face-api/dist/face-api.esm.js

4342 lines
1.1 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var A_=Object.create,nd=Object.defineProperty,$_=Object.getPrototypeOf,D_=Object.prototype.hasOwnProperty,R_=Object.getOwnPropertyNames,M_=Object.getOwnPropertyDescriptor;var zw=e=>nd(e,"__esModule",{value:!0});var P_=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),ad=(e,t)=>{for(var n in t)nd(e,n,{get:t[n],enumerable:!0})},O_=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of R_(t))!D_.call(e,a)&&a!=="default"&&nd(e,a,{get:()=>t[a],enumerable:!(n=M_(t,a))||n.enumerable});return e},L_=e=>O_(zw(nd(e!=null?A_($_(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var YS=P_((bre,KS)=>{zw(bre);ad(bre,{isNodejs:()=>xre});function xre(){return typeof global=="object"&&!0&&typeof KS!="undefined"&&typeof process!="undefined"&&!!process.version}});var Ww={};ad(Ww,{Abs:()=>So,Acos:()=>Co,Acosh:()=>_o,AdadeltaOptimizer:()=>Fh,AdagradOptimizer:()=>Ah,AdamOptimizer:()=>$h,AdamaxOptimizer:()=>Dh,Add:()=>Br,AddN:()=>Ts,All:()=>ud,Any:()=>cd,ArgMax:()=>Ns,ArgMin:()=>Ku,Asin:()=>Eo,Asinh:()=>Fo,Atan:()=>Ao,Atan2:()=>Do,Atanh:()=>$o,AvgPool:()=>Ss,AvgPool3D:()=>Yu,AvgPool3DGrad:()=>dd,AvgPoolGrad:()=>pd,BackendWasm:()=>GS,BatchMatMul:()=>Cs,BatchToSpaceND:()=>Ju,Bincount:()=>hd,BroadcastTo:()=>a0,Callback:()=>LI,CallbackList:()=>P1,Cast:()=>_s,Ceil:()=>Es,ClipByValue:()=>Vr,Complex:()=>md,ComplexAbs:()=>Qu,Concat:()=>Ro,Conv2D:()=>Fs,Conv2DBackpropFilter:()=>fd,Conv2DBackpropInput:()=>As,Conv3D:()=>Zu,Conv3DBackpropFilterV2:()=>gd,Conv3DBackpropInputV2:()=>yd,Cos:()=>$s,Cosh:()=>Mo,CropAndResize:()=>Po,Cumsum:()=>Ds,CustomCallback:()=>L1,DataStorage:()=>sd,DenseBincount:()=>bd,DepthToSpace:()=>Oo,DepthwiseConv2dNative:()=>Rs,DepthwiseConv2dNativeBackpropFilter:()=>xd,DepthwiseConv2dNativeBackpropInput:()=>vd,Diag:()=>wd,Dilation2D:()=>ec,Dilation2DBackpropFilter:()=>Id,Dilation2DBackpropInput:()=>kd,ENV:()=>Bg,EarlyStopping:()=>WI,Elu:()=>Lo,EluGrad:()=>Td,Environment:()=>t0,Equal:()=>Wo,Erf:()=>zo,Exp:()=>Ps,ExpandDims:()=>Bo,Expm1:()=>Vo,FFT:()=>Nd,Fill:()=>tc,FlipLeftRight:()=>Uo,Floor:()=>Os,FloorDiv:()=>Ls,FromPixels:()=>Wd,FusedBatchNorm:()=>zs,FusedConv2D:()=>yi,FusedDepthwiseConv2D:()=>bi,GatherNd:()=>Ho,GatherV2:()=>Go,GraphModel:()=>gT,Greater:()=>jo,GreaterEqual:()=>Ws,History:()=>O1,IFFT:()=>Sd,Identity:()=>Bs,Imag:()=>Cd,InputSpec:()=>Yt,IsFinite:()=>qo,IsInf:()=>Xo,IsNan:()=>Ko,KernelBackend:()=>ju,LRN:()=>rc,LRNGrad:()=>Ed,LayerVariable:()=>A1,LayersModel:()=>wr,LeakyRelu:()=>Vs,Less:()=>Yo,LessEqual:()=>Jo,LinSpace:()=>_d,Log:()=>Us,Log1p:()=>Qo,LogSoftmax:()=>r0,LogicalAnd:()=>Zo,LogicalNot:()=>nc,LogicalOr:()=>ac,Max:()=>Gs,MaxPool:()=>js,MaxPool3D:()=>sc,MaxPool3DGrad:()=>Ad,MaxPoolGrad:()=>Fd,MaxPoolWithArgmax:()=>$d,Maximum:()=>Hs,Mean:()=>qs,Min:()=>Xs,Minimum:()=>Ks,MirrorPad:()=>ic,Mod:()=>el,MomentumOptimizer:()=>Rh,Multinomial:()=>Dd,Multiply:()=>Ys,Neg:()=>tl,NonMaxSuppressionV3:()=>al,NonMaxSuppressionV4:()=>rl,NonMaxSuppressionV5:()=>sl,NotEqual:()=>nl,OP_SCOPE_SUFFIX:()=>f0,OneHot:()=>Js,OnesLike:()=>il,Optimizer:()=>br,Pack:()=>ol,PadV2:()=>Qs,Pool:()=>RE,Pow:()=>Zs,Prelu:()=>ei,Prod:()=>ll,RMSPropOptimizer:()=>Mh,RNN:()=>er,Range:()=>oc,Rank:()=>Xg,Real:()=>Rd,RealDiv:()=>Ms,Reciprocal:()=>ul,Reduction:()=>mn,Relu:()=>ti,Relu6:()=>ai,Reshape:()=>cl,ResizeBilinear:()=>ni,ResizeBilinearGrad:()=>Pd,ResizeNearestNeighbor:()=>lc,ResizeNearestNeighborGrad:()=>Md,Reverse:()=>ri,RotateWithOffset:()=>Tl,Round:()=>si,Rsqrt:()=>ii,SGDOptimizer:()=>Oc,ScatterNd:()=>pl,Select:()=>dl,Selu:()=>hl,Sequential:()=>Kl,Sigmoid:()=>li,Sign:()=>gl,Sin:()=>oi,Sinh:()=>fl,Slice:()=>ml,Softmax:()=>pi,Softplus:()=>yl,SpaceToBatchND:()=>uc,SparseToDense:()=>Od,SplitV:()=>bl,Sqrt:()=>ui,Square:()=>cc,SquaredDifference:()=>di,Step:()=>Gr,StridedSlice:()=>xl,Sub:()=>hi,Sum:()=>ci,SymbolicTensor:()=>Aa,Tan:()=>vl,Tanh:()=>mi,Tensor:()=>Ee,TensorBuffer:()=>Lt,Tile:()=>Ur,TopK:()=>wl,Transform:()=>Ld,Transpose:()=>fi,Unique:()=>zd,Unpack:()=>kl,UnsortedSegmentSum:()=>pc,Variable:()=>Hr,ZerosLike:()=>Il,_FusedMatMul:()=>gi,abs:()=>zt,acos:()=>xy,acosh:()=>vy,add:()=>J,addN:()=>Q0,all:()=>eh,any:()=>Ic,argMax:()=>Tc,argMin:()=>wy,asin:()=>ky,asinh:()=>Iy,atan:()=>Ty,atan2:()=>Ny,atanh:()=>Sy,avgPool:()=>Qn,avgPool3d:()=>Ey,backend:()=>J0,backend_util:()=>_,basicLSTMCell:()=>h$,batchNorm:()=>fr,batchNorm2d:()=>nk,batchNorm3d:()=>ak,batchNorm4d:()=>rk,batchToSpaceND:()=>Sc,bincount:()=>sk,booleanMaskAsync:()=>yM,broadcastTo:()=>Cc,browser:()=>ki,buffer:()=>Me,callbacks:()=>i4,cast:()=>ue,ceil:()=>Fy,clipByValue:()=>Xt,clone:()=>Kr,complex:()=>jr,concat:()=>Je,concat1d:()=>ik,concat2d:()=>ok,concat3d:()=>lk,concat4d:()=>uk,constraints:()=>r1,conv1d:()=>nh,conv2d:()=>At,conv2dTranspose:()=>ah,conv3d:()=>$y,conv3dTranspose:()=>M$,copyRegisteredKernels:()=>OE,cos:()=>_c,cosh:()=>rh,cosineWindow:()=>rb,cumsum:()=>sh,customGrad:()=>ja,data:()=>bT,denseBincount:()=>pk,deprecationWarn:()=>by,depthToSpace:()=>Dy,depthwiseConv2d:()=>Qr,deregisterOp:()=>l4,device_util:()=>vc,diag:()=>U$,dilation2d:()=>Ry,disableDeprecationWarnings:()=>NA,dispose:()=>Ae,disposeVariables:()=>SA,div:()=>ye,divNoNan:()=>My,dot:()=>dk,dropout:()=>Dk,elu:()=>Rl,enableDebugMode:()=>TA,enableProdMode:()=>IA,enclosingPowerOfTwo:()=>Rk,engine:()=>Ua,env:()=>Z,equal:()=>Zr,erf:()=>Py,exp:()=>dn,expandDims:()=>hn,expm1:()=>Oy,eye:()=>Ly,fft:()=>Mc,fill:()=>Cn,findBackend:()=>DA,findBackendFactory:()=>RA,floor:()=>Ml,floorDiv:()=>Zd,fused:()=>ns,gather:()=>Ni,gatherND:()=>$k,gather_util:()=>py,getBackend:()=>AA,getGradient:()=>Hg,getKernel:()=>Bd,getKernelsForBackend:()=>Vd,grad:()=>bD,grads:()=>xD,greater:()=>pa,greaterEqual:()=>es,ifft:()=>Bl,imag:()=>ih,image:()=>Ka,inTopKAsync:()=>_M,initializers:()=>p1,input:()=>T1,io:()=>jt,irfft:()=>wh,isFinite:()=>hk,isInf:()=>mk,isNaN:()=>fk,keep:()=>qt,kernel_impls:()=>Ya,layers:()=>I1,leakyRelu:()=>Ec,less:()=>oh,lessEqual:()=>Si,linalg:()=>jk,linspace:()=>gk,loadGraphModel:()=>oV,loadLayersModel:()=>SB,localResponseNormalization:()=>zy,log:()=>Pn,log1p:()=>lh,logSigmoid:()=>bk,logSoftmax:()=>ch,logSumExp:()=>Vy,logicalAnd:()=>da,logicalNot:()=>Fc,logicalOr:()=>ph,logicalXor:()=>kk,losses:()=>HP,matMul:()=>ze,math:()=>A0,max:()=>Zn,maxPool:()=>$t,maxPool3d:()=>Uy,maxPoolWithArgmax:()=>Ik,maximum:()=>qa,mean:()=>Ct,memory:()=>Jd,metrics:()=>MI,min:()=>Ol,minimum:()=>Ll,mirrorPad:()=>Gy,mod:()=>Hy,model:()=>TB,models:()=>PI,moments:()=>dh,movingAverage:()=>vM,mul:()=>W,multiRNNCell:()=>XD,multinomial:()=>Tk,neg:()=>St,nextFrame:()=>Ph,norm:()=>Nh,notEqual:()=>_i,oneHot:()=>Fl,ones:()=>Xa,onesLike:()=>On,op:()=>O,outerProduct:()=>ZD,