face-api/build/ssdMobilenetv1/SsdMobilenetv1.js

82 lines
3.4 KiB
JavaScript

import * as tf from '@tensorflow/tfjs-core';
import { Rect } from '../classes';
import { FaceDetection } from '../classes/FaceDetection';
import { toNetInput } from '../dom';
import { NeuralNetwork } from '../NeuralNetwork';
import { extractParams } from './extractParams';
import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap';
import { mobileNetV1 } from './mobileNetV1';
import { nonMaxSuppression } from './nonMaxSuppression';
import { outputLayer } from './outputLayer';
import { predictionLayer } from './predictionLayer';
import { SsdMobilenetv1Options } from './SsdMobilenetv1Options';
export class SsdMobilenetv1 extends NeuralNetwork {
constructor() {
super('SsdMobilenetv1');
}
forwardInput(input) {
const { params } = this;
if (!params) {
throw new Error('SsdMobilenetv1 - load model before inference');
}
return tf.tidy(() => {
const batchTensor = input.toBatchTensor(512, false).toFloat();
const x = tf.sub(tf.mul(batchTensor, tf.scalar(0.007843137718737125)), tf.scalar(1));
const features = mobileNetV1(x, params.mobilenetv1);
const { boxPredictions, classPredictions } = predictionLayer(features.out, features.conv11, params.prediction_layer);
return outputLayer(boxPredictions, classPredictions, params.output_layer);
});
}
async forward(input) {
return this.forwardInput(await toNetInput(input));
}
async locateFaces(input, options = {}) {
const { maxResults, minConfidence } = new SsdMobilenetv1Options(options);
const netInput = await toNetInput(input);
const { boxes: _boxes, scores: _scores } = this.forwardInput(netInput);
// TODO batches
const boxes = _boxes[0];
const scores = _scores[0];
for (let i = 1; i < _boxes.length; i++) {
_boxes[i].dispose();
_scores[i].dispose();
}
// TODO find a better way to filter by minConfidence
const scoresData = Array.from(await scores.data());
const iouThreshold = 0.5;
const indices = nonMaxSuppression(boxes, scoresData, maxResults, iouThreshold, minConfidence);
const reshapedDims = netInput.getReshapedInputDimensions(0);
const inputSize = netInput.inputSize;
const padX = inputSize / reshapedDims.width;
const padY = inputSize / reshapedDims.height;
const boxesData = boxes.arraySync();
const results = indices
.map(idx => {
const [top, bottom] = [
Math.max(0, boxesData[idx][0]),
Math.min(1.0, boxesData[idx][2])
].map(val => val * padY);
const [left, right] = [
Math.max(0, boxesData[idx][1]),
Math.min(1.0, boxesData[idx][3])
].map(val => val * padX);
return new FaceDetection(scoresData[idx], new Rect(left, top, right - left, bottom - top), {
height: netInput.getInputHeight(0),
width: netInput.getInputWidth(0)
});
});
boxes.dispose();
scores.dispose();
return results;
}
getDefaultModelName() {
return 'ssd_mobilenetv1_model';
}
extractParamsFromWeigthMap(weightMap) {
return extractParamsFromWeigthMap(weightMap);
}
extractParams(weights) {
return extractParams(weights);
}
}
//# sourceMappingURL=SsdMobilenetv1.js.map