face-api/dist/face-api.js

4342 lines
1.1 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var faceapi=(()=>{var lE=Object.create,vd=Object.defineProperty,uE=Object.getPrototypeOf,cE=Object.prototype.hasOwnProperty,pE=Object.getOwnPropertyNames,dE=Object.getOwnPropertyDescriptor;var Qw=e=>vd(e,"__esModule",{value:!0});var hE=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Ju=(e,t)=>{for(var n in t)vd(e,n,{get:t[n],enumerable:!0})},mE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of pE(t))!cE.call(e,a)&&a!=="default"&&vd(e,a,{get:()=>t[a],enumerable:!(n=dE(t,a))||n.enumerable});return e},fE=e=>mE(Qw(vd(e!=null?lE(uE(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var oC=hE((qre,iC)=>{Qw(qre);Ju(qre,{isNodejs:()=>Xre});function Xre(){return typeof global=="object"&&!0&&typeof iC!="undefined"&&typeof process!="undefined"&&!!process.version}});var gse={};Ju(gse,{AgeGenderNet:()=>Mp,BoundingBox:()=>ao,Box:()=>it,ComposableTask:()=>ia,ComputeAllFaceDescriptorsTask:()=>Rr,ComputeFaceDescriptorsTaskBase:()=>Up,ComputeSingleFaceDescriptorTask:()=>Mr,DetectAllFaceLandmarksTask:()=>Hp,DetectAllFacesTask:()=>Bu,DetectFaceLandmarksTaskBase:()=>Gp,DetectFacesTaskBase:()=>qp,DetectSingleFaceLandmarksTask:()=>jp,DetectSingleFaceTask:()=>Xp,Dimensions:()=>pn,FACE_EXPRESSION_LABELS:()=>Ff,FaceDetection:()=>mt,FaceDetectionNet:()=>Aw,FaceExpressionNet:()=>Dp,FaceExpressions:()=>Ar,FaceLandmark68Net:()=>co,FaceLandmark68TinyNet:()=>Op,FaceLandmarkNet:()=>Cw,FaceLandmarks:()=>jn,FaceLandmarks5:()=>dw,FaceLandmarks68:()=>so,FaceMatch:()=>Cu,FaceMatcher:()=>Yp,FaceRecognitionNet:()=>po,Gender:()=>cr,LabeledBox:()=>_u,LabeledFaceDescriptors:()=>or,NetInput:()=>ur,NeuralNetwork:()=>en,ObjectDetection:()=>Fr,Point:()=>De,PredictedBox:()=>hw,Rect:()=>ro,SsdMobilenetv1:()=>Ns,SsdMobilenetv1Options:()=>sa,TinyFaceDetector:()=>go,TinyFaceDetectorOptions:()=>Vp,TinyYolov2:()=>mo,TinyYolov2Options:()=>Ba,allFaces:()=>h_,allFacesSsdMobilenetv1:()=>Lw,allFacesTinyYolov2:()=>d_,awaitMediaLoaded:()=>gf,bufferToImage:()=>yf,computeFaceDescriptor:()=>QC,createCanvas:()=>ks,createCanvasFromMedia:()=>Fu,createFaceDetectionNet:()=>PC,createFaceRecognitionNet:()=>CC,createSsdMobilenetv1:()=>Fw,createTinyFaceDetector:()=>m_,createTinyYolov2:()=>HC,detectAllFaces:()=>Kp,detectFaceLandmarks:()=>Rw,detectFaceLandmarksTiny:()=>JC,detectLandmarks:()=>c_,detectSingleFace:()=>p_,draw:()=>Iw,env:()=>tt,euclideanDistance:()=>Mf,extendWithAge:()=>Wp,extendWithFaceDescriptor:()=>zp,extendWithFaceDetection:()=>bs,extendWithFaceExpressions:()=>Rp,extendWithFaceLandmarks:()=>uo,extendWithGender:()=>Bp,extractFaceTensors:()=>oo,extractFaces:()=>io,fetchImage:()=>lC,fetchJson:()=>vf,fetchNetWeights:()=>uC,fetchOrThrow:()=>Is,getContext2dOrThrow:()=>xn,getMediaDimensions:()=>ws,imageTensorToCanvas:()=>bf,imageToSquare:()=>xf,inverseSigmoid:()=>sC,iou:()=>cf,isMediaElement:()=>_p,isMediaLoaded:()=>Eu,isWithAge:()=>_C,isWithFaceDetection:()=>za,isWithFaceExpressions:()=>Af,isWithFaceLandmarks:()=>Ts,isWithGender:()=>EC,loadAgeGenderModel:()=>o_,loadFaceDetectionModel:()=>l_,loadFaceExpressionModel:()=>i_,loadFaceLandmarkModel:()=>a_,loadFaceLandmarkTinyModel:()=>r_,loadFaceRecognitionModel:()=>s_,loadSsdMobilenetv1Model:()=>Mw,loadTinyFaceDetectorModel:()=>t_,loadTinyYolov2Model:()=>n_,loadWeightMap:()=>kf,locateFaces:()=>u_,matchDimensions:()=>cC,minBbox:()=>pf,nets:()=>Qe,nonMaxSuppression:()=>df,normalize:()=>wa,padToSquare:()=>hf,predictAgeAndGender:()=>e_,recognizeFaceExpressions:()=>ZC,resizeResults:()=>zw,resolveInput:()=>xs,shuffleArray:()=>rC,sigmoid:()=>Su,ssdMobilenetv1:()=>Dw,tf:()=>Jg,tinyFaceDetector:()=>KC,tinyYolov2:()=>YC,toNetInput:()=>ht,utils:()=>lw,validateConfig:()=>Rf,version:()=>f_});var Jg={};Ju(Jg,{Abs:()=>Po,Acos:()=>Oo,Acosh:()=>Lo,AdadeltaOptimizer:()=>qh,AdagradOptimizer:()=>Xh,AdamOptimizer:()=>Kh,AdamaxOptimizer:()=>Yh,Add:()=>Hr,AddN:()=>As,All:()=>Sd,Any:()=>Cd,ArgMax:()=>$s,ArgMin:()=>nc,Asin:()=>zo,Asinh:()=>Wo,Atan:()=>Bo,Atan2:()=>Uo,Atanh:()=>Vo,AvgPool:()=>Ds,AvgPool3D:()=>ac,AvgPool3DGrad:()=>Ed,AvgPoolGrad:()=>_d,BackendWasm:()=>nC,BatchMatMul:()=>Rs,BatchToSpaceND:()=>rc,Bincount:()=>Fd,BroadcastTo:()=>f0,Callback:()=>YI,CallbackList:()=>X1,Cast:()=>Ms,Ceil:()=>Ps,ClipByValue:()=>jr,Complex:()=>Ad,ComplexAbs:()=>sc,Concat:()=>Go,Conv2D:()=>Os,Conv2DBackpropFilter:()=>$d,Conv2DBackpropInput:()=>Ls,Conv3D:()=>ic,Conv3DBackpropFilterV2:()=>Dd,Conv3DBackpropInputV2:()=>Rd,Cos:()=>zs,Cosh:()=>Ho,CropAndResize:()=>jo,Cumsum:()=>Ws,CustomCallback:()=>Y1,DataStorage:()=>kd,DenseBincount:()=>Md,DepthToSpace:()=>qo,DepthwiseConv2dNative:()=>Bs,DepthwiseConv2dNativeBackpropFilter:()=>Pd,DepthwiseConv2dNativeBackpropInput:()=>Od,Diag:()=>Ld,Dilation2D:()=>oc,Dilation2DBackpropFilter:()=>Wd,Dilation2DBackpropInput:()=>zd,ENV:()=>ny,EarlyStopping:()=>QI,Elu:()=>Xo,EluGrad:()=>Bd,Environment:()=>h0,Equal:()=>Yo,Erf:()=>Ko,Exp:()=>Us,ExpandDims:()=>Jo,Expm1:()=>Qo,FFT:()=>Vd,Fill:()=>lc,FlipLeftRight:()=>Zo,Floor:()=>Gs,FloorDiv:()=>Hs,FromPixels:()=>ah,FusedBatchNorm:()=>js,FusedConv2D:()=>Ti,FusedDepthwiseConv2D:()=>Ni,GatherNd:()=>tl,GatherV2:()=>el,GraphModel:()=>_T,Greater:()=>nl,GreaterEqual:()=>qs,History:()=>K1,IFFT:()=>Ud,Identity:()=>Xs,Imag:()=>Gd,InputSpec:()=>Yt,IsFinite:()=>al,IsInf:()=>rl,IsNan:()=>sl,KernelBackend:()=>Zu,LRN:()=>pc,LRNGrad:()=>jd,LayerVariable:()=>U1,LayersModel:()=>Tr,LeakyRelu:()=>Ks,Less:()=>il,LessEqual:()=>ol,LinSpace:()=>Hd,Log:()=>Ys,Log1p:()=>ll,LogSoftmax:()=>g0,LogicalAnd:()=>ul,LogicalNot:()=>uc,LogicalOr:()=>cc,Max:()=>Js,MaxPool:()=>Zs,MaxPool3D:()=>dc,MaxPool3DGrad:()=>Xd,MaxPoolGrad:()=>qd,MaxPoolWithArgmax:()=>Kd,Maximum:()=>Qs,Mean:()=>ei,Min:()=>ti,Minimum:()=>ni,MirrorPad:()=>hc,Mod:()=>cl,MomentumOptimizer:()=>Jh,Multinomial:()=>Yd,Multiply:()=>ai,Neg:()=>pl,NonMaxSuppressionV3:()=>hl,NonMaxSuppressionV4:()=>ml,NonMaxSuppressionV5:()=>fl,NotEqual:()=>dl,OP_SCOPE_SUFFIX:()=>C0,OneHot:()=>ri,OnesLike:()=>gl,Optimizer:()=>wr,Pack:()=>yl,PadV2:()=>si,Pool:()=>pF,Pow:()=>ii,Prelu:()=>oi,Prod:()=>bl,RMSPropOptimizer:()=>Qh,RNN:()=>nr,Range:()=>mc,Rank:()=>uy,Real:()=>Jd,RealDiv:()=>Vs,Reciprocal:()=>xl,Reduction:()=>fn,Relu:()=>li,Relu6:()=>ci,Reshape:()=>vl,ResizeBilinear:()=>ui,ResizeBilinearGrad:()=>Zd,ResizeNearestNeighbor:()=>fc,ResizeNearestNeighborGrad:()=>Qd,Reverse:()=>pi,RotateWithOffset:()=>Rl,Round:()=>di,Rsqrt:()=>hi,SGDOptimizer:()=>Gc,ScatterNd:()=>wl,Select:()=>kl,Selu:()=>Il,Sequential:()=>su,Sigmoid:()=>fi,Sign:()=>Sl,Sin:()=>mi,Sinh:()=>Nl,Slice:()=>Tl,Softmax:()=>bi,Softplus:()=>Cl,SpaceToBatchND:()=>gc,SparseToDense:()=>eh,SplitV:()=>_l,Sqrt:()=>gi,Square:()=>yc,SquaredDifference:()=>xi,Step:()=>Xr,StridedSlice:()=>El,Sub:()=>vi,Sum:()=>yi,SymbolicTensor:()=>$a,Tan:()=>Fl,Tanh:()=>wi,Tensor:()=>Ee,TensorBuffer:()=>Lt,Tile:()=>qr,TopK:()=>Al,Transform:()=>th,Transpose:()=>ki,Unique:()=>nh,Unpack:()=>$l,UnsortedSegmentSum:()=>bc,Variable:()=>Kr,ZerosLike:()=>Dl,_FusedMatMul:()=>Ii,abs:()=>zt,acos:()=>Ry,acosh:()=>My,add:()=>J,addN:()=>ck,all:()=>yh,any:()=>Fc,argMax:()=>Ac,argMin:()=>Py,asin:()=>Oy,asinh:()=>Ly,atan:()=>zy,atan2:()=>Wy,atanh:()=>By,avgPool:()=>Zn,avgPool3d:()=>Gy,backend:()=>uk,backend_util:()=>_,basicLSTMCell:()=>G$,batchNorm:()=>br,batchNorm2d:()=>mk,batchNorm3d:()=>fk,batchNorm4d:()=>gk,batchToSpaceND:()=>Dc,bincount:()=>yk,booleanMaskAsync:()=>XM,broadcastTo:()=>Rc,browser:()=>Ei,buffer:()=>Me,callbacks:()=>O4,cast:()=>ue,ceil:()=>Hy,clipByValue:()=>Xt,clone:()=>Zr,complex:()=>Yr,concat:()=>Je,concat1d:()=>bk,concat2d:()=>xk,concat3d:()=>vk,concat4d:()=>wk,constraints:()=>g1,conv1d:()=>xh,conv2d:()=>At,conv2dTranspose:()=>vh,conv3d:()=>qy,conv3dTranspose:()=>dD,copyRegisteredKernels:()=>mF,cos:()=>Mc,cosh:()=>wh,cosineWindow:()=>xb,cumsum:()=>kh,customGrad:()=>Xa,data:()=>FT,denseBincount:()=>Ik,deprecationWarn:()=>Dy,depthToSpace:()=>Xy,depthwiseConv2d:()=>ns,deregisterOp:()=>z4,device_util:()=>Cc,diag:()=>vD,dilation2d:()=>Ky,disableDeprecationWarnings:()=>n$,dispose:()=>Ae,disposeVariables:()=>a$,div:()=>ye,divNoNan:()=>Yy,dot:()=>Tk,dropout:()=>Hk,elu:()=>Gl,enableDebugMode:()=>t$,enableProdMode:()=>e$,enclosingPowerOfTwo:()=>jk,engine:()=>Ha,env:()=>Z,equal:()=>as,erf:()=>Jy,exp:()=>hn,expandDims:()=>mn,expm1:()=>Qy,eye:()=>Zy,fft:()=>Vc,fill:()=>_n,findBackend:()=>c$,findBackendFactory:()=>p$,floor:()=>Hl,floorDiv:()=>gh,fused:()=>is,gather:()=>$i,gatherND:()=>Gk,gather_util:()=>Sy,getBackend:()=>l$,getGradient:()=>iy,getKernel:()=>rh,getKernelsForBackend:()=>sh,grad:()=>KD,grads:()=>YD,greater:()=>ha,greaterEqual:()=>rs,ifft:()=>Jl,imag:()=>Ih,image:()=>Ja,inTopKAsync:()=>sP,initializers:()=>I1,input:()=>P1,io:()=>jt,irfft:()=>Lh,isFinite:()=>Nk,isInf:()=>Sk,isNaN:()=>Ck,keep:()=>qt,kernel_impls:()=>Qa,layers:()=>M1,leakyRelu:()=>Pc,less:()=>Th,lessEqual:()=>Di,linalg:()=>r1,linspace:()=>_k,loadGraphModel:()=>LV,loadLayersModel:()=>a4,localResponseNormalization:()=>eb,log:()=>Pn,log1p:()=>Nh,logSigmoid:()=>Fk,logSoftmax:()=>Ch,logSumExp:()=>ab,logicalAnd:()=>ma,logicalNot:()=>Oc,logicalOr:()=>_h,logicalXor:()=>Rk,losses:()=>kO,matMul:()=>ze,math:()=>U0,max:()=>ea,maxPool:()=>$t,maxPool3d:()=>rb,maxPoolWithArgmax:()=>Mk,maximum:()=>Ka,mean:()=>Ct,memory:()=>mh,metrics:()=>qI,min:()=>ql,minimum:()=>Xl,mirrorPad:()=>sb,mod:()=>ib,model:()=>t4,models:()=>XI,moments:()=>Eh,movingAverage:()=>JM,mul:()=>W,multiRNNCell:()=>NR,multinomial:()=>Pk,neg:()=>St,nextFrame:()=>Zh,norm:()=>Vh,notEqual:()=>Mi,oneHot:()=>Wl,ones:()=>Ya,onesLike:()=>On,op:()=>O,outerProduct:()=>FR,pad:()=>ta,pad1d:()=>DR,pad2d:()=>MR,pad3d:()=>OR,pad4d:()=>zR,pool:()=>Ok,pow:()=>xr,prelu:()=>zc,print:()=>O0,prod:()=>Fh,profile:()=>r$,rand:()=>XR,randomGamma:()=>QR,randomNormal:()=>Lk,randomUniform:()=>Kl,range:()=>Ah,ready:()=>o$,real:()=>Wc,reciprocal:()=>ub,registerBackend:()=>fh,registerCallbackConstructor:()=>r4,registerGradient:()=>y0,registerKernel:()=>vc,registerOp:()=>L4,regularizers:()=>KI,relu:()=>qe,relu6:()=>$h,removeBackend:()=>u$,reshape:()=>U,reverse:()=>Ln,reverse1d:()=>oM,reverse2d:()=>uM,reverse3d:()=>pM,reverse4d:()=>hM,rfft:()=>Uc,round:()=>cb,rsqrt:()=>Dh,scalar:()=>ve,scatterND:()=>Uk,scatter_util:()=>Cy,selu:()=>Rh,separableConv2d:()=>Pi,sequential:()=>n4,serialization:()=>re,setBackend:()=>i$,setPlatform:()=>d$,setWasmPath:()=>zre,setWasmPaths:()=>Wre,setdiff1dAsync:()=>zk,sigmoid:()=>da,sign:()=>pb,signal:()=>wO,sin:()=>Mh,sinh:()=>Ph,slice:()=>Be,slice1d:()=>Oh,slice2d:()=>db,slice3d:()=>Yl,slice4d:()=>Bc,slice_util:()=>rn,softmax:()=>Sa,softplus:()=>jl,spaceToBatchND:()=>Lc,sparseToDense:()=>bb,spectral:()=>vO,split:()=>zn,sqrt:()=>sn,square:()=>lt,squaredDifference:()=>zh,squeeze:()=>ss,stack:()=>Dt,step:()=>Ql,stridedSlice:()=>hb,sub:()=>he,sum:()=>Se,sumOutType:()=>uh,tan:()=>mb,tanh:()=>Ul,tensor:()=>Jn,tensor1d:()=>Ze,tensor2d:()=>Ca,tensor3d:()=>dh,tensor4d:()=>_a,tensor5d:()=>zM,tensor6d:()=>WM,tensor_util:()=>Ta,test_util:()=>sk,tidy:()=>D,tile:()=>qa,time:()=>s$,topk:()=>fb,train:()=>Li,transpose:()=>Ve,truncatedNormal:()=>Wh,unique:()=>Bh,unregisterGradient:()=>hF,unregisterKernel:()=>dF,unsortedSegmentSum:()=>gb,unstack:()=>ut,upcastType:()=>pa,util:()=>w,valueAndGrad:()=>JD,valueAndGrads:()=>QD,variable:()=>Wk,variableGrads:()=>Ek,version:()=>Hee,version_converter:()=>ET,version_core:()=>lk,version_layers:()=>Im,version_wasm:()=>Bre,where:()=>Cn,whereAsync:()=>yb,zeros:()=>xt,zerosLike:()=>Ge});var gE=Object.create,wd=Object.defineProperty,yE=Object.getPrototypeOf,bE=Object.prototype.hasOwnProperty,xE=Object.getOwnPropertyNames,vE=Object.getOwnPropertyDescriptor,wE=e=>wd(e,"__esModule",{value:!0}),Tt=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Le=(e,t)=>{for(var n in t)wd(e,n,{get:t[n],enumerable:!0})},kE=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of xE(t))!bE.call(e,a)&&a!=="default"&&wd(e,a,{get:()=>t[a],enumerable:!(n=vE(t,a))||n.enumerable});return e},Do=e=>kE(wE(wd(e!=null?gE(yE(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),IE=Tt(()=>{}),TE=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),NE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),SE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),CE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_E=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),EE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Zw=Tt(()=>{}),FE=Tt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(n)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),n),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(a[l]=z,V):z})(P,A,"global"in k?k.global:this==a,k.state)}a["seed"+l]=m;function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,X=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[X=d&X+V])+(j[X]=V)];return F.i=H,F.j=X,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Zw()}catch(T){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),e0=Tt((e,t)=>{var n=TE(),a=NE(),r=SE(),s=CE(),i=_E(),o=EE(),l=FE();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),AE=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=String(p);for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$E=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),DE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),RE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ME=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),PE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OE=Tt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(a)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),a),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(r[l]=z,V):z})(P,A,"global"in k?k.global:this==r,k.state)}function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,X=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[X=d&X+V])+(j[X]=V)];return F.i=H,F.j=X,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,v(a)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Zw()}catch(T){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),t0=Tt((e,t)=>{var n=AE(),a=$E(),r=DE(),s=RE(),i=ME(),o=PE(),l=OE();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),LE=Tt(()=>{}),Qu=Tt(()=>{}),zE=Tt(()=>{}),WE=Tt(()=>{}),BE=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ee.buffer!=We&&nn(ee.buffer),kn}function i(){return ee.buffer!=We&&nn(ee.buffer),It}function o(){return ee.buffer!=We&&nn(ee.buffer),In}function l(){return ee.buffer!=We&&nn(ee.buffer),Kn}function c(){return ee.buffer!=We&&nn(ee.buffer),dn}var u=typeof r!="undefined"?r:{},p,d;u.ready=new Promise(function(N,C){p=N,d=C});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],g="./this.program",y=function(N,C){throw C},b=!1,x=!1,v=!1,T=!1;b=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=!b&&!v&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(We=u.buffer);var S="";function F(N){return u.locateFile?u.locateFile(N,S):S+N}var A,R,P,z,V,G;if(v){x?S=Qu().dirname(S)+"/":S=__dirname+"/",A=function(N,C){return V||(V=require("fs")),G||(G=Qu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof Yu))throw N}),process.on("unhandledRejection",hr),y=function(N){process.exit(N)},u.inspect=function(){return"[Emscripten Module object]"};var H;try{H=zE()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=H.Worker}else T?(typeof read!="undefined"&&(A=function(N){return read(N)}),P=function(N){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(C=read(N,"binary"),me(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(b||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",v?(A=function(N,C){return V||(V=require("fs")),G||(G=Qu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C}):(A=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.send(null),C.responseText},x&&(P=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),R=function(N,C,L){var q=new XMLHttpRequest;q.open("GET",N,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){C(q.response);return}L()},q.onerror=L,q.send(null)}),z=function(N){document.title=N});v&&typeof performance=="undefined"&&(global.performance=WE().performance);var X=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var te=Atomics.load,Q=Atomics.store,se=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&hr("no native wasm support detected");var ee,pe,oe=!1,fe;function me(N,C){N||hr("Assertion failed: "+C)}function we(N){var C=u["_"+N];return me(C,"Cannot call unknown function "+N+", make sure it is exported"),C}function Te(N,C,L,q,de){var le={string:function(Sn){var $o=0;if(Sn!=null&&Sn!==0){var Jw=(Sn.length<<2)+1;$o=Eo(Jw),at(Sn,$o,Jw)}return $o},array:function(Sn){var $o=Eo(Sn.length);return Ke(Sn,$o),$o}};function ce(Sn){return C==="string"?Fe(Sn):C==="boolean"?Boolean(Sn):Sn}var be=we(N),rt=[],Gt=0;if(q)for(var Pt=0;Pt<q.length;Pt++){var Vr=le[L[Pt]];Vr?(Gt===0&&(Gt=Ku()),rt[Pt]=Vr(q[Pt])):rt[Pt]=q[Pt]}var Ao=be.apply(null,rt);return Ao=ce(Ao),Gt!==0&&_o(Gt),Ao}function _e(N,C,L,q){L=L||[];var de=L.every(function(ce){return ce==="number"}),le=C!=="string";return le&&de&&!q?we(N):function(){return Te(N,C,L,arguments,q)}}function Re(N,C,L){for(var q=C+L,de="";!(C>=q);){var le=N[C++];if(!le)return de;if(!(le&128)){de+=String.fromCharCode(le);continue}var ce=N[C++]&63;if((le&224)==192){de+=String.fromCharCode((le&31)<<6|ce);continue}var be=N[C++]&63;if((le&240)==224?le=(le&15)<<12|ce<<6|be:le=(le&7)<<18|ce<<12|be<<6|N[C++]&63,le<65536)de+=String.fromCharCode(le);else{var rt=le-65536;de+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return de}function Fe(N,C){return N?Re(i(),N,C):""}function nt(N,C,L,q){if(!(q>0))return 0;for(var de=L,le=L+q-1,ce=0;ce<N.length;++ce){var be=N.charCodeAt(ce);if(be>=55296&&be<=57343){var rt=N.charCodeAt(++ce);be=65536+((be&1023)<<10)|rt&1023}if(be<=127){if(L>=le)break;C[L++]=be}else if(be<=2047){if(L+1>=le)break;C[L++]=192|be>>6,C[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;C[L++]=224|be>>12,C[L++]=128|be>>6&63,C[L++]=128|be&63}else{if(L+3>=le)break;C[L++]=240|be>>18,C[L++]=128|be>>12&63,C[L++]=128|be>>6&63,C[L++]=128|be&63}}return C[L]=0,L-de}function at(N,C,L){return nt(N,i(),C,L)}function ot(N){for(var C=0,L=0;L<N.length;++L){var q=N.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|N.charCodeAt(++L)&1023),q<=127?++C:q<=2047?C+=2:q<=65535?C+=3:C+=4}return C}function Ke(N,C){s().set(N,C)}function ft(N,C){return N%C>0&&(N+=C-N%C),N}var We,kn,It,Xn,tn,In,Kn,Mn,dn;function nn(N){We=N,u.HEAP8=kn=new Int8Array(N),u.HEAP16=Xn=new Int16Array(N),u.HEAP32=In=new Int32Array(N),u.HEAPU8=It=new Uint8Array(N),u.HEAPU16=tn=new Uint16Array(N),u.HEAPU32=Kn=new Uint32Array(N),u.HEAPF32=Mn=new Float32Array(N),u.HEAPF64=dn=new Float64Array(N)}var Va=u.INITIAL_MEMORY||16777216;if(k)ee=u.wasmMemory,We=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:Va/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(We=ee.buffer),Va=We.byteLength,nn(We);var oa,la=[],Pr=[],pr=[],Or=[],wo=[],Ia=!1,Jp=!1;k||Pr.push({func:function(){hd()}}),k&&(Ia=!0);function Pf(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)ed(u.preRun.shift());Io(la)}}function Qp(){Ia=!0,Io(Pr)}function Of(){k||Io(pr)}function Zp(){k||(Jp=!0)}function Tn(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Lf(u.postRun.shift());Io(wo)}}function ed(N){la.unshift(N)}function Lf(N){wo.unshift(N)}var dr=0,Lr=null,Ss=null;function zf(N){me(!k,"addRunDependency cannot be used in a pthread worker"),dr++,u.monitorRunDependencies&&u.monitorRunDependencies(dr)}function Wf(N){if(dr--,u.monitorRunDependencies&&u.monitorRunDependencies(dr),dr==0&&(Lr!==null&&(clearInterval(Lr),Lr=null),Ss)){var C=Ss;Ss=null,C()}}u.preloadedImages={},u.preloadedAudios={};function hr(N){u.onAbort&&u.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",j(N),oe=!0,fe=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(N);throw d(C),C}function td(N,C){return String.prototype.startsWith?N.startsWith(C):N.indexOf(C)===0}var ko="data:application/octet-stream;base64,";function nd(N){return td(N,ko)}var Bf="file://";function ad(N){return td(N,Bf)}var Nn="tfjs-backend-wasm-threaded-simd.wasm";nd(Nn)||(Nn=F(Nn));function Vf(N){try{if(N==Nn&&ne)return new Uint8Array(ne);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(C){hr(C)}}function rd(){if(!ne&&(b||x)){if(typeof fetch=="function"&&!ad(Nn))return fetch(Nn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Nn+"'";return N.arrayBuffer()}).catch(function(){return Vf(Nn)});if(R)return new Promise(function(N,C){R(Nn,function(L){N(new Uint8Array(L))},C)})}return Promise.resolve().then(function(){return Vf(Nn)})}function Uf(){var N={a:Dg};function C(ce,be){var rt=ce.exports;if(u.asm=rt,oa=u.asm.F,pe=be,!k){var Gt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Pt){ke.loadWasmModuleToWorker(Pt,function(){--Gt||Wf("wasm-instantiate")})})}}k||zf("wasm-instantiate");function L(ce){C(ce.instance,ce.module)}function q(ce){return rd().then(function(be){return WebAssembly.instantiate(be,N)}).then(ce,function(be){j("failed to asynchronously prepare wasm: "+be),hr(be)})}function de(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!nd(Nn)&&!ad(Nn)&&typeof fetch=="function"?fetch(Nn,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,N);return be.then(L,function(rt){return j("wasm streaming compile failed: "+rt),j("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(u.instantiateWasm)try{var le=u.instantiateWasm(N,C);return le}catch(ce){return j("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var sd={8991:function(N,C){setTimeout(function(){Hw(N,C)},0)}};function Gf(){ke.initRuntime()}function Io(N){for(;N.length>0;){var C=N.shift();if(typeof C=="function"){C(u);continue}var L=C.func;typeof L=="number"?C.arg===void 0?oa.get(L)():oa.get(L)(C.arg):L(C.arg===void 0?null:C.arg)}}function To(N,C){if(N<=0||N>s().length||N&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var L=Atomics.load(o(),Fo>>2),q=0;if(L==N){var de=Atomics.compareExchange(o(),Fo>>2,L,0);if(de==L&&(--C,q=1,C<=0))return 1}var le=Atomics.notify(o(),N>>2,C);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=To;function Hf(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function jf(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[N];C.worker.postMessage({cmd:"cancel"})}function qf(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];if(C){var L=C.worker;ke.returnWorkerToPool(L)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=8,C=0;C<N;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var N=_s(228),C=0;C<228/4;++C)l()[N/4+C]=0;o()[N+12>>2]=N;var L=N+152;o()[L>>2]=L;for(var q=_s(512),C=0;C<128;++C)l()[q/4+C]=0;Atomics.store(l(),N+100>>2,q),Atomics.store(l(),N+40>>2,N),bd(N,!x,1),Gw(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();k&&Co()&&Uw()},threadExit:function(N){var C=Co();C&&(Atomics.store(l(),C+4>>2,N),Atomics.store(l(),C+0>>2,1),Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),ke.runExitHandlers(),To(C+0,2147483647),bd(0,0,0),k&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var N=Co();Atomics.store(l(),N+4>>2,-1),Atomics.store(l(),N+0>>2,1),To(N+0,2147483647),bd(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in ke.pthreads){var C=ke.pthreads[N];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var L=0;L<ke.unusedWorkers.length;++L){var q=ke.unusedWorkers[L];q.terminate()}ke.unusedWorkers=[];for(var L=0;L<ke.runningWorkers.length;++L){var q=ke.runningWorkers[L],C=q.pthread;ke.freeThreadData(C),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(N){if(N){if(N.threadInfoStruct){var C=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,Xu(C),Xu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Xu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[N.pthread.threadInfoStruct],ke.unusedWorkers.push(N),ke.runningWorkers.splice(ke.runningWorkers.indexOf(N),1),ke.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[Yw>>2]=0;try{N()}finally{o()[Yw>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,C){N.onmessage=function(L){var q=L.data,de=q.cmd;if(N.pthread&&(ke.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Co()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")Xg();else if(de==="spawnThread")pd(L.data);else if(de==="cleanupThread")qf(q.thread);else if(de==="killThread")Hf(q.thread);else if(de==="cancelThread")jf(q.thread);else if(de==="loaded")N.loaded=!0,C&&C(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")j("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(N)}else if(de==="exitProcess")try{oE(q.returnCode)}catch(be){if(be instanceof Yu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(N):de==="objectTransfer"?ke.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?N.postMessage(L.data):j("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},N.onerror=function(L){j("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},v&&(N.on("message",function(L){N.onmessage({data:L})}),N.on("error",function(L){N.onerror(L)}),N.on("exit",function(L){})),N.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:ee,wasmModule:pe})},allocateUnusedWorker:function(){var N=F("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(N){for(var C=performance.now()+N;performance.now()<C;);}};function Xf(N,C){Xw(N,C),_o(N)}u.establishStackSpace=Xf;function Kf(){return ie}u.getNoExitRuntime=Kf;function Yf(N,C){return oa.get(N)(C)}u.invokeEntryPoint=Yf;function Jf(N,C,L,q){hr("Assertion failed: "+Fe(N)+", at: "+[C?Fe(C):"unknown filename",L,q?Fe(q):"unknown function"])}function Qf(N,C){var L=_main(N,C)}var Cs;v?Cs=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?Cs=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Cs=dateNow:Cs=function(){return performance.now()};function Zf(N){return o()[Bw()>>2]=N,N}function eg(N,C){if(k)return zr(1,1,N,C)}function tg(N,C){if(N==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var L=ke.pthreads[N],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function ng(){hr()}function ag(N,C,L){var q=lg(C,L);return sd[N].apply(null,q)}function rg(N,C){}function sg(N,C,L){if(N<=0||N>s().length||N&!0)return-28;if(b){if(Atomics.load(o(),N>>2)!=C)return-6;for(var q=performance.now(),de=q+L,le=Atomics.exchange(o(),Fo>>2,N);;){if(q=performance.now(),q>de)return le=Atomics.exchange(o(),Fo>>2,0),-73;if(le=Atomics.exchange(o(),Fo>>2,0),le==0)break;if(Xg(),Atomics.load(o(),N>>2)!=C)return-6;le=Atomics.exchange(o(),Fo>>2,N)}return 0}else{var ce=Atomics.wait(o(),N>>2,C,L);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function ig(N,C,L){i().copyWithin(N,C,C+L)}function og(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function zr(N,C){for(var L=arguments.length-2,q=Ku(),de=L,le=Eo(de*8),ce=le>>3,be=0;be<L;be++){var rt=arguments[2+be];c()[ce+be]=rt}var Gt=qw(N,de,le,C);return _o(q),Gt}var Vu=[],Uu=[];function lg(N,C){Uu.length=0;var L;for(C>>=2;L=i()[N++];){var q=L<105;q&&C&1&&C++,Uu.push(q?c()[C++>>1]:o()[C]),++C}return Uu}function ug(N,C,L){Vu.length=C;for(var q=L>>3,de=0;de<C;de++)Vu[de]=c()[q+de];var le=N<0,ce=le?sd[-N-1]:$g[N];return ce.apply(null,Vu)}function cg(){return i().length}function pg(N){try{return ee.grow(N-We.byteLength+65535>>>16),nn(ee.buffer),1}catch(C){}}function dg(N){var C=cg();if(N<=C)return!1;var L=2147483648;if(N>L)return!1;for(var q=1;q<=4;q*=2){var de=C*(1+.2/q);de=Math.min(de,N+100663296);var le=Math.min(L,ft(Math.max(N,de),65536)),ce=pg(le);if(ce)return!0}return!1}var Oe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Oe.eventHandlers.length-1;N>=0;--N)Oe._removeHandler(N);Oe.eventHandlers=[],Oe.deferredCalls=[]},registerRemoveEventListeners:function(){Oe.removeEventListenersRegistered||(Or.push(Oe.removeAllEventListeners),Oe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,C,L){function q(ce,be){if(ce.length!=be.length)return!1;for(var rt in ce)if(ce[rt]!=be[rt])return!1;return!0}for(var de in Oe.deferredCalls){var le=Oe.deferredCalls[de];if(le.targetFunction==N&&q(le.argsList,L))return}Oe.deferredCalls.push({targetFunction:N,precedence:C,argsList:L}),Oe.deferredCalls.sort(function(ce,be){return ce.precedence<be.precedence})},removeDeferredCalls:function(N){for(var C=0;C<Oe.deferredCalls.length;++C)Oe.deferredCalls[C].targetFunction==N&&(Oe.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Oe.inEventHandler&&Oe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Oe.canPerformEventHandlerRequests())for(var N=0;N<Oe.deferredCalls.length;++N){var C=Oe.deferredCalls[N];Oe.deferredCalls.splice(N,1),--N,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,C){for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N&&(!C||C==Oe.eventHandlers[L].eventTypeString)&&Oe._removeHandler(L--)},_removeHandler:function(N){var C=Oe.eventHandlers[N];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Oe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var C=function(q){++Oe.inEventHandler,Oe.currentEventHandler=N,Oe.runDeferredCalls(),N.handlerFunc(q),Oe.runDeferredCalls(),--Oe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=C,N.target.addEventListener(N.eventTypeString,C,N.useCapture),Oe.eventHandlers.push(N),Oe.registerRemoveEventListeners();else for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N.target&&Oe.eventHandlers[L].eventTypeString==N.eventTypeString&&Oe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(N,C,L,q,de){var le=Ku(),ce=Eo(12);o()[ce>>2]=L,o()[ce+4>>2]=q,o()[ce+8>>2]=de,Kg(0,N,637534208,C,q,ce),_o(le)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function hg(N){var C=ot(N)+1,L=_s(C);return at(N,L,C),L}function mg(N,C,L,q){var de=Ku(),le=Eo(12),ce=0;C&&(ce=hg(C)),o()[le>>2]=ce,o()[le+4>>2]=L,o()[le+8>>2]=q,Kg(0,N,657457152,0,ce,le),_o(de)}function fg(N,C,L,q){C=C?Fe(C):"",mg(N,C,L,q)}function gg(N){return N>2?Fe(N):N}var yg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function bg(N){N=gg(N);var C=yg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return C}function Gu(N){return bg(N)}function id(N,C,L){var q=Gu(N);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=C,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);de=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=C,q.height=L,de&&q.GLctxObject.GLctx.viewport(0,0,C,L)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return fg(ce,N,C,L),1}else return-4;return 0}function od(N,C,L){return k?zr(2,1,N,C,L):id(N,C,L)}function xg(N,C,L){var q=Gu(N);return q?id(N,C,L):od(N,C,L)}function vg(N){}function wg(N,C){}function kg(N){var C=N.getExtension("ANGLE_instanced_arrays");if(C)return N.vertexAttribDivisor=function(L,q){C.vertexAttribDivisorANGLE(L,q)},N.drawArraysInstanced=function(L,q,de,le){C.drawArraysInstancedANGLE(L,q,de,le)},N.drawElementsInstanced=function(L,q,de,le,ce){C.drawElementsInstancedANGLE(L,q,de,le,ce)},1}function Ig(N){var C=N.getExtension("OES_vertex_array_object");if(C)return N.createVertexArray=function(){return C.createVertexArrayOES()},N.deleteVertexArray=function(L){C.deleteVertexArrayOES(L)},N.bindVertexArray=function(L){C.bindVertexArrayOES(L)},N.isVertexArray=function(L){return C.isVertexArrayOES(L)},1}function Tg(N){var C=N.getExtension("WEBGL_draw_buffers");if(C)return N.drawBuffers=function(L,q){C.drawBuffersWEBGL(L,q)},1}function Ng(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){et.lastError||(et.lastError=N)},getNewId:function(N){for(var C=et.counter++,L=N.length;L<C;L++)N[L]=null;return C},getSource:function(N,C,L,q){for(var de="",le=0;le<C;++le){var ce=q?o()[q+le*4>>2]:-1;de+=Fe(o()[L+le*4>>2],ce<0?void 0:ce)}return de},createContext:function(N,C){var L=N.getContext("webgl",C);if(!L)return 0;var q=et.registerContext(L,C);return q},registerContext:function(N,C){var L=_s(8);o()[L+4>>2]=Co();var q={handle:L,attributes:C,version:C.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=q),et.contexts[L]=q,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&et.initExtensions(q),L},makeContextCurrent:function(N){return et.currentContext=et.contexts[N],u.ctx=Wr=et.currentContext&&et.currentContext.GLctx,!(N&&!Wr)},getContext:function(N){return et.contexts[N]},deleteContext:function(N){et.currentContext===et.contexts[N]&&(et.currentContext=null),typeof Oe=="object"&&Oe.removeAllHandlersOnTarget(et.contexts[N].GLctx.canvas),et.contexts[N]&&et.contexts[N].GLctx.canvas&&(et.contexts[N].GLctx.canvas.GLctxObject=void 0),Xu(et.contexts[N].handle),et.contexts[N]=null},initExtensions:function(N){if(N||(N=et.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var C=N.GLctx;kg(C),Ig(C),Tg(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),Ng(C);var L=C.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&C.getExtension(q)})}},populateUniformTable:function(N){for(var C=et.programs[N],L=et.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,de=Wr.getProgramParameter(C,35718),le=0;le<de;++le){var ce=Wr.getActiveUniform(C,le),be=ce.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var rt=Wr.getUniformLocation(C,be);if(rt){var Gt=et.getNewId(et.uniforms);q[be]=[ce.size,Gt],et.uniforms[Gt]=rt;for(var Pt=1;Pt<ce.size;++Pt){var Vr=be+"["+Pt+"]";rt=Wr.getUniformLocation(C,Vr),Gt=et.getNewId(et.uniforms),et.uniforms[Gt]=rt}}}}},Sg=["default","low-power","high-performance"];function Cg(N,C){var L=C>>2,q=o()[L+(24>>2)],de={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:Sg[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=Gu(N);if(!le||de.explicitSwapControl)return 0;var ce=et.createContext(le,de);return ce}function _g(N,C){return Cg(N,C)}var No={mappings:{},buffers:[null,[],[]],printChar:function(N,C){var L=No.buffers[N];C===0||C===10?((N===1?X:j)(Re(L,0)),L.length=0):L.push(C)},varargs:void 0,get:function(){No.varargs+=4;var N=o()[No.varargs-4>>2];return N},getStr:function(N){var C=Fe(N);return C},get64:function(N,C){return N}};function ld(N){return k?zr(3,1,N):0}function ud(N,C,L,q,de){if(k)return zr(4,1,N,C,L,q,de)}function cd(N,C,L,q){if(k)return zr(5,1,N,C,L,q);for(var de=0,le=0;le<L;le++){for(var ce=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],rt=0;rt<be;rt++)No.printChar(N,i()[ce+rt]);de+=be}return o()[q>>2]=de,0}function Eg(N){var C=ke.threadExitHandlers.pop();N&&C()}function Fg(N,C){ke.threadExitHandlers.push(function(){oa.get(N)(C)})}function pd(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var L=_s(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var de=N.stackBase+N.stackSize,le=ke.pthreads[N.pthread_ptr]={worker:C,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ce=le.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),N.detached),Atomics.store(l(),ce+(100>>2),L),Atomics.store(l(),ce+(40>>2),le.threadInfoStruct),Atomics.store(l(),ce+(80>>2),N.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),N.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),N.detached);var be=Vw(),rt=be+40;Atomics.store(l(),ce+(172>>2),rt),C.pthread=le;var Gt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};C.runPthread=function(){Gt.time=performance.now(),C.postMessage(Gt,N.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function Ag(N,C,L,q){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return j("pthread_create called with a null thread pointer!"),28;var de=[],le=0;if(k&&(de.length===0||le))return jw(687865856,N,C,L,q);if(le)return le;var ce=0,be=0,rt=0;C&&C!=-1?(ce=o()[C>>2],ce+=81920,be=o()[C+8>>2],rt=o()[C+12>>2]!==0):ce=2097152;var Gt=be==0;Gt?be=Kw(16,ce):(be-=ce,me(be>0));for(var Pt=_s(228),Vr=0;Vr<228>>2;++Vr)l()[(Pt>>2)+Vr]=0;o()[N>>2]=Pt,o()[Pt+12>>2]=Pt;var Ao=Pt+152;o()[Ao>>2]=Ao;var Sn={stackBase:be,stackSize:ce,allocatedOwnStack:Gt,detached:rt,startRoutine:L,pthread_ptr:Pt,arg:q,transferList:de};return k?(Sn.cmd="spawnThread",postMessage(Sn,de)):pd(Sn),0}function dd(N){if(k)return zr(6,1,N);switch(N){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Zf(28),-1}k||ke.initMainThreadBlock();var Wr,$g=[null,eg,od,ld,ud,cd,dd],Dg={e:Jf,r:Qf,x:tg,b:ng,y:ag,j:rg,c:sg,d:To,f:Cs,p:ig,z:og,u:ug,q:dg,v:xg,i:vg,t:wg,w:_g,m:ld,n:ud,g:cd,o:Gf,a:ee||u.wasmMemory,k:Eg,l:Fg,h:Ag,s:dd},Ww=Uf(),hd=u.___wasm_call_ctors=function(){return(hd=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Rg=u._init=function(){return(Rg=u._init=u.asm.B).apply(null,arguments)},Mg=u._register_tensor=function(){return(Mg=u._register_tensor=u.asm.C).apply(null,arguments)},Pg=u._dispose_data=function(){return(Pg=u._dispose_data=u.asm.D).apply(null,arguments)},Og=u._dispose=function(){return(Og=u._dispose=u.asm.E).apply(null,arguments)},Lg=u._Abs=function(){return(Lg=u._Abs=u.asm.G).apply(null,arguments)},zg=u._Add=function(){return(zg=u._Add=u.asm.H).apply(null,arguments)},Wg=u._AddN=function(){return(Wg=u._AddN=u.asm.I).apply(null,arguments)},Bg=u._ArgMax=function(){return(Bg=u._ArgMax=u.asm.J).apply(null,arguments)},Vg=u._AvgPool=function(){return(Vg=u._AvgPool=u.asm.K).apply(null,arguments)},Ug=u._BatchMatMul=function(){return(Ug=u._BatchMatMul=u.asm.L).apply(null,arguments)},Gg=u._Ceil=function(){return(Gg=u._Ceil=u.asm.M).apply(null,arguments)},Hg=u._ClipByValue=function(){return(Hg=u._ClipByValue=u.asm.N).apply(null,arguments)},jg=u._Conv2D=function(){return(jg=u._Conv2D=u.asm.O).apply(null,arguments)},md=u._Conv2DBackpropInput=function(){return(md=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},fd=u._Cos=function(){return(fd=u._Cos=u.asm.Q).apply(null,arguments)},Hu=u._CropAndResize=function(){return(Hu=u._CropAndResize=u.asm.R).apply(null,arguments)},So=u._Cumsum=function(){return(So=u._Cumsum=u.asm.S).apply(null,arguments)},qg=u._DepthToSpace=function(){return(qg=u._DepthToSpace=u.asm.T).apply(null,arguments)},ju=u._DepthwiseConv2dNative=function(){return(ju=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},K=u._Equal=function(){return(K=u._Equal=u.asm.V).apply(null,arguments)},ae=u._Exp=function(){return(ae=u._Exp=u.asm.W).apply(null,arguments)},Ne=u._FlipLeftRight=function(){return(Ne=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Ye=u._Floor=function(){return(Ye=u._Floor=u.asm.Y).apply(null,arguments)},Et=u._FloorDiv=function(){return(Et=u._FloorDiv=u.asm.Z).apply(null,arguments)},yt=u._FusedBatchNorm=function(){return(yt=u._FusedBatchNorm=u.asm._).apply(null,arguments)},Ue=u._FusedConv2D=function(){return(Ue=u._FusedConv2D=u.asm.$).apply(null,arguments)},He=u._FusedDepthwiseConv2D=function(){return(He=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},an=u._Gather=function(){return(an=u._Gather=u.asm.ba).apply(null,arguments)},mr=u._GatherNd=function(){return(mr=u._GatherNd=u.asm.ca).apply(null,arguments)},fr=u._Greater=function(){return(fr=u._Greater=u.asm.da).apply(null,arguments)},gd=u._GreaterEqual=function(){return(gd=u._GreaterEqual=u.asm.ea).apply(null,arguments)},qu=u._LeakyRelu=function(){return(qu=u._LeakyRelu=u.asm.fa).apply(null,arguments)},Yn=u._Less=function(){return(Yn=u._Less=u.asm.ga).apply(null,arguments)},Br=u._LessEqual=function(){return(Br=u._LessEqual=u.asm.ha).apply(null,arguments)},yd=u._Log=function(){return(yd=u._Log=u.asm.ia).apply(null,arguments)},g_=u._LogicalAnd=function(){return(g_=u._LogicalAnd=u.asm.ja).apply(null,arguments)},y_=u._Max=function(){return(y_=u._Max=u.asm.ka).apply(null,arguments)},b_=u._MaxPool=function(){return(b_=u._MaxPool=u.asm.la).apply(null,arguments)},x_=u._Maximum=function(){return(x_=u._Maximum=u.asm.ma).apply(null,arguments)},v_=u._Mean=function(){return(v_=u._Mean=u.asm.na).apply(null,arguments)},w_=u._Min=function(){return(w_=u._Min=u.asm.oa).apply(null,arguments)},k_=u._Minimum=function(){return(k_=u._Minimum=u.asm.pa).apply(null,arguments)},I_=u._Multiply=function(){return(I_=u._Multiply=u.asm.qa).apply(null,arguments)},T_=u._Neg=function(){return(T_=u._Neg=u.asm.ra).apply(null,arguments)},N_=u._NonMaxSuppressionV3=function(){return(N_=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},S_=u._NonMaxSuppressionV4=function(){return(S_=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},C_=u._NonMaxSuppressionV5=function(){return(C_=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},__=u._NotEqual=function(){return(__=u._NotEqual=u.asm.va).apply(null,arguments)},E_=u._OneHot=function(){return(E_=u._OneHot=u.asm.wa).apply(null,arguments)},F_=u._PadV2=function(){return(F_=u._PadV2=u.asm.xa).apply(null,arguments)},A_=u._Pow=function(){return(A_=u._Pow=u.asm.ya).apply(null,arguments)},$_=u._Prelu=function(){return($_=u._Prelu=u.asm.za).apply(null,arguments)},D_=u._Prod=function(){return(D_=u._Prod=u.asm.Aa).apply(null,arguments)},R_=u._RealDiv=function(){return(R_=u._RealDiv=u.asm.Ba).apply(null,arguments)},M_=u._Relu=function(){return(M_=u._Relu=u.asm.Ca).apply(null,arguments)},P_=u._Relu6=function(){return(P_=u._Relu6=u.asm.Da).apply(null,arguments)},O_=u._ResizeBilinear=function(){return(O_=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},L_=u._Reverse=function(){return(L_=u._Reverse=u.asm.Fa).apply(null,arguments)},z_=u._RotateWithOffset=function(){return(z_=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},W_=u._Round=function(){return(W_=u._Round=u.asm.Ha).apply(null,arguments)},B_=u._Rsqrt=function(){return(B_=u._Rsqrt=u.asm.Ia).apply(null,arguments)},V_=u._ScatterNd=function(){return(V_=u._ScatterNd=u.asm.Ja).apply(null,arguments)},U_=u._SelectV2=function(){return(U_=u._SelectV2=u.asm.Ka).apply(null,arguments)},G_=u._Sigmoid=function(){return(G_=u._Sigmoid=u.asm.La).apply(null,arguments)},H_=u._Sin=function(){return(H_=u._Sin=u.asm.Ma).apply(null,arguments)},j_=u._Softmax=function(){return(j_=u._Softmax=u.asm.Na).apply(null,arguments)},q_=u._Sqrt=function(){return(q_=u._Sqrt=u.asm.Oa).apply(null,arguments)},X_=u._Square=function(){return(X_=u._Square=u.asm.Pa).apply(null,arguments)},K_=u._SquaredDifference=function(){return(K_=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},Y_=u._Step=function(){return(Y_=u._Step=u.asm.Ra).apply(null,arguments)},J_=u._StridedSlice=function(){return(J_=u._StridedSlice=u.asm.Sa).apply(null,arguments)},Q_=u._Sub=function(){return(Q_=u._Sub=u.asm.Ta).apply(null,arguments)},Z_=u._Sum=function(){return(Z_=u._Sum=u.asm.Ua).apply(null,arguments)},eE=u._Tanh=function(){return(eE=u._Tanh=u.asm.Va).apply(null,arguments)},tE=u._Tile=function(){return(tE=u._Tile=u.asm.Wa).apply(null,arguments)},nE=u._TopK=function(){return(nE=u._TopK=u.asm.Xa).apply(null,arguments)},aE=u._Transpose=function(){return(aE=u._Transpose=u.asm.Ya).apply(null,arguments)},rE=u.__FusedMatMul=function(){return(rE=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},_s=u._malloc=function(){return(_s=u._malloc=u.asm._a).apply(null,arguments)},Xu=u._free=function(){return(Xu=u._free=u.asm.$a).apply(null,arguments)},Bw=u.___errno_location=function(){return(Bw=u.___errno_location=u.asm.ab).apply(null,arguments)},Vw=u._emscripten_get_global_libc=function(){return(Vw=u._emscripten_get_global_libc=u.asm.bb).apply(null,arguments)},Co=u._pthread_self=function(){return(Co=u._pthread_self=u.asm.cb).apply(null,arguments)},Uw=u.___pthread_tsd_run_dtors=function(){return(Uw=u.___pthread_tsd_run_dtors=u.asm.db).apply(null,arguments)},Xg=u._emscripten_main_thread_process_queued_calls=function(){return(Xg=u._emscripten_main_thread_process_queued_calls=u.asm.eb).apply(null,arguments)},sE=u._emscripten_current_thread_process_queued_calls=function(){return(sE=u._emscripten_current_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},Gw=u._emscripten_register_main_browser_thread_id=function(){return(Gw=u._emscripten_register_main_browser_thread_id=u.asm.gb).apply(null,arguments)},Hw=u.__emscripten_do_dispatch_to_thread=function(){return(Hw=u.__emscripten_do_dispatch_to_thread=u.asm.hb).apply(null,arguments)},jw=u._emscripten_sync_run_in_main_thread_4=function(){return(jw=u._emscripten_sync_run_in_main_thread_4=u.asm.ib).apply(null,arguments)},qw=u._emscripten_run_in_main_runtime_thread_js=function(){return(qw=u._emscripten_run_in_main_runtime_thread_js=u.asm.jb).apply(null,arguments)},Kg=u.__emscripten_call_on_thread=function(){return(Kg=u.__emscripten_call_on_thread=u.asm.kb).apply(null,arguments)},iE=u._emscripten_tls_init=function(){return(iE=u._emscripten_tls_init=u.asm.lb).apply(null,arguments)},bd=u.__emscripten_thread_init=function(){return(bd=u.__emscripten_thread_init=u.asm.mb).apply(null,arguments)},Ku=u.stackSave=function(){return(Ku=u.stackSave=u.asm.nb).apply(null,arguments)},_o=u.stackRestore=function(){return(_o=u.stackRestore=u.asm.ob).apply(null,arguments)},Eo=u.stackAlloc=function(){return(Eo=u.stackAlloc=u.asm.pb).apply(null,arguments)},Xw=u._emscripten_stack_set_limits=function(){return(Xw=u._emscripten_stack_set_limits=u.asm.qb).apply(null,arguments)},Kw=u._memalign=function(){return(Kw=u._memalign=u.asm.rb).apply(null,arguments)},Yw=u.__emscripten_allow_main_runtime_queued_calls=9880,Fo=u.__emscripten_main_thread_futex=11368;u.cwrap=_e,u.PThread=ke,u.PThread=ke,u.wasmMemory=ee,u.ExitStatus=Yu;var xd;function Yu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ss=function N(){xd||Yg(),xd||(Ss=N)};function Yg(N){if(N=N||f,dr>0)return;if(k){p(u),postMessage({cmd:"loaded"});return}if(Pf(),dr>0)return;function C(){xd||(xd=!0,u.calledRun=!0,!oe&&(Qp(),Of(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Tn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),C()},1)):C()}u.run=Yg;function oE(N,C){if(!(C&&ie&&N===0)){if(!C&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new Yu(N);ie||(ke.terminateAllThreads(),fe=N,Zp(),u.onExit&&u.onExit(N),oe=!0),y(N,new Yu(N))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(ie=!1,ke.initWorker()),Yg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),VE=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,ae){i=K,o=ae});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],p="./this.program",d=function(K,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function b(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,T,k,S,F;f?(m?y=Qu().dirname(y)+"/":y=__dirname+"/",x=function(K,ae){return S||(S=require("fs")),F||(F=Qu()),K=F.normalize(K),S.readFileSync(K,ae?null:"utf8")},T=function(K){var ae=x(K,!0);return ae.buffer||(ae=new Uint8Array(ae)),X(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof qg))throw K}),process.on("unhandledRejection",Ia),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(K){return read(K)}),T=function(K){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ae=read(K,"binary"),X(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.send(null),ae.responseText},m&&(T=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(K,ae,Ne){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ae(Ye.response);return}Ne()},Ye.onerror=Ne,Ye.send(null)},k=function(K){document.title=K});var A=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(d=s.quit);var P;s.wasmBinary&&(P=s.wasmBinary);var z=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ia("no native wasm support detected");var V,G=!1,H;function X(K,ae){K||Ia("Assertion failed: "+ae)}function j(K){var ae=s["_"+K];return X(ae,"Cannot call unknown function "+K+", make sure it is exported"),ae}function te(K,ae,Ne,Ye,Et){var yt={string:function(Yn){var Br=0;if(Yn!=null&&Yn!==0){var yd=(Yn.length<<2)+1;Br=Hu(yd),pe(Yn,Br,yd)}return Br},array:function(Yn){var Br=Hu(Yn.length);return oe(Yn,Br),Br}};function Ue(Yn){return ae==="string"?ie(Yn):ae==="boolean"?Boolean(Yn):Yn}var He=j(K),an=[],mr=0;if(Ye)for(var fr=0;fr<Ye.length;fr++){var gd=yt[Ne[fr]];gd?(mr===0&&(mr=md()),an[fr]=gd(Ye[fr])):an[fr]=Ye[fr]}var qu=He.apply(null,an);return qu=Ue(qu),mr!==0&&fd(mr),qu}function Q(K,ae,Ne,Ye){Ne=Ne||[];var Et=Ne.every(function(Ue){return Ue==="number"}),yt=ae!=="string";return yt&&Et&&!Ye?j(K):function(){return te(K,ae,Ne,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,ae,Ne){for(var Ye=ae+Ne,Et=ae;K[Et]&&!(Et>=Ye);)++Et;if(Et-ae>16&&K.subarray&&se)return se.decode(K.subarray(ae,Et));for(var yt="";ae<Et;){var Ue=K[ae++];if(!(Ue&128)){yt+=String.fromCharCode(Ue);continue}var He=K[ae++]&63;if((Ue&224)==192){yt+=String.fromCharCode((Ue&31)<<6|He);continue}var an=K[ae++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|He<<6|an:Ue=(Ue&7)<<18|He<<12|an<<6|K[ae++]&63,Ue<65536)yt+=String.fromCharCode(Ue);else{var mr=Ue-65536;yt+=String.fromCharCode(55296|mr>>10,56320|mr&1023)}}return yt}function ie(K,ae){return K?ne(Te,K,ae):""}function ee(K,ae,Ne,Ye){if(!(Ye>0))return 0;for(var Et=Ne,yt=Ne+Ye-1,Ue=0;Ue<K.length;++Ue){var He=K.charCodeAt(Ue);if(He>=55296&&He<=57343){var an=K.charCodeAt(++Ue);He=65536+((He&1023)<<10)|an&1023}if(He<=127){if(Ne>=yt)break;ae[Ne++]=He}else if(He<=2047){if(Ne+1>=yt)break;ae[Ne++]=192|He>>6,ae[Ne++]=128|He&63}else if(He<=65535){if(Ne+2>=yt)break;ae[Ne++]=224|He>>12,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}else{if(Ne+3>=yt)break;ae[Ne++]=240|He>>18,ae[Ne++]=128|He>>12&63,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}}return ae[Ne]=0,Ne-Et}function pe(K,ae,Ne){return ee(K,Te,ae,Ne)}function oe(K,ae){we.set(K,ae)}function fe(K,ae){return K%ae>0&&(K+=ae-K%ae),K}var me,we,Te,_e,Re,Fe,nt,at,ot;function Ke(K){me=K,s.HEAP8=we=new Int8Array(K),s.HEAP16=_e=new Int16Array(K),s.HEAP32=Fe=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=Re=new Uint16Array(K),s.HEAPU32=nt=new Uint32Array(K),s.HEAPF32=at=new Float32Array(K),s.HEAPF64=ot=new Float64Array(K)}var ft=s.INITIAL_MEMORY||16777216,We,kn=[],It=[],Xn=[],tn=[],In=!1;It.push({func:function(){rd()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Va(s.preRun.shift());Lr(kn)}function Mn(){In=!0,Lr(It)}function dn(){Lr(Xn)}function nn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)oa(s.postRun.shift());Lr(tn)}function Va(K){kn.unshift(K)}function oa(K){tn.unshift(K)}var la=0,Pr=null,pr=null;function Or(K){la++,s.monitorRunDependencies&&s.monitorRunDependencies(la)}function wo(K){if(la--,s.monitorRunDependencies&&s.monitorRunDependencies(la),la==0&&(Pr!==null&&(clearInterval(Pr),Pr=null),pr)){var ae=pr;pr=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function Ia(K){s.onAbort&&s.onAbort(K),K+="",R(K),G=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(K);throw o(ae),ae}function Jp(K,ae){return String.prototype.startsWith?K.startsWith(ae):K.indexOf(ae)===0}var Pf="data:application/octet-stream;base64,";function Qp(K){return Jp(K,Pf)}var Of="file://";function Zp(K){return Jp(K,Of)}var Tn="tfjs-backend-wasm.wasm";Qp(Tn)||(Tn=b(Tn));function ed(K){try{if(K==Tn&&P)return new Uint8Array(P);if(T)return T(K);throw"both async and sync fetching of the wasm failed"}catch(ae){Ia(ae)}}function Lf(){if(!P&&(h||m)){if(typeof fetch=="function"&&!Zp(Tn))return fetch(Tn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+Tn+"'";return K.arrayBuffer()}).catch(function(){return ed(Tn)});if(v)return new Promise(function(K,ae){v(Tn,function(Ne){K(new Uint8Array(Ne))},ae)})}return Promise.resolve().then(function(){return ed(Tn)})}function dr(){var K={a:Nn};function ae(Ue,He){var an=Ue.exports;s.asm=an,V=s.asm.g,Ke(V.buffer),We=s.asm.m,wo("wasm-instantiate")}Or("wasm-instantiate");function Ne(Ue){ae(Ue.instance)}function Ye(Ue){return Lf().then(function(He){return WebAssembly.instantiate(He,K)}).then(Ue,function(He){R("failed to asynchronously prepare wasm: "+He),Ia(He)})}function Et(){return!P&&typeof WebAssembly.instantiateStreaming=="function"&&!Qp(Tn)&&!Zp(Tn)&&typeof fetch=="function"?fetch(Tn,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,K);return He.then(Ne,function(an){return R("wasm streaming compile failed: "+an),R("falling back to ArrayBuffer instantiation"),Ye(Ne)})}):Ye(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ae);return yt}catch(Ue){return R("Module.instantiateWasm callback failed with error: "+Ue),!1}return Et().catch(o),{}}function Lr(K){for(;K.length>0;){var ae=K.shift();if(typeof ae=="function"){ae(s);continue}var Ne=ae.func;typeof Ne=="number"?ae.arg===void 0?We.get(Ne)():We.get(Ne)(ae.arg):Ne(ae.arg===void 0?null:ae.arg)}}function Ss(){Ia()}function zf(K,ae,Ne){Te.copyWithin(K,ae,ae+Ne)}function Wf(){return Te.length}function hr(K){try{return V.grow(K-me.byteLength+65535>>>16),Ke(V.buffer),1}catch(ae){}}function td(K){var ae=Wf(),Ne=2147483648;if(K>Ne)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Et=ae*(1+.2/Ye);Et=Math.min(Et,K+100663296);var yt=Math.min(Ne,fe(Math.max(K,Et),65536)),Ue=hr(yt);if(Ue)return!0}return!1}var ko={mappings:{},buffers:[null,[],[]],printChar:function(K,ae){var Ne=ko.buffers[K];ae===0||ae===10?((K===1?A:R)(ne(Ne,0)),Ne.length=0):Ne.push(ae)},varargs:void 0,get:function(){ko.varargs+=4;var K=Fe[ko.varargs-4>>2];return K},getStr:function(K){var ae=ie(K);return ae},get64:function(K,ae){return K}};function nd(K){return 0}function Bf(K,ae,Ne,Ye,Et){}function ad(K,ae,Ne,Ye){for(var Et=0,yt=0;yt<Ne;yt++){for(var Ue=Fe[ae+yt*8>>2],He=Fe[ae+(yt*8+4)>>2],an=0;an<He;an++)ko.printChar(K,Te[Ue+an]);Et+=He}return Fe[Ye>>2]=Et,0}var Nn={a:Ss,d:zf,e:td,f:nd,c:Bf,b:ad},Vf=dr(),rd=s.___wasm_call_ctors=function(){return(rd=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},Uf=s._init=function(){return(Uf=s._init=s.asm.i).apply(null,arguments)},sd=s._register_tensor=function(){return(sd=s._register_tensor=s.asm.j).apply(null,arguments)},Gf=s._dispose_data=function(){return(Gf=s._dispose_data=s.asm.k).apply(null,arguments)},Io=s._dispose=function(){return(Io=s._dispose=s.asm.l).apply(null,arguments)},To=s._Abs=function(){return(To=s._Abs=s.asm.n).apply(null,arguments)},Hf=s._Add=function(){return(Hf=s._Add=s.asm.o).apply(null,arguments)},jf=s._AddN=function(){return(jf=s._AddN=s.asm.p).apply(null,arguments)},qf=s._ArgMax=function(){return(qf=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},Xf=s._BatchMatMul=function(){return(Xf=s._BatchMatMul=s.asm.s).apply(null,arguments)},Kf=s._Ceil=function(){return(Kf=s._Ceil=s.asm.t).apply(null,arguments)},Yf=s._ClipByValue=function(){return(Yf=s._ClipByValue=s.asm.u).apply(null,arguments)},Jf=s._Conv2D=function(){return(Jf=s._Conv2D=s.asm.v).apply(null,arguments)},Qf=s._Conv2DBackpropInput=function(){return(Qf=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},Cs=s._Cos=function(){return(Cs=s._Cos=s.asm.x).apply(null,arguments)},Zf=s._CropAndResize=function(){return(Zf=s._CropAndResize=s.asm.y).apply(null,arguments)},eg=s._Cumsum=function(){return(eg=s._Cumsum=s.asm.z).apply(null,arguments)},tg=s._DepthToSpace=function(){return(tg=s._DepthToSpace=s.asm.A).apply(null,arguments)},ng=s._DepthwiseConv2dNative=function(){return(ng=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},ag=s._Equal=function(){return(ag=s._Equal=s.asm.C).apply(null,arguments)},rg=s._Exp=function(){return(rg=s._Exp=s.asm.D).apply(null,arguments)},sg=s._FlipLeftRight=function(){return(sg=s._FlipLeftRight=s.asm.E).apply(null,arguments)},ig=s._Floor=function(){return(ig=s._Floor=s.asm.F).apply(null,arguments)},og=s._FloorDiv=function(){return(og=s._FloorDiv=s.asm.G).apply(null,arguments)},zr=s._FusedBatchNorm=function(){return(zr=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Vu=s._FusedConv2D=function(){return(Vu=s._FusedConv2D=s.asm.I).apply(null,arguments)},Uu=s._FusedDepthwiseConv2D=function(){return(Uu=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},lg=s._Gather=function(){return(lg=s._Gather=s.asm.K).apply(null,arguments)},ug=s._GatherNd=function(){return(ug=s._GatherNd=s.asm.L).apply(null,arguments)},cg=s._Greater=function(){return(cg=s._Greater=s.asm.M).apply(null,arguments)},pg=s._GreaterEqual=function(){return(pg=s._GreaterEqual=s.asm.N).apply(null,arguments)},dg=s._LeakyRelu=function(){return(dg=s._LeakyRelu=s.asm.O).apply(null,arguments)},Oe=s._Less=function(){return(Oe=s._Less=s.asm.P).apply(null,arguments)},hg=s._LessEqual=function(){return(hg=s._LessEqual=s.asm.Q).apply(null,arguments)},mg=s._Log=function(){return(mg=s._Log=s.asm.R).apply(null,arguments)},fg=s._LogicalAnd=function(){return(fg=s._LogicalAnd=s.asm.S).apply(null,arguments)},gg=s._Max=function(){return(gg=s._Max=s.asm.T).apply(null,arguments)},yg=s._MaxPool=function(){return(yg=s._MaxPool=s.asm.U).apply(null,arguments)},bg=s._Maximum=function(){return(bg=s._Maximum=s.asm.V).apply(null,arguments)},Gu=s._Mean=function(){return(Gu=s._Mean=s.asm.W).apply(null,arguments)},id=s._Min=function(){return(id=s._Min=s.asm.X).apply(null,arguments)},od=s._Minimum=function(){return(od=s._Minimum=s.asm.Y).apply(null,arguments)},xg=s._Multiply=function(){return(xg=s._Multiply=s.asm.Z).apply(null,arguments)},vg=s._Neg=function(){return(vg=s._Neg=s.asm._).apply(null,arguments)},wg=s._NonMaxSuppressionV3=function(){return(wg=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},kg=s._NonMaxSuppressionV4=function(){return(kg=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},Ig=s._NonMaxSuppressionV5=function(){return(Ig=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},Tg=s._NotEqual=function(){return(Tg=s._NotEqual=s.asm.ca).apply(null,arguments)},Ng=s._OneHot=function(){return(Ng=s._OneHot=s.asm.da).apply(null,arguments)},et=s._PadV2=function(){return(et=s._PadV2=s.asm.ea).apply(null,arguments)},Sg=s._Pow=function(){return(Sg=s._Pow=s.asm.fa).apply(null,arguments)},Cg=s._Prelu=function(){return(Cg=s._Prelu=s.asm.ga).apply(null,arguments)},_g=s._Prod=function(){return(_g=s._Prod=s.asm.ha).apply(null,arguments)},No=s._RealDiv=function(){return(No=s._RealDiv=s.asm.ia).apply(null,arguments)},ld=s._Relu=function(){return(ld=s._Relu=s.asm.ja).apply(null,arguments)},ud=s._Relu6=function(){return(ud=s._Relu6=s.asm.ka).apply(null,arguments)},cd=s._ResizeBilinear=function(){return(cd=s._ResizeBilinear=s.asm.la).apply(null,arguments)},Eg=s._Reverse=function(){return(Eg=s._Reverse=s.asm.ma).apply(null,arguments)},Fg=s._RotateWithOffset=function(){return(Fg=s._RotateWithOffset=s.asm.na).apply(null,arguments)},pd=s._Round=function(){return(pd=s._Round=s.asm.oa).apply(null,arguments)},Ag=s._Rsqrt=function(){return(Ag=s._Rsqrt=s.asm.pa).apply(null,arguments)},dd=s._ScatterNd=function(){return(dd=s._ScatterNd=s.asm.qa).apply(null,arguments)},Wr=s._SelectV2=function(){return(Wr=s._SelectV2=s.asm.ra).apply(null,arguments)},$g=s._Sigmoid=function(){return($g=s._Sigmoid=s.asm.sa).apply(null,arguments)},Dg=s._Sin=function(){return(Dg=s._Sin=s.asm.ta).apply(null,arguments)},Ww=s._Softmax=function(){return(Ww=s._Softmax=s.asm.ua).apply(null,arguments)},hd=s._Sqrt=function(){return(hd=s._Sqrt=s.asm.va).apply(null,arguments)},Rg=s._Square=function(){return(Rg=s._Square=s.asm.wa).apply(null,arguments)},Mg=s._SquaredDifference=function(){return(Mg=s._SquaredDifference=s.asm.xa).apply(null,arguments)},Pg=s._Step=function(){return(Pg=s._Step=s.asm.ya).apply(null,arguments)},Og=s._StridedSlice=function(){return(Og=s._StridedSlice=s.asm.za).apply(null,arguments)},Lg=s._Sub=function(){return(Lg=s._Sub=s.asm.Aa).apply(null,arguments)},zg=s._Sum=function(){return(zg=s._Sum=s.asm.Ba).apply(null,arguments)},Wg=s._Tanh=function(){return(Wg=s._Tanh=s.asm.Ca).apply(null,arguments)},Bg=s._Tile=function(){return(Bg=s._Tile=s.asm.Da).apply(null,arguments)},Vg=s._TopK=function(){return(Vg=s._TopK=s.asm.Ea).apply(null,arguments)},Ug=s._Transpose=function(){return(Ug=s._Transpose=s.asm.Fa).apply(null,arguments)},Gg=s.