pad:()=>ea,pad1d:()=>nR,pad2d:()=>rR,pad3d:()=>iR,pad4d:()=>lR,pool:()=>Nk,pow:()=>gr,prelu:()=>$c,print:()=>N0,prod:()=>hh,profile:()=>CA,rand:()=>yR,randomGamma:()=>wR,randomNormal:()=>Sk,randomUniform:()=>zl,range:()=>mh,ready:()=>FA,real:()=>Dc,reciprocal:()=>Xy,registerBackend:()=>Qd,registerCallbackConstructor:()=>CB,registerGradient:()=>s0,registerKernel:()=>hc,registerOp:()=>o4,regularizers:()=>OI,relu:()=>qe,relu6:()=>fh,removeBackend:()=>$A,reshape:()=>U,reverse:()=>Ln,reverse1d:()=>FR,reverse2d:()=>$R,reverse3d:()=>RR,reverse4d:()=>PR,rfft:()=>Pc,round:()=>Ky,rsqrt:()=>gh,scalar:()=>ve,scatterND:()=>Ak,scatter_util:()=>dy,selu:()=>yh,separableConv2d:()=>Ei,sequential:()=>NB,serialization:()=>re,setBackend:()=>EA,setPlatform:()=>MA,setWasmPath:()=>lre,setWasmPaths:()=>ure,setdiff1dAsync:()=>Ck,sigmoid:()=>ca,sign:()=>Yy,signal:()=>GP,sin:()=>bh,sinh:()=>xh,slice:()=>Be,slice1d:()=>vh,slice2d:()=>Jy,slice3d:()=>Wl,slice4d:()=>Rc,slice_util:()=>an,softmax:()=>Na,softplus:()=>Pl,spaceToBatchND:()=>Ac,sparseToDense:()=>ab,spectral:()=>UP,split:()=>zn,sqrt:()=>rn,square:()=>ot,squaredDifference:()=>kh,squeeze:()=>ts,stack:()=>Dt,step:()=>Vl,stridedSlice:()=>Qy,sub:()=>he,sum:()=>Se,sumOutType:()=>jd,tan:()=>Zy,tanh:()=>Dl,tensor:()=>Yn,tensor1d:()=>Qe,tensor2d:()=>Sa,tensor3d:()=>Kd,tensor4d:()=>Ca,tensor5d:()=>lM,tensor6d:()=>uM,tensor_util:()=>Ia,test_util:()=>q0,tidy:()=>D,tile:()=>Ha,time:()=>_A,topk:()=>eb,train:()=>Ai,transpose:()=>Ve,truncatedNormal:()=>Ih,unique:()=>Th,unregisterGradient:()=>PE,unregisterKernel:()=>ME,unsortedSegmentSum:()=>tb,unstack:()=>ut,upcastType:()=>ua,util:()=>w,valueAndGrad:()=>vD,valueAndGrads:()=>wD,variable:()=>_k,variableGrads:()=>yk,version:()=>mee,version_converter:()=>yT,version_core:()=>Y0,version_layers:()=>im,version_wasm:()=>cre,where:()=>Sn,whereAsync:()=>nb,zeros:()=>xt,zerosLike:()=>Ge});var z_=Object.create,rd=Object.defineProperty,W_=Object.getPrototypeOf,B_=Object.prototype.hasOwnProperty,V_=Object.getOwnPropertyNames,U_=Object.getOwnPropertyDescriptor,G_=e=>rd(e,"__esModule",{value:!0}),Tt=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Le=(e,t)=>{for(var n in t)rd(e,n,{get:t[n],enumerable:!0})},H_=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of V_(t))!B_.call(e,a)&&a!=="default"&&rd(e,a,{get:()=>t[a],enumerable:!(n=U_(t,a))||n.enumerable});return e},Io=e=>H_(G_(rd(e!=null?z_(W_(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),j_=Tt(()=>{}),q_=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),X_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),K_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Y_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q_=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Bw=Tt(()=>{}),Z_=Tt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(n)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),n),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(a[l]=z,V):z})(P,A,"global"in k?k.global:this==a,k.state)}a["seed"+l]=m;function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,X=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[X=d&X+V])+(j[X]=V)];return F.i=H,F.j=X,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,v(n)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=Bw()}catch(T){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Vw=Tt((e,t)=>{var n=q_(),a=X_(),r=K_(),s=Y_(),i=J_(),o=Q_(),l=Z_();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),eE=Tt((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=String(p);for(var d=0;d<p.length;d++){c+=p.charCodeAt(d);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p<u.length+64;p++)c.x^=u.charCodeAt(p)|0,p==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h<d.length;++h)f[h&7]=f[h&7]<<15^d.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],x=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,x=Math.max(x,d.length)),f=0,g=-32;g<x;++g)d&&(m^=d.charCodeAt((g+32)%d.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),sE=Tt((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)c.b^=u.charCodeAt(p)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),iE=Tt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),p=u*2,d=s-1,h;function m(T,k,S){var F=[];k=k==!0?{entropy:!0}:k||{};var A=b(y(k.entropy?[T,v(a)]:T==null?x():T,3),F),R=new f(F),P=function(){for(var z=R.g(i),V=c,G=0;z<u;)z=(z+G)*s,V*=s,G=R.g(1);for(;z>=p;)z/=2,V/=2,G>>>=1;return(z+G)/V};return P.int32=function(){return R.g(4)|0},P.quick=function(){return R.g(4)/4294967296},P.double=P,b(v(R.S),a),(k.pass||S||function(z,V,G,H){return H&&(H.S&&g(H,R),z.state=function(){return g(R,{})}),G?(r[l]=z,V):z})(P,A,"global"in k?k.global:this==r,k.state)}function f(T){var k,S=T.length,F=this,A=0,R=F.i=F.j=0,P=F.S=[];for(S||(T=[S++]);A<s;)P[A]=A++;for(A=0;A<s;A++)P[A]=P[R=d&R+T[A%S]+(k=P[A])],P[R]=k;(F.g=function(z){for(var V,G=0,H=F.i,X=F.j,j=F.S;z--;)V=j[H=d&H+1],G=G*s+j[d&(j[H]=j[X=d&X+V])+(j[X]=V)];return F.i=H,F.j=X,G})(s)}function g(T,k){return k.i=T.i,k.j=T.j,k.S=T.S.slice(),k}function y(T,k){var S=[],F=typeof T,A;if(k&&F=="object")for(A in T)try{S.push(y(T[A],k-1))}catch(R){}return S.length?S:F=="string"?T:T+"\0"}function b(T,k){for(var S=T+"",F,A=0;A<S.length;)k[d&A]=d&(F^=k[d&A]*19)+S.charCodeAt(A++);return v(k)}function x(){try{var T;return h&&(T=h.randomBytes)?T=T(s):(T=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(T)),v(T)}catch(F){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,v(a)]}}function v(T){return String.fromCharCode.apply(0,T)}if(b(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=Bw()}catch(T){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Uw=Tt((e,t)=>{var n=eE(),a=tE(),r=nE(),s=aE(),i=rE(),o=sE(),l=iE();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),oE=Tt(()=>{}),Hu=Tt(()=>{}),lE=Tt(()=>{}),uE=Tt(()=>{}),cE=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ee.buffer!=We&&tn(ee.buffer),wn}function i(){return ee.buffer!=We&&tn(ee.buffer),It}function o(){return ee.buffer!=We&&tn(ee.buffer),kn}function l(){return ee.buffer!=We&&tn(ee.buffer),Xn}function c(){return ee.buffer!=We&&tn(ee.buffer),pn}var u=typeof r!="undefined"?r:{},p,d;u.ready=new Promise(function(N,C){p=N,d=C});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],g="./this.program",y=function(N,C){throw C},b=!1,x=!1,v=!1,T=!1;b=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=!b&&!v&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(We=u.buffer);var S="";function F(N){return u.locateFile?u.locateFile(N,S):S+N}var A,R,P,z,V,G;if(v){x?S=Hu().dirname(S)+"/":S=__dirname+"/",A=function(N,C){return V||(V=require("fs")),G||(G=Hu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof Gu))throw N}),process.on("unhandledRejection",cr),y=function(N){process.exit(N)},u.inspect=function(){return"[Emscripten Module object]"};var H;try{H=lE()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=H.Worker}else T?