=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ok(e){return bv?Buffer.byteLength(e):new Blob([e]).size}function iM(e){if(bv)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function oM(e){if(bv){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function yv(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Lk(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function US(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function GS(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function xv(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),GS(e,n,a)}function Yc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ok(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ok(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function HS(e){let t=[];for(let n of e)t.push(...n.weights);return t}function lM(){let e=n=>{let a=n<<13,r=0;for(;!(a&8388608);)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function uM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function pM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function cM(){let e=lM(),t=uM(),n=pM();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var $t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return $t.instance==null&&($t.instance=new $t),$t.instance}static registerSaveRouter(e){$t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){$t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return $t.getHandlers(e,"save")}static getLoadHandlers(e,t){return $t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?$t.getInstance().loadRouters:$t.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},dM=e=>$t.registerSaveRouter(e),hM=e=>$t.registerLoadRouter(e),mM=e=>$t.getSaveHandlers(e),fM=(e,t)=>$t.getLoadHandlers(e,t),xx="tensorflowjs",vx=1,Qs="models_store",Qr="model_info_store";function qS(){if(!G().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function wx(e){let t=e.result;t.createObjectStore(Qs,{keyPath:"modelPath"}),t.createObjectStore(Qr,{keyPath:"modelPath"})}var li=class{constructor(e){if(this.indexedDB=qS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(xx,vx);r.onupgradeneeded=()=>wx(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Qs,"readonly"),o=i.objectStore(Qs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Yc(t),o=s.transaction(Qr,"readwrite"),l=o.objectStore(Qr),u;try{u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i})}catch(d){return a(d)}let p;u.onsuccess=()=>{p=s.transaction(Qs,"readwrite");let d=p.objectStore(Qs),c;try{c=d.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i})}catch(h){return a(h)}c.onsuccess=()=>n({modelArtifactsInfo:i}),c.onerror=h=>{l=o.objectStore(Qr);let m=l.delete(this.modelPath);m.onsuccess=()=>(s.close(),a(c.error)),m.onerror=f=>(s.close(),a(c.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};li.URL_SCHEME="indexeddb://";var jS=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?gM(e.slice(li.URL_SCHEME.length)):null;$t.registerSaveRouter(jS);$t.registerLoadRouter(jS);function gM(e){return new li(e)}function bM(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var yM=class{constructor(){this.indexedDB=qS()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(xx,vx);n.onupgradeneeded=()=>wx(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Qr,"readonly"),s=r.objectStore(Qr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=bM(e),new Promise((t,n)=>{let a=this.indexedDB.open(xx,vx);a.onupgradeneeded=()=>wx(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Qr,"readwrite"),i=s.objectStore(Qr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Qs,"readwrite");let d=l.objectStore(Qs).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Cr="/",xl="tensorflowjs_models",KS="info",xM="model_topology",vM="weight_specs",wM="weight_data",kM="model_metadata";function XS(e){return{info:[xl,e,KS].join(Cr),topology:[xl,e,xM].join(Cr),weightSpecs:[xl,e,vM].join(Cr),weightData:[xl,e,wM].join(Cr),modelMetadata:[xl,e,kM].join(Cr)}}function YS(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function IM(e){let t=e.split(Cr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Cr)}function SM(e){return e.startsWith(ui.URL_SCHEME)?e.slice(ui.URL_SCHEME.length):e}var ui=class{constructor(e){if(!G().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=XS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Yc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,iM(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw YS(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=oM(s),t}};ui.URL_SCHEME="localstorage://";var ZS=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ui.URL_SCHEME)?NM(e.slice(ui.URL_SCHEME.length)):null;$t.registerSaveRouter(ZS);$t.registerLoadRouter(ZS);function NM(e){return new ui(e)}var TM=class{constructor(){A(G().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=xl+Cr,n=Cr+KS;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=IM(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=SM(e);let t=XS(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return YS(t),n}},wl="://",Pn=class{constructor(){this.managers={}}static getInstance(){return Pn.instance==null&&(Pn.instance=new Pn),Pn.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(wl)&&(e=e.slice(0,e.indexOf(wl))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function Eh(e){if(e.indexOf(wl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split(wl)[0],path:e.split(wl)[1]}}async function JS(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=$t.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=$t.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Eh(e).scheme,l=Eh(e).path,u=o===Eh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function CM(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+wl+r;t[s]=a[r]}}return t}async function _M(e){let t=Eh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function EM(e,t){return JS(e,t,!1)}async function AM(e,t){return JS(e,t,!0)}var FM=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!G().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(e){return FS(e)}};if(G().get("IS_BROWSER")){G().setPlatform("browser",new FM);try{Pn.registerManager(ui.URL_SCHEME,new TM)}catch(e){}try{Pn.registerManager(li.URL_SCHEME,new yM)}catch(e){}}var $M={importFetch:()=>zD()},Zy,DM=class{constructor(){this.util=WD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return G().global.fetch!=null?G().global.fetch(e,t):(Zy==null&&(Zy=$M.importFetch()),Zy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}isTypedArray(e){return this.util.types.isFloat32Array(e)||this.util.types.isInt32Array(e)||this.util.types.isUint8Array(e)||this.util.types.isUint8ClampedArray(e)}};G().get("IS_NODE")&&!G().get("IS_BROWSER")&&G().setPlatform("node",new DM);function Le(e,t="float32",n){return t=t||"float32",ra(e),new Vt(e,t,n)}function RM(e,t){let n=_(e,"x","cast");if(!vS(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(Di,a,r)}var ie=L({cast_:RM});function MM(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Zi,t)}var sr=L({clone_:MM});function vv(e,t=!1){console.log(e.toString(t))}zS();var PM={buffer:Le,cast:ie,clone:sr,print:vv};jR(PM);function OM(){G().set("PROD",!0)}function LM(){G().set("DEBUG",!0)}function zM(){G().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function wv(e){G().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}KR(wv);function WM(){O.disposeVariables()}function _a(){return O}function Hh(){return O.memory()}function BM(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function _e(e){fv(e).forEach(t=>t.dispose())}function Ht(e){return O.keep(e)}function VM(e){return O.time(e)}function UM(e){return O.setBackend(e)}function GM(){return O.ready()}function HM(){return O.backendName}function qM(e){O.removeBackend(e)}function jM(e){return O.findBackend(e)}function KM(e){return O.findBackendFactory(e)}function Mm(e,t,n=1){return O.registerBackend(e,t,n)}function QS(){return O.backend}function XM(e,t){G().setPlatform(e,t)}function YM(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(bs,r)}var X=L({add_:YM});function ZM(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Ki,r)}var Pm=L({floorDiv_:ZM});function JM(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=Ft(n,a),n.dtype==="int32"&&a.dtype==="int32")return Pm(n,a);let r={a:n,b:a},s={};return O.runKernel(Ui,r,s)}var he=L({div_:JM});function QM(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(ho,r)}var z=L({mul_:QM});function eP(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(Ac,n)}else{let n={x:t};return O.runKernel(ql,n)}}var Wt=L({abs_:eP});function tP(e){let t={x:_(e,"x","acos")};return O.runKernel(Ii,t)}var kv=L({acos_:tP});function nP(e){let t={x:_(e,"x","acosh")};return O.runKernel(Si,t)}var Iv=L({acosh_:nP});function aP(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!$r(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(Ni,a)}var eN=L({addN_:aP});function rP(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(jl,a,r)}var Om=L({all_:rP});function sP(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(Kl,a,r)}var hc=L({any_:sP});function iP(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(Xl,n,a)}var pi=L({argMax_:iP});function oP(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(Yl,n,a)}var Sv=L({argMin_:oP});function lP(e){let t={x:_(e,"x","asin")};return O.runKernel(Ti,t)}var Nv=L({asin_:lP});function uP(e){let t={x:_(e,"x","asinh")};return O.runKernel(Ci,t)}var Tv=L({asinh_:uP});function pP(e){let t={x:_(e,"x","atan")};return O.runKernel(_i,t)}var Cv=L({atan_:pP});function cP(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Ai,r)}var _v=L({atan2_:cP});function dP(e){let t={x:_(e,"x","atanh")};return O.runKernel(Ei,t)}var Ev=L({atanh_:dP});function hP(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=aN(r);return Zc(e,o,n,s,a,null,null,l)}function tN(e,t,n,a,r,s,i="channelsLast"){let[o,l]=mc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Zc(e,u,n,a,r,s,!1,i)}function mP(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=kx(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return nN(e,p,n,a,r,!1,d,s)}function Zc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=mc(n),[b,y]=mc(a),x=kl(c,b),w=kl(h,y),{padInfo:I,outHeight:T,outWidth:C}=bP(r,u,p,f,g,x,w,s,o),E=i?m*d:m,F;return o==="channelsFirst"?F=[l,E,T,C]:o==="channelsLast"&&(F=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:F,filterShape:t}}function nN(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=kx(n),[w,I,T]=kx(a),C=kl(h,w),E=kl(m,I),F=kl(f,T),{padInfo:D,outDepth:$,outHeight:S,outWidth:M}=yP(r,u,p,d,b,y,x,C,E,F,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,$,S,M]:i==="channelsLast"&&(U=[l,$,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:M,outChannels:B,padInfo:D,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:F,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function fP(e,t,n,a,r){a==null&&(a=Av(e,t,n));let s=e[0],i=e[1],o=fc((s-t+2*a)/n+1,r),l=fc((i-t+2*a)/n+1,r);return[o,l]}function gP(e,t,n,a,r,s){r==null&&(r=Av(e,t[0],a[0]));let i=[0,0,0,n];for(let o=0;o<3;o++)e[o]+2*r>=t[o]&&(i[o]=fc((e[o]-t[o]+2*r)/a[o]+1,s));return i}function Av(e,t,n,a=1){let r=kl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function mc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function kx(e){return typeof e=="number"?[e,e,e]:e}function kl(e,t){return t<=1?e:e+(e-1)*(t-1)}function bP(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=fP([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=fc((t-s+c+h)/a+1,o),d=fc((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function yP(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(e==="valid"&&(e=0),typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=gP([t,n,a,1],[o,l,u],1,[r,s,i],e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,T=Math.floor(b/2),C=b-T;d={top:w,bottom:I,left:T,right:C,front:y,back:x,type:"SAME"}}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function fc(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ls(e){let[t,n,a]=mc(e);return t===1&&n===1&&a===1}function cr(e,t){return ls(e)||ls(t)}function ci(e){return mc(e).every(t=>t>0)}function aN(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Tn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")A(Sl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{A(Sl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function xP(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(Fu,n,a)}var W=L({reshape_:xP});function vP(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;A(cr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Tn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(Fi,u,p);return d=ie(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ya=L({avgPool_:vP});function wP(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),A(typeof n=="number"&&n>0||Array.isArray(n)&&n[0]>0&&n[1]>0&&n[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${n}'`),Tn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(Zl,u,p);return d=ie(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Fv=L({avgPool3d_:wP});function kP(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=dc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return sr(n[0]);let a=n,r={axis:t};return O.runKernel(eu,a,r)}var Qe=L({concat_:kP});function IP(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=Ft(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel($i,i,o)}var $e=L({matMul_:IP});function SP(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(Ao,t)}var ma=L({sigmoid_:SP});function NP(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(Lu,r,s)}var Ue=L({slice_:NP});function TP(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(Lo,t)}var di=L({tanh_:TP});function CP(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Qe([u,d],1),h=$e(c,o),m=X(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=Ue(m,[0,0],b),x=Ue(m,[0,g],b),w=Ue(m,[0,g*2],b),I=Ue(m,[0,g*3],b),T=X(z(ma(y),di(x)),z(p,ma(X(i,w)))),C=z(di(T),ma(I));return[T,C]}var rN=L({basicLSTMCell_:CP});function _P(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(Jl,s,i)}var Jc=L({batchToSpaceND_:_P});function EP(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function AP(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:EP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Xi,d,c);return W(h,i.shape)}var ks=L({batchNorm_:AP});function FP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var $v=L({batchNorm2d_:FP});function $P(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var Dv=L({batchNorm3d_:$P});function DP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),ks(i,o,l,p,u,s)}var Rv=L({batchNorm4d_:DP});function RP(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(Ql,s,i)}var Mv=L({bincount_:RP});function MP(e,t){let n=_(e,"x","bitwiseAnd"),a=_(t,"y","bitwiseAnd");if(!$r(n.shape,a.shape))throw new Error(`BitwiseAnd: Tensors must have the same shape. x: ${n.shape}, y: ${a.shape}`);if(n.dtype!=="int32"||a.dtype!=="int32")throw new Error(`BitwiseAnd: Only supports 'int32' values in tensor, found type of x: ${n.dtype} and type of y: ${a.dtype}`);let r={a:n,b:a};return O.runKernel(ym,r)}var sN=L({bitwiseAnd_:MP});function PP(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Ec,r)}var iN=L({broadcastArgs_:PP});function OP(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(ra(t),t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return sr(n);let i={x:n},o={reps:s};return O.runKernel(xs,i,o)}var ni=L({broadcastTo_:OP});function LP(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(Ri,t)}var Pv=L({ceil_:LP});function xn(e,t,n){ra(e),n=n||Cc(t);let a={shape:e,value:t,dtype:n};return O.runKernel(Dc,{},a)}function zP(e,t,n){let a=_(e,"x","clipByValue");if(A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return xn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(ys,r,s)}var rn=L({clipByValue_:zP});function WP(e){return Qe(e,0)}var Ov=L({concat1d_:WP});function BP(e,t){return Qe(e,t)}var Lv=L({concat2d_:BP});function VP(e,t){return Qe(e,t)}var zv=L({concat3d_:VP});function UP(e,t){return Qe(e,t)}var Wv=L({concat4d_:UP});function GP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Tn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),A(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(ci(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),A(ci(n),()=>"Error in conv2D: Strides should be larger than 0.");let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Mi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=L({conv2d_:GP});function HP(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Tn("conv1d",a,i),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(cr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(ci(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),A(ci(n),()=>"Error in conv1D: Stride should be larger than 0."),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Lm=L({conv1d_:HP});function qP(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];A(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),A(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Tn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(Pi,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Bv=L({conv2DBackpropInput_:qP});function jP(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return Bv(n,i,o,a,r,"NHWC",s)}var zm=L({conv2dTranspose_:jP});function KP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(cr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`),A(ci(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),A(ci(n),()=>"Error in conv3D: Strides should be larger than 0.");let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(Oi,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Vv=L({conv3d_:KP});function XP(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(nu,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var oN=L({conv3DBackpropInput_:XP});function YP(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return oN(n,s,i,a,r)}var Uv=L({conv3dTranspose_:YP});function ZP(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(Li,t)}var Qc=L({cos_:ZP});function JP(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(zi,t)}var Wm=L({cosh_:JP});function QP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(au,r,s)}var gc=L({cumprod_:QP});function eO(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Wi,r,s)}var Bm=L({cumsum_:eO});function tO(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(Fc,i,o)}var qh=L({denseBincount_:tO});function nO(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(su,o,l)}var Gv=L({depthToSpace_:nO});function aO(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Tn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Bi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Is=L({depthwiseConv2d_:aO});function rO(e){let t={x:_(e,"x","diag")};return O.runKernel($c,t)}var lN=L({diag_:rO});function sO(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0),A(l.shape[3]===o.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${l.shape[3]} vs ${o.shape[2]}`);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(Vi,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Hv=L({dilation2d_:sO}),Yu={};Ee(Yu,{assertAndGetBroadcastShape:()=>ut,getBroadcastDims:()=>uN,getReductionAxes:()=>Ut});function uN(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Ut(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ut(e,t){let n=Math.max(e.length,t.length),a=new Array(n);for(let r=0;r<n;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)a[n-r-1]=i;else if(i===1)a[n-r-1]=s;else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else a[n-r-1]=s}return a}function iO(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(lu,r)}var ea=L({equal_:iO});function oO(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=ut(ut(s.shape,a.shape),r.shape),o=ni(s,i),l=ni(a,i),u=ni(r,i),p={condition:o,t:l,e:u};return O.runKernel(Ou,p)}var an=L({where_:oO});function lO(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(Ku,t)}var qe=L({zerosLike_:lO});function uO(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=Ft(n,a);let r=he(n,a),s=qe(r),i=ea(a,s);return an(i,s,r)}var qv=L({divNoNan_:uO});function pO(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=$e(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=$e(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=$e(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return $e(n,i)}}var jv=L({dot_:pO});function cO(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(Im,n,a)}var pN=L({einsum_:cO});function dO(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(Gi,t)}var Zu=L({elu_:dO});function hO(e,t){let n=_(e,"x","ensureShape","string_or_numeric");if(!gS(n.shape,t))throw new Error(`EnsureShape: Shape of tensor ${n.shape} is not compatible with expected shape ${t}`);return e}var cN=L({ensureShape_:hO});function mO(e){let t=_(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ie(t,"float32"));let n={x:t};return O.runKernel(ou,n)}var Kv=L({erf_:mO});function Xv(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function dN(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function hN(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function hi(e,t){let n=t.map(a=>1);return dN(e,n,t)}function fO(e,t,n){A(Xv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function mN(e,t){if(Xv(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Yv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function gO(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function bO(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(so,a,r)}var fa=L({max_:bO});function yO(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(uo,a,r)}var _l=L({min_:yO});function xO(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(go,r)}var Fr=L({pow_:xO});function ve(e,t){if((en(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&en(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ws(e,[],[],t)}function vO(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel($o,t)}var hn=L({sqrt_:vO});function wO(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var lt=L({square_:wO});function kO(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Do,r,s)}var fe=L({sum_:kO});function IO(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=fN(e,t,n),s=r.shape;if(a){let i=$a(n,e.shape);s=hi(r.shape,i)}return W(r,s)}function fN(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return fN(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(Wt(e),n);if(t===1/0)return fa(Wt(e),n);if(t===-1/0)return _l(Wt(e),n);if(t==="euclidean"||t===2)return hn(fe(Fr(Wt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return fa(fe(Wt(e),n[0]),n[1]-1);if(t===1/0)return fa(fe(Wt(e),n[1]),n[0]);if(t===-1/0)return _l(fe(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return hn(fe(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Ju=L({norm_:IO});function SO(e,t=null,n=!1){return Ju(e,"euclidean",t,n)}var Zv=L({euclideanNorm_:SO});function NO(e){let t={x:_(e,"x","exp")};return O.runKernel(Hi,t)}var yn=L({exp_:NO});function TO(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(uu,a,r)}var tn=L({expandDims_:TO});function CO(e){let t={x:_(e,"x","expm1")};return O.runKernel(qi,t)}var Jv=L({expm1_:CO});function _O(e,t){let n=_(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(xs,a,r)}var Ln=L({tile_:_O});function EO(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ln(tn(i,0),[n[0],1,1]);if(n.length===2)return Ln(tn(tn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ln(tn(tn(tn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Vm=L({eye_:EO});function AO(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(ji,t)}var Qu=L({floor_:AO});function FO(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(cu,i,o)}var ep=L({gather_:FO});function $O(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(hu,r)}var Cn=L({greater_:$O});function DO(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Yi,r)}var Dr=L({greaterEqual_:DO});function RO(e){let t={input:_(e,"input","imag")};return O.runKernel(Tm,t)}var ed=L({imag_:RO});function MO(e){let t={x:_(e,"x","isFinite")};return O.runKernel(Ji,t)}var Qv=L({isFinite_:MO});function PO(e){let t={x:_(e,"x","isInf")};return O.runKernel(Qi,t)}var ew=L({isInf_:PO});function OO(e){let t={x:_(e,"x","isNaN")};return O.runKernel(eo,t)}var tw=L({isNaN_:OO});function LO(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(to,n,a)}var td=L({leakyRelu_:LO});function zO(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(mu,r)}var El=L({less_:zO});function WO(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(fu,r)}var Ss=L({lessEqual_:WO});function gN(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(gu,{},a)}function BO(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(Sl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(ro,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var nw=L({localResponseNormalization_:BO});function VO(e){let t={x:_(e,"x","log","float32")};return O.runKernel(no,t)}var ta=L({log_:VO});function UO(e){let t={x:_(e,"x","log1p")};return O.runKernel(ao,t)}var nd=L({log1p_:UO});function GO(e){return A(ss(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Um(i),i[0]})}}function HO(e){return A(ss(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=dc(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Nn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Um(i),i})}}function qO(e){return A(ss(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Ce,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Ce,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return Um(a),{grad:a[0],value:r}}}function jO(e){return A(ss(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Ce),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Ce,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Nn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Um(a.grads),a}}function bN(e,t){A(ss(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(u=>u instanceof os),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);A(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ur(e){return O.customGrad(e)}function Um(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function KO(e){let t={x:_(e,"x","neg")};return O.runKernel(Su,t)}var yt=L({neg_:KO});function XO(e){let t={x:_(e,"x","softplus")};return O.runKernel(Fo,t)}var zo=L({softplus_:XO});function YO(e){let t=_(e,"x","logSigmoid");return ur(n=>({value:yt(zo(yt(n))),gradFunc:a=>z(a,ma(yt(n)))}))(t)}var aw=L({logSigmoid_:YO});function ZO(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Po,r)}var pe=L({sub_:ZO});function JO(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ur((a,r)=>{let s=fa(a,t,!0),i=pe(a,s),o=pe(ie(i,"float32"),ta(fe(yn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=yn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var Gm=L({logSoftmax_:JO});function QO(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=$a(t,a.shape),s=fa(a,r,!0),i=pe(a,s),o=yn(i),l=fe(o,r),u=ta(l),p=X(W(s,u.shape),u);if(n){let d=hi(p.shape,r);return W(p,d)}return p}var Hm=L({logSumExp_:QO});function e3(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(bu,r)}var Fa=L({logicalAnd_:e3});function t3(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(yu,t)}var ad=L({logicalNot_:t3});function n3(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(xu,r)}var qm=L({logicalOr_:n3});function a3(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return ut(n.shape,a.shape),Fa(qm(e,t),ad(Fa(e,t)))}var rw=L({logicalXor_:a3}),fh=2147483648;function r3(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=fh)throw new Error(`values tensor size must less than ${fh}`);if(o.shape[1]>=fh)throw new Error(`trailing dim_size must less than ${fh} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(Pu,u,p)}var jm=L({searchSorted_:r3});function yN(e,t){return jm(e,t,"left")}function s3(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(cr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Tn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(oo,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mt=L({maxPool_:s3});function i3(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(wu,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var sw=L({maxPool3d_:i3});function o3(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(_m,s,i);return{result:o[0],indexes:o[1]}}var xN=L({maxPoolWithArgmax_:o3});function l3(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(io,r)}var dr=L({maximum_:l3});function u3(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(lo,a,r)}var Et=L({mean_:u3});function Nt(e,t="float32"){if(ra(e),t==="complex64"){let a=Nt(e,"float32"),r=Nt(e,"float32");return Ar(a,r)}let n=fm(bt(e),t);return O.makeTensor(n,e,t)}function Jn(e,t="float32"){if(ra(e),t==="complex64"){let a=Jn(e,"float32"),r=Nt(e,"float32");return Ar(a,r)}let n=cv(bt(e),t);return O.makeTensor(n,e,t)}function vN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Ce?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Ce?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[$e(Jn([i,1],a.dtype),a),$e(r,Jn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[$e(a,Jn([1,i],a.dtype)),$e(Jn([s,1],r.dtype),r)])}function p3(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(po,r)}var us=L({minimum_:p3});function c3(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)A(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(co,i,s)}var iw=L({mirrorPad_:c3});function d3(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(ku,r)}var ow=L({mod_:d3});function h3(e,t=null,n=!1){e=_(e,"x","moments");let a=$a(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=hi(r.shape,a));let i=lt(pe(ie(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var rd=L({moments_:h3});function m3(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=dc(n,"c","multiRNNCell"),i=dc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var wN=L({multiRNNCell_:m3});function f3(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(Iu,o,l);return i===1?W(u,[u.size]):u}var kN=L({multinomial_:f3});function g3(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Nu,r)}var mi=L({notEqual_:g3});function b3(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(mo,s,i)}var Al=L({oneHot_:b3});function y3(e){let t={x:_(e,"x","onesLike")};return O.runKernel(Eu,t)}var na=L({onesLike_:y3});function x3(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return $e(r,s)}var IN=L({outerProduct_:x3});function v3(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(fo,s,r)}var xa=L({pad_:v3});function w3(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),xa(e,[t],n)}var SN=L({pad1d_:w3});function k3(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var NN=L({pad2d_:k3});function I3(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var TN=L({pad3d_:I3});function S3(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var CN=L({pad4d_:S3});function N3(e,t,n){let a=_(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(Wu,r,s)}var sd=L({spaceToBatchND_:N3});function T3(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(cr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=tN(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=_3([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=C3([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:sd(l,d,m),y=(n==="avg"?()=>ya(b,t,s,g,i):()=>Mt(b,t,s,g,i))(),x=h?y:Jc(y,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function C3(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function _3(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var lw=L({pool_:T3});function E3(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(bo,r)}var id=L({prelu_:E3});function A3(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(yo,r,s)}var uw=L({prod_:A3});function F3(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(Em,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var _N=L({raggedGather_:F3});function $3(e,t,n){let a=_(e,"starts","raggedRange"),r=_(t,"limits","raggedRange",a.dtype),s=_(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(Am,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var EN=L({raggedRange_:$3});function D3(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(Fm,u,p)}var AN=L({raggedTensorToTensor_:D3});function R3(e,t,n){ra(e);let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var FN=L({rand_:R3}),pw=gs(hm()),$N={};Ee($N,{TEST_EPSILON_FLOAT16:()=>DN,createVideoElement:()=>V3,encodeStrings:()=>RN,expectArrayBuffersEqual:()=>B3,expectArraysClose:()=>P3,expectArraysEqual:()=>L3,expectNumbersClose:()=>z3,expectPromiseToFail:()=>O3,expectValuesInRange:()=>W3,play:()=>U3,testEpsilon:()=>cw});var M3=.001,DN=.1;function P3(e,t,n){return n==null&&(n=cw()),Ix(e,t,(a,r)=>dw(a,r,n))}function cw(){return O.backend.floatPrecision()===32?M3:DN}function Ix(e,t,n){let a=!0;if((en(e)||en(t))&&(a=!1),en(e)&&en(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=lr(e),o=lr(t);if(!$r(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=en(e)?e:is(e),s=en(t)?t:is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function O3(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function L3(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Jr(e)||Jr(e[0])||Jr(t)||Jr(t[0])?Ix(e,n,(a,r)=>a==r):Ix(e,t,(a,r)=>dw(a,r,0))}function z3(e,t,n){if(n==null&&(n=cw()),!dw(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function dw(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function W3(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function B3(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function RN(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?RN(n):e[t]=Kc(n)}return e}function V3(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function U3(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var hw=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=pw.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},G3=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=pw.alea(r.toString()),this.randn=new hw(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},H3=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=pw.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function q3(e,t,n=1,a="float32",r){if(ra(e),n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new G3(t,n,a,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var MN=L({randomGamma_:q3});function j3(e,t=0,n=1,a,r){if(ra(e),a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new hw(t,n,a,!1,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Km=L({randomNormal_:j3});function K3(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return Km(e,0,1,t,n)}var PN=L({randomStandardNormal_:K3});function X3(e,t=0,n=1,a="float32",r){ra(e);let s=Le(e,a),i=new H3(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Ns=L({randomUniform_:X3});function Y3(e,t,n,a){return Ns(e,t,n,"int32",a)}var ON=L({randomUniformInt_:Y3});function fi(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(Mc,{},r)}function Z3(e){let t={input:_(e,"input","real")};return O.runKernel($m,t)}var Fl=L({real_:Z3});function J3(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(xo,t)}var mw=L({reciprocal_:J3});function Q3(e){let t={x:_(e,"x","relu")};return O.runKernel(vo,t)}var Ke=L({relu_:Q3});function eL(e){let t={x:_(e,"x","relu6")};return O.runKernel(Io,t)}var Xm=L({relu6_:eL});function tL(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(So,n,a)}var ba=L({reverse_:tL});function nL(e){let t=_(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ba(t,0)}var LN=L({reverse1d_:nL});function aL(e,t){let n=_(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ba(n,t)}var zN=L({reverse2d_:aL});function rL(e,t){let n=_(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ba(n,t)}var WN=L({reverse3d_:rL});function sL(e,t){let n=_(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ba(n,t)}var BN=L({reverse4d_:sL});function iL(e){let t={x:_(e,"x","round")};return O.runKernel(No,t)}var Ym=L({round_:iL});function oL(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(To,t)}var Zm=L({rsqrt_:oL});function lL(e){let t={x:_(e,"x","selu")};return O.runKernel(Co,t)}var Jm=L({selu_:lL});function uL(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];A(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Is(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ts=L({separableConv2d_:uL});async function pL(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Vt([o],n.dtype),u=new Vt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var VN=pL;function cL(e){let t={x:_(e,"x","sign")};return O.runKernel(Eo,t)}var fw=L({sign_:cL});function dL(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(_o,t)}var Qm=L({sin_:dL});function hL(e){let t={x:_(e,"x","sinh")};return O.runKernel(zu,t)}var ef=L({sinh_:hL});function mL(e,t,n){let a=_(e,"x","slice1d");return A(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ue(a,[t],[n])}var od=L({slice1d_:mL});function fL(e,t,n){let a=_(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var tf=L({slice2d_:fL});function gL(e,t,n){let a=_(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var Wo=L({slice3d_:gL});function bL(e,t,n){let a=_(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ue(a,t,n)}var $l=L({slice4d_:bL});function yL(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(Ro,a,r)}var Xa=L({softmax_:yL});function xL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Sm,t)}var ld=L({fft_:xL});function vL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Nm,t)}var Dl=L({ifft_:vL});function wL(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=Dl(r)}else{let r=[n,2*(t-1)],s=W(Fl(e),[n,t]),i=W(ed(e),[n,t]),o=ba(Ue(s,[0,1],[n,t-2]),1),l=z(ba(Ue(i,[0,1],[n,t-2]),1),ve(-1)),u=Qe([s,o],1),p=Qe([i,l],1),d=W(Ar(u,p),[r[0],r[1]]);a=Dl(d)}if(a=Fl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var nf=L({irfft_:wL});function kL(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(Bu,a,r)}var zn=L({split_:kL});function IL(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ue(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,Nt(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(Ar(r,s),[a,n]),o=ld(i),l=Math.floor(n/2)+1,u=Fl(o),p=ed(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Ar(d[0],c[0]),h)}var ud=L({rfft_:IL});function SL(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=Ft(n,a),ut(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(Mo,r,s)}var af=L({squaredDifference_:SL});function NL(e,t){let n=_(e,"x","squeeze","string_or_numeric");return W(n,bS(n.shape,t).newShape)}var Cs=L({squeeze_:NL});function TL(e,t=0){let n=dc(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(Au,a,r)}var Dt=L({stack_:TL});function CL(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(vs,n,a)}var Bo=L({step_:CL});function _L(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(Gu,u,p)}var gw=L({stridedSlice_:_L});function EL(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(Oo,t)}var bw=L({tan_:EL});function je(e,t){ki(e);let n=lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ws(e,null,n,t)}function Aa(e,t,n){if(ki(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=lr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ws(e,t,a,n)}function pd(e,t,n){if(ki(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=lr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function Da(e,t,n){if(ki(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=lr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function UN(e,t,n){if(ki(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=lr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ws(e,t,a,n)}function GN(e,t,n){if(ki(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=lr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,ws(e,t,a,n)}var rf={};Ee(rf,{calculateShapes:()=>HN,validateInput:()=>sf,validateUpdateShape:()=>yw});function yw(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function sf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}yw(n,t,e)}function HN(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...Hl(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}function AL(e,t,n){let a=_(e,"tensor","tensorScatterupdate"),r=_(t,"indices","tensorScatterupdate","int32"),s=_(n,"updates","tensorScatterupdate");if(sf(s,r,a.shape),a.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${a.dtype} and ${s.dtype}.`);let i={tensor:a,indices:r,updates:s},o={};return O.runKernel(Mu,i,o)}var qN=L({tensorScatterUpdate_:AL});function FL(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(Hu,s,i);return{values:o,indices:l}}var xw=L({topk_:FL});function $L(e,t=0,n=1,a,r){if(ra(e),a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new hw(t,n,a,!0,r),i=Le(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var of=L({truncatedNormal_:$L});function DL(e,t=0){let n=_(e,"x","unique","string_or_numeric");A(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Gc,a,r);return{values:s,indices:i}}var vw=L({unique_:DL});function RL(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");A(Sl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(Hc,s,i)}var lf=L({unsortedSegmentSum_:RL});function ML(e,t=0){let n=_(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(ju,a,r)}var pt=L({unstack_:ML});function jN(e,t){return jm(e,t,"right")}function ww(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function KN(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function PL(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=KN(t.shape,n);return e!==t&&t.dispose(),a}var kw=PL;async function OL(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;A(i>0,()=>"mask cannot be scalar"),Nn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await kw(d),h=Cs(c,[1]),m=ep(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var XN=OL;function LL(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),A(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=Fl(a),o=ed(a);return i=O.runKernel(_r,{x:i},s),o=O.runKernel(_r,{x:o},s),n&&(o=yt(o)),Ar(i,o)}):O.runKernel(_r,r,s)}var De=L({transpose_:LL});function zL(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");OS(s,i),A($r(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),u=pe(l,o),p=z(pe(i,s),u);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,Fr(o,d)))}return X(s,p)}var YN=L({movingAverage_:zL});function WL(e,t,n){ra(n);let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");sf(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(Ru,s,i)}var ZN=L({scatterND_:WL});function BL(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function VL(e,t,n,a=0){ra(n);let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);BL(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(Uu,o,l)}var JN=L({sparseToDense_:VL});function UL(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(du,a)}var QN=L({gatherND_:UL});function GL(e,t){if(t==null)return e.shape.slice();if($r(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function HL(e,t,n,a){let r=_(e,"x","dropout");if(A(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ce?r.clone():r;let s=GL(r,n),i=1-t,o=he(Qu(X(Ns(s,0,1,"float32",a),i)),i);return z(r,o)}var Iw=L({dropout_:HL});function Sw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function uf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return je(r,"float32")}async function qL(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");A(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Nn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=yS("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),bn(p,r.shape,"bool")}var eT=qL,Rl={};Ee(Rl,{conv2d:()=>XL,depthwiseConv2d:()=>QL,matMul:()=>tz});function jL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),A(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Tn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(vm,d,c)}var Nw=L({conv2DBackpropFilter_:jL});function pf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Bo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,a=Ut(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function df(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ke(e);if(t==="elu")return Zu(e);if(t==="relu6")return Xm(e);if(t==="prelu")return id(e,n);if(t==="leakyrelu")return td(e,a);if(t==="sigmoid")return ma(e);throw new Error(`Unknown fused activation ${t}.`)}var hf=(e,t)=>!(e>0)||t==="linear";function KL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",hf(O.state.gradientDepth,l)===!1){A(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Rt(e,t,n,a,r,s,i);return o!=null&&(T=X(T,o)),df(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Tn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];A(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),A(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Zc(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=Ft(b,d),r==="NHWC"?ut(g.outShape,b.shape):(A(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),A(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let T=u.shape;if(A(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)A(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{ut(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{A(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,F,D,$]=C,S=pf(T,D,l);A(ls(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=Bv(F.shape,S,E,n,a),B=Nw(F,S,E.shape,n,a),U=[M,B];if($!=null){let H=cf($,S);U.push(H)}return U},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((T,C,E)=>{let F=O.runKernel(ii,w,I);return E([C,T,F]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,c):ur((T,C,E,F)=>{let D=O.runKernel(ii,w,I);return F([C,T,D,E]),m&&(D=W(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,c,b)}var XL=L({fusedConv2d_:KL});function YL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(wm,u,p)}var tT=L({depthwiseConv2dNativeBackpropFilter_:YL});function ZL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(km,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var nT=L({depthwiseConv2dNativeBackpropInput_:ZL});function JL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(hf(O.state.gradientDepth,l)===!1){let I=Is(e,t,n,a,r,s,i);return o!=null&&(I=X(I,o)),df(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),A(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),A(cr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Tn("fused depthwiseConv2d",a,i);let f=Zc(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=Ft(g,d),ut(f.outShape,g.shape));let b;u!=null&&(b=_(u,"prelu weights","fused depthwiseConv2d"));let y=(I,T)=>{A(ls(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,F,D]=T,$=pf(I,F,l),S=nT(E.shape,$,C,n,a,s,i),M=tT(E,$,C.shape,n,a,s,i);if(D!=null){let B=cf(g,$);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((I,T,C)=>{let E=O.runKernel(oi,x,w);return C([T,I,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c):ur((I,T,C,E)=>{let F=O.runKernel(oi,x,w);return E([T,I,F,C]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,c,g)}var QL=L({fusedDepthwiseConv2d_:JL});function ez({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(hf(O.state.gradientDepth,s)===!1){let D=$e(e,t,n,a);return r!=null&&(D=X(D,r)),df(D,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=Ft(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),b=bt(f);A(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=ut(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[b,h,d]):W(u,[b,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=Ft(I,l),ut(y,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(D,$)=>{let[S,M,B,U]=$,H=pf(W(D,B.shape),B,s),j,K;if(!n&&!a?(j=$e(H,M,!1,!0),K=$e(S,H,!0,!1)):!n&&a?(j=$e(H,M,!1,!1),K=$e(H,S,!0,!1)):n&&!a?(j=$e(M,H,!1,!0),K=$e(S,H,!1,!1)):(j=$e(M,H,!0,!0),K=$e(H,S,!0,!0)),r!=null){let Z=cf(U,H);return[j,K,Z]}else return[j,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ur((D,$,S)=>{let M=O.runKernel(si,E,F);return S([D,$,M]),{value:W(M,y),gradFunc:C}})(x,w):ur((D,$,S,M)=>{let B=O.runKernel(si,E,F);return M([D,$,B,S]),{value:W(B,y),gradFunc:C}})(x,w,I)}var tz=L({fusedMatMul_:ez});function nz(e){return uf(e,.54,.46)}var az=L({hammingWindow_:nz});function rz(e){return uf(e,.5,.5)}var aT=L({hannWindow_:rz});function sz(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ue(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Qe([Ue(e,s,t-o),xn([o],r)]);i.push(l),s+=n}return i.length===0?Aa([],[0,t]):W(Qe(i),[i.length,t])}var rT=L({frame_:sz});function iz(e,t,n,a,r=aT){a==null&&(a=Sw(t));let s=rT(e,t,n),i=z(s,r(t));return ud(i,a)}var oz=L({stft_:iz});function lz(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(ru,p,d)}var uz=L({cropAndResize_:lz});function pz(e){let t=_(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(pu,n,{})}var cz=L({flipLeftRight_:pz});function dz(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var hz=L({grayscaleToRGB_:dz});function mz(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(Xu,s,i)}var fz=L({rotateWithOffset_:mz});function tp(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function gz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=tp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(Tu,{boxes:s,scores:i},l)}var bz=L({nonMaxSuppression_:gz});function yz(e,t,n){let a=xz(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function xz(e,t,n){return wz(e,t,n||vz)}function vz(e,t){return e>t?1:e<t?-1:0}function wz(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function sT(e,t,n,a,r){return Tw(e,t,n,a,r,0)}function iT(e,t,n,a,r,s){return Tw(e,t,n,a,r,0,!1,s,!0)}function oT(e,t,n,a,r,s){return Tw(e,t,n,a,r,s,!0)}function Tw(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(zk);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=kz(e,y,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*Iz(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&yz(u,g,zk))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function kz(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function Iz(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function zk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function Sz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=tp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=sT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),je(d,"int32")}var Nz=Sz;function Tz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=tp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(_u,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var Cz=L({nonMaxSuppressionWithScore_:Tz});async function _z(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=tp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=oT(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(c,"int32"),selectedScores:je(h)}}var Ez=_z;function Az(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=tp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(Cu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var Fz=L({nonMaxSuppressionPadded_:Az});async function $z(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=tp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=iT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(m,"int32"),validOutputs:ve(f,"int32")}}var Dz=$z;function Rz(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(ko,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var lT=L({resizeBilinear_:Rz});function Mz(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(wo,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var uT=L({resizeNearestNeighbor_:Mz});function Pz(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(je([a]),255),p,d,c,h;if(A(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),A(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),A(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),b=z(c,o);h=X(X(f,g),b)}else h=e;if(t==="otsu"){let f=Mv(ie(Ym(h),"int32"),bn([]),256);u=Oz(f,l)}let m=n?Ss(h,u):Cn(h,u);return ie(z(m,255),"int32")}function Oz(e,t){let n=je([-1]),a=je([0]),r=je([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Ue(e,0,d+1),i=Ue(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,fi(0,s.size)));o=he(c,fe(s));let h=xn(i.shape,s.size),m=X(fi(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),b=pe(o,l),y=z(u,p);r=z(z(y,g),b);let x=Cn(r,a);a=an(x,r,a),n=an(x,je([d]),n)}return n}var Lz=L({threshold_:Pz});function zz(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(qu,l,u)}var Wz=L({transform_:zz});function Bz(e,t,n){let a=_(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2),o,l;typeof t=="number"?(A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),o=_(t<0?s:t,"numLower","bandPart")):(A(t.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),o=an(El(t,0),s,us(t,s))),typeof n=="number"?(A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`),A(n<=i,()=>`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`),l=_(n<0?i:n,"numUpper","bandPart")):(A(n.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),l=an(El(n,0),i,us(n,i)));let u=W(fi(0,s,1,"int32"),[-1,1]),p=fi(0,i,1,"int32"),d=pe(u,p),c=Fa(Ss(d,o),Dr(d,yt(l))),h=Nt([s,i],a.dtype);return W(Dt(pt(W(a,[-1,s,i])).map(m=>an(c,m,h))),r)}var Vz=L({bandPart_:Bz});function Uz(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)A(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>Cs(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,Ju(s,"euclidean"))}));return t?Dt(n,0):n}var Gz=L({gramSchmidt_:Uz});function Hz(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Wk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=pt(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=Wk(l,t);r.push(u),s.push(p)});let i=W(Dt(r,0),e.shape),o=W(Dt(s,0),e.shape);return[i,o]}}function Wk(e,t=!1){return O.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Vm(n),s=sr(e),i=Aa([[1]],[1,1]),o=sr(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=Ue(s,[u,u],[n-u,1]),m=Ju(h),f=Ue(s,[u,u],[1,1]),g=an(Cn(f,0),Aa([[-1]]),Aa([[1]])),b=pe(f,z(g,m)),y=he(h,b);y.shape[0]===1?o=sr(i):o=Qe([i,Ue(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=yt(he($e(g,b),m)),w=Ue(s,[u,0],[n-u,a]),I=z(x,o),T=De(o);if(u===0)s=pe(w,$e(I,$e(T,w)));else{let F=pe(w,$e(I,$e(T,w)));s=Qe([Ue(s,[0,0],[u,a]),F],0)}let C=De(I),E=Ue(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,$e($e(E,o),C));else{let F=pe(E,$e($e(E,o),C));r=Qe([Ue(r,[0,0],[n,u]),F],1)}return[o,s,r]}),_e([p,d,c])}return!t&&n>a&&(r=Ue(r,[0,0],[n,a]),s=Ue(s,[0,0],[a,a])),[r,s]})}var qz=L({qr_:Hz}),kn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(kn||(kn={}));function jz(e,t,n=kn.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===kn.NONE)return s;if(n===kn.SUM)return fe(s);if(n===kn.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,ve(i)):o}}if(n===kn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),ve(a.size));{let i=z(r,Jn(a.shape)),o=ie(fe(mi(i,ve(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Rr=L({computeWeightedLoss_:jz});function Kz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),Nn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Wt(pe(r,s));return Rr(o,i,a)}var Xz=L({absoluteDifference_:Kz});function Yz(e,t,n,a,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),Nn(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),u=pe(l,fe(z(s,i),n,!0));return Rr(u,o,r)}var Zz=L({cosineDistance_:Yz});function Jz(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),Nn(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=pe(z(ve(2),r),o);let l=Ke(pe(o,z(r,s)));return Rr(l,i,a)}var Qz=L({hingeLoss_:Jz});function eW(e,t,n,a=1,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),Nn(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),u=Wt(pe(i,s)),p=us(u,l),d=pe(u,p),c=X(z(ve(.5),lt(p)),z(l,d));return Rr(c,o,r)}var tW=L({huberLoss_:eW});function nW(e,t,n,a=1e-7,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),Nn(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),u=ve(a),p=yt(z(s,ta(X(i,u)))),d=z(pe(l,s),ta(X(pe(l,i),u))),c=pe(p,d);return Rr(c,o,r)}var aW=L({logLoss_:nW});function rW(e,t,n,a=kn.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),Nn(r.shape,s.shape,"Error in meanSquaredError: ");let o=af(r,s);return Rr(o,i,a)}var sW=L({meanSquaredError_:rW});function iW(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");Nn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ke(a),s=z(a,n),i=nd(yn(yt(Wt(a))));return X(pe(r,s),i)}function oW(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),Nn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(.5);s=X(z(s,pe(p,u)),z(d,u))}let l=iW(s,i);return Rr(l,o,r)}var lW=L({sigmoidCrossEntropy_:oW});function uW(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ur((a,r,s)=>{let i=Hm(r,[n],!0),o=pe(ie(r,"float32"),i);s([a,o]);let l=yt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=hi(u.shape,[n]);return[z(W(u,h),pe(ie(d,"float32"),yn(c))),z(W(u,h),pe(yn(c),ie(d,"float32")))]}}})(e,t)}function pW(e,t,n,a=0,r=kn.