39 lines
1.7 KiB
JavaScript
39 lines
1.7 KiB
JavaScript
import { FaceDetection } from '../classes/FaceDetection';
|
|
import { env } from '../env';
|
|
import { createCanvas } from './createCanvas';
|
|
import { getContext2dOrThrow } from './getContext2dOrThrow';
|
|
import { imageTensorToCanvas } from './imageTensorToCanvas';
|
|
import { toNetInput } from './toNetInput';
|
|
/**
|
|
* Extracts the image regions containing the detected faces.
|
|
*
|
|
* @param input The image that face detection has been performed on.
|
|
* @param detections The face detection results or face bounding boxes for that image.
|
|
* @returns The Canvases of the corresponding image region for each detected face.
|
|
*/
|
|
export async function extractFaces(input, detections) {
|
|
const { Canvas } = env.getEnv();
|
|
let canvas = input;
|
|
if (!(input instanceof Canvas)) {
|
|
const netInput = await toNetInput(input);
|
|
if (netInput.batchSize > 1) {
|
|
throw new Error('extractFaces - batchSize > 1 not supported');
|
|
}
|
|
const tensorOrCanvas = netInput.getInput(0);
|
|
canvas = tensorOrCanvas instanceof Canvas
|
|
? tensorOrCanvas
|
|
: await imageTensorToCanvas(tensorOrCanvas);
|
|
}
|
|
const ctx = getContext2dOrThrow(canvas);
|
|
const boxes = detections.map(det => det instanceof FaceDetection
|
|
? det.forSize(canvas.width, canvas.height).box.floor()
|
|
: det)
|
|
.map(box => box.clipAtImageBorders(canvas.width, canvas.height));
|
|
return boxes.map(({ x, y, width, height }) => {
|
|
const faceImg = createCanvas({ width, height });
|
|
getContext2dOrThrow(faceImg)
|
|
.putImageData(ctx.getImageData(x, y, width, height), 0, 0);
|
|
return faceImg;
|
|
});
|
|
}
|
|
//# sourceMappingURL=extractFaces.js.map
|