(typeof read!="undefined"&&(A=function(N){return read(N)}),P=function(N){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(N)):(C=read(N,"binary"),me(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(b||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof a!="undefined"&&a&&(S=a),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",v?(A=function(N,C){return V||(V=require("fs")),G||(G=Hu()),N=G.normalize(N),V.readFileSync(N,C?null:"utf8")},P=function(N){var C=A(N,!0);return C.buffer||(C=new Uint8Array(C)),me(C.buffer),C}):(A=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.send(null),C.responseText},x&&(P=function(N){var C=new XMLHttpRequest;return C.open("GET",N,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),R=function(N,C,L){var q=new XMLHttpRequest;q.open("GET",N,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){C(q.response);return}L()},q.onerror=L,q.send(null)}),z=function(N){document.title=N});v&&typeof performance=="undefined"&&(global.performance=uE().performance);var X=u.print||console.log.bind(console),j=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(y=u.quit);var te=Atomics.load,Q=Atomics.store,se=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&cr("no native wasm support detected");var ee,pe,oe=!1,fe;function me(N,C){N||cr("Assertion failed: "+C)}function we(N){var C=u["_"+N];return me(C,"Cannot call unknown function "+N+", make sure it is exported"),C}function Te(N,C,L,q,de){var le={string:function(Nn){var ko=0;if(Nn!=null&&Nn!==0){var Lw=(Nn.length<<2)+1;ko=xo(Lw),nt(Nn,ko,Lw)}return ko},array:function(Nn){var ko=xo(Nn.length);return Ke(Nn,ko),ko}};function ce(Nn){return C==="string"?Fe(Nn):C==="boolean"?Boolean(Nn):Nn}var be=we(N),at=[],Gt=0;if(q)for(var Pt=0;Pt<q.length;Pt++){var Lr=le[L[Pt]];Lr?(Gt===0&&(Gt=Uu()),at[Pt]=Lr(q[Pt])):at[Pt]=q[Pt]}var wo=be.apply(null,at);return wo=ce(wo),Gt!==0&&bo(Gt),wo}function _e(N,C,L,q){L=L||[];var de=L.every(function(ce){return ce==="number"}),le=C!=="string";return le&&de&&!q?we(N):function(){return Te(N,C,L,arguments,q)}}function Re(N,C,L){for(var q=C+L,de="";!(C>=q);){var le=N[C++];if(!le)return de;if(!(le&128)){de+=String.fromCharCode(le);continue}var ce=N[C++]&63;if((le&224)==192){de+=String.fromCharCode((le&31)<<6|ce);continue}var be=N[C++]&63;if((le&240)==224?le=(le&15)<<12|ce<<6|be:le=(le&7)<<18|ce<<12|be<<6|N[C++]&63,le<65536)de+=String.fromCharCode(le);else{var at=le-65536;de+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return de}function Fe(N,C){return N?Re(i(),N,C):""}function tt(N,C,L,q){if(!(q>0))return 0;for(var de=L,le=L+q-1,ce=0;ce<N.length;++ce){var be=N.charCodeAt(ce);if(be>=55296&&be<=57343){var at=N.charCodeAt(++ce);be=65536+((be&1023)<<10)|at&1023}if(be<=127){if(L>=le)break;C[L++]=be}else if(be<=2047){if(L+1>=le)break;C[L++]=192|be>>6,C[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;C[L++]=224|be>>12,C[L++]=128|be>>6&63,C[L++]=128|be&63}else{if(L+3>=le)break;C[L++]=240|be>>18,C[L++]=128|be>>12&63,C[L++]=128|be>>6&63,C[L++]=128|be&63}}return C[L]=0,L-de}function nt(N,C,L){return tt(N,i(),C,L)}function it(N){for(var C=0,L=0;L<N.length;++L){var q=N.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|N.charCodeAt(++L)&1023),q<=127?++C:q<=2047?C+=2:q<=65535?C+=3:C+=4}return C}function Ke(N,C){s().set(N,C)}function mt(N,C){return N%C>0&&(N+=C-N%C),N}var We,wn,It,qn,en,kn,Xn,Mn,pn;function tn(N){We=N,u.HEAP8=wn=new Int8Array(N),u.HEAP16=qn=new Int16Array(N),u.HEAP32=kn=new Int32Array(N),u.HEAPU8=It=new Uint8Array(N),u.HEAPU16=en=new Uint16Array(N),u.HEAPU32=Xn=new Uint32Array(N),u.HEAPF32=Mn=new Float32Array(N),u.HEAPF64=pn=new Float64Array(N)}var Wa=u.INITIAL_MEMORY||16777216;if(k)ee=u.wasmMemory,We=u.buffer;else if(u.wasmMemory)ee=u.wasmMemory;else if(ee=new WebAssembly.Memory({initial:Wa/65536,maximum:2147483648/65536,shared:!0}),!(ee.buffer instanceof SharedArrayBuffer))throw j("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ee&&(We=ee.buffer),Wa=We.byteLength,tn(We);var sa,ia=[],$r=[],lr=[],Dr=[],co=[],ka=!1,Dp=!1;k||$r.push({func:function(){Kp()}}),k&&(ka=!0);function kf(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Pp(u.preRun.shift());ho(ia)}}function Rp(){ka=!0,ho($r)}function If(){k||ho(lr)}function Mp(){k||(Dp=!0)}function In(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Tf(u.postRun.shift());ho(co)}}function Pp(N){ia.unshift(N)}function Tf(N){co.unshift(N)}var ur=0,Rr=null,xs=null;function Nf(N){me(!k,"addRunDependency cannot be used in a pthread worker"),ur++,u.monitorRunDependencies&&u.monitorRunDependencies(ur)}function Sf(N){if(ur--,u.monitorRunDependencies&&u.monitorRunDependencies(ur),ur==0&&(Rr!==null&&(clearInterval(Rr),Rr=null),xs)){var C=xs;xs=null,C()}}u.preloadedImages={},u.preloadedAudios={};function cr(N){u.onAbort&&u.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",j(N),oe=!0,fe=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(N);throw d(C),C}function Op(N,C){return String.prototype.startsWith?N.startsWith(C):N.indexOf(C)===0}var po="data:application/octet-stream;base64,";function Lp(N){return Op(N,po)}var Cf="file://";function zp(N){return Op(N,Cf)}var Tn="tfjs-backend-wasm-threaded-simd.wasm";Lp(Tn)||(Tn=F(Tn));function _f(N){try{if(N==Tn&&ne)return new Uint8Array(ne);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(C){cr(C)}}function Wp(){if(!ne&&(b||x)){if(typeof fetch=="function"&&!zp(Tn))return fetch(Tn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Tn+"'";return N.arrayBuffer()}).catch(function(){return _f(Tn)});if(R)return new Promise(function(N,C){R(Tn,function(L){N(new Uint8Array(L))},C)})}return Promise.resolve().then(function(){return _f(Tn)})}function Ef(){var N={a:xg};function C(ce,be){var at=ce.exports;if(u.asm=at,sa=u.asm.F,pe=be,!k){var Gt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Pt){ke.loadWasmModuleToWorker(Pt,function(){--Gt||Sf("wasm-instantiate")})})}}k||Nf("wasm-instantiate");function L(ce){C(ce.instance,ce.module)}function q(ce){return Wp().then(function(be){return WebAssembly.instantiate(be,N)}).then(ce,function(be){j("failed to asynchronously prepare wasm: "+be),cr(be)})}function de(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Lp(Tn)&&!zp(Tn)&&typeof fetch=="function"?fetch(Tn,{credentials:"same-origin"}).then(function(ce){var be=WebAssembly.instantiateStreaming(ce,N);return be.then(L,function(at){return j("wasm streaming compile