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),Nn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(s.shape[1]);s=X(z(s,pe(p,u)),he(u,d))}let l=uW(s,i);return Rr(l,o,r)}var cW=L({softmaxCrossEntropy_:pW});function dW(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(Pc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var hW=L({sparseFillEmptyRows_:dW});function mW(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(Vu,i);return{outputIndices:o[0],outputShape:o[1]}}var fW=L({sparseReshape_:mW});function gW(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Oc,i)}var bW=L({sparseSegmentMean_:gW});function yW(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Lc,i)}var xW=L({sparseSegmentSum_:yW});function vW(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(Bc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var wW=L({stringNGrams_:vW});function kW(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(Vc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var IW=L({stringSplit_:kW});function SW(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(Uc,r,a)}var NW=L({stringToHashBucketFast_:SW});function TW(e,t,n,a=!0){let r=_(e,"input","staticRegexReplace","string"),s={pattern:t,rewrite:n,replaceGlobal:a};return O.runKernel(Wc,{x:r},s)}var CW=L({staticRegexReplace_:TW}),pT={fft:ld,ifft:Dl,rfft:ud,irfft:nf},cT={hammingWindow:az,hannWindow:aT,frame:rT,stft:oz},Qn={flipLeftRight:cz,grayscaleToRGB:hz,resizeNearestNeighbor:uT,resizeBilinear:lT,rotateWithOffset:fz,cropAndResize:uz,nonMaxSuppression:bz,nonMaxSuppressionAsync:Nz,nonMaxSuppressionWithScore:Cz,nonMaxSuppressionWithScoreAsync:Ez,nonMaxSuppressionPadded:Fz,nonMaxSuppressionPaddedAsync:Dz,threshold:Lz,transform:Wz},Cw={bandPart:Vz,gramSchmidt:Gz,qr:qz},dT={absoluteDifference:Xz,computeWeightedLoss:Rr,cosineDistance:Zz,hingeLoss:Qz,huberLoss:tW,logLoss:aW,meanSquaredError:sW,sigmoidCrossEntropy:lW,softmaxCrossEntropy:cW},hT={sparseFillEmptyRows:hW,sparseReshape:fW,sparseSegmentMean:bW,sparseSegmentSum:xW},mT={stringNGrams:wW,stringSplit:IW,stringToHashBucketFast:NW,staticRegexReplace:CW},ne={};Ee(ne,{Serializable:()=>fT,SerializationMap:()=>Xs,registerClass:()=>gT});var fT=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Xs=class{constructor(){this.classNameMap={}}static getMap(){return Xs.instance==null&&(Xs.instance=new Xs),Xs.instance}static register(e){Xs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function gT(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xs.register(e)}var Mr=class extends fT{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return _e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return bN(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Mr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var _w=class extends Mr{static get className(){return"Adadelta"}constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=X(z(i,this.rho),z(lt(s),1-this.rho)),u=z(he(hn(X(o,this.epsilon)),hn(X(i,this.epsilon))),s),p=X(z(o,this.rho),z(lt(u),1-this.rho));i.assign(l),o.assign(p);let d=X(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}},Ew=class extends Mr{static get className(){return"Adagrad"}constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>xn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=X(s,lt(r));s.assign(i);let o=X(z(he(r,hn(X(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}},Aw=class extends Mr{static get className(){return"Adam"}constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=X(z(p,this.beta2),z(lt(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=X(z(he(h,X(hn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(Fr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Fr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}},Fw=class extends Mr{static get className(){return"Adamax"}constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,X(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Wt(l),m=dr(c,h);u.assign(d),p.assign(m);let f=X(z(he(a,n),he(d,X(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(X(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}},mf=class extends Mr{static get className(){return"SGD"}constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=X(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}},$w=class extends mf{static get className(){return"Momentum"}constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=X(z(this.m,r),s);this.useNesterov?i=X(z(this.c,X(s,z(o,this.m))),a):i=X(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}},Dw=class extends Mr{static get className(){return"RMSProp"}constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=X(z(i,this.decay),z(lt(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=X(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),hn(pe(l,X(lt(p),this.epsilon)))),c=X(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=X(z(i,this.decay),z(lt(s),1-this.decay)),p=X(z(o,this.momentum),he(z(s,this.learningRate),hn(X(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}},_W=[_w,Ew,Aw,Fw,$w,Dw,mf];function EW(){for(let e of _W)gT(e)}var qt={};Ee(qt,{browserFiles:()=>PW,browserHTTPRequest:()=>UW,concatenateArrayBuffers:()=>yv,copyModel:()=>EM,decodeWeights:()=>VS,encodeWeights:()=>rM,fromMemory:()=>HW,fromMemorySync:()=>wT,getLoadHandlers:()=>fM,getModelArtifactsForJSON:()=>xv,getModelArtifactsForJSONSync:()=>GS,getModelArtifactsInfoForJSON:()=>Yc,getSaveHandlers:()=>mM,getWeightSpecs:()=>HS,http:()=>Mw,isHTTPScheme:()=>Sx,listModels:()=>CM,loadWeights:()=>zW,moveModel:()=>AM,registerLoadRouter:()=>hM,registerSaveRouter:()=>dM,removeModel:()=>_M,weightsLoaderFactory:()=>yT,withSaveHandler:()=>qW,withSaveHandlerSync:()=>jW});var AW="model",FW=".json",$W=".weights.bin";function Bk(e){return new Promise(t=>setTimeout(t)).then(e)}var Ml=class{constructor(e){if(!G().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ml.URL_SCHEME)&&(e=e.slice(Ml.URL_SCHEME.length)),(e==null||e.length===0)&&(e=AW),this.modelJsonFileName=e+FW,this.weightDataFileName=e+$W}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=US(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await Bk(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Bk(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Yc(e)}}}};Ml.URL_SCHEME="downloads://";var DW=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=xv(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,yv(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Lk(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=Lk(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},RW=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ml.URL_SCHEME)?MW(e.slice(Ml.URL_SCHEME.length)):null;$t.registerSaveRouter(RW);function MW(e="model"){return new Ml(e)}function PW(e){return new DW(e)}var OW=class{constructor(e){if(this.shards=[],this.previousShardIndex=0,e instanceof Array||(e=[e]),e=e.map(n=>en(n)?n.buffer:n),e.length===0)return;this.bufferUniformSize=e[0].byteLength;let t=0;for(let n=0;n<e.length;n++){let a=e[n];n!==e.length-1&&a.byteLength!==this.bufferUniformSize&&(this.bufferUniformSize=void 0);let r=t+a.byteLength;this.shards.push({buffer:a,start:t,end:r}),t=r}this.shards.length===0&&(this.byteLength=0),this.byteLength=this.shards[this.shards.length-1].end}slice(e=0,t=this.byteLength){if(e=isNaN(Number(e))?0:e,t=isNaN(Number(t))?0:t,e=Math.max(0,e),t=Math.min(this.byteLength,t),t<=e)return new ArrayBuffer(0);let n=this.findShardForByte(e);if(n===-1)throw new Error(`Could not find start shard for byte ${e}`);let a=t-e,r=new ArrayBuffer(a),s=new Uint8Array(r),i=0;for(let o=n;o<this.shards.length;o++){let l=this.shards[o],u=e+i-l.start,p=i,d=Math.min(t,l.end)-l.start,c=new Uint8Array(l.buffer.slice(u,d));if(s.set(c,p),i+=c.length,t<l.end)break}return r}findShardForByte(e){if(this.shards.length===0||e<0||e>=this.byteLength)return-1;if(this.bufferUniformSize!=null)return this.previousShardIndex=Math.floor(e/this.bufferUniformSize),this.previousShardIndex;function t(a){return e<a.start?-1:e>=a.end?1:0}if(t(this.shards[this.previousShardIndex])===0)return this.previousShardIndex;let n=LW(this.shards,t);return n===-1?-1:(this.previousShardIndex=n,this.previousShardIndex)}};function LW(e,t){let n=0,a=e.length;for(;n<=a;){let r=Math.floor((a-n)/2)+n,s=t(e[r]);if(s===0)return r;s<0?a=r:n=r+1}return-1}function Vk(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function bT(e,t){t==null&&(t={});let n=t.fetchFunc==null?G().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Vk(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Vk(i,t.onProgress,o,l)}async function zW(e,t="",n,a){return yT(r=>bT(r,{requestInit:a}))(e,t,n)}function yT(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=yx[b]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=new OW(p.slice(c,c+m));s[h].forEach(g=>{let b=f.slice(g.groupOffset,g.groupOffset+g.sizeBytes),y=VS(b,[g.manifestEntry]);for(let x in y)d[x]=y[x]}),c+=m}),d}}var WW="application/octet-stream",BW="application/json",Rw=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=G().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=US(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:BW}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:WW}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Yc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return xv(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=VW(t),r=this.weightPathPrefix||n,s=HS(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await bT(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,yv(l)]}};Rw.URL_SCHEME_REGEX=/^https?:\/\//;function VW(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Sx(e){return e.match(Rw.URL_SCHEME_REGEX)!=null}var xT=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Sx(a)):n=Sx(e),n)return Mw(e,t)}return null};$t.registerSaveRouter(xT);$t.registerLoadRouter(xT);function Mw(e,t){return new Rw(e,t)}function UW(e,t){return Mw(e,t)}var Jy=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},vT=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},GW=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function HW(e,t,n,a){let r=arguments;return new GW(wT(...r))}function wT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Jy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Jy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function qW(e){return new vT(e)}function jW(e){return new vT(e)}var kT={};Ee(kT,{confusionMatrix:()=>XW});function KW(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Al(ie(a,"int32"),n),i=Al(ie(r,"int32"),n),o=De(s),l=$e(o,i);return ie(l,"int32")}var XW=L({confusionMatrix_:KW}),Vo={};Ee(Vo,{fromPixels:()=>nB,fromPixelsAsync:()=>eB,toPixels:()=>tB});var Gs;function IT(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Bh(Wh,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(Wh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Gs==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Gs=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Gs=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Gs.canvas.width=l,Gs.canvas.height=u,Gs.drawImage(e,0,0,l,u),p=Gs.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return pd(d,[u,l,t],"int32")}function YW(e){return e!=null&&e.data instanceof Uint8Array}function ZW(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function JW(e){return e!=null&&e.width!==0&&e.height!==0}function QW(e){return ZW()&&!(e instanceof ImageBitmap)&&JW(e)&&!YW(e)}async function eB(e,t=3){let n=null;if(G().getBool("WRAP_TO_IMAGEBITMAP")&&QW(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return IT(n,t)}async function tB(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Ce)){let u=n;n=ie(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var nB=L({fromPixels_:IT}),Pw={};Ee(Pw,{prepareAndValidate:()=>ST});function ST(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...Hl(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Kt={};Ee(Kt,{assertParamsValid:()=>rB,computeFlatOffset:()=>uB,computeOutShape:()=>iB,getNormalizedAxes:()=>oB,isSliceContinous:()=>lB,maskToAxes:()=>sB,parseSliceParams:()=>DT,sliceInfo:()=>pB,startForAxis:()=>FT,startIndicesWithElidedDims:()=>_T,stopForAxis:()=>$T,stopIndicesWithElidedDims:()=>ET,stridesForAxis:()=>AT,stridesWithElidedDims:()=>NT});var Nx=-2,aB=-1;function rB(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)A(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function sB(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function iB(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function NT(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function TT(e,t,n){return n<=e?n:n-(t-1)}function CT(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function oB(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=_T(i,h,m,a,e),d=ET(o,h,m,r,e),c=NT(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=FT(i,a,s,e,h,l),d[h]=$T(o,r,s,e,h,l),c[h]=AT(s,h,l);return{begin:p,end:d,strides:c}}function _T(e,t,n,a,r){let s=[...r],i=CT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=TT(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function ET(e,t,n,a,r){let s=[...r],i=CT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=TT(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=lc(0,s[o],r[o])}return s}function AT(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function FT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=lc(0,i,l-1),i}function $T(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=lc(0,i,l):i=lc(-1,i,l-1),i}function lB(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function uB(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function DT(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function pB(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&1<<y&o&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};cB(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],T=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let C=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let $=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=$,c.end[y]=c.begin[y]+1,$<0||$>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=Uk(c.begin[y],0,c.strides[y],w,I,T),c.end[y]=Uk(c.end[y],1,c.strides[y],w,I,T);let D=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&D,m=m&&(y===0&&c.strides[y]===1||D)}else h=h&&c.strides[y]===1&&C,m=m&&(y===0&&c.strides[y]===1||C);let E,F=!1;if(c.beginValid&&c.endValid?(E=c.end[y]-c.begin[y],F=!0):x?(E=1,F=!0):C&&w>=0&&(c.strides[y]<0?E=-w:E=w,F=!0),F){let D;E===0||E<0!=c.strides[y]<0?D=0:D=Math.trunc(E/c.strides[y])+(E%c.strides[y]!==0?1:0),g.push(D)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===Nx&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==Nx),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function cB(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push(Nx),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(aB),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function Uk(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var dB="4.5.0",RT=class{static sgd(e){return new mf(e)}static momentum(e,t,n=!1){return new $w(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Dw(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Aw(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new _w(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Fw(e,t,n,a,r)}static adagrad(e,t=.1){return new Ew(e,t)}},js=RT,hB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ow(){return new Promise(e=>hB(()=>e()))}var N={};Ee(N,{ERF_A1:()=>_B,ERF_A2:()=>EB,ERF_A3:()=>AB,ERF_A4:()=>FB,ERF_A5:()=>$B,ERF_P:()=>CB,PARALLELIZE_THRESHOLD:()=>Lw,RowPartitionType:()=>tr,SELU_SCALE:()=>PT,SELU_SCALEALPHA:()=>MT,applyActivation:()=>df,assertAndGetBroadcastShape:()=>ut,assertAxesAreInnerMostDims:()=>fO,assertParamsConsistent:()=>mB,assignToTypedArray:()=>LB,axesAreInnerMostDims:()=>Xv,calculateShapes:()=>HN,checkEinsumDimSizes:()=>GB,checkPadOnDimRoundingMode:()=>Tn,combineLocations:()=>dN,combineRaggedTensorToTensorShapes:()=>gB,complexWithEvenIndex:()=>MB,complexWithOddIndex:()=>PB,computeConv2DInfo:()=>Zc,computeConv3DInfo:()=>nN,computeDefaultPad:()=>Av,computeDilation2DInfo:()=>hP,computeOptimalWindowSize:()=>vB,computeOutAndReduceShapes:()=>hN,computeOutShape:()=>fB,computePool2DInfo:()=>tN,computePool3DInfo:()=>mP,convertConv2DDataFormat:()=>aN,decodeEinsumEquation:()=>VB,eitherStridesOrDilationsAreOne:()=>cr,expandShapeToKeepDim:()=>hi,exponent:()=>WB,exponents:()=>zB,fromStringArrayToUint8:()=>c4,fromUint8ToStringArray:()=>p4,getAxesPermutation:()=>mN,getBroadcastDims:()=>uN,getComplexWithIndex:()=>OB,getEinsumComputePath:()=>HB,getEinsumPermutation:()=>UB,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>pf,getImageCenter:()=>wB,getInnerMostAxes:()=>gO,getPermuted:()=>IB,getRaggedRank:()=>yB,getReductionAxes:()=>Ut,getReshaped:()=>kB,getReshapedPermuted:()=>SB,getRowPartitionTypesHelper:()=>bB,getSliceBeginCoords:()=>NB,getSliceSize:()=>TB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>XB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>YB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>ZB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>e4,getSparseReshapeInputOutputMismatchErrorMessage:()=>n4,getSparseReshapeInputOutputMultipleErrorMessage:()=>t4,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>JB,getSparseReshapeNegativeOutputDimErrorMessage:()=>QB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>i4,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>a4,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>r4,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>s4,getUndoAxesPermutation:()=>Yv,isIdentityPermutation:()=>qB,log:()=>TR,mergeRealAndImagArrays:()=>DB,prepareAndValidate:()=>ST,prepareSplitSize:()=>KB,segment_util:()=>OT,shouldFuse:()=>hf,slice_util:()=>Kt,splitRealAndImagArrays:()=>RB,stridesOrDilationsArePositive:()=>ci,tupleValuesAreOne:()=>ls,upcastType:()=>ga,validateDefaultValueShape:()=>xB,validateInput:()=>sf,validateUpdateShape:()=>yw,warn:()=>Zr});function mB(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)A(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function fB(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var tr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(tr||(tr={}));function gB(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function bB(e){let t={FIRST_DIM_SIZE:tr.FIRST_DIM_SIZE,VALUE_ROWIDS:tr.VALUE_ROWIDS,ROW_LENGTHS:tr.ROW_LENGTHS,ROW_SPLITS:tr.ROW_SPLITS,ROW_LIMITS:tr.ROW_LIMITS,ROW_STARTS:tr.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function yB(e){return e.length===0?0:e[0]===tr.FIRST_DIM_SIZE?e.length-1:e.length}function xB(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Lw=30;function vB(e){return e<=Lw?e:zh(e,Math.floor(Math.sqrt(e)))}function wB(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function kB(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function IB(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function SB(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function NB(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function TB(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var MT=1.7580993408473768,PT=1.0507009873554805,CB=.3275911,_B=.254829592,EB=-.284496736,AB=1.421413741,FB=-1.453152027,$B=1.061405429;function DB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function RB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function MB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function PB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function OB(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function LB(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function zB(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function WB(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var Qy="->",BB=/->/g,Gk=",",Hk="...";function VB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(BB,"").length)/Qy.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Qy}").`);let[a,r]=e.split(Qy);A(a.indexOf(Hk)===-1,()=>`The ellipsis notation ("${Hk}") is not supported yet.`);let s=a.split(Gk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==Gk&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function UB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function GB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:A(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function HB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=jB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function qB(e){return e.every((t,n)=>t===n)}function jB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function KB(e,t,n=0){let a=[];if(typeof t=="number")A(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function XB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function YB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function ZB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function JB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function QB(e,t){return`size ${e} must be non-negative, not ${t}`}function e4(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function t4(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function n4(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function a4(){return"segment ids must be >= 0"}function r4(){return"segment ids are not increasing"}function s4(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function i4(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var OT={};Ee(OT,{collectGatherOpShapeInfo:()=>u4,computeOutShape:()=>l4,segOpComputeOptimalWindowSize:()=>o4});function o4(e,t){let n=!1,a;for(e<=Lw?(a=e,n=!0):a=zh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=zh(e,a+1);return a}function l4(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function u4(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function p4(e){try{return e.map(t=>Uh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function c4(e){return e.map(t=>Kc(t))}var hr={};Ee(hr,{nonMaxSuppressionV3Impl:()=>sT,nonMaxSuppressionV4Impl:()=>iT,nonMaxSuppressionV5Impl:()=>oT,whereImpl:()=>KN});EW();var LT={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Bo(ie(n,"float32"),-1))}}},d4={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(ie(n,"float32")),r=hn(pe(ve(1),a));return yt(he(e,r))}}}},h4={kernelName:Si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=hn(pe(lt(ie(n,"float32")),1));return he(e,a)}}}},m4={kernelName:bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Ut(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Ut(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},f4={kernelName:Ni,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},g4={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},b4={kernelName:Yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},y4={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,hn(pe(ve(1),lt(ie(n,"float32")))))}}},x4={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=hn(X(ve(1),lt(ie(n,"float32"))));return he(e,a)}}}},v4={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=X(lt(n),lt(a)),i=z(e,he(a,s)),o=Ut(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=X(lt(n),lt(a)),i=yt(z(e,he(n,s))),o=Ut(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},w4={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(lt(ie(n,"float32")),1))}}},k4={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(ve(1),lt(ie(n,"float32"))))}}};function I4(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Tn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(_c,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var S4=L({avgPool3dGrad_:I4}),N4={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>S4(e,a,r,s,i,o)}}};function T4(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel(bm,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var C4=L({avgPoolGrad_:T4}),_4={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>C4(e,a,r,s,i)}}},E4={kernelName:$i,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>$e(e,r,!1,!0),b:()=>$e(a,e,!0,!1)}:!s&&i?{a:()=>$e(e,r,!1,!1),b:()=>$e(e,a,!0,!1)}:s&&!i?{a:()=>$e(r,e,!1,!0),b:()=>$e(a,e,!1,!1)}:{a:()=>$e(r,e,!0,!0),b:()=>$e(e,a,!0,!0)}}},A4={kernelName:Jl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>sd(e,a,r)}}},F4={kernelName:CS,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},$4={kernelName:Di,gradFunc:e=>({x:()=>e.clone()})},D4={kernelName:Ri,gradFunc:e=>({x:()=>qe(e)})},R4={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>an(Fa(Dr(a,r),Ss(a,s)),e,qe(e))}}},M4={kernelName:Ac,inputsToSave:["x"],gradFunc:LT.gradFunc},P4={kernelName:eu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=$a(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},O4={kernelName:Mi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(ls(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Bv(a.shape,e,r,i,o,l),filter:()=>Nw(a,e,r.shape,i,o,l)}}},L4={kernelName:Pi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>Nw(e,a,r.shape,s,i,o,l)}}};function z4(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(tu,o,l)}var W4=L({conv3DBackpropFilter_:z4}),B4={kernelName:Oi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(ls(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>oN(i.shape,e,o,r,s),filter:()=>W4(i,e,o.shape,r,s)}}},V4={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(yt(Qm(ie(n,"float32"))),e)}}},U4={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ef(ie(n,"float32")),e)}}},G4={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=mN([r],a.rank),l=Bm(e,r,s,!i);return o!=null&&(l=De(l,o)),l}}}},H4={kernelName:Bi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(ls(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(cr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Tn("depthwiseConv2d",s,i),{x:()=>nT(l.shape,e,u,r,s,o,i),filter:()=>tT(l,e,u.shape,r,s,o,i)}}},q4={kernelName:Vi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(Nl,s,n),filter:()=>O.runKernel(Tl,i,n)}}},j4={kernelName:Gi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(iu,a)}}},K4={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(yn(yt(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},X4={kernelName:Hi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},Y4={kernelName:uu,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},Z4={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,yn(n))}}},J4={kernelName:ji,gradFunc:e=>({x:()=>qe(e)})},Q4={kernelName:Ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=lt(a);return yt(he(s,ie(o,"float32")))}}}},eV={kernelName:Xi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,u=Ut(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=Zm(X(i,ve(a))),m=z(z(z(h,h),h),ve(-.5));return{x:()=>s.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,ve(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},tV={kernelName:cu,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=$a(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=qk(0,p),m=qk(p+1,p+1+c),f=jk([u,[l],d]),g=W(e,f),b=W(r,[l]),y=jk([[p],h,m]),x=De(g,y),w=lf(x,b,a.shape[i]),I=Yv(y);return w=De(w,I),w},indices:()=>r}}};function qk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function jk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var nV={kernelName:Yi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},aV={kernelName:Zi,gradFunc:e=>({x:()=>ie(e,"float32")})},rV={kernelName:Ji,gradFunc:e=>({x:()=>qe(e)})},sV={kernelName:Qi,gradFunc:e=>({x:()=>qe(e)})},iV={kernelName:eo,gradFunc:e=>({x:()=>qe(e)})},oV={kernelName:to,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Cn(a,0);return{x:()=>an(s,e,z(e,r))}}},lV={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(n,1))}}},uV={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(n,"float32"))}}},pV={kernelName:ES,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=yn(a);return pe(e,z(fe(e,r,!0),s))}}}};function cV(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(vu,o,l)}var dV=L({localResponseNormalizationBackprop_:cV}),hV={kernelName:ro,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>dV(a,r,e,s,i,o,l)}}};function zT(e,t,n,a){return t.rank<n.rank&&(t=W(t,hi(t.shape,a))),e.rank<n.rank&&(e=W(e,hi(e.shape,a))),{x:()=>z(e,ie(ea(n,t),e.dtype))}}var Kk={kernelName:so,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=$a(r,s.shape),l=zT(e,i,s,o);return{x:()=>l.x()}}},mV={kernelName:io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Dr(n,a),"float32")),b:()=>z(e,ie(El(n,a),"float32"))}}};function fV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),A(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Tn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(Rc,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var gV=L({maxPool3dGrad_:fV}),bV={kernelName:wu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>gV(e,a,r,s,i,o,l)}}};function yV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Tn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(Cm,p,d)}var xV=L({maxPoolGrad_:yV}),vV={kernelName:oo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>xV(e,a,r,s,i,o)}}},wV={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=$a(r,a.shape),i=hN(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return he(z(u,Jn(a.shape,"float32")),o)}}}},kV={kernelName:uo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=$a(r,s.shape),l=zT(e,i,s,o);return{x:()=>l.x()}}},IV={kernelName:po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Ss(n,a),"float32")),b:()=>z(e,ie(Cn(n,a),"float32"))}}},SV={kernelName:co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ue(e,s,a.shape)}}},NV={kernelName:ku,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=Ut(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,yt(Qu(he(n,a)))),i=Ut(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},TV={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=z(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},CV={kernelName:Su,gradFunc:e=>({x:()=>yt(e)})},_V={kernelName:mo,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Nt(n.shape,"float32")}}},EV={kernelName:Eu,gradFunc:e=>({x:()=>qe(e)})},AV={kernelName:Au,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return pt(e,a).map(r=>()=>r)}},Xk={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ue(e,s,a.shape)}}},FV={kernelName:go,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ut(s.shape,i.shape);return{a:()=>{let l=ie(i,"float32"),u=z(e,z(l,Fr(s,pe(l,ve(1))))),p=Ut(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=Cn(s,0),u=an(l,ta(s),qe(s)),p=z(e,z(r,u)),d=Ut(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},$V={kernelName:bo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Cn(n,0);return{x:()=>an(r,e,z(e,a)),alpha:()=>{let s=an(r,qe(e),z(e,n)),i=Ut(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function DV(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=gc(e,n,!0,!1),i=gc(e,n,!0,!0),o=z(s,i);return z(r,o)}function RV(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=De(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=DV(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=De(p,d)}return p}var MV={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>RV(a,e,s)}}},PV={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Ut(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Ut(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=lt(a);return yt(he(s,ie(o,"float32")))}}}},OV={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,yt(lt(n)))}}},LV={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Ss(n,6),Bo(n));return{x:()=>z(e,ie(a,"float32"))}}},zV={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ie(Bo(n),"float32"))}}},WV={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},BV={kernelName:ko,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Du,r,n)}}},VV={kernelName:wo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel($u,r,n)}}},UV={kernelName:So,gradFunc:(e,t,n)=>{let{dims:a}=n,r=$a(a,e.shape);return{x:()=>ba(e,r)}}},GV={kernelName:No,gradFunc:e=>({x:()=>qe(e)})},HV={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yt(he(e,z(Fr(n,1.5),2)))}}},qV={kernelName:Ou,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ie(qe(n),"float32"),t:()=>z(e,ie(n,e.dtype)),e:()=>z(e,ie(ad(n),e.dtype))}}},jV={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Cn(n,ve(0)),r=ve(MT),s=ve(PT),i=z(e,s),o=z(z(e,r),yn(ie(n,"float32")));return an(a,i,o)}}}},KV={kernelName:Ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(ve(1),n)))}}},XV={kernelName:Eo,gradFunc:e=>({x:()=>qe(e)})},YV={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Qc(ie(n,"float32")),e)}}},ZV={kernelName:zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Wm(ie(n,"float32")),e)}}},JV={kernelName:Lu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=DT(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>xa(e,u)}}},QV={kernelName:Ro,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},eU={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ma(n))}}},Yk={kernelName:Wu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Jc(e,a,r)}}},Zk={kernelName:Bu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},tU={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(hn(ie(n,"float32")),2))}}},nU={kernelName:zc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ie(n,"float32"),2))}}},aU={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},rU={kernelName:vs,gradFunc:e=>({x:()=>qe(e)})},sU={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ut(n.shape,a.shape);return{a:()=>{let s=e,i=Ut(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Ut(a.shape,r);return i.length>0&&(s=fe(s,i)),W(yt(s),a.shape)}}}},iU={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;$a(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Jn(a.shape,"float32"));return{x:()=>o}}},oU={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,lt(Qc(n)))}}},lU={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(ve(1),lt(n)),e)}}},uU={kernelName:xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=X(s,Ue(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=X(s,Ue(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},pU={kernelName:_r,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Yv(r);return{x:()=>De(e,s)}}},cU={kernelName:ju,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},dU={kernelName:Hc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>hU(e,n)}}};function hU(e,t){let n=dr(t,qe(t)),a=ep(e,n),r=Dr(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=tn(r,o+1);r=Fa(r,Jn(a.shape,"bool"));let i=qe(a);return an(r,a,i)}var mU={kernelName:Ku,gradFunc:e=>({x:()=>qe(e)})},fU=[LT,d4,h4,m4,f4,g4,b4,y4,x4,v4,w4,k4,N4,_4,E4,A4,F4,$4,D4,R4,M4,P4,L4,O4,B4,V4,U4,G4,H4,q4,PV,j4,K4,X4,Y4,Z4,Q4,J4,eV,tV,nV,aV,rV,sV,iV,oV,lV,uV,pV,hV,Kk,Kk,mV,bV,vV,wV,kV,IV,SV,NV,TV,CV,_V,EV,AV,Xk,Xk,FV,$V,MV,OV,LV,zV,WV,BV,VV,UV,GV,HV,qV,jV,KV,XV,YV,ZV,JV,QV,eU,Yk,Yk,Zk,Zk,tU,aU,nU,rU,sU,iU,oU,lU,uU,pU,cU,dU,mU];for(let e of fU)AS(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Wt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),kv(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),Iv(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),X(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Om(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),hc(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),pi(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),Sv(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),W(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};Q().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),Nv(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),Tv(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),Cv(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),_v(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Ev(this)};Q().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ya(this,e,t,n,a)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Jc(this,e,t)};Q().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ks(this,e,t,n,a,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ni(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),Pv(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),rn(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ce&&(e=[e]),Qe([this,...e],t)};Q().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Lm(this,e,t,n,a,r,s)};Q().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),zm(this,e,t,n,a,r)};Q().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};Q().prototype.cos=function(){return this.throwIfDisposed(),Qc(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),Wm(this)};Q().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),gc(this,e,t,n)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Bm(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Gv(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Is(this,e,t,n,a,r,s)};Q().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Hv(this,e,t,n,a,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),qv(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),jv(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),Zu(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),ea(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),Kv(this)};Q().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),Zv(this,e,t)};Q().prototype.exp=function(){return this.throwIfDisposed(),yn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),tn(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),Jv(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),ld(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),Qu(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),Pm(this,e)};Q().prototype.gather=function(e,t,n){return this.throwIfDisposed(),ep(this,e,t,n)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Dr(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),Cn(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),Dl(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),nf(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),Qv(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),ew(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),tw(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),td(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ss(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),El(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),nw(this,e,t,n,a)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),aw(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Gm(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Hm(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),ta(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),nd(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Fa(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),ad(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),qm(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),rw(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),$e(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mt(this,e,t,n,a)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),fa(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),dr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),_l(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),us(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),iw(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),ow(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),yt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Ju(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),mi(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Al(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),na(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),xa(this,e,t)};Q().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),lw(this,e,t,n,a,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),Fr(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),id(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),uw(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),mw(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Ke(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),Xm(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),lT(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),uT(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),ba(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),ud(this)};Q().prototype.round=function(){return this.throwIfDisposed(),Ym(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),Zm(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),Jm(this)};Q().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ts(this,e,t,n,a,r,s)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),ma(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),fw(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),Qm(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),ef(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Ue(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Xa(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),zo(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),sd(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),hn(this)};Q().prototype.square=function(){return this.throwIfDisposed(),lt(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),af(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),Cs(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ce?[this,e]:[this,...e];return Dt(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),Bo(this,e)};Q().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),gw(this,e,t,n,a,r,s,i,o)};Q().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),bw(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),di(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),ie(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),ie(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),ie(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),xw(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),De(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),vw(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),lf(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),pt(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),an(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var Ir=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ir.prototype)}},Ba=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ba.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Oe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Oe.prototype)}},WT=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,WT.prototype)}},BT=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function gi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function nr(e,t){if(!e)throw new WT(t)}function Jk(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Sr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ys(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Sa={};function zw(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Tx(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Tx(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Tx(a))}}}function cd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Sa)i=Sa[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Sa?[o,l]=Sa.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Sa))u[h]=Sa[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},Sa);for(let h of Object.keys(n))Sa[h]=n[h];Tx(s.config);let c=l(o,s.config,n,r);return Sa=Object.assign({},d),c}else{let u=Object.assign({},Sa);for(let d of Object.keys(n))Sa[d]=n[d];let p=new o(s.config);return Sa=Object.assign({},u),p}}}function gU(e,t){return e<t?-1:e>t?1:0}function gh(e,t){return-1*gU(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function bU(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Uo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Ww(e,t,n=0,a=1/0){return nr(n>=0),nr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function nn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>nn(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${VT(e)}.`)}function VT(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>VT(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function yU(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function UT(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var xU=0;function GT(){return xU++}var bh={};function ff(e=""){return e in bh||(bh[e]=0),bh[e]+=1,e+bh[e].toString()}var vU=["channelsFirst","channelsLast"],wU=["nearest","bilinear"],kU=["valid","same","causal"],IU=["max","avg"],SU=["sum","mul","concat","ave"],gl=new Map;function Pt(e){Uo(vU,"DataFormat",e)}function NU(e){Uo(wU,"InterpolationFormat",e)}function va(e){Uo(kU,"PaddingMode",e)}function HT(e){Uo(IU,"PoolMode",e)}var sc=[],Qk="/";function ai(e,t){sc.push(e);try{let n=t();return sc.pop(),n}catch(n){throw sc.pop(),n}}function TU(){return sc.length===0?"":sc.join(Qk)+Qk}function qT(e){if(!KT(e))throw new Error("Not a valid tensor name: '"+e+"'");return TU()+e}function jT(e){if(!KT(e))throw new Error("Not a valid tensor name: '"+e+"'");gl.has(e)||gl.set(e,0);let t=gl.get(e);if(gl.set(e,gl.get(e)+1),t>0){let n=`${e}_${t}`;return gl.set(n,1),n}else return e}var CU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function KT(e){return!!e.match(CU)}function _U(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function Pl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ps(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function qa(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var ex;function jt(){return ex==null&&(ex=QS().epsilon()),ex}function ja(){return"channelsLast"}function ir(e,t){return ie(e,t)}function dd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function EU(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=dd(e,1);return Cx(n,[1,t,1])})}function AU(e){let t=[rs(e.shape)];return W(e,t)}function FU(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return W(e,t)}function ri(e,t,n){return P(()=>{switch(e.rank){case 1:return od(e,t,n);case 2:return tf(e,[t,0],[n,e.shape[1]]);case 3:return Wo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return $l(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ue(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ue(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function tx(e,t,n){return P(()=>{switch(e.rank){case 1:return od(e,t,n);case 2:return tf(e,[0,t],[e.shape[0],n]);case 3:return Wo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return $l(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function yh(e,t,n,a){return P(()=>{switch(e.rank){case 1:return od(e,t,n);case 2:switch(a){case 1:return ri(e,t,n);case 2:return tx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ri(e,t,n);case 2:return Wo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return tx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ri(e,t,n);case 2:return $l(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return $l(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return tx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Bw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function eI(e,t){switch(e.rank){case 1:return Ov([e,t]);case 2:return Lv([e,t],0);case 3:return zv([e,t],0);case 4:return Wv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Cx(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function gf(e,t=0,n=1,a,r){return Km(e,t,n,a,r)}function or(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Rl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?_x(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(De(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(Rl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?_x(e.rank,a,ja()):null,activation:n}),d)}}function XT(e,t,n){return P(()=>(Array.isArray(t)?t=je(t,"int32"):t=ie(t,"int32"),ep(e,t,n)))}function hd(e){return z(e,e)}function _x(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ya(e,t,n){return P(()=>(n==null&&(n=ja()),Pt(n),X(e,_x(e.rank,t,n))))}function $U(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Zu(e)}function DU(e){return P(()=>he(e,X(Wt(e),1)))}function YT(e,t,n,a){return P(()=>Iw(e,t,n,a))}function RU(e){return P(()=>{let t=X(.5,z(.2,e));return rn(t,0,1)})}function md(e,t,n=!1){return n?e():t()}var MU=["fanIn","fanOut","fanAvg"],PU=["normal","uniform","truncatedNormal"];function OU(e){Uo(MU,"FanMode",e)}function LU(e){Uo(PU,"Distribution",e)}var Ra=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Vw=class extends Ra{apply(e,t){return Nt(e,t)}};Vw.className="Zeros";ne.registerClass(Vw);var bf=class extends Ra{apply(e,t){return Jn(e,t)}};bf.className="Ones";ne.registerClass(bf);var Uw=class extends Ra{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Jn(e,t)))}getConfig(){return{value:this.value}}};Uw.className="Constant";ne.registerClass(Uw);var Gw=class extends Ra{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ns(e,this.minval,this.maxval,t,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Gw.className="RandomUniform";ne.registerClass(Gw);var Hw=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return gf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Hw.className="RandomNormal";ne.registerClass(Hw);var qw=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return of(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qw.className="TruncatedNormal";ne.registerClass(qw);var jw=class extends Ra{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Vm(e[0]))})}getConfig(){return{gain:this.gain}}};jw.className="Identity";ne.registerClass(jw);function zU(e,t="channelsLast"){let n,a;if(Pt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Vn=class extends Ra{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,OU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,LU(this.distribution),this.seed=e.seed}apply(e,t){let n=zU(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return of(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Ns(e,-i,i,t,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Vn.className="VarianceScaling";ne.registerClass(Vn);var yf=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};yf.className="GlorotUniform";ne.registerClass(yf);var xf=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};xf.className="GlorotNormal";ne.registerClass(xf);var vf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};vf.className="HeNormal";ne.registerClass(vf);var wf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};wf.className="HeUniform";ne.registerClass(wf);var kf=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};kf.className="LeCunNormal";ne.registerClass(kf);var If=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};If.className="LeCunUniform";ne.registerClass(If);var Kw=class extends Ra{constructor(e){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed}apply(e,t){return P(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");if(t!=="int32"&&t!=="float32"&&t!==void 0)throw new TypeError(`Unsupported data type ${t}.`);t=t;let n=v.sizeFromShape(e.slice(0,-1)),a=e[e.length-1],r=n*a;r>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${r}) elements: Slowness may result.`);let s=[Math.max(a,n),Math.min(a,n)],i=gf(s,0,1,t,this.seed),o=Cw.qr(i,!1),l=o[0],u=o[1].flatten().stridedSlice([0],[Math.min(a,n)*Math.min(a,n)],[Math.min(a,n)+1]);return l=z(l,u.sign()),n<a&&(l=l.transpose()),z(ve(this.gain),l.reshape(e))})}getConfig(){return{gain:this.gain,seed:this.seed}}};Kw.className="Orthogonal";ne.registerClass(Kw);var tI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function nI(e,t={}){return cd(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return zw(e)}function Tt(e){if(typeof e=="string"){let t=e in tI?tI[e]:e;if(t==="GlorotNormal")return new xf;if(t==="GlorotUniform")return new yf;if(t==="HeNormal")return new vf;if(t==="HeUniform")return new wf;if(t==="LeCunNormal")return new kf;if(t==="LeCunUniform")return new If;{let n={};return n.className=t,n.config={},nI(n)}}else return e instanceof Ra?e:nI(e)}function Ex(e){return Array.isArray(e)&&Array.isArray(e[0])}function jh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Te(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Ze(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Kh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var aI="Variable",ZT=class{constructor(e,t="float32",n=aI,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=GT(),n=n==null?aI:n,this.originalName=qT(n),this.name=jT(this.originalName),this.trainable_=a,this.constraint=r,this.val=ww(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),WU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function WU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Ax(e){return e.map(t=>t.read())}function Xw(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Va=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=GT(),s!=null&&(this.originalName=qT(s),this.name=jT(this.originalName)),this.rank=t.length}},BU=0,Sf=class{constructor(e,t){this.callArgs=t,this.id=BU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},VU=0,Be=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=VU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Sr(n)+"_"+ff(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ba(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ir(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ir(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),a=!0;for(let s of n)if(!(s instanceof Va)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Va){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return ai(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of vt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=vt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=UU(e),i=this.computeOutputShape(s),o,l=GU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Va(l,u,this,vt(e),t,this.name,p)):o=new Va(l,i,this,vt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ir(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ir(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ba(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Kh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Ax(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Ax(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Xw(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():Tt("zeros"));let l=a.apply(t,n),u=new ZT(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=vt(e);t=vt(t),n=vt(n),a=vt(a),r=jh(r),s=jh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Sf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function UU(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function GU(e){return"float32"}function JT(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=JT(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var np=class extends Be{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:ff("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Va(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Sf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};np.className="InputLayer";ne.registerClass(np);function QT(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new np({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function HU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ie(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ei=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ei)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=HU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},Xh=new BT,Yh=new BT;function qU(e){Xh!=null&&Xh.setMaxEntries(e),Yh!=null&&Yh.setMaxEntries(e)}function Yp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Xh.get(p),c;if(d==null){let m=jU(i,t);d=m.sorted,c=m.recipientCounts,Xh.put(p,d),Yh.put(p,c)}c={},r||Object.assign(c,Yh.get(p));let h=new ei(t);for(let m=0;m<d.length;++m){if(a!=null){let F=Hh().numTensors;F>a.maxNumTensors&&(a.maxNumTensors=F),F<a.minNumTensors&&(a.minNumTensors=F)}let f=d[m],g=f.sourceLayer;if(g instanceof np)continue;let b=[],y=[],x=[],w=!1;for(let F of f.inputs){let D=h.getValue(F),$=h.getMask(F);b.push(D),y.push($),$!=null&&(w=!0),r||(c[F.name]--,c[F.name]===0&&!t.hasKey(F)&&o.indexOf(F.name)===-1&&!D.isDisposed&&F.sourceLayer.stateful!==!0&&x.push(D))}w&&(n=n||{},n.mask=y[0]);let I=vt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=XU(f),E=Array.isArray(C)?C:[C];for(let F=0;F<E.length;++F){h.hasKey(E[F])||h.add(E[F],I[F],Array.isArray(T)?T[0]:T);let D=o.indexOf(E[F].name);D!==-1&&(l[D]=I[F])}r||_e(x)}return h.disposeMasks(),s?l:l[0]}function jU(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=rI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=rI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:KU(a)}}function KU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function rI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function XU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var YU=G();YU.