__FusedMatMul=function(){return(Gg=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},Hg=s._malloc=function(){return(Hg=s._malloc=s.asm.Ha).apply(null,arguments)},jg=s._free=function(){return(jg=s._free=s.asm.Ia).apply(null,arguments)},md=s.stackSave=function(){return(md=s.stackSave=s.asm.Ja).apply(null,arguments)},fd=s.stackRestore=function(){return(fd=s.stackRestore=s.asm.Ka).apply(null,arguments)},Hu=s.stackAlloc=function(){return(Hu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Q;var So;function qg(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}pr=function K(){So||ju(),So||(pr=K)};function ju(K){if(K=K||u,la>0||(Kn(),la>0))return;function ae(){So||(So=!0,s.calledRun=!0,!G&&(Mn(),dn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),nn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=ju,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return ju(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),UE=1e-7,GE=1e-4,kd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Zu=class{refCount(e){return ua("refCount")}incRef(e){return ua("incRef")}timerAvailable(){return!0}time(e){return ua("time")}read(e){return ua("read")}readSync(e){return ua("readSync")}numDataIds(){return ua("numDataIds")}disposeData(e,t){return ua("disposeData")}write(e,t,n){return ua("write")}move(e,t,n,a,r){return ua("move")}memory(){return ua("memory")}floatPrecision(){return ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?UE:GE}dispose(){return ua("dispose")}};function ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function n0(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function HE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function ec(e,t,n){return Math.max(e,Math.min(t,n))}function jE(e){return e%2==0?e:e+1}function qE(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function XE(e,t){let n=Math.random();return t*n+(1-n)*e}function KE(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function un(e,t,n=""){$(gr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Es(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Fs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let a=0;a<e.length;++a)Fs(e[a],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function YE(e){return e.length===0}function gr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function JE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function QE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function ZE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return n0(t),t}function tc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function eF(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function tF(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ca(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function a0(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ca(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function r0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function s0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i0(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function o0(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function nF(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Qg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function l0(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ur(e){return typeof e=="string"||e instanceof String}function u0(e){return typeof e=="boolean"}function c0(e){return typeof e=="number"}function Id(e){return Array.isArray(e)?Id(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":c0(e)?"float32":Ur(e)?"string":u0(e)?"bool":"float32"}function Gr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Td(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ro(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function p0(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=p0(e+o*i,s,n)}return a}function Mo(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return p0(0,e,t)}function Zg(e,t){let n=Nd(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Nd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function aF(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Mo(e,new Float32Array(n));if(t==="int32")return Mo(e,new Int32Array(n));if(t==="bool")return Mo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ey(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function rF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function sF(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function ty(e){return e&&e.then&&typeof e.then=="function"}var d0="tfjsflags",h0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ty(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=iF(this.global.location.search);d0 in e&&e[d0].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=oF(n,a)})}};function iF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(lF(t,a[0],a[1]),a.join("="))),t}function lF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function oF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return ny}var ny=null;function uF(e){ny=e}var ay;function m0(){if(ay==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ay=e}return ay}function cF(){let e=m0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ry(e,t){let n=cF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Po="Abs",Oo="Acos",Lo="Acosh",Hr="Add",As="AddN",Sd="All",Cd="Any",$s="ArgMax",nc="ArgMin",zo="Asin",Wo="Asinh",Bo="Atan",Vo="Atanh",Uo="Atan2",Ds="AvgPool",_d="AvgPoolGrad",ac="AvgPool3D",Ed="AvgPool3DGrad",Rs="BatchMatMul",rc="BatchToSpaceND",Fd="Bincount",f0="BroadcastTo",Ms="Cast",Ps="Ceil",jr="ClipByValue",Ad="Complex",sc="ComplexAbs",Go="Concat",Os="Conv2D",$d="Conv2DBackpropFilter",Ls="Conv2DBackpropInput",ic="Conv3D",Dd="Conv3DBackpropFilterV2",Rd="Conv3DBackpropInputV2",zs="Cos",Ho="Cosh",Ws="Cumsum",jo="CropAndResize",Md="DenseBincount",qo="DepthToSpace",Bs="DepthwiseConv2dNative",Pd="DepthwiseConv2dNativeBackpropFilter",Od="DepthwiseConv2dNativeBackpropInput",Ld="Diag",oc="Dilation2D",zd="Dilation2DBackpropInput",Wd="Dilation2DBackpropFilter",Vs="RealDiv",Xo="Elu",Bd="EluGrad",Ko="Erf",Yo="Equal",Us="Exp",Jo="ExpandDims",Qo="Expm1",Vd="FFT",lc="Fill",Zo="FlipLeftRight",Gs="Floor",Hs="FloorDiv",js="FusedBatchNorm",el="GatherV2",tl="GatherNd",nl="Greater",qs="GreaterEqual",Xs="Identity",Ud="IFFT",Gd="Imag",al="IsFinite",rl="IsInf",sl="IsNan",Ks="LeakyRelu",il="Less",ol="LessEqual",Hd="LinSpace",Ys="Log",ll="Log1p",ul="LogicalAnd",uc="LogicalNot",cc="LogicalOr",g0="LogSoftmax",pc="LRN",jd="LRNGrad",Js="Max",Qs="Maximum",Zs="MaxPool",qd="MaxPoolGrad",dc="MaxPool3D",Xd="MaxPool3DGrad",Kd="MaxPoolWithArgmax",ei="Mean",ti="Min",ni="Minimum",hc="MirrorPad",cl="Mod",Yd="Multinomial",ai="Multiply",pl="Neg",dl="NotEqual",hl="NonMaxSuppressionV3",ml="NonMaxSuppressionV4",fl="NonMaxSuppressionV5",gl="OnesLike",ri="OneHot",yl="Pack",si="PadV2",pF="Pool",ii="Pow",oi="Prelu",bl="Prod",mc="Range",Jd="Real",xl="Reciprocal",li="Relu",vl="Reshape",fc="ResizeNearestNeighbor",Qd="ResizeNearestNeighborGrad",ui="ResizeBilinear",Zd="ResizeBilinearGrad",ci="Relu6",pi="Reverse",di="Round",hi="Rsqrt",wl="ScatterNd",kl="Select",Il="Selu",Tl="Slice",mi="Sin",Nl="Sinh",Sl="Sign",fi="Sigmoid",Cl="Softplus",gi="Sqrt",yi="Sum",gc="SpaceToBatchND",_l="SplitV",bi="Softmax",xi="SquaredDifference",yc="Square",vi="Sub",eh="SparseToDense",El="StridedSlice",Fl="Tan",wi="Tanh",qr="Tile",Al="TopK",th="Transform",ki="Transpose",nh="Unique",$l="Unpack",bc="UnsortedSegmentSum",Dl="ZerosLike",Xr="Step",ah="FromPixels",Rl="RotateWithOffset",Ii="_FusedMatMul",Ti="FusedConv2D",Ni="FusedDepthwiseConv2D",Ml=ry("kernelRegistry",()=>new Map),xc=ry("gradRegistry",()=>new Map);function rh(e,t){let n=sy(e,t);return Ml.get(n)}function iy(e){return xc.get(e)}function sh(e){let t=Ml.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function vc(e){let{kernelName:t,backendName:n}=e,a=sy(t,n);Ml.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Ml.set(a,e)}function y0(e){let{kernelName:t}=e;xc.has(t)&&Z().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),xc.set(t,e)}function dF(e,t){let n=sy(e,t);if(!Ml.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ml.delete(n)}function hF(e){if(!xc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);xc.delete(e)}function mF(e,t){sh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});vc(a)})}function sy(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>gr,assert:()=>$,assertNonNegativeIntegerDimensions:()=>ey,assertNonNull:()=>Es,assertShapesMatch:()=>un,bytesFromStringArray:()=>l0,bytesPerElement:()=>Qg,checkConversionForErrors:()=>i0,clamp:()=>ec,computeStrides:()=>Ro,createScalarValue:()=>fF,createShuffledIndices:()=>ZE,decodeString:()=>oh,distSquared:()=>KE,encodeString:()=>kc,fetch:()=>gF,flatten:()=>Fs,getArrayFromDType:()=>s0,getTypedArrayFromDType:()=>r0,hasEncodingLoss:()=>nF,indexToLoc:()=>sF,inferDtype:()=>Id,inferFromImplicitShape:()=>tF,isBoolean:()=>u0,isFunction:()=>Gr,isInt:()=>Ht,isNumber:()=>c0,isPromise:()=>ty,isScalarShape:()=>YE,isString:()=>Ur,isTypedArray:()=>cn,isValidDtype:()=>o0,locToIndex:()=>rF,makeOnesTypedArray:()=>Zg,makeZerosNestedTypedArray:()=>aF,makeZerosTypedArray:()=>Nd,nearestDivisor:()=>Td,nearestLargerEven:()=>jE,now:()=>wc,parseAxisParam:()=>ca,randUniform:()=>XE,repeatedTry:()=>eF,rightPad:()=>tc,shuffle:()=>n0,shuffleCombo:()=>HE,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>QE,squeezeShape:()=>a0,sum:()=>qE,tanh:()=>JE,toNestedArray:()=>Mo,toTypedArray:()=>ih});function fF(e,t){return t==="string"?kc(e):ih([e],t)}function yF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ih(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Fs(e)),Z().getBool("DEBUG")&&i0(e,t),yF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function wc(){return Z().platform.now()}function gF(e,t){return Z().platform.fetch(e,t)}function kc(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function oh(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var vF=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new xF)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=wc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:wc()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(c=>{bF(c,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function bF(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var xF=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?tc(`${a}ms`,9):a.error,o=tc(e,25),l=t.rank,c=t.size,u=tc(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function wF(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let p in u){let d=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){c.outputs.forEach(f=>a[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p<c.outputs.length;p++)if(s[c.outputs[p].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let h=c.inputs[d];a[h.id]&&(u[d]=h)}let p=Object.assign({},c);p.inputs=u,p.outputs=c.outputs,o.push(p)}}return o}function kF(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!gr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var b0=20,Ic=3,oy=7;function TF(e,t,n,a){let r=Ro(t),s=IF(e,t,n,r),i=t.length,o=lh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function IF(e,t,n,a){let r=Ot(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Nc(e):e;if(o>1)for(let c=0;c<r/s;c++){let u=c*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Tc(l[u+p],0,n).length)}return i}function Tc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(oy))} + ${parseFloat(e[1].toFixed(oy))}j`:Ur(e)?a=`'${e}'`:n==="bool"?a=x0(e):a=parseFloat(e.toFixed(oy)).toString(),tc(a,t)}function x0(e){return e===0?"false":"true"}function lh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Nc(e);return[Tc(f[0],0,n)]}return n==="bool"?[x0(e[0])]:[e[0].toString()]}if(l===1){if(o>b0){let g=Ic*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Ic)*i,o*i));return n==="complex64"&&(y=Nc(y),b=Nc(b)),["["+y.map((x,v)=>Tc(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>Tc(x,r[o-Ic+v],n)).join(", ")+"]"]}let f=n==="complex64"?Nc(e):Array.from(e);return["["+f.map((g,y)=>Tc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>b0){for(let f=0;f<Ic;f++){let g=f*p,y=g+p;d.push(...lh(e.slice(g,y),c,n,u,r,!1))}d.push("...");for(let f=o-Ic;f<o;f++){let g=f*p,y=g+p;d.push(...lh(e.slice(g,y),c,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...lh(e.slice(g,y),c,n,u,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function Nc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||s0(t,this.size),this.strides=Ro(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ua().makeTensor(this.values,this.shape,this.dtype)}},Ua=null,Pl=null,NF=null;function SF(e){Ua=e}function CF(e){Pl=e}function _F(e){NF=e}var Ee=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=Ro(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Pl.buffer(this.shape,this.dtype,e)}bufferSync(){return Pl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Mo(this.shape,e)}arraySync(){return Mo(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ua().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>oh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ua().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>oh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ua().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ua().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Pl.print(this,e)}clone(){return this.throwIfDisposed(),Pl.clone(this)}toString(e=!1){let t=this.dataSync();return TF(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Pl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ua().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return ry("Tensor",()=>Ee)}Y();var Kr=class extends Ee{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ua().disposeTensor(this),this.dataId=e.dataId,Ua().incRef(this,null)}dispose(){Ua().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Kr,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var Ta={};Le(Ta,{assertTypesMatch:()=>v0,getTensorsInContainer:()=>ly,isTensorInList:()=>EF,makeTypesMatch:()=>Nt});var uy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(uy||(uy={}));var cy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(cy||(cy={}));var py;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(py||(py={}));var dy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(dy||(dy={}));var hy;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(hy||(hy={}));var FF={float32:dy,int32:cy,bool:py,complex64:hy};function pa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FF[e][t]}function uh(e){return pa(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=pa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function v0(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function EF(e,t){return t.some(n=>n.id===e.id)}function ly(e){let t=[],n=new Set;return w0(e,t,n),t}function w0(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!AF(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),w0(s,t,n))}}function AF(e){return Array.isArray(e)||typeof e=="object"}function my(e){return e.kernelName!=null}var k0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Sc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new k0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new vF(this.backendInstance),!0}setupRegisteredKernels(){sh(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){sh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Zu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Sc.nextTensorId++}nextVariableId(){return Sc.nextVariableId++}clone(e){let t=M.runKernel(Xs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(Ms,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(rh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=my(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(my(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=rh(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:T,shape:k,dtype:S}=v;return this.makeTensorFromDataId(T,k,S)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=my(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=iy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Ur(e[0])&&(r=e.map(o=>kc(o)));let s=a.write(r,t,n),i=new Ee(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=l0(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Kr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Qg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Kr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Qg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=iy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=Nd(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=ly(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Ee,()=>"The result y returned by f() must be a tensor.");let s=wF(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?$F(r.shape):n,kF(i,s,l=>this.tidy(l),DF);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(Gr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(Gr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];$(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(c.every(p=>p instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=wc(),n=await this.backend.time(e);return n.wallMs=wc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new k0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Sc.nextTensorId=0;Sc.nextVariableId=0;function $F(e){let t=Zg(Ot(e),"float32");return M.makeTensor(t,e,"float32")}function I0(){let e=m0();if(e._tfengine==null){let t=new h0(e);e._tfengine=new Sc(t)}return uF(e._tfengine.ENV),SF(()=>e._tfengine),e._tfengine}var M=I0();function DF(e,t){let n={a:e,b:t};return M.runKernel(Hr,n)}var Cc={};Le(Cc,{isBrowser:()=>T0,isMobile:()=>RF});function MF(){return typeof navigator!="undefined"&&navigator!=null}function RF(){if(MF()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function T0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Na=Z();Na.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Na.registerFlag("IS_BROWSER",()=>T0());Na.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Na.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Na.registerFlag("PROD",()=>!1);Na.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Na.getBool("DEBUG"));Na.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Na.registerFlag("IS_TEST",()=>!1);Na.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Na.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ga(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&N0(e,a,[]),a}function N0(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)N0(e[r],a,n.concat(r))}function S0(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ee)return S0(a,e.dtype,t,n),e;let r=Id(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),S0(a,r,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ga(e,r);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?ih(e,r):Fs(e,[],!0);return M.makeTensor(i,s,r)}function _c(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var C0="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+C0;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return ty(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function PF(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");un(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(Ad,r)}var Yr=O({complex_:PF});function Jr(e,t,n,a){if(a==null&&(a=Id(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ey(t);let r=Ot(t),s=Ot(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?ih(e,a):Fs(e,[],!0),M.makeTensor(e,t,a)}function Jn(e,t,n){let a=Ga(e,n);return Jr(e,t,a,n)}var fy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},ch=4;async function LF(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+ch*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=ch,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(a);return{data:OF(s),specs:n}}function _0(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ot(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=fy[p.dtype],h=e.slice(r,r+c*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=zF()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*d}else if(o==="string"){let p=Ot(s.shape);u=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+ch))[0];r+=ch;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=fy[o],d=e.slice(r,r+c*p);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=Jn(h,l,"float32"),g=Jn(m,l,"float32");n[i]=Yr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*p}o!=="complex64"&&(n[i]=Jn(u,l,o))}return n}function OF(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var gy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function E0(e){return gy?Buffer.byteLength(e):new Blob([e]).size}function WF(e){if(gy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function BF(e){if(gy){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function yy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function F0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ec(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:E0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:E0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function VF(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function UF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function GF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function zF(){let e=VF(),t=UF(),n=GF();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},HF=e=>Ft.registerSaveRouter(e),jF=e=>Ft.registerLoadRouter(e),qF=e=>Ft.getSaveHandlers(e),XF=(e,t)=>Ft.getLoadHandlers(e,t),by="tensorflowjs",xy=1,Si="models_store",Qr="model_info_store";function A0(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function vy(e){let t=e.result;t.createObjectStore(Si,{keyPath:"modelPath"}),t.createObjectStore(Qr,{keyPath:"modelPath"})}var Ci=class{constructor(e){if(this.indexedDB=A0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(by,xy);r.onupgradeneeded=()=>vy(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Si,"readonly"),o=i.objectStore(Si).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Ec(t),o=s.transaction(Qr,"readwrite"),l=o.objectStore(Qr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Si,"readwrite");let p=u.objectStore(Si).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Qr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};Ci.URL_SCHEME="indexeddb://";var $0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ci.URL_SCHEME)?KF(e.slice(Ci.URL_SCHEME.length)):null;Ft.registerSaveRouter($0);Ft.registerLoadRouter($0);function KF(e){return new Ci(e)}function YF(e){return e.startsWith(Ci.URL_SCHEME)?e.slice(Ci.URL_SCHEME.length):e}var JF=class{constructor(){this.indexedDB=A0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(by,xy);n.onupgradeneeded=()=>vy(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Qr,"readonly"),s=r.objectStore(Qr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=YF(e),new Promise((t,n)=>{let a=this.indexedDB.open(by,xy);a.onupgradeneeded=()=>vy(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Qr,"readwrite"),i=s.objectStore(Qr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(Si,"readwrite");let p=l.objectStore(Si).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},yr="/",Ol="tensorflowjs_models",D0="info",QF="model_topology",ZF="weight_specs",eA="weight_data",tA="model_metadata";function R0(e){return{info:[Ol,e,D0].join(yr),topology:[Ol,e,QF].join(yr),weightSpecs:[Ol,e,ZF].join(yr),weightData:[Ol,e,eA].join(yr),modelMetadata:[Ol,e,tA].join(yr)}}function nA(e){let t=e.split(yr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(yr)}function aA(e){return e.startsWith(_i.URL_SCHEME)?e.slice(_i.URL_SCHEME.length):e}var _i=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=R0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Ec(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,WF(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=BF(s),t}};_i.URL_SCHEME="localstorage://";var M0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(_i.URL_SCHEME)?rA(e.slice(_i.URL_SCHEME.length)):null;Ft.registerSaveRouter(M0);Ft.registerLoadRouter(M0);function rA(e){return new _i(e)}var sA=class{constructor(){$(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ol+yr,n=yr+D0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=nA(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=aA(e);let t=R0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Ll="://",Qn=class{constructor(){this.managers={}}static getInstance(){return Qn.instance==null&&(Qn.instance=new Qn),Qn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Ll)&&(e=e.slice(0,e.indexOf(Ll))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Qn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function ph(e){if(e.indexOf(Ll)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Qn.getSchemes().join(",")}`);return{scheme:e.split(Ll)[0],path:e.split(Ll)[1]}}async function P0(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=ph(e).scheme,l=ph(e).path,c=o===ph(e).scheme,u=await r.load();n&&c&&await Qn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Qn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function iA(){let e=Qn.getSchemes(),t={};for(let n of e){let a=await Qn.getManager(n).listModels();for(let r in a){let s=n+Ll+r;t[s]=a[r]}}return t}async function oA(e){let t=ph(e);return Qn.getManager(t.scheme).removeModel(t.path)}async function lA(e,t){return P0(e,t,!1)}async function uA(e,t){return P0(e,t,!0)}var cA=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new cA);try{Qn.registerManager(_i.URL_SCHEME,new sA)}catch(e){}try{Qn.registerManager(Ci.URL_SCHEME,new JF)}catch(e){}}var pA={importFetch:()=>IE()},wy,dA=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(wy==null&&(wy=pA.importFetch()),wy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new dA);function Me(e,t="float32",n){return t=t||"float32",ey(e),new Lt(e,t,n)}function hA(e,t){let n=E(e,"x","cast");if(!o0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(Ms,a,r)}var ue=O({cast_:hA});function mA(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(Xs,t)}var Zr=O({clone_:mA});function O0(e,t=!1){console.log(e.toString(t))}I0();var fA={buffer:Me,cast:ue,clone:Zr,print:O0};CF(fA);var jt={};Le(jt,{browserFiles:()=>gA,browserHTTPRequest:()=>bA,concatenateArrayBuffers:()=>yy,copyModel:()=>lA,decodeWeights:()=>_0,encodeWeights:()=>LF,fromMemory:()=>xA,getLoadHandlers:()=>XF,getModelArtifactsInfoForJSON:()=>Ec,getSaveHandlers:()=>qF,http:()=>Iy,isHTTPScheme:()=>ky,listModels:()=>iA,loadWeights:()=>yA,moveModel:()=>uA,registerLoadRouter:()=>jF,registerSaveRouter:()=>HF,removeModel:()=>oA,weightsLoaderFactory:()=>L0,withSaveHandler:()=>vA});var wA="model",kA=".json",IA=".weights.bin";function z0(e){return new Promise(t=>setTimeout(t)).then(e)}var zl=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(zl.URL_SCHEME)&&(e=e.slice(zl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=wA),this.modelTopologyFileName=e+kA,this.weightDataFileName=e+IA}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await z0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await z0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ec(e)}}}};zl.URL_SCHEME="downloads://";var TA=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:yy(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>F0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=F0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},SA=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(zl.URL_SCHEME)?NA(e.slice(zl.URL_SCHEME.length)):null;Ft.registerSaveRouter(SA);function NA(e="model"){return new zl(e)}function gA(e){return new TA(e)}function W0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),$(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function B0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await W0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await W0(i,t.onProgress,o,l)}async function yA(e,t="",n,a){return L0(r=>B0(r,{requestInit:a}))(e,t,n)}function L0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=fy[y]*Ot(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,T)=>{v===g.name&&(x(),i[T]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[d+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(u[d+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=_0(v,[x.manifestEntry]);for(let k in T)p[k]=T[k]}),d+=m}),p}}var CA="application/octet-stream",_A="application/json",Ty=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:_A}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:CA}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ec(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=EA(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await B0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,yy(l)]}};Ty.URL_SCHEME_REGEX=/^https?:\/\//;function EA(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function ky(e){return e.match(Ty.URL_SCHEME_REGEX)!=null}var V0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>ky(a)):n=ky(e),n)return Iy(e,t)}return null};Ft.registerSaveRouter(V0);Ft.registerLoadRouter(V0);function Iy(e,t){return new Ty(e,t)}function bA(e,t){return Iy(e,t)}var Ny=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},FA=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function xA(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Ny(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ny({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function vA(e){return new FA(e)}var U0={};Le(U0,{confusionMatrix:()=>AA});function $A(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Nt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Rs,i,o)}var ze=O({matMul_:$A});function DA(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(ri,r,s)}var Wl=O({oneHot_:DA});function RA(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{$(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(ki,a,r)}var Ve=O({transpose_:RA});function MA(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Wl(ue(a,"int32"),n),i=Wl(ue(r,"int32"),n),o=Ve(s),l=ze(o,i);return ue(l,"int32")}var AA=O({confusionMatrix_:MA}),Ei={};Le(Ei,{fromPixels:()=>LA,fromPixelsAsync:()=>PA,toPixels:()=>OA});function dh(e,t,n){if(Es(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Ga(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Jr(e,t,a,n)}var Bl;function G0(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(rh(ah,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel(ah,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Bl==null&&(Bl=document.createElement("canvas").getContext("2d")),Bl.canvas.width=l,Bl.canvas.height=c,Bl.drawImage(e,0,0,l,c),u=Bl.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return dh(p,[c,l,t],"int32")}function zA(e){return e!=null&&e.data instanceof Uint8Array}function WA(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function BA(e){return e!=null&&e.width!==0&&e.height!==0}function VA(e){return WA()&&!(e instanceof ImageBitmap)&&BA(e)&&!zA(e)}async function PA(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&VA(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return G0(n,t)}async function OA(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ee)){let c=n;n=ue(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c<a*r;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let h=i[c*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var LA=O({fromPixels_:G0}),Sy={};Le(Sy,{prepareAndValidate:()=>H0});function H0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let c=1;for(let p=s;p<n;++p)c*=o[p],l.push(o[p]);let u=[...Ro(e.shape).map(p=>p/c),1].slice(0,s);return[l,i,c,u]}var Cy={};Le(Cy,{calculateShapes:()=>j0,validateInput:()=>Ey,validateUpdateShape:()=>_y});function _y(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Ey(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}_y(n,t,e)}function j0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Ot(t.shape)/o,c=[...Ro(n.slice(0,r)),1],u=Ot(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var rn={};Le(rn,{assertParamsValid:()=>UA,computeFlatOffset:()=>HA,computeOutShape:()=>q0,getNormalizedAxes:()=>K0,isSliceContinous:()=>GA,maskToAxes:()=>hh,parseSliceParams:()=>tk,sliceInfo:()=>jA,startForAxis:()=>Z0,startIndicesWithElidedDims:()=>Y0,stopForAxis:()=>ek,stopIndicesWithElidedDims:()=>J0,stridesForAxis:()=>Q0,stridesWithElidedDims:()=>X0});function UA(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function hh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function q0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function X0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function nk(e,t,n){return n<=e?n:n-(t-1)}function ak(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function K0(e,t,n,a,r,s,i,o,l){let c=e.length,u=new Array(c),p=new Array(c),d=new Array(c);if(t.length&&n>0){let h=t[0],m=n+1;u=Y0(i,h,m,a,e),p=J0(o,h,m,r,e),d=X0(s,h,m,e)}else for(let h=0;h<c;h++)u[h]=Z0(i,a,s,e,h,l),p[h]=ek(o,r,s,e,h,l),d[h]=Q0(s,h,l);return{begin:u,end:p,strides:d}}function Y0(e,t,n,a,r){let s=[...r],i=ak(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=nk(t,n,o),c=a[l];e&1<<l&&(c=0),s[o]=c}return s}function J0(e,t,n,a,r){let s=[...r],i=ak(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=nk(t,n,o),c=a[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=ec(0,s[o],r[o])}return s}function Q0(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function Z0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=ec(0,i,l-1),i}function ek(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=ec(0,i,l):i=ec(-1,i,l-1),i}function GA(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function HA(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function tk(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function jA(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=hh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=hh(o),f=e.slice();m.forEach(k=>{c[k]=0,u[k]=1,f.splice(k,0,1)});let{begin:g,end:y,strides:b}=K0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let x=hh(l);x.forEach(k=>{u[k]=c[k]+1,p[k]=1});let v=q0(c,u,p),T=v.filter((k,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(k=>k===1),$begin:c,$end:u,$strides:p,size:v,newShape:f,outShape:T}}var re={};Le(re,{Serializable:()=>rk,SerializationMap:()=>Fi,registerClass:()=>es});var rk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Fi=class{constructor(){this.classNameMap={}}static getMap(){return Fi.instance==null&&(Fi.instance=new Fi),Fi.instance}static register(e){Fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function es(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Fi.register(e)}var sk={};Le(sk,{TEST_EPSILON_FLOAT16:()=>ik,encodeStrings:()=>ok,expectArrayBuffersEqual:()=>QA,expectArraysClose:()=>qA,expectArraysEqual:()=>KA,expectNumbersClose:()=>YA,expectPromiseToFail:()=>XA,expectValuesInRange:()=>JA,testEpsilon:()=>Fy});var ZA=.001,ik=.1;function qA(e,t,n){return n==null&&(n=Fy()),Ay(e,t,(a,r)=>$y(a,r,n))}function Fy(){return M.backend.floatPrecision()===32?ZA:ik}function Ay(e,t,n){let a=!0;if((cn(e)||cn(t))&&(a=!1),cn(e)&&cn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ga(e),o=Ga(t);if(!gr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=cn(e)?e:Fs(e),s=cn(t)?t:Fs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function XA(e,t){e().then(()=>t.fail(),()=>t())}function KA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ur(e)||Ur(e[0])||Ur(t)||Ur(t[0])?Ay(e,n,(a,r)=>a==r):Ay(e,t,(a,r)=>$y(a,r,0))}function YA(e,t,n){if(n==null&&(n=Fy()),!$y(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function $y(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JA(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function QA(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function ok(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?ok(n):e[t]=kc(n)}return e}var lk="3.3.0";function e$(){Z().set("PROD",!0)}function t$(){Z().set("DEBUG",!0)}function n$(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Dy(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}_F(Dy);function a$(){M.disposeVariables()}function Ha(){return M}function mh(){return M.memory()}function r$(e){return M.profile(e)}function D(e,t){return M.tidy(e,t)}function Ae(e){ly(e).forEach(t=>t.dispose())}function qt(e){return M.keep(e)}function s$(e){return M.time(e)}function i$(e){return M.setBackend(e)}function o$(){return M.ready()}function l$(){return M.backendName}function u$(e){M.removeBackend(e)}function c$(e){return M.findBackend(e)}function p$(e){return M.findBackendFactory(e)}function fh(e,t,n=1){return M.registerBackend(e,t,n)}function uk(){return M.backend}function d$(e,t){Z().setPlatform(e,t)}function h$(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Hr,r)}var J=O({add_:h$});function m$(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Hs,r)}var gh=O({floorDiv_:m$});function f$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Nt(n,a),n.dtype==="int32"&&a.dtype==="int32")return gh(n,a);let r={a:n,b:a},s={};return M.runKernel(Vs,r,s)}var ye=O({div_:f$});function g$(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(ai,r)}var W=O({mul_:g$});function y$(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(sc,n)}else{let n={x:t};return M.runKernel(Po,n)}}var zt=O({abs_:y$});function b$(e){let t={x:E(e,"x","acos")};return M.runKernel(Oo,t)}var Ry=O({acos_:b$});function x$(e){let t={x:E(e,"x","acosh")};return M.runKernel(Lo,t)}var My=O({acosh_:x$});function v$(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!gr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel(As,a)}var ck=O({addN_:v$});function w$(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(Sd,a,r)}var yh=O({all_:w$});function k$(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(Cd,a,r)}var Fc=O({any_:k$});function I$(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel($s,n,a)}var Ac=O({argMax_:I$});function T$(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(nc,n,a)}var Py=O({argMin_:T$});function N$(e){let t={x:E(e,"x","asin")};return M.runKernel(zo,t)}var Oy=O({asin_:N$});function S$(e){let t={x:E(e,"x","asinh")};return M.runKernel(Wo,t)}var Ly=O({asinh_:S$});function C$(e){let t={x:E(e,"x","atan")};return M.runKernel(Bo,t)}var zy=O({atan_:C$});function _$(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Uo,r)}var Wy=O({atan2_:_$});function E$(e){let t={x:E(e,"x","atanh")};return M.runKernel(Vo,t)}var By=O({atanh_:E$});function F$(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=pk(r);return $c(e,o,n,s,a,null,null,l)}function dk(e,t,n,a,r,s,i="channelsLast"){let[o,l]=bh(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return $c(e,c,n,a,r,s,!1,i)}function A$(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=Vy(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return hk(e,u,n,a,r,!1,p,s)}function $c(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=bh(n),[y,b]=bh(a),x=Vl(d,y),v=Vl(h,b),{padInfo:T,outHeight:k,outWidth:S}=$$(r,c,u,f,g,x,v,s,o),F=i?m*p:m,A;return o==="channelsFirst"?A=[l,F,k,S]:o==="channelsLast"&&(A=[l,k,S,F]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:k,outWidth:S,outChannels:F,padInfo:T,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:A,filterShape:t}}function hk(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Vy(n),[v,T,k]=Vy(a),S=Vl(h,v),F=Vl(m,T),A=Vl(f,k),{padInfo:R,outDepth:P,outHeight:z,outWidth:V}=D$(r,c,u,p,y,b,x,S,F,A,o),G=s?g*d:g,H;return i==="channelsFirst"?H=[l,G,P,z,V]:i==="channelsLast"&&(H=[l,P,z,V,G]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:P,outHeight:z,outWidth:V,outChannels:G,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:F,effectiveFilterWidth:A,dilationDepth:v,dilationHeight:T,dilationWidth:k,inShape:e,outShape:H,filterShape:t}}function R$(e,t,n,a,r){a==null&&(a=Uy(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*a)/n+1,r),l=Ai((i-t+2*a)/n+1,r);return[o,l]}function M$(e,t,n,a,r,s){r==null&&(r=Uy(e,t,a));let i=e[0],o=e[1],l=e[2],c=Ai((i-t+2*r)/a+1,s),u=Ai((o-t+2*r)/a+1,s),p=Ai((l-t+2*r)/a+1,s);return[c,u,p,n]}function Uy(e,t,n,a=1){let r=Vl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function bh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Vy(e){return typeof e=="number"?[e,e,e]:e}function Vl(e,t){return t<=1?e:e+(e-1)*(t-1)}function $$(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=R$([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=Ai((t-s+d+h)/a+1,o),p=Ai((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function D$(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=M$([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),T=g-v,k=Math.floor(y/2),S=y-k;p={top:v,bottom:T,left:k,right:S,front:b,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ts(e){let[t,n,a]=bh(e);return t===1&&n===1&&a===1}function ja(e,t){return ts(e)||ts(t)}function pk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function P$(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(vl,n,a)}var U=O({reshape_:P$});function O$(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;$(ja(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&$(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Ds,c,u);return p=ue(p,s.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Zn=O({avgPool_:O$});function L$(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(ac,c,u);return p=ue(p,o.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Gy=O({avgPool3d_:L$});function z$(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=_c(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Zr(n[0]);let a=n,r={axis:t};return M.runKernel(Go,a,r)}var Je=O({concat_:z$});function W$(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(fi,t)}var da=O({sigmoid_:W$});function B$(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(Tl,r,s)}var Be=O({slice_:B$});function V$(e){let t={x:E(e,"x","tanh")};return M.runKernel(wi,t)}var Ul=O({tanh_:V$});function U$(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Je([c,p],1),h=ze(d,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),v=Be(m,[0,g*2],y),T=Be(m,[0,g*3],y),k=J(W(da(b),Ul(x)),W(u,da(J(i,v)))),S=W(Ul(k),da(T));return[k,S]}var G$=O({basicLSTMCell_:U$});function H$(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(rc,s,i)}var Dc=O({batchToSpaceND_:H$});function j$(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function q$(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:j$(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(js,p,d);return U(h,i.shape)}var br=O({batchNorm_:q$});function X$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var mk=O({batchNorm2d_:X$});function K$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var fk=O({batchNorm3d_:K$});function Y$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var gk=O({batchNorm4d_:Y$});function J$(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(Fd,s,i)}var yk=O({bincount_:J$});function Q$(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Zr(n);let i={x:n},o={reps:s};return M.runKernel(qr,i,o)}var Rc=O({broadcastTo_:Q$});function Z$(e){let t={x:E(e,"x","ceil")};return M.runKernel(Ps,t)}var Hy=O({ceil_:Z$});function eD(e,t,n){let a=E(e,"x","clipByValue");$(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(jr,r,s)}var Xt=O({clipByValue_:eD});function tD(e){return Je(e,0)}var bk=O({concat1d_:tD});function nD(e,t){return Je(e,t)}var xk=O({concat2d_:nD});function aD(e,t){return Je(e,t)}var vk=O({concat3d_:aD});function rD(e,t){return Je(e,t)}var wk=O({concat4d_:rD});function sD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];$(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),$(ja(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Os,d,h);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=O({conv2d_:sD});function iD(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1]])),$(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(ja(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=At(d,p,[1,n],a,"NHWC",[1,s],i);return u?U(h,[h.shape[2],h.shape[3]]):U(h,[h.shape[0],h.shape[2],h.shape[3]])}var xh=O({conv1d_:iD});function oD(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),$(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&$(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(Ls,d,h);return c?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var jy=O({conv2DBackpropInput_:oD});function lD(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return jy(n,i,o,a,r,"NHWC",s)}var vh=O({conv2dTranspose_:lD});function uD(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(ja(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(ic,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var qy=O({conv3d_:uD});function cD(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(Rd,u,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kk=O({conv3DBackpropInput_:cD});function pD(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return kk(n,s,i,a,r)}var dD=O({conv3dTranspose_:pD});function hD(e){let t={x:E(e,"x","cos")};return M.runKernel(zs,t)}var Mc=O({cos_:hD});function mD(e){let t={x:E(e,"x","cosh")};return M.runKernel(Ho,t)}var wh=O({cosh_:mD});function fD(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Ws,r,s)}var kh=O({cumsum_:fD});function gD(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(Md,i,o)}var Ik=O({denseBincount_:gD});function yD(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),$(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(qo,o,l)}var Xy=O({depthToSpace_:yD});function bD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&$(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Bs,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ns=O({depthwiseConv2d_:bD});function xD(e){let t={x:E(e,"x","diag")};return M.runKernel(Ld,t)}var vD=O({diag_:xD});function wD(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(oc,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ky=O({dilation2d_:wD});function kD(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function bt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function ID(e,t){let n=E(e,"a","equal"),a=E(t,"b","equal");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Yo,r)}var as=O({equal_:ID});function TD(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=bt(a.shape,r.shape),o=Rc(a,i),l=Rc(r,i);s.rank===1&&$(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&un(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(kl,c)}var Cn=O({where_:TD});function ND(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(Dl,t)}var Ge=O({zerosLike_:ND});function SD(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Nt(n,a);let r=ye(n,a),s=Ge(r),i=as(a,s);return Cn(i,s,r)}var Yy=O({divNoNan_:SD});function CD(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=U(n,[1,-1]),o=U(a,[-1,1]),l=ze(i,o);return U(l,[])}else if(n.rank===1&&a.rank===2){let i=U(n,[1,-1]),o=U(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return U(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=U(a,[-1,1]),o=ze(n,i);return U(o,[o.size])}else{let i=U(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var Tk=O({dot_:CD});function _D(e){let t={x:E(e,"x","elu")};return M.runKernel(Xo,t)}var Gl=O({elu_:_D});function ED(e){let t=E(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return M.runKernel(Ko,n)}var Jy=O({erf_:ED});function FD(e){let t={x:E(e,"x","exp")};return M.runKernel(Us,t)}var hn=O({exp_:FD});function AD(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(Jo,a,r)}var mn=O({expandDims_:AD});function $D(e){let t={x:E(e,"x","expm1")};return M.runKernel(Qo,t)}var Qy=O({expm1_:$D});function DD(e,t){let n=E(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(qr,a,r)}var qa=O({tile_:DD});function RD(e,t,n,a="float32"){t==null&&(t=e);let r=Me([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return qa(mn(i,0),[n[0],1,1]);if(n.length===2)return qa(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return qa(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Zy=O({eye_:RD});function _n(e,t,n){let a={shape:e,value:t,dtype:n};return M.runKernel(lc,{},a)}function MD(e){let t={x:E(e,"x","floor")};return M.runKernel(Gs,t)}var Hl=O({floor_:MD});function PD(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return M.runKernel(el,i,o)}var $i=O({gather_:PD});function OD(e,t){let n=E(e,"a","greater"),a=E(t,"b","greater");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(nl,r)}var ha=O({greater_:OD});function LD(e,t){let n=E(e,"a","greaterEqual"),a=E(t,"b","greaterEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(qs,r)}var rs=O({greaterEqual_:LD});function zD(e){let t={input:E(e,"input","imag")};return M.runKernel(Gd,t)}var Ih=O({imag_:zD});function WD(e){let t={x:E(e,"x","isFinite")};return M.runKernel(al,t)}var Nk=O({isFinite_:WD});function BD(e){let t={x:E(e,"x","isInf")};return M.runKernel(rl,t)}var Sk=O({isInf_:BD});function VD(e){let t={x:E(e,"x","isNaN")};return M.runKernel(sl,t)}var Ck=O({isNaN_:VD});function UD(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return M.runKernel(Ks,n,a)}var Pc=O({leakyRelu_:UD});function GD(e,t){let n=E(e,"a","less"),a=E(t,"b","less");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(il,r)}var Th=O({less_:GD});function HD(e,t){let n=E(e,"a","lessEqual"),a=E(t,"b","lessEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ol,r)}var Di=O({lessEqual_:HD});function _k(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return M.runKernel(Hd,{},a)}function jD(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),$(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(pc,l,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var eb=O({localResponseNormalization_:jD});function qD(e){let t={x:E(e,"x","log")};return M.runKernel(Ys,t)}var Pn=O({log_:qD});function XD(e){let t={x:E(e,"x","log1p")};return M.runKernel(ll,t)}var Nh=O({log1p_:XD});function KD(e){return $(Gr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&un(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Sh(i),i[0]})}}function YD(e){return $(Gr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=_c(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&un(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sh(i),i})}}function JD(e){return $(Gr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return Sh(a),{grad:a[0],value:r}}}function QD(e){return $(Gr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&un(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Sh(a.grads),a}}function Ek(e,t){$(Gr(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(c=>c instanceof Kr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);$(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Xa(e){return M.customGrad(e)}function Sh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function ZD(e){let t={x:E(e,"x","neg")};return M.runKernel(pl,t)}var St=O({neg_:ZD});function eR(e){let t={x:E(e,"x","softplus")};return M.runKernel(Cl,t)}var jl=O({softplus_:eR});function tR(e){let t=E(e,"x","logSigmoid");return Xa(n=>({value:St(jl(St(n))),gradFunc:a=>W(a,da(St(n)))}))(t)}var Fk=O({logSigmoid_:tR});function nR(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Js,a,r)}var ea=O({max_:nR});function aR(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(vi,r)}var he=O({sub_:aR});function rR(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(yi,r,s)}var Se=O({sum_:rR});function sR(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Xa((a,r)=>{let s=!0,i=ea(a,t,!0),o=he(a,i),l=he(ue(o,"float32"),Pn(Se(hn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=hn(p);return he(c,W(Se(c,t,d),h))}}})(n)}var Ch=O({logSoftmax_:sR});function tb(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Ak(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function $k(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ri(e,t){let n=t.map(a=>1);return Ak(e,n,t)}function iR(e,t,n){$(tb(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Dk(e,t){if(tb(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function nb(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function oR(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function lR(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=ca(t,a.shape),s=ea(a,r,!0),i=he(a,s),o=hn(i),l=Se(o,r),c=Pn(l),u=J(U(s,c.shape),c);if(n){let p=Ri(u.shape,r);return U(u,p)}return u}var ab=O({logSumExp_:lR});function uR(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ul,r)}var ma=O({logicalAnd_:uR});function cR(e){let t={x:E(e,"x","logicalNot","bool")};return M.runKernel(uc,t)}var Oc=O({logicalNot_:cR});function pR(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(cc,r)}var _h=O({logicalOr_:pR});function dR(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return bt(n.shape,a.shape),ma(_h(e,t),Oc(ma(e,t)))}var Rk=O({logicalXor_:dR});function hR(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(ja(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&$(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Zs,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $t=O({maxPool_:hR});function mR(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(dc,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var rb=O({maxPool3d_:mR});function fR(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel(Kd,s,i);return{result:o[0],indexes:o[1]}}var Mk=O({maxPoolWithArgmax_:fR});function gR(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Qs,r)}var Ka=O({maximum_:gR});function yR(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(ei,a,r)}var Ct=O({mean_:yR});function bR(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(ti,a,r)}var ql=O({min_:bR});function xR(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ni,r)}var Xl=O({minimum_:xR});function vR(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(hc,i,s)}var sb=O({mirrorPad_:vR});function wR(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(cl,r)}var ib=O({mod_:wR});function kR(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var lt=O({square_:kR});function IR(e,t=null,n=!1){e=E(e,"x","moments");let a=ca(t,e.shape),r=Ct(e,a,n),s=r.shape;n||(s=Ri(r.shape,a));let i=lt(he(ue(e,"float32"),U(r,s))),o=Ct(i,a,n);return{mean:r,variance:o}}var Eh=O({moments_:IR});function TR(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=_c(n,"c","multiRNNCell"),i=_c(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let p=0;p<l.length;p+=2)c.push(l[p]),u.push(l[p+1]);return[c,u]}var NR=O({multiRNNCell_:TR});function SR(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel(Yd,o,l);return i===1?U(c,[c.size]):c}var Pk=O({multinomial_:SR});function CR(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(dl,r)}var Mi=O({notEqual_:CR});function xt(e,t="float32"){if(t==="complex64"){let a=xt(e,"float32"),r=xt(e,"float32");return Yr(a,r)}let n=Nd(Ot(e),t);return M.makeTensor(n,e,t)}function Ya(e,t="float32"){if(t==="complex64"){let a=Ya(e,"float32"),r=xt(e,"float32");return Yr(a,r)}let n=Zg(Ot(e),t);return M.makeTensor(n,e,t)}function _R(e){let t={x:E(e,"x","onesLike")};return M.runKernel(gl,t)}var On=O({onesLike_:_R});function ER(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=U(n,[-1,1]),s=U(a,[1,-1]);return ze(r,s)}var FR=O({outerProduct_:ER});function AR(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(si,s,r)}var ta=O({pad_:AR});function $R(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ta(e,[t],n)}var DR=O({pad1d_:$R});function RR(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ta(e,t,n)}var MR=O({pad2d_:RR});function PR(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ta(e,t,n)}var OR=O({pad3d_:PR});function LR(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ta(e,t,n)}var zR=O({pad4d_:LR});function WR(e,t,n){let a=E(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(gc,r,s)}var Lc=O({spaceToBatchND_:WR});function UR(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),$(ja(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=dk(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=VR([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=BR([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:Lc(o,u,h),y=(n==="avg"?()=>Zn(g,t,s,f):()=>$t(g,t,s,f))(),b=d?y:Dc(y,u,m);return l?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function BR(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function VR(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Ok=O({pool_:UR});function GR(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(ii,r)}var xr=O({pow_:GR});function HR(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(oi,r)}var zc=O({prelu_:HR});function jR(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(bl,r,s)}var Fh=O({prod_:jR});function qR(e,t,n){let a=Ot(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return M.makeTensor(r,e,n)}var XR=O({rand_:qR}),ob=Do(e0()),lb=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=ob.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},KR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=ob.alea(r.toString()),this.randn=new lb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},YR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ob.