failed: "+at),j("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(u.instantiateWasm)try{var le=u.instantiateWasm(N,C);return le}catch(ce){return j("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var Bp={8991:function(N,C){setTimeout(function(){$w(N,C)},0)}};function Ff(){ke.initRuntime()}function ho(N){for(;N.length>0;){var C=N.shift();if(typeof C=="function"){C(u);continue}var L=C.func;typeof L=="number"?C.arg===void 0?sa.get(L)():sa.get(L)(C.arg):L(C.arg===void 0?null:C.arg)}}function mo(N,C){if(N<=0||N>s().length||N&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var L=Atomics.load(o(),vo>>2),q=0;if(L==N){var de=Atomics.compareExchange(o(),vo>>2,L,0);if(de==L&&(--C,q=1,C<=0))return 1}var le=Atomics.notify(o(),N>>2,C);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=mo;function Af(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function $f(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[N];C.worker.postMessage({cmd:"cancel"})}function Df(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[N+12>>2]=0;var C=ke.pthreads[N];if(C){var L=C.worker;ke.returnWorkerToPool(L)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=8,C=0;C<N;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var N=ws(228),C=0;C<228/4;++C)l()[N/4+C]=0;o()[N+12>>2]=N;var L=N+152;o()[L>>2]=L;for(var q=ws(512),C=0;C<128;++C)l()[q/4+C]=0;Atomics.store(l(),N+100>>2,q),Atomics.store(l(),N+40>>2,N),ed(N,!x,1),Aw(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();k&&yo()&&Fw()},threadExit:function(N){var C=yo();C&&(Atomics.store(l(),C+4>>2,N),Atomics.store(l(),C+0>>2,1),Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),ke.runExitHandlers(),mo(C+0,2147483647),ed(0,0,0),k&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var N=yo();Atomics.store(l(),N+4>>2,-1),Atomics.store(l(),N+0>>2,1),mo(N+0,2147483647),ed(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in ke.pthreads){var C=ke.pthreads[N];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var L=0;L<ke.unusedWorkers.length;++L){var q=ke.unusedWorkers[L];q.terminate()}ke.unusedWorkers=[];for(var L=0;L<ke.runningWorkers.length;++L){var q=ke.runningWorkers[L],C=q.pthread;ke.freeThreadData(C),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(N){if(N){if(N.threadInfoStruct){var C=o()[N.threadInfoStruct+100>>2];o()[N.threadInfoStruct+100>>2]=0,Vu(C),Vu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Vu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[N.pthread.threadInfoStruct],ke.unusedWorkers.push(N),ke.runningWorkers.splice(ke.runningWorkers.indexOf(N),1),ke.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){o()[Ow>>2]=0;try{N()}finally{o()[Ow>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,C){N.onmessage=function(L){var q=L.data,de=q.cmd;if(N.pthread&&(ke.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=yo()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")Rg();else if(de==="spawnThread")qp(L.data);else if(de==="cleanupThread")Df(q.thread);else if(de==="killThread")Af(q.thread);else if(de==="cancelThread")$f(q.thread);else if(de==="loaded")N.loaded=!0,C&&C(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")j("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(N)}else if(de==="exitProcess")try{F_(q.returnCode)}catch(be){if(be instanceof Gu)return;throw be}else de==="cancelDone"?ke.returnWorkerToPool(N):de==="objectTransfer"?ke.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?N.postMessage(L.data):j("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},N.onerror=function(L){j("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},v&&(N.on("message",function(L){N.onmessage({data:L})}),N.on("error",function(L){N.onerror(L)}),N.on("exit",function(L){})),N.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:ee,wasmModule:pe})},allocateUnusedWorker:function(){var N=F("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(N){for(var C=performance.now()+N;performance.now()<C;);}};function Rf(N,C){Mw(N,C),bo(N)}u.establishStackSpace=Rf;function Mf(){return ie}u.getNoExitRuntime=Mf;function Pf(N,C){return sa.get(N)(C)}u.invokeEntryPoint=Pf;function Of(N,C,L,q){cr("Assertion failed: "+Fe(N)+", at: "+[C?Fe(C):"unknown filename",L,q?Fe(q):"unknown function"])}function Lf(N,C){var L=_main(N,C)}var vs;v?vs=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?vs=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?vs=dateNow:vs=function(){return performance.now()};function zf(N){return o()[_w()>>2]=N,N}function Wf(N,C){if(k)return Mr(1,1,N,C)}function Bf(N,C){if(N==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var L=ke.pthreads[N],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function Vf(){cr()}function Uf(N,C,L){var q=Xf(C,L);return Bp[N].apply(null,q)}function Gf(N,C){}function Hf(N,C,L){if(N<=0||N>s().length||N&!0)return-28;if(b){if(Atomics.load(o(),N>>2)!=C)return-6;for(var q=performance.now(),de=q+L,le=Atomics.exchange(o(),vo>>2,N);;){if(q=performance.now(),q>de)return le=Atomics.exchange(o(),vo>>2,0),-73;if(le=Atomics.exchange(o(),vo>>2,0),le==0)break;if(Rg(),Atomics.load(o(),N>>2)!=C)return-6;le=Atomics.exchange(o(),vo>>2,N)}return 0}else{var ce=Atomics.wait(o(),N>>2,C,L);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function jf(N,C,L){i().copyWithin(N,C,C+L)}function qf(){return v?require("os").cpus().length:navigator.hardwareConcurrency}function Mr(N,C){for(var L=arguments.length-2,q=Uu(),de=L,le=xo(de*8),ce=le>>3,be=0;be<L;be++){var at=arguments[2+be];c()[ce+be]=at}var Gt=Rw(N,de,le,C);return bo(q),Gt}var Pu=[],Ou=[];function Xf(N,C){Ou.length=0;var L;for(C>>=2;L=i()[N++];){var q=L<105;q&&C&1&&C++,Ou.push(q?c()[C++>>1]:o()[C]),++C}return Ou}function Kf(N,C,L){Pu.length=C;for(var q=L>>3,de=0;de<C;de++)Pu[de]=c()[q+de];var le=N<0,ce=le?Bp[-N-1]:bg[N];return ce.apply(null,Pu)}function Yf(){return i().length}function Jf(N){try{return ee.grow(N-We.byteLength+65535>>>16),tn(ee.buffer),1}catch(C){}}function Qf(N){var C=Yf();if(N<=C)return!1;var L=2147483648;if(N>L)return!1;for(var q=1;q<=4;q*=2){var de=C*(1+.2/q);de=Math.min(de,N+100663296);var le=Math.min(L,mt(Math.max(N,de),65536)),ce=Jf(le);if(ce)return!0}return!1}var Oe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Oe.eventHandlers.length-1;N>=0;--N)Oe._removeHandler(N);Oe.eventHandlers=[],Oe.deferredCalls=[]},registerRemoveEventListeners:function(){Oe.removeEventListenersRegistered||(Dr.push(Oe.removeAllEventListeners),Oe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,C,L){function q(ce,be){if(ce.length!=be.length)return!1;for(var at in ce)if(ce[at]!