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,qU);var e2={};Ee(e2,{maxNorm:()=>ZU,minMaxNorm:()=>eG,nonNeg:()=>QU,unitNorm:()=>JU});function Yw(e,t){return P(()=>hn(fe(z(e,e),t,!0)))}var fd=class extends ne.Serializable{getConfig(){return{}}},Zw=class extends fd{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=Yw(e,this.axis),n=rn(t,0,this.maxValue);return z(e,he(n,X(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Zw.className="MaxNorm";ne.registerClass(Zw);var Jw=class extends fd{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,X(jt(),Yw(e,this.axis))))}getConfig(){return{axis:this.axis}}};Jw.className="UnitNorm";ne.registerClass(Jw);var Qw=class extends fd{apply(e){return Ke(e)}};Qw.className="NonNeg";ne.registerClass(Qw);var e0=class extends fd{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=Yw(e,this.axis),n=X(z(this.rate,rn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,X(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};e0.className="MinMaxNorm";ne.registerClass(e0);var sI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Xt(e){return zw(e)}function iI(e,t={}){return cd(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in sI?sI[e]:e,config:{}};return iI(t)}else return e instanceof fd?e:iI(e)}function ZU(e){return new Zw(e)}function JU(e){return new Jw(e)}function QU(){return new Qw}function eG(e){return new e0(e)}var t2={};Ee(t2,{constant:()=>aG,glorotNormal:()=>pG,glorotUniform:()=>uG,heNormal:()=>cG,heUniform:()=>dG,identity:()=>oG,leCunNormal:()=>hG,leCunUniform:()=>mG,ones:()=>nG,orthogonal:()=>fG,randomNormal:()=>sG,randomUniform:()=>rG,truncatedNormal:()=>iG,varianceScaling:()=>lG,zeros:()=>tG});function tG(){return new Vw}function nG(){return new bf}function aG(e){return new Uw(e)}function rG(e){return new Gw(e)}function sG(e){return new Hw(e)}function iG(e){return new qw(e)}function oG(e){return new jw(e)}function lG(e){return new Vn(e)}function uG(e){return new yf(e)}function pG(e){return new xf(e)}function cG(e){return new vf(e)}function dG(e){return new wf(e)}function hG(e){return new kf(e)}function mG(e){return new If(e)}function fG(e){return new Kw(e)}var n2={};Ee(n2,{Layer:()=>Be,RNN:()=>mr,RNNCell:()=>vd,activation:()=>UH,add:()=>JH,alphaDropout:()=>M6,average:()=>QH,averagePooling1d:()=>c1,averagePooling2d:()=>d1,averagePooling3d:()=>h1,avgPool1d:()=>l6,avgPool2d:()=>p6,avgPool3d:()=>d6,avgPooling1d:()=>u6,avgPooling2d:()=>c6,avgPooling3d:()=>h6,batchNormalization:()=>s6,bidirectional:()=>C6,categoryEncoding:()=>W6,centerCrop:()=>L6,concatenate:()=>e6,conv1d:()=>RH,conv2d:()=>MH,conv2dTranspose:()=>PH,conv3d:()=>OH,conv3dTranspose:()=>LH,convLstm2d:()=>I6,convLstm2dCell:()=>S6,cropping2D:()=>WH,dense:()=>GH,depthwiseConv2d:()=>VH,dot:()=>r6,dropout:()=>HH,elu:()=>_H,embedding:()=>ZH,flatten:()=>jH,gaussianDropout:()=>R6,gaussianNoise:()=>D6,globalAveragePooling1d:()=>m6,globalAveragePooling2d:()=>f6,globalMaxPool1d:()=>E6,globalMaxPool2d:()=>A6,globalMaxPooling1d:()=>X2,globalMaxPooling2d:()=>Y2,gru:()=>b6,gruCell:()=>y6,input:()=>v2,inputLayer:()=>CH,layerNormalization:()=>i6,leakyReLU:()=>AH,lstm:()=>x6,lstmCell:()=>v6,masking:()=>P6,maxPool1d:()=>F6,maxPool2d:()=>$6,maxPooling1d:()=>Z2,maxPooling2d:()=>J2,maxPooling3d:()=>g6,maximum:()=>t6,minimum:()=>n6,multiply:()=>a6,permute:()=>YH,prelu:()=>FH,randomWidth:()=>B6,reLU:()=>EH,repeatVector:()=>KH,rescaling:()=>O6,reshape:()=>XH,resizing:()=>z6,rnn:()=>N6,separableConv2d:()=>zH,simpleRNN:()=>w6,simpleRNNCell:()=>k6,softmax:()=>$H,spatialDropout1d:()=>qH,stackedRNNCells:()=>T6,thresholdedReLU:()=>DH,timeDistributed:()=>_6,upSampling2d:()=>BH,zeroPadding2d:()=>o6});async function Xr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];_e(a)}}function a2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var oI;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(oI||(oI={}));var gG=125,Ol=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},r2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},bG=class extends Ol{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>X(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Ht(t[n])}))}},s2=class extends Ol{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},i2=class extends Ol{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Ow,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=gG),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=yU(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Xr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Xr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Xr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Xr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Xr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Xr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Xr(e),await this.trainEnd(e))}};function o2(e,t){return e==null&&(e={}),e instanceof Ol?[e]:Array.isArray(e)&&e[0]instanceof Ol?e:vt(e).map(n=>new i2(n,t))}var Ca=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ca.checkForDuplicate(t),Ca.constructors[e]==null&&(Ca.constructors[e]=[]),Ca.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ca.constructors)Ca.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Ca.constructors={}}static createCallbacks(e){let t=[];for(let n in Ca.constructors){let a=+n;e>=a&&t.push(...Ca.constructors[a])}return t.map(n=>new n)}};Ca.constructors={};function l2(e,t,n,a,r,s,i,o,l){let u=new s2,p=[new bG,...Ca.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new r2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ga(e,t={},n=!1){return cd(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function Zh(e,t){return P(()=>{e.dtype!=="float32"&&(e=ie(e,"float32"));let n=fe(hd(e),t,!0),a=xn(n.shape,jt()),r=hn(dr(n,a));return he(e,r)})}function Go(e,t){return P(()=>Et(hd(pe(t,e)),-1))}function Nf(e,t){return P(()=>Et(Wt(pe(t,e)),-1))}function ap(e,t){return P(()=>{let n=pe(e,t),a=rn(Wt(e),jt(),Number.MAX_VALUE),r=Wt(he(n,a));return z(100,Et(r,-1))})}function yG(e,t){return P(()=>{let n=rn(t,jt(),Number.MAX_VALUE),a=ta(X(1,n)),r=rn(e,jt(),Number.MAX_VALUE),s=ta(X(1,r));return Et(hd(pe(a,s)),-1)})}function xG(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Et(hd(n),-1)})}function vG(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Et(n,-1)})}function wG(e,t){return P(()=>{let n=fe(z(e,t),-1),a=fa(z(pe(1,e),t),-1);return dr(0,X(1,pe(a,n)))})}function kG(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(X(a,zo(z(-2,a))),n);return Et(r,-1)})}function bc(e,t,n=!1){return P(()=>{if(n)t=Xa(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=rn(t,jt(),1-jt()),yt(fe(z(ie(e,"float32"),ta(t)),t.shape.length-1))})}function Jh(e,t,n=!1){return P(()=>{let a=ie(Qu(AU(e)),"int32");t=rn(t,jt(),1-jt());let r=t.shape,s=W(Al(a,r[r.length-1]),r);return bc(s,t,n)})}function IG(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Ke(t),a=yt(Wt(t));return X(pe(n,z(t,e)),nd(yn(a)))})}function Tf(e,t){return P(()=>{let n;return n=rn(t,jt(),1-jt()),n=ta(he(n,pe(1,n))),Et(IG(e,n),-1)})}function SG(e,t){return P(()=>{let n=rn(e,jt(),1),a=rn(t,jt(),1);return fe(z(e,ta(he(n,a))),-1)})}function NG(e,t){return P(()=>{let n=ta(X(jt(),t));return Et(pe(t,z(e,n)),-1)})}function t0(e,t){return P(()=>{let n=Zh(e,-1),a=Zh(t,-1),r=z(n,a);return yt(fe(r,-1))})}var Qh={meanSquaredError:Go,meanAbsoluteError:Nf,meanAbsolutePercentageError:ap,meanSquaredLogarithmicError:yG,squaredHinge:xG,hinge:vG,categoricalHinge:wG,logcosh:kG,categoricalCrossentropy:bc,sparseCategoricalCrossentropy:Jh,binaryCrossentropy:Tf,kullbackLeiblerDivergence:SG,poisson:NG,cosineProximity:t0};function nx(e){if(typeof e=="string"){if(e in Qh)return Qh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function n0(e,t){return P(()=>{let n=z(.5,na(t)),a=ir(Cn(t,n),e.dtype);return Et(ea(e,a),-1)})}function a0(e,t){return P(()=>ir(ea(pi(e,-1),pi(t,-1)),"float32"))}function u2(e,t){return P(()=>ie(fe(Fa(ea(e,1),ea(t,1))),"float32"))}function TG(e,t){return P(()=>ie(fe(Fa(ea(e,1),ea(t,0))),"float32"))}function CG(e,t){return P(()=>ie(fe(Fa(ea(e,0),ea(t,1))),"float32"))}function p2(e,t){return P(()=>{let n=u2(e,t),a=CG(e,t),r=X(n,a);return ie(an(Cn(r,0),he(n,r),0),"float32")})}function _G(e,t){return P(()=>{let n=u2(e,t),a=TG(e,t),r=X(n,a);return ie(an(Cn(r,0),he(n,r),0),"float32")})}function c2(e,t){return Tf(e,t)}function d2(e,t){return e.rank===t.rank&&(e=Cs(e,[e.rank-1])),t=pi(t,-1),t.dtype!==e.dtype&&(t=ie(t,e.dtype)),ie(ea(e,t),"float32")}var EG=Go,AG=Go,FG=Nf,$G=Nf,DG=ap,RG=ap,r0=bc,MG=t0,h2=Jh,em={binaryAccuracy:n0,categoricalAccuracy:a0,precision:p2,categoricalCrossentropy:r0,sparseCategoricalCrossentropy:h2,mse:EG,MSE:AG,mae:FG,MAE:$G,mape:DG,MAPE:RG,cosine:MG};function PG(e){if(typeof e=="string"&&e in em)return em[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function xh(e){if(nr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Qh))if(Qh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(em))if(em[n]===e){t=n;break}return t!==void 0?t:e.name}}function OG(e){let t={Adagrad:()=>js.adagrad(.01),Adadelta:()=>js.adadelta(1,.95,jt()),Adam:()=>js.adam(.001,.9,.999,jt()),Adamax:()=>js.adamax(.002,.9,.999,jt(),0),RMSProp:()=>js.rmsprop(.001,.9,0,jt()),SGD:()=>js.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function lI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Fx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function Fx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Fx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Fx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function LG(e,t,n,a=console.log){let r=WG(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),tm(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?BG(o[p],n,a):VG(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=zG(e),u=Kh(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function zG(e){let t;return e.collectedTrainableWeights!=null?t=Kh(e.collectedTrainableWeights):t=Kh(e.trainableWeights),t}function WG(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function tm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function BG(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];tm(o,t,n)}function VG(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];tm(p,t,a);for(let d=1;d<i.length;++d)tm(["","","","",i[d]],t,a)}function m2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function yc(e,t){if(e===null)return null;if(typeof e=="string")return Ys(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];m2(t,r,s)?n.push(s):n.push(yc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ys(a);n[s]=yc(r,s)}}return n}}function $x(e,t){if(e==null)return null;if(typeof e=="string")return Sr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];m2(t,r,s)?n.push(s):n.push($x(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Sr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=$x(r,a)}return n}}var s0="4.5.0",er=class extends Be{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=ff(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;nr(x===0,"input layer has >1 nodes"),nr(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof np))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=b.sourceLayer,I=b.nodeIndex,T=b.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Ba(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(er.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let F=0;F<E;F++){let D=C.inputTensors[F],$=C.inboundLayers[F],S=C.nodeIndices[F],M=C.tensorIndices[F];o(D,y,x,$,S,M)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],T=b.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(gh);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of y)x instanceof er&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(gh);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new Ba(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new Ba(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Sf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}Xw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${s0}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=$x(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=vt(e);let n=new ei;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Yp(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=vt(e);let n;return t==null?n=gi(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=jh(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(gh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(On(p)),c=jh(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];nr(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=gi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(gh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=vt(p.call(x,m)),y=vt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=vt(p.call(f,m)),y=vt(p.computeMask(f,g));if(p.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],T=y[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){nr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof er?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=er.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=er.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=er.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=er.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=er.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=er.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],T=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];b.push(E.outputTensors[T])}b.length>0&&f.apply(On(b),y)}function l(f){let g=f.name,b=Ga(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!bU(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];nr(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];nr(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function UG(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function f2(e,t){return UG(e,t,"classWeight")}async function g2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return sr(e);if(e.shape.length===2){if(e.shape[1]>1)return pi(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());_e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),je(i,"float32")}else return null}function GG(e,t){return z(e,t)}var HG=32;function b2(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=uI("input",e.inputNames,n),i=uI("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function uI(e,t,n){if(n instanceof Ce)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function qG(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function jG(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(pI(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=qG(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=o2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=l2(p,d,n.epochs,null,null,KG(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=b2(e,x.value),T={};T.batch=y,T.size=w[0].shape[0],await c.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let D=f2(n.classWeight,e.outputNames);for(let $=0;$<D.length;++$)C.push(await g2(I[$],null,D[$]))}let E=w.concat(I).concat(C),F=o(E);_e(E);for(let D=0;D<l.length;++D){let $=l[D],S=F[D];T[$]=S,Ht(S)}await c.onBatchEnd(y,T),a2(T),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;pI(n.validationData)?w=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=vt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?HG:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function KG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function pI(e){return typeof e.iterator=="function"}function XG(e){return typeof e.next=="function"}async function YG(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=XG(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=b2(e,u.value),c=p.concat(d),h=P(()=>r(c));if(_e(c),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=P(()=>X(s[f],z(m,g))),l>0&&_e(b)}_e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),_e(p)}return On(s)}function ax(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Gp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ri(a,t,n-t)):ri(e,t,n-t)}function Dx(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>Dx(n,t)):XT(e,t.dtype==="int32"?t:ie(t,"int32")))}function rx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}function y2(e){let t=[];e instanceof Ce&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(dd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function za(e,t){if(e==null)return;let n=[];if(t instanceof Ce)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ce)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function ZG(e){return e instanceof Ce}function Rx(e){return Array.isArray(e)}function cI(e){return!ZG(e)&&!Rx(e)}function dI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Rx(e)&&e.length>0)i=!0;else if(cI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(cI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Rx(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=y2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function JG(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function QG(e,t,n){let a=[Go,Tf,bc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===bc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function hI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function eH(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var tH="layers-model",Er=class extends er{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");LG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=OG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Mr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(nx(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>nx(s))}else{let s=nx(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ai("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=eH(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ai("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Tf?["accuracy","acc"].indexOf(c)!==-1?p=n0:["crossentropy","ce"].indexOf(c)!==-1&&(p=c2):this.lossFunctions[s]===Jh?["accuracy","acc"].indexOf(c)!==-1?p=d2:["crossentropy","ce"].indexOf(c)!==-1&&(p=h2):["accuracy","acc"].indexOf(c)!==-1?p=a0:["crossentropy","ce"].indexOf(c)!==-1&&(p=r0);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=PG(c),u=l+xh(c);let h;ai(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;ax(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{za(s[0],e),za(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),YG(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new ei;if(e instanceof Ce&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Yp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=gi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=rx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=Gp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new ei(p);return Yp(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=y2(e);hI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return ax(a),this.predictLoop(n,a)}finally{za(n,e)}}predictOnBatch(e){hI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ba("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Jh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=dI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=dI(t,this.feedOutputNames,r,!1,"target"),JG(e,t,null),QG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=f2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await g2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=rx(s,n),l=je(qa(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ri(l,p,d-p),h=Dx(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=X(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;if(Jk(e,a)>1){let s=Jk(e.slice(0,n),a);r+=`_${s}`}t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new ei(u),d=Yp(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=GG(f,r[h]));let g=Et(f);t.push(g),h===0?c=f:c=X(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}Ht(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=X(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new ei(s),o=Yp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=X(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){if(this.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");this.isTraining=!0;let a,r,s,i,o,l,u,p,d;try{let c=n.batchSize==null?32:n.batchSize;ax(c);let h=!1,m=await this.standardizeUserData(e,t,n.sampleWeight,n.classWeight,h,c);a=m[0],r=m[1],d=m[2];let f=!1,g;if(n.validationData!=null&&n.validationData.length>0){if(f=!0,n.validationData.length===2)o=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let C=!0,E=await this.standardizeUserData(o,l,null,null,C,c);u=E[0],p=E[1],g=u.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){f=!0;let C=Math.floor(a[0].shape[0]*(1-n.validationSplit)),E=a[0].shape[0];u=Gp(a,C,E),s=a,a=Gp(a,0,C),p=Gp(r,C,E),i=r,r=Gp(r,0,C),g=u.concat(p)}else n.validationSteps!=null&&(f=!0);let b=a.concat(r).concat(d);this.checkTrainableWeightsConsistency();let y=this.makeTrainFunction(),x=this.getDedupedMetricsNames(),w,I;f?(this.makeTestFunction(),w=this.testFunction,I=x.slice().concat(x.map(C=>"val_"+C))):(w=null,g=[],I=x.slice());let T=o2(n.callbacks,n.yieldEvery);return await this.fitLoop(y,b,x,c,n.epochs,n.verbose,T,w,g,n.shuffle,I,n.initialEpoch,null,null)}finally{this.isTraining=!1,za(a,e),za(r,t),za(s,e),za(i,t),za(u,o),za(p,l),d!=null&&_e(d)}}async fitLoop(e,t,n,a,r,s,i,o,l,u,p,d,c,h){a==null&&(a=32),r==null&&(r=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(o!=null&&l!=null&&(m=!0),h!=null&&(m=!0,c==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let f=this.checkNumSamples(t,a,c,"steps_per_epoch"),g;f!=null&&(g=qa(0,f)),s==null&&(s=1);let{callbackList:b,history:y}=l2(i,s,r,d,f,c,a,m,p);b.setModel(this),this.history=y,await b.onTrainBegin(),this.stopTraining_=!1;for(let x=d;x<r;++x){await b.onEpochBegin(x);let w={};if(c!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Oe("batch shuffling is not implemneted yet");u&&v.shuffle(g);let I=je(g),T=rx(f,a);for(let C=0;C<T.length;++C){let E={};if(await b.onBatchBegin(C,E),P(()=>{let F=T[C][0],D=T[C][1],$=ri(I,F,D-F);E.batch=C,E.size=D-F;let S=Dx(t,$),M=e(S);for(let B=0;B<n.length;++B){let U=n[B],H=M[B];E[U]=H,Ht(H)}if(C===T.length-1&&m){let B=this.testLoop(o,l,a);for(let U=0;U<n.length;++U){let H=n[U],j=B[U];Ht(j),w["val_"+H]=j}}}),await b.onBatchEnd(C,E),a2(E),this.stopTraining_)break}I.dispose()}if(await b.onEpochEnd(x,w),this.stopTraining_)break}return await b.onTrainEnd(),await this.history.syncData(),this.history}async fitDataset(e,t){return jG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),za(n[0],e),za(n[1],t),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Hh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Hh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Sr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Sr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Sr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Sr(xh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Sr(xh(e)));{let e={};for(let t in this.metrics)e[t]=Sr(xh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=yc(e.optimizer_config),n=Ga(t),a;if(typeof e.loss=="string")a=Ys(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ys(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ys(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ys(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ys(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=qt.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await qt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:tH,generatedBy:`TensorFlow.js tfjs-layers v${s0}`,convertedBy:null};if(t!=null&&t.includeOptimizer&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await qt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=qt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(lI(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){lI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";ne.registerClass(Er);var x2=class extends Er{};x2.className="Functional";ne.registerClass(x2);async function nH(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=yc(n),r=Ga(a,t);if(e.weightsManifest!=null){let s=await qt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),_e(s)}return r}async function aH(e,t){if(t==null&&(t={}),typeof e=="string"){let n=qt.getLoadHandlers(e,t);if(n.length===0)n.push(qt.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return rH(e,void 0,t)}async function rH(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ga(yc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=sH(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),_e(u),_e(p.map(d=>d.tensor))}return o}function sH(e,t){let n=qt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Ll=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:ff("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Ll||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=QT({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=JT(this.outputs[0])}this.inboundNodes=[],new Sf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:gi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Ze(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Ll))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ga(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Ll.className="Sequential";ne.registerClass(Ll);function iH(e){return new Er(e)}function oH(e){return new Ll(e)}function v2(e){return QT(e)}function lH(e,t){Ca.registerCallbackConstructor(e,t)}var Gn=class extends ne.Serializable{getConfig(){return{}}},w2=class extends Gn{apply(e,t=1){return $U(e,t)}};w2.className="elu";ne.registerClass(w2);var k2=class extends Gn{apply(e){return Jm(e)}};k2.className="selu";ne.registerClass(k2);var I2=class extends Gn{apply(e){return Ke(e)}};I2.className="relu";ne.registerClass(I2);var S2=class extends Gn{apply(e){return P(()=>us(6,Ke(e)))}};S2.className="relu6";ne.registerClass(S2);var N2=class extends Gn{apply(e){return e}};N2.className="linear";ne.registerClass(N2);var T2=class extends Gn{apply(e){return ma(e)}};T2.className="sigmoid";ne.registerClass(T2);var C2=class extends Gn{apply(e){return RU(e)}};C2.className="hardSigmoid";ne.registerClass(C2);var _2=class extends Gn{apply(e){return zo(e)}};_2.className="softplus";ne.registerClass(_2);var E2=class extends Gn{apply(e){return DU(e)}};E2.className="softsign";ne.registerClass(E2);var A2=class extends Gn{apply(e){return di(e)}};A2.className="tanh";ne.registerClass(A2);var i0=class extends Gn{apply(e,t=-1){return Xa(e,t)}};i0.className="softmax";ne.registerClass(i0);var F2=class extends Gn{apply(e,t=-1){return Gm(e,t)}};F2.className="logSoftmax";ne.registerClass(F2);var $2=class extends Gn{apply(e,t=1){return P(()=>z(ma(z(e,t)),e))}};$2.className="swish";ne.registerClass($2);var D2=class extends Gn{apply(e){return P(()=>z(e,di(zo(e))))}};D2.className="mish";ne.registerClass(D2);function cs(e){return e.getClassName()}function sx(e,t={}){return cd(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function ds(e){if(e==null){let t={};return t.className="linear",t.config={},sx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},sx(t)}else return e instanceof Gn?e:sx(e)}function o0(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var R2=class extends ne.Serializable{},gd=class extends R2{constructor(e){super(),o0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Nt([1]);return this.hasL1&&(t=X(t,fe(z(this.l1,Wt(e))))),this.hasL2&&(t=X(t,fe(z(this.l2,hd(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};gd.className="L1L2";ne.registerClass(gd);function uH(e){return o0(e),new gd({l1:e!=null?e.l1:null,l2:0})}function pH(e){return o0(e),new gd({l2:e!=null?e.l2:null,l1:0})}var mI={l1l2:"L1L2"};function mt(e){return zw(e)}function fI(e,t={}){return cd(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ct(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in mI?mI[e]:e,config:{}};return fI(t)}else return e instanceof R2?e:fI(e)}var l0=class extends Be{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Te(e);let n=Ke(e);return this.maxValue!=null&&(n=rn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};l0.className="ReLU";ne.registerClass(l0);var u0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Te(e);return td(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};u0.className="LeakyReLU";ne.registerClass(u0);var p0=class extends Be{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Tt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ct(e.alphaRegularizer),this.alphaConstraint=Yt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Ze(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Bt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Te(e),id(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Xt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};p0.className="PReLU";ne.registerClass(p0);var c0=class extends Be{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Te(e);return Zu(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};c0.className="ELU";ne.registerClass(c0);var d0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Te(e);return z(n,ie(Cn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};d0.className="ThresholdedReLU";ne.registerClass(d0);var h0=class extends Be{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new i0().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Te(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};h0.className="Softmax";ne.registerClass(h0);function Il(e,t,n){if(typeof e=="number")return gi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!_U(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ha(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function ar(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ps([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function m0(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,1]):e))}function M2(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,4,1]):e))}function cH(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=De(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Lm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ya(o,n)),o})}function gI(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=m0(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Rl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=De(l,[0,3,1,2])),l})}function dH(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=M2(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Vv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ya(o,n)),s==="channelsFirst"&&(o=De(o,[0,4,1,2,3])),o})}var f0=class extends Be{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",f0.verifyArgs(t),this.rank=e,nn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Il(t.kernelSize,e,"kernelSize"),this.strides=Il(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,va(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=ds(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Tt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Yt(t.biasConstraint),this.biasRegularizer=Ct(t.biasRegularizer),this.activityRegularizer=Ct(t.activityRegularizer),this.dilationRate=Il(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(nr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ww(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:cs(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},bd=class extends f0{constructor(e,t){super(e,t),this.kernel=null,bd.verifyArgs(t),this.filters=t.filters,nn(this.filters,"filters"),this.kernelInitializer=Tt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Yt(t.kernelConstraint),this.kernelRegularizer=Ct(t.kernelRegularizer)}build(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Te(e);let n,a=this.bias==null?null:this.bias.read(),r=UT(this.activation.getClassName());if(r!=null&&this.rank===2)n=gI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=cH(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=gI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=dH(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Ze(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ha(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Xt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},yd=class extends bd{constructor(e){super(2,e),yd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ww(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};yd.className="Conv2D";ne.registerClass(yd);var xd=class extends bd{constructor(e){super(3,e),xd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};xd.className="Conv3D";ne.registerClass(xd);var g0=class extends yd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ze(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Te(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=ar(o,d,u,this.padding),m=ar(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,1]));let g=zm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=De(g,[0,3,1,2])),this.bias!=null&&(g=Ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Ze(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=ar(t[a],o,s,this.padding),t[r]=ar(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};g0.className="Conv2DTranspose";ne.registerClass(g0);var b0=class extends xd{constructor(e){if(super(e),this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Ze(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Te(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=ar(l,m,d,this.padding),y=ar(u,f,c,this.padding),x=ar(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,4,1]));let I=Uv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=De(I,[0,4,1,2,3])),this.bias!==null&&(I=Ya(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=Ze(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=ar(t[a],u,i,this.padding),t[r]=ar(t[r],p,o,this.padding),t[s]=ar(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};b0.className="Conv3DTranspose";ne.registerClass(b0);var P2=class extends bd{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ct(t.depthwiseRegularizer),this.depthwiseConstraint=Yt(t.depthwiseConstraint),this.pointwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ct(t.pointwiseRegularizer),this.pointwiseConstraint=Yt(t.pointwiseConstraint)}build(e){if(e=Ze(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Bt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Te(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=De(e,[0,2,3,1])),n=Ts(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=De(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseConstraint),e.pointwiseConstraint=Xt(this.pointwiseConstraint),e}};P2.className="SeparableConv";var y0=class extends P2{constructor(e){super(2,e)}};y0.className="SeparableConv2D";ne.registerClass(y0);var Cf=class extends bd{constructor(e){super(1,e),Cf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ww(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Cf.className="Conv1D";ne.registerClass(Cf);var x0=class extends Be{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Te(e),this.dataFormat==="channelsLast"){let n=yh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return yh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=yh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return yh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};x0.className="Cropping2D";ne.registerClass(x0);var v0=class extends Be{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,NU(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Te(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=De(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Qn.resizeNearestNeighbor(n,[r,s]):Qn.resizeBilinear(n,[r,s]);return De(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Qn.resizeNearestNeighbor(n,[r,s]):Qn.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};v0.className="UpSampling2D";ne.registerClass(v0);function hH(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=ja()),Pt(r);let i=m0(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Is(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}var w0=class extends f0{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Tt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Yt(e.depthwiseConstraint),this.depthwiseRegularizer=Ct(e.depthwiseRegularizer)}build(e){if(e=Ze(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Te(e);let n=hH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ha(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ha(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseRegularizer),e}};w0.className="DepthwiseConv2D";ne.registerClass(w0);function O2(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function L2(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(qa(2,l));if(t=De(t,u),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ie(ie(r,"bool"),"float32"),r.rank===l-1&&(r=tn(r,-1)),r=De(r,u)),a&&(t=ba(t,0),r!=null&&(r=ba(r,0)));let p=[],d,c=n,h=t.shape[0],m=pt(t),f;r!=null&&(f=pt(r));for(let b=0;b<h;++b){let y=m[b],x=P(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[b],T=pe(na(I),I),C=X(z(x[0],I),z(c[0],T)),E=c.map((F,D)=>X(z(x[1][D],I),z(F,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Dt(p,1)),[d,g,c]})}var mr=class extends Be{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Af({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return qa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ex(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");Ex(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Bt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Bt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_=[Nt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_[0]=Nt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Ht(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=O2(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Bt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Va){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Te(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=L2((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=Nt(e.shape);return t=fe(t,[1,2]),t=dd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Cx(t,[1,n]):t):this.cell.stateSize>1?[Cx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===mr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ga(a,n);return new e(Object.assign(t,{cell:r}))}};mr.className="RNN";ne.registerClass(mr);var vd=class extends Be{},_f=class extends vd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Pl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=or(z(e,s),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),i!=null&&(n=z(n,i));let o=X(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};_f.className="SimpleRNNCell";ne.registerClass(_f);var k0=class extends mr{constructor(e){e.cell=new _f(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};k0.className="SimpleRNN";ne.registerClass(k0);var Ef=class extends vd{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Pl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Ze(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=or(e,this.kernel.read());this.useBias&&(u=Ya(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=or(a,d),[m,f,g]=zn(u,3,u.rank-1),[b,y]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(X(m,b)),o=this.recurrentActivation.apply(X(f,y));let x=or(z(o,a),c);l=this.activation.apply(X(g,x));let w=X(z(i,a),z(X(1,yt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},e),t)}};Ef.className="GRUCell";ne.registerClass(Ef);var I0=class extends mr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ef(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};I0.className="GRU";ne.registerClass(I0);var wd=class extends vd{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=Pl([1,ps([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pl([1,ps([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Ze(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ra{apply(i,o){let l=r.apply([s]),u=new bf().apply([s]),p=r.apply([s*2]);return eI(eI(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=or(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=X(d,or(a,this.recurrentKernel.read())),this.useBias&&(d=Ya(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=X(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:cs(this.activation),recurrentActivation:cs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},e),t)}};wd.className="LSTMCell";ne.registerClass(wd);var S0=class extends mr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new wd(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};S0.className="LSTM";ne.registerClass(S0);var Af=class extends vd{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Ex(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{ai(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ga(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Ax(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Xw(t)}};Af.className="StackedRNNCells";ne.registerClass(Af);function hs(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):YT(t(),n),o=()=>md(i,t,a);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var mH=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},z2=class extends mr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Bt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Nt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Ir("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_=[Nt(r)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_[0]=Nt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ha(l,a[0],r,s[0],i[0]),d=Ha(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};z2.className="ConvRNN2D";var Ff=class extends wd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,nn(this.filters,"filters"),this.kernelSize=Il(n,2,"kernelSize"),this.kernelSize.forEach(o=>nn(o,"kernelSize")),this.strides=Il(a||1,2,"strides"),this.strides.forEach(o=>nn(o,"strides")),this.padding=r||"valid",va(this.padding),this.dataFormat=s||"channelsLast",Pt(this.dataFormat),this.dilationRate=Il(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>nn(o,"dilationRate"))}build(e){var t;e=Ze(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ra{apply(p,d){let c=l.apply([u]),h=Jn([u]),m=l.apply([u*2]);return Bw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>na(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:z(J[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>na(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,T]=zn(this.kernel.read(),i,y),[C,E,F,D]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,F,this.padding),c=this.inputConv(c,T,D,this.padding);let[$,S,M,B]=zn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),b=this.recurrentConv(b,B);let U=this.recurrentActivation.apply(X(u,m)),H=this.recurrentActivation.apply(X(p,f)),j=X(z(H,s),z(U,this.activation.apply(X(d,g)))),K=z(this.recurrentActivation.apply(X(c,b)),this.activation.apply(j));return[K,K,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=mH(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ya(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ff.className="ConvLSTM2DCell";ne.registerClass(Ff);var N0=class extends z2{constructor(e){let t=new Ff(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};N0.className="ConvLSTM2D";ne.registerClass(N0);var $f=class extends Be{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return md(()=>YT(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};$f.className="Dropout";ne.registerClass($f);var T0=class extends $f{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};T0.className="SpatialDropout1D";ne.registerClass(T0);var C0=class extends Be{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,nn(this.units,"units"),this.activation=ds(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Yt(e.kernelConstraint),this.biasConstraint=Yt(e.biasConstraint),this.kernelRegularizer=Ct(e.kernelRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Ze(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Ze(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=UT(this.activation.getClassName()),r;return a!=null?r=or(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:cs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};C0.className="Dense";ne.registerClass(C0);var _0=class extends Be{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Ze(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=De(n,a)}return FU(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};_0.className="Flatten";ne.registerClass(_0);var E0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.activation=ds(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return this.activation.apply(n)})}getConfig(){let e={activation:cs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};E0.className="Activation";ne.registerClass(E0);var A0=class extends Be{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Te(e),EU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};A0.className="RepeatVector";ne.registerClass(A0);var F0=class extends Be{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};F0.className="Reshape";ne.registerClass(F0);var $0=class extends Be{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=qa(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Ze(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return De(Te(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};$0.className="Permute";ne.registerClass($0);var D0=class extends Be{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Te(e),a=-1;return hc(mi(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e),a=-1,r=!0,s=hc(mi(n,this.maskValue),a,r);return z(n,ie(s,n.dtype))})}};D0.className="Masking";ne.registerClass(D0);var R0=class extends Be{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,nn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,nn(this.outputDim,"outputDim"),this.embeddingsInitializer=Tt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ct(e.embeddingsRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.embeddingsConstraint=Yt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Te(e),mi(e,qe(e))):null)}computeOutputShape(e){if(e=Ze(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);n.dtype!=="int32"&&(n=ir(n,"int32"));let a=XT(this.embeddings.read(),W(n,[n.size]));return W(a,Ze(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Xt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};R0.className="Embedding";ne.registerClass(R0);var Ho=class extends Be{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Ze(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ps(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=dd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(rs(u.slice(1))));c=De(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=qa(1,l).concat([0]);n.push(De(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(De(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(qa(0,i-1));s=De(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:tn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Fa(n,t[a]);return n})}},M0=class extends Ho{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return t})}};M0.className="Add";ne.registerClass(M0);var P0=class extends Ho{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};P0.className="Multiply";ne.registerClass(P0);var O0=class extends Ho{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return z(1/e.length,t)})}};O0.className="Average";ne.registerClass(O0);var L0=class extends Ho{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=dr(t,e[n]);return t})}};L0.className="Maximum";ne.registerClass(L0);var z0=class extends Ho{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=us(t,e[n]);return t})}};z0.className="Minimum";ne.registerClass(z0);var W0=class extends Ho{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>Bw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(ie(na(e[s]),"bool")):t[s].rank<e[s].rank?a.push(tn(t[s],-1)):a.push(t[s]);let r=Qe(a,this.axis);return Om(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};W0.className="Concatenate";ne.registerClass(W0);function Hp(e,t){for(;e<0;)e+=t;return e}function fH(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(De(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=$e(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=Cs(o,u)}return o.shape.length===1&&(o=tn(o,1)),o})}var B0=class extends Ho{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Hp(r,e[s].shape.length)):a=[Hp(this.axes,t.shape.length),Hp(this.axes,n.shape.length)],this.normalize&&(t=Zh(t,a[0]),n=Zh(n,a[1])),fH(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Hp(this.axes,e.length),Hp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};B0.className="Dot";ne.registerClass(B0);var V0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return md(()=>X(gf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};V0.className="GaussianNoise";ne.registerClass(V0);var U0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Te(e);return this.rate>0&&this.rate<1?md(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,gf(n.shape,1,a))},()=>n,t.training||!1):n})}};U0.className="GaussianDropout";ne.registerClass(U0);var G0=class extends Be{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Te(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return md(()=>{let a=Te(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Dr(Ns(n),this.rate);o=ir(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=X(z(a,o),z(X(o,-1),i));return X(z(p,l),u)},()=>Te(e),t.training||!1)}return e})}};G0.className="AlphaDropout";ne.registerClass(G0);function xc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=$v(e,t,n,a,r,s);else if(e.rank===3)i=Dv(e,t,n,a,r,s);else if(e.rank===4)i=Rv(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function gH(e,t,n,a,r=.001){return P(()=>{let s=rd(e,a),i=s.mean,o=s.variance;return[xc(e,i,o,n,t,r),i,o]})}function bH(e,t,n,a,r=.001){return P(()=>{let s=rd(e,a),i=s.mean,o=s.variance,l=[];for(let h of qa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[xc(e,u,p,c,d,r),i,o]})}function yH(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),qa(0,e.rank-1))?gH(e,t,n,a,r):bH(e,t,n,a,r)}var H0=class extends Be{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Tt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Tt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Yt(e.betaConstraint),this.gammaConstraint=Yt(e.gammaConstraint),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer)}build(e){e=Ze(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Te(e),r=a.shape,s=r.length,i=qa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=gi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,qa(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),b=W(this.movingVariance.read(),l),y=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return xc(a,g,b,y,x,this.epsilon)}else return xc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=yH(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{P(()=>{let x=1-y,w=g.read(),I=z(pe(w,b),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Xt(this.betaConstraint),gammaConstraint:Xt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};H0.className="BatchNormalization";ne.registerClass(H0);var q0=class extends Be{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Ze(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Te(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=rd(n,this.axis,!0),o=gi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Ln(s,d),i=Ln(i,d),u!=null&&(u=Ln(u,c)),p!=null&&(p=Ln(p,c)),xc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};q0.className="LayerNormalization";ne.registerClass(q0);function xH(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],xa(e,a)})}var j0=class extends Be{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=Ze(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>xH(Te(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};j0.className="ZeroPadding2D";ne.registerClass(j0);function Df(e,t,n,a,r,s){return P(()=>{Pt(r),HT(s),va(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=m0(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mt(e,t,n,o):i=ya(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}function W2(e,t,n,a,r,s){return P(()=>{Pt(r),HT(s),va(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=M2(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=sw(e,t,n,o):i=Fv(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,4,1,2,3])),i})}var B2=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(nn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,va(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=Ze(e);let t=Ha(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=dd(Te(e),2);let n=this.poolingFunction(Te(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Cs(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},K0=class extends B2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Df(e,t,n,a,r,"max")}};K0.className="MaxPooling1D";ne.registerClass(K0);var X0=class extends B2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Df(e,t,n,a,r,"avg")}};X0.className="AveragePooling1D";ne.registerClass(X0);var V2=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),va(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Te(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Y0=class extends V2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Df(e,t,n,a,r,"max")}};Y0.className="MaxPooling2D";ne.registerClass(Y0);var Z0=class extends V2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Df(e,t,n,a,r,"avg")}};Z0.className="AveragePooling2D";ne.registerClass(Z0);var U2=class extends Be{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];nn(this.poolSize,"poolSize"),nn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),va(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=Ze(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),a=Ha(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Te(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},J0=class extends U2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),W2(e,t,n,a,r,"max")}};J0.className="MaxPooling3D";ne.registerClass(J0);var Q0=class extends U2{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),W2(e,t,n,a,r,"avg")}};Q0.className="AveragePooling3D";ne.registerClass(Q0);var G2=class extends Be{constructor(e){super(e),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},e1=class extends G2{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Te(e);return Et(n,1)})}};e1.className="GlobalAveragePooling1D";ne.registerClass(e1);var t1=class extends G2{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Te(e);return fa(n,1)})}};t1.className="GlobalMaxPooling1D";ne.registerClass(t1);var H2=class extends Be{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},n1=class extends H2{call(e,t){return P(()=>{let n=Te(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};n1.className="GlobalAveragePooling2D";ne.registerClass(n1);var a1=class extends H2{call(e,t){return P(()=>{let n=Te(e);return this.dataFormat==="channelsLast"?fa(n,[1,2]):fa(n,[2,3])})}};a1.className="GlobalMaxPooling2D";ne.registerClass(a1);var q2=class extends Be{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ga(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},r1=class extends q2{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=Ze(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Ze(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Te(e),L2((n,a)=>[Te(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};r1.className="TimeDistributed";ne.registerClass(r1);function vH(e){Uo(SU,"BidirectionalMergeMode",e)}var wH="concat",s1=class extends q2{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ga(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ga(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wH:e.mergeMode,vH(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=O2(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Bt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Va;for(let l of s)if(l instanceof Va!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ba(r,1));let i;return this.mergeMode==="concat"?i=Bw([a,r]):this.mergeMode==="sum"?i=X(a,r):this.mergeMode==="ave"?i=z(.5,X(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ga(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};s1.className="Bidirectional";ne.registerClass(s1);var i1=class extends Be{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Te(e),e.dtype!=="float32"&&(e=ir(e,"float32")),X(z(e,this.scale),this.offset)))}};i1.className="Rescaling";ne.registerClass(i1);var{resizeBilinear:kH,cropAndResize:IH}=Qn,o1=class extends Be{constructor(e){super(e),this.height=e.height,this.width=e.width}centerCrop(e,t,n,a,r,s,i,o){return P(()=>{let l,u=!1,p=t/s,d=n/i,c=(a+t)/s,h=(r+n)/i,m=[p,d,c,h],f=[];e.rank===3?(u=!0,l=Dt([e])):l=e;for(let x=0;x<l.shape[0];x++)f.push(m);let g=bn(f,[f.length,4]),b=fi(0,f.length,1,"int32"),y=IH(l,g,b,[a,r],"nearest");return ir(u?Te(pt(y)):y,o)})}upsize(e,t,n,a){return P(()=>{let r=kH(e,[t,n]);return ir(r,a)})}call(e,t){return P(()=>{let n=Te(e),a=n.dtype,r=n.shape,s=r[r.length-3],i=r[r.length-2],o=0;s!==this.height&&(o=Math.floor((s-this.height)/2));let l=0;return i!==this.width&&(l=Math.floor((i-this.width)/2),l===0&&(l=1)),o>=0&&l>=0?this.centerCrop(n,o,l,this.height,this.width,s,i,a):this.upsize(e,this.height,this.width,a)})}getConfig(){let e={height:this.height,width:this.width},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Ze(e);let t=e.length-3,n=e.length-2;return e[t]=this.height,e[n]=this.width,e}};o1.className="CenterCrop";ne.registerClass(o1);function SH(e,t,n,a){let r=Te(e);if(r.dtype!=="int32"&&(r=ir(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=tn(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=tn(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=qh(o,a,n,i):l=qh(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var l1=class extends Be{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=Ze(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Te(e),e.dtype!=="int32"&&(e=ir(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count.
Received countWeights=${t.countWeights}`);n=Te(t.countWeights)}let a=fa(e),r=_l(e),s=Cn(this.numTokens,a).bufferSync().get(0),i=Dr(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return SH(e,this.outputMode,this.numTokens,n)})}};l1.className="CategoryEncoding";ne.registerClass(l1);var NH=["bilinear","nearest"],bI=new Set(NH),u1=class extends Be{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(bI.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=!!e.cropToAspectRatio}computeOutputShape(e){e=Ze(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return Qn.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return Qn.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...bI]} are supported`)})}};u1.className="Resizing";ne.registerClass(u1);var j2=class{constructor(e){this.seed=e}next(){if(this.seed!==void 0)return this.seed++}};j2.className="RandomSeed";var K2=class extends Be{constructor(e){super(e),this.randomGenerator=new j2(e.seed)}getConfig(){let e={seed:this.randomGenerator.seed},t=super.getConfig();return Object.assign(e,t),e}};K2.className="BaseRandomLayer";var TH=["bilinear","nearest"],yI=new Set(TH),p1=class extends K2{constructor(e){super(e);let{factor:t,interpolation:n="bilinear"}=e;if(this.factor=t,Array.isArray(this.factor)&&this.factor.length===2)this.widthLower=this.factor[0],this.widthUpper=this.factor[1];else if(!Array.isArray(this.factor)&&this.factor>0)this.widthLower=-this.factor,this.widthUpper=this.factor;else throw new V(`Invalid factor: ${this.factor}. Must be positive number or tuple of 2 numbers`);if(this.widthLower<-1||this.widthUpper<-1)throw new V(`factor must have values larger than -1. Got: ${this.factor}`);if(this.widthUpper<this.widthLower)throw new V(`factor cannot have upper bound less than lower bound.