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function JR(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new KR(t,n,a,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var QR=O({randomGamma_:JR});function ZR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new lb(t,n,a,!1,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Lk=O({randomNormal_:ZR});function eM(e,t=0,n=1,a="float32",r){let s=Me(e,a),i=new YR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Kl=O({randomUniform_:eM});function Ah(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return M.runKernel(mc,{},r)}function tM(e){let t={input:E(e,"input","real")};return M.runKernel(Jd,t)}var Wc=O({real_:tM});function nM(e){let t={x:E(e,"x","reciprocal")};return M.runKernel(xl,t)}var ub=O({reciprocal_:nM});function aM(e){let t={x:E(e,"x","relu")};return M.runKernel(li,t)}var qe=O({relu_:aM});function rM(e){let t={x:E(e,"x","relu6")};return M.runKernel(ci,t)}var $h=O({relu6_:rM});function sM(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return M.runKernel(pi,n,a)}var Ln=O({reverse_:sM});function iM(e){let t=E(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ln(t,0)}var oM=O({reverse1d_:iM});function lM(e,t){let n=E(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ln(n,t)}var uM=O({reverse2d_:lM});function cM(e,t){let n=E(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ln(n,t)}var pM=O({reverse3d_:cM});function dM(e,t){let n=E(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ln(n,t)}var hM=O({reverse4d_:dM});function mM(e){let t={x:E(e,"x","round")};return M.runKernel(di,t)}var cb=O({round_:mM});function fM(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(hi,t)}var Dh=O({rsqrt_:fM});function ve(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Jr(e,[],[],t)}function gM(e){let t={x:E(e,"x","selu")};return M.runKernel(Il,t)}var Rh=O({selu_:gM});function yM(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),$(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];$(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=ns(u,l,a,r,i,s),f=At(m,c,1,"valid",i);return p?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Pi=O({separableConv2d_:yM});async function bM(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Lt([o],n.dtype),c=new Lt([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],c.values[p]=u,p++);return[l.toTensor(),c.toTensor()]}var zk=bM;function xM(e){let t={x:E(e,"x","sign")};return M.runKernel(Sl,t)}var pb=O({sign_:xM});function vM(e){let t={x:E(e,"x","sin")};return M.runKernel(mi,t)}var Mh=O({sin_:vM});function wM(e){let t={x:E(e,"x","sinh")};return M.runKernel(Nl,t)}var Ph=O({sinh_:wM});function kM(e,t,n){let a=E(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var Oh=O({slice1d_:kM});function IM(e,t,n){let a=E(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var db=O({slice2d_:IM});function TM(e,t,n){let a=E(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Yl=O({slice3d_:TM});function NM(e,t,n){let a=E(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Bc=O({slice4d_:NM});function SM(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(bi,a,r)}var Sa=O({softmax_:SM});function CM(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Vd,t)}var Vc=O({fft_:CM});function _M(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Ud,t)}var Jl=O({ifft_:_M});function EM(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=U(e,[n,t]);a=Jl(r)}else{let r=[n,2*(t-1)],s=U(Wc(e),[n,t]),i=U(Ih(e),[n,t]),o=Ln(Be(s,[0,1],[n,t-2]),1),l=W(Ln(Be(i,[0,1],[n,t-2]),1),ve(-1)),c=Je([s,o],1),u=Je([i,l],1),p=U(Yr(c,u),[r[0],r[1]]);a=Jl(p)}if(a=Wc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=U(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Lh=O({irfft_:EM});function FM(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(_l,a,r)}var zn=O({split_:FM});function AM(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,xt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=U(Yr(r,s),[a,n]),o=Vc(i),l=Math.floor(n/2)+1,c=Wc(o),u=Ih(o),p=zn(c,[l,n-l],c.shape.length-1),d=zn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(Yr(p[0],d[0]),h)}var Uc=O({rfft_:AM});function $M(e){let t={x:E(e,"x","sqrt")};return M.runKernel(gi,t)}var sn=O({sqrt_:$M});function DM(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(xi,r,s)}var zh=O({squaredDifference_:DM});function RM(e,t){let n=E(e,"x","squeeze");return U(n,a0(n.shape,t).newShape)}var ss=O({squeeze_:RM});function MM(e,t=0){let n=_c(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(yl,a,r)}var Dt=O({stack_:MM});function PM(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(Xr,n,a)}var Ql=O({step_:PM});function OM(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel(El,c,u)}var hb=O({stridedSlice_:OM});function LM(e){let t={x:E(e,"x","tan")};return M.runKernel(Fl,t)}var mb=O({tan_:LM});function Ze(e,t){Es(e);let n=Ga(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Jr(e,null,n,t)}function Ca(e,t,n){if(Es(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Ga(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Jr(e,t,a,n)}function _a(e,t,n){if(Es(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Ga(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Jr(e,t,a,n)}function zM(e,t,n){if(Es(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Ga(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Jr(e,t,a,n)}function WM(e,t,n){if(Es(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Ga(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Jr(e,t,a,n)}function BM(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(Al,s,i);return{values:o,indices:l}}var fb=O({topk_:BM});function VM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new lb(t,n,a,!0,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Wh=O({truncatedNormal_:VM});function UM(e,t=0){let n=E(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(nh,a,r);return{values:s,indices:i}}var Bh=O({unique_:UM});function GM(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");$(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(bc,s,i)}var gb=O({unsortedSegmentSum_:GM});function HM(e,t=0){let n=E(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel($l,a,r)}var ut=O({unstack_:HM});function Wk(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function Bk(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Me(e,"int32"),r=Me([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function jM(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=Bk(t.shape,n);return e!==t&&t.dispose(),a}var yb=jM;async function qM(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),un(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=U(a,c),p=U(r,[-1]),d=await yb(p),h=ss(d,[1]),m=$i(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),d.dispose(),m}var XM=qM;function KM(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=Vk(e,t,n),s=r.shape;if(a){let i=ca(n,e.shape);s=Ri(r.shape,i)}return U(r,s)}function Vk(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return Vk(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(zt(e),n);if(t===Infinity)return ea(zt(e),n);if(t===-Infinity)return ql(zt(e),n);if(t==="euclidean"||t===2)return sn(Se(xr(zt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return ea(Se(zt(e),n[0]),n[1]-1);if(t===Infinity)return ea(Se(zt(e),n[1]),n[0]);if(t===-Infinity)return ql(Se(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return sn(Se(lt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Vh=O({norm_:KM});function YM(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");v0(s,i),$(gr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),c=he(l,o),u=W(he(i,s),c);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=ye(u,he(l,xr(o,p)))}return J(s,u)}var JM=O({movingAverage_:YM});function QM(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");Ey(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(wl,s,i)}var Uk=O({scatterND_:QM});function ZM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function eP(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);ZM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(eh,o,l)}var bb=O({sparseToDense_:eP});function tP(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(tl,a)}var Gk=O({gatherND_:tP});function nP(e,t){if(t==null)return e.shape.slice();if(gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function aP(e,t,n,a){let r=E(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?r.clone():r;let s=nP(r,n),i=1-t,o=ye(Hl(J(Kl(s,0,1,"float32",a),i)),i);return W(r,o)}var Hk=O({dropout_:aP});function jk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function xb(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Ze(r,"float32")}async function rP(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),un(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=r0("bool",l);for(let p=0;p<l;p++){let d=p*c,h=i.subarray(d,d+c),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Jn(u,r.shape,"bool")}var sP=rP,is={};Le(is,{conv2d:()=>iP,depthwiseConv2d:()=>oP,matMul:()=>lP});function uP(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];$(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),$(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&$(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel($d,p,d)}var vb=O({conv2DBackpropFilter_:uP});function Uh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Ql(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Gh(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),U(n,e.shape)}function Hh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Gl(e);if(t==="relu6")return $h(e);if(t==="prelu")return zc(e,n);if(t==="leakyrelu")return Pc(e,a);throw new Error(`Unknown fused activation ${t}.`)}var jh=(e,t)=>!(e>0)||t==="linear";function cP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",jh(M.state.gradientDepth,l)===!1){let T=At(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),Hh(T,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&$(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),$(ja(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=$c(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(T,k)=>{let[S,F,A,R]=k,P=Uh(T,A,l);$(ts(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=jy(F.shape,P,S,n,a),V=vb(F,P,S.shape,n,a),G=[z,V];if(R!=null){let H=Gh(R,P);G.push(H)}return G},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Xa((T,k,S)=>{let F=M.runKernel(Ti,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Xa((T,k,S,F)=>{let A=M.runKernel(Ti,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var iP=O({fusedConv2d_:cP});function pP(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(Pd,c,u)}var qk=O({depthwiseConv2dNativeBackpropFilter_:pP});function dP(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(Od,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Xk=O({depthwiseConv2dNativeBackpropInput_:dP});function hP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(jh(M.state.gradientDepth,l)===!1){let T=ns(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),Hh(T,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),$(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),$(ja(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&$(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=$c(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(T,k)=>{$(ts(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,F,A,R]=k,P=Uh(T,A,l),z=Xk(F.shape,P,S,n,a,s,i),V=qk(F,P,S.shape,n,a,s,i);if(R!=null){let G=Gh(g,P);return[z,V,G]}return[z,V]},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Xa((T,k,S)=>{let F=M.runKernel(Ni,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):Xa((T,k,S,F)=>{let A=M.runKernel(Ni,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var oP=O({fusedDepthwiseConv2d_:hP});function mP({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(jh(M.state.gradientDepth,s)===!1){let R=ze(e,t,n,a);return r!=null&&(R=J(R,r)),Hh(R,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Ot(m),y=Ot(f);$(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),$(gr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),$(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),x=n?U(l,[g,u,d]):U(l,[g,d,u]),v=a?U(c,[y,h,p]):U(c,[y,p,h]),T;r!=null&&(T=E(r,"bias","fused matMul"),[T]=Nt(T,l),bt(b,T.shape));let k;i!=null&&(k=E(i,"prelu weights","fused matMul"));let S=(R,P)=>{let[z,V,G,H]=P,X=Uh(U(R,G.shape),G,s),j,te;if(!n&&!a?(j=ze(X,V,!1,!0),te=ze(z,X,!0,!1)):!n&&a?(j=ze(X,V,!1,!1),te=ze(X,z,!0,!1)):n&&!a?(j=ze(V,X,!1,!0),te=ze(z,X,!1,!1)):(j=ze(V,X,!0,!0),te=ze(X,z,!0,!0)),r!=null){let Q=Gh(H,X);return[j,te,Q]}else return[j,te]},F={a:x,b:v,bias:T,preluActivationWeights:k},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Xa((R,P,z)=>{let V=M.runKernel(Ii,F,A);return z([R,P,V]),{value:U(V,b),gradFunc:S}})(x,v):Xa((R,P,z,V)=>{let G=M.runKernel(Ii,F,A);return V([R,P,G,z]),{value:U(G,b),gradFunc:S}})(x,v,T)}var lP=O({fusedMatMul_:mP});function fP(e){return xb(e,.54,.46)}var gP=O({hammingWindow_:fP});function yP(e){return xb(e,.5,.5)}var Kk=O({hannWindow_:yP});function bP(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([Be(e,s,t-o),_n([o],r)]);i.push(l),s+=n}return i.length===0?Ca([],[0,t]):U(Je(i),[i.length,t])}var Yk=O({frame_:bP});function xP(e,t,n,a,r=Kk){a==null&&(a=jk(t));let s=Yk(e,t,n),i=W(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Uc(Be(i,[l,0],[1,t]),a));return Je(o)}var vP=O({stft_:xP});function wP(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),c=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(jo,u,p)}var kP=O({cropAndResize_:wP});function IP(e){let t=E(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(Zo,n,{})}var TP=O({flipLeftRight_:IP});function NP(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(Rl,s,i)}var SP=O({rotateWithOffset_:NP});function Zl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function CP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=Zl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(hl,{boxes:s,scores:i},l)}var _P=O({nonMaxSuppression_:CP});function FP(e,t,n){let a=EP(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function EP(e,t,n){return $P(e,t,n||AP)}function AP(e,t){return e>t?1:e<t?-1:0}function $P(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function Jk(e,t,n,a,r){return wb(e,t,n,a,r,0)}function Qk(e,t,n,a,r,s){return wb(e,t,n,a,r,0,!1,s,!0)}function Zk(e,t,n,a,r,s){return wb(e,t,n,a,r,s,!0)}function wb(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(e1);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let T=p.length-1;T>=x;--T){let k=DP(e,b,p[T]);if(k>=a){v=!0;break}if(g.score=g.score*RP(a,u,k),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&FP(c,g,e1))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function DP(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function RP(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function e1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function MP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Zl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=Jk(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ze(p,"int32")}var PP=MP;function OP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Zl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(fl,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var LP=O({nonMaxSuppressionWithScore_:OP});async function zP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Zl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=Zk(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ze(d,"int32"),selectedScores:Ze(h)}}var WP=zP;function BP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Zl(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(ml,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var VP=O({nonMaxSuppressionPadded_:BP});async function UP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Zl(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Qk(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ze(m,"int32"),validOutputs:ve(f,"int32")}}var GP=UP;function HP(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(ui,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var t1=O({resizeBilinear_:HP});function jP(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(fc,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var n1=O({resizeNearestNeighbor_:jP});function qP(e,t,n="nearest",a="constant",r=0,s){let i=E(e,"image","transform","float32"),o=E(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return M.runKernel(th,l,c)}var XP=O({transform_:qP});function KP(e,t,n){$(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=U(Ah(0,s,1,"int32"),[-1,1]),l=Ah(0,i,1,"int32"),c=he(o,l),u=ma(Di(c,ve(+t,"int32")),rs(c,ve(-n,"int32"))),p=xt([s,i],a.dtype);return U(Dt(ut(U(a,[-1,s,i])).map(d=>Cn(u,d,p))),r)}var YP=O({bandPart_:KP});function JP(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>ss(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=W(Se(W(n[i],s)),n[i]);s=he(s,o)}return ye(s,Vh(s,"euclidean"))}));return t?Dt(n,0):n}var QP=O({gramSchmidt_:JP});function ZP(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return a1(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=ut(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=a1(l,t);r.push(c),s.push(u)});let i=U(Dt(r,0),e.shape),o=U(Dt(s,0),e.shape);return[i,o]}}function a1(e,t=!1){return M.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Zy(n),s=Zr(e),i=Ca([[1]],[1,1]),o=Zr(i),l=n>=a?a:n;for(let c=0;c<l;++c){let u=s,p=o,d=r;[o,s,r]=M.tidy(()=>{let h=Be(s,[c,c],[n-c,1]),m=Vh(h),f=Be(s,[c,c],[1,1]),g=Cn(ha(f,0),Ca([[-1]]),Ca([[1]])),y=he(f,W(g,m)),b=ye(h,y);b.shape[0]===1?o=Zr(i):o=Je([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=St(ye(ze(g,y),m)),v=Be(s,[c,0],[n-c,a]),T=W(x,o),k=Ve(o);if(c===0)s=he(v,ze(T,ze(k,v)));else{let A=he(v,ze(T,ze(k,v)));s=Je([Be(s,[0,0],[c,a]),A],0)}let S=Ve(T),F=Be(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=he(F,ze(ze(F,o),S));else{let A=he(F,ze(ze(F,o),S));r=Je([Be(r,[0,0],[n,c]),A],1)}return[o,s,r]}),Ae([u,p,d])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var eO=O({qr_:ZP}),fn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(fn||(fn={}));function tO(e,t,n=fn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:W(a,r);if(n===fn.NONE)return s;if(n===fn.SUM)return Se(s);if(n===fn.MEAN){if(r==null)return Ct(s);{let i=a.size/r.size,o=ye(Se(s),Se(r));return i>1?ye(o,ve(i)):o}}if(n===fn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ye(Se(s),ve(a.size));{let i=W(r,Ya(a.shape)),o=ue(Se(Mi(i,ve(0))),"float32");return ye(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var vr=O({computeWeightedLoss_:tO});function nO(e,t,n,a=fn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),un(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(he(r,s));return vr(o,i,a)}var aO=O({absoluteDifference_:nO});function rO(e,t,n,a,r=fn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),un(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=he(l,Se(W(s,i),n,!0));return vr(c,o,r)}var sO=O({cosineDistance_:rO});function iO(e,t,n,a=fn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),un(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=he(W(ve(2),r),o);let l=qe(he(o,W(r,s)));return vr(l,i,a)}var oO=O({hingeLoss_:iO});function lO(e,t,n,a=1,r=fn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),un(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),c=zt(he(i,s)),u=Xl(c,l),p=he(c,u),d=J(W(ve(.5),lt(u)),W(l,p));return vr(d,o,r)}var uO=O({huberLoss_:lO});function cO(e,t,n,a=1e-7,r=fn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),un(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(a),u=St(W(s,Pn(J(i,c)))),p=W(he(l,s),Pn(J(he(l,i),c))),d=he(u,p);return vr(d,o,r)}var pO=O({logLoss_:cO});function dO(e,t,n,a=fn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),un(r.shape,s.shape,"Error in meanSquaredError: ");let o=zh(r,s);return vr(o,i,a)}var hO=O({meanSquaredError_:dO});function mO(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");un(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=qe(a),s=W(a,n),i=Nh(hn(St(zt(a))));return J(he(r,s),i)}function fO(e,t,n,a=0,r=fn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),un(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(.5);s=J(W(s,he(u,c)),W(p,c))}let l=mO(s,i);return vr(l,o,r)}var gO=O({sigmoidCrossEntropy_:fO});function yO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Xa((a,r,s)=>{let i=ab(r,[n],!0),o=he(ue(r,"float32"),i);s([a,o]);let l=St(W(o,a));return{value:Se(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Ri(c.shape,[n]);return[W(U(c,h),he(ue(p,"float32"),hn(d))),W(U(c,h),he(hn(d),ue(p,"float32")))]}}})(e,t)}function bO(e,t,n,a=0,r=fn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),un(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(s.shape[1]);s=J(W(s,he(u,c)),ye(c,p))}let l=yO(s,i);return vr(l,o,r)}var xO=O({softmaxCrossEntropy_:bO}),vO={fft:Vc,ifft:Jl,rfft:Uc,irfft:Lh},wO={hammingWindow:gP,hannWindow:Kk,frame:Yk,stft:vP},Ja={flipLeftRight:TP,resizeNearestNeighbor:n1,resizeBilinear:t1,rotateWithOffset:SP,cropAndResize:kP,nonMaxSuppression:_P,nonMaxSuppressionAsync:PP,nonMaxSuppressionWithScore:LP,nonMaxSuppressionWithScoreAsync:WP,nonMaxSuppressionPadded:VP,nonMaxSuppressionPaddedAsync:GP,transform:XP},r1={bandPart:YP,gramSchmidt:QP,qr:eO},kO={absoluteDifference:aO,computeWeightedLoss:vr,cosineDistance:sO,hingeLoss:oO,huberLoss:uO,logLoss:pO,meanSquaredError:hO,sigmoidCrossEntropy:gO,softmaxCrossEntropy:xO},wr=class extends rk{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ae(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ek(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(wr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var qh=class extends wr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=J(W(i,this.rho),W(lt(s),1-this.rho)),c=W(ye(sn(J(o,this.epsilon)),sn(J(i,this.epsilon))),s),u=J(W(o,this.rho),W(lt(c),1-this.rho));i.assign(l),o.assign(u);let p=J(W(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};qh.className="Adadelta";es(qh);var Xh=class extends wr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>_n(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=J(s,lt(r));s.assign(i);let o=J(W(ye(r,sn(J(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Xh.className="Adagrad";es(Xh);var Kh=class extends wr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=he(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=J(W(u,this.beta2),W(lt(l),1-this.beta2)),h=ye(p,n),m=ye(d,a);c.assign(p),u.assign(d);let f=J(W(ye(h,J(sn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(xr(this.beta1,this.iterations_+1)),this.accBeta2.assign(xr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Kh.className="Adam";es(Kh);var Yh=class extends wr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=ye(-this.learningRate,J(W(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=W(u,this.beta2),h=zt(l),m=Ka(d,h);c.assign(p),u.assign(m);let f=J(W(ye(a,n),ye(p,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Yh.className="Adamax";es(Yh);var Gc=class extends wr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=J(W(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=qt(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Gc.className="SGD";es(Gc);var Jh=class extends Gc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=J(W(this.m,r),s);this.useNesterov?i=J(W(this.c,J(s,W(o,this.m))),a):i=J(W(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Jh.className="Momentum";es(Jh);var Qh=class extends wr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=J(W(i,this.decay),W(lt(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=J(W(c,this.decay),W(s,1-this.decay)),p=ye(W(s,this.learningRate),sn(he(l,J(lt(u),this.epsilon)))),d=J(W(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=he(a,d);a.assign(h)}else{let c=J(W(i,this.decay),W(lt(s),1-this.decay)),u=J(W(o,this.momentum),ye(W(s,this.learningRate),sn(J(c,this.epsilon))));i.assign(c),o.assign(u);let p=he(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Qh.className="RMSProp";es(Qh);var Oi=class{static sgd(e){return new Gc(e)}static momentum(e,t,n=!1){return new Jh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Qh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Kh(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new qh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Yh(e,t,n,a,r)}static adagrad(e,t=.1){return new Xh(e,t)}},Li={sgd:Oi.sgd,momentum:Oi.momentum,adadelta:Oi.adadelta,adagrad:Oi.adagrad,rmsprop:Oi.rmsprop,adamax:Oi.adamax,adam:Oi.adam},IO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Zh(){return new Promise(e=>IO(()=>e()))}var _={};Le(_,{ERF_A1:()=>RO,ERF_A2:()=>MO,ERF_A3:()=>PO,ERF_A4:()=>OO,ERF_A5:()=>LO,ERF_P:()=>DO,PARALLELIZE_THRESHOLD:()=>kb,SELU_SCALE:()=>i1,SELU_SCALEALPHA:()=>s1,applyActivation:()=>Hh,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>iR,assertParamsConsistent:()=>TO,assignToTypedArray:()=>jO,axesAreInnerMostDims:()=>tb,calculateShapes:()=>j0,combineLocations:()=>Ak,complexWithEvenIndex:()=>UO,complexWithOddIndex:()=>GO,computeConv2DInfo:()=>$c,computeConv3DInfo:()=>hk,computeDefaultPad:()=>Uy,computeDilation2DInfo:()=>F$,computeOptimalWindowSize:()=>SO,computeOutAndReduceShapes:()=>$k,computeOutShape:()=>NO,computePool2DInfo:()=>dk,computePool3DInfo:()=>A$,convertConv2DDataFormat:()=>pk,eitherStridesOrDilationsAreOne:()=>ja,expandShapeToKeepDim:()=>Ri,exponent:()=>XO,exponents:()=>qO,fromStringArrayToUint8:()=>JO,fromUint8ToStringArray:()=>YO,getAxesPermutation:()=>Dk,getBroadcastDims:()=>kD,getComplexWithIndex:()=>HO,getFusedBiasGradient:()=>Gh,getFusedDyActivation:()=>Uh,getImageCenter:()=>CO,getInnerMostAxes:()=>oR,getPermuted:()=>EO,getReductionAxes:()=>Wt,getReshaped:()=>_O,getReshapedPermuted:()=>FO,getSliceBeginCoords:()=>AO,getSliceSize:()=>$O,getUndoAxesPermutation:()=>nb,log:()=>WO,mergeRealAndImagArrays:()=>BO,prepareAndValidate:()=>H0,prepareSplitSize:()=>KO,segment_util:()=>o1,shouldFuse:()=>jh,slice_util:()=>rn,splitRealAndImagArrays:()=>VO,tupleValuesAreOne:()=>ts,upcastType:()=>pa,validateInput:()=>Ey,validateUpdateShape:()=>_y,warn:()=>zO});function TO(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function NO(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var kb=30;function SO(e){return e<=kb?e:Td(e,Math.floor(Math.sqrt(e)))}function CO(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function _O(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function EO(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function FO(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function AO(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function $O(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var s1=1.7580993408473768,i1=1.0507009873554805,DO=.3275911,RO=.254829592,MO=-.284496736,PO=1.421413741,OO=-1.453152027,LO=1.061405429;function zO(...e){Z().getBool("IS_TEST")||console.warn(...e)}function WO(...e){Z().getBool("IS_TEST")||console.log(...e)}function BO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function VO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function UO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function GO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function HO(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function jO(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function qO(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function XO(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function KO(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var o1={};Le(o1,{collectGatherOpShapeInfo:()=>eL,computeOutShape:()=>ZO,segOpComputeOptimalWindowSize:()=>QO});function QO(e,t){let n=!1,a;for(e<=kb?(a=e,n=!0):a=Td(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Td(e,a+1);return a}function ZO(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function eL(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),c*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function YO(e){try{return e.map(t=>oh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function JO(e){return e.map(t=>kc(t))}var Qa={};Le(Qa,{nonMaxSuppressionV3Impl:()=>Jk,nonMaxSuppressionV4Impl:()=>Qk,nonMaxSuppressionV5Impl:()=>Zk,whereImpl:()=>Bk});var l1={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Ql(ue(n,"float32"),-1))}}},tL={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=lt(ue(n,"float32")),r=sn(he(ve(1),a));return St(ye(e,r))}}}},nL={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=sn(he(lt(ue(n,"float32")),1));return ye(e,a)}}}},aL={kernelName:Hr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},rL={kernelName:As,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},sL={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},iL={kernelName:nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},oL={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,sn(he(ve(1),lt(ue(n,"float32")))))}}},lL={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=sn(J(ve(1),lt(ue(n,"float32"))));return ye(e,a)}}}},uL={kernelName:Uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=J(lt(n),lt(a)),i=W(e,ye(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Se(i,o)),U(i,n.shape)},b:()=>{let s=J(lt(n),lt(a)),i=St(W(e,ye(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Se(i,o)),U(i,a.shape)}}}},cL={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(lt(ue(n,"float32")),1))}}},pL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,he(ve(1),lt(ue(n,"float32"))))}}};function dL(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&$(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(Ed,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var hL=O({avgPool3dGrad_:dL}),mL={kernelName:ac,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>hL(e,a,r,s,i,o)}}};function fL(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(_d,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var gL=O({avgPoolGrad_:fL}),yL={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>gL(e,a,r,s,i)}}},bL={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},xL={kernelName:rc,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Lc(e,a,r)}}},vL={kernelName:f0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},wL={kernelName:Ms,gradFunc:e=>({x:()=>e.clone()})},kL={kernelName:Ps,gradFunc:e=>({x:()=>Ge(e)})},IL={kernelName:jr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Cn(ma(rs(a,r),Di(a,s)),e,Ge(e))}}},TL={kernelName:sc,inputsToSave:["x"],gradFunc:l1.gradFunc},NL={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ca(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},SL={kernelName:Os,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(ts(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>jy(a.shape,e,r,i,o,l),filter:()=>vb(a,e,r.shape,i,o,l)}}},CL={kernelName:Ls,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>vb(e,a,r.shape,s,i,o,l)}}};function _L(e,t,n,a,r){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(Dd,o,l)}var EL=O({conv3DBackpropFilter_:_L}),FL={kernelName:ic,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(ts(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>kk(i.shape,e,o,r,s),filter:()=>EL(i,e,o.shape,r,s)}}},AL={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(St(Mh(ue(n,"float32"))),e)}}},$L={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Ph(ue(n,"float32")),e)}}},DL={kernelName:Ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=Dk([r],a.rank),l=kh(e,r,s,!i);return o!=null&&(l=Ve(l,o)),l}}}},RL={kernelName:Bs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(ts(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),$(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),$(ja(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&$(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Xk(l.shape,e,c,r,s,a,i),filter:()=>qk(l,e,c.shape,r,s,a,i)}}},ML={kernelName:oc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(zd,s,n),filter:()=>M.runKernel(Wd,i,n)}}},PL={kernelName:Xo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(Bd,a)}}},OL={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(hn(St(lt(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,a)}}},LL={kernelName:Us,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},zL={kernelName:Jo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},WL={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,hn(n))}}},BL={kernelName:Gs,gradFunc:e=>({x:()=>Ge(e)})},VL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=lt(a);return St(ye(s,ue(o,"float32")))}}}},UL={kernelName:js,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,c=Wt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=he(r,s),d=W(e,l),h=Dh(J(i,ve(a))),m=W(W(W(h,h),h),ve(-.5));return{x:()=>s.rank===1?U(W(W(e,qa(U(h,[1,1,1,s.shape[0]]),u)),l),r.shape):U(W(W(e,h),l),r.shape),mean:()=>{let f=W(W(h,ve(-1)),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},variance:()=>{let f=W(W(m,p),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},scale:()=>{let f=W(p,h),g=W(e,f);return s.rank===1&&(g=Se(g,c)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,c)),U(f,s.shape)}}}},GL={kernelName:el,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ca(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=u1(0,u),m=u1(u+1,u+1+d),f=c1([c,[l],p]),g=U(e,f),y=U(r,[l]),b=c1([[u],h,m]),x=Ve(g,b),v=gb(x,y,a.shape[i]),T=nb(b);return v=Ve(v,T),v},indices:()=>r}}};function u1(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function c1(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var HL={kernelName:qs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},jL={kernelName:Xs,gradFunc:e=>({x:()=>ue(e,"float32")})},qL={kernelName:al,gradFunc:e=>({x:()=>Ge(e)})},XL={kernelName:rl,gradFunc:e=>({x:()=>Ge(e)})},KL={kernelName:sl,gradFunc:e=>({x:()=>Ge(e)})},YL={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=ha(a,0);return{x:()=>Cn(s,e,W(e,r))}}},JL={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(n,1))}}},QL={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,ue(n,"float32"))}}},ZL={kernelName:g0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=hn(a);return he(e,W(Se(e,r,s),i))}}}};function e3(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(jd,o,l)}var t3=O({localResponseNormalizationBackprop_:e3}),n3={kernelName:pc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>t3(a,r,e,s,i,o,l)}}};function p1(e,t,n,a){return t.rank<n.rank&&(t=U(t,Ri(t.shape,a))),e.rank<n.rank&&(e=U(e,Ri(e.shape,a))),{x:()=>W(e,ue(as(n,t),e.dtype))}}var d1={kernelName:Js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ca(r,s.shape),l=p1(e,i,s,o);return{x:()=>l.x()}}},a3={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(rs(n,a),"float32")),b:()=>W(e,ue(Th(n,a),"float32"))}}};function r3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),$(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),$(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(Xd,m,f);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var s3=O({maxPool3dGrad_:r3}),i3={kernelName:dc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>s3(e,a,r,s,i,o,l)}}};function o3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(qd,u,p)}var l3=O({maxPoolGrad_:o3}),u3={kernelName:Zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>l3(e,a,r,s,i,o)}}},c3={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ca(r,a.shape),i=$k(a.shape,s)[1],o=Ot(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=U(e,l);return ye(W(c,Ya(a.shape,"float32")),o)}}}},p3={kernelName:ti,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ca(r,s.shape),l=p1(e,i,s,o);return{x:()=>l.x()}}},d3={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(Di(n,a),"float32")),b:()=>W(e,ue(ha(n,a),"float32"))}}},h3={kernelName:hc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},m3={kernelName:cl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?U(Se(e,s),n.shape):e},b:()=>{let s=W(e,St(Hl(ye(n,a)))),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},f3={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=W(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},g3={kernelName:pl,gradFunc:e=>({x:()=>St(e)})},y3={kernelName:ri,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>xt(n.shape,"float32")}}},b3={kernelName:gl,gradFunc:e=>({x:()=>Ge(e)})},x3={kernelName:yl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ut(e,a).map(r=>()=>r)}},h1={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},v3={kernelName:ii,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=bt(s.shape,i.shape);return{a:()=>{let l=ue(i,"float32"),c=W(e,W(l,xr(s,he(l,ve(1))))),u=Wt(s.shape,o);return u.length>0&&(c=Se(c,u)),U(c,s.shape)},b:()=>{let l=ha(s,0),c=Cn(l,Pn(s),Ge(s)),u=W(e,W(r,c)),p=Wt(i.shape,o);return p.length>0&&(u=Se(u,p)),U(u,i.shape)}}}},w3={kernelName:oi,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=ha(n,0);return{x:()=>Cn(r,e,W(e,a)),alpha:()=>{let s=Cn(r,Ge(e),W(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},k3={kernelName:Vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=lt(a);return St(ye(s,ue(o,"float32")))}}}},I3={kernelName:xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,St(lt(n)))}}},T3={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(Di(n,6),Ql(n));return{x:()=>W(e,ue(a,"float32"))}}},N3={kernelName:li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ue(Ql(n),"float32"))}}},S3={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},C3={kernelName:ui,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Zd,r,n)}}},_3={kernelName:fc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Qd,r,n)}}},E3={kernelName:pi,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ca(a,e.shape);return{x:()=>Ln(e,r)}}},F3={kernelName:di,gradFunc:e=>({x:()=>Ge(e)})},A3={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(ye(e,W(xr(n,1.5),2)))}}},$3={kernelName:kl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Ge(n),"float32"),t:()=>W(e,ue(n,e.dtype)),e:()=>W(e,ue(Oc(n),e.dtype))}}},D3={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ha(n,ve(0)),r=ve(s1),s=ve(i1),i=W(e,s),o=W(W(e,r),hn(ue(n,"float32")));return Cn(a,i,o)}}}},R3={kernelName:fi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,he(ve(1),n)))}}},M3={kernelName:Sl,gradFunc:e=>({x:()=>Ge(e)})},P3={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Mc(ue(n,"float32")),e)}}},O3={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(wh(ue(n,"float32")),e)}}},L3={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=tk(a,r,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>ta(e,c)}}},z3={kernelName:bi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=W(e,a);return{logits:()=>he(i,W(Se(i,[r],s),a))}}},W3={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,da(n))}}},m1={kernelName:gc,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Dc(e,a,r)}}},f1={kernelName:_l,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},B3={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,W(sn(ue(n,"float32")),2))}}},V3={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(ue(n,"float32"),2))}}},U3={kernelName:xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>W(e,W(r,he(n,a))),b:()=>W(e,W(r,he(a,n)))}}},G3={kernelName:Xr,gradFunc:e=>({x:()=>Ge(e)})},H3={kernelName:vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(St(s),a.shape)}}}},j3={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ca(s,a.shape).forEach(l=>{r[l]=1});let i=U(e,r),o=W(i,Ya(a.shape,"float32"));return{x:()=>o}}},q3={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,lt(Mc(n)))}}},X3={kernelName:wi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(he(ve(1),lt(n)),e)}}},K3={kernelName:qr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],c*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},Y3={kernelName:ki,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=nb(r);return{x:()=>Ve(e,s)}}},J3={kernelName:$l,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},Z3={kernelName:bc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Q3(e,n)}}};function Q3(e,t){let n=Ka(t,Ge(t)),a=$i(e,n),r=rs(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=ma(r,Ya(a.shape,"bool"));let i=Ge(a);return Cn(r,a,i)}var ez={kernelName:Dl,gradFunc:e=>({x:()=>Ge(e)})},tz=[l1,tL,nL,aL,rL,sL,iL,oL,lL,uL,cL,pL,mL,yL,bL,xL,vL,wL,kL,IL,TL,NL,CL,SL,FL,AL,$L,DL,RL,ML,k3,PL,OL,LL,zL,WL,VL,BL,UL,GL,HL,jL,qL,XL,KL,YL,JL,QL,ZL,n3,d1,d1,a3,i3,u3,c3,p3,d3,h3,m3,f3,g3,y3,b3,x3,h1,h1,v3,w3,I3,T3,N3,S3,C3,_3,E3,F3,A3,$3,D3,R3,M3,P3,O3,L3,z3,W3,m1,m1,f1,f1,B3,U3,V3,G3,H3,j3,q3,X3,K3,Y3,J3,Z3,ez];for(let e of tz)y0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),Ry(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),My(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),yh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Fc(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Ac(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),Py(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),U(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),U(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),U(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),Oy(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Ly(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),zy(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Wy(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),By(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Zn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Dc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),br(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Rc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Hy(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Xt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),Je([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),xh(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),vh(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),Mc(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),wh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),kh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Xy(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ns(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Ky(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),Yy(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),Tk(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Gl(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),as(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Jy(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),hn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),Qy(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Vc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Hl(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),gh(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),$i(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),rs(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),ha(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),Jl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),Lh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),Nk(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),Sk(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),Ck(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Pc(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Di(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),Th(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),eb(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),Fk(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Ch(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),ab(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Pn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),Nh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ma(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Oc(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),_h(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),Rk(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),$t(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),ea(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Ka(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),Ct(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),ql(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Xl(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),sb(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),ib(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Vh(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Mi(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Wl(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),ta(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),Ok(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),xr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),zc(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),Fh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),ub(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),qe(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),$h(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),t1(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),n1(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Ln(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Uc(this)};Y().prototype.round=function(){return this.throwIfDisposed(),cb(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),Dh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),Rh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Pi(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),pb(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),Mh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),Ph(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Sa(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),jl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Lc(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),sn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),lt(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),zh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),ss(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return Dt(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Ql(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),hb(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),he(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),mb(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Ul(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),qa(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ue(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ue(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ue(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),fb(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ve(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Bh(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),gb(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),ut(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),Cn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var g1={};Le(g1,{maxNorm:()=>nz,minMaxNorm:()=>sz,nonNeg:()=>rz,unitNorm:()=>az});var Ib;function Bt(){return Ib==null&&(Ib=uk().epsilon()),Ib}function Ea(){return"channelsLast"}var kr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,kr.prototype)}},Fa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fa.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},y1=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,y1.prototype)}};function zi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Za(e,t){if(!e)throw new y1(t)}function b1(e,t){let n=0;for(let a of e)a===t&&n++;return n}function En(e){return e.length===1?e[0]:e}function gt(e){return Array.isArray(e)?e:[e]}function Ir(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Wi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var fa={};function Tb(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Nb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Nb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Nb(a))}}}function Hc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in fa)i=fa[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in fa?[o,l]=fa.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(fa))c[h]=fa[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},fa);for(let h of Object.keys(n))fa[h]=n[h];Nb(s.config);let d=l(o,s.config,n,r);return fa=Object.assign({},p),d}else{let c=Object.assign({},fa);for(let p of Object.keys(n))fa[p]=n[p];let u=new o(s.config);return fa=Object.assign({},c),u}}}function iz(e,t){return e<t?-1:e>t?1:0}function em(e,t){return-1*iz(e,t)}function os(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function oz(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Bi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Sb(e,t,n=0,a=Infinity){return Za(n>=0),Za(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${x1(e)}.`)}function x1(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>x1(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function lz(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function v1(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Cb(e,t){return D(()=>sn(Se(W(e,e),t,!0)))}var jc=class extends re.Serializable{getConfig(){return{}}},_b=class extends jc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Cb(e,this.axis),n=Xt(t,0,this.maxValue);return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_b.className="MaxNorm";re.registerClass(_b);var Eb=class extends jc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>ye(e,J(Bt(),Cb(e,this.axis))))}getConfig(){return{axis:this.axis}}};Eb.className="UnitNorm";re.registerClass(Eb);var Fb=class extends jc{apply(e){return qe(e)}};Fb.className="NonNeg";re.registerClass(Fb);var Ab=class extends jc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=Cb(e,this.axis),n=J(W(this.rate,Xt(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Ab.className="MinMaxNorm";re.registerClass(Ab);var w1={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return Tb(e)}function k1(e,t={}){return Hc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Ut(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in w1?w1[e]:e,config:{}};return k1(t)}else return e instanceof jc?e:k1(e)}function nz(e){return new _b(e)}function az(e){return new Eb(e)}function rz(){return new Fb}function sz(e){return new Ab(e)}var I1={};Le(I1,{constant:()=>pz,glorotNormal:()=>bz,glorotUniform:()=>yz,heNormal:()=>xz,heUniform:()=>vz,identity:()=>fz,leCunNormal:()=>wz,leCunUniform:()=>kz,ones:()=>cz,orthogonal:()=>Iz,randomNormal:()=>hz,randomUniform:()=>dz,truncatedNormal:()=>mz,varianceScaling:()=>gz,zeros:()=>uz});var Tz=["channelsFirst","channelsLast"],Nz=["nearest","bilinear"],Sz=["valid","same","causal"],Cz=["max","avg"],_z=["sum","mul","concat","ave"],eu=new Map;function Rt(e){Bi(Tz,"DataFormat",e)}function Ez(e){Bi(Nz,"InterpolationFormat",e)}function na(e){Bi(Sz,"PaddingMode",e)}function T1(e){Bi(Cz,"PoolMode",e)}var qc=[],N1="/";function Vi(e,t){qc.push(e);try{let n=t();return qc.pop(),n}catch(n){throw qc.pop(),n}}function Fz(){return qc.length===0?"":qc.join(N1)+N1}function C1(e){if(!S1(e))throw new Error("Not a valid tensor name: '"+e+"'");return Fz()+e}function _1(e){if(!S1(e))throw new Error("Not a valid tensor name: '"+e+"'");eu.has(e)||eu.set(e,0);let t=eu.get(e);if(eu.set(e,eu.get(e)+1),t>0){let n=`${e}_${t}`;return eu.set(n,1),n}else return e}var Az=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function S1(e){return!!e.match(Az)}function $z(e){return e===parseInt(e.toString(),10)}function ls(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function E1(e){return e=Array.isArray(e)?new Float32Array(e):e,Ze(e)}function tu(e){return ql(E1(e)).dataSync()[0]}function us(e){return ea(E1(e)).dataSync()[0]}function Aa(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Xc(e,t){return e.asType(t)}function Kc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Dz(e,t){return D(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Kc(e,1);return $b(n,[1,t,1])})}function Rz(e){let t=[ls(e.shape)];return e.reshape(t)}function Mz(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ls(e.shape,1)];return e.reshape(t)}function Ui(e,t,n){return D(()=>{switch(e.rank){case 1:return Oh(e,t,n);case 2:return db(e,[t,0],[n,e.shape[1]]);case 3:return Yl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Bc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Db(e,t,n){return D(()=>{switch(e.rank){case 1:return Oh(e,t,n);case 2:return db(e,[0,t],[e.shape[0],n]);case 3:return Yl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Bc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function tm(e,t,n,a){return D(()=>{switch(e.rank){case 1:return Oh(e,t,n);case 2:switch(a){case 1:return Ui(e,t,n);case 2:return Db(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Ui(e,t,n);case 2:return Yl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Db(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Ui(e,t,n);case 2:return Bc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Bc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Db(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Rb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function F1(e,t){switch(e.rank){case 1:return bk([e,t]);case 2:return xk([e,t],0);case 3:return vk([e,t],0);case 4:return wk([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function $b(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return qa(e,t)}function nm(e,t=0,n=1,a,r){return Lk(e,t,n,a,r)}function er(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return is.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?Mb(e.rank,a,Ea()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return is.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?Mb(e.rank,a,Ea()):null,activation:n}).reshape(p)}}function A1(e,t,n){return D(()=>(Array.isArray(t)?t=Ze(t,"int32"):t=t.toInt(),$i(e,t,n)))}function Yc(e){return W(e,e)}function Mb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function tr(e,t,n){return D(()=>(n==null&&(n=Ea()),Rt(n),e.add(Mb(e.rank,t,n))))}function Pz(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Gl(e)}function Oz(e){return D(()=>ye(e,zt(e).add(1)))}function $1(e,t,n,a){return D(()=>Hk(e,t,n,a))}function Lz(e){return D(()=>{let t=J(.5,W(.2,e));return Xt(t,0,1)})}function Jc(e,t,n=!1){return n?e():t()}var zz=["fanIn","fanOut","fanAvg"],Wz=["normal","uniform","truncatedNormal"];function Bz(e){Bi(zz,"FanMode",e)}function Vz(e){Bi(Wz,"Distribution",e)}var ga=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Pb=class extends ga{apply(e,t){return xt(e,t)}};Pb.className="Zeros";re.registerClass(Pb);var am=class extends ga{apply(e,t){return Ya(e,t)}};am.className="Ones";re.registerClass(am);var Ob=class extends ga{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>W(ve(this.value),Ya(e,t)))}getConfig(){return{value:this.value}}};Ob.className="Constant";re.registerClass(Ob);var Lb=class extends ga{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Kl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Lb.className="RandomUniform";re.registerClass(Lb);var zb=class extends ga{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return nm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};zb.className="RandomNormal";re.registerClass(zb);var Wb=class extends ga{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Wh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Wb.className="TruncatedNormal";re.registerClass(Wb);var Bb=class extends ga{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,Zy(e[0]))})}getConfig(){return{gain:this.gain}}};Bb.className="Identity";re.registerClass(Bb);function Uz(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ls(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ls(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ls(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Fn=class extends ga{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Bz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Vz(this.distribution),this.seed=e.seed}apply(e,t){let n=Uz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Wh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Kl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Fn.className="VarianceScaling";re.registerClass(Fn);var rm=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};rm.className="GlorotUniform";re.registerClass(rm);var sm=class extends Fn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};sm.className="GlorotNormal";re.registerClass(sm);var im=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};im.className="HeNormal";re.registerClass(im);var om=class extends Fn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};om.className="HeUniform";re.registerClass(om);var lm=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};lm.className="LeCunNormal";re.registerClass(lm);var um=class extends Fn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Fn.className}};um.className="LeCunNormal";re.registerClass(um);var Vb=class extends ga{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=nm(n,0,1,"float32"),r=r1.