43 lines
1.4 KiB
TypeScript
43 lines
1.4 KiB
TypeScript
import * as tf from '@tensorflow/tfjs';
|
|
|
|
import { FaceDetection, Point } from '../classes';
|
|
import { ParamMapping } from '../common';
|
|
import { TNetInput } from '../dom';
|
|
import { ITinyYolov2Options } from '../tinyYolov2';
|
|
import { TinyYolov2Base } from '../tinyYolov2/TinyYolov2Base';
|
|
import { TinyYolov2NetParams } from '../tinyYolov2/types';
|
|
import { BOX_ANCHORS, IOU_THRESHOLD, MEAN_RGB } from './const';
|
|
|
|
export class TinyFaceDetector extends TinyYolov2Base {
|
|
|
|
constructor() {
|
|
const config = {
|
|
withSeparableConvs: true,
|
|
iouThreshold: IOU_THRESHOLD,
|
|
classes: ['face'],
|
|
anchors: BOX_ANCHORS,
|
|
meanRgb: MEAN_RGB,
|
|
isFirstLayerConv2d: true,
|
|
filterSizes: [3, 16, 32, 64, 128, 256, 512]
|
|
}
|
|
|
|
super(config)
|
|
}
|
|
|
|
public get anchors(): Point[] {
|
|
return this.config.anchors
|
|
}
|
|
|
|
public async locateFaces(input: TNetInput, forwardParams: ITinyYolov2Options): Promise<FaceDetection[]> {
|
|
const objectDetections = await this.detect(input, forwardParams)
|
|
return objectDetections.map(det => new FaceDetection(det.score, det.relativeBox, { width: det.imageWidth, height: det.imageHeight }))
|
|
}
|
|
|
|
protected getDefaultModelName(): string {
|
|
return 'tiny_face_detector_model'
|
|
}
|
|
|
|
protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap): { params: TinyYolov2NetParams, paramMappings: ParamMapping[] } {
|
|
return super.extractParamsFromWeigthMap(weightMap)
|
|
}
|
|
} |