=be[at])return!1;return!0}for(var de in Oe.deferredCalls){var le=Oe.deferredCalls[de];if(le.targetFunction==N&&q(le.argsList,L))return}Oe.deferredCalls.push({targetFunction:N,precedence:C,argsList:L}),Oe.deferredCalls.sort(function(ce,be){return ce.precedence<be.precedence})},removeDeferredCalls:function(N){for(var C=0;C<Oe.deferredCalls.length;++C)Oe.deferredCalls[C].targetFunction==N&&(Oe.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Oe.inEventHandler&&Oe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Oe.canPerformEventHandlerRequests())for(var N=0;N<Oe.deferredCalls.length;++N){var C=Oe.deferredCalls[N];Oe.deferredCalls.splice(N,1),--N,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,C){for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N&&(!C||C==Oe.eventHandlers[L].eventTypeString)&&Oe._removeHandler(L--)},_removeHandler:function(N){var C=Oe.eventHandlers[N];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Oe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var C=function(q){++Oe.inEventHandler,Oe.currentEventHandler=N,Oe.runDeferredCalls(),N.handlerFunc(q),Oe.runDeferredCalls(),--Oe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=C,N.target.addEventListener(N.eventTypeString,C,N.useCapture),Oe.eventHandlers.push(N),Oe.registerRemoveEventListeners();else for(var L=0;L<Oe.eventHandlers.length;++L)Oe.eventHandlers[L].target==N.target&&Oe.eventHandlers[L].eventTypeString==N.eventTypeString&&Oe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(N,C,L,q,de){var le=Uu(),ce=xo(12);o()[ce>>2]=L,o()[ce+4>>2]=q,o()[ce+8>>2]=de,Mg(0,N,637534208,C,q,ce),bo(le)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Zf(N){var C=it(N)+1,L=ws(C);return nt(N,L,C),L}function eg(N,C,L,q){var de=Uu(),le=xo(12),ce=0;C&&(ce=Zf(C)),o()[le>>2]=ce,o()[le+4>>2]=L,o()[le+8>>2]=q,Mg(0,N,657457152,0,ce,le),bo(de)}function tg(N,C,L,q){C=C?Fe(C):"",eg(N,C,L,q)}function ng(N){return N>2?Fe(N):N}var ag=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function rg(N){N=ng(N);var C=ag[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return C}function Lu(N){return rg(N)}function Vp(N,C,L){var q=Lu(N);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=C,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);de=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=C,q.height=L,de&&q.GLctxObject.GLctx.viewport(0,0,C,L)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return tg(ce,N,C,L),1}else return-4;return 0}function Up(N,C,L){return k?Mr(2,1,N,C,L):Vp(N,C,L)}function sg(N,C,L){var q=Lu(N);return q?Vp(N,C,L):Up(N,C,L)}function ig(N){}function og(N,C){}function lg(N){var C=N.getExtension("ANGLE_instanced_arrays");if(C)return N.vertexAttribDivisor=function(L,q){C.vertexAttribDivisorANGLE(L,q)},N.drawArraysInstanced=function(L,q,de,le){C.drawArraysInstancedANGLE(L,q,de,le)},N.drawElementsInstanced=function(L,q,de,le,ce){C.drawElementsInstancedANGLE(L,q,de,le,ce)},1}function ug(N){var C=N.getExtension("OES_vertex_array_object");if(C)return N.createVertexArray=function(){return C.createVertexArrayOES()},N.deleteVertexArray=function(L){C.deleteVertexArrayOES(L)},N.bindVertexArray=function(L){C.bindVertexArrayOES(L)},N.isVertexArray=function(L){return C.isVertexArrayOES(L)},1}function cg(N){var C=N.getExtension("WEBGL_draw_buffers");if(C)return N.drawBuffers=function(L,q){C.drawBuffersWEBGL(L,q)},1}function pg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(N){et.lastError||(et.lastError=N)},getNewId:function(N){for(var C=et.counter++,L=N.length;L<C;L++)N[L]=null;return C},getSource:function(N,C,L,q){for(var de="",le=0;le<C;++le){var ce=q?o()[q+le*4>>2]:-1;de+=Fe(o()[L+le*4>>2],ce<0?void 0:ce)}return de},createContext:function(N,C){var L=N.getContext("webgl",C);if(!L)return 0;var q=et.registerContext(L,C);return q},registerContext:function(N,C){var L=ws(8);o()[L+4>>2]=yo();var q={handle:L,attributes:C,version:C.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=q),et.contexts[L]=q,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&et.initExtensions(q),L},makeContextCurrent:function(N){return et.currentContext=et.contexts[N],u.ctx=Pr=et.currentContext&&et.currentContext.GLctx,!(N&&!Pr)},getContext:function(N){return et.contexts[N]},deleteContext:function(N){et.currentContext===et.contexts[N]&&(et.currentContext=null),typeof Oe=="object"&&Oe.removeAllHandlersOnTarget(et.contexts[N].GLctx.canvas),et.contexts[N]&&et.contexts[N].GLctx.canvas&&(et.contexts[N].GLctx.canvas.GLctxObject=void 0),Vu(et.contexts[N].handle),et.contexts[N]=null},initExtensions:function(N){if(N||(N=et.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var C=N.GLctx;lg(C),ug(C),cg(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),pg(C);var L=C.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&C.getExtension(q)})}},populateUniformTable:function(N){for(var C=et.programs[N],L=et.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,de=Pr.getProgramParameter(C,35718),le=0;le<de;++le){var ce=Pr.getActiveUniform(C,le),be=ce.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var at=Pr.getUniformLocation(C,be);if(at){var Gt=et.getNewId(et.uniforms);q[be]=[ce.size,Gt],et.uniforms[Gt]=at;for(var Pt=1;Pt<ce.size;++Pt){var Lr=be+"["+Pt+"]";at=Pr.getUniformLocation(C,Lr),Gt=et.getNewId(et.uniforms),et.uniforms[Gt]=at}}}}},dg=["default","low-power","high-performance"];function hg(N,C){var L=C>>2,q=o()[L+(24>>2)],de={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:dg[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=Lu(N);if(!le||de.explicitSwapControl)return 0;var ce=et.createContext(le,de);return ce}function mg(N,C){return hg(N,C)}var fo={mappings:{},buffers:[null,[],[]],printChar:function(N,C){var L=fo.buffers[N];C===0||C===10?((N===1?X:j)(Re(L,0)),L.length=0):L.push(C)},varargs:void 0,get:function(){fo.varargs+=4;var N=o()[fo.varargs-4>>2];return N},getStr:function(N){var C=Fe(N);return C},get64:function(N,C){return N}};function Gp(N){return k?Mr(3,1,N):0}function Hp(N,C,L,q,de){if(k)return Mr(4,1,N,C,L,q,de)}function jp(N,C,L,q){if(k)return Mr(5,1,N,C,L,q);for(var de=0,le=0;le<L;le++){for(var ce=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],at=0;at<be;at++)fo.printChar(N,i()[ce+at]);de+=be}return o()[q>>2]=de,0}function fg(N){var C=ke.threadExitHandlers.pop();N&&C()}function gg(N,C){ke.threadExitHandlers.push(function(){sa.get(N)(C)})}function qp(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var L=ws(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var de=N.stackBase+N.stackSize,le=ke.pthreads[N.pthread_ptr]={worker:C,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},ce=le.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),N.detached),Atomics.store(l(),ce+(100>>2),L),Atomics.store(l(),ce+(40>>2),le.threadInfoStruct),Atomics.store(l(),ce+(80>>2),N.