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Vb.className="Orthogonal";re.registerClass(Vb);var D1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function R1(e,t={}){return Hc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return Tb(e)}function vt(e){if(typeof e=="string"){let t=e in D1?D1[e]:e;if(t==="GlorotNormal")return new sm;if(t==="GlorotUniform")return new rm;if(t==="HeNormal")return new im;if(t==="HeUniform")return new om;if(t==="LeCunNormal")return new lm;if(t==="LeCunUniform")return new um;{let n={};return n.className=t,n.config={},R1(n)}}else return e instanceof ga?e:R1(e)}function uz(){return new Pb}function cz(){return new am}function pz(e){return new Ob(e)}function dz(e){return new Lb(e)}function hz(e){return new zb(e)}function mz(e){return new Wb(e)}function fz(e){return new Bb(e)}function gz(e){return new Fn(e)}function yz(e){return new rm(e)}function bz(e){return new sm(e)}function xz(e){return new im(e)}function vz(e){return new om(e)}function wz(e){return new lm(e)}function kz(e){return new um(e)}function Iz(e){return new Vb(e)}var M1={};Le(M1,{Layer:()=>je,RNN:()=>nr,RNNCell:()=>Qc,activation:()=>sW,add:()=>mW,alphaDropout:()=>JW,average:()=>fW,averagePooling1d:()=>Ub,averagePooling2d:()=>Gb,averagePooling3d:()=>Hb,avgPool1d:()=>TW,avgPool2d:()=>SW,avgPool3d:()=>_W,avgPooling1d:()=>NW,avgPooling2d:()=>CW,avgPooling3d:()=>EW,batchNormalization:()=>wW,bidirectional:()=>UW,concatenate:()=>gW,conv1d:()=>Jz,conv2d:()=>Qz,conv2dTranspose:()=>Zz,conv3d:()=>eW,convLstm2d:()=>zW,convLstm2dCell:()=>WW,cropping2D:()=>nW,dense:()=>iW,depthwiseConv2d:()=>rW,dot:()=>vW,dropout:()=>oW,elu:()=>Hz,embedding:()=>hW,flatten:()=>uW,gaussianDropout:()=>YW,gaussianNoise:()=>KW,globalAveragePooling1d:()=>FW,globalAveragePooling2d:()=>AW,globalMaxPool1d:()=>HW,globalMaxPool2d:()=>jW,globalMaxPooling1d:()=>O1,globalMaxPooling2d:()=>L1,gru:()=>DW,gruCell:()=>RW,input:()=>P1,inputLayer:()=>Gz,layerNormalization:()=>kW,leakyReLU:()=>qz,lstm:()=>MW,lstmCell:()=>PW,masking:()=>QW,maxPool1d:()=>qW,maxPool2d:()=>XW,maxPooling1d:()=>z1,maxPooling2d:()=>W1,maxPooling3d:()=>$W,maximum:()=>yW,minimum:()=>bW,multiply:()=>xW,permute:()=>dW,prelu:()=>Xz,reLU:()=>jz,repeatVector:()=>cW,reshape:()=>pW,rnn:()=>BW,separableConv2d:()=>tW,simpleRNN:()=>OW,simpleRNNCell:()=>LW,softmax:()=>Kz,spatialDropout1d:()=>lW,stackedRNNCells:()=>VW,thresholdedReLU:()=>Yz,timeDistributed:()=>GW,upSampling2d:()=>aW,zeroPadding2d:()=>IW});var ZW=0;function B1(){return ZW++}var cm={};function pm(e=""){return e in cm||(cm[e]=0),cm[e]+=1,e+cm[e].toString()}function jb(e){return Array.isArray(e)&&Array.isArray(e[0])}function dm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function hm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var V1="Variable",U1=class{constructor(e,t="float32",n=V1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=B1(),n=n==null?V1:n,this.originalName=C1(n),this.name=_1(this.originalName),this.trainable_=a,this.constraint=r,this.val=Wk(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),eB(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function eB(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function qb(e){return e.map(t=>t.read())}function Xb(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},$a=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=B1(),s!=null&&(this.originalName=C1(s),this.name=_1(this.originalName)),this.rank=t.length}},tB=0,mm=class{constructor(e,t){this.callArgs=t,this.id=tB++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},nB=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=nB++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ir(n)+"_"+pm(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Fa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return En(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return En(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} is not connected, no input to return.`);return En(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return En(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=gt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=gt(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),c=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=gt(e),a=!0;for(let s of n)if(!(s instanceof $a)){a=!1;break}let r=!0;for(let s of n)if(s instanceof $a){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Vi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of gt(e))s.push(i.shape);this.build(En(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=gt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=En(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=aB(e),i=this.computeOutputShape(s),o,l=rB(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new $a(l,c,this,gt(e),t,this.name,u)):o=new $a(l,i,this,gt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new kr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Fa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return hm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return qb(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=qb(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Xb(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=vt("zeros"));let o=a.apply(t,n),l=new U1(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=gt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=gt(e);t=gt(t),n=gt(n),a=gt(a),r=dm(r),s=dm(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new mm({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function aB(e){e=gt(e);let t=[];for(let n of e)t.push(n.shape);return En(t)}function rB(e){return"float32"}function G1(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],c=G1(i,o,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var nu=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:pm("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new $a(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new mm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};nu.className="InputLayer";re.registerClass(nu);function H1(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new nu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function cs(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ae(a)}}function j1(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var q1;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(q1||(q1={}));var sB=125,au=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},X1=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},iB=class extends au{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=D(()=>J(this.totals[a],W(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=W(ye(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),qt(t[n])}))}},K1=class extends au{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},Y1=class extends au{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=sB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=lz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await cs(n),a.push(this.yield(e,t,n))),a.push(Zh()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await cs(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await cs(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Zh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await cs(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await cs(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Zh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await cs(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await cs(e),await this.trainEnd(e))}};function J1(e,t){return e==null&&(e={}),e instanceof au?[e]:Array.isArray(e)&&e[0]instanceof au?e:gt(e).map(n=>new Y1(n,t))}var ya=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ya.checkForDuplicate(t),ya.constructors[e]==null&&(ya.constructors[e]=[]),ya.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ya.constructors)ya.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){ya.constructors={}}static createCallbacks(e){let t=[];for(let n in ya.constructors){let a=+n;e>=a&&t.push(...ya.constructors[a])}return t.map(n=>new n)}};ya.constructors={};function Q1(e,t,n,a,r,s,i,o,l){let c=new K1,u=[new iB,...ya.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new X1(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function Da(e,t={},n=!1){return Hc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function fm(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Yc(e),t,!0),a=_n(n.shape,Bt()),r=sn(Ka(n,a));return ye(e,r)})}function Gi(e,t){return D(()=>Ct(Yc(he(t,e)),-1))}function gm(e,t){return D(()=>Ct(zt(he(t,e)),-1))}function ru(e,t){return D(()=>{let n=he(e,t),a=Xt(zt(e),Bt(),Number.MAX_VALUE),r=zt(ye(n,a));return W(100,Ct(r,-1))})}function oB(e,t){return D(()=>{let n=Xt(t,Bt(),Number.MAX_VALUE),a=Pn(J(1,n)),r=Xt(e,Bt(),Number.MAX_VALUE),s=Pn(J(1,r));return Ct(Yc(he(a,s)),-1)})}function lB(e,t){return D(()=>{let n=Ka(0,he(1,W(e,t)));return Ct(Yc(n),-1)})}function uB(e,t){return D(()=>{let n=Ka(0,he(1,W(e,t)));return Ct(n,-1)})}function cB(e,t){return D(()=>{let n=Se(W(e,t),-1),a=ea(W(he(1,e),t),-1);return Ka(0,J(1,he(a,n)))})}function pB(e,t){return D(()=>{let n=Math.log(2),a=he(t,e),r=he(J(a,jl(W(-2,a))),n);return Ct(r,-1)})}function Zc(e,t,n=!1){return D(()=>{if(n)t=Sa(t);else{let a=Se(t,t.shape.length-1,!0);t=ye(t,a)}return t=Xt(t,Bt(),1-Bt()),St(Se(W(e.toFloat(),Pn(t)),t.shape.length-1))})}function ym(e,t,n=!1){return D(()=>{let a=Hl(Rz(e)).toInt();t=Xt(t,Bt(),1-Bt());let r=t.shape,s=Wl(a,r[r.length-1]).reshape(r);return Zc(s,t,n)})}function dB(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function bm(e,t){return D(()=>{let n;return n=Xt(t,Bt(),1-Bt()),n=Pn(ye(n,he(1,n))),Ct(dB(e,n),-1)})}function hB(e,t){return D(()=>{let n=Xt(e,Bt(),1),a=Xt(t,Bt(),1);return Se(W(e,Pn(ye(n,a))),-1)})}function mB(e,t){return D(()=>{let n=Pn(J(Bt(),t));return Ct(he(t,W(e,n)),-1)})}function Kb(e,t){return D(()=>{let n=fm(e,-1),a=fm(t,-1),r=W(n,a);return St(Se(r,-1))})}var xm={meanSquaredError:Gi,meanAbsoluteError:gm,meanAbsolutePercentageError:ru,meanSquaredLogarithmicError:oB,squaredHinge:lB,hinge:uB,categoricalHinge:cB,logcosh:pB,categoricalCrossentropy:Zc,sparseCategoricalCrossentropy:ym,binaryCrossentropy:bm,kullbackLeiblerDivergence:hB,poisson:mB,cosineProximity:Kb};function Yb(e){if(typeof e=="string"){if(e in xm)return xm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function Jb(e,t){return D(()=>{let n=W(.5,On(t)),a=Xc(ha(t,n),e.dtype);return Ct(as(e,a),-1)})}function Qb(e,t){return D(()=>Xc(as(Ac(e,-1),Ac(t,-1)),"float32"))}function Z1(e,t){return D(()=>ma(e.equal(1),t.equal(1)).sum().cast("float32"))}function fB(e,t){return D(()=>ma(e.equal(1),t.equal(0)).sum().cast("float32"))}function gB(e,t){return D(()=>ma(e.equal(0),t.equal(1)).sum().cast("float32"))}function eI(e,t){return D(()=>{let n=Z1(e,t),a=gB(e,t),r=n.add(a);return Cn(ha(r,0),n.div(r),0).cast("float32")})}function yB(e,t){return D(()=>{let n=Z1(e,t),a=fB(e,t),r=n.add(a);return Cn(ha(r,0),n.div(r),0).cast("float32")})}function tI(e,t){return bm(e,t)}function nI(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),as(e,t).asType("float32")}var bB=Gi,xB=Gi,vB=gm,wB=gm,kB=ru,IB=ru,Zb=Zc,TB=Kb,aI=ym,vm={binaryAccuracy:Jb,categoricalAccuracy:Qb,precision:eI,categoricalCrossentropy:Zb,sparseCategoricalCrossentropy:aI,mse:bB,MSE:xB,mae:vB,MAE:wB,mape:kB,MAPE:IB,cosine:TB};function NB(e){if(typeof e=="string"&&e in vm)return vm[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function wm(e){if(Za(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(xm))if(xm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(vm))if(vm[n]===e){t=n;break}return t!==void 0?t:e.name}}function SB(e){let t={Adagrad:()=>Li.adagrad(.01),Adadelta:()=>Li.adadelta(1,.95,Bt()),Adam:()=>Li.adam(.001,.9,.999,Bt()),Adamax:()=>Li.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Li.rmsprop(.001,.9,0,Bt()),SGD:()=>Li.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var rI=1*1024*1024;function sI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!ex(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>rI&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${rI}.`)}}function ex(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!ex(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!ex(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function AB(e,t,n,a=console.log){let r=_B(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),km(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?EB(o[u],n,a):FB(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=CB(e),c=hm(e.nonTrainableWeights);a(`Total params: ${l+c}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${c}`),a("_".repeat(t))}function CB(e){let t;return e.collectedTrainableWeights!=null?t=hm(e.collectedTrainableWeights):t=hm(e.trainableWeights),t}function _B(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function km(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function EB(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];km(i,t,n)}function FB(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let d=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,r,e.countParams().toString(),l];km(c,t,a);for(let u=1;u<s.length;++u)km(["","","",s[u]],t,a)}function iI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function ep(e,t){if(e===null)return null;if(typeof e=="string")return Wi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];iI(t,r,s)?n.push(s):n.push(ep(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Wi(a);n[s]=ep(r,s)}}return n}}function tx(e,t){if(e==null)return null;if(typeof e=="string")return Ir(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];iI(t,r,s)?n.push(s):n.push(tx(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Ir(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=tx(r,a)}return n}}var Im="3.3.0";function $B(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Hi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Hi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=$B(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof $a){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof $a){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},nx={},oI={};function tp(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(nx[u]==null){let m=DB(i,t);p=m.sorted,d=m.recipientCounts,nx[u]=p,oI[u]=d}p=nx[u],d={},r||Object.assign(d,oI[u]);let h=new Hi(t);for(let m=0;m<p.length;++m){if(a!=null){let A=mh().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=p[m],g=f.sourceLayer;if(g instanceof nu)continue;let y=[],b=[],x=[],v=!1;for(let A of f.inputs){let R=h.getValue(A),P=h.getMask(A);y.push(R),b.push(P),P!=null&&(v=!0),r||(d[A.name]--,d[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!R.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(R))}v&&(n=n||{},n.mask=b[0]);let T=gt(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,b));let S=RB(f),F=Array.isArray(S)?S:[S];for(let A=0;A<F.length;++A){h.hasKey(F[A])||h.add(F[A],T[A],Array.isArray(k)?k[0]:k);let R=o.indexOf(F[A].name);R!==-1&&(l[R]=T[A])}r||Ae(x)}return h.disposeMasks(),s?l:l[0]}function DB(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=lI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=lI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:MB(a)}}function MB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function lI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function RB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var ar=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=pm(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],os(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);os(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Za(x===0,"input layer has >1 nodes"),Za(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof nu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,T,k)=>{(v==null||T==null||k==null)&&(v=y.sourceLayer,T=y.nodeIndex,k=y.tensorIndex);let S=v.inboundNodes[T];if(x.indexOf(S)!==-1)throw new Fa(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(S)!==-1)return;this.containerNodes.add(ar.nodeKey(v,T)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let F=S.inboundLayers.length;for(let A=0;A<F;A++){let R=S.inputTensors[A],P=S.inboundLayers[A],z=S.nodeIndices[A],V=S.tensorIndices[A];o(R,b,x,P,z,V)}for(b.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let T=y.inboundLayers[v],k=y.nodeIndices[v],S=T.inboundNodes[k],F=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(b+1,F),n[S.id]=S}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(em);this.layers=[];for(let y of h){let b=d[y];b.sort((x,v)=>{let T=s[x.id],k=s[v.id];return T<k?-1:T>k?1:0});for(let x of b)x instanceof ar&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(em);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Fa(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Fa(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new mm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}Xb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Im}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=tx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=gt(e);let n=new Hi;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return tp(this.outputs,n,t)})}computeMask(e,t){return D(()=>{e=gt(e);let n;return t==null?n=zi(null,e.length):n=gt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=dm(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(em);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];u.push(x)}let p=c.computeOutputShape(En(u)),d=dm(p),h=c.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${c.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Za(o in n),r.push(n[o])}return En(r)}runInternalGraph(e,t){t==null&&(t=zi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(em);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=gt(u.call(x,m)),b=gt(u.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=gt(u.call(f,m)),b=gt(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],T=y[x],k=b[x];n[v.id]=[T,k]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Za(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),r.push(l),s.push(c)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof ar?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=ar.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return D(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=ar.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],d=ar.nodeKey(s,u),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],x=ar.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=ar.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,c,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=ar.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],T=x[1],k=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let S=r[v];if(S.inboundNodes.length<=T){i(f,g);return}let F=S.inboundNodes[T];y.push(F.outputTensors[k])}y.length>0&&f.apply(En(y),b)}function l(f){let g=f.name,y=Da(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!oz(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];Za(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];Za(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function PB(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function uI(e,t){return PB(e,t,"classWeight")}async function cI(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ae(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ze(i,"float32")}else return null}function OB(e,t){return W(e,t)}var LB=32;function dI(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=pI("input",e.inputNames,n),i=pI("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function pI(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function zB(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function BB(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(hI(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=zB(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=J1(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=Q1(u,p,n.epochs,null,null,WB(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:T}=dI(e,x.value),k={};k.batch=b,k.size=v[0].shape[0],await d.onBatchBegin(b,k);let S=[];if(n.classWeight!=null){let R=uI(n.classWeight,e.outputNames);for(let P=0;P<R.length;++P)S.push(await cI(T[P],null,R[P]))}let F=v.concat(T).concat(S),A=o(F);Ae(F);for(let R=0;R<l.length;++R){let P=l[R],z=A[R];k[P]=z,qt(z)}await d.onBatchEnd(b,k),j1(k),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;hI(n.validationData)?v=gt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=gt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?LB:n.validationBatchSize,verbose:0}));for(let T=0;T<e.metricsNames.length;++T)g[`val_${e.metricsNames[T]}`]=v[T]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function WB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function hI(e){return typeof e.iterator=="function"}function VB(e){return typeof e.next=="function"}async function UB(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=VB(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let c=await i.next();if(s=D(()=>{if(c.value){let{xs:u,ys:p}=dI(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Ae(d),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=D(()=>J(s[f],W(m,g))),l>0&&Ae(y)}Ae(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=ye(s[c],o),Ae(u)}return En(s)}function ax(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function np(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Ui(a,t,n-t)):Ui(e,t,n-t)}function rx(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>rx(n,t)):A1(e,t.dtype==="int32"?t:t.toInt()))}function sx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function GB(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Aa(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=Q1(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await b.onEpochBegin(v);let T={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new $e("batch shuffling is not implemneted yet");u&&w.shuffle(y);let k=Ze(y),S=sx(g,r);for(let F=0;F<S.length;++F){let A={};if(await b.onBatchBegin(F,A),D(()=>{let R=S[F][0],P=S[F][1],z=Ui(k,R,P-R);A.batch=F,A.size=P-R;let V=rx(n,z),G=t(V);for(let H=0;H<a.length;++H){let X=a[H],j=G[H];A[X]=j,qt(j)}if(F===S.length-1&&f){let H=e.testLoop(l,c,r);for(let X=0;X<a.length;++X){let j=a[X],te=H[X];qt(te),T["val_"+j]=te}}}),await b.onBatchEnd(F,A),j1(A),e.stopTraining_)break}k.dispose()}if(await b.onEpochEnd(v,T),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function HB(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,c,u;try{let p=a.batchSize==null?32:a.batchSize;ax(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let k=!0,S=await e.standardizeUserData(i,o,null,null,k,p);l=S[0],c=S[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let k=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=np(r,k,S),r=np(r,0,k),c=np(s,k,S),s=np(s,0,k),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=b.slice().concat(b.map(k=>"val_"+k))):(x=null,f=[],v=b.slice());let T=J1(a.callbacks,a.yieldEvery);return await GB(e,y,g,b,p,a.epochs,a.verbose,T,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,ji(r,t),ji(s,n),ji(l,i),ji(c,o),u!=null&&Ae(u)}}function mI(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Kc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function ji(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function jB(e){return e instanceof Ee}function ix(e){return Array.isArray(e)}function fI(e){return!jB(e)&&!ix(e)}function gI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(ix(e)&&e.length>0)i=!0;else if(fI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(fI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(ix(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=mI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function qB(e,t,n){let a=os(e.map(s=>s.shape[0]));a.sort();let r=os(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function XB(e,t,n){let a=[Gi,bm,Zc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Zc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],d=c[u];if(d!=null&&p!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function yI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function KB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var YB="layers-model",Tr=class extends ar{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");AB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=SB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof wr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Yb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Yb(s))}else{let s=Yb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Vi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=KB(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Vi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===bm?["accuracy","acc"].indexOf(d)!==-1?u=Jb:["crossentropy","ce"].indexOf(d)!==-1&&(u=tI):this.lossFunctions[s]===ym?["accuracy","acc"].indexOf(d)!==-1?u=nI:["crossentropy","ce"].indexOf(d)!==-1&&(u=aI):["accuracy","acc"].indexOf(d)!==-1?u=Qb:["crossentropy","ce"].indexOf(d)!==-1&&(u=Zb);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=NB(d),c=l+wm(d);let h;Vi(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;ax(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return En(l)}finally{ji(s[0],e),ji(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),UB(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Hi;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=tp(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=zi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=sx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)D(()=>{let o=r[i][0],l=r[i][1],c=np(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let p=new Hi(u);return tp(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return En(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=mI(e);yI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return ax(a),this.predictLoop(n,a)}finally{ji(n,e)}}predictOnBatch(e){yI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Fa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===ym?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=gI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=gI(t,this.feedOutputNames,r,!1,"target"),qB(e,t,null),XB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=uI(a,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await cI(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return D(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=sx(s,n),l=Ze(Aa(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],p=o[c][1],d=Ui(l,u,p-u),h=rx(t,d),m=e(h);if(c===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],W(p-u,g))}}for(let c=0;c<i.length;++c)i[c]=ye(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;b1(e,a)>1&&(r+=`_${b1(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h<this.inputs.length;++h)c.push({key:this.inputs[h],value:n[h]});let u=new Hi(c),p=tp(this.outputs,u,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=OB(m,r[h]));let f=Ct(m);t.push(f),h===0?d=m:d=J(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Ct(f(a[g],p[g]))}qt(m),s.push(m)}return d=Ct(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Hi(s),o=tp(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ct(c(r[l],o[l]));l===0?n=u:n=J(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=Ct(c(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return HB(this,e,t,n)}async fitDataset(e,t){return BB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ae(s),En(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=mh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-mh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ir(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ir(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Ir(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ir(wm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ir(wm(e)));{let e={};for(let t in this.metrics)e[t]=Ir(wm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=ep(e.optimizer_config),n=Da(t),a;if(typeof e.loss=="string")a=Wi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Wi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Wi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Wi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Wi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=jt.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await jt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:YB,generatedBy:`TensorFlow.js tfjs-layers v${Im}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await jt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=jt.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;sI(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){sI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Tr.className="Model";re.registerClass(Tr);var bI=class extends Tr{};bI.className="Functional";re.registerClass(bI);async function JB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=ep(n),r=Da(a,t);if(e.weightsManifest!=null){let s=await jt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ae(s)}return r}async function ZB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=jt.getLoadHandlers(e,t);if(n.length===0)n.push(jt.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return QB(e,void 0,t)}async function QB(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Da(ep(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=e4(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ae(c),Ae(u.map(p=>p.tensor))}return o}function e4(e,t){let n=jt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var su=class extends Tr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:pm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof su||e instanceof Tr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=H1({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=G1(this.outputs[0])}this.inboundNodes=[],new mm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:zi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Tr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Fa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof su))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Da(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};su.className="Sequential";re.registerClass(su);function t4(e){return new Tr(e)}function n4(e){return new su(e)}function a4(e,t){return t==null&&(t={}),ZB(e,t)}function P1(e){return H1(e)}function r4(e,t){ya.registerCallbackConstructor(e,t)}var Wn=class extends re.Serializable{getConfig(){return{}}},xI=class extends Wn{apply(e,t=1){return Pz(e,t)}};xI.className="elu";re.registerClass(xI);var vI=class extends Wn{apply(e){return Rh(e)}};vI.className="selu";re.registerClass(vI);var wI=class extends Wn{apply(e){return qe(e)}};wI.className="relu";re.registerClass(wI);var kI=class extends Wn{apply(e){return D(()=>Xl(6,qe(e)))}};kI.className="relu6";re.registerClass(kI);var II=class extends Wn{apply(e){return e}};II.className="linear";re.registerClass(II);var TI=class extends Wn{apply(e){return da(e)}};TI.className="sigmoid";re.registerClass(TI);var NI=class extends Wn{apply(e){return Lz(e)}};NI.className="hardSigmoid";re.registerClass(NI);var SI=class extends Wn{apply(e){return jl(e)}};SI.className="softplus";re.registerClass(SI);var CI=class extends Wn{apply(e){return Oz(e)}};CI.className="softsign";re.registerClass(CI);var _I=class extends Wn{apply(e){return Ul(e)}};_I.className="tanh";re.registerClass(_I);var ox=class extends Wn{apply(e,t=-1){return Sa(e,t)}};ox.className="softmax";re.registerClass(ox);var EI=class extends Wn{apply(e,t=-1){return Ch(e,t)}};EI.className="logSoftmax";re.registerClass(EI);var FI=class extends Wn{apply(e,t=1){return D(()=>da(e.mul(t)).mul(e))}};FI.className="swish";re.registerClass(FI);function ps(e){return e.getClassName()}function lx(e,t={}){return Hc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ds(e){if(e==null){let t={};return t.className="linear",t.config={},lx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},lx(t)}else return e instanceof Wn?e:lx(e)}function ux(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var AI=class extends re.Serializable{},ap=class extends AI{constructor(e){super();ux(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=xt([1]);return this.hasL1&&(t=J(t,Se(W(this.l1,zt(e))))),this.hasL2&&(t=J(t,Se(W(this.l2,Yc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};ap.className="L1L2";re.registerClass(ap);function s4(e){return ux(e),new ap({l1:e!=null?e.l1:null,l2:0})}function i4(e){return ux(e),new ap({l2:e!=null?e.l2:null,l1:0})}var $I={l1l2:"L1L2"};function pt(e){return Tb(e)}function DI(e,t={}){return Hc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in $I?$I[e]:e,config:{}};return DI(t)}else return e instanceof AI?e:DI(e)}var cx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=qe(e);return this.maxValue!=null&&(n=Xt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cx.className="ReLU";re.registerClass(cx);var px=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Pc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};px.className="LeakyReLU";re.registerClass(px);var dx=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=vt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Ut(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),zc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};dx.className="PReLU";re.registerClass(dx);var hx=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Gl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};hx.className="ELU";re.registerClass(hx);var mx=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(Xc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};mx.className="ThresholdedReLU";re.registerClass(mx);var fx=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ox().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Softmax";re.registerClass(fx);function iu(e,t,n){if(typeof e=="number")return zi(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!$z(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ra(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Tm(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+us([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function gx(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,1]):e))}function RI(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,4,1]):e))}function o4(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=Ea()),Rt(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ve(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=xh(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=tr(o,n)),o})}function MI(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=Ea()),Rt(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=gx(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=is.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ve(l,[0,3,1,2])),l})}function l4(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=Ea()),Rt(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=RI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=qy(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=tr(o,n)),s==="channelsFirst"&&(o=Ve(o,[0,4,1,2,3])),o})}var yx=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",yx.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=iu(t.kernelSize,e,"kernelSize"),this.strides=iu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,na(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=ds(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=vt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ut(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=iu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Za("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ps(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},rp=class extends yx{constructor(e,t){super(e,t);this.kernel=null,rp.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=vt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ut(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n,a=this.bias==null?null:this.bias.read(),r=v1(this.activation.getClassName());if(r!=null&&this.rank===2)n=MI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=o4(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=MI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=l4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ra(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},sp=class extends rp{constructor(e){super(2,e);sp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};sp.className="Conv2D";re.registerClass(sp);var Nm=class extends rp{constructor(e){super(3,e);Nm.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Nm.className="Conv3D";re.registerClass(Nm);var bx=class extends sp{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Pe(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Tm(o,p,c,this.padding),m=Tm(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ve(n,[0,2,3,1]));let g=vh(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ve(g,[0,3,1,2])),this.bias!=null&&(g=tr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Tm(t[a],o,s,this.padding),t[r]=Tm(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};bx.className="Conv2DTranspose";re.registerClass(bx);var PI=class extends rp{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Ut(t.depthwiseConstraint),this.pointwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Ut(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ve(e,[0,2,3,1])),n=Pi(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=tr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ve(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};PI.className="SeparableConv";var xx=class extends PI{constructor(e){super(2,e)}};xx.className="SeparableConv2D";re.registerClass(xx);var Sm=class extends rp{constructor(e){super(1,e);Sm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Sb(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Sm.className="Conv1D";re.registerClass(Sm);var vx=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=tm(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return tm(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=tm(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return tm(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};vx.className="Cropping2D";re.registerClass(vx);var wx=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Ez(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Pe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ve(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ve(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wx.className="UpSampling2D";re.registerClass(wx);function u4(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=Ea()),Rt(r);let i=gx(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ns(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}var kx=class extends yx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=vt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ut(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n=u4(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=tr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ra(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ra(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};kx.className="DepthwiseConv2D";re.registerClass(kx);function OI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function LI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Aa(2,l));if(t=Ve(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=mn(r,-1)),r=Ve(r,c)),a&&(t=Ln(t,0),r!=null&&(r=Ln(r,0)));let u=[],p,d=n,h=t.shape[0],m=ut(t),f;r!=null&&(f=ut(r));for(let y=0;y<h;++y){let b=m[y],x=D(()=>e(b,d));if(r==null)p=x[0],d=x[1];else{let v=D(()=>{let T=f[y],k=On(T).sub(T),S=x[0].mul(T).add(d[0].mul(k)),F=d.map((A,R)=>x[1][R].mul(T).add(A.mul(k)));return{output:S,newStates:F}});p=v.output,d=v.newStates}o&&u.push(p)}let g;return o&&(g=Dt(u,1)),[p,g,d]})}var nr=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Cm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Aa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){jb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");jb(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Yt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_=[xt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_[0]=xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=OI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Yt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof $a){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Pe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=LI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=xt(e.shape);return t=Se(t,[1,2]),t=Kc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?$b(t,[1,n]):t):this.cell.stateSize>1?[$b(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===nr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Da(a,n);return new e(Object.assign(t,{cell:r}))}};nr.className="RNN";re.registerClass(nr);var Qc=class extends je{},_m=class extends Qc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ds(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=tu([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tu([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>On(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>On(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=er(W(e,s),this.kernel.read()):r=er(e,this.kernel.read()),this.bias!=null&&(r=tr(r,this.bias.read())),i!=null&&(n=W(n,i));let o=J(r,er(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};_m.className="SimpleRNNCell";re.registerClass(_m);var Ix=class extends nr{constructor(e){e.cell=new _m(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Ix.className="SimpleRNN";re.registerClass(Ix);var Em=class extends Qc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=tu([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tu([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let c=er(e,this.kernel.read());this.useBias&&(c=tr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,s[0]));let u=this.recurrentKernel.read(),[p,d]=zn(u,[2*this.units,this.units],u.rank-1),h=er(a,p),[m,f,g]=zn(c,3,c.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=er(W(o,a),d);l=this.activation.apply(J(g,x));let v=J(W(i,a),W(J(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),recurrentActivation:ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Em.className="GRUCell";re.registerClass(Em);var Tx=class extends nr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Em(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Tx.className="GRU";re.registerClass(Tx);var ip=class extends Qc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ds(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ds(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=tu([1,us([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tu([1,us([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ga{apply(i,o){let l=r.apply([s]),c=new am().apply([s]),u=r.apply([s*2]);return F1(F1(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let p=er(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,i[0])),p=J(p,er(a,this.recurrentKernel.read())),this.useBias&&(p=tr(p,this.bias.read()));let[d,h,m,f]=zn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),c=J(W(l,r),W(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let g=W(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ps(this.activation),recurrentActivation:ps(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};ip.className="LSTMCell";re.registerClass(ip);var Nx=class extends nr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new ip(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Nx.className="LSTM";re.registerClass(Nx);var Cm=class extends Qc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){jb(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Vi(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Da(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return qb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Xb(t)}};Cm.className="StackedRNNCells";re.registerClass(Cm);function hs(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>$1(t(),n),i=()=>Jc(s,t,a);return!r||r<=1?qt(i().clone()):Array(r).fill(void 0).map(i).map(o=>qt(o.clone()))}var c4=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},zI=class extends nr{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return D(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=xt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_=[xt(r)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_[0]=xt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Ra(l,a[0],r,s[0],i[0]),p=Ra(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};zI.className="ConvRNN2D";var Fm=class extends ip{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=iu(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=iu(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",na(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=iu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ga{apply(u,p){let d=l.apply([c]),h=Ya([c]),m=l.apply([c*2]);return Rb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=hs({ones:()=>On(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Q,se,ne)=>!se||!se[ne]?Q:W(se[ne],Q),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=hs({ones:()=>On(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,T,k]=zn(this.kernel.read(),i,b),[S,F,A,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,v,F,this.padding),p=this.inputConv(p,T,A,this.padding),d=this.inputConv(d,k,R,this.padding);let[P,z,V,G]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,P),f=this.recurrentConv(f,z),g=this.recurrentConv(g,V),y=this.recurrentConv(y,G);let H=this.recurrentActivation.apply(J(c,m)),X=this.recurrentActivation.apply(J(u,f)),j=J(W(X,s),W(H,this.activation.apply(J(p,g)))),te=W(this.recurrentActivation.apply(J(d,y)),this.activation.apply(j));return[te,te,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=c4(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?tr(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Fm.className="ConvLSTM2DCell";re.registerClass(Fm);var Sx=class extends zI{constructor(e){let t=new Fm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Sx.className="ConvLSTM2D";re.registerClass(Sx);var Am=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Jc(()=>$1(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Am.className="Dropout";re.registerClass(Am);var Cx=class extends Am{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Cx.className="SpatialDropout1D";re.registerClass(Cx);var _x=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=ds(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ut(e.kernelConstraint),this.biasConstraint=Ut(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=v1(this.activation.getClassName()),r;return a!=null?r=er(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=er(n,this.kernel.read()),this.bias!=null&&(r=tr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ps(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};_x.className="Dense";re.registerClass(_x);var Ex=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ls(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return Mz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ex.className="Flatten";re.registerClass(Ex);var Fx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ds(e.activation)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:ps(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Fx.className="Activation";re.registerClass(Fx);var Ax=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Pe(e),Dz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="RepeatVector";re.registerClass(Ax);var $x=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=ls(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};$x.className="Reshape";re.registerClass($x);var Dx=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Aa(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ve(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="Permute";re.registerClass(Dx);var Rx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),a=-1;return Fc(Mi(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=-1,r=!0,s=Fc(Mi(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Rx.className="Masking";re.registerClass(Rx);var Mx=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(gt(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=vt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Ut(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Pe(e),Mi(e,Ge(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=gt(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=Xc(n,"int32")),A1(this.embeddings.read(),n.as1D()).reshape(ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Mx.className="Embedding";re.registerClass(Mx);var qi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=os(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&os(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=us(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Kc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],p=c.slice(1).concat([u]),d=o.reshape([u].concat(ls(c.slice(1))));d=Ve(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let c=Aa(1,l).concat([0]);n.push(Ve(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ve(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Aa(0,i-1));s=Ve(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=os(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return D(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=ma(n,t[a]);return n})}},Px=class extends qi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};Px.className="Add";re.registerClass(Px);var Ox=class extends qi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};Ox.className="Multiply";re.registerClass(Ox);var Lx=class extends qi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return W(1/e.length,t)})}};Lx.className="Average";re.registerClass(Lx);var zx=class extends qi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ka(t,e[n]);return t})}};zx.className="Maximum";re.registerClass(zx);var Wx=class extends qi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Xl(t,e[n]);return t})}};Wx.className="Minimum";re.registerClass(Wx);var Bx=class extends qi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>Rb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(On(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return yh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Bx.className="Concatenate";re.registerClass(Bx);function op(e,t){for(;e<0;)e+=t;return e}function p4(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Vx=class extends qi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>op(r,e[s].shape.length)):a=[op(this.axes,t.shape.length),op(this.axes,n.shape.length)],this.normalize&&(t=fm(t,a[0]),n=fm(n,a[1])),p4(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[op(this.axes,e.length),op(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Vx.className="Dot";re.registerClass(Vx);var Ux=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return Jc(()=>nm(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Ux.className="GaussianNoise";re.registerClass(Ux);var Gx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?Jc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(nm(n.shape,1,a))},()=>n,t.training||!1):n})}};Gx.className="GaussianDropout";re.registerClass(Gx);var Hx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Jc(()=>{let a=Pe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=rs(Kl(n),this.rate);o=Xc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Pe(e),t.training||!1)}return e})}};Hx.className="AlphaDropout";re.registerClass(Hx);function lp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=mk(e,t,n,a,r,s);else if(e.rank===3)i=fk(e,t,n,a,r,s);else if(e.rank===4)i=gk(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function d4(e,t,n,a,r=.001){return D(()=>{let s=Eh(e,a),i=s.mean,o=s.variance;return[lp(e,i,o,n,t,r),i,o]})}function h4(e,t,n,a,r=.001){return D(()=>{let s=Eh(e,a),i=s.mean,o=s.variance,l=[];for(let h of Aa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[lp(e,c,u,d,p,r),i,o]})}function m4(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Aa(0,e.rank-1))?d4(e,t,n,a,r):h4(e,t,n,a,r)}var jx=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.movingMeanInitializer=vt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=vt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ut(e.betaConstraint),this.gammaConstraint=Ut(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Pe(e),r=a.shape,s=r.length,i=Aa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=zi(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!w.arraysEqual(c,Aa(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return lp(a,g,y,b,x,this.epsilon)}else return lp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=m4(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let x=1-b,v=g.read(),T=v.sub(y).mul(x);g.write(v.sub(T))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};jx.className="BatchNormalization";re.registerClass(jx);var qx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==os(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=Eh(n,this.axis,s),l=zi(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),u=u.tile(h),p=p.tile(h),lp(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};qx.className="LayerNormalization";re.registerClass(qx);function f4(e,t,n){return D(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ea()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ta(e,a)})}var Xx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ea():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>f4(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Xx.className="ZeroPadding2D";re.registerClass(Xx);function $m(e,t,n,a,r,s){return D(()=>{Rt(r),T1(s),na(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ea()),s==null&&(s="max"),e=gx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=$t(e,t,n,o):i=Zn(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}function WI(e,t,n,a,r,s){return D(()=>{Rt(r),T1(s),na(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ea()),s==null&&(s="max"),e=RI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=rb(e,t,n,o):i=Gy(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,4,1,2,3])),i})}var BI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,na(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=ct(e);let t=Ra(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=Kc(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ss(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Kx=class extends BI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),$m(e,t,n,a,r,"max")}};Kx.className="MaxPooling1D";re.registerClass(Kx);var Yx=class extends BI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),$m(e,t,n,a,r,"avg")}};Yx.className="AveragePooling1D";re.registerClass(Yx);var VI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),na(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Jx=class extends VI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),$m(e,t,n,a,r,"max")}};Jx.className="MaxPooling2D";re.registerClass(Jx);var Qx=class extends VI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),$m(e,t,n,a,r,"avg")}};Qx.className="AveragePooling2D";re.registerClass(Qx);var UI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),na(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ra(t,this.poolSize[0],this.padding,this.strides[0]),n=Ra(n,this.poolSize[1],this.padding,this.strides[1]),a=Ra(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Zx=class extends UI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),WI(e,t,n,a,r,"max")}};Zx.className="MaxPooling3D";re.registerClass(Zx);var ev=class extends UI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),na(a),WI(e,t,n,a,r,"avg")}};ev.className="AveragePooling3D";re.registerClass(ev);var GI=class extends je{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},tv=class extends GI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return Ct(n,1)})}};tv.className="GlobalAveragePooling1D";re.registerClass(tv);var nv=class extends GI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return ea(n,1)})}};nv.className="GlobalMaxPooling1D";re.registerClass(nv);var HI=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},av=class extends HI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Ct(n,[1,2]):Ct(n,[2,3])})}};av.className="GlobalAveragePooling2D";re.registerClass(av);var rv=class extends HI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?ea(n,[1,2]):ea(n,[2,3])})}};rv.className="GlobalMaxPooling2D";re.registerClass(rv);var jI=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Da(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},sv=class extends jI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Pe(e),LI((n,a)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};sv.className="TimeDistributed";re.registerClass(sv);function g4(e){Bi(_z,"BidirectionalMergeMode",e)}var y4="concat",iv=class extends jI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Da(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Da(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?y4:e.mergeMode,g4(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):En(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=OI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Yt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof $a;for(let l of s)if(l instanceof $a!