Got upper bound: ${this.widthUpper}.
Got lower bound: ${this.widthLower}
`);if(n)if(yI.has(n))this.interpolation=n;else throw new V(`Invalid interpolation parameter: ${n} is not implemented`)}getConfig(){let e={factor:this.factor,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Ze(e);let t=e[2];return[this.imgHeight,-1,t]}call(e,t){return P(()=>{let n=Te(e);this.imgHeight=n.shape[n.shape.length-3];let a=n.shape[n.shape.length-2];this.widthFactor=Ns([1],1+this.widthLower,1+this.widthUpper,"float32",this.randomGenerator.next());let r=this.widthFactor.dataSync()[0]*a;r=Math.round(r);let s=[this.imgHeight,r];switch(this.interpolation){case"bilinear":return Qn.resizeBilinear(e,s);case"nearest":return Qn.resizeNearestNeighbor(e,s);default:throw new Error(`Interpolation is ${this.interpolation}
but only ${[...yI]} are supported`)}})}};p1.className="RandomWidth";ne.registerClass(p1);function CH(e){return new np(e)}function _H(e){return new c0(e)}function EH(e){return new l0(e)}function AH(e){return new u0(e)}function FH(e){return new p0(e)}function $H(e){return new h0(e)}function DH(e){return new d0(e)}function RH(e){return new Cf(e)}function MH(e){return new yd(e)}function PH(e){return new g0(e)}function OH(e){return new xd(e)}function LH(e){return new b0(e)}function zH(e){return new y0(e)}function WH(e){return new x0(e)}function BH(e){return new v0(e)}function VH(e){return new w0(e)}function UH(e){return new E0(e)}function GH(e){return new C0(e)}function HH(e){return new $f(e)}function qH(e){return new T0(e)}function jH(e){return new _0(e)}function KH(e){return new A0(e)}function XH(e){return new F0(e)}function YH(e){return new $0(e)}function ZH(e){return new R0(e)}function JH(e){return new M0(e)}function QH(e){return new O0(e)}function e6(e){return new W0(e)}function t6(e){return new L0(e)}function n6(e){return new z0(e)}function a6(e){return new P0(e)}function r6(e){return new B0(e)}function s6(e){return new H0(e)}function i6(e){return new q0(e)}function o6(e){return new j0(e)}function c1(e){return new X0(e)}function l6(e){return c1(e)}function u6(e){return c1(e)}function d1(e){return new Z0(e)}function p6(e){return d1(e)}function c6(e){return d1(e)}function h1(e){return new Q0(e)}function d6(e){return h1(e)}function h6(e){return h1(e)}function m6(e){return new e1(e)}function f6(e){return new n1(e)}function X2(e){return new t1(e)}function Y2(e){return new a1(e)}function Z2(e){return new K0(e)}function J2(e){return new Y0(e)}function g6(e){return new J0(e)}function b6(e){return new I0(e)}function y6(e){return new Ef(e)}function x6(e){return new S0(e)}function v6(e){return new wd(e)}function w6(e){return new k0(e)}function k6(e){return new _f(e)}function I6(e){return new N0(e)}function S6(e){return new Ff(e)}function N6(e){return new mr(e)}function T6(e){return new Af(e)}function C6(e){return new s1(e)}function _6(e){return new r1(e)}var E6=X2,A6=Y2,F6=Z2,$6=J2;function D6(e){return new V0(e)}function R6(e){return new U0(e)}function M6(e){return new G0(e)}function P6(e){return new D0(e)}function O6(e){return new i1(e)}function L6(e){return new o1(e)}function z6(e){return new u1(e)}function W6(e){return new l1(e)}function B6(e){return new p1(e)}var Q2={};Ee(Q2,{MAPE:()=>J6,MSE:()=>tq,binaryAccuracy:()=>V6,binaryCrossentropy:()=>U6,categoricalAccuracy:()=>H6,categoricalCrossentropy:()=>q6,cosineProximity:()=>X6,mape:()=>Q6,meanAbsoluteError:()=>Y6,meanAbsolutePercentageError:()=>Z6,meanSquaredError:()=>eq,mse:()=>nq,precision:()=>j6,recall:()=>K6,sparseCategoricalAccuracy:()=>G6});function V6(e,t){return n0(e,t)}function U6(e,t){return c2(e,t)}function G6(e,t){return d2(e,t)}function H6(e,t){return a0(e,t)}function q6(e,t){return r0(e,t)}function j6(e,t){return p2(e,t)}function K6(e,t){return _G(e,t)}function X6(e,t){return t0(e,t)}function Y6(e,t){return Nf(e,t)}function Z6(e,t){return ap(e,t)}function J6(e,t){return ap(e,t)}function Q6(e,t){return ap(e,t)}function eq(e,t){return Go(e,t)}function tq(e,t){return Go(e,t)}function nq(e,t){return Go(e,t)}var eC={};Ee(eC,{modelFromJSON:()=>nH});var tC={};Ee(tC,{l1:()=>rq,l1l2:()=>aq,l2:()=>sq});function aq(e){return new gd(e)}function rq(e){return uH(e)}function sq(e){return pH(e)}var nC=class extends Ol{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function vh(e,t){return e<t}function xI(e,t){return e>t}var aC=class extends nC{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=vh:this.mode==="max"?this.monitorFunc=xI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=xI:this.monitorFunc=vh,this.monitorFunc===vh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===vh?1/0:-1/0}async onEpochEnd(e,t){await Xr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function iq(e){return new aC(e)}var oq={earlyStopping:iq},lq=G();lq.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ta;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ta||(Ta={}));var vI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(vI||(vI={}));var m1={};function uq(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};m1[e]=n}function rC(e){return m1[e]}function pq(e){delete m1[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd,u=o<0?t.inputNames.length+o:o;if(s.type==="tensor")return cn(t.inputNames[u],n,a,r);if(s.type==="tensors"){let c=t.inputs.slice(o,l);return t.inputNames.slice(o,l).filter((h,m)=>{var f;return((f=c[m])===null||f===void 0?void 0:f.op)!=="NoOp"}).map(h=>cn(h,n,a,r))}let p=cn(t.inputNames[u],n,a,r),d=p.dataSync();return s.type==="number"?d[0]:v.toNestedArray(p.shape,d)}let i=t.attrParams[e];return i&&i.value}function cn(e,t,n,a){let[r,s]=Yn(e,n);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[nm(r,o)]);return i!==void 0?t[nm(r,i)][s]:void 0}function wI(e,t,n){return t[nm(e,n.currentContextId)]}function Nr(e,t){let[n,a,r]=Yn(e,t);return[nm(n,t&&t.currentContextId),a,r]}function nm(e,t){return t?`${e}-${t}`:e}function Yn(e,t){if(e==="")return["",0,void 0];let n=t!=null&&t.parseNodeNameCache!=null;if(n){let s=t.parseNodeNameCache.get(e);if(s!=null)return s}let a=e.split(":"),r;if(a.length===1)r=[e,0,void 0];else{let s=a[0],i=a.length===3?a[1]:void 0,o=Number(a[a.length-1]);r=[s,o,i]}return n&&t.parseNodeNameCache.set(e,r),r}function Ah(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Tr(e){return e.kept?e:sr(e)}var sC={};Ee(sC,{json:()=>cq});var cq=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],iC={};Ee(iC,{json:()=>dq});var dq=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],oC={};Ee(oC,{json:()=>hq});var hq=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],lC={};Ee(lC,{json:()=>mq});var mq=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],uC={};Ee(uC,{json:()=>fq});var fq=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniformInt",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number"},{tfName:"maxval",name:"maxval",type:"number"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],pC={};Ee(pC,{json:()=>gq});var gq=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],cC={};Ee(cC,{json:()=>bq});var bq=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],dC={};Ee(dC,{json:()=>yq});var yq=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],hC={};Ee(hC,{json:()=>xq});var xq=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],mC={};Ee(mC,{json:()=>vq});var vq=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],fC={};Ee(fC,{json:()=>wq});var wq=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BitwiseAnd",category:"logical",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}]}],gC={};Ee(gC,{json:()=>kq});var kq=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}],bC={};Ee(bC,{json:()=>Iq});var Iq=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]}],yC={};Ee(yC,{json:()=>Sq});var Sq=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],xC={};Ee(xC,{json:()=>Nq});var Nq=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],vC={};Ee(vC,{json:()=>Tq});var Tq=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],wC={};Ee(wC,{json:()=>Cq});var Cq=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],kC={};Ee(kC,{json:()=>_q});var _q=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],IC={};Ee(IC,{json:()=>Eq});var Eq=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"EnsureShape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],kI=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[sC,iC,oC,lC,uC,pC,cC,dC,hC,mC,fC,gC,bC,yC,xC,vC,wC,kC,IC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=Nr(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${y}:${I}`;f.inputNames[b]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=Nr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Nr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=rC(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Mx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Mx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Vx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Vx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Ox(e.attr,r.tfName,r.defaultValue||0),i===void 0&&r.tfDeprecatedName&&(i=Ox(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Bx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Bx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Px(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Px(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Gx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Gx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Wx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Wx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Ux(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Ux(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Lx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Lx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=zx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=II(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=II(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=Nr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:f1(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=Nr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=Nr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Aq(e){let t=G().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function SC(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Aq(e);return t?n:n.toLowerCase()}function Mx(e,t,n,a=!1){let r=e[t];return r!=null?SC(r.s,a):n}function Px(e,t,n){let a=e[t];return a?a.b:n}function Ox(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function f1(e){switch(typeof e=="string"&&(e=Ta[e]),e){case Ta.DT_FLOAT:case Ta.DT_HALF:return"float32";case Ta.DT_INT32:case Ta.DT_INT64:case Ta.DT_INT8:case Ta.DT_UINT8:return"int32";case Ta.DT_BOOL:return"bool";case Ta.DT_DOUBLE:return"float32";case Ta.DT_STRING:return"string";default:return null}}function II(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Lx(e,t,n){let a=e[t];return a&&a.type?f1(a.type):n}function zx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>f1(r)):n}function NC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Wx(e,t,n){let a=e[t];return a&&a.shape?NC(a.shape):n}function Bx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Vx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>SC(s,a)):n}function Ux(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>NC(r)):n}function Gx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Fq=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return cn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return cn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ox(this.node.rawAttrs,e,t);if(n.s!=null)return Mx(this.node.rawAttrs,e,t);if(n.b!=null)return Px(this.node.rawAttrs,e,t);if(n.shape!=null)return Wx(this.node.rawAttrs,e,t);if(n.type!=null)return Lx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Bx(this.node.rawAttrs,e,t);if(n.list.s!=null)return Vx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Ux(this.node.rawAttrs,e,t);if(n.list.b!=null)return Gx(this.node.rawAttrs,e,t);if(n.list.type!=null)return zx(this.node.rawAttrs,e,t)}return t}},on={};Ee(on,{OP_SCOPE_SUFFIX:()=>gv,abs:()=>Wt,acos:()=>kv,acosh:()=>Iv,add:()=>X,addN:()=>eN,all:()=>Om,any:()=>hc,argMax:()=>pi,argMin:()=>Sv,asin:()=>Nv,asinh:()=>Tv,atan:()=>Cv,atan2:()=>_v,atanh:()=>Ev,avgPool:()=>ya,avgPool3d:()=>Fv,basicLSTMCell:()=>rN,batchNorm:()=>ks,batchNorm2d:()=>$v,batchNorm3d:()=>Dv,batchNorm4d:()=>Rv,batchToSpaceND:()=>Jc,bincount:()=>Mv,bitwiseAnd:()=>sN,booleanMaskAsync:()=>XN,broadcastArgs:()=>iN,broadcastTo:()=>ni,buffer:()=>Le,cast:()=>ie,ceil:()=>Pv,clipByValue:()=>rn,clone:()=>sr,complex:()=>Ar,concat:()=>Qe,concat1d:()=>Ov,concat2d:()=>Lv,concat3d:()=>zv,concat4d:()=>Wv,conv1d:()=>Lm,conv2d:()=>Rt,conv2dTranspose:()=>zm,conv3d:()=>Vv,conv3dTranspose:()=>Uv,cos:()=>Qc,cosh:()=>Wm,cosineWindow:()=>uf,cumprod:()=>gc,cumsum:()=>Bm,denseBincount:()=>qh,depthToSpace:()=>Gv,depthwiseConv2d:()=>Is,diag:()=>lN,dilation2d:()=>Hv,div:()=>he,divNoNan:()=>qv,dot:()=>jv,dropout:()=>Iw,einsum:()=>pN,elu:()=>Zu,enclosingPowerOfTwo:()=>Sw,ensureShape:()=>cN,equal:()=>ea,erf:()=>Kv,euclideanNorm:()=>Zv,exp:()=>yn,expandDims:()=>tn,expm1:()=>Jv,eye:()=>Vm,fft:()=>ld,fill:()=>xn,floor:()=>Qu,floorDiv:()=>Pm,fused:()=>Rl,gather:()=>ep,gatherND:()=>QN,greater:()=>Cn,greaterEqual:()=>Dr,ifft:()=>Dl,imag:()=>ed,image:()=>Qn,inTopKAsync:()=>eT,irfft:()=>nf,isFinite:()=>Qv,isInf:()=>ew,isNaN:()=>tw,leakyRelu:()=>td,less:()=>El,lessEqual:()=>Ss,linalg:()=>Cw,linspace:()=>gN,localResponseNormalization:()=>nw,log:()=>ta,log1p:()=>nd,logSigmoid:()=>aw,logSoftmax:()=>Gm,logSumExp:()=>Hm,logicalAnd:()=>Fa,logicalNot:()=>ad,logicalOr:()=>qm,logicalXor:()=>rw,losses:()=>dT,lowerBound:()=>yN,matMul:()=>$e,max:()=>fa,maxPool:()=>Mt,maxPool3d:()=>sw,maxPoolWithArgmax:()=>xN,maximum:()=>dr,mean:()=>Et,meshgrid:()=>vN,min:()=>_l,minimum:()=>us,mirrorPad:()=>iw,mod:()=>ow,moments:()=>rd,movingAverage:()=>YN,mul:()=>z,multiRNNCell:()=>wN,multinomial:()=>kN,neg:()=>yt,norm:()=>Ju,notEqual:()=>mi,oneHot:()=>Al,ones:()=>Jn,onesLike:()=>na,op:()=>L,outerProduct:()=>IN,pad:()=>xa,pad1d:()=>SN,pad2d:()=>NN,pad3d:()=>TN,pad4d:()=>CN,pool:()=>lw,pow:()=>Fr,prelu:()=>id,print:()=>vv,prod:()=>uw,raggedGather:()=>_N,raggedRange:()=>EN,raggedTensorToTensor:()=>AN,rand:()=>FN,randomGamma:()=>MN,randomNormal:()=>Km,randomStandardNormal:()=>PN,randomUniform:()=>Ns,randomUniformInt:()=>ON,range:()=>fi,real:()=>Fl,reciprocal:()=>mw,relu:()=>Ke,relu6:()=>Xm,reshape:()=>W,reverse:()=>ba,reverse1d:()=>LN,reverse2d:()=>zN,reverse3d:()=>WN,reverse4d:()=>BN,rfft:()=>ud,round:()=>Ym,rsqrt:()=>Zm,scalar:()=>ve,scatterND:()=>ZN,searchSorted:()=>jm,selu:()=>Jm,separableConv2d:()=>Ts,setdiff1dAsync:()=>VN,sigmoid:()=>ma,sign:()=>fw,signal:()=>cT,sin:()=>Qm,sinh:()=>ef,slice:()=>Ue,slice1d:()=>od,slice2d:()=>tf,slice3d:()=>Wo,slice4d:()=>$l,softmax:()=>Xa,softplus:()=>zo,spaceToBatchND:()=>sd,sparse:()=>hT,sparseToDense:()=>JN,spectral:()=>pT,split:()=>zn,sqrt:()=>hn,square:()=>lt,squaredDifference:()=>af,squeeze:()=>Cs,stack:()=>Dt,step:()=>Bo,stridedSlice:()=>gw,string:()=>mT,sub:()=>pe,sum:()=>fe,tan:()=>bw,tanh:()=>di,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>Aa,tensor3d:()=>pd,tensor4d:()=>Da,tensor5d:()=>UN,tensor6d:()=>GN,tensorScatterUpdate:()=>qN,tile:()=>Ln,topk:()=>xw,transpose:()=>De,truncatedNormal:()=>of,unique:()=>vw,unsortedSegmentSum:()=>lf,unstack:()=>pt,upperBound:()=>jN,variable:()=>ww,where:()=>an,whereAsync:()=>kw,zeros:()=>Nt,zerosLike:()=>qe});var $q=(e,t,n,a=on)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dq=(e,t,n,a=on)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(cn(e.inputNames[0],t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(cn(e.inputNames[0],t,n))];case"IsInf":return[a.isInf(cn(e.inputNames[0],t,n))];case"IsFinite":return[a.isFinite(cn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ea(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function SI(e){return!(typeof e=="number"||e.some(t=>t<0))}function qp(e,t,n){let a=Hx(e,n),r=!SI(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Hx(s.shape,a)}),!SI(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Hx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Rq=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ea(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return bn([],[0].concat(this.elementShape));let n=this.readMany(e);return Ea(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return bn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Ea(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Qe(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,pt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:a[o-1],0],u=[1,e[o],r];s[o]=W(Ue(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},zl=class{get id(){return this.idTensor.id}constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ea(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=ve(0),this.maxNumElements=a,Ht(this.idTensor)}copy(){return new zl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ea(e,this.elementShape,"TensorList shape mismatch: ");let a=qp(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=qp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Ea(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ea(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new zl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ea(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=qp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ea(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ea(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=qp(this.elementShape,this.tensors,n);return e.length===0?bn([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ea(this.elementShape,t,"TensorList shape mismatch: ");let n=qp(this.elementShape,this.tensors,t);return this.size()===0?bn([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Qe(a,0)})}};function Mq(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ea(r,t,"TensorList shape mismatch: ");let s=pt(e);return new zl(s,t,a)}function Pq(e,t,n,a){return new zl([],e,t,a)}function Oq(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new zl([],n,e.dtype,a),i=pt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Lq(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Hx(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=[0,d===0?0:r[d-1],0],h=[1,t[d],o];p[d]=W(Ue(e,c,h),i)}return e.dispose(),p}),u=new zl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var zq=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Tr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Tr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>cn(r,t,n)!==void 0);if(a){let r=cn(a,t,n);return[Tr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Tr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Tr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Tr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new Rq(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=Oq(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=Pq(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=Mq(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=Lq(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ve(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function NI(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=Ah(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var Wq=(e,t,n,a=on)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=Ah(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=NI(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=NI(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=Ah(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=Ah(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bq=(e,t,n,a=on)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"RandomUniformInt":return[a.randomUniformInt(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("seed",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ix(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Vq=async(e,t,n,a,r=on)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=ix(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=ix(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=ix(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uq=(e,t,n,a=on)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gq=(e,t,n,a=on)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[cn(e.name,t,n)||r];case"Placeholder":return[cn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Tr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Tr(p));case"Snapshot":let s=k("x",e,t,n);return[Tr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hq=class{get id(){return this.handle.id}constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,Ht(this.handle)}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=pt(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},qq=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new Hq(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jq=(e,t,n,a=on)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kq=(e,t,n,a=on)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];case"BitwiseAnd":return[a.bitwiseAnd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xq=(e,t,n,a=on)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];case"MatrixBandPart":return[a.linalg.bandPart(k("a",e,t,n),k("numLower",e,t,n),k("numUpper",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yq=(e,t,n,a=on)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zq=(e,t,n,a=on)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=a.raggedGather(k("paramsNestedSplits",e,t,n),k("paramsDenseValues",e,t,n),k("indices",e,t,n),k("outputRaggedRank",e,t,n));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=a.raggedRange(k("starts",e,t,n),k("limits",e,t,n),k("splits",e,t,n));return[r,s]}case"RaggedTensorToTensor":return[a.raggedTensorToTensor(k("shape",e,t,n),k("values",e,t,n),k("defaultValue",e,t,n),k("rowPartitionTensors",e,t,n),k("rowPartitionTypes",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jq=(e,t,n,a=on)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qq=(e,t,n,a=on)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}case"TensorScatterUpdate":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("tensor",e,t,n);return[a.tensorScatterUpdate(i,r,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ej=(e,t,n,a=on)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tj=(e,t,n,a=on)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nj=(e,t,n,a=on)=>{switch(e.op){case"StaticRegexReplace":return[a.string.staticRegexReplace(k("input",e,t,n),k("pattern",e,t,n),k("rewrite",e,t,n),k("replaceGlobal",e,t,n))];case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},aj=(e,t,n,a=on)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"EnsureShape":return[a.ensureShape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function TI(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>$q(i,o,l));case"basic_math":return r(()=>Dq(i,o,l));case"control":return zq(i,o,l);case"convolution":return r(()=>Wq(i,o,l));case"creation":return r(()=>Bq(i,o,l));case"dynamic":return Vq(i,o,l);case"evaluation":return r(()=>Uq(i,o,l));case"image":return r(()=>jq(i,o,l));case"graph":return r(()=>Gq(i,o,l));case"logical":return r(()=>Kq(i,o,l));case"matrices":return r(()=>Xq(i,o,l));case"normalization":return r(()=>Yq(i,o,l));case"ragged":return r(()=>Zq(i,o,l));case"reduction":return r(()=>Jq(i,o,l));case"slice_join":return r(()=>Qq(i,o,l));case"sparse":return r(()=>ej(i,o,l));case"spectral":return r(()=>tj(i,o,l));case"string":return r(()=>nj(i,o,l));case"transformation":return r(()=>aj(i,o,l));case"hash_table":return qq(i,o,l,a);case"custom":let u=rC(i.op);if(u&&u.customExecutor)return u.customExecutor(new Fq(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var CI=class{constructor(e={},t={},n={},a={},r){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.parseNodeNameCache=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function _I(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=new Set(Object.keys(e).map(c=>Yn(c)[0]));a=a||[];let p=new Set(a.map(c=>Yn(c.name)[0])),d=[...t];for(;d.length>0;){let c=d.pop();if((Zs(c)||cj(c)||dj(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&!u.has(c.name)&&!p.has(c.name)){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function rj(e,t){let{usedNodes:n,inputs:a}=t,r=Object.keys(a).map(g=>Yn(g)[0]).map(g=>e.nodes[g]),s=e.initNodes||[],i=g=>n.has(typeof g=="string"?g:g.name);function o(g){return[...new Map(g.map(b=>[b.name,b])).values()]}let l=o([...r,...e.weights,...s]).filter(i),u=o([...l,...Object.values(e.nodes)]).filter(i),p=new Map(u.map(g=>[g.name,g])),d={};for(let g of u){d[g.name]=d[g.name]||0;for(let b of g.children)i(b)||(d[b.name]=Number.POSITIVE_INFINITY),d[b.name]=(d[b.name]||0)+1}let c=Object.entries(d).filter(([,g])=>g===0).map(([g])=>g),h=[...c];for(;c.length>0;){let g=c.pop(),b=p.get(g);for(let y of b.children.filter(i))--d[y.name]===0&&(h.push(y.name),c.push(y.name))}let m=h.map(g=>p.get(g)),f=sj(m,l);return ij(f,l),f}function sj(e,t){let n=new Map(e.map(s=>[s.name,s])),a=t.map(s=>s.name),r=new Set(a);for(;a.length>0;){let s=a.pop(),i=n.get(s);for(let o of i.children)!n.has(o.name)||r.has(o.name)||(r.add(o.name),a.push(o.name))}return e.filter(s=>r.has(s.name))}var wh=class extends Error{constructor(e){super(`NodesExecutionOrderError: ${e}`)}};function ij(e,t){let n=new Map(e.map((o,l)=>[o.name,l])),a=new Set(t.map(o=>o.name)),r=o=>a.has(typeof o=="string"?o:o.name),s=new Set(e.map(o=>o.name)),i=o=>s.has(typeof o=="string"?o:o.name);for(let o of e){for(let l of o.children.filter(i)){if(!n.has(l.name))throw new wh(`Child ${l.name} of node ${o.name} is unreachable.`);if(n.get(o.name)>n.get(l.name))throw new wh(`Node ${o.name} is scheduled to run after its child ${l.name}.`)}if(!r(o))for(let l of o.inputs){if(!n.has(l.name))throw new wh(`Input ${l.name} of node ${o.name} is unreachable.`);if(n.get(l.name)>n.get(o.name))throw new wh(`Node ${o.name} is scheduled to run before its input ${l.name}.`)}}}function oj(e){let t=new Map(e.map((o,l)=>[o.name,l])),n=Number.MAX_SAFE_INTEGER,a=e.map((o,l)=>Zs(o)?n:l),r=o=>{let l=a[t.get(o.name)];return l==null?-1:l},s=e.map((o,l)=>o.children.map(r).reduce((u,p)=>Math.max(u,p),a[l])),i=new Map;for(let o=0;o<e.length;++o){let l=s[o];if(l===n)continue;let u=e[o],p=e[l];i.has(p.name)||i.set(p.name,[]),i.get(p.name).push(u)}return i}var lj=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),uj=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),pj=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function Zs(e){return lj.has(e.op)}function cj(e){return uj.has(e.op)}function dj(e){return pj.has(e.op)}var qx=class{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new qx(e.functions[n],this)})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPARATOR)+"--"+a.join(this.SEPARATOR)}compile(e,t){let n=_I(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let l=t.map(p=>p.name),u=Object.keys(e);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${u}]. Missing the following inputs: [${a}]`)}let i=rj(this.graph,n),o=oj(i);return{orderedNodes:i,nodeLiveUntilMap:o}}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return Ht(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,n])=>[t,this.cloneTensorList(n)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Yn(d)[0]]),r=t.map(d=>Yn(d)[0]),s=new Set(r),i=r.map(d=>this.graph.nodes[d]);i.length===0&&(i=this._outputs);let o=this.getCompilationKey(a,i),l=this.compiledMap.get(o);l==null&&(l=this.compile(e,i),this.compiledMap.set(o,l));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let u={},p={};return P(()=>{let d=new CI(this.weightMap,u,p,this.functionExecutorMap,this.parseNodeNameCache),c=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(g=>{let[b,y]=Yn(g,d),x=[];x[y]=e[g],c[b]=x,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(x))});let h=this.getFrozenTensorIds(c),{orderedNodes:m,nodeLiveUntilMap:f}=l;for(let g of m){if(c[g.name])continue;let b=TI(g,c,d,this._resourceManager);if(v.isPromise(b))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);c[g.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[g.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(g,c,d,h,s,f.get(g.name))}return this.parent==null&&d.dispose(h),t.map(g=>cn(g,c,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){if(!(Zs(t)||s.has(e))){for(let o of n[e])o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length);for(let o of t.inputs){if(Zs(o))continue;let l=wI(o.name,n,a);if(l!=null)for(let u of l){if(!u||u.kept||r.has(u.id))continue;let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(e,t,n,a,r,s){function i(o){return Zs(o)||r.has(o.name)}if(!(Zs(e)||s==null))for(let o of s){if(i(o))continue;let l=wI(o.name,t,n);for(let u of l)!u||u.kept||a.has(u.id)||u.dispose()}}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,n=!1,a={},r={}){this.disposeIntermediateTensors(),n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let s=new CI(this.weightMap,a,r,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,n),o=t.map(d=>cn(d,i,s)),l=o.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(d=>{d.forEach(c=>{c&&!c.isDisposed&&!p.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(x=>this.graph.nodes[Yn(x)[0]]),i=n.map(x=>Yn(x)[0]),o=new Set(i),l=i.map(x=>this.graph.nodes[x]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:p,dynamicNode:d,syncInputs:c}=_I(e,l,this.weightMap,this._initNodes),h=[...s,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),m=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[w,I]=Yn(x),T=[];T[I]=e[x],m[w]=T});let f={},g=this.getFrozenTensorIds(m),b={};for(;h.length>0;){let x=this.processStack(s,h,t,m,b,g,o,f,u);await Promise.all(x)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=l.filter(x=>!Zs(x)&&!cn(x.name,m,t)).map(x=>x.name);if(y.length>0){let x="";throw d!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${c}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${p}]. ${x}`)}return m}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=Nr(p.node.name,n)),a[p.node.name]==null){let c=TI(p.node,a,n,this._resourceManager);d||([d]=Nr(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(m)),n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(c)),this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Nr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!cn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!cn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Yn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){var t,n;let a={};for(let r in e){let s=(n=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||n===void 0?void 0:n[r];s!=null?a[s.name]=e[r]:a[r]=e[r]}return a}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Yn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var n,a;let r=(a=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||a===void 0?void 0:a[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[n]=Yn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},hj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},mj="?tfjs-format=file",fj="model.json",g1=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(e,t={},n=qt){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new hj}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new qx(kI.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=kI.Instance.transformGraph(e.modelInitializer);this.initializer=new qx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof Ce?[e]:e,n={};return t.forEach((a,r)=>n[this.structuredOutputKeys[r]]=a),n}return e}predict(e,t){let n=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(e,t){let n=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(e){var t;if(!(e instanceof Ce)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let n=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${e.length} input tensors provided.`);let a=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[a++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,n=Object.keys(t);for(let a=0;a<n.length;a++){let r=n[a],s=t[r];this.resourceIdToCapturedInput[s.resourceId]=e[a]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&_e(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function gj(e,t={},n=qt){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=yj(e));let a=new g1(e,t,n);return await a.load(),a}function bj(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=qt.getWeightSpecs(a.weightsManifest),i=qt.getModelArtifactsForJSONSync(a,s,r);t=qt.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=qt.fromMemorySync(e);else throw new Error("Unknown model format");let n=new g1(t);return n.load(),n}function yj(e){return e.endsWith("/")||(e=e+"/"),`${e}${fj}${mj}`}var xj="4.5.0",TC={};Ee(TC,{CSVDataset:()=>MC,Dataset:()=>rp,FileDataSource:()=>VC,TextLineDataset:()=>RC,URLDataSource:()=>UC,array:()=>Vj,csv:()=>Qj,func:()=>e5,generator:()=>t5,microphone:()=>a5,version_data:()=>r5,webcam:()=>n5,zip:()=>Uj});var vj=gs(hm()),wj=gs(hm());function kj(e,t){return am(e,t)}function am(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Wl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=am(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Ij(e,t=_C){return CC(e,t)}function CC(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Wl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=CC(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function _C(e){return e===null?null:Wl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function EC(e,t){let n=new Map;am(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return am(e,t,n)}function Wl(e){let t=!1;if(G().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=hS();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ce)&&!(e instanceof Promise)&&!t)}function Sj(e){return e==null||Nj(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ce||v.isTypedArray(e)}function Nj(e){return e===null||typeof e!="object"&&typeof e!="function"}function Tj(e){return kj(e,Cj)}function Cj(e){return e instanceof Ce?{value:e.clone(),recurse:!1}:Wl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var AC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},b1=class extends AC{constructor(){super(b1.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};b1.INITIAL_CAPACITY=32;function FC(e){return new Aj(e)}function y1(e){return new Fj(e)}function _j(e,t){return new $C(e,t)}function Ej(e,t=es.FAIL){return new Wj(e,t)}var sn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Lj(this,e)}filter(e){return new Pj(this,e)}map(e){return new Oj(this,e)}mapAsync(e){return new EI(this,e)}serialMapAsync(e){return new EI(this,e).serial()}flatmap(e){return new zj(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Mj(this,e,t)}columnMajorBatch(e,t=!0,n=_C){return this.rowMajorBatch(e,t).map(a=>Ij(a,n))}concatenate(e,t){return new $C(FC([this,e]),t)}take(e){return e<0||e==null?this:new Rj(this,e)}skip(e){return e<0||e==null?this:new Dj(this,e)}prefetch(e){return new DC(this,e)}shuffle(e,t){return new Bj(this,e,t)}serial(){return new $j(this)}},Aj=class extends sn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Tj(e),done:!1}}},Fj=class extends sn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},$j=class extends sn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Dj=class extends sn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},Rj=class extends sn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Mj=class extends sn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Pj=class extends sn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},Oj=class extends sn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Lj=class extends sn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},EI=class extends sn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},x1=class extends sn{constructor(){super(),this.outputQueue=new b1,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},zj=class extends x1{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return!0}},$C=class extends sn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},es;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(es||(es={}));var Wj=class extends sn{constructor(e,t=es.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof sn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await EC(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case es.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case es.SHORTEST:return{value:null,done:!0};case es.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},DC=class extends sn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new AC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Bj=class extends DC{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=wj.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},rp=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Xn(async()=>(await n.iterator()).columnMajorBatch(e,t,Gj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Xn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Xn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Xn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Xn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Xn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Xn(async()=>{let a=y1(async()=>({value:await t.iterator(),done:!1}));return _j(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Xn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=vj.alea(t||v.now().toString());return Xn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Xn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};rp.MAX_BUFFER_SIZE=1e4;function Xn(e,t=null){return new class extends rp{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function Vj(e){return Xn(async()=>FC(e),e.length)}function Uj(e){if(!Wl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Xn(async()=>{let n=await EC(e,a=>{if(a instanceof rp)return{value:a.iterator(),recurse:!1};if(Wl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Ej(n,es.SHORTEST)},t)}function Gj(e){if(e===null)return null;let t=e[0];return Sj(t)?{value:Hj(e),recurse:!1}:{value:null,recurse:!0}}function Hj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ce?Dt(e):bn(e)}var RC=class extends rp{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},kh='"',jp=Symbol("out"),AI=Symbol("field"),Ih=Symbol("quote"),ox=Symbol("quoteafterquote"),FI=Symbol("quoteinquote"),MC=class extends rp{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new RC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=jp;for(let i=0;i<r;i++)switch(s){case jp:switch(e.charAt(i)){case kh:a=i+1,s=Ih;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=jp;break;default:s=AI,a=i;break}break;case AI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=jp,a=i+1;break;default:}break;case Ih:switch(e.charAt(i)){case kh:s=ox;break;default:}break;case ox:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=jp,a=i+1;break;case kh:s=Ih;break;default:s=FI;break}break;case FI:switch(e.charAt(i)){case kh:s=Ih;break;default:}break;default:}if(s===ox?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},PC=class extends sn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!G().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new PC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),bn(n,t)}},OC=class extends sn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=je([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Aa([s,r,o,i],[1,4])}else this.cropBox=Aa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!G().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new OC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Vo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=tn(ie(e,"float32"),0),n;n=Qn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},LC=class{},zC=class extends sn{split(e){return new qj(this,e)}},qj=class extends zC{constructor(e,t){super(),this.upstream=e,this.impl=new jj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},jj=class extends x1{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Kj=class extends sn{decodeUTF8(){return new Xj(this)}},Xj=class extends zC{constructor(e){super(),this.upstream=e,this.impl=new Yj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Yj=class extends x1{constructor(e){if(super(),this.upstream=e,G().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=hS();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return G().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},WC=class extends Kj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(G().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function Zj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=Jj(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new WC(i,t)}else throw new Error(s.statusText)}var Jj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function BC(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var VC=class extends LC{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(BC(this.input)&&G().get("IS_NODE")){let e=uv();this.input=e.readFileSync(this.input.slice(7))}return new WC(this.input,this.options)}},UC=class extends LC{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return BC(this.url)?new VC(this.url,this.fileOptions).iterator():Zj(this.url,this.fileOptions)}};function Qj(e,t={}){return new MC(new UC(e),t)}function e5(e){let t=y1(e);return Xn(async()=>t)}function t5(e){return Xn(async()=>{let t=await e();return y1(()=>t.next())})}async function n5(e,t){return OC.create(e,t)}async function a5(e){return PC.create(e)}var r5="4.5.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var s5=hr.whereImpl,Rf=class extends Tc{nextDataId(){return Rf.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new mm(this,_a())}write(e,t,n){this.firstUse&&(this.firstUse=!1,G().get("IS_NODE")&&N.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return v.convertBackendValuesAndArrayBuffer(this.data.get(e).values,t)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}makeOutput(e,t,n){return _a().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return s5(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Rf.nextDataId=0;var v1={};Ee(v1,{addImpl:()=>qC,bincountImpl:()=>k1,bincountReduceImpl:()=>jC,bitwiseAndImpl:()=>KC,castImpl:()=>HC,ceilImpl:()=>XC,concatImpl:()=>I1,equalImpl:()=>YC,expImpl:()=>JC,expm1Impl:()=>e_,floorDivImpl:()=>n_,floorImpl:()=>t_,gatherNdImpl:()=>a_,gatherV2Impl:()=>r_,greaterEqualImpl:()=>i_,greaterImpl:()=>s_,lessEqualImpl:()=>l_,lessImpl:()=>o_,linSpaceImpl:()=>u_,logImpl:()=>p_,maxImpl:()=>c_,maximumImpl:()=>d_,minimumImpl:()=>h_,multiplyImpl:()=>S1,negImpl:()=>m_,notEqualImpl:()=>f_,prodImpl:()=>g_,raggedGatherImpl:()=>b_,raggedRangeImpl:()=>y_,raggedTensorToTensorImpl:()=>x_,rangeImpl:()=>T1,rsqrtImpl:()=>v_,scatterImpl:()=>ti,sigmoidImpl:()=>aK,simpleAbsImpl:()=>GC,sliceImpl:()=>sm,sparseFillEmptyRowsImpl:()=>k_,sparseReshapeImpl:()=>I_,sparseSegmentReductionImpl:()=>C1,sqrtImpl:()=>iK,squaredDifferenceImpl:()=>S_,staticRegexReplaceImpl:()=>N_,stridedSliceImpl:()=>T_,stringNGramsImpl:()=>_1,stringSplitImpl:()=>E1,stringToHashBucketFastImpl:()=>A1,subImpl:()=>C_,tileImpl:()=>__,topKImpl:()=>A_,transposeImpl:()=>N1,uniqueImpl:()=>$1});function GC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var i5=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=GC(r),n.makeOutput(a,t.shape,t.dtype)},o5={kernelName:ql,backendName:"cpu",kernelFunc:i5};function Ot(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[b]=e(a[w],r[T])}return[p,i]}}function Zn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var l5={kernelName:xm,backendName:"cpu",kernelFunc:Zn};function rm(e,t,n="float32"){if(n==="complex64"){let r=rm(e,t,"float32"),s=rm(e,t,"float32");return Zn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function pr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var u5={kernelName:Zi,backendName:"cpu",kernelFunc:pr};function bi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var p5={kernelName:$m,backendName:"cpu",kernelFunc:bi};function HC(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Ot((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function ms(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return pr({inputs:{x:r},backend:n});let p=rm(n,r.shape,r.dtype),d=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Zn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=bi({inputs:{input:r},backend:n}),d=ms({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=pr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=HC(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var c5={kernelName:Di,backendName:"cpu",kernelFunc:ms};function Zt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ms({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ms({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),F=l.makeTensorInfo(C,"float32",T),D=Zn({inputs:{real:E,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(F),D}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function w1(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-b);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,b,y),F=T.slice(-x);m.forEach(S=>F[S]=0);let D=v.locToIndex(F,x,w),$=e(f[E*2],f[E*2+1],g[D*2],g[D*2+1]);d[I]=$.real,c[I]=$.imag}return[d,c,o]}}var qC=Ot((e,t)=>e+t),d5=w1((e,t,n,a)=>({real:e+n,imag:t+a})),Bl=Zt(bs,qC,d5),h5={kernelName:bs,backendName:"cpu",kernelFunc:Bl};function k1(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function jC(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}var KC=Ot((e,t)=>e&t),m5=Zt(ym,KC),f5={kernelName:ym,backendName:"cpu",kernelFunc:m5};function fr(e){return(t,n,a)=>{let r=v.getArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){let a=fr(t);return _s(e,a,n)}function _s(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;ge(i,e);let o=s,l=o.data.get(i.dataId).values,u;if(i.dtype==="string"){if(!Array.isArray(l))throw new Error("String tensor's value was not an instance of Array");u=N.fromUint8ToStringArray(l)}else u=l;let p=n||i.dtype,d=t(u,p,r);return o.makeTensorInfo(i.shape,p,d)}}var XC=fr(e=>Math.ceil(e)),g5=_s(Ri,XC),b5={kernelName:Ri,backendName:"cpu",kernelFunc:g5};function I1(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var YC=Ot((e,t)=>e===t?1:0),ZC=Zt(lu,YC,null,"bool"),y5={kernelName:lu,backendName:"cpu",kernelFunc:ZC},JC=fr(e=>Math.exp(e)),QC=_s(Hi,JC,"float32"),x5={kernelName:Hi,backendName:"cpu",kernelFunc:QC},e_=fr(e=>Math.expm1(e)),v5=_s(qi,e_),w5={kernelName:qi,backendName:"cpu",kernelFunc:v5},t_=fr(e=>Math.floor(e)),k5=_s(ji,t_),I5={kernelName:ji,backendName:"cpu",kernelFunc:k5},n_=Ot((e,t)=>Math.floor(e/t)),S5=Zt(Ki,n_,null,"int32"),N5={kernelName:Ki,backendName:"cpu",kernelFunc:S5};function a_(e,t,n,a,r,s,i,o,l){let u=Le([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function r_(e,t,n){let a=Le(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var s_=Ot((e,t)=>e>t?1:0),T5=Zt(hu,s_,null,"bool"),C5={kernelName:hu,backendName:"cpu",kernelFunc:T5},i_=Ot((e,t)=>e>=t?1:0),_5=Zt(Yi,i_,null,"bool"),E5={kernelName:Yi,backendName:"cpu",kernelFunc:_5},o_=Ot((e,t)=>e<t?1:0),A5=Zt(mu,o_,null,"bool"),F5={kernelName:mu,backendName:"cpu",kernelFunc:A5},l_=Ot((e,t)=>e<=t?1:0),$5=Zt(fu,l_,null,"bool"),D5={kernelName:fu,backendName:"cpu",kernelFunc:$5};function u_(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var p_=fr(e=>Math.log(e)),R5=_s(no,p_),M5={kernelName:no,backendName:"cpu",kernelFunc:R5};function c_(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var d_=Ot((e,t)=>Math.max(e,t)),P5=Zt(io,d_),O5={kernelName:io,backendName:"cpu",kernelFunc:P5},h_=Ot((e,t)=>Math.min(e,t)),L5=Zt(po,h_),z5={kernelName:po,backendName:"cpu",kernelFunc:L5},S1=Ot((e,t)=>e*t),W5=w1((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Mf=Zt(ho,S1,W5),B5={kernelName:ho,backendName:"cpu",kernelFunc:Mf};function m_(e,t,n){let a=v.createScalarValue(-1,n);return S1([],t,a,e,n)}function V5(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=m_(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var U5={kernelName:Su,backendName:"cpu",kernelFunc:V5},f_=Ot((e,t)=>e!==t?1:0),G5=Zt(Nu,f_,null,"bool"),H5={kernelName:Nu,backendName:"cpu",kernelFunc:G5};function N1(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Un(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=N1(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var q5={kernelName:_r,backendName:"cpu",kernelFunc:Un};function g_(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=ga(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function j5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=g_(d.shape,d.dtype,h,p),b=f;return i&&(b=N.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var K5={kernelName:yo,backendName:"cpu",kernelFunc:j5};function X5(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function Y5(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function Z5(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);Y5(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let b=p;b<d;++b)o[m].push(h[b+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function J5(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function $I(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function Q5(e,t,n,a,r,s){let i=$I(t,2)[1],o=$I(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function eK(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return Q5(e,t,a,l,i,s),[i,s]}function b_(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(X5(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=Z5(s,i,e,u),h=J5(p),m=eK(n,a,r,d,c);return[h,m[0],m[1]]}var DI=2147483647;function y_(e,t,n,a,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let d=p.length===0?1:p[0],c=v.getArrayFromDType("int32",d+1);c[0]=0;for(let g=0;g<d;++g){let b=o?e[0]:e[g],y=l?a[0]:a[g],x=u?s[0]:s[g];if(x===0)throw new Error("Requires delta != 0");let w;if(x>0&&y<b||x<0&&y>b)w=0;else if(w=Math.ceil(Math.abs((y-b)/x)),w>DI)throw new Error(`Requires ((limit - start) / delta) <= ${DI}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;g<d;++g){let b=c[g+1]-c[g],y=o?e[0]:e[g],x=u?s[0]:s[g];for(let w=0;w<b;++w)m[f++]=y,y+=x}return[c,m]}var Na=N.RowPartitionType,jx=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Na.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Na.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Na.VALUE_ROWIDS:return jx.getMaxWidthValueRowID(t);case Na.ROW_SPLITS:return jx.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Na[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return MI(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Na.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Na.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Na[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Na.FIRST_DIM_SIZE:return e[0];case Na.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Na.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Na[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=MI(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=ni(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;RI(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);RI(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function RI(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function MI(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function x_(e,t,n,a,r,s,i,o,l,u){return new jx(e,t,n,a,r,s,i,o,l,u).compute()}function T1(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var v_=fr(e=>1/Math.sqrt(e)),tK=_s(To,v_),nK={kernelName:To,backendName:"cpu",kernelFunc:tK};function ti(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Le(n,t.dtype);let h=l instanceof Vt?l:Le(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var aK=fr(e=>1/(1+Math.exp(-e))),w_=it(Ao,e=>1/(1+Math.exp(-e))),rK={kernelName:Ao,backendName:"cpu",kernelFunc:w_};function sm(e,t,n,a,r){let s=Kt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=Kt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=Le(a,r,l),p=Le(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function yi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=Kt.parseSliceParams(r,s,i);Kt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=sm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var sK={kernelName:Lu,backendName:"cpu",kernelFunc:yi};function k_(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)b[C*d+E]=e[w*d+E];y[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let T=1;T<d;++T)b[I*d+T]=0;y[I]=i}return[b,[g,d],y,u,p]}}function I_(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function C1(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var iK=fr(e=>Math.sqrt(e)),oK=it($o,e=>Math.sqrt(e)),lK={kernelName:$o,backendName:"cpu",kernelFunc:oK},S_=Ot((e,t)=>{let n=e-t;return n*n}),uK=Zt(Mo,S_),pK={kernelName:Mo,backendName:"cpu",kernelFunc:uK},N_=fr((e,t)=>{let{pattern:n,replaceGlobal:a,rewrite:r}=t;return e.replace(new RegExp(n,a?"g":""),r)}),cK=_s(Wc,N_),dK={kernelName:Wc,backendName:"cpu",kernelFunc:cK};function T_(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var hK=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let b=0;b<p;++b)c+=e[d+b].length;c+=u*this.rightPad.length;let h=l+u+p-1;c+=h*this.separator.length,n[a+i]=new Uint8Array(c);let m=n[a+i],f=0,g=b=>b.forEach(y=>m[f++]=y);for(let b=0;b<l;++b)g(this.leftPad),g(this.separator);for(let b=0;b<p-1;++b)g(e[d+b]),g(this.separator);if(p>0){g(e[d+p-1]);for(let b=0;b<u;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<u-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function _1(e,t,n,a,r,s,i,o){return new hK(n,a,r,s,i,o).compute(e,t)}function mK(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function E1(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;mK(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function A1(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var C_=Ot((e,t)=>e-t),fK=w1((e,t,n,a)=>({real:e-n,imag:t-a})),F1=Zt(Po,C_,fK),gK={kernelName:Po,backendName:"cpu",kernelFunc:F1};function __(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Le(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var Zp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function E_(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));E_(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Zp(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;Zp(e[s],r)<0;)s=s+1;for(;Zp(e[i],r)>0;)i=i-1}Zp(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function A_(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(E_(m,a),m=m.slice(0,a)),r&&m.sort(Zp);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[Le(p,n,l),Le(p,"int32",u)]}function $1(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i=new Map,o=new Int32Array(n[r]),l=new Vt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let b=[];for(let y=0;y<s[0];y++)for(let x=0;x<s[2];x++)b.push(l.get(y,m,x));f=b.join(",")}let g=i.get(f);if(g!