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),N.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),N.detached);var be=Ew(),at=be+40;Atomics.store(l(),ce+(172>>2),at),C.pthread=le;var Gt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};C.runPthread=function(){Gt.time=performance.now(),C.postMessage(Gt,N.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function yg(N,C,L,q){if(typeof SharedArrayBuffer=="undefined")return j("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return j("pthread_create called with a null thread pointer!"),28;var de=[],le=0;if(k&&(de.length===0||le))return Dw(687865856,N,C,L,q);if(le)return le;var ce=0,be=0,at=0;C&&C!=-1?(ce=o()[C>>2],ce+=81920,be=o()[C+8>>2],at=o()[C+12>>2]!==0):ce=2097152;var Gt=be==0;Gt?be=Pw(16,ce):(be-=ce,me(be>0));for(var Pt=ws(228),Lr=0;Lr<228>>2;++Lr)l()[(Pt>>2)+Lr]=0;o()[N>>2]=Pt,o()[Pt+12>>2]=Pt;var wo=Pt+152;o()[wo>>2]=wo;var Nn={stackBase:be,stackSize:ce,allocatedOwnStack:Gt,detached:at,startRoutine:L,pthread_ptr:Pt,arg:q,transferList:de};return k?(Nn.cmd="spawnThread",postMessage(Nn,de)):qp(Nn),0}function Xp(N){if(k)return Mr(6,1,N);switch(N){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return zf(28),-1}k||ke.initMainThreadBlock();var Pr,bg=[null,Wf,Up,Gp,Hp,jp,Xp],xg={e:Of,r:Lf,x:Bf,b:Vf,y:Uf,j:Gf,c:Hf,d:mo,f:vs,p:jf,z:qf,u:Kf,q:Qf,v:sg,i:ig,t:og,w:mg,m:Gp,n:Hp,g:jp,o:Ff,a:ee||u.wasmMemory,k:fg,l:gg,h:yg,s:Xp},Cw=Ef(),Kp=u.___wasm_call_ctors=function(){return(Kp=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},vg=u._init=function(){return(vg=u._init=u.asm.B).apply(null,arguments)},wg=u._register_tensor=function(){return(wg=u._register_tensor=u.asm.C).apply(null,arguments)},kg=u._dispose_data=function(){return(kg=u._dispose_data=u.asm.D).apply(null,arguments)},Ig=u._dispose=function(){return(Ig=u._dispose=u.asm.E).apply(null,arguments)},Tg=u._Abs=function(){return(Tg=u._Abs=u.asm.G).apply(null,arguments)},Ng=u._Add=function(){return(Ng=u._Add=u.asm.H).apply(null,arguments)},Sg=u._AddN=function(){return(Sg=u._AddN=u.asm.I).apply(null,arguments)},Cg=u._ArgMax=function(){return(Cg=u._ArgMax=u.asm.J).apply(null,arguments)},_g=u._AvgPool=function(){return(_g=u._AvgPool=u.asm.K).apply(null,arguments)},Eg=u._BatchMatMul=function(){return(Eg=u._BatchMatMul=u.asm.L).apply(null,arguments)},Fg=u._Ceil=function(){return(Fg=u._Ceil=u.asm.M).apply(null,arguments)},Ag=u._ClipByValue=function(){return(Ag=u._ClipByValue=u.asm.N).apply(null,arguments)},$g=u._Conv2D=function(){return($g=u._Conv2D=u.asm.O).apply(null,arguments)},Yp=u._Conv2DBackpropInput=function(){return(Yp=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},Jp=u._Cos=function(){return(Jp=u._Cos=u.asm.Q).apply(null,arguments)},zu=u._CropAndResize=function(){return(zu=u._CropAndResize=u.asm.R).apply(null,arguments)},go=u._Cumsum=function(){return(go=u._Cumsum=u.asm.S).apply(null,arguments)},Dg=u._DepthToSpace=function(){return(Dg=u._DepthToSpace=u.asm.T).apply(null,arguments)},Wu=u._DepthwiseConv2dNative=function(){return(Wu=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},K=u._Equal=function(){return(K=u._Equal=u.asm.V).apply(null,arguments)},ae=u._Exp=function(){return(ae=u._Exp=u.asm.W).apply(null,arguments)},Ne=u._FlipLeftRight=function(){return(Ne=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Ye=u._Floor=function(){return(Ye=u._Floor=u.asm.Y).apply(null,arguments)},Et=u._FloorDiv=function(){return(Et=u._FloorDiv=u.asm.Z).apply(null,arguments)},yt=u._FusedBatchNorm=function(){return(yt=u._FusedBatchNorm=u.asm._).apply(null,arguments)},Ue=u._FusedConv2D=function(){return(Ue=u._FusedConv2D=u.asm.$).apply(null,arguments)},He=u._FusedDepthwiseConv2D=function(){return(He=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},nn=u._Gather=function(){return(nn=u._Gather=u.asm.ba).apply(null,arguments)},pr=u._GatherNd=function(){return(pr=u._GatherNd=u.asm.ca).apply(null,arguments)},dr=u._Greater=function(){return(dr=u._Greater=u.asm.da).apply(null,arguments)},Qp=u._GreaterEqual=function(){return(Qp=u._GreaterEqual=u.asm.ea).apply(null,arguments)},Bu=u._LeakyRelu=function(){return(Bu=u._LeakyRelu=u.asm.fa).apply(null,arguments)},Kn=u._Less=function(){return(Kn=u._Less=u.asm.ga).apply(null,arguments)},Or=u._LessEqual=function(){return(Or=u._LessEqual=u.asm.ha).apply(null,arguments)},Zp=u._Log=function(){return(Zp=u._Log=u.asm.ia).apply(null,arguments)},zC=u._LogicalAnd=function(){return(zC=u._LogicalAnd=u.asm.ja).apply(null,arguments)},WC=u._Max=function(){return(WC=u._Max=u.asm.ka).apply(null,arguments)},BC=u._MaxPool=function(){return(BC=u._MaxPool=u.asm.la).apply(null,arguments)},VC=u._Maximum=function(){return(VC=u._Maximum=u.asm.ma).apply(null,arguments)},UC=u._Mean=function(){return(UC=u._Mean=u.asm.na).apply(null,arguments)},GC=u._Min=function(){return(GC=u._Min=u.asm.oa).apply(null,arguments)},HC=u._Minimum=function(){return(HC=u._Minimum=u.asm.pa).apply(null,arguments)},jC=u._Multiply=function(){return(jC=u._Multiply=u.asm.qa).apply(null,arguments)},qC=u._Neg=function(){return(qC=u._Neg=u.asm.ra).apply(null,arguments)},XC=u._NonMaxSuppressionV3=function(){return(XC=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},KC=u._NonMaxSuppressionV4=function(){return(KC=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},YC=u._NonMaxSuppressionV5=function(){return(YC=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},JC=u._NotEqual=function(){return(JC=u._NotEqual=u.asm.va).apply(null,arguments)},QC=u._OneHot=function(){return(QC=u._OneHot=u.asm.wa).apply(null,arguments)},ZC=u._PadV2=function(){return(ZC=u._PadV2=u.asm.xa).apply(null,arguments)},e_=u._Pow=function(){return(e_=u._Pow=u.asm.ya).apply(null,arguments)},t_=u._Prelu=function(){return(t_=u._Prelu=u.asm.za).apply(null,arguments)},n_=u._Prod=function(){return(n_=u._Prod=u.asm.Aa).apply(null,arguments)},a_=u._RealDiv=function(){return(a_=u._RealDiv=u.asm.Ba).apply(null,arguments)},r_=u._Relu=function(){return(r_=u._Relu=u.asm.Ca).apply(null,arguments)},s_=u._Relu6=function(){return(s_=u._Relu6=u.asm.Da).apply(null,arguments)},i_=u._ResizeBilinear=function(){return(i_=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},o_=u._Reverse=function(){return(o_=u._Reverse=u.asm.Fa).apply(null,arguments)},l_=u._RotateWithOffset=function(){return(l_=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},u_=u._Round=function(){return(u_=u._Round=u.asm.Ha).apply(null,arguments)},c_=u._Rsqrt=function(){return(c_=u._Rsqrt=u.asm.Ia).apply(null,arguments)},p_=u._ScatterNd=function(){return(p_=u._ScatterNd=u.asm.Ja).apply(null,arguments)},d_=u._SelectV2