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Ln(r,1));let i;return this.mergeMode==="concat"?i=Rb([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=W(.5,J(a,r)):this.mergeMode==="mul"?i=W(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Vi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Vi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Da(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};iv.className="Bidirectional";re.registerClass(iv);function Gz(e){return new nu(e)}function Hz(e){return new hx(e)}function jz(e){return new cx(e)}function qz(e){return new px(e)}function Xz(e){return new dx(e)}function Kz(e){return new fx(e)}function Yz(e){return new mx(e)}function Jz(e){return new Sm(e)}function Qz(e){return new sp(e)}function Zz(e){return new bx(e)}function eW(e){return new Nm(e)}function tW(e){return new xx(e)}function nW(e){return new vx(e)}function aW(e){return new wx(e)}function rW(e){return new kx(e)}function sW(e){return new Fx(e)}function iW(e){return new _x(e)}function oW(e){return new Am(e)}function lW(e){return new Cx(e)}function uW(e){return new Ex(e)}function cW(e){return new Ax(e)}function pW(e){return new $x(e)}function dW(e){return new Dx(e)}function hW(e){return new Mx(e)}function mW(e){return new Px(e)}function fW(e){return new Lx(e)}function gW(e){return new Bx(e)}function yW(e){return new zx(e)}function bW(e){return new Wx(e)}function xW(e){return new Ox(e)}function vW(e){return new Vx(e)}function wW(e){return new jx(e)}function kW(e){return new qx(e)}function IW(e){return new Xx(e)}function Ub(e){return new Yx(e)}function TW(e){return Ub(e)}function NW(e){return Ub(e)}function Gb(e){return new Qx(e)}function SW(e){return Gb(e)}function CW(e){return Gb(e)}function Hb(e){return new ev(e)}function _W(e){return Hb(e)}function EW(e){return Hb(e)}function FW(e){return new tv(e)}function AW(e){return new av(e)}function O1(e){return new nv(e)}function L1(e){return new rv(e)}function z1(e){return new Kx(e)}function W1(e){return new Jx(e)}function $W(e){return new Zx(e)}function DW(e){return new Tx(e)}function RW(e){return new Em(e)}function MW(e){return new Nx(e)}function PW(e){return new ip(e)}function OW(e){return new Ix(e)}function LW(e){return new _m(e)}function zW(e){return new Sx(e)}function WW(e){return new Fm(e)}function BW(e){return new nr(e)}function VW(e){return new Cm(e)}function UW(e){return new iv(e)}function GW(e){return new sv(e)}var HW=O1,jW=L1,qW=z1,XW=W1;function KW(e){return new Ux(e)}function YW(e){return new Gx(e)}function JW(e){return new Hx(e)}function QW(e){return new Rx(e)}var qI={};Le(qI,{MAPE:()=>_4,MSE:()=>A4,binaryAccuracy:()=>b4,binaryCrossentropy:()=>x4,categoricalAccuracy:()=>w4,categoricalCrossentropy:()=>k4,cosineProximity:()=>N4,mape:()=>E4,meanAbsoluteError:()=>S4,meanAbsolutePercentageError:()=>C4,meanSquaredError:()=>F4,mse:()=>$4,precision:()=>I4,recall:()=>T4,sparseCategoricalAccuracy:()=>v4});function b4(e,t){return Jb(e,t)}function x4(e,t){return tI(e,t)}function v4(e,t){return nI(e,t)}function w4(e,t){return Qb(e,t)}function k4(e,t){return Zb(e,t)}function I4(e,t){return eI(e,t)}function T4(e,t){return yB(e,t)}function N4(e,t){return Kb(e,t)}function S4(e,t){return gm(e,t)}function C4(e,t){return ru(e,t)}function _4(e,t){return ru(e,t)}function E4(e,t){return ru(e,t)}function F4(e,t){return Gi(e,t)}function A4(e,t){return Gi(e,t)}function $4(e,t){return Gi(e,t)}var XI={};Le(XI,{modelFromJSON:()=>JB});var KI={};Le(KI,{l1:()=>R4,l1l2:()=>D4,l2:()=>M4});function D4(e){return new ap(e)}function R4(e){return s4(e)}function M4(e){return i4(e)}var YI=class extends au{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Tr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Dm(e,t){return e<t}function JI(e,t){return e>t}var QI=class extends YI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Dm:this.mode==="max"?this.monitorFunc=JI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=JI:this.monitorFunc=Dm,this.monitorFunc===Dm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Dm?Infinity:-Infinity}async onEpochEnd(e,t){await cs(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function P4(e){return new QI(e)}var O4={earlyStopping:P4},Ma;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ma||(Ma={}));var ZI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(ZI||(ZI={}));var ov={};function L4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};ov[e]=n}function eT(e){return ov[e]}function z4(e){delete ov[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return An(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>An(p,n,a,r));let c=An(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function An(e,t,n,a){let[r,s]=Bn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Rm(r,o)]);return i!==void 0?t[Rm(r,i)][s]:void 0}function W4(e,t,n){return t[Rm(e,n.currentContextId)]}function Nr(e,t){let[n,a]=Bn(e);return[Rm(n,t&&t.currentContextId),a]}function Rm(e,t){return t?`${e}-${t}`:e}function Bn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Mm(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Sr(e){return e.kept?e:Zr(e)}var tT={};Le(tT,{json:()=>B4});var B4=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nT={};Le(nT,{json:()=>V4});var V4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],aT={};Le(aT,{json:()=>U4});var U4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],rT={};Le(rT,{json:()=>G4});var G4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],sT={};Le(sT,{json:()=>H4});var H4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],iT={};Le(iT,{json:()=>j4});var j4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],oT={};Le(oT,{json:()=>q4});var q4=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],lT={};Le(lT,{json:()=>X4});var X4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],uT={};Le(uT,{json:()=>K4});var K4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],cT={};Le(cT,{json:()=>Y4});var Y4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],pT={};Le(pT,{json:()=>J4});var J4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],dT={};Le(dT,{json:()=>Q4});var Q4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],hT={};Le(hT,{json:()=>Z4});var Z4=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],mT={};Le(mT,{json:()=>eV});var eV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],fT={};Le(fT,{json:()=>tV});var tV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],gT={};Le(gT,{json:()=>nV});var nV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],yT={};Le(yT,{json:()=>aV});var aV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],xT=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[tT,nT,aT,rT,sT,iT,oT,pT,cT,lT,dT,hT,mT,fT,gT,yT,uT],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=Nr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=Nr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=Nr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=eT(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=lv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=lv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=gv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=gv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=cv(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=cv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=fv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=fv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=uv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=uv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=bv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=bv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=mv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=mv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=yv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=yv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=dv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=dv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=hv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=hv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=bT(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=bT(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=Nr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:pv(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=Nr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=Nr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function rV(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function vT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):rV(e);return t?n:n.toLowerCase()}function lv(e,t,n,a=!1){let r=e[t];return r!=null?vT(r.s,a):n}function uv(e,t,n){let a=e[t];return a?a.b:n}function cv(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function pv(e){switch(typeof e=="string"&&(e=Ma[e]),e){case Ma.DT_FLOAT:return"float32";case Ma.DT_INT32:case Ma.DT_INT64:case Ma.DT_INT8:case Ma.DT_UINT8:return"int32";case Ma.DT_BOOL:return"bool";case Ma.DT_DOUBLE:return"float32";case Ma.DT_STRING:return"string";default:return null}}function bT(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function dv(e,t,n){let a=e[t];return a&&a.type?pv(a.type):n}function hv(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>pv(r)):n}function wT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function mv(e,t,n){let a=e[t];return a&&a.shape?wT(a.shape):n}function fv(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function gv(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>vT(s,a)):n}function yv(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>wT(r)):n}function bv(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var sV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return An(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return An(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return cv(this.node.rawAttrs,e,t);if(n.s!=null)return lv(this.node.rawAttrs,e,t);if(n.b!=null)return uv(this.node.rawAttrs,e,t);if(n.shape!=null)return mv(this.node.rawAttrs,e,t);if(n.type!=null)return dv(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return fv(this.node.rawAttrs,e,t);if(n.list.s!=null)return gv(this.node.rawAttrs,e,t);if(n.list.shape!=null)return yv(this.node.rawAttrs,e,t);if(n.list.b!=null)return bv(this.node.rawAttrs,e,t);if(n.list.type!=null)return hv(this.node.rawAttrs,e,t)}return t}},iV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[ck(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[ib(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[W(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ye(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Yy(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[gh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[he(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Xl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ka(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[xr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[zh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},oV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[Ry(I("x",e,t,n))];case"Acosh":return[My(I("x",e,t,n))];case"Asin":return[Oy(I("x",e,t,n))];case"Asinh":return[Ly(I("x",e,t,n))];case"Atan":return[zy(I("x",e,t,n))];case"Atan2":return[Wy(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[By(I("x",e,t,n))];case"Ceil":return[Hy(I("x",e,t,n))];case"Complex":return[Yr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Mc(I("x",e,t,n))];case"Cosh":return[wh(I("x",e,t,n))];case"Elu":return[Gl(I("x",e,t,n))];case"Erf":return[Jy(I("x",e,t,n))];case"Exp":return[hn(I("x",e,t,n))];case"Expm1":return[Qy(I("x",e,t,n))];case"Floor":return[Hl(I("x",e,t,n))];case"Log":return[Pn(I("x",e,t,n))];case"Log1p":return[Nh(I("x",e,t,n))];case"Imag":return[Ih(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[ub(I("x",e,t,n))];case"Real":return[Wc(I("x",e,t,n))];case"Relu":return[qe(I("x",e,t,n))];case"Round":return[cb(I("x",e,t,n))];case"Selu":return[Rh(I("x",e,t,n))];case"Sigmoid":return[da(I("x",e,t,n))];case"Sin":return[Mh(I("x",e,t,n))];case"Sign":return[pb(I("x",e,t,n))];case"Sinh":return[Ph(I("x",e,t,n))];case"Softplus":return[jl(I("x",e,t,n))];case"Sqrt":return[sn(I("x",e,t,n))];case"Square":return[lt(I("x",e,t,n))];case"Tanh":return[Ul(I("x",e,t,n))];case"Tan":return[mb(I("x",e,t,n))];case"ClipByValue":return[Xt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[$h(I("x",e,t,n))];case"Rsqrt":return[Dh(An(e.inputNames[0],t,n))];case"Prod":return[Fh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Pc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[zc(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ba(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function kT(e){return!(typeof e=="number"||e.some(t=>t<0))}function up(e,t,n){let a=xv(e,n),r=!kT(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=xv(s.shape,a)}),!kT(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function xv(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var lV=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ba(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Jn([],[0].concat(this.elementShape));let n=this.readMany(e);return ba(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Jn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ba(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ut(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],c=[0,l,0],u=[1,e[o],r];s[o]=U(Be(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},cp=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ba(t,r.shape,"TensorList shape mismatch: "),qt(r)}),this.idTensor=ve(0),this.maxNumElements=a,qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new cp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ba(e,this.elementShape,"TensorList shape mismatch: ");let a=up(this.elementShape,this.tensors,e);return D(()=>{let r=this.tensors.map(s=>U(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=up(this.elementShape,this.tensors,e),a=this.tensors.pop();return ba(a.shape,e,"TensorList shape mismatch: "),U(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ba(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ba(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=up(this.elementShape,this.tensors,t);return U(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ba(this.elementShape,t.shape,"TensorList shape mismatch: "),qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ba(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=up(this.elementShape,this.tensors,n);return e.length===0?Jn([],[0].concat(a)):D(()=>{let r=e.map(s=>U(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ba(this.elementShape,t,"TensorList shape mismatch: ");let n=up(this.elementShape,this.tensors,t);return this.size()===0?Jn([],[0].concat(n)):D(()=>{let a=this.tensors.map(r=>U(r,n));return Je(a,0)})}};function uV(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ba(r,t,"TensorList shape mismatch: ");let s=ut(e);return new cp(s,t,a)}function cV(e,t,n){return new cp([],e,t,n)}function pV(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new cp([],n,e.dtype,a),i=ut(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function dV(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=xv(s,n),o=a===0?0:e.size/a,l=D(()=>{let u=[];e=U(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];u[p]=U(Be(e,h,m),i)}return e.dispose(),u}),c=new cp([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var hV=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=I("pred",e,t,n);return[Sr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Sr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>An(r,t,n)!==void 0);if(a){let r=An(a,t,n);return[Sr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Sr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Sr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Sr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new lV(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=pV(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=cV(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=uV(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=dV(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function IT(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=Mm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var mV=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[xh(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=Mm(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[At(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=IT(e,t,n);return[is.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=IT(e,t,n);return[is.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=Mm(e,t,n);return[vh(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=Mm(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ns(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[qy(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Zn(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[$t(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Mk(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Gy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[rb(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[Ky(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fV=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[_n(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[_k(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Pk(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Wl(a,r,s,i)]}case"Ones":return[Ya(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[On(I("x",e,t,n))];case"RandomUniform":return[Kl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Ah(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Wh(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[xt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function vv(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var gV=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=vv(e,t,n),c=await Ja.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=vv(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ja.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=vv(e,t,n);return[await Ja.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ue(I("condition",e,t,n),"bool"),r=[await yb(a)];return a.dispose(),r}case"ListDiff":return zk(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},yV=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=fb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Bh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Bh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bV=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[An(e.name,t,n)||a];case"Placeholder":return[An(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Sr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Sr(c));case"Snapshot":let r=I("x",e,t,n);return[Sr(r)];case"Shape":return[Ze(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Ze(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xV=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=ut(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return D(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},vV=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new xV(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wV=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ja.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ja.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ja.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kV=(e,t,n)=>{switch(e.op){case"Equal":return[as(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Mi(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ha(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[rs(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Th(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Di(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[ma(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Oc(I("a",e,t,n))];case"LogicalOr":return[_h(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},IV=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[Ve(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[is.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},TV=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[br(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[br(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[eb(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Sa(I("x",e,t,n))];case"LogSoftmax":return[Ch(I("x",e,t,n))];case"SparseToDense":return[bb(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},NV=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ea(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ct(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ql(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Se(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[yh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Fc(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Ac(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Py(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Fh(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[kh(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[yk(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[Ik(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},SV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Je(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[$i(a,ue(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[$i(s,ue(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[Ln(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[Ln(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Be(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[hb(p,a,r,s,i,o,l,c,u)]}case"Pack":return D(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=ss(r[0]).shape,o=r.map(l=>{let c=w.arraysEqual(l.shape,s);if(!c&&!w.arraysEqual(ss(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:U(l,s)});return[Dt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ut(r,a)}case"Tile":{let a=I("reps",e,t,n);return[qa(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[Uk(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Gk(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[bb(a,s,r,s.dtype===i.dtype?i:ue(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},CV=(e,t,n)=>{switch(e.op){case"FFT":return[Vc(I("x",e,t,n))];case"IFFT":return[Jl(I("x",e,t,n))];case"RFFT":return[Uc(I("x",e,t,n))];case"IRFFT":return[Lh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_V=(e,t,n)=>{switch(e.op){case"Cast":return[ue(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[mn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[ss(I("x",e,t,n),a)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[sb(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ta(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Lc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Dc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[Xy(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Rc(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function TT(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>iV(s,i,o));case"basic_math":return D(()=>oV(s,i,o));case"control":return hV(s,i,o);case"convolution":return D(()=>mV(s,i,o));case"creation":return D(()=>fV(s,i,o));case"dynamic":return gV(s,i,o);case"evaluation":return D(()=>yV(s,i,o));case"image":return D(()=>wV(s,i,o));case"graph":return D(()=>bV(s,i,o));case"logical":return D(()=>kV(s,i,o));case"matrices":return D(()=>IV(s,i,o));case"normalization":return D(()=>TV(s,i,o));case"reduction":return D(()=>NV(s,i,o));case"slice_join":return D(()=>SV(s,i,o));case"spectral":return D(()=>CV(s,i,o));case"transformation":return D(()=>_V(s,i,o));case"hash_table":return vV(s,i,o,a);case"custom":let l=eT(s.op);if(l&&l.customExecutor)return l.customExecutor(new sV(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var NT=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function CT(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Bn(d)[0]),u=[];a!=null&&(u=a.map(d=>Bn(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((ST(d)||EV(d)||FV(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function AV(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Bn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var $V=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],DV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],RV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function ST(e){return $V.indexOf(e.op)>=0}function EV(e){return DV.indexOf(e.op)>=0}function FV(e){return RV.indexOf(e.op)>=0}var wv=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new wv(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=CT(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return AV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Bn(u)[0]]),r=t.map(u=>Bn(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new NT(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Bn(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=TT(f,p,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,u,d,r,h)}}return this.parent==null&&u.dispose(d),t.map(m=>An(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=W4(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new NT(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>An(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Bn(b)[0]]),i=n.map(b=>Bn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=CT(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Bn(b),T=[];T[v]=e[b],h[x]=T});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!ST(b)&&!An(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=Nr(u.node.name,n)),a[u.node.name]==null){let d=TT(u.node,a,n,this._resourceManager);p||([p]=Nr(u.node.name,n));let h=n.currentContext;w.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Nr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!An(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!An(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Bn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Bn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Bn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},MV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},PV="?tfjs-format=file",OV="model.json",_T=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new MV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=jt.browserHTTPRequest(e,this.loadOptions);else{let t=jt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(jt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=jt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new wv(xT.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=xT.Instance.transformGraph(e.modelInitializer);this.initializer=new wv(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=jt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function LV(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${OV}${PV}`);let n=new _T(e,t);return await n.load(),n}var ET="3.3.0",FT={};Le(FT,{CSVDataset:()=>$T,Dataset:()=>ou,FileDataSource:()=>DT,TextLineDataset:()=>AT,URLDataSource:()=>RT,array:()=>zV,csv:()=>BV,func:()=>VV,generator:()=>UV,microphone:()=>HV,version_data:()=>MT,webcam:()=>GV,zip:()=>WV});var jV=Do(t0()),qV=Do(t0());function XV(e,t){return Pm(e,t)}function Pm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(lu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Pm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function KV(e,t=OT){return PT(e,t)}function PT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(lu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=PT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function OT(e){return e===null?null:lu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function LT(e,t){let n=new Map;Pm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return Pm(e,t,n)}function lu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee))}function JV(e){return e==null||YV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function YV(e){return e===null||typeof e!="object"&&typeof e!="function"}function ZV(e){return XV(e,QV)}function QV(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:lu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var zT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},kv=class extends zT{constructor(){super(kv.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};kv.INITIAL_CAPACITY=32;function WT(e){return new eU(e)}function Iv(e){return new tU(e)}function nU(e,t){return new BT(e,t)}function rU(e,t=ms.FAIL){return new aU(e,t)}var Jt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new pU(this,e)}filter(e){return new uU(this,e)}map(e){return new cU(this,e)}mapAsync(e){return new VT(this,e)}serialMapAsync(e){return new VT(this,e).serial()}flatmap(e){return new dU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new lU(this,e,t)}columnMajorBatch(e,t=!0,n=OT){return this.rowMajorBatch(e,t).map(a=>KV(a,n))}concatenate(e,t){return new BT(WT([this,e]),t)}take(e){return e<0||e==null?this:new oU(this,e)}skip(e){return e<0||e==null?this:new iU(this,e)}prefetch(e){return new UT(this,e)}shuffle(e,t){return new hU(this,e,t)}serial(){return new sU(this)}},eU=class extends Jt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:ZV(e),done:!1}}},tU=class extends Jt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},sU=class extends Jt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},iU=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},oU=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},lU=class extends Jt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},uU=class extends Jt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},cU=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ta.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ta.getTensorsInContainer(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},pU=class extends Jt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},VT=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ta.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ta.getTensorsInContainer(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Tv=class extends Jt{constructor(){super();this.outputQueue=new kv,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},dU=class extends Tv{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ta.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ta.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ta.isTensorInList(r,a)||r.dispose();return!0}},BT=class extends Jt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ms;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ms||(ms={}));var aU=class extends Jt{constructor(e,t=ms.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Jt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await LT(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ms.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ms.SHORTEST:return{value:null,done:!0};case ms.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},UT=class extends Jt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new zT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},hU=class extends UT{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=qV.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},ou=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Vn(async()=>(await n.iterator()).columnMajorBatch(e,t,mU),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Vn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Vn(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Vn(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return Vn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Vn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Vn(async()=>{let a=Iv(async()=>({value:await t.iterator(),done:!1}));return nU(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Vn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=jV.alea(t||w.now().toString());return Vn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Vn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};ou.MAX_BUFFER_SIZE=1e4;function Vn(e,t=null){return new class extends ou{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function zV(e){return Vn(async()=>WT(e),e.length)}function WV(e){if(!lu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Vn(async()=>{let n=await LT(e,a=>{if(a instanceof ou)return{value:a.iterator(),recurse:!1};if(lu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return rU(n,ms.SHORTEST)},t)}function mU(e){if(e===null)return null;let t=e[0];return JV(t)?{value:fU(e),recurse:!1}:{value:null,recurse:!0}}function fU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Dt(e):Jn(e)}var AT=class extends ou{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Om='"',pp=Symbol("out"),GT=Symbol("field"),Lm=Symbol("quote"),Nv=Symbol("quoteafterquote"),HT=Symbol("quoteinquote"),$T=class extends ou{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new AT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=pp;for(let i=0;i<r;i++)switch(s){case pp:switch(e.charAt(i)){case Om:a=i+1,s=Lm;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=pp;break;default:s=GT,a=i;break}break;case GT:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=pp,a=i+1;break;default:}break;case Lm:switch(e.charAt(i)){case Om:s=Nv;break;default:}break;case Nv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=pp,a=i+1;break;case Om:s=Lm;break;default:s=HT;break}break;case HT:switch(e.charAt(i)){case Om:s=Lm;break;default:}break;default:}if(s===Nv?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},jT=class extends Jt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new jT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Jn(n,t)}},qT=class extends Jt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ze([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ca([s,r,o,i],[1,4])}else this.cropBox=Ca([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new qT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ei.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=mn(ue(e,"float32"),0),n;n=Ja.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return U(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},XT=class{},KT=class extends Jt{split(e){return new gU(this,e)}},gU=class extends KT{constructor(e,t){super();this.upstream=e,this.impl=new yU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},yU=class extends Tv{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},xU=class extends Jt{decodeUTF8(){return new bU(this)}},bU=class extends KT{constructor(e){super();this.upstream=e,this.impl=new vU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vU=class extends Tv{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=LE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},YT=class extends xU{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function kU(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=wU(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new YT(s,t)}else throw new Error(r.statusText)}var wU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function JT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var DT=class extends XT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(JT(this.input)&&Z().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new YT(this.input,this.options)}},RT=class extends XT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return JT(this.url)?new DT(this.url,this.fileOptions).iterator():kU(this.url,this.fileOptions)}};function BV(e,t={}){return new $T(new RT(e),t)}function VV(e){let t=Iv(e);return Vn(async()=>t)}function UV(e){return Vn(async()=>{let t=await e();return Iv(()=>t.next())})}async function GV(e,t){return qT.create(e,t)}async function HV(e){return jT.create(e)}var MT="3.3.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var IU=Qa.whereImpl,Sv=class extends Zu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new kd(this,Ha())}nextDataId(){return Sv.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Ha().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return IU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Sv.nextDataId=0;var QT={};Le(QT,{addImpl:()=>e2,bincountImpl:()=>Cv,bincountReduceImpl:()=>t2,ceilImpl:()=>n2,concatImpl:()=>a2,expImpl:()=>r2,expm1Impl:()=>s2,floorImpl:()=>i2,gatherV2Impl:()=>o2,greaterImpl:()=>l2,lessImpl:()=>u2,linSpaceImpl:()=>c2,logImpl:()=>p2,maxImpl:()=>d2,maximumImpl:()=>h2,minimumImpl:()=>m2,multiplyImpl:()=>_v,negImpl:()=>f2,notEqualImpl:()=>g2,prodImpl:()=>y2,rangeImpl:()=>b2,rsqrtImpl:()=>x2,simpleAbsImpl:()=>ZT,sliceImpl:()=>v2,squaredDifferenceImpl:()=>w2,stridedSliceImpl:()=>k2,subImpl:()=>I2,tileImpl:()=>T2,topKImpl:()=>N2,transposeImpl:()=>Ev,uniqueImpl:()=>S2});function ZT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var TU=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=ZT(r),n.makeOutput(a,t.shape,"float32")},NU={kernelName:Po,backendName:"cpu",kernelFunc:TU};function Mt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),c=w.sizeFromShape(i),u=w.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-p);f.forEach(S=>x[S]=0);let v=w.locToIndex(x,p,h),T=b.slice(-d);g.forEach(S=>T[S]=0);let k=w.locToIndex(T,d,m);u[y]=e(a[v],r[k])}return[u,i]}}function Un(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var SU={kernelName:Ad,backendName:"cpu",kernelFunc:Un};function zm(e,t,n="float32"){if(n==="complex64"){let r=zm(e,t,"float32"),s=zm(e,t,"float32");return Un({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function rr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var CU={kernelName:Xs,backendName:"cpu",kernelFunc:rr};function Xi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var _U={kernelName:Jd,backendName:"cpu",kernelFunc:Xi};function fs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return rr({inputs:{x:r},backend:n});let i=zm(n,r.shape,r.dtype),o=fs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Un({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Xi({inputs:{input:r},backend:n}),o=fs({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=rr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,c]=Mt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var EU={kernelName:Ms,backendName:"cpu",kernelFunc:fs};function Qt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=fs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=fs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[T,k,S]=n(i.shape,o.shape,h,m,x,v),F=l.makeTensorInfo(S,"float32",T),A=l.makeTensorInfo(S,"float32",k),R=Un({inputs:{real:F,imag:A},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo(A),R}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function Fv(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),c=o.length,u=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),d=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let T=0;T<p.length;T++){let k=T%f.length,S=T%g.length,F=e(f[k*2],f[k*2+1],g[S*2],g[S*2+1]);p[T]=F.real,d[T]=F.imag}else for(let T=0;T<p.length;T++){let k=w.indexToLoc(T,c,u),S=k.slice(-y);h.forEach(z=>S[z]=0);let F=w.locToIndex(S,y,b),A=k.slice(-x);m.forEach(z=>A[z]=0);let R=w.locToIndex(A,x,v),P=e(f[F*2],f[F*2+1],g[R*2],g[R*2+1]);p[T]=P.real,d[T]=P.imag}return[p,d,o]}}var e2=Mt((e,t)=>e+t),FU=Fv((e,t,n,a)=>({real:e+n,imag:t+a})),dp=Qt(Hr,e2,FU),AU={kernelName:Hr,backendName:"cpu",kernelFunc:dp};function Cv(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function t2(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Me([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function uu(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function st(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=w.sizeFromShape(i.shape),u=n||i.dtype,p=w.getArrayFromDType(u,c);for(let d=0;d<c;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,u,p)}}function cu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var n2=uu(e=>Math.ceil(e)),$U=cu(Ps,n2),DU={kernelName:Ps,backendName:"cpu",kernelFunc:$U};function a2(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var r2=uu(e=>Math.exp(e)),C2=cu(Us,r2),RU={kernelName:Us,backendName:"cpu",kernelFunc:C2},s2=uu(e=>Math.expm1(e)),MU=cu(Qo,s2),PU={kernelName:Qo,backendName:"cpu",kernelFunc:MU},i2=uu(e=>Math.floor(e)),OU=cu(Gs,i2),LU={kernelName:Gs,backendName:"cpu",kernelFunc:OU};function o2(e,t,n){let a=Me(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);a.values[r]=e.values[c]}return a}var l2=Mt((e,t)=>e>t?1:0),zU=Qt(nl,l2,null,"bool"),WU={kernelName:nl,backendName:"cpu",kernelFunc:zU},u2=Mt((e,t)=>e<t?1:0),BU=Qt(il,u2,null,"bool"),VU={kernelName:il,backendName:"cpu",kernelFunc:BU};function c2(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var p2=uu(e=>Math.log(e)),UU=cu(Ys,p2),GU={kernelName:Ys,backendName:"cpu",kernelFunc:UU};function d2(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}r[s]=o}return r}var h2=Mt((e,t)=>Math.max(e,t)),HU=Qt(Qs,h2),jU={kernelName:Qs,backendName:"cpu",kernelFunc:HU},m2=Mt((e,t)=>Math.min(e,t)),qU=Qt(ni,m2),XU={kernelName:ni,backendName:"cpu",kernelFunc:qU},_v=Mt((e,t)=>e*t),KU=Fv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Av=Qt(ai,_v,KU),YU={kernelName:ai,backendName:"cpu",kernelFunc:Av};function f2(e,t,n){let a=w.createScalarValue(-1,n);return _v([],t,a,e,n)}function JU(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=f2(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var QU={kernelName:pl,backendName:"cpu",kernelFunc:JU},g2=Mt((e,t)=>e!==t?1:0),ZU=Qt(dl,g2,null,"bool"),eG={kernelName:dl,backendName:"cpu",kernelFunc:ZU};function Ev(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<i;++u){let p=w.indexToLoc(u,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=w.locToIndex(d,s,l);c[h]=e[u]}return c}function xa(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,c=Ev(l,r.shape,r.dtype,s,o);return{dataId:a.write(c,o,r.dtype),shape:o,dtype:r.dtype}}var tG={kernelName:ki,backendName:"cpu",kernelFunc:xa};function y2(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=pa(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,p=1;for(let d=0;d<l;++d)p*=n[u+d];o[c]=p}return{outVals:o,outShape:r,outDtype:i}}function nG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=_.getAxesPermutation(l,o),u=l,p=r,d=[];c!=null&&(p=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),d.push(p),u=_.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=y2(p.shape,p.dtype,h,u),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var aG={kernelName:bl,backendName:"cpu",kernelFunc:nG};function b2(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var x2=uu(e=>1/Math.sqrt(e)),rG=cu(hi,x2),sG={kernelName:hi,backendName:"cpu",kernelFunc:rG};function v2(e,t,n,a,r){let s=rn.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=rn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Ki(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=rn.parseSliceParams(r,s,i);rn.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=v2(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var iG={kernelName:Tl,backendName:"cpu",kernelFunc:Ki},w2=Mt((e,t)=>{let n=e-t;return n*n}),oG=Qt(xi,w2),lG={kernelName:xi,backendName:"cpu",kernelFunc:oG};function k2(e,t,n,a){let r=Me(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var I2=Mt((e,t)=>e-t),uG=Fv((e,t,n,a)=>({real:e-n,imag:t-a})),$v=Qt(vi,I2,uG),cG={kernelName:vi,backendName:"cpu",kernelFunc:$v};function T2(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Me(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function N2(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),c=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,x)=>x.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let u=t.slice();return u[u.length-1]=a,[Me(u,n,l),Me(u,"int32",c)]}function S2(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Lt(s,a,e),c=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,c.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Lt(p,a);c.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var pG="3.3.0";fh("cpu",()=>new Sv,1);var _2=st(Xo,e=>e>=0?e:Math.exp(e)-1),dG={kernelName:Xo,backendName:"cpu",kernelFunc:_2};function E2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(r.shape,"float32",l)}var hG={kernelName:Ks,backendName:"cpu",kernelFunc:E2},mG=Mt((e,t)=>e<0?t*e:e);function F2(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=mG(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var fG={kernelName:oi,backendName:"cpu",kernelFunc:F2},A2=st(li,e=>Math.max(0,e)),gG={kernelName:li,backendName:"cpu",kernelFunc:A2},$2=st(ci,e=>Math.min(Math.max(0,e),6)),yG={kernelName:ci,backendName:"cpu",kernelFunc:$2};function Dv(e,t,n,a,r){if(n==="linear")return rr({inputs:{x:t},backend:e});if(n==="relu")return A2({inputs:{x:t},backend:e});if(n==="elu")return _2({inputs:{x:t},backend:e});if(n==="relu6")return $2({inputs:{x:t},backend:e});if(n==="prelu")return F2({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return E2({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function kt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var bG={kernelName:vl,backendName:"cpu",kernelFunc:kt};function D2(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=kt({inputs:{x:r},backend:n,attrs:{shape:v}}),S=kt({inputs:{x:s},backend:n,attrs:{shape:T}}),F=i?k.shape[1]:k.shape[2],A=i?k.shape[2]:k.shape[1],R=o?S.shape[1]:S.shape[2],P=Math.max(g,y),z=n.data.get(k.dataId).values,V=n.data.get(S.dataId).values,G=w.computeStrides(k.shape),H=w.computeStrides(S.shape),[X,j,te]=i?[G[0],1,G[1]]:[G[0],G[1],1],[Q,se,ne]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=A*R,ee=Me([P,A,R],k.dtype),pe=ee.values,oe=n.blockSize;for(let fe=0;fe<P;fe++)for(let me=0;me<A;me+=oe)for(let we=0;we<R;we+=oe)for(let Te=0;Te<F;Te+=oe){let _e=Math.min(me+oe,A),Re=Math.min(we+oe,R),Fe=Math.min(Te+oe,F);for(let nt=me;nt<_e;nt++)for(let at=we;at<Re;at++){let ot=0;for(let Ke=Te;Ke<Fe;Ke++){let ft=Math.min(fe,g-1)*X,We=Math.min(fe,y-1)*ne,kn=z[ft+nt*j+Ke*te],It=V[Ke*Q+at*se+We];ot+=kn*It}pe[fe*ie+(nt*R+at)]+=ot}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,ee.dtype,ee.values)}var xG={kernelName:Rs,backendName:"cpu",kernelFunc:D2};function vG(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d,h,m,f=[];d=D2({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(h=dp({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),u&&(m=Dv(n,d,u,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var wG={kernelName:Ii,backendName:"cpu",kernelFunc:vG},kG=st(Oo,e=>Math.acos(e)),IG={kernelName:Oo,backendName:"cpu",kernelFunc:kG},TG=st(Lo,e=>Math.acosh(e)),NG={kernelName:Lo,backendName:"cpu",kernelFunc:TG};function SG(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Me(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var CG={kernelName:As,backendName:"cpu",kernelFunc:SG};function _G(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x&&T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var EG={kernelName:Sd,backendName:"cpu",kernelFunc:_G};function FG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x||T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var AG={kernelName:Cd,backendName:"cpu",kernelFunc:FG};function $G(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=xa({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T>b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var DG={kernelName:$s,backendName:"cpu",kernelFunc:$G};function RG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=xa({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T<b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var MG={kernelName:nc,backendName:"cpu",kernelFunc:RG},PG=st(zo,e=>Math.asin(e)),OG={kernelName:zo,backendName:"cpu",kernelFunc:PG},LG=st(Wo,e=>Math.asinh(e)),zG={kernelName:Wo,backendName:"cpu",kernelFunc:LG},WG=st(Bo,e=>Math.atan(e)),BG={kernelName:Bo,backendName:"cpu",kernelFunc:WG},VG=Mt((e,t)=>Math.atan2(e,t)),UG=Qt(Uo,VG),GG={kernelName:Uo,backendName:"cpu",kernelFunc:UG},HG=st(Vo,e=>Math.atanh(e)),jG={kernelName:Vo,backendName:"cpu",kernelFunc:HG};function Rv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Me(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let T=v*y,k=v*a[0];for(let S=0;S<r.inChannels;++S)for(let F=0;F<r.outHeight;++F){let A=F*i-d,R=Math.max(0,A),P=Math.min(r.inHeight,u+A),z=T+F*b;for(let V=0;V<r.outWidth;++V){let G=V*o-h,H=Math.max(0,G),X=Math.min(r.inWidth,p+G),j=m,te=0,Q=0;for(let ne=R;ne<P;ne+=l){let ie=k+ne*a[1];for(let ee=H;ee<X;ee+=c){let pe=ie+ee*a[2],oe=e[pe+S];s==="max"&&oe>j?j=oe:s==="avg"&&(te+=oe,Q++)}if(isNaN(j))break}let se=z+V*x+S;g[se]=s==="avg"?te/Q:j}}}return f}function R2(e,t,n,a,r=!1,s=!1){let i=Me(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Me(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=c;let T=Math.min(a.inHeight,p+x);for(let k=0;k<a.outWidth;++k){let S=k*l-m,F=S;for(;F<0;)F+=u;let A=Math.min(a.inWidth,d+S),R=Number.NEGATIVE_INFINITY,P=-1;for(let z=v;z<T;z+=c){let V=z-x;for(let G=F;G<A;G+=u){let H=G-S,X=f.get(g,z,G,y);X>R&&(R=X,r?P=s?((g*a.inHeight+z)*a.inWidth+G)*a.inChannels+y:(z*a.inWidth+G)*a.inChannels+y:P=V*d+H)}}i.set(P,g,b,k,y)}}return i}function M2(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Me(r.outShape,n),v=x.values,T=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],F=r.outShape[4];for(let A=0;A<r.batchSize;++A){let R=A*T,P=A*a[0];for(let z=0;z<r.inChannels;++z)for(let V=0;V<r.outDepth;++V){let G=V*i-f,H=G;for(;H<0;)H+=c;let X=Math.min(r.inDepth,d+G),j=R+V*k;for(let te=0;te<r.outHeight;++te){let Q=te*o-g,se=Q;for(;se<0;)se+=u;let ne=Math.min(r.inHeight,h+Q),ie=j+te*S;for(let ee=0;ee<r.outWidth;++ee){let pe=ee*l-y,oe=pe;for(;oe<0;)oe+=p;let fe=Math.min(r.inWidth,m+pe),me=ie+ee*F,we=b,Te=0,_e=0;for(let Fe=H;Fe<X;Fe+=c){let nt=P+Fe*a[1];for(let at=se;at<ne;at+=u){let ot=nt+at*a[2];for(let Ke=oe;Ke<fe;Ke+=p){let ft=ot+Ke*a[3],We=e[ft+z];if(s==="max"&&We>we?we=We:s==="avg"&&(Te+=We,_e++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Re=me+z;v[Re]=s==="avg"?Te/_e:we}}}}return x}function qG(e,t){let n=Me(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,c+b);for(let T=0;T<t.outHeight;++T){let k=T*r-h,S=k;for(;S<0;)S+=o;let F=Math.min(t.inHeight,u+k);for(let A=0;A<t.outWidth;++A){let R=A*s-m,P=R;for(;P<0;)P+=l;let z=Math.min(t.inWidth,p+R),V=Number.NEGATIVE_INFINITY,G=-1;for(let H=x;H<v;H+=i){let X=H-b;for(let j=S;j<F;j+=o){let te=j-k;for(let Q=P;Q<z;Q+=l){let se=Q-R,ne=e.get(f,H,j,Q,g);ne>=V&&(V=ne,G=X*u*p+te*u+se)}}}n.set(G,f,y,T,A,g)}}}return n}function XG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=rr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=Rv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var KG={kernelName:Ds,backendName:"cpu",kernelFunc:XG};function YG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=M2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var JG={kernelName:ac,backendName:"cpu",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,T=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=v-1-u.padInfo.front,F=k-1-u.padInfo.left,A=T-1-u.padInfo.top,R=Me(s.shape,"float32"),P=1/(m*f*g),z=n.bufferSync(r);for(let V=0;V<u.batchSize;++V)for(let G=0;G<u.inChannels;++G)for(let H=0;H<u.inDepth;++H)for(let X=0;X<u.inHeight;++X)for(let j=0;j<u.inWidth;++j){let te=H-S,Q=X-A,se=j-F,ne=0;for(let ie=0;ie<v;ie+=y){let ee=(te+ie)/p;if(!(ee<0||ee>=u.outDepth||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(Q+pe)/d;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<k;fe+=x){let me=(se+fe)/h;me<0||me>=u.outWidth||Math.floor(me)!==me||(ne+=z.get(V,ee,oe,me,G))}}}R.set(ne*P,V,H,X,j,G)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var ZG={kernelName:Ed,backendName:"cpu",kernelFunc:QG};function eH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,x=b-1-u.padInfo.left,v=y-1-u.padInfo.top,T=Me(i.shape,"float32"),k=1/(h*m),S=n.data.get(r.dataId).values,F=Me(r.shape,"float32",S);for(let A=0;A<u.batchSize;++A)for(let R=0;R<u.inChannels;++R)for(let P=0;P<u.inHeight;++P)for(let z=0;z<u.inWidth;++z){let V=P-v,G=z-x,H=0;for(let X=0;X<y;X+=f){let j=(V+X)/p;if(!(j<0||j>=u.outHeight||Math.floor(j)!==j))for(let te=0;te<b;te+=g){let Q=(G+te)/d;Q<0||Q>=u.outWidth||Math.floor(Q)!==Q||(H+=F.get(A,j,Q,R))}}T.set(H*k,A,P,z,R)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var tH={kernelName:_d,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,x=p.length,v=0,T=0,k=0,S=0;for(let F=0;F<u.length;++F)f[F]=m[v++]+(u[F]-p[T++])*h[k++]/Math.sqrt(d[S++]+c),v>=g&&(v=0),T>=x&&(T=0),k>=y&&(k=0),S>=b&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var aH={kernelName:js,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=kt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=xa({inputs:{x:h},backend:n,attrs:{perm:c}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Ki({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var sH={kernelName:rc,backendName:"cpu",kernelFunc:rH};function iH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=Cv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var oH={kernelName:Fd,backendName:"cpu",kernelFunc:iH},lH=st(jr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),uH={kernelName:jr,backendName:"cpu",kernelFunc:lH},cH=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],p=l[c];a[c]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},pH={kernelName:sc,backendName:"cpu",kernelFunc:cH};function pu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var dH={kernelName:Gd,backendName:"cpu",kernelFunc:pu};function du(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return rr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Xi({inputs:{input:v},backend:n})),g=o.map(v=>pu({inputs:{input:v},backend:n})),y=du({inputs:f,backend:n,attrs:{axis:s}}),b=du({inputs:g,backend:n,attrs:{axis:s}}),x=Un({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let c=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return kt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=a2(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var hH={kernelName:Go,backendName:"cpu",kernelFunc:du};function P2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;xe([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Lt(d.outShape,r.dtype),T=w.computeStrides(r.shape),k=w.computeStrides(s.shape),S=T[0],F=x?T[1]:T[2],A=x?T[2]:1,R=x?1:T[1],P=v.strides[0],z=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,G=x?1:v.strides[1],H=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,j=v.values;for(let te=0;te<d.batchSize;++te){let Q=te*S,se=te*P;for(let ne=0;ne<d.outHeight;++ne){let ie=se+ne*z,ee=ne*d.strideHeight-b;for(let pe=0;pe<h;++pe){let oe=ee+pe*f;if(oe<0||oe>=d.inHeight)continue;let fe=pe*k[0],me=Q+oe*F;for(let we=0;we<d.outWidth;++we){let Te=ie+we*V,_e=we*d.strideWidth-y;for(let Re=0;Re<m;++Re){let Fe=_e+Re*g;if(Fe<0||Fe>=d.inWidth)continue;let nt=fe+Re*k[1],at=me+Fe*A,ot=nt;for(let Ke=0;Ke<d.inChannels;++Ke){let ft=H[at+Ke*R];for(let We=0;We<d.outChannels;++We)j[Te+We*G]+=ft*X[ot+We];ot+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,j)}var mH={kernelName:Os,backendName:"cpu",kernelFunc:P2};function fH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"conv2dBackpropFilter");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Lt(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=new Lt(r.shape,r.dtype,T),F=new Lt(s.shape,s.dtype,k);for(let A=0;A<f;++A){let R=Math.max(0,Math.ceil((v-A)/h)),P=Math.min(d.outHeight,(d.inHeight+v-A)/h);for(let z=0;z<g;++z){let V=Math.max(0,Math.ceil((x-z)/m)),G=Math.min(d.outWidth,(d.inWidth+x-z)/m);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let j=0;for(let te=0;te<d.batchSize;++te)for(let Q=R;Q<P;++Q){let se=A+Q*h-v;for(let ne=V;ne<G;++ne){let ie=z+ne*m-x;y?j+=S.get(te,se,ie,H)*F.get(te,Q,ne,X):j+=S.get(te,H,se,ie)*F.get(te,X,Q,ne)}}b.set(j,A,z,H,X)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var gH={kernelName:$d,backendName:"cpu",kernelFunc:fH};function yH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a;xe([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),d=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Lt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,T]=p,{batchSize:k,filterHeight:S,filterWidth:F,inChannels:A,inHeight:R,inWidth:P,outChannels:z,outHeight:V,outWidth:G,strideHeight:H,strideWidth:X}=m;h=m.dataFormat;let j=S-1-m.padInfo.top,te=F-1-m.padInfo.left,Q=h==="channelsLast",se=f.strides[0],ne=Q?f.strides[1]:f.strides[2],ie=Q?f.strides[2]:1,ee=Q?1:f.strides[1],pe=d[0],oe=Q?d[1]:d[2],fe=Q?d[2]:1,me=Q?1:d[1];for(let we=0;we<k;++we)for(let Te=0;Te<A;++Te)for(let _e=0;_e<R;++_e){let Re=_e-j,Fe=Math.max(0,Math.ceil(Re/H)),nt=Math.min(V,(S+Re)/H);for(let at=0;at<P;++at){let ot=at-te,Ke=Math.max(0,Math.ceil(ot/X)),ft=Math.min(G,(F+ot)/X),We=0;for(let It=Fe;It<nt;++It){let Xn=It*H-Re;for(let tn=Ke;tn<ft;++tn){let In=tn*X-ot,Kn=pe*we+oe*It+fe*tn,Mn=x*(S-1-Xn)+v*(F-1-In)+T*Te;for(let dn=0;dn<z;++dn){let nn=y[Kn+me*dn],Va=b[Mn+dn];We+=nn*Va}}}let kn=se*we+ne*_e+ie*at+ee*Te;g[kn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var bH={kernelName:Ls,backendName:"cpu",kernelFunc:yH};function xH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=c,y=g.front,b=g.left,x=g.top,v=new Lt(c.outShape,r.dtype),T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=v.values,F=w.computeStrides(r.shape),A=w.computeStrides(s.shape);for(let R=0;R<c.batchSize;++R){let P=R*F[0],z=R*v.strides[0];for(let V=0;V<c.outDepth;++V){let G=z+V*v.strides[1],H=V*c.strideDepth-y;for(let X=0;X<u;++X){let j=H+X*h;if(j<0||j>=c.inDepth)continue;let te=X*A[0],Q=P+j*F[1];for(let se=0;se<c.outHeight;++se){let ne=G+se*v.strides[2],ie=se*c.strideHeight-x;for(let ee=0;ee<p;++ee){let pe=ie+ee*m;if(pe<0||pe>=c.inHeight)continue;let oe=te+ee*A[1],fe=Q+pe*F[2];for(let me=0;me<c.outWidth;++me){let we=ne+me*c.outChannels,Te=me*c.strideWidth-b;for(let _e=0;_e<d;++_e){let Re=Te+_e*f;if(Re<0||Re>=c.inWidth)continue;let Fe=oe+_e*A[2],nt=fe+Re*c.inChannels,at=Fe;for(let ot=0;ot<c.inChannels;++ot){let Ke=T[nt+ot];for(let ft=0;ft<c.outChannels;++ft)S[we+ft]+=Ke*k[at+ft];at+=c.