=null)o[m]=g;else{let b=i.size;i.set(f,b),o[m]=b,u.push(m)}}let d=s.slice();d[1]=i.size;let c=new Vt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}var bK="4.5.0";Mm("cpu",()=>new Rf,1);var F_=it(Gi,e=>e>=0?e:Math.exp(e)-1),yK={kernelName:Gi,backendName:"cpu",kernelFunc:F_};function $_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var xK={kernelName:to,backendName:"cpu",kernelFunc:$_},vK=Ot((e,t)=>e<0?t*e:e);function D_(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=vK(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var wK={kernelName:bo,backendName:"cpu",kernelFunc:D_},R_=it(vo,e=>Math.max(0,e)),kK={kernelName:vo,backendName:"cpu",kernelFunc:R_},M_=it(Io,e=>Math.min(Math.max(0,e),6)),IK={kernelName:Io,backendName:"cpu",kernelFunc:M_};function im(e,t,n,a,r){if(n==="linear")return pr({inputs:{x:t},backend:e});if(n==="relu")return R_({inputs:{x:t},backend:e});if(n==="elu")return F_({inputs:{x:t},backend:e});if(n==="relu6")return M_({inputs:{x:t},backend:e});if(n==="prelu")return D_({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return $_({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return w_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var SK={kernelName:Fu,backendName:"cpu",kernelFunc:xt};function P_(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=xt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=xt({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],F=o?T.shape[1]:T.shape[2],D=Math.max(g,b),$=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,H,j]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,J]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=E*F,ae=Le([D,E,F],I.dtype),te=ae.values,re=n.blockSize;for(let se=0;se<D;se++){let ye=se%g,ue=se%b;for(let be=0;be<E;be+=re){let ke=Math.min(be+re,E);for(let Se=0;Se<F;Se+=re){let We=Math.min(Se+re,F);for(let Ge=0;Ge<C;Ge+=re){let ht=Math.min(Ge+re,C);for(let st=be;st<ke;st++)for(let tt=Se;tt<We;tt++){let nt=0;for(let Re=Ge;Re<ht;Re++){let ft=$[ye*U+st*H+Re*j],qn=S[Re*K+tt*Z+ue*J];nt+=ft*qn}te[se*ee+(st*F+tt)]+=nt}}}}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(y,ae.dtype,ae.values)}var NK={kernelName:$i,backendName:"cpu",kernelFunc:P_};function TK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=P_({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Bl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=im(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var CK={kernelName:si,backendName:"cpu",kernelFunc:TK},_K=it(Ii,e=>Math.acos(e)),EK={kernelName:Ii,backendName:"cpu",kernelFunc:_K},AK=it(Si,e=>Math.acosh(e)),FK={kernelName:Si,backendName:"cpu",kernelFunc:AK};function $K(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var DK={kernelName:Ni,backendName:"cpu",kernelFunc:$K};function RK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var MK={kernelName:jl,backendName:"cpu",kernelFunc:RK};function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var OK={kernelName:Kl,backendName:"cpu",kernelFunc:PK};function LK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var zK={kernelName:Xl,backendName:"cpu",kernelFunc:LK};function WK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var BK={kernelName:Yl,backendName:"cpu",kernelFunc:WK},VK=it(Ti,e=>Math.asin(e)),UK={kernelName:Ti,backendName:"cpu",kernelFunc:VK},GK=it(Ci,e=>Math.asinh(e)),HK={kernelName:Ci,backendName:"cpu",kernelFunc:GK},qK=it(_i,e=>Math.atan(e)),jK={kernelName:_i,backendName:"cpu",kernelFunc:qK},KK=Ot((e,t)=>Math.atan2(e,t)),XK=Zt(Ai,KK),YK={kernelName:Ai,backendName:"cpu",kernelFunc:XK},ZK=it(Ei,e=>Math.atanh(e)),JK={kernelName:Ei,backendName:"cpu",kernelFunc:ZK};function D1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let F=E*i-c,D=Math.max(0,F),$=Math.min(r.inHeight,p+F),S=I+E*y;for(let M=0;M<r.outWidth;++M){let B=M*o-h,U=Math.max(0,B),H=Math.min(r.inWidth,d+B),j=m,K=0,Z=0;for(let ee=D;ee<$;ee+=l){let ae=T+ee*a[1];for(let te=U;te<H;te+=u){let re=ae+te*a[2],se=e[re+C];s==="max"&&se>j?j=se:s==="avg"&&(K+=se,Z++)}if(isNaN(j))break}let J=S+M*x+C;g[J]=s==="avg"?K/Z:j}}}return f}function O_(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let F=Math.min(a.inWidth,c+C),D=Number.NEGATIVE_INFINITY,$=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let B=E;B<F;B+=p){let U=B-C,H=f.get(g,S,B,b);H>D&&(D=H,r?$=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+b:(S*a.inWidth+B)*a.inChannels+b:$=M*c+U)}}i.set($,g,y,T,b)}}return i}function L_(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let F=0;F<r.batchSize;++F){let D=F*I,$=F*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let B=M*i-f,U=B;for(;U<0;)U+=u;let H=Math.min(r.inDepth,c+B),j=D+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,J=Z;for(;J<0;)J+=p;let ee=Math.min(r.inHeight,h+Z),ae=j+K*C;for(let te=0;te<r.outWidth;++te){let re=te*l-b,se=re;for(;se<0;)se+=d;let ye=Math.min(r.inWidth,m+re),ue=ae+te*E,be=y,ke=0,Se=0;for(let Ge=U;Ge<H;Ge+=u){let ht=$+Ge*a[1];for(let st=J;st<ee;st+=p){let tt=ht+st*a[2];for(let nt=se;nt<ye;nt+=d){let Re=tt+nt*a[3],ft=e[Re+S];if(s==="max"&&ft>be?be=ft:s==="avg"&&(ke+=ft,Se++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let We=ue+S;w[We]=s==="avg"?ke/Math.max(Se,1):be}}}}return x}function QK(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let F=0;F<t.outWidth;++F){let D=F*s-m,$=D;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+D),M=Number.NEGATIVE_INFINITY,B=-1;for(let U=x;U<w;U+=i){let H=U-y;for(let j=C;j<E;j+=o){let K=j-T;for(let Z=$;Z<S;Z+=l){let J=Z-D,ee=e.get(f,U,j,Z,g);ee>=M&&(M=ee,B=H*p*d+K*p+J)}}}n.set(B,f,b,I,F,g)}}}return n}function e8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=D1(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var t8={kernelName:Fi,backendName:"cpu",kernelFunc:e8};function n8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=L_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var a8={kernelName:Zl,backendName:"cpu",kernelFunc:n8};function r8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,F=I-1-p.padInfo.top,D=Le(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let B=0;B<p.inChannels;++B)for(let U=0;U<p.inDepth;++U)for(let H=0;H<p.inHeight;++H)for(let j=0;j<p.inWidth;++j){let K=U-C,Z=H-F,J=j-E,ee=0;for(let ae=0;ae<w;ae+=b){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(Z+re)/c;if(!(se<0||se>=p.outHeight||Math.floor(se)!==se))for(let ye=0;ye<T;ye+=x){let ue=(J+ye)/h;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let be=S.get(M,te,se,ue,B);ee+=be}}}D.set(ee*$,M,U,H,j,B)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var s8={kernelName:_c,backendName:"cpu",kernelFunc:r8};function i8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=Le(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=Le(r.shape,"float32",C);for(let F=0;F<p.batchSize;++F)for(let D=0;D<p.inChannels;++D)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let M=$-w,B=S-x,U=0;for(let H=0;H<b;H+=f){let j=(M+H)/d;if(!(j<0||j>=p.outHeight||Math.floor(j)!==j))for(let K=0;K<y;K+=g){let Z=(B+K)/c;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let J=E.get(F,j,Z,D);U+=J}}I.set(U*T,F,$,S,D)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var o8={kernelName:bm,backendName:"cpu",kernelFunc:i8};function l8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var u8={kernelName:Xi,backendName:"cpu",kernelFunc:l8};function p8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:u}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=yi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var c8={kernelName:Jl,backendName:"cpu",kernelFunc:p8};function d8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=k1(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var h8={kernelName:Ql,backendName:"cpu",kernelFunc:d8};function m8(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var f8={kernelName:Ec,backendName:"cpu",kernelFunc:m8},g8=it(ys,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),b8={kernelName:ys,backendName:"cpu",kernelFunc:g8},y8=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},x8={kernelName:Ac,backendName:"cpu",kernelFunc:y8};function Vl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var v8={kernelName:Tm,backendName:"cpu",kernelFunc:Vl};function Ul(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return pr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>bi({inputs:{input:w},backend:n})),g=l.map(w=>Vl({inputs:{input:w},backend:n})),b=Ul({inputs:f,backend:n,attrs:{axis:s}}),y=Ul({inputs:g,backend:n,attrs:{axis:s}}),x=Zn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=l.map(f=>{let g=[-1,v.sizeFromShape(f.shape.slice(s))];return xt({inputs:{x:f},backend:n,attrs:{shape:g}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=I1(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var w8={kernelName:eu,backendName:"cpu",kernelFunc:Ul};function z_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Vt(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],F=x?I[2]:1,D=x?1:I[1],$=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,H=n.data.get(s.dataId).values,j=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,J=K*$;for(let ee=0;ee<c.outHeight;++ee){let ae=J+ee*S,te=ee*c.strideHeight-y;for(let re=0;re<h;++re){let se=te+re*f;if(se<0||se>=c.inHeight)continue;let ye=re*T[0],ue=Z+se*E;for(let be=0;be<c.outWidth;++be){let ke=ae+be*M,Se=be*c.strideWidth-b;for(let We=0;We<m;++We){let Ge=Se+We*g;if(Ge<0||Ge>=c.inWidth)continue;let ht=ye+We*T[1],st=ue+Ge*F,tt=ht;for(let nt=0;nt<c.inChannels;++nt){let Re=U[st+nt*D];for(let ft=0;ft<c.outChannels;++ft)j[ke+ft*B]+=Re*H[tt+ft];tt+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,j)}var k8={kernelName:Mi,backendName:"cpu",kernelFunc:z_};function I8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new Vt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Vt(r.shape,r.dtype,I),E=new Vt(s.shape,s.dtype,T);for(let F=0;F<f;++F){let D=Math.max(0,Math.ceil((w-F)/h)),$=Math.min(c.outHeight,(c.inHeight+w-F)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),B=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.outChannels;++H){let j=0;for(let K=0;K<c.batchSize;++K)for(let Z=D;Z<$;++Z){let J=F+Z*h-w;for(let ee=M;ee<B;++ee){let ae=S+ee*m-x;b?j+=C.get(K,J,ae,U)*E.get(K,Z,ee,H):j+=C.get(K,U,J,ae)*E.get(K,H,Z,ee)}}y.set(j,F,S,U,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var S8={kernelName:vm,backendName:"cpu",kernelFunc:I8};function N8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Vt(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:F,inHeight:D,inWidth:$,outChannels:S,outHeight:M,outWidth:B,strideHeight:U,strideWidth:H}=m;h=m.dataFormat;let j=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",J=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],re=c[0],se=Z?c[1]:c[2],ye=Z?c[2]:1,ue=Z?1:c[1];for(let be=0;be<T;++be)for(let ke=0;ke<F;++ke)for(let Se=0;Se<D;++Se){let We=Se-j,Ge=Math.max(0,Math.ceil(We/U)),ht=Math.min(M,(C+We)/U);for(let st=0;st<$;++st){let tt=st-K,nt=Math.max(0,Math.ceil(tt/H)),Re=Math.min(B,(E+tt)/H),ft=0;for(let Lt=Ge;Lt<ht;++Lt){let oa=Lt*U-We;for(let pn=nt;pn<Re;++pn){let $n=pn*H-tt,la=re*be+se*Lt+ye*pn,Dn=x*(C-1-oa)+w*(E-1-$n)+I*ke;for(let ot=0;ot<S;++ot){let Rn=b[la+ue*ot],jn=y[Dn+ot];ft+=Rn*jn}}}let qn=J*be+ee*Se+ae*st+te*ke;g[qn]=ft}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var T8={kernelName:Pi,backendName:"cpu",kernelFunc:N8};function C8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new Vt(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),F=v.computeStrides(s.shape);for(let D=0;D<u.batchSize;++D){let $=D*E[0],S=D*w.strides[0];for(let M=0;M<u.outDepth;++M){let B=S+M*w.strides[1],U=M*u.strideDepth-b;for(let H=0;H<p;++H){let j=U+H*h;if(j<0||j>=u.inDepth)continue;let K=H*F[0],Z=$+j*E[1];for(let J=0;J<u.outHeight;++J){let ee=B+J*w.strides[2],ae=J*u.strideHeight-x;for(let te=0;te<d;++te){let re=ae+te*m;if(re<0||re>=u.inHeight)continue;let se=K+te*F[1],ye=Z+re*E[2];for(let ue=0;ue<u.outWidth;++ue){let be=ee+ue*u.outChannels,ke=ue*u.strideWidth-y;for(let Se=0;Se<c;++Se){let We=ke+Se*f;if(We<0||We>=u.inWidth)continue;let Ge=se+Se*F[2],ht=ye+We*u.inChannels,st=Ge;for(let tt=0;tt<u.inChannels;++tt){let nt=I[ht+tt];for(let Re=0;Re<u.outChannels;++Re)C[be+Re]+=nt*T[st+Re];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var _8={kernelName:Oi,backendName:"cpu",kernelFunc:C8};function E8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Vt(d.filterShape,"float32"),x=y.values,[w,I,T,C]=y.strides,E=n.data.get(s.dataId).values,[F,D,$,S]=p,M=n.data.get(r.dataId).values,[B,U,H,j]=u,K=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),re=ee*w;for(let se=0;se<g;++se){let ye=Math.max(0,Math.ceil((J-se)/h)),ue=Math.min(d.outHeight,(d.inHeight+J-se)/h),be=se*I+re;for(let ke=0;ke<b;++ke){let Se=Math.max(0,Math.ceil((Z-ke)/m)),We=Math.min(d.outWidth,(d.inWidth+Z-ke)/m),Ge=ke*T+be;for(let ht=0;ht<d.inChannels;++ht){let st=ht*C+Ge;for(let tt=0;tt<d.outChannels;++tt){let nt=0;for(let Re=0;Re<d.batchSize;++Re){let ft=Re*B,qn=Re*F;for(let Lt=ae;Lt<te;++Lt){let oa=(ee+Lt*c-K)*U+ft,pn=Lt*D+qn;for(let $n=ye;$n<ue;++$n){let la=(se+$n*h-J)*H+oa,Dn=$n*$+pn;for(let ot=Se;ot<We;++ot){let Rn=(ke+ot*m-Z)*j+la,jn=ot*S+Dn;nt+=M[Rn+ht]*E[jn+tt]}}}}x[st+tt]=nt}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var A8={kernelName:tu,backendName:"cpu",kernelFunc:E8};function F8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Vt(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,F,D,$]=p,{batchSize:S,filterDepth:M,filterHeight:B,filterWidth:U,inChannels:H,inDepth:j,inHeight:K,inWidth:Z,outChannels:J,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:re,strideHeight:se,strideWidth:ye}=d,ue=M-1-d.padInfo.front,be=B-1-d.padInfo.top,ke=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let We=0;We<H;++We)for(let Ge=0;Ge<j;++Ge){let ht=Ge-ue,st=Math.max(0,Math.ceil(ht/re)),tt=Math.min(ee,(M+ht)/re);for(let nt=0;nt<K;++nt){let Re=nt-be,ft=Math.max(0,Math.ceil(Re/se)),qn=Math.min(ae,(B+Re)/se);for(let Lt=0;Lt<Z;++Lt){let oa=Lt-ke,pn=Math.max(0,Math.ceil(oa/ye)),$n=Math.min(te,(U+oa)/ye),la=0;for(let Dn=st;Dn<tt;++Dn){let ot=Dn*re-ht;for(let Rn=ft;Rn<qn;++Rn){let jn=Rn*se-Re;for(let xr=pn;xr<$n;++xr){let ll=xr*ye-oa,Qa=x*Se+w*Dn+I*Rn+T*xr,Mp=E*(M-1-ot)+F*(B-1-jn)+D*(U-1-ll)+$*We;for(let Ia=0;Ia<J;++Ia){let Hr=y[Qa+Ia],Jt=C[Mp+Ia];la+=Hr*Jt}}}}h[m*Se+f*Ge+g*nt+b*Lt+We]=la}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var $8={kernelName:nu,backendName:"cpu",kernelFunc:F8},D8=it(Li,e=>Math.cos(e)),R8={kernelName:Li,backendName:"cpu",kernelFunc:D8},M8=it(zi,e=>Math.cosh(e)),P8={kernelName:zi,backendName:"cpu",kernelFunc:M8};function O8(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=Le([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(b.shape);for(let C=0;C<m;C++){let E=C*4,F=y[E],D=y[E+1],$=y[E+2],S=y[E+3],M=x[C];if(M>=p)continue;let B=f>1?($-F)*(d-1)/(f-1):0,U=g>1?(S-D)*(c-1)/(g-1):0;for(let H=0;H<f;H++){let j=f>1?F*(d-1)+H*B:.5*(F+$)*(d-1);if(j<0||j>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let J=Z+K*T[2]+H*T[1]+C*T[0];b.values[J]=u}continue}if(l==="bilinear"){let K=Math.floor(j),Z=Math.ceil(j),J=j-K;for(let ee=0;ee<g;ee++){let ae=g>1?D*(c-1)+ee*U:.5*(D+S)*(c-1);if(ae<0||ae>c-1){for(let ye=0;ye<h;ye++){let ue=ye+ee*T[2]+H*T[1]+C*T[0];b.values[ue]=u}continue}let te=Math.floor(ae),re=Math.ceil(ae),se=ae-te;for(let ye=0;ye<h;ye++){let ue=ye+te*I[2]+K*I[1]+M*I[0],be=w[ue];ue=ye+re*I[2]+K*I[1]+M*I[0];let ke=w[ue];ue=ye+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=ye+re*I[2]+Z*I[1]+M*I[0];let We=w[ue],Ge=be+(ke-be)*se,ht=Se+(We-Se)*se;ue=ye+ee*T[2]+H*T[1]+C*T[0],b.values[ue]=Ge+(ht-Ge)*J}}}else for(let K=0;K<g;++K){let Z=g>1?D*(c-1)+K*U:.5*(D+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+H*T[1]+C*T[0];b.values[te]=u}continue}let J=Math.round(Z),ee=Math.round(j);for(let ae=0;ae<h;ae++){let te=ae+J*I[2]+ee*I[1]+M*I[0],re=ae+K*T[2]+H*T[1]+C*T[0];b.values[re]=w[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var L8={kernelName:ru,backendName:"cpu",kernelFunc:O8};function z8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ga(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var W8={kernelName:au,backendName:"cpu",kernelFunc:z8};function B8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ga(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var V8={kernelName:Wi,backendName:"cpu",kernelFunc:B8};function U8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=k1(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=jC(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var G8={kernelName:Fc,backendName:"cpu",kernelFunc:U8};function H8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let F=0;F<h;++F){let D=F+E+p*(T+u*(x+l*b));f[g++]=m[D]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var q8={kernelName:su,backendName:"cpu",kernelFunc:H8};function W_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,T=new Vt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,F=T.values;for(let D=0;D<h.batchSize;++D){let $=D*p[0],S=D*T.strides[0];for(let M=0;M<h.outHeight;++M){let B=S+M*T.strides[1],U=M*h.strideHeight-w;for(let H=0;H<m;++H){let j=U+H*g;if(j<0||j>=h.inHeight)continue;let K=H*d[0],Z=$+j*p[1];for(let J=0;J<h.outWidth;++J){let ee=B+J*T.strides[2],ae=J*h.strideWidth-x;for(let te=0;te<f;++te){let re=ae+te*b;if(re<0||re>=h.inWidth)continue;let se=K+te*d[1],ye=Z+re*h.inChannels,ue=ee,be=se;for(let ke=0;ke<h.inChannels;++ke){let Se=C[ye+ke];for(let We=0;We<I;++We)F[ue+We]+=Se*E[be+We];ue+=I,be+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var j8={kernelName:Bi,backendName:"cpu",kernelFunc:W_};function K8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Vt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Vt(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Vt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((y-E)/c)),D=Math.min(d.outHeight,(d.inHeight+y-E)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((b-$)/h)),M=Math.min(d.outWidth,(d.inWidth+b-$)/h);for(let B=0;B<d.outChannels;++B){let U=Math.trunc(B/x),H=B%x,j=0;for(let K=0;K<d.batchSize;++K)for(let Z=F;Z<D;++Z){let J=E+Z*c-y;for(let ee=S;ee<M;++ee){let ae=$+ee*h-b;j+=I.get(K,J,ae,U)*C.get(K,Z,ee,B)}}g.set(j,E,$,U,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var X8={kernelName:wm,backendName:"cpu",kernelFunc:K8};function Y8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Vt(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,F,D]=c,{batchSize:$,filterHeight:S,filterWidth:M,inChannels:B,inHeight:U,inWidth:H,outChannels:j,outHeight:K,outWidth:Z,strideHeight:J,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,re=j/B;for(let se=0;se<$;++se)for(let ye=0;ye<B;++ye)for(let ue=0;ue<U;++ue){let be=ue-ae,ke=Math.max(0,Math.ceil(be/J)),Se=Math.min(K,(S+be)/J);for(let We=0;We<H;++We){let Ge=We-te,ht=Math.max(0,Math.ceil(Ge/ee)),st=Math.min(Z,(M+Ge)/ee),tt=0;for(let nt=ke;nt<Se;++nt){let Re=nt*J-be;for(let ft=ht;ft<st;++ft){let qn=ft*ee-Ge,Lt=w*se+I*nt+T*ft,oa=E*(S-1-Re)+F*(M-1-qn)+D*ye;for(let pn=0;pn<re;++pn){let $n=ye*re+pn,la=x[Lt+$n],Dn=C[oa+pn];tt+=la*Dn}}}f[g*se+b*ue+y*We+ye]=tt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Z8={kernelName:km,backendName:"cpu",kernelFunc:Y8};function J8(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Le([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Q8={kernelName:$c,backendName:"cpu",kernelFunc:J8},eX={kernelName:Vi,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:F,outShape:D}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=v.sizeFromShape(D),S=D.length,M=v.getArrayFromDType(a.dtype,$);for(let B=0;B<h;++B)for(let U=0;U<b;++U){let H=U*w-x.top;for(let j=0;j<y;++j){let K=j*I-x.left;for(let Z=0;Z<g;++Z){let J=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=H+ae*E;if(te>=0&&te<m)for(let re=0;re<C;++re){let se=K+re*F;if(se>=0&&se<f){let ye=v.locToIndex([B,te,se,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,re,Z],c,v.computeStrides(r.shape)),be=u[ye]+d[ue];be>J&&(J=be)}}}let ee=v.locToIndex([B,U,j,Z],S,v.computeStrides(D));M[ee]=J}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),D,a.dtype),shape:D,dtype:a.dtype}}},tX={kernelName:Tl,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Tl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=0,J=0;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ee,J=te)}}}$[Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},nX={kernelName:Nl,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Nl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=B<0?0:B,J=H<0?0:H;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ae,J=re)}}}$[S][Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function kd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=ms({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=pr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Un({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=rm(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,T=0;for(let C=0;C<b;++C)T+=x[I+C];y[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var aX={kernelName:Do,backendName:"cpu",kernelFunc:kd};function rX(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Un({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=xt({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Mf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=kd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var sX={kernelName:Im,backendName:"cpu",kernelFunc:rX};function iX(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=0?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var oX={kernelName:iu,backendName:"cpu",kernelFunc:iX},lX=N.ERF_P,uX=N.ERF_A1,pX=N.ERF_A2,cX=N.ERF_A3,dX=N.ERF_A4,hX=N.ERF_A5,mX=it(ou,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+lX*n);return t*(1-((((hX*a+dX)*a+cX)*a+pX)*a+uX)*a*Math.exp(-n*n))}),fX={kernelName:ou,backendName:"cpu",kernelFunc:mX};function om(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:o}})}var gX={kernelName:uu,backendName:"cpu",kernelFunc:om},bX=Ot((e,t)=>e/t),R1=Zt(Ui,bX),Kx={kernelName:Ui,backendName:"cpu",kernelFunc:R1};function B_(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=yi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=yi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Zn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=yX(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Zn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function yX(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(xX(a)){let o=Xx(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=pr({inputs:{x:d},backend:n}),h=Kx.kernelFunc({inputs:{a:u,b:d},backend:n}),m=Kx.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=vX(o,a,t);return N.splitRealAndImagArrays(l)}}function xX(e){return(e&e-1)===0}function Xx(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Zn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Zn({inputs:{real:y,imag:x},backend:r}),I=Xx(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],F=r.makeTensorInfo(E,"float32",T),D=r.makeTensorInfo(E,"float32",C),$=Zn({inputs:{real:F,imag:D},backend:r}),S=Xx(f,g,i,a,r),M=S.real,B=S.imag,U=[M.length],H=r.makeTensorInfo(U,"float32",M),j=r.makeTensorInfo(U,"float32",B),K=Zn({inputs:{real:H,imag:j},backend:r}),Z=N.exponents(n,a),J=[Z.real.length],ee=r.makeTensorInfo(J,"float32",Z.real),ae=r.makeTensorInfo(J,"float32",Z.imag),te=Zn({inputs:{real:ee,imag:ae},backend:r}),re=Mf({inputs:{a:te,b:K},backend:r}),se=Bl({inputs:{a:$,b:re},backend:r}),ye=F1({inputs:{a:$,b:re},backend:r}),ue=bi({inputs:{input:se},backend:r}),be=bi({inputs:{input:ye},backend:r}),ke=Vl({inputs:{input:se},backend:r}),Se=Vl({inputs:{input:ye},backend:r}),We=Ul({inputs:[ue,be],backend:r,attrs:{axis:0}}),Ge=Ul({inputs:[ke,Se],backend:r,attrs:{axis:0}}),ht=r.data.get(We.dataId).values,st=r.data.get(Ge.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(Ge),{real:ht,imag:st}}function vX(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function wX(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=B_(o,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var kX={kernelName:Sm,backendName:"cpu",kernelFunc:wX};function M1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return SX(o,r,i),t.makeTensorInfo(a,i,o)}var IX={kernelName:Dc,backendName:"cpu",kernelFunc:M1};function SX(e,t,n){e.fill(t)}var NX={kernelName:pu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,T=c+m+I+b;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function TX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=z_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=xt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Bl({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=Bl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=xt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=im(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=im(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var CX={kernelName:ii,backendName:"cpu",kernelFunc:TX};function _X(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=W_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Bl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=im(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var EX={kernelName:oi,backendName:"cpu",kernelFunc:_X};function AX(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=a_(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var FX={kernelName:du,backendName:"cpu",kernelFunc:AX};function $X(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=xt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=xt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=r_(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var DX={kernelName:cu,backendName:"cpu",kernelFunc:$X};function RX(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=B_(o,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var MX={kernelName:Nm,backendName:"cpu",kernelFunc:RX},PX=it(Ji,e=>Number.isFinite(e)?1:0,"bool"),OX={kernelName:Ji,backendName:"cpu",kernelFunc:PX},LX=it(Qi,e=>Math.abs(e)===1/0?1:0,"bool"),zX={kernelName:Qi,backendName:"cpu",kernelFunc:LX},WX=it(eo,e=>Number.isNaN(e)?1:0,"bool"),BX={kernelName:eo,backendName:"cpu",kernelFunc:WX};function VX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=u_(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var UX={kernelName:gu,backendName:"cpu",kernelFunc:VX},GX=it(ao,e=>Math.log1p(e)),HX={kernelName:ao,backendName:"cpu",kernelFunc:GX},qX=Ot((e,t)=>e&&t),jX=Zt(bu,qX,null,"bool"),KX={kernelName:bu,backendName:"cpu",kernelFunc:jX},XX=it(yu,e=>e?0:1,"bool"),YX={kernelName:yu,backendName:"cpu",kernelFunc:XX},ZX=Ot((e,t)=>e||t),JX=Zt(xu,ZX,null,"bool"),QX={kernelName:xu,backendName:"cpu",kernelFunc:JX};function eY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var tY={kernelName:ro,backendName:"cpu",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[y]/T;y===C&&(E+=Math.pow(T,-p)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var aY={kernelName:vu,backendName:"cpu",kernelFunc:nY};function V_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=N1(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=c_(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var rY={kernelName:so,backendName:"cpu",kernelFunc:V_};function sY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=D1(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var iY={kernelName:oo,backendName:"cpu",kernelFunc:sY};function oY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=L_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var lY={kernelName:wu,backendName:"cpu",kernelFunc:oY};function uY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=QK(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,F=Le(s.shape,"float32"),D=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let B=0;B<p.inHeight;++B)for(let U=0;U<p.inWidth;++U){let H=M-T,j=B-E,K=U-C,Z=0;for(let J=0;J<x;J+=g){let ee=(H+J)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=b){let te=(j+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(K+re)/f;if(se<0||se>=p.outWidth||Math.floor(se)!==se)continue;let ye=x*w*I-1-c.get($,ee,te,se,S),ue=J*w*I+ae*I+re,be=ye===ue?1:0;if(be===0)continue;let ke=D.get($,ee,te,se,S);Z+=ke*be}}}F.set(Z,$,M,B,U,S)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var pY={kernelName:Rc,backendName:"cpu",kernelFunc:uY};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Le(c.outShape,o.dtype,O_(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Le(o.shape,"float32"),E=n.data.get(r.dataId).values,F=Le(r.shape,"float32",E);for(let D=0;D<c.batchSize;++D)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let B=S-T,U=M-I,H=0;for(let j=0;j<x;j+=b){let K=(B+j)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=y){let J=(U+Z)/g;if(J<0||J>=c.outWidth||Math.floor(J)!==J)continue;let ee=x*w-1-m.get(D,K,J,$),ae=j*w+Z,te=ee===ae?1:0;if(te===0)continue;let re=F.get(D,K,J,$);H+=re*te}}C.set(H,D,S,M,$)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var dY={kernelName:Cm,backendName:"cpu",kernelFunc:cY};function hY(e,t,n,a,r){let s=v.computeStrides(t),i=D1(e,t,n,s,r,"max"),o=O_(e,t,n,r,!0,a);return[i.values,o.values]}var mY={kernelName:_m,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=hY(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function fY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ms({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=R1({inputs:{a:c,b:d},backend:n});p.push(h);let m=kd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var gY={kernelName:lo,backendName:"cpu",kernelFunc:fY};function bY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var yY={kernelName:uo,backendName:"cpu",kernelFunc:bY};function xY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var vY={kernelName:co,backendName:"cpu",kernelFunc:xY},wY=Ot((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),kY=Zt(ku,wY),IY={kernelName:ku,backendName:"cpu",kernelFunc:kY},SY=gs(hm());function U_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=V_({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=F1({inputs:{a:r,b:d},backend:n}),h=QC({inputs:{x:c},backend:n}),m=kd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=R1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var NY={kernelName:Ro,backendName:"cpu",kernelFunc:U_};function TY(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:U_({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=SY.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var CY={kernelName:Iu,backendName:"cpu",kernelFunc:TY},_Y=hr.nonMaxSuppressionV3Impl;function EY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=_Y(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var AY={kernelName:Tu,backendName:"cpu",kernelFunc:EY},FY=hr.nonMaxSuppressionV4Impl;function $Y(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=FY(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var DY={kernelName:Cu,backendName:"cpu",kernelFunc:$Y},RY=hr.nonMaxSuppressionV5Impl;function MY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=RY(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var PY={kernelName:_u,backendName:"cpu",kernelFunc:MY};function OY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var LY={kernelName:mo,backendName:"cpu",kernelFunc:OY};function lm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=lm({inputs:{x:r},backend:n}),i=Vl({inputs:{input:a},backend:n}),o=lm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return M1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var zY={kernelName:Ku,backendName:"cpu",kernelFunc:lm};function G_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=bi({inputs:{input:a},backend:n}),s=G_({inputs:{x:r},backend:n}),i=Vl({inputs:{input:a},backend:n}),o=lm({inputs:{x:i},backend:n}),l=Zn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return M1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var WY={kernelName:Eu,backendName:"cpu",kernelFunc:G_};function H_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return om({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=om({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=Ul({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var BY={kernelName:Au,backendName:"cpu",kernelFunc:H_};function VY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var q_={kernelName:fo,backendName:"cpu",kernelFunc:VY},UY=Ot((e,t)=>Math.pow(e,t)),GY=Zt(go,UY),HY={kernelName:go,backendName:"cpu",kernelFunc:GY};function qY(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.data.get(b.dataId).values),u=r.map(b=>b.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=b_(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var jY={kernelName:Em,backendName:"cpu",kernelFunc:qY};function KY(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=y_(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var XY={kernelName:Am,backendName:"cpu",kernelFunc:KY};function YY(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=x_(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var ZY={kernelName:Fm,backendName:"cpu",kernelFunc:YY};function JY(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=T1(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var QY={kernelName:Mc,backendName:"cpu",kernelFunc:JY},e7=it(xo,e=>1/e),t7={kernelName:xo,backendName:"cpu",kernelFunc:e7};function n7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let F=Math.max(0,Math.floor(E)),D=E-F,$=Math.min(c-1,Math.ceil(E)),S=T*l[0]+F*l[1],M=T*l[0]+$*l[1];for(let B=0;B<p;B++){let U;i?U=I*(B+.5)-.5:U=I*B;let H=Math.max(0,Math.floor(U)),j=U-H,K=Math.min(h-1,Math.ceil(U)),Z=S+H*l[2],J=M+H*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let re=f[Z+te],se=f[J+te],ye=f[ee+te],ue=f[ae+te],be=re+(ye-re)*j,ke=se+(ue-se)*j,Se=be+(ke-be)*D;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var a7={kernelName:ko,backendName:"cpu",kernelFunc:n7};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*b,F=Math.floor(E),D=Math.min(Math.ceil(E),u-1),$=T+F*o[1],S=T+D*o[1],M=E-F,B=1-M;for(let U=0;U<h;U++){let H=U*y,j=Math.floor(H),K=Math.min(Math.ceil(H),p-1),Z=H-j,J=1-Z,ee=$+j*o[2],ae=$+K*o[2],te=S+j*o[2],re=S+K*o[2],se=B*J,ye=B*Z,ue=M*J,be=M*Z;for(let ke=0;ke<d;ke++){let Se=x[w++];m[ee+ke]+=Se*se,m[ae+ke]+=Se*ye,m[te+ke]+=Se*ue,m[re+ke]+=Se*be}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var s7={kernelName:Du,backendName:"cpu",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let F=i?x*(E+.5):x*E,D=Math.min(c-1,s?Math.round(F):Math.floor(F));i&&(D=Math.max(0,D));let $=C+D*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,B=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(B=Math.max(0,B));let U=$+B*l[2];for(let H=0;H<m;H++){let j=f[U+H];g[I++]=j}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var o7={kernelName:wo,backendName:"cpu",kernelFunc:i7};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let F=0;F<u;F++){let D=F*o[0];for(let $=0;$<p;$++){let S=D+$*o[1],M=Math.floor($*I),B=Math.floor(M-C/2);for(let U=0;U<d;U++){let H=S+U*o[2],j=Math.floor(U*T),K=Math.floor(j-E/2);for(let Z=0;Z<c;Z++){let J=0;for(let ee=0;ee<C;ee++){let ae=ee+B;if(ae<0||ae>=h)continue;let te=D+ae*l[1],re=ae*x,se=Math.min(p-1,i?Math.round(re):Math.floor(re));if($===se)for(let ye=0;ye<E;ye++){let ue=ye+K;if(ue<0||ue>=m)continue;let be=te+ue*l[2],ke=ue*w,Se=Math.min(d-1,i?Math.round(ke):Math.floor(ke));U===Se&&(J+=g[be+Z])}}f[H+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var u7={kernelName:$u,backendName:"cpu",kernelFunc:l7};function p7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return pr({inputs:{x:r},backend:n});let l=new Vt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var c7={kernelName:So,backendName:"cpu",kernelFunc:p7},d7={kernelName:Xu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let F=0;F<c;F++){let D=[u,I,C,F],$=D[2],S=D[1],M=($-h)*b-(S-m)*g,B=($-h)*g+(S-m)*b;M=Math.round(M+h),B=Math.round(B+m);let U=s;if(typeof s!="number"&&(F===3?U=f:U=s[F]),M>=0&&M<d&&B>=0&&B<p){let j=B*(d*c),K=M*c,Z=w+j+K+F;U=y[Z]}let H=w+T+E+F;l[H]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},h7=it(No,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),m7={kernelName:No,backendName:"cpu",kernelFunc:h7};function f7(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=ti(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var g7={kernelName:Ru,backendName:"cpu",kernelFunc:f7};function b7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function y7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function x7(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?b7(l,t[p+u]):y7(l,t[p+u])}return i}function v7(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=x7(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var w7={kernelName:Pu,backendName:"cpu",kernelFunc:v7};function k7(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ga(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var I7={kernelName:Ou,backendName:"cpu",kernelFunc:k7},S7=N.SELU_SCALEALPHA,N7=N.SELU_SCALE,T7=it(Co,e=>e>=0?N7*e:S7*(Math.exp(e)-1)),C7={kernelName:Co,backendName:"cpu",kernelFunc:T7},_7=it(Eo,e=>e<0?-1:e>0?1:0),E7={kernelName:Eo,backendName:"cpu",kernelFunc:_7},A7=it(_o,e=>Math.sin(e)),F7={kernelName:_o,backendName:"cpu",kernelFunc:A7},$7=it(zu,e=>Math.sinh(e)),D7={kernelName:zu,backendName:"cpu",kernelFunc:$7},R7=11920928955078125e-23,PI=Math.log(R7)+2,M7=it(Fo,e=>{let t=e>-PI,n=e<PI,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),P7={kernelName:Fo,backendName:"cpu",kernelFunc:M7};function O7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=q_.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:d}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var L7={kernelName:Wu,backendName:"cpu",kernelFunc:O7};function z7(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=k_(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var W7={kernelName:Pc,backendName:"cpu",kernelFunc:z7};function B7(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=I_(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var V7={kernelName:Vu,backendName:"cpu",kernelFunc:B7};function U7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=C1(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var G7={kernelName:Oc,backendName:"cpu",kernelFunc:U7};function H7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=C1(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var q7={kernelName:Lc,backendName:"cpu",kernelFunc:H7};function j7(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=!!n.data.get(i.dataId).values[0];f=ti(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ti(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ti(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=ti(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var K7={kernelName:Uu,backendName:"cpu",kernelFunc:j7};function X7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=yi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var Y7={kernelName:Bu,backendName:"cpu",kernelFunc:X7},Z7={kernelName:zc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},J7=it(vs,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Q7={kernelName:vs,backendName:"cpu",kernelFunc:J7};function eZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=xt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=yi({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});I=xt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=T_(h,T,w,y);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var tZ={kernelName:Gu,backendName:"cpu",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=_1(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var aZ={kernelName:Bc,backendName:"cpu",kernelFunc:nZ};function rZ(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=E1(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var sZ={kernelName:Vc,backendName:"cpu",kernelFunc:rZ};function iZ(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=A1(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var oZ={kernelName:Uc,backendName:"cpu",kernelFunc:iZ},lZ=it(Oo,e=>Math.tan(e)),uZ={kernelName:Oo,backendName:"cpu",kernelFunc:lZ},pZ=it(Lo,e=>Math.tanh(e)),cZ={kernelName:Lo,backendName:"cpu",kernelFunc:pZ};function dZ(e){let{inputs:t,backend:n}=e,{tensor:a,indices:r,updates:s}=t,{sliceRank:i,numUpdates:o,sliceSize:l,strides:u,outputSize:p}=N.calculateShapes(s,r,a.shape),d=!1,c=n.bufferSync(r),h=n.bufferSync(s),m=n.bufferSync(a),f=ti(c,h,a.shape,p,l,o,i,u,m,d);return n.makeTensorInfo(a.shape,f.dtype,f.values)}var hZ={kernelName:Mu,backendName:"cpu",kernelFunc:dZ};function mZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=__(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var fZ={kernelName:xs,backendName:"cpu",kernelFunc:mZ};function gZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=A_(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var bZ={kernelName:Hu,backendName:"cpu",kernelFunc:gZ};function yZ(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],F=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));F.fill(l);let D=a.data.get(r.dataId).values,$=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?$:$.subarray(S*8,S*8+8);for(let B=0;B<m;++B)for(let U=0;U<f;++U)for(let H=0;H<h;++H){let j,K=M[6]*U+M[7]*B+1;if(K===0)continue;let Z=(M[0]*U+M[1]*B+M[2])/K,J=(M[3]*U+M[4]*B+M[5])/K,ee=OI(Z,c,o),ae=OI(J,d,o);switch(i){case"nearest":j=SZ(D,d,c,y,x,w,S,ae,ee,H,l);break;case"bilinear":j=NZ(D,d,c,y,x,w,S,ae,ee,H,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+B*C+U*E+H;F[te]=j}return a.makeTensorInfo(g,r.dtype,F)}return{dataId:a.write(F,g,r.dtype),shape:r.shape,dtype:r.dtype}}var xZ={kernelName:qu,backendName:"cpu",kernelFunc:yZ};function OI(e,t,n){switch(n){case"reflect":return vZ(e,t);case"wrap":return wZ(e,t);case"nearest":return IZ(e,t);case"constant":default:return kZ(e,t)}}function vZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function wZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function kZ(e,t){return e}function IZ(e,t){return v.clamp(0,e,t-1)}function Jp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function SZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return Jp(e,t,n,a,r,s,i,d,c,u,p)}function NZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*Jp(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*Jp(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*Jp(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*Jp(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function TZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=$1(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var CZ={kernelName:Gc,backendName:"cpu",kernelFunc:TZ};function _Z(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=yi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=xt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var EZ={kernelName:ju,backendName:"cpu",kernelFunc:_Z};function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=om({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=ZC({inputs:{a:g,b:c},backend:n}),y=ms({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=Mf({inputs:{a:y,b:r},backend:n}),w=kd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=H_({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var FZ={kernelName:Hc,backendName:"cpu",kernelFunc:AZ},$Z=[CK,o5,EK,FK,h5,DK,MK,OK,zK,BK,UK,HK,jK,YK,JK,t8,a8,s8,o8,NK,u8,c8,h8,f5,f8,c5,b5,b8,l5,x8,w8,k8,S8,T8,_8,A8,$8,R8,P8,L8,W8,V8,G8,q8,j8,X8,Z8,Q8,eX,tX,nX,sX,yK,oX,y5,fX,x5,gX,w5,kX,IX,NX,I5,N5,CX,EX,FX,DX,C5,E5,u5,MX,v8,OX,zX,BX,xK,F5,D5,UX,M5,HX,KX,YX,QX,tY,aY,rY,O5,iY,lY,pY,dY,mY,gY,yY,z5,vY,IY,CY,B5,U5,AY,DY,PY,H5,LY,WY,BY,q_,HY,wK,K5,jY,XY,ZY,QY,p5,Kx,t7,kK,IK,SK,a7,s7,o7,u7,c7,d7,m7,nK,g7,w7,I7,C7,rK,E7,F7,D7,sK,NY,P7,L7,W7,V7,G7,q7,K7,Y7,lK,Z7,pK,dK,Q7,tZ,aZ,sZ,oZ,gK,aX,uZ,cZ,hZ,fZ,bZ,xZ,q5,CZ,EZ,FZ,zY];for(let e of $Z)qc(e);var j_={};Ee(j_,{assertNotComplex:()=>ip,bindCanvasToFramebuffer:()=>UZ,bindColorTextureToFramebuffer:()=>$h,bindTextureToProgramUniformSampler:()=>uE,bindTextureUnit:()=>iE,bindVertexBufferToProgramAttribute:()=>Yx,callAndCheck:()=>de,canBeRepresented:()=>X_,createFragmentShader:()=>J_,createFramebuffer:()=>sE,createProgram:()=>Q_,createStaticIndexBuffer:()=>nE,createStaticVertexBuffer:()=>tE,createTexture:()=>aE,createVertexShader:()=>Z_,getBatchDim:()=>xi,getExtensionOrThrow:()=>Qp,getFramebufferErrorMessage:()=>pE,getMaxTexturesInShader:()=>mE,getNumChannels:()=>BZ,getProgramUniformLocation:()=>lE,getProgramUniformLocationOrThrow:()=>oE,getRowsCols:()=>vi,getShapeAs3D:()=>tc,getTextureShapeFromLogicalShape:()=>dE,getWebGLDisjointQueryTimerVersion:()=>fE,getWebGLErrorMessage:()=>Y_,getWebGLMaxTextureSize:()=>hE,hasExtension:()=>ha,isCapableOfRenderingToFloatTexture:()=>gE,isDownloadFloatTextureEnabled:()=>bE,isReshapeFree:()=>wc,isWebGLFenceEnabled:()=>yE,isWebGLVersionEnabled:()=>Jx,linkProgram:()=>eE,logShaderSourceAndInfoLog:()=>O1,resetMaxTextureSize:()=>GZ,resetMaxTexturesInShader:()=>HZ,unbindColorTextureFromFramebuffer:()=>Zx,unbindTextureUnit:()=>VZ,validateFramebuffer:()=>ec,validateProgram:()=>Fh,validateTextureSize:()=>rE});var Js={},Sh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function K_(e,t){Js[e]=t}function Ka(e,t){if(!(e in Js)||t!=null){let a=RZ(e,t);if(a!==null)Js[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Js[e];return n==null||n.isContextLost()?(delete Js[e],Ka(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Js[e])}function DZ(e){if(!G().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function RZ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?DZ(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Js[e]},!1),G().getBool("SOFTWARE_WEBGL_ENABLED")&&(Sh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",Sh)||n.getContext("experimental-webgl",Sh):n.getContext("webgl2",Sh)}var vc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(vc||(vc={}));var da;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(da||(da={}));var dn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(dn||(dn={}));function Id(e,t){return[t,e]}function MZ(e,t){return e*t}function Nh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function sp(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function PZ(e,t){let[n,a]=sp(e,t);return n*a*4}function P1(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return G().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function de(e,t){let n=t();return G().getBool("DEBUG")&&OZ(e),n}function OZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Y_(e,t))}var LZ=596e-10,zZ=65504;function X_(e){return!!(G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||LZ<Math.abs(e)&&Math.abs(e)<zZ)}function Y_(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Qp(e,t){return Pr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Z_(e,t){let n=Pr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function J_(e,t){let n=Pr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),G().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw O1(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var WZ=/ERROR: [0-9]+:([0-9]+):/g;function O1(e,t){let n=WZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function Q_(e){return Pr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function eE(e,t){if(de(e,()=>e.linkProgram(t)),!G().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Fh(e,t){if(de(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function tE(e,t){let n=Pr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function nE(e,t){let n=Pr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function BZ(){return G().getNumber("WEBGL_VERSION")===2?1:4}function aE(e){return Pr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function rE(e,t){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function sE(e){return Pr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Yx(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),de(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),de(e,()=>e.enableVertexAttribArray(o)),!0)}function iE(e,t,n){cE(e,n),de(e,()=>e.activeTexture(e.TEXTURE0+n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function VZ(e,t){cE(e,t),de(e,()=>e.activeTexture(e.TEXTURE0+t)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function oE(e,t,n){return Pr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function lE(e,t,n){return e.getUniformLocation(t,n)}function uE(e,t,n,a){de(e,()=>iE(e,t,a)),de(e,()=>e.uniform1i(n,a))}function UZ(e){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),de(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function $h(e,t,n){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Zx(e,t){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ec(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+pE(e,t))}function pE(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Pr(e,t,n){let a=de(e,()=>t());if(a==null)throw new Error(n);return a}function cE(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function xi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function vi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function tc(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[xi(e),...vi(e)]),t}function dE(e,t=!1){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=G().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&G().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=xi(e),l=2,u=2;e.length&&([l,u]=vi(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function Th(e){return e%2===0}function wc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e[e.length-1],a=t[t.length-1];if(n===a||Th(n)&&Th(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Th(e[0])&&Th(t[0])}var Dh,Rh;function hE(e){if(Dh==null){let t=Ka(e);Dh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Dh}function GZ(){Dh=null}function HZ(){Rh=null}function mE(e){if(Rh==null){let t=Ka(e);Rh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Rh)}function fE(e){if(e===0)return 0;let t,n=Ka(e);return ha(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ha(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ha(e,t){return e.getExtension(t)!=null}function Jx(e){try{if(Ka(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function gE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ha(t,"OES_texture_float"))return!1}else if(!ha(t,"EXT_color_buffer_float"))return!1;return Qx(t)}function bE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ha(t,"OES_texture_float")||!ha(t,"WEBGL_color_buffer_float"))return!1}else{if(ha(t,"EXT_color_buffer_float"))return Qx(t);let n="EXT_color_buffer_half_float";if(ha(t,n)){let a=t.getExtension(n);return qZ(t,a)}return!1}return Qx(t)}function Qx(e){let t=P1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function qZ(e,t){let n=P1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function yE(e){return e!==2?!1:Ka(e).fenceSync!=null}function ip(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var xe=G();xe.registerFlag("HAS_WEBGL",()=>xe.getNumber("WEBGL_VERSION")>0);xe.registerFlag("WEBGL_VERSION",()=>Jx(2)?2:Jx(1)?1:0);xe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);xe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>xe.get("WEBGL_VERSION")===2);xe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);xe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);xe.registerFlag("WEBGL_PACK",()=>xe.getBool("HAS_WEBGL"));xe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_CLIP",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_REDUCE",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_LAZILY_UNPACK",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_CONV_IM2COL",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>hE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>mE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=xe.getNumber("WEBGL_VERSION");return e===0?0:fE(e)});xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>xe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Xc.isMobile());xe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>gE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>xe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:xe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));xe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>bE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>yE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>xe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);xe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});xe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Xc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});xe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);xe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);xe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);xe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);xe.registerFlag("WEBGL_EXP_CONV",()=>!1);xe.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>xe.getBool("IS_TEST"));xe.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);xe.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);xe.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);xe.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function _n(){let e,t,n,a,r,s,i,o,l,u;return G().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=G().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function qo(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Pf(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function jZ(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function KZ(e,t,n="index"){let a=e.map((s,i)=>i),r=jZ(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function L1(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function z1(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var xE=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:vE}=N;function XZ(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=W1(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>YZ(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=_n(),l=QZ(o),u,p,d=nJ(o);return t.isPacked?(u=ZZ(t.logicalShape,i,n.enableShapeUniforms),p=tJ(o)):(u=JZ(t.logicalShape,i,n.enableShapeUniforms),p=eJ(o)),n.packedInputs&&(d+=iJ),[d,l,p,r,u,s,n.userCode].join(`