=function(){return(d_=u._SelectV2=u.asm.Ka).apply(null,arguments)},h_=u._Sigmoid=function(){return(h_=u._Sigmoid=u.asm.La).apply(null,arguments)},m_=u._Sin=function(){return(m_=u._Sin=u.asm.Ma).apply(null,arguments)},f_=u._Softmax=function(){return(f_=u._Softmax=u.asm.Na).apply(null,arguments)},g_=u._Sqrt=function(){return(g_=u._Sqrt=u.asm.Oa).apply(null,arguments)},y_=u._Square=function(){return(y_=u._Square=u.asm.Pa).apply(null,arguments)},b_=u._SquaredDifference=function(){return(b_=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},x_=u._Step=function(){return(x_=u._Step=u.asm.Ra).apply(null,arguments)},v_=u._StridedSlice=function(){return(v_=u._StridedSlice=u.asm.Sa).apply(null,arguments)},w_=u._Sub=function(){return(w_=u._Sub=u.asm.Ta).apply(null,arguments)},k_=u._Sum=function(){return(k_=u._Sum=u.asm.Ua).apply(null,arguments)},I_=u._Tanh=function(){return(I_=u._Tanh=u.asm.Va).apply(null,arguments)},T_=u._Tile=function(){return(T_=u._Tile=u.asm.Wa).apply(null,arguments)},N_=u._TopK=function(){return(N_=u._TopK=u.asm.Xa).apply(null,arguments)},S_=u._Transpose=function(){return(S_=u._Transpose=u.asm.Ya).apply(null,arguments)},C_=u.__FusedMatMul=function(){return(C_=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},ws=u._malloc=function(){return(ws=u._malloc=u.asm._a).apply(null,arguments)},Vu=u._free=function(){return(Vu=u._free=u.asm.$a).apply(null,arguments)},_w=u.___errno_location=function(){return(_w=u.___errno_location=u.asm.ab).apply(null,arguments)},Ew=u._emscripten_get_global_libc=function(){return(Ew=u._emscripten_get_global_libc=u.asm.bb).apply(null,arguments)},yo=u._pthread_self=function(){return(yo=u._pthread_self=u.asm.cb).apply(null,arguments)},Fw=u.___pthread_tsd_run_dtors=function(){return(Fw=u.___pthread_tsd_run_dtors=u.asm.db).apply(null,arguments)},Rg=u._emscripten_main_thread_process_queued_calls=function(){return(Rg=u._emscripten_main_thread_process_queued_calls=u.asm.eb).apply(null,arguments)},__=u._emscripten_current_thread_process_queued_calls=function(){return(__=u._emscripten_current_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},Aw=u._emscripten_register_main_browser_thread_id=function(){return(Aw=u._emscripten_register_main_browser_thread_id=u.asm.gb).apply(null,arguments)},$w=u.__emscripten_do_dispatch_to_thread=function(){return($w=u.__emscripten_do_dispatch_to_thread=u.asm.hb).apply(null,arguments)},Dw=u._emscripten_sync_run_in_main_thread_4=function(){return(Dw=u._emscripten_sync_run_in_main_thread_4=u.asm.ib).apply(null,arguments)},Rw=u._emscripten_run_in_main_runtime_thread_js=function(){return(Rw=u._emscripten_run_in_main_runtime_thread_js=u.asm.jb).apply(null,arguments)},Mg=u.__emscripten_call_on_thread=function(){return(Mg=u.__emscripten_call_on_thread=u.asm.kb).apply(null,arguments)},E_=u._emscripten_tls_init=function(){return(E_=u._emscripten_tls_init=u.asm.lb).apply(null,arguments)},ed=u.__emscripten_thread_init=function(){return(ed=u.__emscripten_thread_init=u.asm.mb).apply(null,arguments)},Uu=u.stackSave=function(){return(Uu=u.stackSave=u.asm.nb).apply(null,arguments)},bo=u.stackRestore=function(){return(bo=u.stackRestore=u.asm.ob).apply(null,arguments)},xo=u.stackAlloc=function(){return(xo=u.stackAlloc=u.asm.pb).apply(null,arguments)},Mw=u._emscripten_stack_set_limits=function(){return(Mw=u._emscripten_stack_set_limits=u.asm.qb).apply(null,arguments)},Pw=u._memalign=function(){return(Pw=u._memalign=u.asm.rb).apply(null,arguments)},Ow=u.__emscripten_allow_main_runtime_queued_calls=9880,vo=u.__emscripten_main_thread_futex=11368;u.cwrap=_e,u.PThread=ke,u.PThread=ke,u.wasmMemory=ee,u.ExitStatus=Gu;var td;function Gu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}xs=function N(){td||Pg(),td||(xs=N)};function Pg(N){if(N=N||f,ur>0)return;if(k){p(u),postMessage({cmd:"loaded"});return}if(kf(),ur>0)return;function C(){td||(td=!0,u.calledRun=!0,!oe&&(Rp(),If(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),In()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),C()},1)):C()}u.run=Pg;function F_(N,C){if(!(C&&ie&&N===0)){if(!C&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new Gu(N);ie||(ke.terminateAllThreads(),fe=N,Mp(),u.onExit&&u.onExit(N),oe=!0),y(N,new Gu(N))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(ie=!1,ke.initWorker()),Pg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),pE=Tt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,ae){i=K,o=ae});var l={},c;for(c in s)s.hasOwnProperty(c)&&(l[c]=s[c]);var u=[],p="./this.program",d=function(K,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function b(K){return s.locateFile?s.locateFile(K,y):y+K}var x,v,T,k,S,F;f?(m?y=Hu().dirname(y)+"/":y=__dirname+"/",x=function(K,ae){return S||(S=require("fs")),F||(F=Hu()),K=F.normalize(K),S.readFileSync(K,ae?null:"utf8")},T=function(K){var ae=x(K,!0);return ae.buffer||(ae=new Uint8Array(ae)),X(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof Dg))throw K}),process.on("unhandledRejection",ka),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(K){return read(K)}),T=function(K){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ae=read(K,"binary"),X(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.send(null),ae.responseText},m&&(T=function(K){var ae=new XMLHttpRequest;return ae.open("GET",K,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(K,ae,Ne){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){ae(Ye.response);return}Ne()},Ye.onerror=Ne,Ye.send(null)},k=function(K){document.title=K});var A=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(s[c]=l[c]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(d=s.quit);var P;s.wasmBinary&&(P=s.wasmBinary);var z=s.noExitRuntime||!0;typeof WebAssembly!="object"&&ka("no native wasm support detected");var V,G=!1,H;function X(K,ae){K||ka("Assertion failed: "+ae)}function j(K){var ae=s["_"+K];return X(ae,"Cannot call unknown function "+K+", make sure it is exported"),ae}function te(K,ae,Ne,Ye,Et){var yt={string:function(Kn){var Or=0;if(Kn!=null&&Kn!==0){var Zp=(Kn.length<<2)+1;Or=zu(Zp),pe(Kn,Or,Zp)}return Or},array:function(Kn){var Or=zu(Kn.length);return oe(Kn,Or),Or}};function Ue(Kn){return ae==="string"?ie(Kn):ae==="boolean"?Boolean(Kn):Kn}var He=j(K),nn=[],pr=0;if(Ye)for(var dr=0;dr<Ye.length;dr++){var Qp=yt[Ne[dr]];Qp?(pr===0&&(pr=Yp()),nn[dr]=Qp(Ye[dr])):nn[dr]=Ye[dr]}var Bu=He.apply(null,nn);return Bu=Ue(Bu),pr!==0&&Jp(pr),Bu}function Q(K,ae,Ne,Ye){Ne=Ne||[];var Et=Ne.every(function(Ue){return Ue==="number"}),yt=ae!=="string";return yt&&Et&&!Ye?j(K):function(){return te(K,ae,Ne,arguments,Ye)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,ae,Ne){for(var Ye=ae+Ne,Et=ae;K[Et]&&!