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var vH={kernelName:ic,backendName:"cpu",kernelFunc:xH};function wH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Lt(p.filterShape,"float32"),x=b.values,[v,T,k,S]=b.strides,F=n.data.get(s.dataId).values,[A,R,P,z]=u,V=n.data.get(r.dataId).values,[G,H,X,j]=c,te=p.padInfo.front,Q=p.padInfo.left,se=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((te-ne)/d)),ee=Math.min(p.outDepth,(p.inDepth+te-ne)/d),pe=ne*v;for(let oe=0;oe<g;++oe){let fe=Math.max(0,Math.ceil((se-oe)/h)),me=Math.min(p.outHeight,(p.inHeight+se-oe)/h),we=oe*T+pe;for(let Te=0;Te<y;++Te){let _e=Math.max(0,Math.ceil((Q-Te)/m)),Re=Math.min(p.outWidth,(p.inWidth+Q-Te)/m),Fe=Te*k+we;for(let nt=0;nt<p.inChannels;++nt){let at=nt*S+Fe;for(let ot=0;ot<p.outChannels;++ot){let Ke=0;for(let ft=0;ft<p.batchSize;++ft){let We=ft*G,kn=ft*A;for(let It=ie;It<ee;++It){let Xn=(ne+It*d-te)*H+We,tn=It*R+kn;for(let In=fe;In<me;++In){let Kn=(oe+In*h-se)*X+Xn,Mn=In*P+tn;for(let dn=_e;dn<Re;++dn){let nn=(Te+dn*m-Q)*j+Kn,Va=dn*z+Mn;Ke+=V[nn+nt]*F[Va+ot]}}}}x[at+ot]=Ke}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var kH={kernelName:Dd,backendName:"cpu",kernelFunc:wH};function IH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(l,s.shape,o,1,i),d=new Lt(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[x,v,T,k]=c,S=n.data.get(s.dataId).values,[F,A,R,P]=u,{batchSize:z,filterDepth:V,filterHeight:G,filterWidth:H,inChannels:X,inDepth:j,inHeight:te,inWidth:Q,outChannels:se,outDepth:ne,outHeight:ie,outWidth:ee,strideDepth:pe,strideHeight:oe,strideWidth:fe}=p,me=V-1-p.padInfo.front,we=G-1-p.padInfo.top,Te=H-1-p.padInfo.left;for(let _e=0;_e<z;++_e)for(let Re=0;Re<X;++Re)for(let Fe=0;Fe<j;++Fe){let nt=Fe-me,at=Math.max(0,Math.ceil(nt/pe)),ot=Math.min(ne,(V+nt)/pe);for(let Ke=0;Ke<te;++Ke){let ft=Ke-we,We=Math.max(0,Math.ceil(ft/oe)),kn=Math.min(ie,(G+ft)/oe);for(let It=0;It<Q;++It){let Xn=It-Te,tn=Math.max(0,Math.ceil(Xn/fe)),In=Math.min(ee,(H+Xn)/fe),Kn=0;for(let Mn=at;Mn<ot;++Mn){let dn=Mn*pe-nt;for(let nn=We;nn<kn;++nn){let Va=nn*oe-ft;for(let oa=tn;oa<In;++oa){let la=oa*fe-Xn,Pr=x*_e+v*Mn+T*nn+k*oa,pr=F*(V-1-dn)+A*(G-1-Va)+R*(H-1-la)+P*Re;for(let Or=0;Or<se;++Or){let wo=b[Pr+Or],Ia=S[pr+Or];Kn+=wo*Ia}}}}h[m*_e+f*Fe+g*Ke+y*It+Re]=Kn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var TH={kernelName:Rd,backendName:"cpu",kernelFunc:IH},NH=st(zs,e=>Math.cos(e)),SH={kernelName:zs,backendName:"cpu",kernelFunc:NH},CH=st(Ho,e=>Math.cosh(e)),_H={kernelName:Ho,backendName:"cpu",kernelFunc:CH};function EH(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Me([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,T=w.computeStrides(r.shape),k=w.computeStrides(y.shape);for(let S=0;S<m;S++){let F=S*4,A=b[F],R=b[F+1],P=b[F+2],z=b[F+3],V=x[S];if(V>=u)continue;let G=f>1?(P-A)*(p-1)/(f-1):0,H=g>1?(z-R)*(d-1)/(g-1):0;for(let X=0;X<f;X++){let j=f>1?A*(p-1)+X*G:.5*(A+P)*(p-1);if(j<0||j>p-1){for(let te=0;te<g;te++)for(let Q=0;Q<h;Q++){let se=Q+te*k[2]+X*k[1]+S*k[0];y.values[se]=c}continue}if(l==="bilinear"){let te=Math.floor(j),Q=Math.ceil(j),se=j-te;for(let ne=0;ne<g;ne++){let ie=g>1?R*(d-1)+ne*H:.5*(R+z)*(d-1);if(ie<0||ie>d-1){for(let fe=0;fe<h;fe++){let me=fe+ne*k[2]+X*k[1]+S*k[0];y.values[me]=c}continue}let ee=Math.floor(ie),pe=Math.ceil(ie),oe=ie-ee;for(let fe=0;fe<h;fe++){let me=fe+ee*T[2]+te*T[1]+V*T[0],we=v[me];me=fe+pe*T[2]+te*T[1]+V*T[0];let Te=v[me];me=fe+ee*T[2]+Q*T[1]+V*T[0];let _e=v[me];me=fe+pe*T[2]+Q*T[1]+V*T[0];let Re=v[me],Fe=we+(Te-we)*oe,nt=_e+(Re-_e)*oe;me=fe+ne*k[2]+X*k[1]+S*k[0],y.values[me]=Fe+(nt-Fe)*se}}}else for(let te=0;te<g;++te){let Q=g>1?R*(d-1)+te*H:.5*(R+z)*(d-1);if(Q<0||Q>d-1){for(let ie=0;ie<h;ie++){let ee=ie+te*k[2]+X*k[1]+S*k[0];y.values[ee]=c}continue}let se=Math.round(Q),ne=Math.round(j);for(let ie=0;ie<h;ie++){let ee=ie+se*T[2]+ne*T[1]+V*T[0],pe=ie+te*k[2]+X*k[1]+S*k[0];y.values[pe]=v[ee]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var FH={kernelName:jo,backendName:"cpu",kernelFunc:EH};function AH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),c=r;l!=null&&(c=xa({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=_.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let p=pa(c.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(c.shape),p),h=n.data.get(c.dataId).values,m=c.shape[c.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)d[x]=i?0:h[x];else{let v=f(y,b-1);d[x]=i?h[v]+d[v]:h[x]+d[v]}}let g=n.makeTensorInfo(c.shape,p,d);if(l!=null){let y=_.getUndoAxesPermutation(l),b=xa({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),b}return g}var $H={kernelName:Ws,backendName:"cpu",kernelFunc:AH};function DH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=Cv(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=t2(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var RH={kernelName:Md,backendName:"cpu",kernelFunc:DH};function MH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let x=Math.floor(b/s),v=b%s;for(let T=0;T<d;++T){let k=Math.floor(T/s),S=T%s,F=(v*s+S)*h;for(let A=0;A<h;++A){let R=A+F+u*(k+c*(x+l*y));f[g++]=m[R]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var PH={kernelName:qo,backendName:"cpu",kernelFunc:MH};function O2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a;xe([r,s],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,T=h.outChannels/h.inChannels,k=new Lt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,F=n.data.get(s.dataId).values,A=k.values;for(let R=0;R<h.batchSize;++R){let P=R*u[0],z=R*k.strides[0];for(let V=0;V<h.outHeight;++V){let G=z+V*k.strides[1],H=V*h.strideHeight-x;for(let X=0;X<m;++X){let j=H+X*g;if(j<0||j>=h.inHeight)continue;let te=X*p[0],Q=P+j*u[1];for(let se=0;se<h.outWidth;++se){let ne=G+se*k.strides[2],ie=se*h.strideWidth-v;for(let ee=0;ee<f;++ee){let pe=ie+ee*y;if(pe<0||pe>=h.inWidth)continue;let oe=te+ee*p[1],fe=Q+pe*h.inChannels,me=ne,we=oe;for(let Te=0;Te<h.inChannels;++Te){let _e=S[fe+Te];for(let Re=0;Re<T;++Re)A[me+Re]+=_e*F[we+Re];me+=T,we+=T}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var OH={kernelName:Bs,backendName:"cpu",kernelFunc:O2};function LH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Lt(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,T=new Lt(r.shape,r.dtype,v),k=n.data.get(s.dataId).values,S=new Lt(s.shape,s.dtype,k);for(let F=0;F<m;++F){let A=Math.max(0,Math.ceil((b-F)/d)),R=Math.min(p.outHeight,(p.inHeight+b-F)/d);for(let P=0;P<f;++P){let z=Math.max(0,Math.ceil((y-P)/h)),V=Math.min(p.outWidth,(p.inWidth+y-P)/h);for(let G=0;G<p.outChannels;++G){let H=Math.trunc(G/x),X=G%x,j=0;for(let te=0;te<p.batchSize;++te)for(let Q=A;Q<R;++Q){let se=F+Q*d-b;for(let ne=z;ne<V;++ne){let ie=P+ne*h-y;j+=T.get(te,se,ie,H)*S.get(te,Q,ne,G)}}g.set(j,F,P,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var zH={kernelName:Pd,backendName:"cpu",kernelFunc:LH};function WH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),h=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),m=new Lt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,T,k]=p,S=n.data.get(s.dataId).values,[F,A,R]=d,{batchSize:P,filterHeight:z,filterWidth:V,inChannels:G,inHeight:H,inWidth:X,outChannels:j,outHeight:te,outWidth:Q,strideHeight:se,strideWidth:ne}=h,ie=z-1-h.padInfo.top,ee=V-1-h.padInfo.left,pe=j/G;for(let oe=0;oe<P;++oe)for(let fe=0;fe<G;++fe)for(let me=0;me<H;++me){let we=me-ie,Te=Math.max(0,Math.ceil(we/se)),_e=Math.min(te,(z+we)/se);for(let Re=0;Re<X;++Re){let Fe=Re-ee,nt=Math.max(0,Math.ceil(Fe/ne)),at=Math.min(Q,(V+Fe)/ne),ot=0;for(let Ke=Te;Ke<_e;++Ke){let ft=Ke*se-we;for(let We=nt;We<at;++We){let kn=We*ne-Fe,It=v*oe+T*Ke+k*We,Xn=F*(z-1-ft)+A*(V-1-kn)+R*fe;for(let tn=0;tn<pe;++tn){let In=fe*pe+tn,Kn=x[It+In],Mn=S[Xn+tn];ot+=Kn*Mn}}}f[g*oe+y*me+b*Re+fe]=ot}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var BH={kernelName:Od,backendName:"cpu",kernelFunc:WH};function VH(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Me([r,r],a.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*r+c]=s[c];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var UH={kernelName:Ld,backendName:"cpu",kernelFunc:VH},GH={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:T,filterHeight:k,filterWidth:S,dilationHeight:F,dilationWidth:A,outShape:R}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),P=w.sizeFromShape(R),z=R.length,V=w.getArrayFromDType(a.dtype,P);for(let G=0;G<h;++G)for(let H=0;H<y;++H){let X=H*v-x.top;for(let j=0;j<b;++j){let te=j*T-x.left;for(let Q=0;Q<g;++Q){let se=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<k;++ie){let ee=X+ie*F;if(ee>=0&&ee<m)for(let pe=0;pe<S;++pe){let oe=te+pe*A;if(oe>=0&&oe<f){let fe=w.locToIndex([G,ee,oe,Q],u,w.computeStrides(a.shape)),me=w.locToIndex([ie,pe,Q],d,w.computeStrides(r.shape)),we=c[fe]+p[me];we>se&&(se=we)}}}let ne=w.locToIndex([G,H,j,Q],z,w.computeStrides(R));V[ne]=se}}}return{dataId:l.write(w.toTypedArray(V,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},HH={kernelName:Wd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Wd}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=0,se=0;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=X+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ne,se=ee)}}}P[Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},jH={kernelName:zd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${zd}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=G<0?0:G,se=X<0?0:X;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=X+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ie,se=pe)}}}P[z][Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function qH(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var XH={kernelName:Bd,backendName:"cpu",kernelFunc:qH},KH=Mt((e,t)=>e===t?1:0),L2=Qt(Yo,KH,null,"bool"),YH={kernelName:Yo,backendName:"cpu",kernelFunc:L2},JH=_.ERF_P,QH=_.ERF_A1,ZH=_.ERF_A2,ej=_.ERF_A3,tj=_.ERF_A4,nj=_.ERF_A5,aj=st(Ko,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+JH*n);return t*(1-((((nj*a+tj)*a+ej)*a+ZH)*a+QH)*a*Math.exp(-n*n))}),rj={kernelName:Ko,backendName:"cpu",kernelFunc:aj};function Wm(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),kt({inputs:{x:r},backend:n,attrs:{shape:o}})}var sj={kernelName:Jo,backendName:"cpu",kernelFunc:Wm},ij=Mt((e,t)=>e/t),Mv=Qt(Vs,ij),Pv={kernelName:Vs,backendName:"cpu",kernelFunc:Mv};function z2(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=w.sizeFromShape(c),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=Ki({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Ki({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Un({inputs:{real:y,imag:b},backend:n}),{real:v,imag:T}=oj(x,t,n),k=_.mergeRealAndImagArrays(v,T);for(let S=0;S<s;S++){let F=_.getComplexWithIndex(k,S);p[g*s+S]=F.real,d[g*s+S]=F.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",d),f=Un({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function oj(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(lj(a)){let o=Ov(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),d=rr({inputs:{x:p},backend:n}),h=Pv.kernelFunc({inputs:{a:c,b:p},backend:n}),m=Pv.kernelFunc({inputs:{a:u,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=uj(o,a,t);return _.splitRealAndImagArrays(l)}}function lj(e){return(e&e-1)==0}function Ov(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),d=r.makeTensorInfo(u,"float32",c),h=Un({inputs:{real:p,imag:d},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Un({inputs:{real:b,imag:x},backend:r}),T=Ov(l,c,i,a,r),k=T.real,S=T.imag,F=[k.length],A=r.makeTensorInfo(F,"float32",k),R=r.makeTensorInfo(F,"float32",S),P=Un({inputs:{real:A,imag:R},backend:r}),z=Ov(f,g,i,a,r),V=z.real,G=z.imag,H=[V.length],X=r.makeTensorInfo(H,"float32",V),j=r.makeTensorInfo(H,"float32",G),te=Un({inputs:{real:X,imag:j},backend:r}),Q=_.exponents(n,a),se=[Q.real.length],ne=r.makeTensorInfo(se,"float32",Q.real),ie=r.makeTensorInfo(se,"float32",Q.imag),ee=Un({inputs:{real:ne,imag:ie},backend:r}),pe=Av({inputs:{a:ee,b:te},backend:r}),oe=dp({inputs:{a:P,b:pe},backend:r}),fe=$v({inputs:{a:P,b:pe},backend:r}),me=Xi({inputs:{input:oe},backend:r}),we=Xi({inputs:{input:fe},backend:r}),Te=pu({inputs:{input:oe},backend:r}),_e=pu({inputs:{input:fe},backend:r}),Re=du({inputs:[me,we],backend:r,attrs:{axis:0}}),Fe=du({inputs:[Te,_e],backend:r,attrs:{axis:0}}),nt=r.data.get(Re.dataId).values,at=r.data.get(Fe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Fe),{real:nt,imag:at}}function uj(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),c=_.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function cj(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=z2(o,!1,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var pj={kernelName:Vd,backendName:"cpu",kernelFunc:cj};function Lv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return dj(o,r,i),t.makeTensorInfo(a,i,o)}var hj={kernelName:lc,backendName:"cpu",kernelFunc:Lv};function dj(e,t,n){e.fill(t)}var mj={kernelName:Zo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*c;for(let h=0;h<o;h++){let m=h*(l*c);for(let f=0;f<l;f++){let g=f*c;for(let y=0;y<c;y++){let b=[i,h,f,y][2],x=Math.round(l-b),v=d+m+g+y,T=u[v];if(x>=0&&x<l){let k=x*c,S=d+m+k+y;T=u[S]}s[v]=T}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},fj=Mt((e,t)=>Math.floor(e/t)),gj=Qt(Hs,fj,null,"int32"),yj={kernelName:Hs,backendName:"cpu",kernelFunc:gj};function bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=P2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=dp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Dv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var xj={kernelName:Ti,backendName:"cpu",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=O2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=dp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Dv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var wj={kernelName:Ni,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Me([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<c;f++){let g=[],y=0;for(let b=0;b<o;b++){let x=h[f*o+b];y+=x*p[b],g.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<u;b++)d.values[f*u+b]=m[y*u+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var Ij={kernelName:tl,backendName:"cpu",kernelFunc:kj};function Tj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=o;o==null&&(l=0);let c=w.sizeFromShape(s.shape),u=w.parseAxisParam(i,r.shape)[0],p=_.segment_util.collectGatherOpShapeInfo(r,s,u,l),d=kt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=kt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,c/p.batchSize]}}),m=[p.batchSize,p.outerSize,c/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=o2(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var Nj={kernelName:el,backendName:"cpu",kernelFunc:Tj},Sj=Mt((e,t)=>e>=t?1:0),Cj=Qt(qs,Sj,null,"bool"),_j={kernelName:qs,backendName:"cpu",kernelFunc:Cj};function Ej(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=z2(o,!0,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Fj={kernelName:Ud,backendName:"cpu",kernelFunc:Ej},Aj=st(al,e=>Number.isFinite(e)?1:0,"bool"),$j={kernelName:al,backendName:"cpu",kernelFunc:Aj},Dj=st(rl,e=>Math.abs(e)===Infinity?1:0,"bool"),Rj={kernelName:rl,backendName:"cpu",kernelFunc:Dj},Mj=st(sl,e=>Number.isNaN(e)?1:0,"bool"),Pj={kernelName:sl,backendName:"cpu",kernelFunc:Mj},Oj=Mt((e,t)=>e<=t?1:0),Lj=Qt(ol,Oj,null,"bool"),zj={kernelName:ol,backendName:"cpu",kernelFunc:Lj};function Wj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=c2(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Bj={kernelName:Hd,backendName:"cpu",kernelFunc:Wj},Vj=st(ll,e=>Math.log1p(e)),Uj={kernelName:ll,backendName:"cpu",kernelFunc:Vj},Gj=Mt((e,t)=>e&&t),Hj=Qt(ul,Gj,null,"bool"),jj={kernelName:ul,backendName:"cpu",kernelFunc:Hj},qj=st(uc,e=>e?0:1,"bool"),Xj={kernelName:uc,backendName:"cpu",kernelFunc:qj},Kj=Mt((e,t)=>e||t),Yj=Qt(cc,Kj,null,"bool"),Jj={kernelName:cc,backendName:"cpu",kernelFunc:Yj};function Qj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),x=0;for(;y<=b;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var Zj={kernelName:pc,backendName:"cpu",kernelFunc:Qj};function e6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a;xe(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let x=b%d,v=b-x+Math.max(0,x-o),T=b-x+Math.min(d,x+o+1),k=0;for(let S=v;S<T;S++)k+=Math.pow(m[S],2);k=c*k+l;for(let S=v;S<T;S++){let F=-2*c*u*m[S]*f[b]/k;b===S&&(F+=Math.pow(k,-u)),F*=h[b],g[S]+=F}}return n.makeTensorInfo(i.shape,r.dtype,g)}var t6={kernelName:jd,backendName:"cpu",kernelFunc:e6};function W2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,c=l.length,u=w.parseAxisParam(s,l),p=u,d=_.getAxesPermutation(p,c),h=o.data.get(r.dataId).values;if(d!=null){let v=new Array(c);for(let T=0;T<v.length;T++)v[T]=l[d[T]];h=Ev(h,l,r.dtype,d,v),p=_.getInnerMostAxes(p.length,c),l=v}xe(r,"max"),_.assertAxesAreInnerMostDims("max",p,c);let[m,f]=_.computeOutAndReduceShapes(l,p),g=w.sizeFromShape(f),y=d2(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,u)),{dataId:b,shape:x,dtype:r.dtype}}var n6={kernelName:Js,backendName:"cpu",kernelFunc:W2};function a6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=rr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=Rv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var r6={kernelName:Zs,backendName:"cpu",kernelFunc:a6};function s6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=M2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var i6={kernelName:dc,backendName:"cpu",kernelFunc:s6};function o6(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=qG(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,T=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=T-1-u.padInfo.left,F=v-1-u.padInfo.top,A=Me(s.shape,"float32"),R=n.bufferSync(r);for(let P=0;P<u.batchSize;++P)for(let z=0;z<u.inChannels;++z)for(let V=0;V<u.inDepth;++V)for(let G=0;G<u.inHeight;++G)for(let H=0;H<u.inWidth;++H){let X=V-k,j=G-F,te=H-S,Q=0;for(let se=0;se<x;se+=g){let ne=(X+se)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<v;ie+=y){let ee=(j+ie)/m;if(!(ee<0||ee>=u.outHeight||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(te+pe)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let fe=x*v*T-1-d.get(P,ne,ee,oe,z),me=se*v*T+ie*T+pe,we=fe===me?1:0;we!==0&&(Q+=R.get(P,ne,ee,oe,z)*we)}}}A.set(Q,P,V,G,H,z)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var l6={kernelName:Xd,backendName:"cpu",kernelFunc:o6};function u6(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Me(d.outShape,o.dtype,R2(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,T=v-1-d.padInfo.left,k=x-1-d.padInfo.top,S=Me(o.shape,"float32"),F=n.data.get(r.dataId).values,A=Me(r.shape,"float32",F);for(let R=0;R<d.batchSize;++R)for(let P=0;P<d.inChannels;++P)for(let z=0;z<d.inHeight;++z)for(let V=0;V<d.inWidth;++V){let G=z-k,H=V-T,X=0;for(let j=0;j<x;j+=y){let te=(G+j)/f;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let Q=0;Q<v;Q+=b){let se=(H+Q)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=x*v-1-m.get(R,te,se,P),ie=j*v+Q,ee=ne===ie?1:0;ee!==0&&(X+=A.get(R,te,se,P)*ee)}}S.set(X,R,z,V,P)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var c6={kernelName:qd,backendName:"cpu",kernelFunc:u6};function p6(e,t,n,a,r){let s=w.computeStrides(t),i=Rv(e,t,n,s,r,"max"),o=R2(e,t,n,r,!0,a);return[i.values,o.values]}var d6={kernelName:Kd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=p6(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Bm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=fs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=rr({inputs:{x:r},backend:n});let l=o.shape.length,c=w.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=xa({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=zm(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<b.length;++v){let T=v*y,k=0;for(let S=0;S<y;++S)k+=x[T+S];b[v]=k}if(i){let v=_.expandShapeToKeepDim(g.shape,c),T=g;g=kt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(T)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),g}var h6={kernelName:yi,backendName:"cpu",kernelFunc:Bm};function m6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(p);let d=fs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(d);let h=Mv({inputs:{a:d,b:p},backend:n});u.push(h);let m=Bm({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var f6={kernelName:ei,backendName:"cpu",kernelFunc:m6};function g6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=xa({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];T<x&&(x=T)}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var y6={kernelName:ti,backendName:"cpu",kernelFunc:g6};function b6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),c=s.map((b,x)=>b[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let T=0;T<f;T++)x[T]<l[T]?x[T]=l[T]*2-x[T]-u:x[T]>=c[T]&&(x[T]=(c[T]-1)*2-x[T]+u);x=x.map((T,k)=>T-l[k]);let v=w.locToIndex(x,d,h);y[b]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var x6={kernelName:hc,backendName:"cpu",kernelFunc:b6},v6=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),w6=Qt(cl,v6),k6={kernelName:cl,backendName:"cpu",kernelFunc:w6},I6=Do(e0());function B2(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),c=W2({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=$v({inputs:{a:r,b:p},backend:n}),h=C2({inputs:{x:d},backend:n}),m=Bm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Mv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var T6={kernelName:bi,backendName:"cpu",kernelFunc:B2};function N6(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:B2({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let m=0;m<c;++m){let f=m*u,g=new Float32Array(u-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=I6.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let T=0;T<g.length;T++)if(v<g[T]){h[b+x]=T;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var S6={kernelName:Yd,backendName:"cpu",kernelFunc:N6},C6=Qa.nonMaxSuppressionV3Impl;function _6(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=C6(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var E6={kernelName:hl,backendName:"cpu",kernelFunc:_6},F6=Qa.nonMaxSuppressionV4Impl;function A6(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a;xe(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=F6(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var $6={kernelName:ml,backendName:"cpu",kernelFunc:A6},D6=Qa.nonMaxSuppressionV5Impl;function R6(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a;xe(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=D6(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var M6={kernelName:fl,backendName:"cpu",kernelFunc:R6};function P6(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(c[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",c)}var O6={kernelName:ri,backendName:"cpu",kernelFunc:P6};function Vm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Xi({inputs:{input:a},backend:n}),s=Vm({inputs:{x:r},backend:n}),i=pu({inputs:{input:a},backend:n}),o=Vm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Lv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var L6={kernelName:Dl,backendName:"cpu",kernelFunc:Vm};function V2(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Xi({inputs:{input:a},backend:n}),s=V2({inputs:{x:r},backend:n}),i=pu({inputs:{input:a},backend:n}),o=Vm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Lv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var z6={kernelName:gl,backendName:"cpu",kernelFunc:V2};function U2(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Wm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Wm({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=du({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var W6={kernelName:yl,backendName:"cpu",kernelFunc:U2};function B6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<u;y++){let b=w.indexToLoc(y,p,d).map((v,T)=>v+l[T]),x=w.locToIndex(b,m,f);g[x]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var G2={kernelName:si,backendName:"cpu",kernelFunc:B6},V6=Mt((e,t)=>Math.pow(e,t)),U6=Qt(ii,V6),G6={kernelName:ii,backendName:"cpu",kernelFunc:U6};function H6(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=b2(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var j6={kernelName:mc,backendName:"cpu",kernelFunc:H6},q6=st(xl,e=>1/e),X6={kernelName:xl,backendName:"cpu",kernelFunc:q6};function K6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/b[0],T=y[1]/b[1];for(let k=0;k<p;k++)for(let S=0;S<c;S++){let F;i?F=v*(S+.5)-.5:F=v*S;let A=Math.max(0,Math.floor(F)),R=F-A,P=Math.min(d-1,Math.ceil(F)),z=k*l[0]+A*l[1],V=k*l[0]+P*l[1];for(let G=0;G<u;G++){let H;i?H=T*(G+.5)-.5:H=T*G;let X=Math.max(0,Math.floor(H)),j=H-X,te=Math.min(h-1,Math.ceil(H)),Q=z+X*l[2],se=V+X*l[2],ne=z+te*l[2],ie=V+te*l[2];for(let ee=0;ee<m;ee++){let pe=f[Q+ee],oe=f[se+ee],fe=f[ne+ee],me=f[ie+ee],we=pe+(fe-pe)*j,Te=oe+(me-oe)*j,_e=we+(Te-we)*R;g[x++]=_e}}}return n.makeTensorInfo([p,c,u,m],"float32",g)}var Y6={kernelName:ui,backendName:"cpu",kernelFunc:K6};function J6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,c,u,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*c*u*p),f=[i&&d>1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let T=0;T<l;T++){let k=T*o[0];for(let S=0;S<d;S++){let F=S*y,A=Math.floor(F),R=Math.min(Math.ceil(F),c-1),P=k+A*o[1],z=k+R*o[1],V=F-A,G=1-V;for(let H=0;H<h;H++){let X=H*b,j=Math.floor(X),te=Math.min(Math.ceil(X),u-1),Q=X-j,se=1-Q,ne=P+j*o[2],ie=P+te*o[2],ee=z+j*o[2],pe=z+te*o[2],oe=G*se,fe=G*Q,me=V*se,we=V*Q;for(let Te=0;Te<p;Te++){let _e=x[v++];m[ne+Te]+=_e*oe,m[ie+Te]+=_e*fe,m[ee+Te]+=_e*me,m[pe+Te]+=_e*we}}}}return n.makeTensorInfo([l,u,c,p],"float32",m)}var Q6={kernelName:Zd,backendName:"cpu",kernelFunc:J6};function Z6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*c*u*m),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/b[0],v=y[1]/b[1],T=0;for(let k=0;k<p;k++){let S=k*l[0];for(let F=0;F<c;F++){let A=i?x*(F+.5):x*F,R=Math.min(d-1,s?Math.round(A):Math.floor(A));i&&(R=Math.max(0,R));let P=S+R*l[1];for(let z=0;z<u;z++){let V=i?v*(z+.5):v*z,G=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(G=Math.max(0,G));let H=P+G*l[2];for(let X=0;X<m;X++){let j=f[H+X];g[T++]=j}}}}return n.makeTensorInfo([p,c,u,m],r.dtype,g)}var eq={kernelName:fc,backendName:"cpu",kernelFunc:Z6};function tq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[c,u,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(c*u*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],T=1/x,k=1/v,S=Math.ceil(T)*2+2,F=Math.ceil(k)*2+2;for(let A=0;A<c;A++){let R=A*o[0];for(let P=0;P<u;P++){let z=R+P*o[1],V=Math.floor(P*T),G=Math.floor(V-S/2);for(let H=0;H<p;H++){let X=z+H*o[2],j=Math.floor(H*k),te=Math.floor(j-F/2);for(let Q=0;Q<d;Q++){let se=0;for(let ne=0;ne<S;ne++){let ie=ne+G;if(ie<0||ie>=h)continue;let ee=R+ie*l[1],pe=ie*x,oe=Math.min(u-1,i?Math.round(pe):Math.floor(pe));if(P===oe)for(let fe=0;fe<F;fe++){let me=fe+te;if(me<0||me>=m)continue;let we=ee+me*l[2],Te=me*v,_e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));H===_e&&(se+=g[we+Q])}}f[X+Q]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var nq={kernelName:Qd,backendName:"cpu",kernelFunc:tq};function aq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return rr({inputs:{x:r},backend:n});let l=new Lt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var rq={kernelName:pi,backendName:"cpu",kernelFunc:aq},sq={kernelName:Rl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<c;x++){let v=x*p*u*d;for(let T=0;T<u;T++){let k=T*(p*d);for(let S=0;S<p;S++){let F=S*d;for(let A=0;A<d;A++){let R=[c,T,S,A],P=R[2],z=R[1],V=(P-h)*y-(z-m)*g,G=(P-h)*g+(z-m)*y;V=Math.round(V+h),G=Math.round(G+m);let H=s;if(typeof s!="number"&&(A===3?H=f:H=s[A]),V>=0&&V<p&&G>=0&&G<u){let j=G*(p*d),te=V*d,Q=v+j+te+A;H=b[Q]}let X=v+k+F+A;l[X]=H}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},iq=st(di,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),oq={kernelName:di,backendName:"cpu",kernelFunc:iq};function H2(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Me(n,t.dtype);let h=Me(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function lq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=H2(h,m,i,p,c,l,o,u,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var uq={kernelName:wl,backendName:"cpu",kernelFunc:lq};function cq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=pa(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=c[m];return n.makeTensorInfo(r.shape,u,p)}var pq={kernelName:kl,backendName:"cpu",kernelFunc:cq},dq=_.SELU_SCALEALPHA,hq=_.SELU_SCALE,mq=st(Il,e=>e>=0?hq*e:dq*(Math.exp(e)-1)),fq={kernelName:Il,backendName:"cpu",kernelFunc:mq},gq=st(fi,e=>1/(1+Math.exp(-e))),yq={kernelName:fi,backendName:"cpu",kernelFunc:gq},bq=st(Sl,e=>e<0?-1:e>0?1:0),xq={kernelName:Sl,backendName:"cpu",kernelFunc:bq},vq=st(mi,e=>Math.sin(e)),wq={kernelName:mi,backendName:"cpu",kernelFunc:vq},kq=st(Nl,e=>Math.sinh(e)),Iq={kernelName:Nl,backendName:"cpu",kernelFunc:kq},Tq=11920928955078125e-23,j2=Math.log(Tq)+2,Nq=st(Cl,e=>{let t=e>-j2,n=e<j2,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),Sq={kernelName:Cl,backendName:"cpu",kernelFunc:Nq};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let c=G2.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=_.getReshaped(c.shape,s,o,!1),p=_.getPermuted(u.length,s.length,!1),d=_.getReshapedPermuted(c.shape,s,o,!1),h=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),m=xa({inputs:{x:h},backend:n,attrs:{perm:p}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var _q={kernelName:gc,backendName:"cpu",kernelFunc:Cq};function Eq(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=H2(m,f,o,d,u,c,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var Fq={kernelName:eh,backendName:"cpu",kernelFunc:Eq};function Aq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Ki({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var $q={kernelName:_l,backendName:"cpu",kernelFunc:Aq},Dq=st(gi,e=>Math.sqrt(e)),Rq={kernelName:gi,backendName:"cpu",kernelFunc:Dq},Mq={kernelName:yc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},Pq=st(Xr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Oq={kernelName:Xr,backendName:"cpu",kernelFunc:Pq};function Lq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;xe(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=rn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=kt({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=Ki({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=kt({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else{let k=n.bufferSync(x),S=k2(b,k,f,m);v=n.makeTensorInfo(S.shape,S.dtype,S.values)}let T=kt({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var zq={kernelName:El,backendName:"cpu",kernelFunc:Lq},Wq=st(Fl,e=>Math.tan(e)),Bq={kernelName:Fl,backendName:"cpu",kernelFunc:Wq},Vq=st(wi,e=>Math.tanh(e)),Uq={kernelName:wi,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=T2(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var Hq={kernelName:qr,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=N2(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var qq={kernelName:Al,backendName:"cpu",kernelFunc:jq};function Yq(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],T=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));T.fill(l);let k=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values;for(let F=0;F<u;++F){let A=s.shape[0]===1?S:S.subarray(F*8,F*8+8);for(let R=0;R<m;++R)for(let P=0;P<f;++P)for(let z=0;z<h;++z){let V,G=A[6]*P+A[7]*R+1;if(G===0)continue;let H=(A[0]*P+A[1]*R+A[2])/G,X=(A[3]*P+A[4]*R+A[5])/G,j=q2(H,d,o),te=q2(X,p,o);switch(i){case"nearest":V=Xq(k,p,d,b,x,v,F,te,j,z,l);break;case"bilinear":V=Kq(k,p,d,b,x,v,F,te,j,z,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Q=F*b+R*x+P*v+z;T[Q]=V}return a.makeTensorInfo(g,r.dtype,T)}return{dataId:a.write(T,g,r.dtype),shape:r.shape,dtype:r.dtype}}var Jq={kernelName:th,backendName:"cpu",kernelFunc:Yq};function q2(e,t,n){switch(n){case"reflect":return Qq(e,t);case"wrap":return Zq(e,t);case"nearest":return t5(e,t);case"constant":default:return e5(e,t)}}function Qq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function Zq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function e5(e,t){return e}function t5(e,t){return w.clamp(0,e,t-1)}function hp(e,t,n,a,r,s,i,o,l,c,u){let p=i*a+o*r+l*s+c;return 0<=o&&o<t&&0<=l&&l<n?e[p]:u}function Xq(e,t,n,a,r,s,i,o,l,c,u){let p=Math.round(o),d=Math.round(l);return hp(e,t,n,a,r,s,i,p,d,c,u)}function Kq(e,t,n,a,r,s,i,o,l,c,u){let p=Math.floor(o),d=Math.floor(l),h=p+1,m=d+1,f=(m-l)*hp(e,t,n,a,r,s,i,p,d,c,u)+(l-d)*hp(e,t,n,a,r,s,i,p,m,c,u),g=(m-l)*hp(e,t,n,a,r,s,i,h,d,c,u)+(l-d)*hp(e,t,n,a,r,s,i,h,m,c,u);return(h-o)*f+(o-p)*g}function n5(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=S2(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var a5={kernelName:nh,backendName:"cpu",kernelFunc:n5};function r5(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){u[s]=h;let m=Ki({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});d[h]=kt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var s5={kernelName:$l,backendName:"cpu",kernelFunc:r5};function i5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,c=[],u=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=Wm({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,u.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=L2({inputs:{a:g,b:d},backend:n}),b=fs({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Av({inputs:{a:b,b:r},backend:n}),v=Bm({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(v),u.push(g),u.push(y),u.push(b),u.push(x),u.push(v)}let h=U2({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var o5={kernelName:bc,backendName:"cpu",kernelFunc:i5},l5=[wG,NU,IG,NG,AU,CG,EG,AG,DG,MG,OG,zG,BG,GG,jG,KG,JG,ZG,tH,xG,aH,sH,oH,EU,DU,uH,SU,pH,hH,gH,bH,mH,kH,TH,vH,SH,_H,FH,$H,RH,PH,OH,zH,BH,UH,GH,jH,HH,Pv,dG,XH,YH,rj,RU,sj,PU,pj,hj,mj,LU,yj,xj,wj,Ij,Nj,WU,_j,CU,Fj,dH,$j,Rj,Pj,hG,VU,zj,Bj,GU,Uj,jj,Xj,Jj,Zj,t6,jU,r6,i6,l6,c6,d6,n6,f6,y6,XU,x6,k6,S6,YU,QU,E6,$6,M6,eG,O6,z6,W6,G2,G6,fG,aG,j6,_U,X6,gG,yG,bG,Y6,Q6,eq,nq,rq,sq,oq,sG,uq,pq,fq,yq,xq,wq,Iq,iG,T6,Sq,_q,Fq,$q,Rq,Mq,lG,Oq,zq,cG,h6,Bq,Uq,Hq,qq,tG,Jq,a5,s5,o5,L6];for(let e of l5)vc(e);var Yi={},zv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function u5(e,t){Yi[e]=t}function sr(e){if(!(e in Yi)){let n=c5(e);if(n!==null)Yi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Yi[e];return t.isContextLost()?(delete Yi[e],sr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Yi[e])}function p5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function c5(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=p5(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Yi[e]},!1),e===1?t.getContext("webgl",zv)||t.getContext("experimental-webgl",zv):t.getContext("webgl2",zv)}var mp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(mp||(mp={}));var aa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(aa||(aa={}));var on;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(on||(on={}));function fp(e,t){return[t,e]}function d5(e,t){return e*t}function gp(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function hu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function h5(e,t){let[n,a]=hu(e,t);return n*a*4}function Wv(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return Z().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&m5(e),n}function m5(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+f5(e,t))}var g5=596e-10,y5=65504;function b5(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||g5<Math.abs(e)&&Math.abs(e)<y5)}function f5(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Um(e,t){return Cr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function x5(e,t){let n=Cr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function w5(e,t){let n=Cr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw v5(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var k5=/ERROR: [0-9]+:([0-9]+):/g;function v5(e,t){let n=k5.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),c=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function I5(e){return Cr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function T5(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Bv(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function N5(e,t){let n=Cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function S5(e,t){let n=Cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function C5(e){return Cr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function _5(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function E5(e){return Cr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function X2(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ie(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ie(e,()=>e.enableVertexAttribArray(o)),!0)}function A5(e,t,n){F5(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function $5(e,t,n){return Cr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function D5(e,t,n){return e.getUniformLocation(t,n)}function R5(e,t,n,a){Ie(e,()=>A5(e,t,a)),Ie(e,()=>e.uniform1i(n,a))}function Vv(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function K2(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Gm(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+M5(e,t))}function M5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Cr(e,t,n){let a=Ie(e,()=>t());if(a==null)throw new Error(n);return a}function F5(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function mu(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function fu(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Uv(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[mu(e),...fu(e)]),t}function P5(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=mu(e),s=2,i=2;return e.length&&([s,i]=fu(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function Hm(e){return e%2==0}function jm(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Hm(n)&&Hm(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Hm(e[0])&&Hm(t[0])}var Gv,Hv;function O5(e){if(Gv==null){let t=sr(e);Gv=t.getParameter(t.MAX_TEXTURE_SIZE)}return Gv}function L5(e){if(Hv==null){let t=sr(e);Hv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Hv)}function z5(e){if(e===0)return 0;let t,n=sr(e);return va(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:va(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function va(e,t){return e.getExtension(t)!=null}function Y2(e){try{if(sr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function W5(e){if(e===0)return!1;let t=sr(e);if(e===1){if(!va(t,"OES_texture_float"))return!1}else if(!va(t,"EXT_color_buffer_float"))return!1;return jv(t)}function V5(e){if(e===0)return!1;let t=sr(e);if(e===1){if(!va(t,"OES_texture_float")||!va(t,"WEBGL_color_buffer_float"))return!1}else{if(va(t,"EXT_color_buffer_float"))return jv(t);let n="EXT_color_buffer_half_float";if(va(t,n)){let a=t.getExtension(n);return B5(t,a)}return!1}return jv(t)}function jv(e){let t=Wv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function B5(e,t){let n=Wv(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function U5(e){return e!==2?!1:sr(e).fenceSync!=null}function yp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=Z();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>Y2(2)?2:Y2(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>O5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>L5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:z5(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Cc.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>W5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>V5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>U5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Cc.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function gn(){let e,t,n,a,r,s,i,o,l,c;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Ji(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function qv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var J2=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,G5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=mp.DENSE;let t=gp(e),n=gn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},H5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=mp.DENSE;let t=gp(e),n=gn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},j5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=aa.DOWNLOAD;let t=gn();this.outputShape=e,this.userCode=`
${J2}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},q5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=aa.DOWNLOAD;let t=gn();this.outputShape=e,this.userCode=`
${J2}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},X5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=gn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${qv(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
vec4 values = ${a.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${a.output} = vec4(${i}, 0., 0., 0.);
}
`}},K5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=gn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
values = ${a.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${qv(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${a.output} = ${o};
}
`}};function Y5(e){let t=gn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return x5(e,n)}function J5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return N5(e,t)}function Q5(e){let t=new Uint16Array([0,1,2,2,1,3]);return S5(e,t)}function bp(e,t,n,a,r,s){_5(t,n);let i=C5(e),o=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(o,i)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function Q2(e){return e.internalFormatFloat}function Z5(e,t,n,a){let[r,s]=fp(t,n);return bp(e,r,s,Q2(a),a.textureFormatFloat,e.FLOAT)}function Z2(e){return e.internalFormatHalfFloat}function e8(e,t,n,a){let[r,s]=fp(t,n);return bp(e,r,s,Z2(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function eN(e){return e.downloadTextureFormat}function t8(e,t,n,a){let[r,s]=fp(t,n);return bp(e,r,s,eN(a),e.RGBA,e.UNSIGNED_BYTE)}function tN(e){return e.internalFormatPackedFloat}function n8(e,t,n,a){let[r,s]=hu(t,n);return bp(e,r,s,tN(a),e.RGBA,e.FLOAT)}function nN(e){return e.internalFormatPackedHalfFloat}function a8(e,t,n,a){let[r,s]=hu(t,n);return bp(e,r,s,nN(a),e.RGBA,a.textureTypeHalfFloat)}function r8(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),X2(e,t,"clipSpacePos",n,3,s,a)&&X2(e,t,"uv",n,2,s,r)}function s8(e,t,n,a,r,s){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function i8(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function o8(e,t,n,a){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function l8(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function u8(e,t,n,a){let[r,s]=fp(t,n),i=4,o=new Uint8Array(d5(t*n,i));return Ie(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function c8(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(h5(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function p8(e,t,n){let a=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var h8=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,u5(t,e)):this.gl=sr(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Um(this.gl,r),va(this.gl,s))this.textureHalfFloatExtension=Um(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),va(this.gl,a))this.colorBufferHalfFloatExtension=Um(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",va(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(va(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=J5(this.gl),this.indexBuffer=Q5(this.gl),this.framebuffer=E5(this.gl),this.textureConfig=Wv(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Z5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),e8(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),t8(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),i8(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),s8(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),a8(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),n8(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(K2(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>u8(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return c8(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return l8(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=o8(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>p8(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=w5(t,e),a=Y5(t),r=I5(t);return Ie(t,()=>t.attachShader(r,a)),Ie(t,()=>t.attachShader(r,n)),T5(t,r),this.debug&&Bv(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=r8(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Bv(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?$5(this.gl,e,t):D5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),R5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=hu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Bv(this.gl,this.program),Gm(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Um(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=d8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Vv(this.gl,e,this.framebuffer),this.debug&&Gm(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Vv(this.gl,this.outputTexture,this.framebuffer),this.debug&&Gm(this.gl)):K2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Vv(a,e,this.framebuffer),this.debug&&Gm(a),this.outputTexture=e,Ie(a,()=>a.viewport(0,0,t,n)),Ie(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function d8(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:aN}=_;function k8(e,t,n,a){let r=[];e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
`),i=e.map(h=>m8(h,t,a)).join(`
`),o=t.texShape,l=gn(),c=y8(l),u,p,d=v8(l);return t.isPacked?(u=f8(t.logicalShape,o),p=x8(l)):(u=g8(t.logicalShape,o),p=b8(l)),a&&(d+=w8),[d,c,p,s,u,i,n].join(`
`)}function gu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return I8(e);case 1:return T8(e);case 2:return N8(e);case 3:return S8(e);case 4:return C8(e);case 5:return _8(e);case 6:return E8(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function rN(e){switch(e.shapeInfo.logicalShape.length){case 0:return F8(e);case 1:return A8(e);case 2:return $8(e);case 3:return D8(e);default:return R8(e)}}function m8(e,t,n=!1){let a="";n?a+=rN(e):a+=gu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=M8(e,t):a+=P8(e,t)),a}function f8(e,t){switch(e.length){case 0:return sN();case 1:return O8(e,t);case 2:return W8(e,t);case 3:return L8(e,t);default:return z8(e,t)}}function g8(e,t){switch(e.length){case 0:return sN();case 1:return B8(e,t);case 2:return j8(e,t);case 3:return V8(e,t);case 4:return U8(e,t);case 5:return G8(e,t);case 6:return H8(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function y8(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function b8(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function x8(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function v8(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${q8}
${X8}
${K8}
`}var q8=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,X8=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,K8=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,w8=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function sN(){return`
int getOutputCoords() {
return 0;
}
`}function O8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function B8(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function L8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function V8(e,t){let n=Ji(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function z8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${o});
}
`}function U8(e,t){let n=Ji(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function G8(e,t){let n=Ji(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function H8(e,t){let n=Ji(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function W8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function j8(e,t){return w.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Qi(e){return`offset${e}`}function F8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=gn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function I8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Qi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function A8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=gn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${r[0]}, ${r[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function T8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${yu(e)}
}
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Qi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
return sampleTexture(${t}, uv);
}
`:r===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function $8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=gn();if(r!=null&&w.arraysEqual(t,r))return`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function N8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&w.arraysEqual(t,r)){let p=r[0],d=r[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=w.squeezeShape(t),o=s;if(o.length<t.length){let p=bu(e,o),d=["row","col"];return`
${gu(p)}
float ${a}(int row, int col) {
return ${a}(${xu(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${yu(e)}
}
`;let l=r[0],c=r[1],u=Qi(n);return c===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function D8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=bu(e,p),m=["b","row","col"];return`
${rN(h)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${xu(m,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=gn();return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function S8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=w.squeezeShape(t),l=i;if(l.length<t.length){let m=bu(e,l),f=["row","col","depth"];return`
${gu(m)}
float ${a}(int row, int col, int depth) {
return ${a}(${xu(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${r}, ${s}, 1)));
${yu(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],p=c[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(p===s&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let h=Qi(n);return`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r} + col * ${s} + depth + ${h};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function R8(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],d=`b${m} * ${u} + `+d;let h=gn();return`
vec4 ${r}(${p}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${h.texture2D}(${a}, uv);
}
`}function C8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=w.squeezeShape(t);if(o.length<t.length){let m=bu(e,o),f=["row","col","depth","depth2"];return`
${gu(m)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${xu(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${r}, 1)));
${yu(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],d=u[1];if(d===i&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(d===r&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let h=Qi(n);return`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${r} + depth2;
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
return sampleTexture(${n}, uv);
}
`}function _8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let f=bu(e,l),g=["row","col","depth","depth2","depth3"];return`
${gu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${xu(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${yu(e)}
}
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let m=Qi(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function E8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=bu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${gu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${xu(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${yu(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===u&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Qi(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function yu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function M8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=aN(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),c=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${a}(${d});
${h}
}
`}function P8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=dt(l),u=aN(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${d}
return get${a}(${m});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function bu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function xu(e,t){return t.map(n=>e[n]).join(", ")}function Y8(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=k8(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(c,m,f),d[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function iN(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function J8(e,t,n,a,r){iN(t.inShapeInfos,n),iN([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(w.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function Q8(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:Z8,bincountImpl:oN,bincountReduceImpl:eX,ceilImpl:tX,concatImpl:nX,expImpl:aX,expm1Impl:rX,floorImpl:sX,gatherV2Impl:iX,greaterImpl:oX,lessImpl:lX,linSpaceImpl:uX,logImpl:cX,maxImpl:pX,maximumImpl:dX,minimumImpl:hX,multiplyImpl:mX,negImpl:fX,prodImpl:gX,rangeImpl:yX,rsqrtImpl:bX,simpleAbsImpl:lN,sliceImpl:xX,stridedSliceImpl:vX,subImpl:wX,tileImpl:kX,topKImpl:IX,transposeImpl:Xv,uniqueImpl:TX}=QT;function uN(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function yn(e,t){return t===1?[e]:uN(e,t)}function NX(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var EX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=yn("rc",t),a=dt(t),r=SX(t,e,n),s=CX(t,e[e.length-1],e[e.length-2],n),i=_X(e,n);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function FX(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function SX(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function CX(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function _X(e,t){let n=e.length,a=FX(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${a[0]}),
cEdge ? 0. : getA(${a[1]}),
rEdge ? 0. : getA(${a[2]}),
rEdge || cEdge ? 0. : getA(${a[3]})`}var cN=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${AX(t)}
${qv(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function AX(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Ji(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var $X=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=dN(t,n),r=hN(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=pN(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===on.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===on.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===on.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===on.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=dN(n,a),s=hN(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=pN(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function DX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function pN(e,t,n,a,r){let s=RX(t,a),i;if(r){let[l,c]=hu(e[0],e[1]);i=l*c}else{let[l,c]=fp(e[0],e[1]);i=l*c}let o=DX(n,s);return i*o}function RX(e,t){switch(e){case on.PACKED_2X2_FLOAT32:return tN(t);case on.PACKED_2X2_FLOAT16:return nN(t);case on.UNPACKED_FLOAT32:return Q2(t);case on.UNPACKED_FLOAT16:return Z2(t);case on.PACKED_4X1_UNSIGNED_BYTE:return eN(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function MX(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?on.PACKED_2X2_FLOAT32:on.UNPACKED_FLOAT32:e?on.PACKED_2X2_FLOAT16:on.UNPACKED_FLOAT16}function dN(e,t){if(e===aa.UPLOAD)return on.PACKED_2X2_FLOAT32;if(e===aa.RENDER||e==null)return MX(t);if(e===aa.DOWNLOAD||e===aa.PIXELS)return on.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function hN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var gs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Pa="if (isnan(x)) return x;",PX="return x;",mN="return abs(x);",OX="return (x >= 0.0) ? x : (exp(x) - 1.0);",LX=Pa+`
return (x < 0.0) ? 0.0 : x;
`,zX=Pa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,qm="return x;",WX="return x;",BX=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,VX=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,UX=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,vu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},GX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=yn("rc",t),a=dt(t),r=NX(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},HX=Qa.whereImpl,jX=1e-7,qX=1e-4,Kv={};function XX(e){return e in Kv||(Kv[e]={}),Kv[e]}var KX=128,YX=600;function JX(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*YX/1024/1024}var Yv=class extends Zu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=sr(Z().getNumber("WEBGL_VERSION"));this.binaryCache=XX(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new h8(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new $X(this.gpgpu),this.numMBBeforeWarning=JX(),this.texData=new kd(this,Ha())}nextDataId(){return Yv.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:aa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:aa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new vu(i,qm):p=new gs(i,qm);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new vu(a,qm):h=new gs(a,qm);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...gp(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ha().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!b5(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...gp(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=Z().getBool("WEBGL_PACK")&&a===!0,i=s?Uv(t):t,o=s?new q5(i):new j5(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Z().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ha().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=KX){let n=this.getCPUBackend();return!Z().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&w.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return HX(e.shape,t)}packedUnaryOp(e,t,n){let a=new vu(e.shape,t),r=this.compileAndRun(a,[e],n);return Ha().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=lN(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,mN,e.dtype);let t=new gs(e.shape,mN),n=this.compileAndRun(t,[e]);return Ha().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Ha().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new GX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new EX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[mu(e.shape),...fu(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[mu(t),...fu(t)],s=new cN(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=Uv(a),i;n?i=new H5(s):i=new G5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===mp.DENSE){let f=gp(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!jm(g.shape,f.shape)){let y=f,b=f.shape;f.shape=g.shape,f=this.packedReshape(f,b),o.push(f),g=this.texData.get(f.dataId),y.shape=b}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=Q8(e,l,c),p=this.getAndSaveBinary(u,()=>Y8(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),J8(this.gpgpu,p,l,c,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=Z().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?jX:qX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=P5(n,o),t.texShape=u),r!=null){let p=Uv(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=hu(u[0],u[1]),d=new K5(p,[m,h],f)):d=new X5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=aa.PIXELS:this.texData.get(g.dataId).usage=aa.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),x=this.texData.get(b.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=QX(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Yv.nextDataId=0;function QX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var ZX="3.3.0";Cc.isBrowser()&&fh("webgl",()=>new Yv,2);var fN=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,wu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Xm=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,xp=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${dt(r)} coords = getOutputCoords();