`)}function op(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return yJ(e,t);case 1:return vJ(e,t);case 2:return kJ(e,t);case 3:return SJ(e,t);case 4:return TJ(e,t);case 5:return CJ(e);case 6:return _J(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function wE(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return bJ(e);case 1:return xJ(e,t);case 2:return wJ(e,t);case 3:return IJ(e,t);default:return NJ(e,t)}}function YZ(e,t,n=!1,a){let r="";n?r+=wE(e,a):r+=op(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=EJ(e,t):r+=AJ(e,t)),r}function ZZ(e,t,n){switch(e.length){case 0:return kE();case 1:return oJ(e,t,n);case 2:return fJ(e,t,n);case 3:return uJ(e,t,n);default:return cJ(e,t,n)}}function JZ(e,t,n){switch(e.length){case 0:return kE();case 1:return lJ(e,t,n);case 2:return gJ(e,t,n);case 3:return pJ(e,t,n);case 4:return dJ(e,t,n);case 5:return hJ(e,t);case 6:return mJ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function QZ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function eJ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function tJ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function nJ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${aJ}
${rJ}
${sJ}
`}var aJ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,rJ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,sJ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,iJ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function kE(){return`
int getOutputCoords() {
return 0;
}
`}function oJ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function lJ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function uJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function pJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Pf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=qo(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function cJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function dJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Pf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=qo(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function hJ(e,t){let n=qo(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function mJ(e,t){let n=qo(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function fJ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function gJ(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function jo(e){return`offset${e}`}function bJ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=_n();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function yJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=jo(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function xJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=_n();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function vJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${lp(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=jo(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function wJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=_n();if(s!=null&&v.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function kJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=up(e,l),h=["row","col"];return`
${op(c,t)}
float ${r}(int row, int col) {
return ${r}(${pp(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${lp(e)}
}
`;let u=s[0],p=s[1],d=jo(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function IJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=up(e,c),f=["b","row","col"];return`
${wE(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${pp(f,h)});
}
`}let o=_n();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function SJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=up(e,u),g=["row","col","depth"];return`
${op(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${pp(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${lp(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=jo(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function NJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=_n();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function TJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=up(e,l),x=["row","col","depth","depth2"];return`
${op(y,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${pp(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${lp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let b=jo(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
return sampleTexture(${a}, uv);
}
`}function CJ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=up(e,l),g=["row","col","depth","depth2","depth3"];return`
${op(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${pp(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${lp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=jo(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function _J(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=up(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
${op(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${pp(b,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${lp(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=jo(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function lp(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function EJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=vE(e.shapeInfo.logicalShape,t.logicalShape),l=ct(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function AJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=ct(l),p=vE(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function ct(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function W1(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function up(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function pp(e,t){return t.map(n=>e[n]).join(", ")}function FJ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=XZ(r,i,t),l=J_(e.gl,o),u=e.createProgram(l);return G().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:(e.buildVao(u),Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},IE(e,t,u)))}function IE(e,t,n){let a=[],r=[],s,i,o,l=null,u=null;u=e.getUniformLocation(n,"NAN",!1),G().getNumber("WEBGL_VERSION")===1&&(l=e.getUniformLocation(n,"INFINITY",!1));let p=!1;for(let d of t.variableNames){let c={name:d,uniform:e.getUniformLocation(n,d,p),offset:e.getUniformLocation(n,`offset${d}`,p)};t.enableShapeUniforms&&(c.shape=e.getUniformLocation(n,`${d}Shape`,p),c.texShape=e.getUniformLocation(n,`${d}TexShape`,p)),a.push(c)}if(t.enableShapeUniforms&&(s=e.getUniformLocation(n,"outShape",p),o=e.getUniformLocation(n,"outShapeStrides",p),i=e.getUniformLocation(n,"outTexShape",p)),t.customUniforms)for(let d of t.customUniforms)r.push(e.getUniformLocation(n,d.name,p));return{variablesLocations:a,customUniformLocations:r,infLoc:l,nanLoc:u,outShapeLocation:s,outShapeStridesLocation:o,outTexShapeLocation:i}}function LI(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function $J(e,t,n,a,r){t.program.enableShapeUniforms||(LI(t.inShapeInfos,n),LI([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),e.bindVertexArray(t.webGLProgram.vao),G().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN);for(let l=0;l<n.length;++l){let u=n[l],{uniform:p,offset:d,shape:c,texShape:h}=t.variablesLocations[l];if(c){let{uniformShape:m}=W1(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(h&&e.gl.uniform2i(h,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(v.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}continue}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}}let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}if(t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r)for(let l=0;l<t.program.customUniforms.length;++l){let u=t.program.customUniforms[l],p=t.customUniformLocations[l],d=r[l];if(u.type==="float")e.gl.uniform1fv(p,d);else if(u.type==="vec2")e.gl.uniform2fv(p,d);else if(u.type==="vec3")e.gl.uniform3fv(p,d);else if(u.type==="vec4")e.gl.uniform4fv(p,d);else if(u.type==="int")e.gl.uniform1iv(p,d);else if(u.type==="ivec2")e.gl.uniform2iv(p,d);else if(u.type==="ivec3")e.gl.uniform3iv(p,d);else if(u.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${u.type} is not supported yet.`)}e.executeProgram()}function DJ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=W1(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${G().getNumber("WEBGL_VERSION")}`,s}function vn(e){return G().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var RJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=vc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Pf(["r","c","d"],e):qo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},MJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=vc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=_n();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Pf(["r","c","d"],e):qo(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},PJ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=da.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${xE}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},OJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=da.DOWNLOAD;let t=_n();this.outputShape=e,this.userCode=`
${xE}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},LJ={R:0,G:1,B:2,A:3},zI=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=_n();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<n.length;i++){let o=n[i];s+=`
if(offset == ${i}) {
result = values[${LJ[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?z1():L1(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${a.texture2D}(A, uv);
${s}
}
${a.output} = vec4(${r}, 0., 0., 0.);
}
`}},zJ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=_n();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?z1():L1(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},SE={};Ee(SE,{bindVertexProgramAttributeStreams:()=>DE,createBufferFromOutputTexture:()=>PE,createFloat16MatrixTexture:()=>EE,createFloat16PackedMatrixTexture:()=>$E,createFloat32MatrixTexture:()=>_E,createIndexBuffer:()=>CE,createPackedMatrixTexture:()=>FE,createUnsignedBytesMatrixTexture:()=>AE,createVertexBuffer:()=>TE,createVertexShader:()=>NE,downloadByteEncodedFloatMatrixFromOutputTexture:()=>LE,downloadFloat32MatrixFromBuffer:()=>OE,downloadMatrixFromPackedOutputTexture:()=>WE,downloadPackedMatrixFromBuffer:()=>zE,getInternalFormatForFloat16MatrixTexture:()=>V1,getInternalFormatForFloat16PackedMatrixTexture:()=>H1,getInternalFormatForFloat32MatrixTexture:()=>B1,getInternalFormatForPackedMatrixTexture:()=>G1,getInternalFormatForUnsignedBytesMatrixTexture:()=>U1,uploadDenseMatrixToTexture:()=>RE,uploadPixelDataToTexture:()=>ME});function NE(e){let t=_n(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Z_(e,n)}function TE(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return tE(e,t)}function CE(e){let t=new Uint16Array([0,1,2,2,1,3]);return nE(e,t)}function Sd(e,t,n,a,r,s){rE(t,n);let i=aE(e),o=e.TEXTURE_2D;return de(e,()=>e.bindTexture(o,i)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),de(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),G().getNumber("WEBGL_VERSION")===1?de(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):de(e,()=>e.texStorage2D(o,1,a,t,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function B1(e){return e.internalFormatFloat}function _E(e,t,n,a){let[r,s]=Id(t,n);return Sd(e,r,s,B1(a),a.textureFormatFloat,e.FLOAT)}function V1(e){return e.internalFormatHalfFloat}function EE(e,t,n,a){let[r,s]=Id(t,n);return Sd(e,r,s,V1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function U1(e){return e.downloadTextureFormat}function AE(e,t,n,a){let[r,s]=Id(t,n);return Sd(e,r,s,U1(a),e.RGBA,e.UNSIGNED_BYTE)}function G1(e){return e.internalFormatPackedFloat}function FE(e,t,n,a){let[r,s]=sp(t,n);return Sd(e,r,s,G1(a),e.RGBA,e.FLOAT)}function H1(e){return e.internalFormatPackedHalfFloat}function $E(e,t,n,a){let[r,s]=sp(t,n);return Sd(e,r,s,H1(a),e.RGBA,a.textureTypeHalfFloat)}function DE(e,t,n){return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Yx(e,t,"clipSpacePos",n,3,20,0)&&Yx(e,t,"uv",n,2,20,12)}function RE(e,t,n,a,r,s){de(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ME(e,t,n){de(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function PE(e,t,n,a){let r=e.createBuffer();de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return de(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function OE(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function LE(e,t,n,a){let[r,s]=Id(t,n),i=4,o=new Uint8Array(MZ(t*n,i));return de(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function zE(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(PZ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function WE(e,t,n){let a=new Float32Array(t*n*4);return de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Mh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=G().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,K_(t,e)):this.gl=Ka(t),e=this.gl,G().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>de(r,()=>r.createVertexArray()),this.bindVertexArray=s=>de(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>de(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>de(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>de(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>de(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>de(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>de(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),G().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Qp(this.gl,r),ha(this.gl,s))this.textureHalfFloatExtension=Qp(this.gl,s);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ha(this.gl,a))this.colorBufferHalfFloatExtension=Qp(this.gl,a);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ha(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ha(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=TE(this.gl),this.indexBuffer=CE(this.gl),this.framebuffer=sE(this.gl),this.textureConfig=P1(this.gl,this.textureHalfFloatExtension)}get debug(){return G().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;de(e,()=>e.finish()),de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.deleteFramebuffer(this.framebuffer)),de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),de(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),_E(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),EE(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),AE(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),ME(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),RE(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$E(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),FE(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Zx(this.gl,this.framebuffer),this.outputTexture=null),de(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>LE(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return zE(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return OE(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=PE(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(G().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>WE(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=NE(t));let n=Q_(t);de(t,()=>t.attachShader(n,this.vertexShader)),de(t,()=>t.attachShader(n,e)),eE(t,n);let a=Object.assign(n,{vao:this.createVertexArray()});return this.debug&&Fh(t,a),a}buildVao(e){this.setProgram(e),this.bindVertexArray(e.vao);let t=this.gl;de(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),DE(t,e,this.vertexBuffer)}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(de(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Fh(this.gl,this.program),de(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?oE(this.gl,e,t):lE(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),de(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),uE(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=sp(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Fh(this.gl,this.program),ec(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}de(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),de(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Qp(this.gl,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=WJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in G().platform&&(n=G().platform.setTimeoutCustom.bind(G().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),$h(this.gl,e,this.framebuffer),this.debug&&ec(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?($h(this.gl,this.outputTexture,this.framebuffer),this.debug&&ec(this.gl)):Zx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;$h(a,e,this.framebuffer),this.debug&&ec(a),this.outputTexture=e,de(a,()=>a.viewport(0,0,t,n)),de(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),de(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function WJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:BJ,bincountImpl:BE,bincountReduceImpl:VJ,castImpl:UJ,ceilImpl:GJ,concatImpl:HJ,equalImpl:qJ,expImpl:jJ,expm1Impl:KJ,floorImpl:XJ,gatherNdImpl:YJ,gatherV2Impl:ZJ,greaterImpl:JJ,greaterEqualImpl:QJ,lessImpl:e9,lessEqualImpl:t9,linSpaceImpl:n9,logImpl:a9,maxImpl:r9,maximumImpl:s9,minimumImpl:i9,multiplyImpl:o9,negImpl:l9,notEqualImpl:u9,prodImpl:p9,raggedGatherImpl:c9,raggedRangeImpl:d9,raggedTensorToTensorImpl:h9,rangeImpl:m9,rsqrtImpl:f9,scatterImpl:g9,sigmoidImpl:b9,simpleAbsImpl:VE,sliceImpl:y9,sparseFillEmptyRowsImpl:x9,sparseReshapeImpl:v9,sparseSegmentReductionImpl:UE,sqrtImpl:w9,staticRegexReplaceImpl:k9,stridedSliceImpl:I9,stringNGramsImpl:S9,stringSplitImpl:N9,stringToHashBucketFastImpl:T9,subImpl:C9,tileImpl:_9,topKImpl:E9,transposeImpl:q1,uniqueImpl:A9}=v1;function GE(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function In(e,t){return t===1?[e]:GE(e,t)}function F9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var $9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=vn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=In("rc",this.rank),n=ct(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},HE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${D9(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?z1():L1(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function D9(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?KZ(["r","c","d"],"inputShape"):qo(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var R9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(e,t,n){let a=BI(t,n),r=VI(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=WI(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].pop();return this.usedTextures[r].push(o),o}let i;return a===dn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===dn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===dn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===dn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===dn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=BI(n,a),s=VI(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=WI(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=G().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l&&l.indexOf(e);if(u==null||u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l[u]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function M9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function WI(e,t,n,a,r){let s=P9(t,a),i;if(r){let[l,u]=sp(e[0],e[1]);i=l*u}else{let[l,u]=Id(e[0],e[1]);i=l*u}let o=M9(n,s);return i*o}function P9(e,t){switch(e){case dn.PACKED_2X2_FLOAT32:return G1(t);case dn.PACKED_2X2_FLOAT16:return H1(t);case dn.UNPACKED_FLOAT32:return B1(t);case dn.UNPACKED_FLOAT16:return V1(t);case dn.PACKED_4X1_UNSIGNED_BYTE:return U1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function O9(e){return G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?dn.PACKED_2X2_FLOAT32:dn.UNPACKED_FLOAT32:e?dn.PACKED_2X2_FLOAT16:dn.UNPACKED_FLOAT16}function BI(e,t){if(e===da.UPLOAD)return dn.PACKED_2X2_FLOAT32;if(e===da.RENDER||e==null)return O9(t);if(e===da.DOWNLOAD||e===da.PIXELS)return dn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function VI(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var rr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ma="if (isnan(x)) return x;",L9="return x;",UI="return abs(x);",z9="return (x >= 0.0) ? x : (exp(x) - 1.0);",W9=Ma+`
return (x < 0.0) ? 0.0 : x;
`,B9=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Yr="return x;",V9="return 1.0 / (1.0 + exp(-1.0 * x));",U9="return x;",G9=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,H9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,q9=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,j9="return 1.0 / (1.0 + exp(-1.0 * x));",ts=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},K9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.length,n=In("rc",t),a=ct(t),r=F9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},X9=hr.whereImpl,Y9=1e-7,Z9=1e-4,lx={};function J9(e){return e in lx||(lx[e]={}),lx[e]}var Q9=G().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),eQ=600;function tQ(){return G().global.screen==null?1024:G().global.screen.height*G().global.screen.width*window.devicePixelRatio*eQ/1024/1024}var Of=class extends Tc{nextDataId(){return Of.nextDataId++}constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!G().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Mh)t=e;else{let n=Ka(G().getNumber("WEBGL_VERSION"),e);t=new Mh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ka(G().getNumber("WEBGL_VERSION"));t=new Mh(n),this.binaryCache=J9(G().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new R9(this.gpgpu),this.numMBBeforeWarning=tQ(),this.texData=new mm(this,_a())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=tc(t),u=new zI(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((G().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||G().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:da.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(G().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:da.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new ts(i,Yr):d=new rr(i,Yr);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ts(a,Yr):h=new rr(a,Yr);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(G().getBool("DEBUG")&&!G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&G().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&G().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Nh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;de(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&_a().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new ts(r,Yr):c=new rr(r,Yr);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=_a().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!X_(n))throw G().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Nh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=G().getBool("WEBGL_PACK")&&a===!0,i=s?tc(t):t,o=s?new OJ(i):new PJ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=Q9){return G().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return X9(e.shape,t)}packedUnaryOp(e,t,n){let a=new ts(e.shape,t),r=this.compileAndRun(a,[e],n);return _a().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=VE(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(G().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,UI,e.dtype);let t=new rr(e.shape,UI),n=this.compileAndRun(t,[e]);return _a().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return _a().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new K9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new $9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[xi(e.shape),...vi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[xi(t),...vi(t)],s=new HE(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=tc(r),o;a?o=new MJ(i):o=new RJ(i);let l=!0,u=[t!=null?t:Nh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===vc.DENSE){let g=s!=null?s:Nh(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=G().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!wc(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=DJ(e,u,p),c=this.getAndSaveBinary(d,()=>FJ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),G().get("ENGINE_COMPILE_ONLY")||$J(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=G().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!G().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(G().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!G().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=G().getBool("DEBUG");G().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(G().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Y9:Z9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=dE(n,o),t.texShape=p),r!=null){let d=tc(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=sp(p[0],p[1])),o?c=new zJ(d,f):c=new zI(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=da.PIXELS:y.usage=da.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,G().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return t!=null&&(n.values=nQ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Ow(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(O1(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let e of Object.values(this.binaryCache)){this.gpgpu.buildVao(e.webGLProgram);let{variablesLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,outShapeLocation:s,outShapeStridesLocation:i,outTexShapeLocation:o}=IE(this.gpgpu,e.program,e.webGLProgram);e.variablesLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.outShapeLocation=s,e.outShapeStridesLocation=i,e.outTexShapeLocation=o}}createTensorFromGPUData(e,t,n){e.channels=e.channels||"RGBA";let{texture:a,height:r,width:s,channels:i}=e,o=_a().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return _a().makeTensorFromDataId(l,t,n,o)}};Of.nextDataId=0;function nQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var aQ="4.5.0";function qE(){G().set("WEBGL_FORCE_F16_TEXTURES",!0)}Xc.isBrowser()&&Mm("webgl",()=>new Of,2);var rQ={forceHalfFloat:qE},j1=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Gl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Ko=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,Nd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=vn(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${ct(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=In("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function aa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var sQ={kernelName:Zi,backendName:"webgl",kernelFunc:aa};function Es(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=aa({inputs:{x:a},backend:n}),l=aa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var iQ={kernelName:xm,backendName:"webgl",kernelFunc:Es},jE="return (a < 0.) ? b * a : a;",KE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function oQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(KE,r.shape,i.shape):new Gl(jE,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var lQ={kernelName:to,backendName:"webgl",kernelFunc:oQ},XE="return (a < 0.) ? b * a : a;",YE=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function uQ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(YE,a.shape,r.shape):new Gl(XE,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var pQ={kernelName:bo,backendName:"webgl",kernelFunc:uQ},cp="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=G().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new ts(i.shape,t):p=new rr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function mn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new Gl(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],ga(w.dtype,I.dtype))}),y=Es({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||ga(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,b=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Nd(t,l.shape,u.shape,n):h=new Gl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function kc(e,t=!1){if(e==="linear")return t?U9:L9;if(e==="relu")return t?H9:W9;if(e==="elu")return t?G9:z9;if(e==="relu6")return t?q9:B9;if(e==="prelu")return t?YE:XE;if(e==="leakyrelu")return t?KE:jE;if(e==="sigmoid")return t?j9:V9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var ZE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=vn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`imod(rc.x, ${e[0]})`:t[0]<e[0]&&(x=`imod(rc.x, ${t[0]})`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${y};
int batchB = ${x};
for (int i = 0; i < ${p}; i++) {
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},GI={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},HI=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},qI="return a * b;";function K1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new HI(GI.REAL,a.shape,r.shape),p=new HI(GI.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Es({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=o9(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Nd(qI,a.shape,r.shape):i=new Gl(qI,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var cQ={kernelName:ho,backendName:"webgl",kernelFunc:K1};function dQ(e,t,n){let a=[xi(e.shape),...vi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[xi(t),...vi(t)],i=new HE(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!wc(r.shape,l)&&!(p.texture!==null&&wc(p.shape,l))?dQ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var hQ={kernelName:Fu,backendName:"webgl",kernelFunc:ce},jI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},mQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function fQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Xo(e,t,n,a){let r=fQ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new jI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new jI({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new mQ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var gQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ct(this.rank),r=bQ(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function bQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var yQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ct(this.rank),r=GE("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Lf(e,t,n){let a=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yQ(e.shape,t):new gQ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function xQ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Lf(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=ce({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Rm(e.dtype),y=Xo(g,b,"sum",a),x=ce({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function zf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return xQ(r,s,i,n)}var vQ={kernelName:Do,backendName:"webgl",kernelFunc:zf};function Sn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=q1(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Lf(r,s,i);return u}var wQ={kernelName:_r,backendName:"webgl",kernelFunc:Sn},JE=1e3;function um({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=Yu.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],T=ce({inputs:{x:e},backend:r,attrs:{shape:w}}),C=ce({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],F=Math.max(b,y),D=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?kc(l,!0):null,U=$||S||M||B!=null,H;if((h===1||m===1)&&D>JE&&U===!1){let K=T,Z=C;n&&(K=Sn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let J=m!==1,ee=m===1,ae=K;J&&(ae=ce({inputs:{x:K},backend:r,attrs:{shape:[F,D,1]}}),E.push(ae));let te=m===1?2:1,re=Z;ee&&(re=ce({inputs:{x:Z},backend:r,attrs:{shape:[F,1,D]}}),E.push(re));let se=K1({inputs:{a:ae,b:re},backend:r});H=zf({inputs:{x:se},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(se)}else{let K=ga(e.dtype,t.dtype),Z=new ZE(w,I,[F,h,m],n,a,$,B,S,M),J=[T,C];if(s!=null&&J.push(s),S&&J.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));J.push(ee),E.push(ee)}H=r.runWebGLProgram(Z,J,K)}let j=ce({inputs:{x:H},backend:r,attrs:{shape:x}});E.push(H);for(let K of E)r.disposeIntermediateTensorInfo(K);return j}function kQ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return um({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var IQ={kernelName:si,backendName:"webgl",kernelFunc:kQ},KI="return abs(x);";function SQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=VE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ts(a.shape,KI):r=new rr(a.shape,KI),n.runWebGLProgram(r,[a],a.dtype)}var NQ={kernelName:ql,backendName:"webgl",kernelFunc:SQ},TQ=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,CQ=Ye({opSnippet:TQ}),_Q={kernelName:Ii,backendName:"webgl",kernelFunc:CQ},EQ=Ma+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,AQ=Ye({opSnippet:EQ}),FQ={kernelName:Si,backendName:"webgl",kernelFunc:AQ},XI="return a + b;",$Q=mn({opSnippet:XI,packedOpSnippet:XI,supportsComplex:!0,cpuKernelImpl:BJ}),DQ={kernelName:bs,backendName:"webgl",kernelFunc:$Q},RQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},MQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Ph(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return aa({inputs:{x:a[0]},backend:n});if(a.length>G().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Ph({inputs:a.slice(0,o),backend:n}),u=Ph({inputs:a.slice(o),backend:n});return Ph({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ga(o,l)),s=a.map(o=>o.shape),i=G().getBool("WEBGL_PACK")?new MQ(a[0].shape,s):new RQ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var PQ={kernelName:Ni,backendName:"webgl",kernelFunc:Ph};function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Xo(f,f.dtype,"all",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var LQ={kernelName:jl,backendName:"webgl",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Xo(f,f.dtype,"any",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var WQ={kernelName:Kl,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},VQ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ct(o),u=In("coords",o),p,d;if(s===1){d=o+1;let C=ct(d);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=In("sourceLocR",d-1).concat("inIdx.r"),g=In("sourceLocG",d-1).concat("inIdx.g"),b=In("sourceLocB",d-1).concat("inIdx.b"),y=In("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function QE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new BQ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=QE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function eA(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new VQ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=eA(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function tA(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!G().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=ce({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=QE(e,c,a);s.push(h);let m=ce({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return eA(e,t,a)}function UQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=tA(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var GQ={kernelName:Xl,backendName:"webgl",kernelFunc:UQ};function HQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=tA(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var qQ={kernelName:Yl,backendName:"webgl",kernelFunc:HQ},jQ=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,KQ=Ye({opSnippet:jQ}),XQ={kernelName:Ti,backendName:"webgl",kernelFunc:KQ},YQ=Ma+"return log(x + sqrt(x * x + 1.0));",ZQ=Ye({opSnippet:YQ}),JQ={kernelName:Ci,backendName:"webgl",kernelFunc:ZQ},QQ=Ma+`
return atan(x);
`,eee=Ye({opSnippet:QQ}),tee={kernelName:_i,backendName:"webgl",kernelFunc:eee},nee=j1+`
return atan(a, b);
`,aee=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Ko+`
return result;
`,ree=mn({opSnippet:nee,packedOpSnippet:aee}),see={kernelName:Ai,backendName:"webgl",kernelFunc:ree},iee=Ma+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,oee=Ye({opSnippet:iee}),lee={kernelName:Ei,backendName:"webgl",kernelFunc:oee},Ic=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / max(count, 1.0)");let w=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${w};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},X1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / max(count, 1.0)");let T=Math.floor(s/4)*4,C=s%4,E=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
}
setOutput(${I});
}
`}};function uee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ip(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new Ic(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var pee={kernelName:Fi,backendName:"webgl",kernelFunc:uee};function cee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new X1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var dee={kernelName:Zl,backendName:"webgl",kernelFunc:cee},hee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},mee=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function fee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new mee(c);return n.runWebGLProgram(h,[r],i.dtype)}var gee={kernelName:_c,backendName:"webgl",kernelFunc:fee};function bee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ip([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new hee(p);return n.runWebGLProgram(d,[r],i.dtype)}var yee={kernelName:bm,backendName:"webgl",kernelFunc:bee};function xee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return um({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var vee={kernelName:$i,backendName:"webgl",kernelFunc:xee},wee=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},kee=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},Iee=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=G().getBool("WEBGL_PACK_NORMALIZATION")?new kee(a.shape,r.shape,s.shape,p,d,l):new wee(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},See={kernelName:Xi,backendName:"webgl",kernelFunc:Iee},Nee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ct(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Tee(this.rank),a,r=e.map((s,i)=>`sourceLoc.${ev[i]} = start[${i}] + coords.${ev[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},ev=["x","y","z","w","u","v"];function Tee(e){if(e===1)return"sourceLoc";if(e<=6)return ev.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Cee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ct(this.rank),n=In("coords",this.rank),a=In("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function _ee(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Kt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function dp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Kt.parseSliceParams(r,s,i);if(Kt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=y9(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=Kt.isSliceContinous(r.shape,o,l);if(u||!p){let d=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Cee(l):new Nee(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),_ee(r,o,l,n)}var Eee={kernelName:Lu,backendName:"webgl",kernelFunc:dp},Aee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=ce({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:p}}),b=dp({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},Fee={kernelName:Jl,backendName:"webgl",kernelFunc:Aee};function $ee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=BE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var Dee={kernelName:Ql,backendName:"webgl",kernelFunc:$ee};function Ree(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Mee={kernelName:Ec,backendName:"webgl",kernelFunc:Ree},Pee="return float(a != b);",nA=mn({opSnippet:Pee,cpuKernelImpl:u9,dtype:"bool"}),Oee={kernelName:Nu,backendName:"webgl",kernelFunc:nA};function Td(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.real},backend:n})}var Lee={kernelName:$m,backendName:"webgl",kernelFunc:Td},zee="return float(int(x));";function Wee(e,t){let n=new rr(e.shape,zee),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function tv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let i=Nt(r.shape),o=tv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Es({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Td({inputs:{input:r},backend:n}),o=tv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=aa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=UJ(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return Wee(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=nA({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var Bee={kernelName:Di,backendName:"webgl",kernelFunc:tv},YI="return ceil(x);",Vee=Ye({opSnippet:YI,packedOpSnippet:YI,cpuKernelImpl:GJ}),Uee={kernelName:Ri,backendName:"webgl",kernelFunc:Vee},Gee=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Hee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function qee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;G().getBool("WEBGL_PACK_CLIP")?o=new Hee(r.shape):o=new Gee(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var jee={kernelName:ys,backendName:"webgl",kernelFunc:qee},Kee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function ZI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Xee(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new Kee(a.shape),i=[ZI(a,r.complexTensorInfos.real),ZI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var Yee={kernelName:Ac,backendName:"webgl",kernelFunc:Xee},Zee=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},Jee=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ct(a),s=In("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Ch(i,l,f)}),
vec2(${Ch(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${Ch(i,l,h)}),
vec2(${Ch(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Ch(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Wf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Qee={kernelName:Tm,backendName:"webgl",kernelFunc:Wf};function nc(e,t,n){let a=e[0].dtype;if(a==="complex64"){let h=e.map(y=>Td({inputs:{input:y},backend:n})),m=e.map(y=>Wf({inputs:{input:y},backend:n})),f=nc(h,t,n),g=nc(m,t,n),b=Es({inputs:{real:f,imag:g},backend:n});return h.forEach(y=>n.disposeIntermediateTensorInfo(y)),m.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),b}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let h=e.map(w=>{let I=[-1,v.sizeFromShape(w.shape.slice(t))];return ce({inputs:{x:w},backend:n,attrs:{shape:I}})}),m=h.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),f=N.computeOutShape(h.map(w=>w.shape),1),g=h[0].shape[0]===1,b=HJ(m,f,a,g),y=N.computeOutShape(e.map(w=>w.shape),t),x=n.makeTensorInfo(y,a,b);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new rr(e[0].shape,Yr):new ts(e[0].shape,Yr);return n.runWebGLProgram(h,e,a)}let o=G().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let f=0;f<s.length;f+=o){let g=s.slice(f,f+o);h.push(nc(g,t,n))}let m=nc(h,t,n);for(let f of h)n.disposeIntermediateTensorInfo(f);return m}if(i){let h=new Jee(s.map(m=>m.shape),t);return n.runWebGLProgram(h,s,a)}let{tensors2D:l,outShape:u}=ete(s,t,n),p=new Zee(l.map(h=>h.shape)),d=n.runWebGLProgram(p,l,a);l.forEach(h=>n.disposeIntermediateTensorInfo(h));let c=ce({inputs:{x:d},attrs:{shape:u},backend:n});return n.disposeIntermediateTensorInfo(d),c}function ete(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ce({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function aA(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?aa({inputs:{x:l[0]},backend:n}):nc(l,s,n)}var tte={kernelName:eu,backendName:"webgl",kernelFunc:aA},rA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${w}
setOutput(result);
}
`}},nte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},sA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
vec4 xTexelC${f*2};
int xTexelC${f*2}Ready;
vec4 xTexelC${f*2+1};
int xTexelC${f*2+1}Ready;
vec4 xC${f};`;d+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let f=0;f<u;f++)d+=`
xTexelC${f*2} = vec4(0.0);
xTexelC${f*2}Ready = 0;
xTexelC${f*2+1} = vec4(0.0);
xTexelC${f*2+1}Ready = 0;
xC${f} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?d+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):b===1?d+=`
xC${g+1} = xTexelC${g};
`:d+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(d+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(d+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}d+=`
}
`,d+=`
}
`,d+=`
}
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${h}
setOutput(result);
}
`}},ate=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let{dataFormat:n}=t,a=_n(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function pm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function iA({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=pm(s.shape,h);y!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=pm(r.shape,h);y!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>JE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(wc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let T=um({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=aa({inputs:{x:T},backend:a}),g.shape=n.outShape,b.push(T)}else{let y=n.outHeight*n.outWidth,x=ce({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=um({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ce({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function oA({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let K=pm(s.shape,m);K!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=pm(r.shape,m);K!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new ate(b,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),F=ce({inputs:{x:E},backend:a,attrs:{shape:b}});w.push(E),w.push(F);let D=r!=null,$=s!=null,S=o==="leakyrelu",M=o?kc(o,!0):null,B=new ZE(m?F.shape:I.shape,m?I.shape:F.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,D,M,$,S),U=m?[F,I]:[I,F];if(r&&U.push(r),$&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let H=a.runWebGLProgram(B,U,"float32"),j=ce({inputs:{x:H},backend:a,attrs:{shape:n.outShape}});w.push(H);for(let K of w)a.disposeIntermediateTensorInfo(K);return j}function rte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=iA({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let f=new sA(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(G().getBool("WEBGL_CONV_IM2COL"))h=oA({x:r,filter:s,convInfo:c,backend:n});else{let f=new rA(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ce({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var ste={kernelName:Mi,backendName:"webgl",kernelFunc:rte},ite=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
${s?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},ote=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},lte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},ute=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function pte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new ite(c);return n.runWebGLProgram(h,[r,s],"float32")}var cte={kernelName:vm,backendName:"webgl",kernelFunc:pte},dte=class{constructor(e){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=e.inShape,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.filterHeight,n=e.filterWidth,a=t-1-e.padInfo.top,r=n-1-e.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${a}, ${r});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
int wCPerm = ${n} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${e.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${e.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function hte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d);if(G().getBool("WEBGL_PACK")&&d==="channelsLast"){let h=[[c.strideHeight,c.strideWidth]],m=new dte(c);return n.runWebGLProgram(m,[r,s],"float32",h)}else{let h=new ote(c);return n.runWebGLProgram(h,[r,s],"float32")}}var mte={kernelName:Pi,backendName:"webgl",kernelFunc:hte};function fte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new nte(u);return n.runWebGLProgram(p,[r,s],"float32")}var gte={kernelName:Oi,backendName:"webgl",kernelFunc:fte};function bte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new lte(u);return n.runWebGLProgram(p,[r,s],"float32")}var yte={kernelName:tu,backendName:"webgl",kernelFunc:bte};function xte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new ute(u);return n.runWebGLProgram(p,[r,s],"float32")}var vte={kernelName:nu,backendName:"webgl",kernelFunc:xte},wte=cp+`
return cos(x);
`,kte=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${Ko}
return result;
`,Ite=Ye({opSnippet:wte,packedOpSnippet:kte}),Ste={kernelName:Li,backendName:"webgl",kernelFunc:Ite},Nte=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Tte=Ye({opSnippet:Nte}),Cte={kernelName:zi,backendName:"webgl",kernelFunc:Tte},_te=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Ete=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new _te(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},Ate={kernelName:ru,backendName:"webgl",kernelFunc:Ete},Sc;(function(e){e.Prod="*",e.Sum="+"})(Sc||(Sc={}));var JI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===Sc.Prod?"1.0":"0.0",i=n?s:`getX(${QI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${ct(r)} coords = getOutputCoords();
int end = ${eS(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${eS(r,"coords",this.op)} = idx;
val ${this.op}= getX(${QI(r,"coords",this.op)});
}
setOutput(val);
}
`}};function QI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function eS(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function lA(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=Sn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=aa({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new JI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new JI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=Sn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function Fte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return lA(Sc.Prod,r,n,s,i,o)}var $te={kernelName:au,backendName:"webgl",kernelFunc:Fte};function Dte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return lA(Sc.Sum,r,n,s,i,o)}var Rte={kernelName:Wi,backendName:"webgl",kernelFunc:Dte};function Mte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=BE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=VJ(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Pte={kernelName:Fc,backendName:"webgl",kernelFunc:Mte},Ote=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Lte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new Ote(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var zte={kernelName:su,backendName:"webgl",kernelFunc:Lte},uA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},pA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
xC = xCCorner + ${b*l};
`,o===1){if(b<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?c+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):y===1?c+=`
xC${b+1} = xTexelC${b};
`:c+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(c+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(c+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function Wte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;G().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new pA(d):c=new uA(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var Bte={kernelName:Bi,backendName:"webgl",kernelFunc:Wte},Vte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Ute=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Gte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new Vte(d);return n.runWebGLProgram(c,[r,s],"float32")}var Hte={kernelName:wm,backendName:"webgl",kernelFunc:Gte};function qte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new Ute(d);return n.runWebGLProgram(c,[r,s],"float32")}var jte={kernelName:km,backendName:"webgl",kernelFunc:qte},Kte=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Xte(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=ce({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new Kte(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ce({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Yte={kernelName:$c,backendName:"webgl",kernelFunc:Xte},Zte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Jte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new Zte(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=ce({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var Qte={kernelName:Vi,backendName:"webgl",kernelFunc:Jte};function ene(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Sn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=ce({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=K1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=zf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var tne={kernelName:Im,backendName:"webgl",kernelFunc:ene},nne="return (x >= 0.0) ? x : (exp(x) - 1.0);",ane=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,rne=Ye({opSnippet:nne,packedOpSnippet:ane}),sne={kernelName:Gi,backendName:"webgl",kernelFunc:rne},ine="return (b >= 0.0) ? a : a * (b + 1.0);",one=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,lne=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Nd(one,a.shape,r.shape):new Gl(ine,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},une={kernelName:iu,backendName:"webgl",kernelFunc:lne},pne=`
return vec4(equal(a, b));
`,cne="return float(a == b);",dne=mn({opSnippet:cne,packedOpSnippet:pne,dtype:"bool",cpuKernelImpl:qJ}),hne={kernelName:lu,backendName:"webgl",kernelFunc:dne},mne=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,fne=Ye({opSnippet:mne}),gne={kernelName:ou,backendName:"webgl",kernelFunc:fne},bne=cp+`
return exp(x);
`,yne=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,cA=Ye({opSnippet:bne,packedOpSnippet:yne,cpuKernelImpl:jJ,dtype:"float32"}),xne={kernelName:Hi,backendName:"webgl",kernelFunc:cA};function nv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ce({inputs:{x:s},backend:a,attrs:{shape:o}})}var vne={kernelName:uu,backendName:"webgl",kernelFunc:nv},tS="return exp(x) - 1.0;",wne=Ye({opSnippet:tS,packedOpSnippet:tS,cpuKernelImpl:KJ}),kne={kernelName:qi,backendName:"webgl",kernelFunc:wne},nS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function dA(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ce({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new nS("real",l,t),p=new nS("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Es({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=ce({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Ine(e){let{inputs:t,backend:n}=e,{input:a}=t;return dA(a,!1,n)}var Sne={kernelName:Sm,backendName:"webgl",kernelFunc:Ine},Nne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Cd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new Nne(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Tne={kernelName:Dc,backendName:"webgl",kernelFunc:Cd},Cne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},_ne={kernelName:pu,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new Cne(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},aS="return floor(x);",Ene=Ye({opSnippet:aS,packedOpSnippet:aS,cpuKernelImpl:XJ}),Ane={kernelName:ji,backendName:"webgl",kernelFunc:Ene},Fne=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,$ne=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Dne=mn({opSnippet:Fne,packedOpSnippet:$ne,dtype:"int32"}),Rne={kernelName:Ki,backendName:"webgl",kernelFunc:Dne},Mne=class{constructor(e){this.variableNames=["A"];let t=_n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Pne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=_n(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},One={kernelName:Wh,backendName:"webgl",kernelFunc:Lne},bl,ux=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Lne(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(bl==null||f!==ux)&&(ux=f,bl=document.createElement("canvas").getContext("2d",{willReadFrequently:ux})),bl.canvas.width=l,bl.canvas.height=u,bl.drawImage(r,0,0,l,u),r=bl.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=da.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=G().getBool("WEBGL_PACK")?new Pne(d):new Mne(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function zne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],F=(D,$)=>{if($==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let S=ce({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return y.push(S),S}return D};if(x&&E.push(F(i,p)),w&&E.push(F(o,p)),I){let D=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(D),y.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=iA({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let E=h?kc(h,!0):null,F=new sA(g,x,E,w,I),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=T();b=n.runWebGLProgram(F,$,"float32",D)}else if(G().getBool("WEBGL_CONV_IM2COL"))b=oA({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?kc(h,!1):null,F=new rA(g,x,E,w,I),D=T();b=n.runWebGLProgram(F,D,"float32")}let C=ce({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Wne={kernelName:ii,backendName:"webgl",kernelFunc:zne};function Bne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=G().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?kc(c,b):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(D),m.push(D)}let C;b?C=new pA(g,w,y,I,T):C=new uA(g,w,y,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(C,x,"float32",E);return m.forEach(D=>n.disposeIntermediateTensorInfo(D)),F}var Vne={kernelName:oi,backendName:"webgl",kernelFunc:Bne},Une=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=ct(n.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Gne(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=ce({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=ce({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=YJ(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Une(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Hne={kernelName:du,backendName:"webgl",kernelFunc:Gne},qne=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ct(this.rank),a=jne(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function jne(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function hA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(G().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=ce({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ce({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=ZJ(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new qne(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=ce({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var Kne={kernelName:cu,backendName:"webgl",kernelFunc:hA},Xne="return float(a > b);",Yne=`
return vec4(greaterThan(a, b));
`,Zne=mn({opSnippet:Xne,packedOpSnippet:Yne,cpuKernelImpl:JJ,dtype:"bool"}),Jne={kernelName:hu,backendName:"webgl",kernelFunc:Zne},Qne="return float(a >= b);",eae=`
return vec4(greaterThanEqual(a, b));
`,tae=mn({opSnippet:Qne,packedOpSnippet:eae,dtype:"bool",cpuKernelImpl:QJ}),nae={kernelName:Yi,backendName:"webgl",kernelFunc:tae};function aae(e){let{inputs:t,backend:n}=e,{input:a}=t;return dA(a,!0,n)}var rae={kernelName:Nm,backendName:"webgl",kernelFunc:aae},sae="return float(!isnan(x) && !isinf(x));",iae=Ye({opSnippet:sae,dtype:"bool"}),oae={kernelName:Ji,backendName:"webgl",kernelFunc:iae},lae="return float(isinf(x));",uae=Ye({opSnippet:lae,dtype:"bool"}),pae={kernelName:Qi,backendName:"webgl",kernelFunc:uae},cae="return float(isnan(x));",dae=Ye({opSnippet:cae,dtype:"bool"}),hae={kernelName:eo,backendName:"webgl",kernelFunc:dae},mae="return float(a < b);",fae=`
return vec4(lessThan(a, b));
`,gae=mn({opSnippet:mae,packedOpSnippet:fae,cpuKernelImpl:e9,dtype:"bool"}),bae={kernelName:mu,backendName:"webgl",kernelFunc:gae},yae="return float(a <= b);",xae=`
return vec4(lessThanEqual(a, b));
`,vae=mn({opSnippet:yae,packedOpSnippet:xae,cpuKernelImpl:t9,dtype:"bool"}),wae={kernelName:fu,backendName:"webgl",kernelFunc:vae};function kae(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=n9(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Iae={kernelName:gu,backendName:"webgl",kernelFunc:kae},Sae=cp+`
return x < 0.0 ? 0./0. : log(x);
`,Nae=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Tae=Ye({opSnippet:Sae,packedOpSnippet:Nae,cpuKernelImpl:a9}),Cae={kernelName:no,backendName:"webgl",kernelFunc:Tae},_ae=cp+`
return log(1.0 + x);
`,Eae=Ye({opSnippet:_ae}),Aae={kernelName:ao,backendName:"webgl",kernelFunc:Eae},Fae="return float(a >= 1.0 && b >= 1.0);",$ae=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Dae=mn({opSnippet:Fae,packedOpSnippet:$ae,dtype:"bool"}),Rae={kernelName:bu,backendName:"webgl",kernelFunc:Dae},Mae="return float(!(x >= 1.0));",Pae=Ye({opSnippet:Mae}),Oae={kernelName:yu,backendName:"webgl",kernelFunc:Pae},Lae="return float(a >= 1.0 || b >= 1.0);",zae=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Wae=mn({opSnippet:Lae,packedOpSnippet:zae,dtype:"bool"}),Bae={kernelName:xu,backendName:"webgl",kernelFunc:Wae},Vae=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Uae=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Gae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=G().getBool("WEBGL_PACK_NORMALIZATION")?new Uae(r.shape,s,i,o,l):new Vae(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Hae={kernelName:ro,backendName:"webgl",kernelFunc:Gae},qae=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},jae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new qae(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},Kae={kernelName:vu,backendName:"webgl",kernelFunc:jae};function Xae(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Xo(i,e.dtype,"max",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function mA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=q1(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Lf(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=r9(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=Xae(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var Yae={kernelName:so,backendName:"webgl",kernelFunc:mA},Zae=j1+`
return max(a, b);
`,Jae=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Ko+`
return result;
`,Qae=mn({opSnippet:Zae,packedOpSnippet:Jae,cpuKernelImpl:s9}),ere={kernelName:io,backendName:"webgl",kernelFunc:Qae};function tre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ip(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new Ic(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var nre={kernelName:oo,backendName:"webgl",kernelFunc:tre};function are(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new X1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var rre={kernelName:wu,backendName:"webgl",kernelFunc:are},sre=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},ire=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function ore(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new X1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new ire(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var lre={kernelName:Rc,backendName:"webgl",kernelFunc:ore};function ure(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ip([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new Ic(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new sre(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var pre={kernelName:Cm,backendName:"webgl",kernelFunc:ure};function cre(e,t,n,a){let r=new Ic(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Ic(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var dre={kernelName:_m,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=cre(a,o,p,l);return[d,c]}};function hre(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Xo(i,"float32","mean",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var mre={kernelName:lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=q1(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Lf(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=N.expandShapeToKeepDim(f,l));let y=hre(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function fre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Xo(f,f.dtype,"min",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var gre={kernelName:uo,backendName:"webgl",kernelFunc:fre},bre=j1+`
return min(a, b);
`,yre=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+Ko+`
return result;
`,xre=mn({opSnippet:bre,packedOpSnippet:yre,cpuKernelImpl:i9}),vre={kernelName:po,backendName:"webgl",kernelFunc:xre},wre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=ct(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},kre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ct(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=In("rc",a),l=In("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},Ire=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kre(a.shape,r,s):new wre(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Sre={kernelName:co,backendName:"webgl",kernelFunc:Ire},Nre=`if (b == 0.0) return NAN;
return mod(a, b);`,Tre=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+Ko+`
return result;
`,Cre=mn({opSnippet:Nre,packedOpSnippet:Tre}),_re={kernelName:ku,backendName:"webgl",kernelFunc:Cre},Ere=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Are=`
if (a == b) {
return 1.0;
};
return a / b;`,Fre=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,fA=mn({opSnippet:Are,packedOpSnippet:Fre,checkOutOfBounds:!0}),$re={kernelName:Ui,backendName:"webgl",kernelFunc:fA},rS="return a - b;",gA=mn({opSnippet:rS,packedOpSnippet:rS,supportsComplex:!0,cpuKernelImpl:C9}),Dre={kernelName:Po,backendName:"webgl",kernelFunc:gA};function bA(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=mA({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ce({inputs:{x:o},backend:n,attrs:{shape:l}}),p=gA({inputs:{a:r,b:u},backend:n}),d=cA({inputs:{x:p},backend:n}),c=zf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=ce({inputs:{x:c},backend:n,attrs:{shape:l}}),m=fA({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Rre={kernelName:Ro,backendName:"webgl",kernelFunc:bA};function Mre(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:bA({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Ere(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Pre={kernelName:Iu,backendName:"webgl",kernelFunc:Mre},Ore=Ma+`
return -x;
`,Lre=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function zre(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=l9(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ts(a.shape,Lre):r=new rr(a.shape,Ore),n.runWebGLProgram(r,[a],a.dtype)}var Wre={kernelName:Su,backendName:"webgl",kernelFunc:zre},Bre=hr.nonMaxSuppressionV3Impl;function Vre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Bre(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Ure={kernelName:Tu,backendName:"webgl",kernelFunc:Vre},Gre=hr.nonMaxSuppressionV4Impl;function Hre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Gre(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var qre={kernelName:Cu,backendName:"webgl",kernelFunc:Hre},jre=hr.nonMaxSuppressionV5Impl;function Kre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=jre(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Xre={kernelName:_u,backendName:"webgl",kernelFunc:Kre},Yre=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},Zre=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new Yre(u,i,o,l),d=ce({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=ce({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},Jre={kernelName:mo,backendName:"webgl",kernelFunc:Zre};function cm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Td({inputs:{input:a},backend:n}),s=cm({inputs:{x:r},backend:n}),i=Wf({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Es({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Cd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Qre={kernelName:Ku,backendName:"webgl",kernelFunc:cm};function yA(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Td({inputs:{input:a},backend:n}),s=yA({inputs:{x:r},backend:n}),i=Wf({inputs:{input:a},backend:n}),o=cm({inputs:{x:i},backend:n}),l=Es({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Cd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var ese={kernelName:Eu,backendName:"webgl",kernelFunc:yA};function tse(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return nv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=nv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=aA({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var nse={kernelName:Au,backendName:"webgl",kernelFunc:tse},ase=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ct(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},rse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ct(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=In("rc",a),l=In("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},xA=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return Cd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rse(r.shape,s,i):new ase(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},sse={kernelName:fo,backendName:"webgl",kernelFunc:xA},ise=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,ose=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+Ko+`
return result;
`,lse=mn({opSnippet:ise,packedOpSnippet:ose}),use={kernelName:go,backendName:"webgl",kernelFunc:lse};function pse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=Sn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=p9(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=ce({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Rm(r.dtype),x=Xo(b,y,"prod",n);h=ce({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=ce({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var cse={kernelName:yo,backendName:"webgl",kernelFunc:pse};function dse(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.readSync(b.dataId)),u=r.map(b=>b.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=c9(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var hse={kernelName:Em,backendName:"webgl",kernelFunc:dse};function mse(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=d9(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var fse={kernelName:Am,backendName:"webgl",kernelFunc:mse};function gse(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=h9(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var bse={kernelName:Fm,backendName:"webgl",kernelFunc:gse},vA=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=m9(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},yse={kernelName:Mc,backendName:"webgl",kernelFunc:vA},xse="return 1.0 / x;",vse=Ye({opSnippet:xse}),wse={kernelName:xo,backendName:"webgl",kernelFunc:vse},kse=Ma+`
return (x < 0.0) ? 0.0 : x;
`,Ise=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Sse=Ye({opSnippet:kse,packedOpSnippet:Ise}),Nse={kernelName:vo,backendName:"webgl",kernelFunc:Sse},Tse=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Cse=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_se=Ye({opSnippet:Tse,packedOpSnippet:Cse}),Ese={kernelName:Io,backendName:"webgl",kernelFunc:_se},Ase=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Fse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function $se(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Fse(r.shape,l,u,s,i):new Ase(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Dse={kernelName:ko,backendName:"webgl",kernelFunc:$se},Rse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Mse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Rse(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Pse={kernelName:Du,backendName:"webgl",kernelFunc:Mse},Ose=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Lse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function zse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Lse(r.shape,l,u,s,i):new Ose(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Wse={kernelName:wo,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Vse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Bse(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Use={kernelName:$u,backendName:"webgl",kernelFunc:Vse},Gse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ct(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Hse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=In("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ct(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function qse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return aa({inputs:{x:r},backend:n});let l=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hse(r.shape,o):new Gse(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var jse={kernelName:So,backendName:"webgl",kernelFunc:qse},Kse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Xse={kernelName:Xu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Kse(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Yse=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Zse=Ye({opSnippet:Yse}),Jse={kernelName:No,backendName:"webgl",kernelFunc:Zse},Qse="return inversesqrt(x);",eie=Ye({opSnippet:Qse,cpuKernelImpl:f9}),tie={kernelName:To,backendName:"webgl",kernelFunc:eie},Y1=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let l=ct(r.length),u=ct(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${d});
flattenedIndex += index * ${g};
}
if (flattenedIndex == coords[0]) {
sum += ${h};
found = true;
}
}
setOutput(mix(${f}, sum, float(found)));
}
`}},nie=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=s;let l=ct(r.length),u=ct(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides",b=t>1?"strides[j + 1]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${e}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${t}; j+=2) {
ivec4 index = round(${d});
flattenedIndex += index.xz * ${g};
if (j + 1 < ${t}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${h};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${f}, sum, found));
}
`}};function aie(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=ce({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g;G().getBool("WEBGL_PACK")?g=new nie(l,o,h.shape.length,m.shape.length,p,c):g=new Y1(l,o,h.shape.length,m.shape.length,p,c);let b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var rie={kernelName:Ru,backendName:"webgl",kernelFunc:aie},sie=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=G().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function iie(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new sie(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var oie={kernelName:Pu,backendName:"webgl",kernelFunc:iie},lie=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ct(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function uie(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new lie(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ga(r.dtype,s.dtype))}var pie={kernelName:Ou,backendName:"webgl",kernelFunc:uie},cie=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,die=Ye({opSnippet:cie}),hie={kernelName:Co,backendName:"webgl",kernelFunc:die},mie=cp+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,fie=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,gie=Ye({opSnippet:mie,packedOpSnippet:fie,cpuKernelImpl:b9}),bie={kernelName:Ao,backendName:"webgl",kernelFunc:gie},yie=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,xie=Ye({opSnippet:yie}),vie={kernelName:Eo,backendName:"webgl",kernelFunc:xie},wie=cp+`
return sin(x);
`,kie=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${Ko}
return result;
`,Iie=Ye({opSnippet:wie,packedOpSnippet:kie}),Sie={kernelName:_o,backendName:"webgl",kernelFunc:Iie},Nie=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Tie=Ye({opSnippet:Nie}),Cie={kernelName:zu,backendName:"webgl",kernelFunc:Tie},_ie=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Eie=Ye({opSnippet:_ie}),Aie={kernelName:Fo,backendName:"webgl",kernelFunc:Eie},Fie=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=xA({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=ce({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},$ie={kernelName:Wu,backendName:"webgl",kernelFunc:Fie};function Die(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=x9(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Rie={kernelName:Pc,backendName:"webgl",kernelFunc:Die};function Mie(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=v9(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Pie={kernelName:Vu,backendName:"webgl",kernelFunc:Mie};function Oie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=UE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Lie={kernelName:Oc,backendName:"webgl",kernelFunc:Oie};function zie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=UE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Wie={kernelName:Lc,backendName:"webgl",kernelFunc:zie};function Bie(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=g9(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new Y1(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Vie={kernelName:Uu,backendName:"webgl",kernelFunc:Bie};function Uie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=dp({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Gie={kernelName:Bu,backendName:"webgl",kernelFunc:Uie},sS="return sqrt(x);",Hie=Ye({opSnippet:sS,packedOpSnippet:sS,cpuKernelImpl:w9}),qie={kernelName:$o,backendName:"webgl",kernelFunc:Hie},jie="return x * x;",Kie=Ye({opSnippet:jie}),Xie={kernelName:zc,backendName:"webgl",kernelFunc:Kie},iS="return (a - b) * (a - b);",Yie=mn({opSnippet:iS,packedOpSnippet:iS}),Zie={kernelName:Mo,backendName:"webgl",kernelFunc:Yie};function Jie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;if(r.dtype!=="string")throw new Error("Input must be of datatype string");let s=n.readSync(r.dataId),i=N.fromUint8ToStringArray(s),o=k9(i,"string",a);return n.makeTensorInfo(r.shape,"string",o)}var Qie={kernelName:Wc,backendName:"webgl",kernelFunc:Jie};function eoe({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ma+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new rr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var toe={kernelName:vs,backendName:"webgl",kernelFunc:eoe},noe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ct(n.length),s=ct(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function aoe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ce({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Kt.computeOutShape(y,x,w),E=dp({inputs:{x:r},backend:n,attrs:{begin:y,size:C}});I=ce({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=Le(r.shape,r.dtype,C),F=I9(h,E,w,y);I=n.makeTensorInfo(m,r.dtype,F.values)}else{let C=new noe(y,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=ce({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var roe={kernelName:Gu,backendName:"webgl",kernelFunc:aoe};function soe(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=S9(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var ioe={kernelName:Bc,backendName:"webgl",kernelFunc:soe};function ooe(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=N9(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var loe={kernelName:Vc,backendName:"webgl",kernelFunc:ooe};function uoe(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=T9(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var poe={kernelName:Uc,backendName:"webgl",kernelFunc:uoe},coe="return tan(x);",doe=Ye({opSnippet:coe}),hoe={kernelName:Oo,backendName:"webgl",kernelFunc:doe},moe=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,foe=Ye({opSnippet:moe}),goe={kernelName:Lo,backendName:"webgl",kernelFunc:foe};function boe(e){let{inputs:t,backend:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=t,{}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(i,s,r.shape),c=[d/u,u];if(d===0)return n.makeTensorInfo(r.shape,s.dtype);let h=ce({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:i},backend:n,attrs:{shape:[l,u]}}),f=ce({inputs:{x:r},backend:n,attrs:{shape:c}}),g=new Y1(l,o,h.shape.length,m.shape.length,p,c,!1,!0),b=n.runWebGLProgram(g,[m,h,f],f.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),y}var yoe={kernelName:Mu,backendName:"webgl",kernelFunc:boe},xoe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ct(this.rank),r=voe(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function voe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function wA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Le(r.shape,r.dtype,l),p=_9(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new xoe(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var woe={kernelName:xs,backendName:"webgl",kernelFunc:wA},koe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Ioe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Hs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function oS(e){let t=1;for(;t<e;)t*=2;return t}function Soe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=G().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=G().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let F=n.readSync(r.dataId),[D,$]=E9(F,u,r.dtype,s,i);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,Cd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=ce({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Hs(n,h);let g=oS(s),b=oS(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(F,D,$)=>{let S=x(),M=new koe($),B=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[F],[D]],U=y;y=n.runWebGLProgram(M,S,"int32",B),Hs(n,U)};for(let F=1;F<g;F*=2){let D=F*2;for(let $=F;$>=1;$/=2)w(D,$,[m,b])}for(let F=b;F>g;F/=2){let D=x(),$=new Ioe([m,F/2]),S=[[p],[y===null?1:0],[g]],M=y;y=n.runWebGLProgram($,D,"int32",S),Hs(n,M);let B=g/2,U=B*2;for(let H=B;H>=1;H/=2)w(U,H,y.shape)}let I=y;y=dp({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),Hs(n,I);let T=hA({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});Hs(n,f);let C=u.slice(0,-1);C.push(s),I=y,y=ce({inputs:{x:y},attrs:{shape:C},backend:n}),Hs(n,I);let E=T;return T=ce({inputs:{x:T},attrs:{shape:C},backend:n}),Hs(n,E),[T,y]}var Noe={kernelName:Hu,backendName:"webgl",kernelFunc:Soe},Toe=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Coe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Toe(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var _oe={kernelName:qu,backendName:"webgl",kernelFunc:Coe};function Eoe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ip(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=A9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Aoe={kernelName:Gc,backendName:"webgl",kernelFunc:Eoe};function Foe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=dp({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=ce({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var $oe={kernelName:ju,backendName:"webgl",kernelFunc:Foe},Doe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Roe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Rm(r.dtype),g=(w,I,T,C,E)=>{let F=w.shape[0],D=w.shape[1],$=N.segment_util.segOpComputeOptimalWindowSize(D,E),S={windowSize:$,inSize:D,batchSize:F,numSegments:E},M=new Doe(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===E)return B;let U=vA({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),H=wA({inputs:{x:U},backend:n,attrs:{reps:[D/$]}});return l.push(U),l.push(H),g(B,I,H,C,E)},b=g(m,"unsortedSegmentSum",s,f,i),y=ce({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=N.getUndoAxesPermutation(p);x=Sn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var Moe={kernelName:Hc,backendName:"webgl",kernelFunc:Roe},Poe=[IQ,NQ,_Q,FQ,DQ,PQ,LQ,WQ,GQ,qQ,XQ,JQ,tee,see,lee,pee,dee,gee,yee,vee,See,Fee,Dee,Mee,Bee,Uee,jee,iQ,Yee,tte,ste,cte,mte,gte,yte,vte,Ste,Cte,Ate,$te,Rte,Pte,zte,Bte,Hte,jte,Yte,Qte,tne,sne,une,hne,gne,xne,vne,kne,Sne,Tne,_ne,Ane,Rne,One,Wne,Vne,Hne,Kne,Jne,nae,sQ,rae,Qee,oae,pae,hae,lQ,bae,wae,Iae,Cae,Aae,Rae,Oae,Bae,Hae,Kae,Yae,ere,nre,rre,lre,pre,dre,mre,gre,vre,Sre,_re,Pre,cQ,Wre,Ure,qre,Xre,Oee,Jre,ese,nse,sse,use,pQ,cse,hse,fse,bse,yse,Lee,$re,wse,Nse,Ese,hQ,Dse,Pse,Wse,Use,jse,Xse,Jse,tie,rie,oie,pie,hie,bie,vie,Sie,Cie,Eee,Rre,Aie,$ie,Rie,Pie,Lie,Wie,Vie,Gie,qie,Xie,Zie,Qie,toe,roe,ioe,loe,poe,Dre,vQ,hoe,goe,yoe,woe,Noe,_oe,wQ,Aoe,$oe,Moe,Qre];for(let e of Poe)qc(e);var et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(et||(et={}));var Nc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Nc||(Nc={}));var kA;function Ooe(e){kA=e.wasm.cwrap(si,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Loe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Nc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=Yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return kA(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var zoe={kernelName:si,backendName:"wasm",setupFunc:Ooe,kernelFunc:Loe};function Je(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Woe=Je(ql),Boe=Je(Ii),Voe=Je(Si);function ln(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,et[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Uoe=!0,Goe=ln(bs,Uoe),IA;function Hoe(e){IA=e.wasm.cwrap(Ni,null,["array","number","number","number"])}function qoe(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return IA(s,r.length,et[a.dtype],i),a}var joe={kernelName:Ni,backendName:"wasm",setupFunc:Hoe,kernelFunc:qoe};function Bf(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return bn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Koe={kernelName:Zi,backendName:"wasm",kernelFunc:Bf},SA;function Xoe(e){SA=e.wasm.cwrap(_r,null,["number","array","number","number","number","array","number"])}function fs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Zoe(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Yoe(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Bf({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return SA(p,h,l.shape.length,et[l.dtype],d,c,s.length),u}function Yoe(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Zoe(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Joe={kernelName:_r,backendName:"wasm",kernelFunc:fs,setupFunc:Xoe};function As(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=fs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var NA;function Qoe(e){NA=e.wasm.cwrap(jl,null,["number, number, number"])}function ele(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=As(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;NA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var tle={kernelName:jl,backendName:"wasm",setupFunc:Qoe,kernelFunc:ele},TA;function nle(e){TA=e.wasm.cwrap(Kl,null,["number, number, number"])}function ale(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=As(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;TA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var rle={kernelName:Kl,backendName:"wasm",setupFunc:nle,kernelFunc:ale};function CA(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number","number","number","number"])}function a(r){let{backend:s,inputs:i,attrs:o}=r,{axis:l}=o,{x:u}=i,p=s.dataIdMap.get(u.dataId).id,d=p,c=u,{transposed:h,axes:m,inputWasTransposed:f}=As(u,l,s);if(f){let I=s.dataIdMap.get(h.dataId).id;I!==p&&(c=h,d=I)}let g=c.shape.slice(0,-1),b=s.makeOutput(g,"int32"),y=s.dataIdMap.get(b.dataId).id,x=v.sizeFromShape(b.shape),w=c.shape[m[0]];return t(d,et[c.dtype],x,w,y),f&&s.disposeData(h.dataId),b}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var sle=CA(Xl),ile=CA(Yl),ole=Je(Ti),lle=Je(Ci),ule=Je(_i),ple=ln(Ai,!1),cle=Je(Ei),_A;function dle(e){_A=e.wasm.cwrap(Fi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hle(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return _A(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var mle={kernelName:Fi,backendName:"wasm",setupFunc:dle,kernelFunc:hle},EA;function fle(e){EA=e.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return EA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var ble={kernelName:Zl,backendName:"wasm",setupFunc:fle,kernelFunc:gle},AA;function yle(e){AA=e.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xle(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return AA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left,p.filterDepth,p.filterHeight,p.filterWidth),d}var vle={kernelName:_c,backendName:"wasm",setupFunc:yle,kernelFunc:xle};function Wn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var wle={kernelName:Fu,backendName:"wasm",kernelFunc:Wn},FA;function kle(e){FA=e.wasm.cwrap($i,null,["number","array","number","number","array","number","number","number","number"])}function Ile(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=Yu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,F=i?I.shape[2]:I.shape[1],D=o?T.shape[1]:T.shape[2],$=Math.max(g,b),S=n.makeOutput([$,F,D],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return FA(C,B,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=y,S}var Sle={kernelName:$i,backendName:"wasm",setupFunc:kle,kernelFunc:Ile};function wi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=sm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)Nle(l,p[0],c,s,i);else if(h===3)Tle(l,p[0],p[1],c,s,i);else if(h===4)Cle(l,p[0],p[1],p[2],c,s,i);else{let m=sm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function Nle(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function Tle(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Cle(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var _le={kernelName:Lu,backendName:"wasm",kernelFunc:wi};function Ele(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=wi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var Ale={kernelName:Jl,backendName:"wasm",kernelFunc:Ele},$A;function Fle(e){$A=e.wasm.cwrap(Ql,null,["number","number","boolean","number","number","number"])}function $le(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i}=a,o=s.shape.reduce((d,c)=>d*c,1)!==0,l=r.shape.length===1?[i]:[r.shape[0],i],u=t.makeOutput(l,s.dtype);function p(d){return t.dataIdMap.get(d.dataId).id}return $A(p(r),i,o,p(s),et[s.dtype],p(u)),u}var Dle={kernelName:Ql,backendName:"wasm",setupFunc:Fle,kernelFunc:$le};function Rle(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.typedArrayFromHeap(a),i=n.typedArrayFromHeap(r),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeOutput([o.length],"int32",void 0,new Int32Array(o))}var Mle={kernelName:Ec,backendName:"wasm",kernelFunc:Rle};function Fs(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Ple={kernelName:Di,backendName:"wasm",kernelFunc:Fs},Ole=Je(Ri),DA;function Lle(e){DA=e.wasm.cwrap(ys,null,["number","number","number","number"])}function zle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return DA(o,s,i,u),l}var Wle={kernelName:ys,backendName:"wasm",setupFunc:Lle,kernelFunc:zle};function RA(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return Bf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=[-1,v.sizeFromShape(x.shape.slice(a))];return Wn({inputs:{x},backend:n,attrs:{shape:w}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=I1(m,s,t[0].dtype,f),b=N.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return o}var Ble={kernelName:eu,backendName:"wasm",kernelFunc:RA},MA;function Vle(e){MA=e.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ule(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,F=m.inChannels,D=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return MA(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,$,I,T,C,E,F,D,M),S}var Gle={kernelName:Mi,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule},PA;function Hle(e){PA=e.wasm.cwrap(Pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qle(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,F=f-1-h.padInfo.top,D=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[B,U,H]=v.computeStrides(s.shape),j=S[0],K=$?S[1]:S[2],Z=$?S[2]:1,J=$?1:S[1],ee=M[0],ae=$?M[1]:M[2],te=$?M[2]:1,re=$?1:M[1],se=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(se.dataId).id,ue=t.dataIdMap.get(r.dataId).id,be=t.dataIdMap.get(s.dataId).id;return PA(ue,be,m,f,g,y,x,b,I,T,w,C,E,F,D,B,U,H,j,K,Z,J,ee,ae,te,re,ye),se}var jle={kernelName:Pi,backendName:"wasm",setupFunc:Hle,kernelFunc:qle},OA;function Kle(e){OA=e.wasm.cwrap(Oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=n.makeOutput(u.outShape,r.dtype);return OA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var Yle={kernelName:Oi,backendName:"wasm",setupFunc:Kle,kernelFunc:Xle},LA;function Zle(e){LA=e.wasm.cwrap(tu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,l,i,1,o),p=n.makeOutput(u.filterShape,s.dtype);return LA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var Qle={kernelName:tu,backendName:"wasm",setupFunc:Zle,kernelFunc:Jle},zA;function eue(e){zA=e.wasm.cwrap(nu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tue(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(l,s.shape,o,1,i),p=n.makeOutput(u.inShape,r.dtype);return zA(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var nue={kernelName:nu,backendName:"wasm",setupFunc:eue,kernelFunc:tue},aue=Je(Li),rue=Je(zi),av;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(av||(av={}));var WA;function sue(e){WA=e.wasm.cwrap(ru,null,["number","number","number","number","array","number","number","number","number","number"])}function iue(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Fs({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return WA(g,b,y,p,I,d,c,av[r],s,w),f!=null&&t.disposeData(f.dataId),x}var oue={kernelName:ru,backendName:"wasm",setupFunc:sue,kernelFunc:iue},BA;function lue(e){BA=e.wasm.cwrap(au,null,["number","number","number","number","number","number"])}function uue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;BA(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var pue={kernelName:au,backendName:"wasm",setupFunc:lue,kernelFunc:uue},VA;function cue(e){VA=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number"])}function due(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=fs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;VA(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=fs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var hue={kernelName:Wi,backendName:"wasm",setupFunc:cue,kernelFunc:due},UA;function mue(e){UA=e.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function fue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i,binaryOutput:o}=a,l=s.shape.reduce((c,h)=>c*h,1)!==0,u=r.shape.length===1?[i]:[r.shape[0],i],p=t.makeOutput(u,s.dtype);function d(c){return t.dataIdMap.get(c.dataId).id}return UA(d(r),new Uint8Array(new Int32Array(r.shape).buffer),r.shape.length,i,l,d(s),et[s.dtype],o,d(p)),p}var gue={kernelName:Fc,backendName:"wasm",setupFunc:mue,kernelFunc:fue},GA;function bue(e){GA=e.wasm.cwrap(su,null,["number","number","number","array","number","array","array","number","number"])}function yue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return GA(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var xue={kernelName:su,backendName:"wasm",setupFunc:bue,kernelFunc:yue},HA;function vue(e){HA=e.wasm.cwrap(Bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return HA(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,D,w,I,T,C,E,F,S),$}var kue={kernelName:Bi,backendName:"wasm",setupFunc:vue,kernelFunc:wue},qA;function Iue(e){qA=e.wasm.cwrap("Diag",null,["number","number","number","number"])}function Sue(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.makeOutput([...a.shape,...a.shape],a.dtype);return qA(n.dataIdMap.get(a.dataId).id,et[a.dtype],r,n.dataIdMap.get(s.dataId).id),s}var Nue={kernelName:$c,backendName:"wasm",setupFunc:Iue,kernelFunc:Sue},jA;function Tue(e){jA=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${r.dtype} and ${s.dtype}`);let u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=n.makeOutput(u.outShape,r.dtype);return jA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,et[r.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),p}var _ue={kernelName:Vi,backendName:"wasm",setupFunc:Tue,kernelFunc:Cue},KA;function Eue(e){KA=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Aue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(s.shape,s.dtype);return KA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Fue={kernelName:Tl,backendName:"wasm",setupFunc:Eue,kernelFunc:Aue},XA;function $ue(e){XA=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Due(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(r.shape,r.dtype);return XA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Rue={kernelName:Nl,backendName:"wasm",setupFunc:$ue,kernelFunc:Due},Mue=Je(Gi),YA;function Pue(e){YA=e.wasm.cwrap(iu,null,["number","number","number"])}function Oue(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=n.makeOutput(r.shape,"float32"),i=o=>n.dataIdMap.get(o.dataId).id;return YA(i(r),i(a),i(s)),s}var Lue={kernelName:iu,backendName:"wasm",setupFunc:Pue,kernelFunc:Oue},zue=!1,Wue=ln(lu,zue,"bool"),Bue=Je(Hi,"float32");function rv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Vue={kernelName:uu,backendName:"wasm",kernelFunc:rv},Uue=Je(qi,"float32");function ZA(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Gue={kernelName:Dc,backendName:"wasm",kernelFunc:ZA},JA;function Hue(e){JA=e.wasm.cwrap(pu,null,["number","number","number","number","number","number"])}function que(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return JA(s,o,l,u,p,i),r}var jue={kernelName:pu,backendName:"wasm",kernelFunc:que,setupFunc:Hue},Kue=Je(ji),Xue=!1,Yue=ln(Ki,Xue),QA;function Zue(e){QA=e.wasm.cwrap(Xi,null,["number","number","number","number","number","number","number"])}function Jue(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return QA(p,d,c,h,m,r,g),f}var Que={kernelName:Xi,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue},eF;function epe(e){eF=e.wasm.cwrap(ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=Nc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return eF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var npe={kernelName:ii,backendName:"wasm",setupFunc:epe,kernelFunc:tpe},tF;function ape(e){tF=e.wasm.cwrap(oi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rpe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=Nc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return tF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var spe={kernelName:oi,backendName:"wasm",setupFunc:ape,kernelFunc:rpe},nF;function ipe(e){nF=e.wasm.cwrap(du,null,["number","number","number","number","number","number","array","number"])}function ope(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Pw.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return nF(c,et[a.dtype],h,i,d,o,m,f),u}var lpe={kernelName:du,backendName:"wasm",setupFunc:ipe,kernelFunc:ope},aF;function upe(e){aF=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function ppe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return aF(y,et[r.dtype],I,b,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var cpe={kernelName:cu,backendName:"wasm",setupFunc:upe,kernelFunc:ppe},dpe=!1,hpe=ln(hu,dpe,"bool"),mpe=!1,fpe=ln(Yi,mpe,"bool"),gpe=Je(Ji,"bool"),bpe=Je(Qi,"bool"),ype=Je(eo,"bool"),rF;function xpe(e){rF=e.wasm.cwrap(to,null,["number","number","number","number"])}function vpe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;rF(r,et[t.dtype],n,i)}return s}var wpe={kernelName:to,backendName:"wasm",setupFunc:xpe,kernelFunc:vpe},kpe=!1,Ipe=ln(mu,kpe,"bool"),Spe=!1,Npe=ln(fu,Spe,"bool"),sF;function Tpe(e){sF=e.wasm.cwrap(gu,null,["number","number","number","number"])}function Cpe(e){let{attrs:t,backend:n}=e,{start:a,stop:r,num:s}=t,i=Math.floor(s),o=n.makeOutput([i],"float32");return sF(n.dataIdMap.get(o.dataId).id,a,r,i),o}var _pe={kernelName:gu,backendName:"wasm",setupFunc:Tpe,kernelFunc:Cpe},Epe=Je(no),Ape=Je(ao),Fpe=!1,$pe=ln(bu,Fpe,"bool"),Dpe=Je(yu),Rpe=!1,Mpe=ln(xu,Rpe,"bool"),Ppe=!1,Ope=ln(_S,Ppe,"bool"),iF;function Lpe(e){iF=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number"])}function zpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;if(r.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=n.makeOutput(r.shape,r.dtype);return iF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(u.dataId).id,r.shape[3],s,i,o,l),u}var Wpe={kernelName:ro,backendName:"wasm",setupFunc:Lpe,kernelFunc:zpe},oF;function Bpe(e){oF=e.wasm.cwrap(vu,null,["number","number","number","number","number","number","number","number","number"])}function Vpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;if(r.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let d=n.makeOutput(r.shape,r.dtype);return oF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,i.shape[3],o,l,u,p),d}var Upe={kernelName:vu,backendName:"wasm",setupFunc:Bpe,kernelFunc:Vpe},lF;function Gpe(e){lF=e.wasm.cwrap(so,null,["number","number","number","number"])}function Hpe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=As(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;lF(o,et[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var qpe={kernelName:so,backendName:"wasm",setupFunc:Gpe,kernelFunc:Hpe},jpe=!1,Kpe=ln(io,jpe),uF;function Xpe(e){uF=e.wasm.cwrap(oo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ype(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return uF(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,T,E),C}var Zpe={kernelName:oo,backendName:"wasm",setupFunc:Xpe,kernelFunc:Ype},pF;function Jpe(e){pF=e.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return pF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var ece={kernelName:wu,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},cF;function tce(e){cF=e.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nce(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return cF(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var ace={kernelName:Rc,backendName:"wasm",setupFunc:tce,kernelFunc:nce},dF;function rce(e){dF=e.wasm.cwrap(lo,null,["number, number, number"])}function sce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=As(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Fs({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;dF(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var ice={kernelName:lo,backendName:"wasm",setupFunc:rce,kernelFunc:sce},hF;function oce(e){hF=e.wasm.cwrap(uo,null,["number","number","number","number"])}function lce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=As(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;hF(l,et[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var uce={kernelName:uo,backendName:"wasm",setupFunc:oce,kernelFunc:lce},pce=!1,cce=ln(po,pce),sv;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(sv||(sv={}));var mF;function dce(e){mF=e.wasm.cwrap(co,null,["number","array","number","number","array","array","number","number"])}function hce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return mF(i,u,t.shape.length,et[t.dtype],c,h,sv[r],l),o}var mce={kernelName:co,backendName:"wasm",kernelFunc:hce,setupFunc:dce},fF;function fce(e){fF=e.wasm.cwrap(Ro,null,["number","number","number","number"])}function gF(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||fF(r,i,o,l),s}var gce={kernelName:Ro,backendName:"wasm",setupFunc:fce,kernelFunc:gF},bF;function bce(e){bF=e.wasm.cwrap(Iu,null,["number","number","number","number","number","number"])}function yce(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;if(r.