`,r===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=yn("coords",r);s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Gn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var eK={kernelName:Xs,backendName:"webgl",kernelFunc:Gn};function ys(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Gn({inputs:{x:a},backend:n}),l=Gn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var tK={kernelName:Ad,backendName:"webgl",kernelFunc:ys},gN="return (a < 0.) ? b * a : a;",yN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function nK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(yN,r.shape,i.shape):new wu(gN,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var aK={kernelName:Ks,backendName:"webgl",kernelFunc:nK},bN="return (a < 0.) ? b * a : a;",xN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function rK(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(xN,a.shape,r.shape):new wu(bN,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var sK={kernelName:oi,backendName:"webgl",kernelFunc:rK},vN="if (isnan(x)) return x;",iK=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,oK=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new vu(i.shape,t):u=new gs(i.shape,e),o.runWebGLProgram(u,[i],l)}}function ln({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,T]=x,k={dataId:v.dataId,dtype:v.dtype,shape:l.shape},S={dataId:T.dataId,dtype:T.dtype,shape:c.shape},F=new wu(e,l.shape,c.shape);return u.runWebGLProgram(F,[k,S],pa(v.dtype,T.dtype))}),b=ys({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||pa(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),x=u.texData.get(b.dataId);return x.values=g,b}let d=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new xp(t,l.shape,c.shape,n):h=new wu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function Km(e,t=!1){if(e==="linear")return t?WX:PX;if(e==="relu")return t?VX:LX;if(e==="elu")return t?BX:OX;if(e==="relu6")return t?UX:zX;if(e==="prelu")return t?xN:bN;if(e==="leakyrelu")return t?yN:gN;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var wN=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},kN={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},IN=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},TN="return a * b;";function NN(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),c=new IN(kN.REAL,a.shape,r.shape),u=new IN(kN.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=ys({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[c,u]=mX(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),d=n.texData.get(p.dataId);return d.values=c,p}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new xp(TN,a.shape,r.shape):i=new wu(TN,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var lK={kernelName:ai,backendName:"webgl",kernelFunc:NN};function uK(e,t,n){let a=[mu(e.shape),...fu(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[mu(t),...fu(t)],i=new cN(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),c=w.sizeFromShape(l);w.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!jm(r.shape,l)&&!(u.texture!==null&&jm(u.shape,l))?uK(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var cK={kernelName:vl,backendName:"webgl",kernelFunc:ge},SN=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},pK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function dK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Zi(e,t,n,a){let r=dK(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:c}=r[i],u,p;n==="mean"?u=i===0?new SN({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new SN({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new pK({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var mK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=hK(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function hK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var fK=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=dt(this.rank),r=uN("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=r[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Ym(e,t,n){let a=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fK(e.shape,t):new mK(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function gK(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=Ym(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=_.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=_.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(d),f=w.sizeFromShape(e.shape)/m,g=ge({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=uh(e.dtype),b=Zi(g,y,"sum",a),x=ge({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),c&&a.disposeIntermediateTensorInfo(u),x}function Jv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return gK(r,s,i,n)}var yK={kernelName:yi,backendName:"webgl",kernelFunc:Jv};function $n(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let c;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=Xv(u,r.shape,r.dtype,s,l);c=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(c.dataId);d.values=p}else c=Ym(r,s,i);return c}var bK={kernelName:ki,backendName:"webgl",kernelFunc:$n},CN=1e3;function Jm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,p=n?e.shape[c-2]:e.shape[c-1],d=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=y===b||y===1||b===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let T=n?[y,p,h]:[y,h,p],k=a?[b,m,d]:[b,d,m],S=ge({inputs:{x:e},backend:r,attrs:{shape:T}}),F=ge({inputs:{x:t},backend:r,attrs:{shape:k}}),A=[S,F],R=Math.max(y,b),P=n?S.shape[1]:S.shape[2],z=s!=null,V=i!=null,G=l==="leakyrelu",H=l!=null?Km(l,!0):null,X=z||V||G||H!=null,j;if((h===1||m===1)&&P>CN&&X===!1){let Q=S,se=F;n&&(Q=$n({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),A.push(Q)),a&&(se=$n({inputs:{x:F},backend:r,attrs:{perm:[0,2,1]}}),A.push(se));let ne=m!==1,ie=m===1,ee=Q;ne&&(ee=ge({inputs:{x:Q},backend:r,attrs:{shape:[R,P,1]}}),A.push(ee));let pe=m===1?2:1,oe=se;ie&&(oe=ge({inputs:{x:se},backend:r,attrs:{shape:[R,1,P]}}),A.push(oe));let fe=NN({inputs:{a:ee,b:oe},backend:r});j=Jv({inputs:{x:fe},backend:r,attrs:{axis:pe,keepDims:!0}}),A.push(fe)}else{let Q=pa(e.dtype,t.dtype),se=new wN(T,k,[R,h,m],n,a,z,H,V,G),ne=[S,F];if(s!=null&&ne.push(s),V&&ne.push(i),G){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ne.push(ie),A.push(ie)}j=r.runWebGLProgram(se,ne,Q)}let te=ge({inputs:{x:j},backend:r,attrs:{shape:v}});A.push(j);for(let Q of A)r.disposeIntermediateTensorInfo(Q);return te}function xK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return Jm({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var vK={kernelName:Ii,backendName:"webgl",kernelFunc:xK},_N="return abs(x);";function wK(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=lN(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new vu(a.shape,_N):r=new gs(a.shape,_N),n.runWebGLProgram(r,[a],a.dtype)}var kK={kernelName:Po,backendName:"webgl",kernelFunc:wK},IK=Pa+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,TK=Xe({opSnippet:IK}),NK={kernelName:Oo,backendName:"webgl",kernelFunc:TK},SK=Pa+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,CK=Xe({opSnippet:SK}),_K={kernelName:Lo,backendName:"webgl",kernelFunc:CK},EN="return a + b;",EK=ln({opSnippet:EN,packedOpSnippet:EN,supportsComplex:!0,cpuKernelImpl:Z8}),FK={kernelName:Hr,backendName:"webgl",kernelFunc:EK},AK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},$K=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Qm(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Gn({inputs:{x:a[0]},backend:n});if(a.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Qm({inputs:a.slice(0,o),backend:n}),c=Qm({inputs:a.slice(o),backend:n});return Qm({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>pa(o,l)),s=a.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new $K(a[0].shape,s):new AK(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var DK={kernelName:As,backendName:"webgl",kernelFunc:Qm};function RK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=$n({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Zi(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var MK={kernelName:Sd,backendName:"webgl",kernelFunc:RK};function PK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=$n({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Zi(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var OK={kernelName:Cd,backendName:"webgl",kernelFunc:PK},LK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},zK=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),c=yn("coords",o),u,p;if(s===1){p=o+1;let S=dt(p);u=`
${S} sourceLocR = ${S}(${c.join()}, 0);
++${c[o-1]};
${S} sourceLocG = ${S}(${c.join()}, 0);
++${c[o-2]};
${S} sourceLocA = ${S}(${c.join()}, 0);
--${c[o-1]};
${S} sourceLocB = ${S}(${c.join()}, 0);
--${c[o-2]};`}else p=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(S=>"int "+S),f=yn("sourceLocR",p-1).concat("inIdx.r"),g=yn("sourceLocG",p-1).concat("inIdx.g"),y=yn("sourceLocB",p-1).concat("inIdx.b"),b=yn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,T=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,k=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${T};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${T};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function FN(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new LK(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=FN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function AN(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new zK(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=AN(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function $N(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=w.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=FN(e,c,a);s.push(u);let p=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return AN(e,t,a)}function WK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=$n({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=$N(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var BK={kernelName:$s,backendName:"webgl",kernelFunc:WK};function VK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=$n({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=$N(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var UK={kernelName:nc,backendName:"webgl",kernelFunc:VK},GK=Pa+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,HK=Xe({opSnippet:GK}),jK={kernelName:zo,backendName:"webgl",kernelFunc:HK},qK=Pa+"return log(x + sqrt(x * x + 1.0));",XK=Xe({opSnippet:qK}),KK={kernelName:Wo,backendName:"webgl",kernelFunc:XK},YK=Pa+`
return atan(x);
`,JK=Xe({opSnippet:YK}),QK={kernelName:Bo,backendName:"webgl",kernelFunc:JK},ZK=iK+`
return atan(a, b);
`,eY=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+oK+`
return result;
`,tY=ln({opSnippet:ZK,packedOpSnippet:eY}),nY={kernelName:Uo,backendName:"webgl",kernelFunc:tY},aY=Pa+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,rY=Xe({opSnippet:aY}),sY={kernelName:Vo,backendName:"webgl",kernelFunc:rY},vp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,T=s%4,k=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${v};
if (${T===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${T===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${T===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${x});
}
`}},Qv=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${A} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",T=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(T="avgValue / count");let k=Math.floor(s/4)*4,S=s%4,F=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${F}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${F}
}
}
setOutput(${T});
}
}
`}};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new vp(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var oY={kernelName:Ds,backendName:"webgl",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new Qv(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var uY={kernelName:ac,backendName:"webgl",kernelFunc:lY},cY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},pY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function dY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new pY(d);return n.runWebGLProgram(h,[r],i.dtype)}var hY={kernelName:Ed,backendName:"webgl",kernelFunc:dY};function mY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;yp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new cY(u);return n.runWebGLProgram(p,[r],i.dtype)}var fY={kernelName:_d,backendName:"webgl",kernelFunc:mY};function gY(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Jm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var yY={kernelName:Rs,backendName:"webgl",kernelFunc:gY},bY=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},xY=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},vY=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=Z().getBool("WEBGL_PACK_NORMALIZATION")?new xY(a.shape,r.shape,s.shape,u,p,l):new bY(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},wY={kernelName:js,backendName:"webgl",kernelFunc:vY},IY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,a=kY(this.rank),r,s=e.map((i,o)=>`sourceLoc.${Zv[o]} = start[${o}] + coords.${Zv[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${r}
setOutput(getSource(${a}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Zv=["x","y","z","w","u","v"];function kY(e){if(e===1)return"sourceLoc";if(e<=6)return Zv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var TY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=yn("coords",this.rank),a=yn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function NY(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=rn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function wp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=rn.parseSliceParams(r,s,i);if(rn.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=xX(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=rn.isSliceContinous(r.shape,o,l);if(c||!u){let p=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new TY(l):new IY(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),NY(r,o,l,n)}var SY={kernelName:Tl,backendName:"webgl",kernelFunc:wp},CY=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=ge({inputs:{x:r},backend:n,attrs:{shape:l}}),f=$n({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:u}}),y=wp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},_Y={kernelName:rc,backendName:"webgl",kernelFunc:CY};function EY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=oN(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var FY={kernelName:Fd,backendName:"webgl",kernelFunc:EY},AY="return float(a != b);",DN=ln({opSnippet:AY,dtype:"bool"}),$Y={kernelName:dl,backendName:"webgl",kernelFunc:DN};function kp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.real},backend:n})}var DY={kernelName:Jd,backendName:"webgl",kernelFunc:kp},RY="return float(int(x));";function MY(e,t){let n=new gs(e.shape,RY),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function ew(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Gn({inputs:{x:r},backend:n});let i=xt(r.shape),o=ew({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=ys({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=kp({inputs:{input:r},backend:n}),o=ew({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Gn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return MY(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=DN({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var PY={kernelName:Ms,backendName:"webgl",kernelFunc:ew},RN="return ceil(x);",OY=Xe({opSnippet:RN,packedOpSnippet:RN,cpuKernelImpl:tX}),LY={kernelName:Ps,backendName:"webgl",kernelFunc:OY},zY=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},WY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function BY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;Z().getBool("WEBGL_PACK_CLIP")?o=new WY(r.shape):o=new zY(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var VY={kernelName:jr,backendName:"webgl",kernelFunc:BY},UY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function MN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function GY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new UY(a.shape),i=[MN(a,r.complexTensorInfos.real),MN(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var HY={kernelName:sc,backendName:"webgl",kernelFunc:GY},jY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},qY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=dt(a),s=yn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],c=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Zm(i,l,f)}),
vec2(${Zm(c,l,f)}));
}`}let d=o.length,h=o[o.length-1];p+=`
return getChannel(
getT${d}(${Zm(i,l,h)}),
vec2(${Zm(c,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Zm(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function ef(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var XY={kernelName:Gd,backendName:"webgl",kernelFunc:ef};function ku(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>kp({inputs:{input:m},backend:n})),u=e.map(m=>ef({inputs:{input:m},backend:n})),p=ku(c,t,n),d=ku(u,t,n),h=ys({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=PN(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=nX(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=ku(e.slice(0,c),t,n),p=ku(e.slice(c),t,n),d=ku([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new qY(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=PN(e,t,n),i=new jY(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function PN(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ge({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function ON(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>w.sizeFromShape(c.shape)>0);if(o.length===1)return Gn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),ku(o,s,n)}var KY={kernelName:Go,backendName:"webgl",kernelFunc:ON},LN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let T=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${T}
${v}
setOutput(result);
}
`}},YY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},JY=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=gn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,x="";for(let v=0;v<=1;v++)for(let T=0;T<=1;T++)x+=`
blockIndex = rc.y + ${T};
pos = rc.x + ${v};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
d0 = offsetY + ${u} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.));
if(d1 < ${t[b]} && d1 >= 0) {
ch = int(mod(float(pos), ${r}.));
if (${g}) {
innerDims = vec2(d1, ch);
result[${v*2+T}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${v*2+T}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${f.output} = result;
}
`}};function zN({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>CN,x=l[2]%2!=0&&!!c.isPacked;if(b||!Z().getBool("WEBGL_LAZILY_UNPACK")||!Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],T=ge({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Jm({a:T,b:k,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ge({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),y.push(T),y.push(k),y.push(S)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),T={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(jm(c.shape,T.shape),()=>`packed reshape ${c.shape} to ${T.shape} isn't free`);let S=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let F=Jm({a:T,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),A=a.texData.get(F.dataId);w.assert(A.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,A.shape=n.outShape,g=Gn({inputs:{x:F},backend:a}),g.shape=n.outShape,y.push(F)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function WN({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,x=!1,v=[],T=ge({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(T),v.push(k);let S=new JY(y,T.shape,n),F=a.runWebGLProgram(S,[T],"float32"),A=ge({inputs:{x:F},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(F),v.push(A);let R=r!=null,P=s!=null,z=o==="leakyrelu",V=o?Km(o,!0):null,G=new wN(A.shape,k.shape,[1,g,n.outChannels],b,x,R,V,P,z),H=[A,k];if(r&&H.push(r),P&&H.push(s),z){let Q=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));H.push(Q),v.push(Q)}let X=a.runWebGLProgram(G,H,"float32"),j=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],te=ge({inputs:{x:X},backend:a,attrs:{shape:j}});v.push(X);for(let Q of v)a.disposeIntermediateTensorInfo(Q);return te}function QY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=zN({x:r,filter:s,convInfo:d,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=WN({x:r,filter:s,convInfo:d,backend:n});else{let f=new LN(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ge({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var ZY={kernelName:Os,backendName:"webgl",kernelFunc:QY},e7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},t7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},n7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},a7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function r7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new e7(d);return n.runWebGLProgram(h,[r,s],"float32")}var s7={kernelName:$d,backendName:"webgl",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new t7(d);return n.runWebGLProgram(h,[r,s],"float32")}var o7={kernelName:Ls,backendName:"webgl",kernelFunc:i7};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new YY(c);return n.runWebGLProgram(u,[r,s],"float32")}var u7={kernelName:ic,backendName:"webgl",kernelFunc:l7};function c7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new n7(c);return n.runWebGLProgram(u,[r,s],"float32")}var p7={kernelName:Dd,backendName:"webgl",kernelFunc:c7};function d7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new a7(c);return n.runWebGLProgram(u,[r,s],"float32")}var h7={kernelName:Rd,backendName:"webgl",kernelFunc:d7},m7=vN+`
return cos(x);
`,f7=Xe({opSnippet:m7}),g7={kernelName:zs,backendName:"webgl",kernelFunc:f7},y7=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,b7=Xe({opSnippet:y7}),x7={kernelName:Ho,backendName:"webgl",kernelFunc:b7},v7=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},w7=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new v7(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},k7={kernelName:jo,backendName:"webgl",kernelFunc:w7},UN=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${BN(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${dt(a)} coords = getOutputCoords();
int end = ${VN(a,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${VN(a,"coords")} = idx;
val += getX(${BN(a,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function BN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function VN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function I7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=$n({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=u.shape[p],h=Gn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new UN(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new UN(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=$n({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var T7={kernelName:Ws,backendName:"webgl",kernelFunc:I7};function N7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=oN(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=eX(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var S7={kernelName:Md,backendName:"webgl",kernelFunc:N7},C7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function _7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new C7(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var E7={kernelName:qo,backendName:"webgl",kernelFunc:_7},GN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?g=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${b}
${y}
setOutput(result);
}
`}},HN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`
vec4 xTexelR${v}C${T*2} = vec4(0.);
vec4 wR${v}C${T} = vec4(0.);
vec4 xR${v}C${T} = vec4(0.);`;for(let v=0;v<h;v++)for(let T=0;T<f;T++){let k=T*2;if(g+=`
xR = xRCorner + ${v*p};
xC = xCCorner + ${k*d};
`,u===1){if(k<m&&(l%2==1?g+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${v}C${k}.zw = vec2(0.);
}
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${v}C${k} = vec4(previous.zw, xTexelR${v}C${k}.xy);
} else {
xR${v}C${k} = vec4(0, 0, xTexelR${v}C${k}.xy);
}
`:g+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xR${v}C${k} = xTexelR${v}C${k};
`,k+1<m)){let S=l%2==0?w.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
xCOffset = xC + ${l%2} + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(g+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
`),g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.xy);
`):g+=`
xCOffset = xC + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = xTexelR${v}C${k+2};
`}}else k<m&&(g+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(g+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`,k+1<m&&(g+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = vec4(xTexelR${v}C${k+2}.xy, final.xy);
`)):(g+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.xy, xTexelR${v}C${k+2}.xy);
`,k+1<m&&(g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`)),g+="}");k<m&&(g+=`
vec4 wTexelR${v}C${k} = getW(${v}, ${k}, d1, q);
wR${v}C${k} = vec4(wTexelR${v}C${k}.xz, wTexelR${v}C${k}.xz);
`,k+1<m&&(g+=`
vec4 wTexelR${v}C${k+1} = getW(${v}, ${k+1}, d1, q);
wR${v}C${k+1} =
vec4(wTexelR${v}C${k+1}.xz, wTexelR${v}C${k+1}.xz);`))}for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`dotProd += xR${v}C${T} * wR${v}C${T};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${g}
vec4 result = dotProd;
${x}
${b}
setOutput(result);
}
`}};function F7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a,u=l;u==null&&(u=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new HN(p):d=new GN(p),n.runWebGLProgram(d,[r,s],"float32")}var A7={kernelName:Bs,backendName:"webgl",kernelFunc:F7},$7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},D7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function R7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new $7(p);return n.runWebGLProgram(d,[r,s],"float32")}var M7={kernelName:Pd,backendName:"webgl",kernelFunc:R7};function P7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new D7(p);return n.runWebGLProgram(d,[r,s],"float32")}var O7={kernelName:Od,backendName:"webgl",kernelFunc:P7},L7=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function z7(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=ge({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new L7(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var W7={kernelName:Ld,backendName:"webgl",kernelFunc:z7},B7=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${u}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function V7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new B7(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var U7={kernelName:oc,backendName:"webgl",kernelFunc:V7},G7="return (x >= 0.0) ? x : (exp(x) - 1.0);",H7=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,j7=Xe({opSnippet:G7,packedOpSnippet:H7}),q7={kernelName:Xo,backendName:"webgl",kernelFunc:j7},X7="return (b >= 1.0) ? a : a * (b + 1.0);",K7=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Y7=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new xp(K7,a.shape,r.shape):new wu(X7,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},J7={kernelName:Bd,backendName:"webgl",kernelFunc:Y7},Q7=`
return vec4(equal(a, b));
`,Z7="return float(a == b);",e9=ln({opSnippet:Z7,packedOpSnippet:Q7,dtype:"bool"}),t9={kernelName:Yo,backendName:"webgl",kernelFunc:e9},n9=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,a9=Xe({opSnippet:n9}),r9={kernelName:Ko,backendName:"webgl",kernelFunc:a9},jN="return exp(x);",qN=Xe({opSnippet:jN,packedOpSnippet:jN,cpuKernelImpl:aX}),s9={kernelName:Us,backendName:"webgl",kernelFunc:qN};function tw(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ge({inputs:{x:s},backend:a,attrs:{shape:o}})}var i9={kernelName:Jo,backendName:"webgl",kernelFunc:tw},XN="return exp(x) - 1.0;",o9=Xe({opSnippet:XN,packedOpSnippet:XN,cpuKernelImpl:rX}),l9={kernelName:Qo,backendName:"webgl",kernelFunc:o9},KN=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function YN(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new KN("real",l,t),u=new KN("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=ys({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=ge({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function u9(e){let{inputs:t,backend:n}=e,{input:a}=t;return YN(a,!1,n)}var c9={kernelName:Vd,backendName:"webgl",kernelFunc:u9},p9=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function nw(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new p9(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var d9={kernelName:lc,backendName:"webgl",kernelFunc:nw},h9=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},m9={kernelName:Zo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new h9(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},JN="return floor(x);",f9=Xe({opSnippet:JN,packedOpSnippet:JN,cpuKernelImpl:sX}),g9={kernelName:Gs,backendName:"webgl",kernelFunc:f9},y9=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,b9=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,x9=ln({opSnippet:y9,packedOpSnippet:b9,dtype:"int32"}),v9={kernelName:Hs,backendName:"webgl",kernelFunc:x9},w9=class{constructor(e){this.variableNames=["A"];let t=gn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},k9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=gn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},T9={kernelName:ah,backendName:"webgl",kernelFunc:I9},Iu;function I9(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],p=[c,l,s];(o||i)&&(Iu==null&&(Iu=document.createElement("canvas").getContext("2d")),Iu.canvas.width=l,Iu.canvas.height=c,Iu.drawImage(r,0,0,l,c),r=Iu.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=aa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Z().getBool("WEBGL_PACK")?new k9(p):new w9(p),m=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),m}function N9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=zN({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=WN({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,T=o!=null,k=h==="leakyrelu",S=h?Km(h,!1):null,F=new LN(g,v,S,T,k),A=[r,s];if(i&&A.push(i),o&&A.push(o),k){let R=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));A.push(R),b.push(R)}y=n.runWebGLProgram(F,A,"float32")}let x=ge({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var S9={kernelName:Ti,backendName:"webgl",kernelFunc:N9};function C9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?Km(d,y):null,x=[r,s],v=i!=null,T=o!=null,k=d==="leakyrelu";if(v&&x.push(i),T&&x.push(o),k){let A=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(A),m.push(A)}let S;y?S=new HN(g,v,b,T,k):S=new GN(g,v,b,T,k);let F=n.runWebGLProgram(S,x,"float32");return m.forEach(A=>n.disposeIntermediateTensorInfo(A)),F}var _9={kernelName:Ni,backendName:"webgl",kernelFunc:C9},E9=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=dt(t.length),r=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function F9(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=ge({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/c,c]}}),h=new E9(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var A9={kernelName:tl,backendName:"webgl",kernelFunc:F9},D9=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),a=$9(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function $9(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function R9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=w.sizeFromShape(s.shape),p=[],d=ge({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=ge({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});p.push(d),p.push(h);let m=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(d),v=iX(x,b,m);return p.forEach(T=>n.disposeIntermediateTensorInfo(T)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new D9(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=ge({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var M9={kernelName:el,backendName:"webgl",kernelFunc:R9},P9="return float(a > b);",O9=`
return vec4(greaterThan(a, b));
`,L9=ln({opSnippet:P9,packedOpSnippet:O9,cpuKernelImpl:oX,dtype:"bool"}),z9={kernelName:nl,backendName:"webgl",kernelFunc:L9},W9="return float(a >= b);",B9=`
return vec4(greaterThanEqual(a, b));
`,V9=ln({opSnippet:W9,packedOpSnippet:B9,dtype:"bool"}),U9={kernelName:qs,backendName:"webgl",kernelFunc:V9};function G9(e){let{inputs:t,backend:n}=e,{input:a}=t;return YN(a,!0,n)}var H9={kernelName:Ud,backendName:"webgl",kernelFunc:G9},j9="return float(!isnan(x) && !isinf(x));",q9=Xe({opSnippet:j9,dtype:"bool"}),X9={kernelName:al,backendName:"webgl",kernelFunc:q9},K9="return float(isinf(x));",Y9=Xe({opSnippet:K9,dtype:"bool"}),J9={kernelName:rl,backendName:"webgl",kernelFunc:Y9},Q9="return float(isnan(x));",Z9=Xe({opSnippet:Q9,dtype:"bool"}),eJ={kernelName:sl,backendName:"webgl",kernelFunc:Z9},tJ="return float(a < b);",nJ=`
return vec4(lessThan(a, b));
`,aJ=ln({opSnippet:tJ,packedOpSnippet:nJ,cpuKernelImpl:lX,dtype:"bool"}),rJ={kernelName:il,backendName:"webgl",kernelFunc:aJ},sJ="return float(a <= b);",iJ=`
return vec4(lessThanEqual(a, b));
`,oJ=ln({opSnippet:sJ,packedOpSnippet:iJ,dtype:"bool"}),lJ={kernelName:ol,backendName:"webgl",kernelFunc:oJ};function uJ(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=uX(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var cJ={kernelName:Hd,backendName:"webgl",kernelFunc:uJ},pJ=`if (x < 0.0) return NAN;
return log(x);`,dJ=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,hJ=Xe({opSnippet:pJ,packedOpSnippet:dJ,cpuKernelImpl:cX}),mJ={kernelName:Ys,backendName:"webgl",kernelFunc:hJ},fJ="return log(1.0 + x);",gJ=Xe({opSnippet:fJ}),yJ={kernelName:ll,backendName:"webgl",kernelFunc:gJ},bJ="return float(a >= 1.0 && b >= 1.0);",xJ=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,vJ=ln({opSnippet:bJ,packedOpSnippet:xJ,dtype:"bool"}),wJ={kernelName:ul,backendName:"webgl",kernelFunc:vJ},kJ="return float(!(x >= 1.0));",IJ=Xe({opSnippet:kJ}),TJ={kernelName:uc,backendName:"webgl",kernelFunc:IJ},NJ="return float(a >= 1.0 || b >= 1.0);",SJ=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,CJ=ln({opSnippet:NJ,packedOpSnippet:SJ,dtype:"bool"}),_J={kernelName:cc,backendName:"webgl",kernelFunc:CJ},EJ=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},FJ=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},AJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=Z().getBool("WEBGL_PACK_NORMALIZATION")?new FJ(r.shape,s,i,o,l):new EJ(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},$J={kernelName:pc,backendName:"webgl",kernelFunc:AJ},DJ=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},RJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new DJ(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},MJ={kernelName:jd,backendName:"webgl",kernelFunc:RJ};function PJ(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Zi(i,e.dtype,"max",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function QN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let k=0;k<x.length;k++)x[k]=r.shape[u[k]];let v=Xv(b,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let T=n.texData.get(h.dataId);T.values=v}else h=Ym(r,u,n);c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("max",c,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,c),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,x=pX(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=PJ(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var OJ={kernelName:Js,backendName:"webgl",kernelFunc:QN},LJ=fN+`
return max(a, b);
`,zJ=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Xm+`
return result;
`,WJ=ln({opSnippet:LJ,packedOpSnippet:zJ,cpuKernelImpl:dX}),BJ={kernelName:Qs,backendName:"webgl",kernelFunc:WJ};function VJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new vp(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var UJ={kernelName:Zs,backendName:"webgl",kernelFunc:VJ};function GJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new Qv(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var HJ={kernelName:dc,backendName:"webgl",kernelFunc:GJ},jJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},qJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function XJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new Qv(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new qJ(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var KJ={kernelName:Xd,backendName:"webgl",kernelFunc:XJ};function YJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;yp([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new vp(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new jJ(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var JJ={kernelName:qd,backendName:"webgl",kernelFunc:YJ};function QJ(e,t,n,a){let r=new vp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new vp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var ZJ={kernelName:Kd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=QJ(a,o,u,l);return[p,d]}};function eQ(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Zi(i,"float32","mean",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var tQ={kernelName:ei,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let S=0;S<v.length;S++)v[S]=a.shape[u[S]];let T=Xv(x,a.shape,a.dtype,u,v);m=i.makeTensorInfo(v,a.dtype);let k=i.texData.get(m.dataId);k.values=T}else m=Ym(a,u,i);h.push(m),c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("sum",c,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,c),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=eQ(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function nQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=$n({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Zi(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var aQ={kernelName:ti,backendName:"webgl",kernelFunc:nQ},rQ=fN+`
return min(a, b);
`,sQ=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Xm+`
return result;
`,iQ=ln({opSnippet:rQ,packedOpSnippet:sQ,cpuKernelImpl:hX}),oQ={kernelName:ni,backendName:"webgl",kernelFunc:iQ},lQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let a=e.length,r=dt(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},uQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=dt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=yn("rc",a),l=yn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},cQ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uQ(a.shape,r,s):new lQ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},pQ={kernelName:hc,backendName:"webgl",kernelFunc:cQ},dQ=`if (b == 0.0) return NAN;
return mod(a, b);`,hQ=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Xm+`
return result;
`,mQ=ln({opSnippet:dQ,packedOpSnippet:hQ}),fQ={kernelName:cl,backendName:"webgl",kernelFunc:mQ},gQ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},yQ=`
if (a == b) {
return 1.0;
};
return a / b;`,bQ=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,ZN=ln({opSnippet:yQ,packedOpSnippet:bQ,checkOutOfBounds:!0}),xQ={kernelName:Vs,backendName:"webgl",kernelFunc:ZN},eS="return a - b;",tS=ln({opSnippet:eS,packedOpSnippet:eS,supportsComplex:!0,cpuKernelImpl:wX}),vQ={kernelName:vi,backendName:"webgl",kernelFunc:tS};function nS(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=QN({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=tS({inputs:{a:r,b:c},backend:n}),p=qN({inputs:{x:u},backend:n}),d=Jv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),m=ZN({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var wQ={kernelName:bi,backendName:"webgl",kernelFunc:nS};function kQ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:nS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new gQ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var IQ={kernelName:Yd,backendName:"webgl",kernelFunc:kQ},aS="return -x;";function TQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=fX(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new vu(a.shape,aS):r=new gs(a.shape,aS),n.runWebGLProgram(r,[a],a.dtype)}var NQ={kernelName:pl,backendName:"webgl",kernelFunc:TQ},SQ=Qa.nonMaxSuppressionV3Impl;function CQ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=SQ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var _Q={kernelName:hl,backendName:"webgl",kernelFunc:CQ},EQ=Qa.nonMaxSuppressionV4Impl;function FQ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=EQ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var AQ={kernelName:ml,backendName:"webgl",kernelFunc:FQ},$Q=Qa.nonMaxSuppressionV5Impl;function DQ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=$Q(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var RQ={kernelName:fl,backendName:"webgl",kernelFunc:DQ},MQ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},PQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),c=new MQ(l,s,i,o),u=ge({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=ge({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},OQ={kernelName:ri,backendName:"webgl",kernelFunc:PQ};function tf(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=kp({inputs:{input:a},backend:n}),s=tf({inputs:{x:r},backend:n}),i=ef({inputs:{input:a},backend:n}),o=tf({inputs:{x:i},backend:n}),l=ys({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return nw({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var LQ={kernelName:Dl,backendName:"webgl",kernelFunc:tf};function rS(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=kp({inputs:{input:a},backend:n}),s=rS({inputs:{x:r},backend:n}),i=ef({inputs:{input:a},backend:n}),o=tf({inputs:{x:i},backend:n}),l=ys({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return nw({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var zQ={kernelName:gl,backendName:"webgl",kernelFunc:rS};function WQ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return tw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=tw({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=ON({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var BQ={kernelName:yl,backendName:"webgl",kernelFunc:WQ},VQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=dt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},UQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=dt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=yn("rc",a),l=yn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${c}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${p[m]}
if (${d}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},sS=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UQ(r.shape,s,i):new VQ(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},GQ={kernelName:si,backendName:"webgl",kernelFunc:sS},HQ=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,jQ=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Xm+`
return result;
`,qQ=ln({opSnippet:HQ,packedOpSnippet:jQ}),XQ={kernelName:ii,backendName:"webgl",kernelFunc:qQ};function KQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=w.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=$n({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=gX(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=w.sizeFromShape(f),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=uh(r.dtype),x=Zi(y,b,"prod",n);h=ge({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=ge({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var YQ={kernelName:bl,backendName:"webgl",kernelFunc:KQ},iS=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=yX(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},JQ={kernelName:mc,backendName:"webgl",kernelFunc:iS},QQ="return 1.0 / x;",ZQ=Xe({opSnippet:QQ}),eZ={kernelName:xl,backendName:"webgl",kernelFunc:ZQ},tZ=Pa+`
return (x < 0.0) ? 0.0 : x;
`,nZ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aZ=Xe({opSnippet:tZ,packedOpSnippet:nZ}),rZ={kernelName:li,backendName:"webgl",kernelFunc:aZ},sZ=Pa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,iZ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oZ=Xe({opSnippet:sZ,packedOpSnippet:iZ}),lZ={kernelName:ci,backendName:"webgl",kernelFunc:oZ},uZ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},cZ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function pZ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new cZ(r.shape,l,c,s,i):new uZ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var dZ={kernelName:ui,backendName:"webgl",kernelFunc:pZ},hZ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function mZ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new hZ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var fZ={kernelName:Zd,backendName:"webgl",kernelFunc:mZ},gZ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function yZ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new gZ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var bZ={kernelName:fc,backendName:"webgl",kernelFunc:yZ},xZ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function vZ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new xZ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wZ={kernelName:Qd,backendName:"webgl",kernelFunc:vZ},kZ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=dt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},IZ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=yn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${c(a.slice())};
if(${r}) {
result.a = ${u(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function TZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Gn({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new IZ(r.shape,o):new kZ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var NZ={kernelName:pi,backendName:"webgl",kernelFunc:TZ},SZ=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},CZ={kernelName:Rl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new SZ(a.shape,s),[c,u]=_.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(c,u,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},_Z=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,EZ=Xe({opSnippet:_Z}),FZ={kernelName:di,backendName:"webgl",kernelFunc:EZ},AZ="return inversesqrt(x);",$Z=Xe({opSnippet:AZ,cpuKernelImpl:bX}),DZ={kernelName:hi,backendName:"webgl",kernelFunc:$Z},oS=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(r.length),l=dt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function RZ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=ge({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new oS(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var MZ={kernelName:wl,backendName:"webgl",kernelFunc:RZ},PZ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);a=o.join(),r=l.join()}let s=dt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function OZ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new PZ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],pa(r.dtype,s.dtype))}var LZ={kernelName:kl,backendName:"webgl",kernelFunc:OZ},zZ=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,WZ=Xe({opSnippet:zZ}),BZ={kernelName:Il,backendName:"webgl",kernelFunc:WZ},VZ="return 1.0 / (1.0 + exp(-1.0 * x));",UZ=Xe({opSnippet:VZ}),GZ={kernelName:fi,backendName:"webgl",kernelFunc:UZ},HZ=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,jZ=Xe({opSnippet:HZ}),qZ={kernelName:Sl,backendName:"webgl",kernelFunc:jZ},XZ=vN+`
return sin(x);
`,KZ=Xe({opSnippet:XZ}),YZ={kernelName:mi,backendName:"webgl",kernelFunc:KZ},JZ=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,QZ=Xe({opSnippet:JZ}),ZZ={kernelName:Nl,backendName:"webgl",kernelFunc:QZ},eee=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,tee=Xe({opSnippet:eee}),nee={kernelName:Cl,backendName:"webgl",kernelFunc:tee},aee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=sS({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),h=_.getReshapedPermuted(u.shape,s,o,!1),m=ge({inputs:{x:u},backend:n,attrs:{shape:p}}),f=$n({inputs:{x:m},backend:n,attrs:{perm:d}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:h}});return c.push(u),c.push(m),c.push(f),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},ree={kernelName:gc,backendName:"webgl",kernelFunc:aee};function see(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new oS(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var iee={kernelName:eh,backendName:"webgl",kernelFunc:see};function oee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=wp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var lee={kernelName:_l,backendName:"webgl",kernelFunc:oee},uee="return sqrt(x);",cee=Xe({opSnippet:uee}),pee={kernelName:gi,backendName:"webgl",kernelFunc:cee},dee="return x * x;",hee=Xe({opSnippet:dee}),mee={kernelName:yc,backendName:"webgl",kernelFunc:hee},lS="return (a - b) * (a - b);",fee=ln({opSnippet:lS,packedOpSnippet:lS}),gee={kernelName:xi,backendName:"webgl",kernelFunc:fee};function yee({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Pa+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new gs(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var bee={kernelName:Xr,backendName:"webgl",kernelFunc:yee},xee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=dt(n.length),s=dt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function vee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=rn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=ge({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=wp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=ge({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let k=n.texData.get(x.dataId).values,S=Me(x.shape,x.dtype,k),F=vX(b,S,f,m);v=n.makeTensorInfo(b,x.dtype,F.values)}else{let k=new xee(m,f,b);v=n.runWebGLProgram(k,[x],x.dtype)}let T=ge({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var wee={kernelName:El,backendName:"webgl",kernelFunc:vee},kee="return tan(x);",Iee=Xe({opSnippet:kee}),Tee={kernelName:Fl,backendName:"webgl",kernelFunc:Iee},Nee=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,See=Xe({opSnippet:Nee}),Cee={kernelName:wi,backendName:"webgl",kernelFunc:See},Eee=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=_ee(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function _ee(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function uS(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(u=>w.decodeString(u)),l=Me(r.shape,r.dtype,o),c=kX(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new Eee(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Fee={kernelName:qr,backendName:"webgl",kernelFunc:uS};function Aee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=IX(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var $ee={kernelName:Al,backendName:"webgl",kernelFunc:Aee},Dee=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Ree(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=a,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=new Dee(p,d,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var Mee={kernelName:th,backendName:"webgl",kernelFunc:Ree};function Pee(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;yp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=TX(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Oee={kernelName:nh,backendName:"webgl",kernelFunc:Pee};function Lee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(c[u++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=wp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=ge({inputs:{x:g},backend:n,attrs:{shape:c}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var zee={kernelName:$l,backendName:"webgl",kernelFunc:Lee},Wee=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function Bee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=$n({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=w.sizeFromShape([p.shape[c]]),m=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=uh(r.dtype),g=(v,T,k,S,F)=>{let A=v.shape[0],R=v.shape[1],P=_.segment_util.segOpComputeOptimalWindowSize(R,F),z={windowSize:P,inSize:R,batchSize:A,numSegments:F},V=new Wee(z,T),G=n.compileAndRun(V,[v,k],S);if(l.push(G),G.shape[1]===F)return G;let H=iS({backend:n,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),X=uS({inputs:{x:H},backend:n,attrs:{reps:[R/P]}});return l.push(H),l.push(X),g(G,T,X,S,F)},y=g(m,"unsortedSegmentSum",s,f,i),b=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),x=b;if(u!=null){l.push(b);let v=_.getUndoAxesPermutation(u);x=$n({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var Vee={kernelName:bc,backendName:"webgl",kernelFunc:Bee},Uee=[$J,MJ,vK,kK,NK,_K,FK,DK,MK,OK,BK,UK,jK,KK,nY,QK,sY,uY,oY,hY,fY,yY,wY,_Y,FY,PY,LY,VY,HY,tK,KY,s7,o7,ZY,p7,h7,u7,g7,x7,k7,T7,S7,E7,M7,O7,A7,W7,U7,q7,J7,t9,r9,s9,i9,l9,c9,d9,m9,g9,v9,T9,S9,_9,A9,M9,z9,U9,eK,H9,XY,X9,J9,eJ,aK,rJ,lJ,cJ,yJ,mJ,wJ,TJ,_J,OJ,HJ,UJ,KJ,JJ,ZJ,BJ,tQ,aQ,oQ,pQ,fQ,IQ,lK,NQ,_Q,AQ,RQ,$Y,OQ,zQ,BQ,GQ,XQ,sK,YQ,JQ,DY,xQ,eZ,lZ,rZ,cK,dZ,fZ,bZ,wZ,NZ,CZ,FZ,DZ,MZ,LZ,BZ,GZ,qZ,YZ,ZZ,SY,wQ,nee,ree,iee,lee,pee,mee,gee,bee,wee,vQ,yK,Tee,Cee,Fee,$ee,Mee,bK,Oee,zee,Vee,LQ];for(let e of Uee)vc(e);var Gee="3.3.0",Hee={"tfjs-core":lk,"tfjs-backend-cpu":pG,"tfjs-backend-webgl":ZX,"tfjs-data":MT,"tfjs-layers":Im,"tfjs-converter":ET,tfjs:Gee},Hn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Hn||(Hn={}));var Ip;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Ip||(Ip={}));var cS;function jee(e){cS=e.wasm.cwrap(Ii,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function qee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let F=n.dataIdMap.get(i.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);m=F.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Ip[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,b],r.dtype),T=n.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return cS(d,k,r.shape.length,h,S,s.shape.length,l,c,g,m,f,p||0,T),v}var Xee={kernelName:Ii,backendName:"wasm",setupFunc:jee,kernelFunc:qee};function Dn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Kee=Dn(Po);function bn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,c.shape.length,d,y,u.shape.length,Hn[c.dtype],b);if(t&&c.dtype==="float32")return x(),f;let v=_.getBroadcastDims(c.shape,m),T=_.getBroadcastDims(u.shape,m),k=v.every((F,A)=>F===A),S=T.every((F,A)=>F===A);if(k&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Yee=!0,Jee=bn(Hr,Yee),pS;function Qee(e){pS=e.wasm.cwrap(As,null,["array","number","number","number"])}function Zee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return pS(s,r.length,Hn[a.dtype],i),a}var ete={kernelName:As,backendName:"wasm",setupFunc:Qee,kernelFunc:Zee};function nf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var tte={kernelName:Xs,backendName:"wasm",kernelFunc:nf},dS;function nte(e){dS=e.wasm.cwrap(ki,null,["number","array","number","number","number","array","number"])}function af(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=rte(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=ate(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=nf({inputs:t,backend:n});return m.shape=o,m}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return dS(u,h,l.shape.length,Hn[l.dtype],p,d,s.length),c}function ate(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function rte(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var ste={kernelName:ki,backendName:"wasm",kernelFunc:af,setupFunc:nte};function Tu(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d<u.length;d++)u[d]=a[o[d]];i=_.getInnerMostAxes(i.length,r),l=af({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var hS;function ite(e){hS=e.wasm.cwrap($s,null,["number","number","number","number","number"])}function ote(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:p}=Tu(s,r,t);if(p){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[u[0]];return hS(o,Hn[l.dtype],f,g,m),p&&t.disposeData(c.dataId),h}var lte={kernelName:$s,backendName:"wasm",kernelFunc:ote,setupFunc:ite},mS;function ute(e){mS=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cte(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,b=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let v=a.makeOutput(u.outShape,"float32"),T=a.dataIdMap.get(v.dataId).id;return mS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,T),v}var pte={kernelName:Ds,backendName:"wasm",setupFunc:ute,kernelFunc:cte};function Oa(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var dte={kernelName:vl,backendName:"wasm",kernelFunc:Oa},fS;function hte(e){fS=e.wasm.cwrap(Rs,null,["number","array","number","number","array","number","number","number","number"])}function mte(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=Oa({inputs:{x:r},backend:n,attrs:{shape:v}}),S=Oa({inputs:{x:s},backend:n,attrs:{shape:T}}),F=n.dataIdMap.get(k.dataId).id,A=n.dataIdMap.get(S.dataId).id,R=i?k.shape[2]:k.shape[1],P=o?S.shape[1]:S.shape[2],z=Math.max(g,y),V=n.makeOutput([z,R,P],k.dtype),G=n.dataIdMap.get(V.dataId).id,H=new Uint8Array(new Int32Array(k.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return fS(F,H,k.shape.length,A,X,S.shape.length,i,o,G),n.disposeData(k.dataId),n.disposeData(S.dataId),V.shape=x,V}var fte={kernelName:Rs,backendName:"wasm",setupFunc:hte,kernelFunc:mte};function rf(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var gte={kernelName:Ms,backendName:"wasm",kernelFunc:rf},yte=Dn(Ps),gS;function bte(e){gS=e.wasm.cwrap(jr,null,["number","number","number","number"])}function xte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return gS(o,s,i,c),l}var vte={kernelName:jr,backendName:"wasm",setupFunc:bte,kernelFunc:xte};function wte(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}function kte(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}function yS(e,t,n,a,r){let s=rn.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=rn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function bS(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return nf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Oa({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=wte(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*c;for(let f=0;f<p.length;f++){let g=u[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var Ite={kernelName:Go,backendName:"wasm",kernelFunc:bS},xS;function Tte(e){xS=e.wasm.cwrap(Os,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Nte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p,dataFormat:d}=n,h=_.convertConv2DDataFormat(d),m=_.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,T=m.dilationHeight,k=m.dilationWidth,S=m.strideHeight,F=m.strideWidth,A=m.inChannels,R=m.outChannels,P=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(z.dataId).id;return xS(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,P,T,k,S,F,A,R,V),z}var Ste={kernelName:Os,backendName:"wasm",setupFunc:Tte,kernelFunc:Nte},vS;function Cte(e){vS=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _te(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=a,p=1,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(u,s.shape,i,p,o,c,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:T,outWidth:k,strideHeight:S,strideWidth:F}=h,A=f-1-h.padInfo.top,R=g-1-h.padInfo.left,P=h.dataFormat==="channelsLast",z=w.computeStrides(h.inShape),V=w.computeStrides(r.shape),[G,H,X]=w.computeStrides(s.shape),j=z[0],te=P?z[1]:z[2],Q=P?z[2]:1,se=P?1:z[1],ne=V[0],ie=P?V[1]:V[2],ee=P?V[2]:1,pe=P?1:V[1],oe=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,me=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(s.dataId).id;return vS(me,we,m,f,g,b,x,y,T,k,v,S,F,A,R,G,H,X,j,te,Q,se,ne,ie,ee,pe,fe),oe}var Ete={kernelName:Ls,backendName:"wasm",setupFunc:Cte,kernelFunc:_te},Fte=Dn(zs),aw;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(aw||(aw={}));var wS;function Ate(e){wS=e.wasm.cwrap(jo,null,["number","number","number","number","array","number","number","number","number","number"])}function $te(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[p,d]=i,h=[u,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=rf({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(o.shape).buffer);return wS(g,y,b,u,T,p,d,aw[r],s,v),f!=null&&t.disposeData(f.dataId),x}var Dte={kernelName:jo,backendName:"wasm",setupFunc:Ate,kernelFunc:$te},kS;function Rte(e){kS=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number"])}function Mte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=af({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;kS(m,i?1:0,o?1:0,h,f,Hn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=af({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Pte={kernelName:Ws,backendName:"wasm",setupFunc:Rte,kernelFunc:Mte},IS;function Ote(e){IS=e.wasm.cwrap(qo,null,["number","number","number","array","number","array","array","number","number"])}function Lte(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return IS(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var zte={kernelName:qo,backendName:"wasm",setupFunc:Ote,kernelFunc:Lte},TS;function Wte(e){TS=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,T=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,F=h.inChannels,A=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(h.outShape,"float32"),z=a.dataIdMap.get(P.dataId).id;return TS(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,v,T,k,S,F,A,z),P}var Vte={kernelName:Bs,backendName:"wasm",setupFunc:Wte,kernelFunc:Bte},Ute=!1,Gte=bn(Yo,Ute,"bool"),Hte=Dn(Us);function rw(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Oa({inputs:{x:r},backend:a,attrs:{shape:o}})}var jte={kernelName:Jo,backendName:"wasm",kernelFunc:rw};function qte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Xte={kernelName:lc,backendName:"wasm",kernelFunc:qte},NS;function Kte(e){NS=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number"])}function Yte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return NS(s,o,l,c,u,i),r}var Jte={kernelName:Zo,backendName:"wasm",kernelFunc:Yte,setupFunc:Kte},Qte=Dn(Gs),Zte=!1,ene=bn(Hs,Zte),SS;function tne(e){SS=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number"])}function nne(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return SS(u,p,d,h,m,r,g),f}var ane={kernelName:js,backendName:"wasm",setupFunc:tne,kernelFunc:nne},CS;function rne(e){CS=e.wasm.cwrap(Ti,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sne(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=Ip[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return CS(y,j,te,Q,b,T,k,v,S,F,A,R,X,P,z,V,G,H,x,g,ie,m||0,ne),se}var ine={kernelName:Ti,backendName:"wasm",setupFunc:rne,kernelFunc:sne},_S;function one(e){_S=e.wasm.cwrap(Ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lne(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=Ip[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return _S(y,j,te,Q,b,T,k,v,S,F,A,R,X,P,z,V,G,H,x,g,ie,m||0,ne),se}var une={kernelName:Ni,backendName:"wasm",setupFunc:one,kernelFunc:lne},ES;function cne(e){ES=e.wasm.cwrap(tl,null,["number","number","number","number","number","number","array","number"])}function pne(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Sy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return ES(d,Hn[a.dtype],h,i,p,o,m,f),c}var dne={kernelName:tl,backendName:"wasm",setupFunc:cne,kernelFunc:pne},FS;function hne(e){FS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function mne(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Oa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),d=Oa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return FS(g,Hn[r.dtype],x,f,y,c.batchSize,v,b),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var fne={kernelName:el,backendName:"wasm",setupFunc:hne,kernelFunc:mne},gne=!1,yne=bn(nl,gne,"bool"),bne=!1,xne=bn(qs,bne,"bool"),AS;function vne(e){AS=e.wasm.cwrap(Ks,null,["number","number","number"])}function wne(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;AS(r,n,i)}return s}var kne={kernelName:Ks,backendName:"wasm",setupFunc:vne,kernelFunc:wne},Ine=!1,Tne=bn(il,Ine,"bool"),Nne=!1,Sne=bn(ol,Nne,"bool"),Cne=Dn(Ys),_ne=!1,Ene=bn(ul,_ne,"bool"),$S;function Fne(e){$S=e.wasm.cwrap(Js,null,["number, number, number"])}function Ane(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=Tu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;$S(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var $ne={kernelName:Js,backendName:"wasm",setupFunc:Fne,kernelFunc:Ane},Dne=!1,Rne=bn(Qs,Dne),DS;function Mne(e){DS=e.wasm.cwrap(Zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,T=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(u.outShape,"float32"),F=a.dataIdMap.get(S.dataId).id;return DS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,v,T,k,F),S}var One={kernelName:Zs,backendName:"wasm",setupFunc:Mne,kernelFunc:Pne},RS;function Lne(e){RS=e.wasm.cwrap(ei,null,["number, number, number"])}function zne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Tu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=rf({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;RS(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(b.dataId),x}var Wne={kernelName:ei,backendName:"wasm",setupFunc:Lne,kernelFunc:zne},MS;function Bne(e){MS=e.wasm.cwrap(ti,null,["number, number, number"])}function Vne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Tu(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;MS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Une={kernelName:ti,backendName:"wasm",setupFunc:Bne,kernelFunc:Vne},Gne=!1,Hne=bn(ni,Gne),jne=!0,qne=bn(ai,jne),Xne=Dn(pl);function sw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var PS;function Kne(e){PS=e.wasm.cwrap(hl,"number",["number","number","number","number","number"])}function Yne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=PS(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=sw(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Jne={kernelName:hl,backendName:"wasm",setupFunc:Kne,kernelFunc:Yne},OS;function Qne(e){OS=e.wasm.cwrap(ml,"number",["number","number","number","number","number","bool"])}function Zne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=OS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=sw(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var eae={kernelName:ml,backendName:"wasm",setupFunc:Qne,kernelFunc:Zne},LS;function tae(e){LS=e.wasm.cwrap(fl,"number",["number","number","number","number","number","number"])}function nae(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=LS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=sw(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var aae={kernelName:fl,backendName:"wasm",setupFunc:tae,kernelFunc:nae},rae=!1,sae=bn(dl,rae,"bool"),zS;function iae(e){zS=e.wasm.cwrap(ri,null,["number","number","number","number","number"])}function oae(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return zS(u,s,i,o,c),l}var lae={kernelName:ri,backendName:"wasm",setupFunc:iae,kernelFunc:oae};function uae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var cae={kernelName:gl,backendName:"wasm",kernelFunc:uae};function pae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return rw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=rw({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=bS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),c}var dae={kernelName:yl,backendName:"wasm",kernelFunc:pae},WS;function hae(e){WS=e.wasm.cwrap(si,null,["number","array","number","number","array","array","number","number"])}function mae(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return WS(i,c,t.shape.length,Hn[t.dtype],d,h,r,l),o}var fae={kernelName:si,backendName:"wasm",kernelFunc:mae,setupFunc:hae},gae=!1,yae=bn(ii,gae),BS;function bae(e){BS=e.wasm.cwrap(oi,null,["number","number","number"])}function xae(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return BS(s,i,l),o}var vae={kernelName:oi,backendName:"wasm",setupFunc:bae,kernelFunc:xae},VS;function wae(e){VS=e.wasm.cwrap(bl,null,["number","number","number","number"])}function kae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Tu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;VS(l,y,Hn[b.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Iae={kernelName:bl,backendName:"wasm",setupFunc:wae,kernelFunc:kae},Tae=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=kte(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Nae={kernelName:mc,backendName:"wasm",kernelFunc:Tae},Sae=!0,Cae=bn(Vs,Sae),_ae=Dn(li),Eae=Dn(ci),US;function Fae(e){US=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number"])}function Aae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=rf({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return US(y,u,p,d,h,l,c,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var $ae={kernelName:ui,backendName:"wasm",setupFunc:Fae,kernelFunc:Aae},GS;function Dae(e){GS=e.wasm.cwrap(pi,null,["number","array","number","array","number","number"])}function Rae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return nf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);GS(l,u,i.length,p,r.shape.length,c);let d=Oa({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Mae={kernelName:pi,backendName:"wasm",kernelFunc:Rae,setupFunc:Dae},HS;function Pae(e){HS=e.wasm.cwrap(Rl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return HS(c,p,d,h,m,s,f,g,v,x.length,u),l}var Lae={kernelName:Rl,backendName:"wasm",kernelFunc:Oae,setupFunc:Pae},zae=Dn(di),Wae=Dn(hi),jS;function Bae(e){jS=e.wasm.cwrap(wl,null,["number","number","number","number","number","number","array","number","number"])}function Vae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=Cy.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return jS(h,m,Hn[s.dtype],l,c,u,f,d,g),o}var Uae={kernelName:wl,backendName:"wasm",setupFunc:Bae,kernelFunc:Vae},qS;function Gae(e){qS=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Hae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return qS(i,o,l,h,u),c}var jae={kernelName:kl,backendName:"wasm",kernelFunc:Hae,setupFunc:Gae},XS;function qae(e){XS=e.wasm.cwrap(fi,null,["number","number"])}function Xae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||XS(a,s),r}var Kae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:qae,kernelFunc:Xae},Yae=Dn(mi);function sf(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=rn.parseSliceParams(t,n,a),o=rn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=w.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=rn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+w.sizeFromShape(i))),c}if(t.dtype==="string"){let m=yS(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Jae(l,u[0],d,s,i);else if(h===3)Qae(l,u[0],u[1],d,s,i);else if(h===4)Zae(l,u[0],u[1],u[2],d,s,i);else{let m=yS(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Jae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function Qae(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],c=r[2],u=o+s[0],p=l+s[1];for(let d=o;d<u;d++)for(let h=l;h<p;h++){let m=d*t+h*n+c;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function Zae(e,t,n,a,r,s,i){let o=0,l=s[0],c=s[1],u=s[2],p=l+i[0],d=c+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=c;g<d;g++)for(let y=u;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var ere={kernelName:Tl,backendName:"wasm",kernelFunc:sf},KS;function tre(e){KS=e.wasm.cwrap(bi,null,["number","number","number","number"])}function nre(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||KS(r,i,o,l),s}var are={kernelName:bi,backendName:"wasm",setupFunc:tre,kernelFunc:nre};function rre(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=sf({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var sre={kernelName:_l,backendName:"wasm",kernelFunc:rre},ire=Dn(gi),ore=Dn(yc),lre=!0,ure=bn(xi,lre),YS;function cre(e){YS=e.wasm.cwrap(Xr,null,["number","number","number"])}function pre(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return YS(i,r,l),o}var dre={kernelName:Xr,backendName:"wasm",setupFunc:cre,kernelFunc:pre},JS;function hre(e){JS=e.wasm.cwrap(El,null,["number","array","number","array","array","array","array","array","number","number"])}function mre(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(R=>{s[R]=0,i[R]=1,g.splice(R,0,1)});let y=Oa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:x,strides:v}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=x,o=v;let T=_.slice_util.maskToAxes(d);T.forEach(R=>{i[R]=s[R]+1,o[R]=1});let k=_.slice_util.computeOutShape(s,i,o),S=k.filter((R,P)=>T.indexOf(P)===-1);if(o.every(R=>R===1)){let R=sf({inputs:{x:y},attrs:{begin:s,size:k},backend:t});t.disposeData(y.dataId);let P=Oa({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),P}let F=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,P=new Uint8Array(new Int32Array(w.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),j=t.dataIdMap.get(F.dataId).id;JS(R,P,y.shape.length,z,V,G,H,X,S.length,j)}t.disposeData(y.dataId);let A=Oa({inputs:{x:F},attrs:{shape:S},backend:t});return t.disposeData(F.dataId),A}var fre={kernelName:El,backendName:"wasm",setupFunc:hre,kernelFunc:mre},gre=!0,yre=bn(vi,gre),QS;function bre(e){QS=e.wasm.cwrap(yi,null,["number, number, number"])}function xre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Tu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;QS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var vre={kernelName:yi,backendName:"wasm",setupFunc:bre,kernelFunc:xre},wre=Dn(wi),ZS;function kre(e){ZS=e.wasm.cwrap(qr,null,["number","array","number","array","number","number"])}function Ire(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return ZS(s,l,r.shape.length,c,o.length,Hn[u.dtype],p),u}var Tre={kernelName:qr,backendName:"wasm",setupFunc:kre,kernelFunc:Ire},eC;function Nre(e){eC=e.wasm.cwrap(Al,null,["number","array","number","number","number","bool","number","number"])}var Sre=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return eC(i,o,a.shape.length,Hn[a.dtype],r,s,u,d),[c,p]},Cre={kernelName:Al,backendName:"wasm",setupFunc:Nre,kernelFunc:Sre};function _re(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=sf({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Ere={kernelName:$l,backendName:"wasm",kernelFunc:_re};function Fre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Are={kernelName:Dl,backendName:"wasm",kernelFunc:Fre},$re=[Kee,Jee,ete,lte,pte,fte,gte,yte,vte,Ite,Ste,Ete,Fte,Dte,Pte,zte,Vte,Gte,Hte,jte,Xte,Jte,Qte,ene,Xee,ane,ine,une,dne,fne,yne,xne,tte,kne,Tne,Sne,Cne,Ene,$ne,Rne,One,Wne,Une,Hne,qne,Xne,Jne,eae,aae,sae,lae,cae,dae,fae,yae,vae,Iae,Nae,Cae,_ae,Eae,dte,$ae,Mae,Lae,Wae,zae,Uae,jae,Kae,Yae,ere,are,sre,ire,ore,ure,dre,fre,yre,vre,wre,Tre,Cre,ste,Ere,Are];for(let e of $re)vc(e);var iw=Z();iw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));iw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(iw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var tC=Do(BE()),Dre='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Rre=Do(VE()),nC=class extends Zu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new kd(this,Ha())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return Mre(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Pre(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function aC(e,t,n){if(of!=null)return of;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Tp!=null&&Tp[a]!=null?Tp[a]:n+a}async function Ore(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=Dre,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?aC(e,t,Np!=null?Np:l):l+o},ow&&(r.instantiateWasm=Pre(aC(e,t,Np!=null?Np:"")));let s=!1;r.onAbort=()=>{s||Sp||(Sp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&of==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+tC.default.toString()],{type:"text/javascript"}),i=(0,tC.default)(r)):i=(0,Rre.default)(r),i.then(o=>{s=!0,Sp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Mre(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Lre=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],of=null,Np=null,Tp={},Sp=!1,ow=!1;function zre(e,t=!1){if(Dy("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");of=e,ow=t}function Wre(e,t=!1){if(Sp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Np=e;else{Tp=e;let n=Lre.filter(a=>Tp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ow=t}var Bre="3.3.0",Vre=2;fh("wasm",async()=>{let{wasm:e}=await Ore();return new nC(e)},Vre);var Iw={};Ju(Iw,{AnchorPosition:()=>lr,DrawBox:()=>ff,DrawBoxOptions:()=>vw,DrawFaceLandmarks:()=>kw,DrawFaceLandmarksOptions:()=>ww,DrawTextField:()=>vs,DrawTextFieldOptions:()=>Cp,drawContour:()=>_r,drawDetections:()=>Jre,drawFaceExpressions:()=>Qre,drawFaceLandmarks:()=>ese});function _r(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var lw={};Ju(lw,{computeReshapedDimensions:()=>pw,getCenterPoint:()=>no,isDimensions:()=>uf,isEven:()=>lf,isFloat:()=>cw,isTensor:()=>eo,isTensor1D:()=>Ure,isTensor2D:()=>uw,isTensor3D:()=>Er,isTensor4D:()=>ra,isValidNumber:()=>La,isValidProbablitiy:()=>Nu,range:()=>ir,round:()=>to});var pn=class{constructor(t,n){if(!La(t)||!La(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new pn(1/this.width,1/this.height)}};function eo(e,t){return e instanceof Ee&&e.shape.length===t}function Ure(e){return eo(e,1)}function uw(e){return eo(e,2)}function Er(e){return eo(e,3)}function ra(e){return eo(e,4)}function cw(e){return e%1!=0}function lf(e){return e%2==0}function to(e,t=2){let n=10**t;return Math.floor(e*n)/n}function uf(e){return e&&e.width&&e.height}function pw({width:e,height:t},n){let a=n/Math.max(t,e);return new pn(Math.round(e*a),Math.round(t*a))}function no(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function ir(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function La(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function Nu(e){return La(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var it=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(La)}static assertIsValidBox(t,n,a=!1){if(!it.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(La),s=[a.x,a.y,a.width,a.height].every(La);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];it.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new it({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new it({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new it({x:t,y:n,width:a,height:r})}rescale(t){let n=uf(t)?t.width:t,a=uf(t)?t.height:t;return new it({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new it({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),c=s-o,u=i-l,p=Math.min(c,t-o),d=Math.min(u,n-l);return new it({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new it({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,c=this.left,u=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new it({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ao=class extends it{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Fr=class{constructor(t,n,a,r,s){this._imageDims=new pn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new it(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new it(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Fr(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var mt=class extends Fr{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new mt(a,r,s)}};function cf(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function pf(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new ao(a,r,s,i)}function df(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;c<o.length;c++){let u=o[c],p=e[i],d=e[u];l.push(cf(p,d,a))}r=r.filter((c,u)=>l[u]<=n)}return s}function wa(e,t){return D(()=>{let[n,a,r]=t,s=_n([...e.shape.slice(0,3),1],n,"float32"),i=_n([...e.shape.slice(0,3),1],a,"float32"),o=_n([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return he(e,l)})}function hf(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,_n(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ue(d,"float32"));return Je(p,i)})}function rC(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Su(e){return 1/(1+Math.exp(-e))}function sC(e){return Math.log(e/(1-e))}var ro=class extends it{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Gre=.5,Hre=.43,jre=.45,jn=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new pn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof mt?t.box.floor():new it(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/jre),l=no(t),c=Math.floor(Math.max(0,l.x-Gre*o)),u=Math.floor(Math.max(0,l.y-Hre*o));return new ro(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=pf(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var dw=class extends jn{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],no([t[3],t[4]])]}};var so=class extends jn{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(no)}};var Cu=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${to(this.distance)})`:""}`}};var _u=class extends it{static assertIsValidLabeledBox(t,n){if(it.assertIsValidBox(t,n),!La(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var or=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new or(t.label,n)}};var hw=class extends _u{static assertIsValidPredictedBox(t,n){if(_u.assertIsValidLabeledBox(t,n),!Nu(t.score)||!Nu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function za(e){return e.detection instanceof mt}function bs(e,t){return{...e,...{detection:t}}}function mw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function mf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function fw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=mf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function gw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var yw=fE(oC()),Zt;function Kre(){if(!Zt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Zt}function bw(e){Zt=e}function xw(){return gw()?bw(mw()):(0,yw.isNodejs)()?bw(fw()):null}function Yre(e){if(Zt||xw(),!Zt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Zt.Canvas,Image:n=Zt.Image}=e;Zt.Canvas=t,Zt.Image=n,Zt.createCanvasElement=e.createCanvasElement||(()=>new t),Zt.createImageElement=e.createImageElement||(()=>new n),Zt.ImageData=e.ImageData||Zt.ImageData,Zt.Video=e.Video||Zt.Video,Zt.fetch=e.fetch||Zt.fetch,Zt.readFile=e.readFile||Zt.readFile}var tt={getEnv:Kre,setEnv:bw,initialize:xw,createBrowserEnv:mw,createFileSystem:mf,createNodejsEnv:fw,monkeyPatch:Yre,isBrowser:gw,isNodejs:yw.isNodejs};xw();function xs(e){return!tt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function xn(e){let{Canvas:t,CanvasRenderingContext2D:n}=tt.getEnv();if(e instanceof n)return e;let a=xs(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var lr;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(lr||(lr={}));var Cp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||lr.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},vs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof vs?t.text:t,this.anchor=n,this.options=new Cp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===lr.BOTTOM_RIGHT||a===lr.TOP_RIGHT,s=a===lr.BOTTOM_LEFT||a===lr.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,c=s?this.anchor.y-o:this.anchor.y;if(n){let{width:u,height:p}=n,d=Math.max(Math.min(l,u-i),0),h=Math.max(Math.min(c,p-o),0);return{x:d,y:h}}return{x:l,y:c}}draw(t){let n=xs(t),a=xn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let c=this.measureWidth(a),u=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,c,u),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var vw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:lr.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Cp({...i,...s})}},ff=class{constructor(t,n={}){this.box=new it(t),this.options=new vw(n)}draw(t){let n=xn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new vs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Jre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof mt?a.score:za(a)?a.detection.score:void 0,s=a instanceof mt?a.box:za(a)?a.detection.box:new it(a),i=r?`${to(r)}`:void 0;new ff(s,{label:i}).draw(e)})}function Eu(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function gf(e){return new Promise((t,n)=>{if(e instanceof tt.getEnv().Canvas||Eu(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function yf(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=tt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function ws(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t?new pn(e.naturalWidth,e.naturalHeight):e instanceof n?new pn(e.videoWidth,e.videoHeight):new pn(e.width,e.height)}function ks({width:e,height:t}){let{createCanvasElement:n}=tt.getEnv(),a=n();return a.width=e,a.height=t,a}function Fu(e,t){let{ImageData:n}=tt.getEnv();if(!(e instanceof n)&&!Eu(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||ws(e),s=ks({width:a,height:r});return e instanceof n?xn(s).putImageData(e,0,0):xn(s).drawImage(e,0,0,a,r),s}async function bf(e,t){let n=t||tt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ra(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await Ei.toPixels(i,n),i.dispose(),n}function _p(e){let{Image:t,Canvas:n,Video:a}=tt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function xf(e,t,n=!1){let{Image:a,Canvas:r}=tt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return ks({width:1,height:1});let s=ws(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=ks({width:t,height:t}),u=e instanceof r?e:Fu(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return u.width>0&&u.height>0&&xn(c).drawImage(u,d,h,o,l),c}var ur=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Er(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ra(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof tt.getEnv().Canvas?a:Fu(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ir(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return pw({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=ir(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ee){let o=ra(i)?i:mn(i);return o=hf(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ja.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof tt.getEnv().Canvas)return Ei.fromPixels(xf(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ue(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function ht(e){if(e instanceof ur)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(xs);return a.forEach((r,s)=>{if(!_p(r)&&!Er(r)&&!ra(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ra(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>_p(r)&&gf(r))),new ur(a,Array.isArray(e))}async function io(e,t){let{Canvas:n}=tt.getEnv(),a=e;if(!(e instanceof n)){let i=await ht(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await bf(o)}let r=xn(a);return t.map(i=>i instanceof mt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=ks({width:l,height:c});return l>0&&c>0&&xn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function oo(e,t){if(!Er(e)&&!ra(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ra(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ra(e)?1:0);return t.map(o=>o instanceof mt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Yl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function Is(e,t){let{fetch:n}=tt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function lC(e){let t=await Is(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return yf(n)}async function vf(e){return(await Is(e)).json()}async function uC(e){return new Float32Array(await(await Is(e)).arrayBuffer())}function wf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function kf(e,t){let{manifestUri:n,modelBaseUri:a}=wf(e,t),r=await vf(n);return jt.loadWeights(r,a)}function cC(e,t,n=!1){let{width:a,height:r}=n?ws(t):t;return e.width=a,e.height=r,{width:a,height:r}}var en=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Kr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Kr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Jn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await kf(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=tt.getEnv(),{manifestUri:a,modelBaseUri:r}=wf(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Rn(e,t,n){return D(()=>{let a=Pi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function If(e,t,n=!1){return D(()=>{let a=qe(n?J(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Rn(e,t.conv0,[2,2])),r=Rn(a,t.conv1,[1,1]),s=qe(J(a,r)),i=Rn(s,t.conv2,[1,1]);return qe(J(a,J(r,i)))})}function Ep(e,t,n=!1,a=!0){return D(()=>{let r=qe(n?J(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Rn(e,t.conv0,a?[2,2]:[1,1])),s=Rn(r,t.conv1,[1,1]),i=qe(J(r,s)),o=Rn(i,t.conv2,[1,1]),l=qe(J(r,J(s,o))),c=Rn(l,t.conv3,[1,1]);return qe(J(r,J(s,J(o,c))))})}function lo(e,t,n="same",a=!1){return D(()=>{let r=J(At(e,t.filters,[1,1],n),t.bias);return a?qe(r):r})}function vn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Au(e,t){return(n,a,r,s)=>{let i=_a(e(n*a*r*r),[r,r,n,a]),o=Ze(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Tf(e,t){return(n,a,r)=>{let s=Ca(e(n*a),[n,a]),i=Ze(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Nf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function $u(e,t){return(n,a,r)=>{let s=_a(e(3*3*n),[3,3,n,1]),i=_a(e(n*a),[1,1,n,a]),o=Ze(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Nf(s,i,o)}}function Du(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Nf(n,a,r)}}function qn(e,t){return(n,a,r)=>{let s=e[n];if(!eo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function wn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Sf(e,t){let n=Au(e,t),a=$u(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function pC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=wn(e),{extractDenseBlock4Params:r}=Sf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Cf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function _f(e,t){let n=qn(e,t),a=Cf(n),r=Du(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function dC(e){let t=[],{extractDenseBlock4Params:n}=_f(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return vn(e,t),{params:a,paramMappings:t}}var Fp=class extends en{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(255),i=Ep(s,n.dense0,!0);return i=Ep(i,n.dense1),i=Ep(i,n.dense2),i=Ep(i,n.dense3),i=Zn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return dC(t)}extractParams(t){return pC(t)}};function Ap(e,t){return D(()=>J(ze(e,t.weights),t.bias))}function hC(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=wn(e),o=Tf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function mC(e){let t=[],n=qn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return vn(e,t),{params:r,paramMappings:t}}function Ef(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var $p=class extends en{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof ur?this.faceFeatureExtractor.forwardInput(t):t;return Ap(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return hC(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Ef(t);return this.faceFeatureExtractor.loadFromWeightMap(n),mC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Ff=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ar=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Ff.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Ff.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Dp=class extends $p{constructor(t=new Fp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Sa(this.runNet(t)))}async forward(t){return this.forwardInput(await ht(t))}async predictExpressions(t){let n=await ht(t),a=await this.forwardInput(n),r=await Promise.all(ut(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Ar(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Af(e){return e.expressions instanceof Ar}function Rp(e,t){return{...e,...{expressions:t}}}function Qre(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Ar?s:Af(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=za(s)?s.detection.box.bottomLeft:a||new De(0,0);new vs(l.map(p=>`${p.expression} (${to(p.probability)})`),c).draw(e)})}function Ts(e){return za(e)&&e.landmarks instanceof jn&&e.unshiftedLandmarks instanceof jn&&e.alignedRect instanceof mt}function Zre(e){let t=(o,l,c,u)=>Math.atan2(u-l,c-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,Infinity),i=r.reduce((o,l)=>o>l._y?o:l._y,-Infinity);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function uo(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new mt(e.detection.score,r.rescale(s.reverse()),s),o=Zre(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var ww=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},kw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new ww(n)}draw(t){let n=xn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof so&&(n.strokeStyle=i,n.lineWidth=s,_r(n,this.faceLandmarks.getJawOutline()),_r(n,this.faceLandmarks.getLeftEyeBrow()),_r(n,this.faceLandmarks.getRightEyeBrow()),_r(n,this.faceLandmarks.getNose()),_r(n,this.faceLandmarks.getLeftEye(),!0),_r(n,this.faceLandmarks.getRightEye(),!0),_r(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function ese(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof jn?a:Ts(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new kw(r).draw(e)})}var fC="1.1.4";function tse(e,t){let n=Au(e,t),a=$u(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function gC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=wn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=tse(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};ir(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function nse(e,t){let n=qn(e,t),a=Cf(n),r=Du(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function yC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=nse(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};ir(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return vn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function bC(e,t,n){return J(At(e,t.filters,n,"same"),t.bias)}function Tw(e,t,n=!0){let a=n?qe(e):e;return a=Rn(a,t.separable_conv0,[1,1]),a=Rn(qe(a),t.separable_conv1,[1,1]),a=$t(a,[3,3],[2,2],"same"),a=J(a,bC(e,t.expansion_conv,[2,2])),a}function ase(e,t){let n=Rn(qe(e),t.separable_conv0,[1,1]);return n=Rn(qe(n),t.separable_conv1,[1,1]),n=Rn(qe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var Nw=class extends en{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(255),i=qe(bC(s,n.entry_flow.conv_in,[2,2]));return i=Tw(i,n.entry_flow.reduction_block_0,!1),i=Tw(i,n.entry_flow.reduction_block_1),ir(this._numMainBlocks,0,1).forEach(o=>{i=ase(i,n.middle_flow[`main_block_${o}`])}),i=Tw(i,n.exit_flow.reduction_block),i=qe(Rn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return yC(t,this._numMainBlocks)}extractParams(t){return gC(t,this._numMainBlocks)}};function xC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=wn(e),r=Tf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function vC(e){let t=[],n=qn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return vn(e,t),{params:r,paramMappings:t}}var cr;(function(e){e.FEMALE="female",e.MALE="male"})(cr||(cr={}));var Mp=class extends en{constructor(t=new Nw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof ur?this.faceFeatureExtractor.forwardInput(t):t,r=Zn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Ap(r,n.fc.age).as1D(),i=Ap(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Sa(a)}})}async forward(t){return this.forwardInput(await ht(t))}async predictAgeAndGender(t){let n=await ht(t),a=await this.forwardInput(n),r=ut(a.age),s=ut(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=l.dataSync()[0],p=c.dataSync()[0],d=p>.5,h=d?cr.MALE:cr.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return xC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Ef(t);return this.faceFeatureExtractor.loadFromWeightMap(n),vC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Pp=class extends $p{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>Dt([_n([68],p,"float32"),_n([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),c=p=>o(p,(d,h)=>h<d);return t.mul(_n([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(p,d)=>i(l(d),c(d))))).div(Dt(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await ht(t))}async detectLandmarks(t){let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((u,p)=>lf(p)),c=o.filter((u,p)=>!lf(p));return new so(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var co=class extends Pp{constructor(t=new Fp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function wC(e){let t=[],{extractDenseBlock3Params:n}=_f(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return vn(e,t),{params:a,paramMappings:t}}function kC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=wn(e),{extractDenseBlock3Params:r}=Sf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Sw=class extends en{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(255),i=If(s,n.dense0,!0);return i=If(i,n.dense1),i=If(i,n.dense2),i=Zn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return wC(t)}extractParams(t){return kC(t)}};var Op=class extends Pp{constructor(t=new Sw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Cw=class extends co{};function IC(e,t){return J(W(e,t.weights),t.biases)}function _w(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=J(o,i),o=IC(o,t.scale),a?qe(o):o}function TC(e,t){return _w(e,t,[1,1],!0)}function Ew(e,t){return _w(e,t,[1,1],!1)}function $f(e,t){return _w(e,t,[2,2],!0,"valid")}function rse(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(cw(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ve(_a(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=Ze(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=Ze(e(o)),u=Ze(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function NC(e){let{extractWeights:t,getRemainingWeights:n}=wn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=rse(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),T=D(()=>Ve(Ca(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:T},paramMappings:a}}function sse(e,t){let n=qn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function SC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=sse(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!uw(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return vn(e,t),{params:v,paramMappings:t}}function Wa(e,t){let n=TC(e,t.conv1);return n=Ew(n,t.conv2),n=J(n,e),n=qe(n),n}function Lp(e,t){let n=$f(e,t.conv1);n=Ew(n,t.conv2);let a=Zn(e,2,2,"valid"),r=xt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=xt(o);n=Je([n,l],1);let c=[...n.shape];c[2]=1;let u=xt(c);n=Je([n,u],2)}return a=s?Je([a,r],3):a,n=J(a,n),n=qe(n),n}var po=class extends en{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(150,!0),"float32"),s=wa(a,[122.782,117.001,104.298]).div(255),i=$f(s,n.conv32_down);i=$t(i,3,2,"valid"),i=Wa(i,n.conv32_1),i=Wa(i,n.conv32_2),i=Wa(i,n.conv32_3),i=Lp(i,n.conv64_down),i=Wa(i,n.conv64_1),i=Wa(i,n.conv64_2),i=Wa(i,n.conv64_3),i=Lp(i,n.conv128_down),i=Wa(i,n.conv128_1),i=Wa(i,n.conv128_2),i=Lp(i,n.conv256_down),i=Wa(i,n.conv256_1),i=Wa(i,n.conv256_2),i=Lp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await ht(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return SC(t)}extractParams(t){return NC(t)}};function CC(e){let t=new po;return t.extractWeights(e),t}function zp(e,t){return{...e,...{descriptor:t}}}function _C(e){return typeof e.age=="number"}function Wp(e,t){return{...e,...{age:t}}}function EC(e){return(e.gender===cr.MALE||e.gender===cr.FEMALE)&&Nu(e.genderProbability)}function Bp(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function ise(e,t){function n(l,c){let u=_a(e(3*3*l),[3,3,l,1]),p=Ze(e(l)),d=Ze(e(l)),h=Ze(e(l)),m=Ze(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=_a(e(l*c*u*u),[u,u,l,c]),m=Ze(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),T=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:T}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),T=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),k=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),S=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),P=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:T},box_predictor_3:{box_encoding_predictor:k,class_predictor:S},box_predictor_4:{box_encoding_predictor:F,class_predictor:A},box_predictor_5:{box_encoding_predictor:R,class_predictor:P}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function FC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=wn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=ise(n,t),i=r(),o=s(),c={extra_dim:dh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function ose(e,t){let n=qn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function AC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=ose(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Er(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return vn(e,t),{params:s,paramMappings:t}}function ka(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),Xt(a,0,6)})}var lse=.0010000000474974513;function use(e,t,n){return D(()=>{let a=ns(e,t.filters,n,"same");return a=br(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,lse),Xt(a,0,6)})}function cse(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function $C(e,t){return D(()=>{let n,a=ka(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=cse(o);a=use(a,s.depthwise_conv,l),a=ka(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function pse(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function DC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=pse(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function dse(e){let t=ut(Ve(e,[1,0])),n=[he(t[2],t[0]),he(t[3],t[1])],a=[J(t[0],ye(n[0],2)),J(t[1],ye(n[1],2))];return{sizes:n,centers:a}}function hse(e,t){let{sizes:n,centers:a}=dse(e),r=ut(Ve(t,[1,0])),s=ye(W(hn(ye(r[2],5)),n[0]),2),i=J(W(ye(r[0],10),n[0]),a[0]),o=ye(W(hn(ye(r[3],5)),n[1]),2),l=J(W(ye(r[1],10),n[1]),a[1]);return Ve(Dt([he(i,s),he(l,o),J(i,s),J(l,o)]),[1,0])}function RC(e,t,n){return D(()=>{let a=e.shape[0],r=hse(U(qa(n.extra_dim,[a,1,1]),[-1,4]),U(e,[-1,4]));r=U(r,[a,r.shape[0]/a,4]);let s=da(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=U(i,[a,i.shape[1]]);let o=ut(r),l=ut(i);return{boxes:o,scores:l}})}function ho(e,t){return D(()=>{let n=e.shape[0],a=U(lo(e,t.box_encoding_predictor),[n,-1,1,4]),r=U(lo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function MC(e,t,n){return D(()=>{let a=ka(e,n.conv_0,[1,1]),r=ka(a,n.conv_1,[2,2]),s=ka(r,n.conv_2,[1,1]),i=ka(s,n.conv_3,[2,2]),o=ka(i,n.conv_4,[1,1]),l=ka(o,n.conv_5,[2,2]),c=ka(l,n.conv_6,[1,1]),u=ka(c,n.conv_7,[2,2]),p=ho(t,n.box_predictor_0),d=ho(e,n.box_predictor_1),h=ho(r,n.box_predictor_2),m=ho(i,n.box_predictor_3),f=ho(l,n.box_predictor_4),g=ho(u,n.box_predictor_5),y=Je([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Je([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var sa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ns=class extends en{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(512,!1),"float32"),r=he(ye(a,127.5),1),s=$C(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=MC(s.out,s.conv11,n.prediction_layer);return RC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await ht(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new sa(n),s=await ht(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let u=Array.from(c.dataSync()),d=DC(l,u,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(x=>{let[v,T]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(F=>F*g),[k,S]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(F=>F*f);return new mt(u[x],new ro(k,v,S-k,T-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return AC(t)}extractParams(t){return FC(t)}};function Fw(e){let t=new Ns;return t.extractWeights(e),t}function PC(e){return Fw(e)}var Aw=class extends Ns{};var OC=.4,LC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],zC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],WC=[117.001,114.697,97.404],BC="tiny_yolov2_model",VC="tiny_yolov2_separable_conv_model";var Df=e=>typeof e=="number";function Rf(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Df(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Df(t.x)&&Df(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Df)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Ru(e){return D(()=>{let t=W(e,ve(.10000000149011612));return J(qe(he(e,t)),t)})}function $r(e,t){return D(()=>{let n=ta(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=he(n,t.bn.sub),n=W(n,t.bn.truediv),n=J(n,t.conv.bias),Ru(n)})}function Dr(e,t){return D(()=>{let n=ta(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Pi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),Ru(n)})}function mse(e,t){let n=Au(e,t);function a(i,o){let l=Ze(e(i)),c=Ze(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=$u(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function UC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=wn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=mse(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),T=c(d,h,"conv1"),k=c(h,m,"conv2"),S=c(m,f,"conv3"),F=c(f,g,"conv4"),A=c(g,y,"conv5"),R=b?c(y,b,"conv6"):void 0,P=x?c(b,x,"conv7"):void 0,z=o(x||b||y,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}else{let[p,d,h,m,f,g,y,b,x]=a,v=l(p,d,"conv0"),T=l(d,h,"conv1"),k=l(h,m,"conv2"),S=l(m,f,"conv3"),F=l(f,g,"conv4"),A=l(g,y,"conv5"),R=l(y,b,"conv6"),P=l(b,x,"conv7"),z=o(x,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function fse(e,t){let n=qn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Du(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function GC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=fse(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return vn(e,n),{params:i,paramMappings:n}}var Ba=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var $w=class extends en{constructor(t){super("TinyYolov2");Rf(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=$r(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=$r(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=$r(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=$r(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=$r(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=$r(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=$r(a,n.conv6),a=$r(a,n.conv7),lo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Ru(lo(t,n.conv0,"valid",!1)):Dr(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Dr(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Dr(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Dr(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Dr(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Dr(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=n.conv6?Dr(a,n.conv6):a,a=n.conv7?Dr(a,n.conv7):a,lo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ue(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?wa(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await ht(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ba(n),s=await ht(t),i=await this.forwardInput(s,a),o=D(()=>ut(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return df(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new Fr(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return GC(t,this.config)}extractParams(t){let n=this.config.filterSizes||$w.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return UC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),x=y.slice([0,0,0,4],[c,c,u,1]),v=this.withClassScores?Sa(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):ve(0);return[b,x,v]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<c;y++)for(let b=0;b<c;b++)for(let x=0;x<u;x++){let v=Su(f[y][b][x][0]);if(!a||v>a){let T=(b+Su(g[y][b][x][0]))/c*o,k=(y+Su(g[y][b][x][1]))/c*l,S=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/c*o,F=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/c*l,A=T-S/2,R=k-F/2,P={row:y,col:b,anchor:x},{classScore:z,label:V}=this.withClassScores?await this.extractPredictedClass(h,P):{classScore:1,label:0};m.push({box:new ao(A,R,A+S,R+F),score:v,classScore:v*z,label:V,...P})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Mu=$w;Mu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var mo=class extends Mu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:OC,classes:["face"],...t?{anchors:zC,meanRgb:WC}:{anchors:LC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new mt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?VC:BC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function HC(e,t=!0){let n=new mo(t);return n.extractWeights(e),n}var Vp=class extends Ba{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var ia=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function fo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>Ts(l)?r(l):l.detection),i=a||(t instanceof Ee?await oo(t,s):await io(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ee&&l.dispose()),o}async function Pu(e,t,n,a,r){return fo([e],t,async s=>n(s[0]),a,r)}var jC=.4,qC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],XC=[117.001,114.697,97.404];var go=class extends Mu{constructor(){let t={withSeparableConvs:!0,iouThreshold:jC,classes:["face"],anchors:qC,meanRgb:XC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new mt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Qe={ssdMobilenetv1:new Ns,tinyFaceDetector:new go,tinyYolov2:new mo,faceLandmark68Net:new co,faceLandmark68TinyNet:new Op,faceRecognitionNet:new po,faceExpressionNet:new Dp,ageGenderNet:new Mp},Dw=(e,t)=>Qe.ssdMobilenetv1.locateFaces(e,t),KC=(e,t)=>Qe.tinyFaceDetector.locateFaces(e,t),YC=(e,t)=>Qe.tinyYolov2.locateFaces(e,t),Rw=e=>Qe.faceLandmark68Net.detectLandmarks(e),JC=e=>Qe.faceLandmark68TinyNet.detectLandmarks(e),QC=e=>Qe.faceRecognitionNet.computeFaceDescriptor(e),ZC=e=>Qe.faceExpressionNet.predictExpressions(e),e_=e=>Qe.ageGenderNet.predictAgeAndGender(e),Mw=e=>Qe.ssdMobilenetv1.load(e),t_=e=>Qe.tinyFaceDetector.load(e),n_=e=>Qe.tinyYolov2.load(e),a_=e=>Qe.faceLandmark68Net.load(e),r_=e=>Qe.faceLandmark68TinyNet.load(e),s_=e=>Qe.faceRecognitionNet.load(e),i_=e=>Qe.faceExpressionNet.load(e),o_=e=>Qe.ageGenderNet.load(e),l_=Mw,u_=Dw,c_=Rw;var Pw=class extends ia{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},zu=class extends Pw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>Qe.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Rp(a,n[r]))}withAgeAndGender(){return new Ou(this,this.input)}},Wu=class extends Pw{async run(){let t=await this.parentTask;if(!t)return;let n=await Pu(t,this.input,a=>Qe.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Rp(t,n)}withAgeAndGender(){return new Lu(this,this.input)}},xo=class extends zu{withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},vo=class extends Wu{withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var Ow=class extends ia{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Ou=class extends Ow{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>Qe.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Wp(Bp(a,i,o),s)})}withFaceExpressions(){return new zu(this,this.input)}},Lu=class extends Ow{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Pu(t,this.input,s=>Qe.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Wp(Bp(t,a,r),n)}withFaceExpressions(){return new Wu(this,this.input)}},yo=class extends Ou{withFaceExpressions(){return new xo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},bo=class extends Lu{withFaceExpressions(){return new vo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var Up=class extends ia{constructor(t,n){super();this.parentTask=t;this.input=n}},Rr=class extends Up{async run(){let t=await this.parentTask;return(await fo(t,this.input,a=>Promise.all(a.map(r=>Qe.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>zp(t[r],a))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}},Mr=class extends Up{async run(){let t=await this.parentTask;if(!t)return;let n=await Pu(t,this.input,a=>Qe.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return zp(t,n)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}};var Gp=class extends ia{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?Qe.faceLandmark68TinyNet:Qe.faceLandmark68Net}},Hp=class extends Gp{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ee?await oo(this.input,n):await io(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ee&&s.dispose()),t.map((s,i)=>uo(s,r[i]))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},jp=class extends Gp{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ee?await oo(this.input,[n]):await io(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ee&&s.dispose()),uo(t,r)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var qp=class extends ia{constructor(t,n=new sa){super();this.input=t;this.options=n}},Bu=class extends qp{async run(){let{input:t,options:n}=this,a;if(n instanceof Vp)a=Qe.tinyFaceDetector.locateFaces(t,n);else if(n instanceof sa)a=Qe.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Ba)a=Qe.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>bs({},a)))})}withFaceLandmarks(t=!1){return new Hp(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new zu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Ou(this.runAndExtendWithFaceDetections(),this.input)}},Xp=class extends qp{async run(){let t=await new Bu(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?bs({},n):void 0)})}withFaceLandmarks(t=!1){return new jp(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Wu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Lu(this.runAndExtendWithFaceDetection(),this.input)}};function p_(e,t=new sa){return new Xp(e,t)}function Kp(e,t=new sa){return new Bu(e,t)}async function Lw(e,t){return Kp(e,new sa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function d_(e,t={}){return Kp(e,new Ba(t)).withFaceLandmarks().withFaceDescriptors()}var h_=Lw;function Mf(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Yp=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof or)return i;if(i instanceof Float32Array)return new or(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new or(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Mf(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Cu(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new Cu("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>or.fromJSON(a));return new Yp(n,t.distanceThreshold)}};function m_(e){let t=new go;return t.extractWeights(e),t}function zw(e,t){let{width:n,height:a}=new pn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>zw(r,{width:n,height:a}));if(Ts(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return uo(bs(e,r),s)}return za(e)?bs(e,e.detection.forSize(n,a)):e instanceof jn||e instanceof mt?e.forSize(n,a):e}var yse=typeof process!="undefined",bse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",f_={faceapi:fC,node:yse,browser:bse};return gse;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.js.map