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${r.dtype}`);let l=o?r:gF({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),[u,p]=l.shape,d=n.makeOutput([u,s],"int32");return bF(n.dataIdMap.get(l.dataId).id,u,p,s,i,n.dataIdMap.get(d.dataId).id),o||n.disposeData(l.dataId),d}var xce={kernelName:Iu,backendName:"wasm",setupFunc:bce,kernelFunc:yce},vce=!0,wce=ln(ho,vce),kce=Je(Su);function Z1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var yF;function Ice(e){yF=e.wasm.cwrap(Tu,"number",["number","number","number","number","number"])}function Sce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=yF(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Z1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var Nce={kernelName:Tu,backendName:"wasm",setupFunc:Ice,kernelFunc:Sce},xF;function Tce(e){xF=e.wasm.cwrap(Cu,"number",["number","number","number","number","number","bool"])}function Cce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=xF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Z1(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var _ce={kernelName:Cu,backendName:"wasm",setupFunc:Tce,kernelFunc:Cce},vF;function Ece(e){vF=e.wasm.cwrap(_u,"number",["number","number","number","number","number","number"])}function Ace(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=vF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Z1(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var Fce={kernelName:_u,backendName:"wasm",setupFunc:Ece,kernelFunc:Ace},$ce=!1,Dce=ln(Nu,$ce,"bool"),wF;function Rce(e){wF=e.wasm.cwrap(mo,null,["number","number","number","number","number"])}function Mce(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return wF(d,i,o,l,p),u}var Pce={kernelName:mo,backendName:"wasm",setupFunc:Rce,kernelFunc:Mce};function Oce(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Lce={kernelName:Eu,backendName:"wasm",kernelFunc:Oce};function zce(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return rv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=rv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=RA({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Wce={kernelName:Au,backendName:"wasm",kernelFunc:zce},kF;function Bce(e){kF=e.wasm.cwrap(fo,null,["number","array","number","number","array","array","number","number"])}function Vce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return ZA({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return kF(i,u,t.shape.length,et[t.dtype],c,h,r,l),o}var IF={kernelName:fo,backendName:"wasm",kernelFunc:Vce,setupFunc:Bce},Uce=!1,Gce=ln(go,Uce),SF;function Hce(e){SF=e.wasm.cwrap(bo,null,["number","number","number"])}function qce(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Fs({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return SF(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var jce={kernelName:bo,backendName:"wasm",setupFunc:Hce,kernelFunc:qce},NF;function Kce(e){NF=e.wasm.cwrap(yo,null,["number","number","number","number"])}function Xce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=As(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;NF(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Yce={kernelName:yo,backendName:"wasm",setupFunc:Kce,kernelFunc:Xce},Zce=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=T1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Jce={kernelName:Mc,backendName:"wasm",kernelFunc:Zce},Qce=!0,ede=ln(Ui,Qce),tde=Je(xo),nde=Je(vo),ade=Je(Io),TF;function rde(e){TF=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","number","number","number","number"])}function sde(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Fs({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return TF(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var ide={kernelName:ko,backendName:"wasm",setupFunc:rde,kernelFunc:sde},CF;function ode(e){CF=e.wasm.cwrap(Du,null,["number","number","number","array","array","boolean"])}function lde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Fs({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),CF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var ude={kernelName:Du,backendName:"wasm",setupFunc:ode,kernelFunc:lde},_F;function pde(e){_F=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number"])}function cde(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Fs({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return _F(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var dde={kernelName:wo,backendName:"wasm",setupFunc:pde,kernelFunc:cde},EF;function hde(e){EF=e.wasm.cwrap($u,null,["number","number","number","array","array","boolean"])}function mde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Fs({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),EF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var fde={kernelName:$u,backendName:"wasm",setupFunc:hde,kernelFunc:mde},AF;function gde(e){AF=e.wasm.cwrap(So,null,["number","array","number","array","number","number"])}function bde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return Bf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);AF(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var yde={kernelName:So,backendName:"wasm",kernelFunc:bde,setupFunc:gde},FF;function xde(e){FF=e.wasm.cwrap(Xu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function vde(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return FF(u,d,c,h,m,s,f,g,w,x.length,p),l}var wde={kernelName:Xu,backendName:"wasm",kernelFunc:vde,setupFunc:xde},kde=Je(No),Ide=Je(To),$F;function Sde(e){$F=e.wasm.cwrap(Ru,null,["number","number","number","number","number","number","array","number","number"])}function Nde(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=rf.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return $F(h,m,et[s.dtype],l,u,p,f,c,g),o}var Tde={kernelName:Ru,backendName:"wasm",setupFunc:Sde,kernelFunc:Nde},DF;function Cde(e){DF=e.wasm.cwrap(Pu,null,["number","number","number","number","number","number","bool","number"])}function _de(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a;if(r.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${r.dtype} and ${s.dtype}`);let o=n.makeOutput(s.shape,"int32");function l(u){return n.dataIdMap.get(u.dataId).id}return DF(l(r),l(s),r.shape[0],r.shape[1],s.shape[1],et[r.dtype],i==="left",l(o)),o}var Ede={kernelName:Pu,backendName:"wasm",setupFunc:Cde,kernelFunc:_de},RF;function Ade(e){RF=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Fde(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return RF(i,o,l,h,p),u}var $de={kernelName:Ou,backendName:"wasm",kernelFunc:Fde,setupFunc:Ade},Dde=Je(Co),MF;function Rde(e){MF=e.wasm.cwrap(Ao,null,["number","number"])}function Mde(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||MF(a,s),r}var Pde={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Rde,kernelFunc:Mde},Ode=Je(Eo),Lde=Je(_o),zde=Je(Fo);function Wde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=IF.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=Wn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=fs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var Bde={kernelName:Wu,backendName:"wasm",kernelFunc:Wde},PF;function Vde(e){PF=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Ude(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=PF(d,c,et[r.dtype],o,u,l,h,f,b,x,I,C),F=t.readSync(T.dataId),D;switch(F[0]){case 1:{D=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{D=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:D=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:D=""}if(t.disposeData(T.dataId),D)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(D);let $=m,S=g;return E!==p[0]&&($=wi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=wi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,y,w]}var Gde={kernelName:Pc,backendName:"wasm",setupFunc:Vde,kernelFunc:Ude},OF;function Hde(e){OF=e.wasm.cwrap(Vu,null,["number","number","number","number","number","number","number"])}function qde(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;OF(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var jde={kernelName:Vu,backendName:"wasm",setupFunc:Hde,kernelFunc:qde},LF;function zF(e){LF=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function WF(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;LF(d,et[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Kde(e){return WF(e,!0)}var Xde={kernelName:Oc,backendName:"wasm",setupFunc:zF,kernelFunc:Kde};function Yde(e){return WF(e,!1)}var Zde={kernelName:Lc,backendName:"wasm",setupFunc:zF,kernelFunc:Yde},BF;function Jde(e){BF=e.wasm.cwrap(Uu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Qde(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(v.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=N.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return BF(m,f,s.shape.length,g,et[i.dtype],u,p,d,b,h,y),l}var ehe={kernelName:Uu,backendName:"wasm",setupFunc:Jde,kernelFunc:Qde};function the(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=wi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var nhe={kernelName:Bu,backendName:"wasm",kernelFunc:the},ahe=Je($o),rhe=Je(zc),she=!0,ihe=ln(Mo,she),VF;function ohe(e){VF=e.wasm.cwrap(vs,null,["number","number","number","number"])}function lhe(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return VF(i,r,et[s.dtype],l),o}var uhe={kernelName:vs,backendName:"wasm",setupFunc:ohe,kernelFunc:lhe},UF;function phe(e){UF=e.wasm.cwrap(Gu,null,["number","array","number","array","array","array","array","array","number","number"])}function che(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=wi({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;UF(C,E,r.shape.length,F,D,$,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var dhe={kernelName:Gu,backendName:"wasm",setupFunc:phe,kernelFunc:che};function hhe(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=_1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var mhe={kernelName:Bc,backendName:"wasm",kernelFunc:hhe};function fhe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=E1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var ghe={kernelName:Vc,backendName:"wasm",kernelFunc:fhe};function bhe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=A1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var yhe={kernelName:Uc,backendName:"wasm",kernelFunc:bhe},xhe=!0,vhe=ln(Po,xhe),GF;function whe(e){GF=e.wasm.cwrap(Do,null,["number","number","number","number"])}function khe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=As(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;GF(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Ihe={kernelName:Do,backendName:"wasm",setupFunc:whe,kernelFunc:khe},She=Je(Oo),Nhe=Je(Lo),HF;function The(e){HF=e.wasm.cwrap(Mu,null,["number","number","number","number","number","number","array","number","number","number"])}function Che(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(v.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=rf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return HF(h,m,et[i.dtype],l,u,p,g,c,b,f),o}var _he={kernelName:Mu,backendName:"wasm",setupFunc:The,kernelFunc:Che},qF;function Ehe(e){qF=e.wasm.cwrap(xs,null,["number","array","number","array","number","number"])}function Ahe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return qF(s,l,r.shape.length,u,o.length,et[p.dtype],d),p}var Fhe={kernelName:xs,backendName:"wasm",setupFunc:Ehe,kernelFunc:Ahe},jF;function $he(e){jF=e.wasm.cwrap(Hu,null,["number","array","number","number","number","bool","number","number"])}var Dhe=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return jF(i,o,a.shape.length,et[a.dtype],r,s,p,c),[u,d]},Rhe={kernelName:Hu,backendName:"wasm",setupFunc:$he,kernelFunc:Dhe},KF;function Mhe(e){KF=e.wasm.cwrap(qu,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Phe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return KF(I,T,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,E,l,w),x}var Ohe={kernelName:qu,backendName:"wasm",setupFunc:Mhe,kernelFunc:Phe};function Lhe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=$1(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var zhe={kernelName:Gc,backendName:"wasm",kernelFunc:Lhe};function Whe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=wi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Bhe={kernelName:ju,backendName:"wasm",kernelFunc:Whe};function Vhe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Uhe={kernelName:Ku,backendName:"wasm",kernelFunc:Vhe},Ghe=[zoe,Woe,Boe,Voe,Goe,joe,tle,rle,sle,ile,ole,lle,ule,ple,cle,mle,ble,vle,Sle,Ale,Dle,Mle,Ple,Ole,Wle,Ble,Gle,jle,Yle,Qle,nue,aue,rue,oue,pue,hue,gue,xue,kue,Nue,_ue,Fue,Rue,Mue,Lue,Wue,Bue,Vue,Uue,Gue,jue,Kue,Yue,Que,npe,spe,lpe,cpe,hpe,fpe,Koe,gpe,bpe,ype,wpe,Ipe,Npe,_pe,Ape,Epe,$pe,Dpe,Mpe,Ope,Wpe,Upe,qpe,Kpe,Zpe,ece,ace,ice,uce,cce,mce,xce,wce,kce,Nce,_ce,Fce,Dce,Pce,Lce,Wce,IF,Gce,jce,Yce,Jce,ede,tde,nde,ade,wle,ide,ude,dde,fde,yde,wde,kde,Ide,Tde,Ede,$de,Dde,Pde,Ode,Lde,_le,gce,zde,Bde,Gde,jde,Xde,Zde,ehe,nhe,ahe,rhe,ihe,uhe,dhe,mhe,ghe,yhe,vhe,Ihe,She,Nhe,_he,Fhe,Rhe,Ohe,Joe,zhe,Bhe,Uhe];for(let e of Ghe)qc(e);var iv=G();iv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});iv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(iv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var lS=gs(JD()),Hhe=gs(QD()),uS=gs(eR()),pS=lS.default||lS,qhe=uS.default||uS,XF=class extends Tc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(YF),ov=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new mm(this,_a())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o)>>>0;this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Xhe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function jhe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function cS(e,t,n){if(dm!=null)return dm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),ic!=null&&ic[a]!=null?ic[a]:n+a}async function Khe(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Hhe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?cS(e,t,ac!=null?ac:l):l+o},J1&&(r.instantiateWasm=jhe(cS(e,t,ac!=null?ac:"")));let s=!1;r.onAbort=()=>{s||oc||(oc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&dm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+pS.toString()],{type:"text/javascript"}),i=pS(r)):i=qhe(r),i.then(o=>{s=!0,oc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Xhe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Yhe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dm=null,ac=null,ic={},oc=!1,J1=!1;function Zhe(e,t=!1){if(wv("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),oc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dm=e,J1=t}function Jhe(e,t=!1){if(oc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")ac=e;else{ic=e;let n=Yhe.filter(a=>ic[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}J1=t}var YF=-1,ov=-1;function Qhe(e){YF=e}function eme(){if(ov===-1)throw new Error("WASM backend not initialized.");return ov}var tme="4.5.0",nme=2;Mm("wasm",async()=>{let{wasm:e}=await Khe();return new XF(e)},nme);var dS="4.5.0",ame="4.5.0",rme="4.5.0",sme="4.5.0",ime="4.5.0",ome={tfjs:dS,"tfjs-core":dS,"tfjs-converter":ame,"tfjs-backend-cpu":rme,"tfjs-backend-webgl":sme,"tfjs-backend-wasm":ime};var b$={};jy(b$,{AnchorPosition:()=>ok,DrawBox:()=>Fd,DrawBoxOptions:()=>qf,DrawFaceLandmarks:()=>rg,DrawFaceLandmarksOptions:()=>ag,DrawTextField:()=>Br,DrawTextFieldOptions:()=>xp,drawContour:()=>Or,drawDetections:()=>mme,drawFaceExpressions:()=>fme,drawFaceLandmarks:()=>bme});function Or(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var ZF={};jy(ZF,{computeReshapedDimensions:()=>tk,getCenterPoint:()=>Jo,isDimensions:()=>Uf,isEven:()=>Vf,isFloat:()=>ek,isTensor:()=>Yo,isTensor1D:()=>lme,isTensor2D:()=>Q1,isTensor3D:()=>Lr,isTensor4D:()=>wa,isValidNumber:()=>Za,isValidProbablitiy:()=>hp,range:()=>gr,round:()=>Zo});var En=class{constructor(t,n){if(!Za(t)||!Za(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new En(1/this.width,1/this.height)}};function Yo(e,t){return e instanceof Ce&&e.shape.length===t}function lme(e){return Yo(e,1)}function Q1(e){return Yo(e,2)}function Lr(e){return Yo(e,3)}function wa(e){return Yo(e,4)}function ek(e){return e%1!==0}function Vf(e){return e%2===0}function Zo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Uf(e){return e&&e.width&&e.height}function tk({width:e,height:t},n){let a=n/Math.max(t,e);return new En(Math.round(e*a),Math.round(t*a))}function Jo(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function gr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Za(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function hp(e){return Za(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var dt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Za)}static assertIsValidBox(t,n,a=!1){if(!dt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Za),s=[a.x,a.y,a.width,a.height].every(Za);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];dt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new dt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new dt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new dt({x:t,y:n,width:a,height:r})}rescale(t){let n=Uf(t)?t.width:t,a=Uf(t)?t.height:t;return new dt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new dt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new dt({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new dt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new dt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var mp=class extends dt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var $s=class{constructor(t,n,a,r,s){this._imageDims=new En(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new dt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new dt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new $s(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var wt=class extends $s{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new wt(a,r,s)}};function JF(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function QF(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new mp(a,r,s,i)}function e$(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(JF(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function br(e,t){return P(()=>{let[n,a,r]=t,s=xn([...e.shape.slice(0,3),1],n,"float32"),i=xn([...e.shape.slice(0,3),1],a,"float32"),o=xn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return pe(e,l)})}function t$(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,xn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>ie(c,"float32"));return Qe(d,i)})}function gwe(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Gf(e){return 1/(1+Math.exp(-e))}function ywe(e){return Math.log(e/(1-e))}var fp=class extends dt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var ume=.5,pme=.43,cme=.45,ka=class{constructor(t,n,a=new Pe(0,0)){let{width:r,height:s}=n;this._imgDims=new En(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Pe(r,s)).add(a))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof wt?t.box.floor():new dt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/cme),l=Jo(t),u=Math.floor(Math.max(0,l.x-ume*o)),p=Math.floor(Math.max(0,l.y-pme*o));return new fp(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=QF(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var n$=class extends ka{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Jo([t[3],t[4]])]}};var gp=class extends ka{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Jo)}};var _d=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Zo(this.distance)})`:""}`}};var Ed=class extends dt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(dt.assertIsValidBox(n,a),!Za(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var zr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new zr(t.label,n)}};var a$=class extends Ed{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(Ed.assertIsValidLabeledBox(n,a),!hp(n.score)||!hp(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Wr(e){return e.detection instanceof wt}function bp(e,t){return{...e,...{detection:t}}}function nk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Ad(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Hf(e){let t="";if(!e&&Ad())try{e=FD("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function ak(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Hf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function rk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var un;function dme(){if(!un)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return un}function sk(e){un=e}function ik(){return rk()?sk(nk()):Ad()?sk(ak()):null}function hme(e){if(un||ik(),!un)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=un.Canvas,Image:n=un.Image}=e;un.Canvas=t,un.Image=n,un.createCanvasElement=e.createCanvasElement||(()=>new t),un.createImageElement=e.createImageElement||(()=>new n),un.ImageData=e.ImageData||un.ImageData,un.Video=e.Video||un.Video,un.fetch=e.fetch||un.fetch,un.readFile=e.readFile||un.readFile}var at={getEnv:dme,setEnv:sk,initialize:ik,createBrowserEnv:nk,createFileSystem:Hf,createNodejsEnv:ak,monkeyPatch:hme,isBrowser:rk,isNodejs:Ad};ik();function yp(e){return!at.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function sa(e){let{Canvas:t,CanvasRenderingContext2D:n}=at.getEnv();if(e instanceof n)return e;let a=yp(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ok=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(ok||{}),xp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Br=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Br?t.text:t,this.anchor=n,this.options=new xp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=yp(t),a=sa(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var qf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new xp({...i,...s})}},Fd=class{constructor(t,n={}){this.box=new dt(t),this.options=new qf(n)}draw(t){let n=sa(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Br([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function mme(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof wt?a.score:Wr(a)?a.detection.score:void 0,s=a instanceof wt?a.box:Wr(a)?a.detection.box:new dt(a),i=r?`${Zo(r)}`:void 0;new Fd(s,{label:i}).draw(e)})}function jf(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function r$(e){return new Promise((t,n)=>{(e instanceof at.getEnv().Canvas||jf(e))&&t(null);function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function s$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=at.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function vp(e){let{Image:t,Video:n}=at.getEnv();return e instanceof t?new En(e.naturalWidth,e.naturalHeight):e instanceof n?new En(e.videoWidth,e.videoHeight):new En(e.width,e.height)}function wp({width:e,height:t}){let{createCanvasElement:n}=at.getEnv(),a=n();return a.width=e,a.height=t,a}function Kf(e,t){let{ImageData:n}=at.getEnv();if(!(e instanceof n)&&!jf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||vp(e),s=wp({width:a,height:r});return e instanceof n?sa(s).putImageData(e,0,0):sa(s).drawImage(e,0,0,a,r),s}async function i$(e,t){let n=t||at.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(wa(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await Vo.toPixels(i,n),i.dispose(),n}function lk(e){let{Image:t,Canvas:n,Video:a}=at.getEnv();return e instanceof t||e instanceof n||e instanceof a}function o$(e,t,n=!1){let{Image:a,Canvas:r}=at.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return wp({width:1,height:1});let s=vp(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=wp({width:t,height:t}),p=e instanceof r?e:Kf(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&sa(u).drawImage(p,c,h,o,l),u}var Vr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Lr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(wa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof at.getEnv().Canvas?a:Kf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return gr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return tk({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=gr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ce){let o=wa(i)?i:tn(i);return o=t$(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Qn.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof at.getEnv().Canvas)return Vo.fromPixels(o$(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ie(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function kt(e){if(e instanceof Vr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(yp);return a.forEach((r,s)=>{if(!lk(r)&&!Lr(r)&&!wa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(wa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>lk(r)&&r$(r))),new Vr(a,Array.isArray(e))}async function $d(e,t){let{Canvas:n}=at.getEnv(),a=e;if(!(e instanceof n)){let i=await kt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await i$(o)}let r=sa(a);return t.map(i=>i instanceof wt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=wp({width:l,height:u});return l>0&&u>0&&sa(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Dd(e,t){if(!Lr(e)&&!wa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(wa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(wa(e)?1:0);return t.map(o=>o instanceof wt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>Wo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ds(e,t){let{fetch:n}=at.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function ake(e){let t=await Ds(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return s$(n)}async function l$(e){return(await Ds(e)).json()}async function lke(e){return new Float32Array(await(await Ds(e)).arrayBuffer())}function u$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=at.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function mke(e){let t=await Ds(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return u$(n)}function Xf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function p$(e,t){let{manifestUri:n,modelBaseUri:a}=Xf(e,t),r=await l$(n);return qt.loadWeights(r,a)}function wke(e,t,n=!1){let{width:a,height:r}=n?vp(t):t;return e.width=a,e.height=r,{width:a,height:r}}var fn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof os)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof os))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await p$(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=at.getEnv(),{manifestUri:a,modelBaseUri:r}=Xf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=qt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ce))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Hn(e,t,n){return P(()=>{let a=Ts(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function Yf(e,t,n=!1){return P(()=>{let a=Ke(n?X(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Hn(e,t.conv0,[2,2])),r=Hn(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=Hn(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function Rd(e,t,n=!1,a=!0){return P(()=>{let r=Ke(n?X(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Hn(e,t.conv0,a?[2,2]:[1,1])),s=Hn(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=Hn(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=Hn(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function Qo(e,t,n="same",a=!1){return P(()=>{let r=X(Rt(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function kp(e,t){return(n,a,r,s)=>{let i=Da(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Zf(e,t){return(n,a,r)=>{let s=Aa(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Md=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Ip(e,t){return(n,a,r)=>{let s=Da(e(9*n),[3,3,n,1]),i=Da(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Md(s,i,o)}}function Sp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Md(n,a,r)}}function ia(e,t){return(n,a,r)=>{let s=e[n];if(!Yo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Fn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Jf(e,t){let n=kp(e,t),a=Ip(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function c$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock4Params:r}=Jf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Qf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function eg(e,t){let n=ia(e,t),a=Qf(n),r=Sp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function d$(e){let t=[],{extractDenseBlock4Params:n}=eg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var Np=class extends fn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Rd(s,n.dense0,!0);return i=Rd(i,n.dense1),i=Rd(i,n.dense2),i=Rd(i,n.dense3),i=ya(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await kt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return d$(t)}extractParams(t){return c$(t)}};function Pd(e,t){return P(()=>X($e(e,t.weights),t.bias))}function h$(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Fn(e),o=Zf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function m$(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function tg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Tp=class extends fn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Vr?this.faceFeatureExtractor.forwardInput(n):n;return Pd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return h$(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=tg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),m$(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var f$=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Rs=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);f$.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return f$.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var ng=class extends Tp{constructor(t=new Np){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Xa(this.runNet(t)))}async forward(t){return this.forwardInput(await kt(t))}async predictExpressions(t){let n=await kt(t),a=await this.forwardInput(n),r=await Promise.all(pt(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Rs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function g$(e){return e.expressions instanceof Rs}function uk(e,t){return{...e,...{expressions:t}}}function fme(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Rs?s:g$(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Wr(s)?s.detection.box.bottomLeft:a||new Pe(0,0);new Br(l.map(d=>`${d.expression} (${Zo(d.probability)})`),u).draw(e)})}function Cp(e){return Wr(e)&&e.landmarks instanceof ka&&e.unshiftedLandmarks instanceof ka&&e.alignedRect instanceof wt}function gme(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l._x-u._x)**2+(l._y-u._y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l._x-u._x),c=Math.floor(u._x-p._x);return d-c},s=(l,u)=>{let p=Math.hypot(u._x-l._x,u._y-l._y),d=u._y-l._y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u._x-l._x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c={_x:(l._x+p._x)/2,_y:(l._y+p._y)/2},h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c._y-u._y<0?-1:1;return f*g};if(!e||!e._positions||e._positions.length!==68)return a;let o=e._positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Od(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new wt(e.detection.score,r.rescale(s.reverse()),s),o=gme(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var ag=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},rg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new ag(n)}draw(t){let n=sa(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof gp&&(n.strokeStyle=i,n.lineWidth=s,Or(n,this.faceLandmarks.getJawOutline()),Or(n,this.faceLandmarks.getLeftEyeBrow()),Or(n,this.faceLandmarks.getRightEyeBrow()),Or(n,this.faceLandmarks.getNose()),Or(n,this.faceLandmarks.getLeftEye(),!0),Or(n,this.faceLandmarks.getRightEye(),!0),Or(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function bme(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ka?a:Cp(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new rg(r).draw(e)})}var y$="1.7.11";function vme(e,t){let n=kp(e,t),a=Ip(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function x$(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Fn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=vme(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};gr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function wme(e,t){let n=ia(e,t),a=Qf(n),r=Sp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function v$(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=wme(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};gr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function w$(e,t,n){return X(Rt(e,t.filters,n,"same"),t.bias)}function pk(e,t,n=!0){let a=n?Ke(e):e;return a=Hn(a,t.separable_conv0,[1,1]),a=Hn(Ke(a),t.separable_conv1,[1,1]),a=Mt(a,[3,3],[2,2],"same"),a=X(a,w$(e,t.expansion_conv,[2,2])),a}function kme(e,t){let n=Hn(Ke(e),t.separable_conv0,[1,1]);return n=Hn(Ke(n),t.separable_conv1,[1,1]),n=Hn(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var sg=class extends fn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=ie(n.toBatchTensor(112,!0),"float32"),i=br(r,[122.782,117.001,104.298]).div(255),o=Ke(w$(i,a.entry_flow.conv_in,[2,2]));return o=pk(o,a.entry_flow.reduction_block_0,!1),o=pk(o,a.entry_flow.reduction_block_1),gr(this._numMainBlocks,0,1).forEach(l=>{o=kme(o,a.middle_flow[`main_block_${l}`])}),o=pk(o,a.exit_flow.reduction_block),o=Ke(Hn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await kt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return v$(n,this._numMainBlocks)}extractParams(n){return x$(n,this._numMainBlocks)}};function k$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),r=Zf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function I$(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var ck=(n=>(n.FEMALE="female",n.MALE="male",n))(ck||{});var ig=class extends fn{constructor(n=new sg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Vr?this.faceFeatureExtractor.forwardInput(n):n,s=ya(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=Pd(s,a.fc.age).as1D(),o=Pd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Xa(r)}})}async forward(n){return this.forwardInput(await kt(n))}async predictAgeAndGender(n){let a=await kt(n),r=await this.forwardInput(a),s=pt(r.age),i=pt(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return k$(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=tg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),I$(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var _p=class extends Tp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Dt([xn([68],d,"float32"),xn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(xn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Dt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await kt(t))}async detectLandmarks(t){let n=await kt(t),a=P(()=>pt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Vf(d)),u=o.filter((p,d)=>!Vf(d));return new gp(Array(68).fill(0).map((p,d)=>new Pe(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Ep=class extends _p{constructor(t=new Np){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function S$(e){let t=[],{extractDenseBlock3Params:n}=eg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function N$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock3Params:r}=Jf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var og=class extends fn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=Yf(s,n.dense0,!0);return i=Yf(i,n.dense1),i=Yf(i,n.dense2),i=ya(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await kt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return S$(t)}extractParams(t){return N$(t)}};var lg=class extends _p{constructor(t=new og){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var T$=class extends Ep{};function C$(e,t){return X(z(e,t.weights),t.biases)}function dk(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=X(o,i),o=C$(o,t.scale),a?Ke(o):o}function _$(e,t){return dk(e,t,[1,1],!0)}function hk(e,t){return dk(e,t,[1,1],!1)}function ug(e,t){return dk(e,t,[2,2],!0,"valid")}function Ime(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(ek(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>De(Da(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function E$(e){let{extractWeights:t,getRemainingWeights:n}=Fn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Ime(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>De(Aa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Sme(e,t){let n=ia(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function A$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Sme(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Q1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return An(e,t),{params:w,paramMappings:t}}function Ja(e,t){let n=_$(e,t.conv1);return n=hk(n,t.conv2),n=X(n,e),n=Ke(n),n}function Ld(e,t){let n=ug(e,t.conv1);n=hk(n,t.conv2);let a=ya(e,2,2,"valid"),r=Nt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=Nt(o);n=Qe([n,l],1);let u=[...n.shape];u[2]=1;let p=Nt(u);n=Qe([n,p],2)}return a=s?Qe([a,r],3):a,n=X(a,n),n=Ke(n),n}var Ap=class extends fn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(150,!0),"float32"),s=br(a,[122.782,117.001,104.298]).div(255),i=ug(s,n.conv32_down);i=Mt(i,3,2,"valid"),i=Ja(i,n.conv32_1),i=Ja(i,n.conv32_2),i=Ja(i,n.conv32_3),i=Ld(i,n.conv64_down),i=Ja(i,n.conv64_1),i=Ja(i,n.conv64_2),i=Ja(i,n.conv64_3),i=Ld(i,n.conv128_down),i=Ja(i,n.conv128_1),i=Ja(i,n.conv128_2),i=Ld(i,n.conv256_down),i=Ja(i,n.conv256_1),i=Ja(i,n.conv256_2),i=Ld(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await kt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await kt(t),a=P(()=>pt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return A$(t)}extractParams(t){return E$(t)}};function jTe(e){let t=new Ap;return t.extractWeights(e),t}function mk(e,t){return{...e,...{descriptor:t}}}function ZTe(e){return typeof e.age=="number"}function fk(e,t){return{...e,...{age:t}}}function t2e(e){return(e.gender==="male"||e.gender==="female")&&hp(e.genderProbability)}function gk(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Nme(e,t){function n(l,u){let p=Da(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Da(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function F$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Nme(n,t),i=r(),o=s(),u={extra_dim:pd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Tme(e,t){let n=ia(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function $$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Tme(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Lr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function Pa(e,t,n){return P(()=>{let a=Rt(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),rn(a,0,6)})}var Cme=.0010000000474974513;function _me(e,t,n){return P(()=>{let a=Is(e,t.filters,n,"same");return a=ks(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Cme),rn(a,0,6)})}function Eme(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function D$(e,t){return P(()=>{let n,a=Pa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Eme(o);a=_me(a,s.depthwise_conv,l),a=Pa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Ame(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function R$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Ame(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Fme(e){let t=pt(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function $me(e,t){let{sizes:n,centers:a}=Fme(e),r=pt(De(t,[1,0])),s=he(z(yn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(yn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(Dt([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function M$(e,t,n){return P(()=>{let a=e.shape[0],r=$me(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(Ue(t,[0,0,1],[-1,-1,-1])),i=Ue(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=pt(r),l=pt(i);return{boxes:o,scores:l}})}function el(e,t){return P(()=>{let n=e.shape[0],a=W(Qo(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(Qo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function P$(e,t,n){return P(()=>{let a=Pa(e,n.conv_0,[1,1]),r=Pa(a,n.conv_1,[2,2]),s=Pa(r,n.conv_2,[1,1]),i=Pa(s,n.conv_3,[2,2]),o=Pa(i,n.conv_4,[1,1]),l=Pa(o,n.conv_5,[2,2]),u=Pa(l,n.conv_6,[1,1]),p=Pa(u,n.conv_7,[2,2]),d=el(t,n.box_predictor_0),c=el(e,n.box_predictor_1),h=el(r,n.box_predictor_2),m=el(i,n.box_predictor_3),f=el(l,n.box_predictor_4),g=el(p,n.box_predictor_5),b=Qe([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Qe([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var Oa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var tl=class extends fn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=D$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=P$(s.out,s.conv11,n.prediction_layer);return M$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await kt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Oa(n),s=await kt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=R$(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(E=>E*g),[T,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(E=>E*f);return new wt(p[x],new fp(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return $$(t)}extractParams(t){return F$(t)}};function Dme(e){let t=new tl;return t.extractWeights(e),t}function j2e(e){return Dme(e)}var O$=class extends tl{};var L$=.4,z$=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],W$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],B$=[117.001,114.697,97.404],V$="tiny_yolov2_model",U$="tiny_yolov2_separable_conv_model";var pg=e=>typeof e=="number";function G$(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!pg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>pg(t.x)&&pg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(pg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Fp(e){return P(()=>{let t=z(e,ve(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Ur(e,t){return P(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Fp(n)})}function Gr(e,t){return P(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ts(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Fp(n)})}function Rme(e,t){let n=kp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=Ip(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function H$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Fn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Rme(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Mme(e,t){let n=ia(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Sp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function q$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Mme(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var yr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var bk=class extends fn{constructor(n){super("TinyYolov2");G$(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Ur(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Ur(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=Ur(r,a.conv6),r=Ur(r,a.conv7),Qo(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?Fp(Qo(n,a.conv0,"valid",!1)):Gr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Gr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Gr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Gr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Gr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Gr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=a.conv6?Gr(r,a.conv6):r,r=a.conv7?Gr(r,a.conv7):r,Qo(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=ie(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?br(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await kt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new yr(a),i=await kt(n),o=await this.forwardInput(i,r),l=P(()=>pt(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return e$(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new $s(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return q$(n,this.config)}extractParams(n){let a=this.config.filterSizes||bk.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return H$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Xa(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ve(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=Gf(g[y][x][w][0]);if(!r||I>r){let T=(x+Gf(b[y][x][w][0]))/p*l,C=(y+Gf(b[y][x][w][1]))/p*u,E=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,F=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,D=T-E/2,$=C-F/2,S={row:y,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new mp(D,$,D+E,$+F),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},nl=bk;nl.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var $p=class extends nl{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:L$,classes:["face"],...t?{anchors:W$,meanRgb:B$}:{anchors:z$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new wt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?U$:V$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function LCe(e,t=!0){let n=new $p(t);return n.extractWeights(e),n}var cg=class extends yr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var La=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function al(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Cp(l)?r(l):l.detection),i=a||(t instanceof Ce?await Dd(t,s):await $d(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ce&&l.dispose()),o}async function Dp(e,t,n,a,r){return al([e],t,async s=>n(s[0]),a,r)}var j$=.4,K$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],X$=[117.001,114.697,97.404];var Rp=class extends nl{constructor(){let t={withSeparableConvs:!0,iouThreshold:j$,classes:["face"],anchors:K$,meanRgb:X$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new wt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var rt={ssdMobilenetv1:new tl,tinyFaceDetector:new Rp,tinyYolov2:new $p,faceLandmark68Net:new Ep,faceLandmark68TinyNet:new lg,faceRecognitionNet:new Ap,faceExpressionNet:new ng,ageGenderNet:new ig},Pme=(e,t)=>rt.ssdMobilenetv1.locateFaces(e,t),m_e=(e,t)=>rt.tinyFaceDetector.locateFaces(e,t),f_e=(e,t)=>rt.tinyYolov2.locateFaces(e,t),Ome=e=>rt.faceLandmark68Net.detectLandmarks(e),g_e=e=>rt.faceLandmark68TinyNet.detectLandmarks(e),b_e=e=>rt.faceRecognitionNet.computeFaceDescriptor(e),y_e=e=>rt.faceExpressionNet.predictExpressions(e),x_e=e=>rt.ageGenderNet.predictAgeAndGender(e),Lme=e=>rt.ssdMobilenetv1.load(e),v_e=e=>rt.tinyFaceDetector.load(e),w_e=e=>rt.tinyYolov2.load(e),k_e=e=>rt.faceLandmark68Net.load(e),I_e=e=>rt.faceLandmark68TinyNet.load(e),S_e=e=>rt.faceRecognitionNet.load(e),N_e=e=>rt.faceExpressionNet.load(e),T_e=e=>rt.ageGenderNet.load(e),C_e=Lme,__e=Pme,E_e=Ome;var dg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},rl=class extends dg{async run(){let t=await this.parentTask,n=await al(t,this.input,async a=>Promise.all(a.map(r=>rt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>uk(a,n[r]))}withAgeAndGender(){return new il(this,this.input)}},sl=class extends dg{async run(){let t=await this.parentTask;if(!t)return;let n=await Dp(t,this.input,a=>rt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return uk(t,n)}withAgeAndGender(){return new ol(this,this.input)}},Ms=class extends rl{withAgeAndGender(){return new Os(this,this.input)}withFaceDescriptors(){return new zs(this,this.input)}},Ps=class extends sl{withAgeAndGender(){return new Ls(this,this.input)}withFaceDescriptor(){return new Ws(this,this.input)}};var hg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},il=class extends hg{async run(){let t=await this.parentTask,n=await al(t,this.input,async a=>Promise.all(a.map(r=>rt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return fk(gk(a,i,o),s)})}withFaceExpressions(){return new rl(this,this.input)}},ol=class extends hg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Dp(t,this.input,s=>rt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return fk(gk(t,a,r),n)}withFaceExpressions(){return new sl(this,this.input)}},Os=class extends il{withFaceExpressions(){return new Ms(this,this.input)}withFaceDescriptors(){return new zs(this,this.input)}},Ls=class extends ol{withFaceExpressions(){return new Ps(this,this.input)}withFaceDescriptor(){return new Ws(this,this.input)}};var mg=class extends La{constructor(n,a){super();this.parentTask=n;this.input=a}},zs=class extends mg{async run(){let t=await this.parentTask;return(await al(t,this.input,a=>Promise.all(a.map(r=>rt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>mk(t[r],a))}withFaceExpressions(){return new Ms(this,this.input)}withAgeAndGender(){return new Os(this,this.input)}},Ws=class extends mg{async run(){let t=await this.parentTask;if(!t)return;let n=await Dp(t,this.input,a=>rt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return mk(t,n)}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new Ls(this,this.input)}};var fg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?rt.faceLandmark68TinyNet:rt.faceLandmark68Net}},gg=class extends fg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Ce?await Dd(this.input,n):await $d(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Ce&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Od(i,r[o]))}withFaceExpressions(){return new Ms(this,this.input)}withAgeAndGender(){return new Os(this,this.input)}withFaceDescriptors(){return new zs(this,this.input)}},bg=class extends fg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ce?await Dd(this.input,[n]):await $d(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ce&&s.dispose()),Od(t,r)}withFaceExpressions(){return new Ps(this,this.input)}withAgeAndGender(){return new Ls(this,this.input)}withFaceDescriptor(){return new Ws(this,this.input)}};var yg=class extends La{constructor(n,a=new Oa){super();this.input=n;this.options=a}},zd=class extends yg{async run(){let{input:t,options:n}=this,a;if(n instanceof cg)a=rt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Oa)a=rt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof yr)a=rt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>bp({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new gg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new rl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new il(this.runAndExtendWithFaceDetections(),this.input)}},xg=class extends yg{async run(){let t=await new zd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?bp({},n):void 0)})}withFaceLandmarks(t=!1){return new bg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new sl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ol(this.runAndExtendWithFaceDetection(),this.input)}};function TEe(e,t=new Oa){return new xg(e,t)}function yk(e,t=new Oa){return new zd(e,t)}async function zme(e,t){return yk(e,new Oa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function $Ee(e,t={}){return yk(e,new yr(t)).withFaceLandmarks().withFaceDescriptors()}var DEe=zme;function Y$(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var vg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof zr)return i;if(i instanceof Float32Array)return new zr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new zr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Y$(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new _d(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new _d("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>zr.fromJSON(a));return new vg(n,t.distanceThreshold)}};function ZEe(e){let t=new Rp;return t.extractWeights(e),t}function Wme(e,t){let{width:n,height:a}=new En(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Wme(r,{width:n,height:a}));if(Cp(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Od(bp(e,r),s)}return Wr(e)?bp(e,e.detection.forSize(n,a)):e instanceof ka||e instanceof wt?e.forSize(n,a):e}var lAe=y$;export{ig as AgeGenderNet,mp as BoundingBox,dt as Box,La as ComposableTask,zs as ComputeAllFaceDescriptorsTask,mg as ComputeFaceDescriptorsTaskBase,Ws as ComputeSingleFaceDescriptorTask,gg as DetectAllFaceLandmarksTask,zd as DetectAllFacesTask,fg as DetectFaceLandmarksTaskBase,yg as DetectFacesTaskBase,bg as DetectSingleFaceLandmarksTask,xg as DetectSingleFaceTask,En as Dimensions,f$ as FACE_EXPRESSION_LABELS,wt as FaceDetection,O$ as FaceDetectionNet,ng as FaceExpressionNet,Rs as FaceExpressions,Ep as FaceLandmark68Net,lg as FaceLandmark68TinyNet,T$ as FaceLandmarkNet,ka as FaceLandmarks,n$ as FaceLandmarks5,gp as FaceLandmarks68,_d as FaceMatch,vg as FaceMatcher,Ap as FaceRecognitionNet,ck as Gender,Ed as LabeledBox,zr as LabeledFaceDescriptors,Vr as NetInput,fn as NeuralNetwork,$s as ObjectDetection,Pe as Point,a$ as PredictedBox,fp as Rect,tl as SsdMobilenetv1,Oa as SsdMobilenetv1Options,Rp as TinyFaceDetector,cg as TinyFaceDetectorOptions,$p as TinyYolov2,yr as TinyYolov2Options,DEe as allFaces,zme as allFacesSsdMobilenetv1,$Ee as allFacesTinyYolov2,r$ as awaitMediaLoaded,s$ as bufferToImage,b_e as computeFaceDescriptor,wp as createCanvas,Kf as createCanvasFromMedia,j2e as createFaceDetectionNet,jTe as createFaceRecognitionNet,Dme as createSsdMobilenetv1,ZEe as createTinyFaceDetector,LCe as createTinyYolov2,yk as detectAllFaces,Ome as detectFaceLandmarks,g_e as detectFaceLandmarksTiny,E_e as detectLandmarks,TEe as detectSingleFace,b$ as draw,at as env,Y$ as euclideanDistance,fk as extendWithAge,mk as extendWithFaceDescriptor,bp as extendWithFaceDetection,uk as extendWithFaceExpressions,Od as extendWithFaceLandmarks,gk as extendWithGender,Dd as extractFaceTensors,$d as extractFaces,ake as fetchImage,l$ as fetchJson,lke as fetchNetWeights,Ds as fetchOrThrow,mke as fetchVideo,sa as getContext2dOrThrow,vp as getMediaDimensions,i$ as imageTensorToCanvas,o$ as imageToSquare,ywe as inverseSigmoid,JF as iou,lk as isMediaElement,jf as isMediaLoaded,ZTe as isWithAge,Wr as isWithFaceDetection,g$ as isWithFaceExpressions,Cp as isWithFaceLandmarks,t2e as isWithGender,T_e as loadAgeGenderModel,C_e as loadFaceDetectionModel,N_e as loadFaceExpressionModel,k_e as loadFaceLandmarkModel,I_e as loadFaceLandmarkTinyModel,S_e as loadFaceRecognitionModel,Lme as loadSsdMobilenetv1Model,v_e as loadTinyFaceDetectorModel,w_e as loadTinyYolov2Model,p$ as loadWeightMap,__e as locateFaces,wke as matchDimensions,QF as minBbox,rt as nets,e$ as nonMaxSuppression,br as normalize,t$ as padToSquare,x_e as predictAgeAndGender,y_e as recognizeFaceExpressions,Wme as resizeResults,yp as resolveInput,gwe as shuffleArray,Gf as sigmoid,Pme as ssdMobilenetv1,ze as tf,m_e as tinyFaceDetector,f_e as tinyYolov2,kt as toNetInput,ZF as utils,G$ as validateConfig,lAe as version};
//# sourceMappingURL=face-api.esm.js.map