(Et>=Ye);)++Et;if(Et-ae>16&&K.subarray&&se)return se.decode(K.subarray(ae,Et));for(var yt="";ae<Et;){var Ue=K[ae++];if(!(Ue&128)){yt+=String.fromCharCode(Ue);continue}var He=K[ae++]&63;if((Ue&224)==192){yt+=String.fromCharCode((Ue&31)<<6|He);continue}var nn=K[ae++]&63;if((Ue&240)==224?Ue=(Ue&15)<<12|He<<6|nn:Ue=(Ue&7)<<18|He<<12|nn<<6|K[ae++]&63,Ue<65536)yt+=String.fromCharCode(Ue);else{var pr=Ue-65536;yt+=String.fromCharCode(55296|pr>>10,56320|pr&1023)}}return yt}function ie(K,ae){return K?ne(Te,K,ae):""}function ee(K,ae,Ne,Ye){if(!(Ye>0))return 0;for(var Et=Ne,yt=Ne+Ye-1,Ue=0;Ue<K.length;++Ue){var He=K.charCodeAt(Ue);if(He>=55296&&He<=57343){var nn=K.charCodeAt(++Ue);He=65536+((He&1023)<<10)|nn&1023}if(He<=127){if(Ne>=yt)break;ae[Ne++]=He}else if(He<=2047){if(Ne+1>=yt)break;ae[Ne++]=192|He>>6,ae[Ne++]=128|He&63}else if(He<=65535){if(Ne+2>=yt)break;ae[Ne++]=224|He>>12,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}else{if(Ne+3>=yt)break;ae[Ne++]=240|He>>18,ae[Ne++]=128|He>>12&63,ae[Ne++]=128|He>>6&63,ae[Ne++]=128|He&63}}return ae[Ne]=0,Ne-Et}function pe(K,ae,Ne){return ee(K,Te,ae,Ne)}function oe(K,ae){we.set(K,ae)}function fe(K,ae){return K%ae>0&&(K+=ae-K%ae),K}var me,we,Te,_e,Re,Fe,tt,nt,it;function Ke(K){me=K,s.HEAP8=we=new Int8Array(K),s.HEAP16=_e=new Int16Array(K),s.HEAP32=Fe=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=Re=new Uint16Array(K),s.HEAPU32=tt=new Uint32Array(K),s.HEAPF32=nt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var mt=s.INITIAL_MEMORY||16777216,We,wn=[],It=[],qn=[],en=[],kn=!1;It.push({func:function(){Wp()}});function Xn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Wa(s.preRun.shift());Rr(wn)}function Mn(){kn=!0,Rr(It)}function pn(){Rr(qn)}function tn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sa(s.postRun.shift());Rr(en)}function Wa(K){wn.unshift(K)}function sa(K){en.unshift(K)}var ia=0,$r=null,lr=null;function Dr(K){ia++,s.monitorRunDependencies&&s.monitorRunDependencies(ia)}function co(K){if(ia--,s.monitorRunDependencies&&s.monitorRunDependencies(ia),ia==0&&($r!==null&&(clearInterval($r),$r=null),lr)){var ae=lr;lr=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function ka(K){s.onAbort&&s.onAbort(K),K+="",R(K),G=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(K);throw o(ae),ae}function Dp(K,ae){return String.prototype.startsWith?K.startsWith(ae):K.indexOf(ae)===0}var kf="data:application/octet-stream;base64,";function Rp(K){return Dp(K,kf)}var If="file://";function Mp(K){return Dp(K,If)}var In="tfjs-backend-wasm.wasm";Rp(In)||(In=b(In));function Pp(K){try{if(K==In&&P)return new Uint8Array(P);if(T)return T(K);throw"both async and sync fetching of the wasm failed"}catch(ae){ka(ae)}}function Tf(){if(!P&&(h||m)){if(typeof fetch=="function"&&!Mp(In))return fetch(In,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+In+"'";return K.arrayBuffer()}).catch(function(){return Pp(In)});if(v)return new Promise(function(K,ae){v(In,function(Ne){K(new Uint8Array(Ne))},ae)})}return Promise.resolve().then(function(){return Pp(In)})}function ur(){var K={a:Tn};function ae(Ue,He){var nn=Ue.exports;s.asm=nn,V=s.asm.g,Ke(V.buffer),We=s.asm.m,co("wasm-instantiate")}Dr("wasm-instantiate");function Ne(Ue){ae(Ue.instance)}function Ye(Ue){return Tf().then(function(He){return WebAssembly.instantiate(He,K)}).then(Ue,function(He){R("failed to asynchronously prepare wasm: "+He),ka(He)})}function Et(){return!P&&typeof WebAssembly.instantiateStreaming=="function"&&!Rp(In)&&!Mp(In)&&typeof fetch=="function"?fetch(In,{credentials:"same-origin"}).then(function(Ue){var He=WebAssembly.instantiateStreaming(Ue,K);return He.then(Ne,function(nn){return R("wasm streaming compile failed: "+nn),R("falling back to ArrayBuffer instantiation"),Ye(Ne)})}):Ye(Ne)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,ae);return yt}catch(Ue){return R("Module.instantiateWasm callback failed with error: "+Ue),!1}return Et().catch(o),{}}function Rr(K){for(;K.length>0;){var ae=K.shift();if(typeof ae=="function"){ae(s);continue}var Ne=ae.func;typeof Ne=="number"?ae.arg===void 0?We.get(Ne)():We.get(Ne)(ae.arg):Ne(ae.arg===void 0?null:ae.arg)}}function xs(){ka()}function Nf(K,ae,Ne){Te.copyWithin(K,ae,ae+Ne)}function Sf(){return Te.length}function cr(K){try{return V.grow(K-me.byteLength+65535>>>16),Ke(V.buffer),1}catch(ae){}}function Op(K){var ae=Sf(),Ne=2147483648;if(K>Ne)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Et=ae*(1+.2/Ye);Et=Math.min(Et,K+100663296);var yt=Math.min(Ne,fe(Math.max(K,Et),65536)),Ue=cr(yt);if(Ue)return!0}return!1}var po={mappings:{},buffers:[null,[],[]],printChar:function(K,ae){var Ne=po.buffers[K];ae===0||ae===10?((K===1?A:R)(ne(Ne,0)),Ne.length=0):Ne.push(ae)},varargs:void 0,get:function(){po.varargs+=4;var K=Fe[po.varargs-4>>2];return K},getStr:function(K){var ae=ie(K);return ae},get64:function(K,ae){return K}};function Lp(K){return 0}function Cf(K,ae,Ne,Ye,Et){}function zp(K,ae,Ne,Ye){for(var Et=0,yt=0;yt<Ne;yt++){for(var Ue=Fe[ae+yt*8>>2],He=Fe[ae+(yt*8+4)>>2],nn=0;nn<He;nn++)po.printChar(K,Te[Ue+nn]);Et+=He}return Fe[Ye>>2]=Et,0}var Tn={a:xs,d:Nf,e:Op,f:Lp,c:Cf,b:zp},_f=ur(),Wp=s.___wasm_call_ctors=function(){return(Wp=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},Ef=s._init=function(){return(Ef=s._init=s.asm.i).apply(null,arguments)},Bp=s._register_tensor=function(){return(Bp=s._register_tensor=s.asm.j).apply(null,arguments)},Ff=s._dispose_data=function(){return(Ff=s._dispose_data=s.asm.k).apply(null,arguments)},ho=s._dispose=function(){return(ho=s._dispose=s.asm.l).apply(null,arguments)},mo=s._Abs=function(){return(mo=s._Abs=s.asm.n).apply(null,arguments)},Af=s._Add=function(){return(Af=s._Add=s.asm.o).apply(null,arguments)},$f=s._AddN=function(){return($f=s._AddN=s.asm.p).apply(null,arguments)},Df=s._ArgMax=function(){return(Df=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},Rf=s._BatchMatMul=function(){return(Rf=s._BatchMatMul=s.asm.s).apply(null,arguments)},Mf=s._Ceil=function(){return(Mf=s._Ceil=s.asm.t).apply(null,arguments)},Pf=s._ClipByValue=function(){return(Pf=s._ClipByValue=s.asm.u).apply(null,arguments)},Of=s._Conv2D=function(){return(Of=s._Conv2D=s.asm.v).apply(null,arguments)},Lf=s._Conv2DBackpropInput=function(){return(Lf=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},vs=s._Cos=function(){return(vs=s._Cos=s.asm.x).apply(null,arguments)},zf=s._CropAndResize=function(){return(zf=s._CropAndResize=s.asm.y).apply(null,arguments)},Wf=s._Cumsum=function(){return(Wf=s._Cumsum=s.asm.z).apply(null,arguments)},Bf=s._DepthToSpace=function(){return(Bf=s._DepthToSpace=s.asm.A).apply(null,arguments)},Vf=s._DepthwiseConv2dNative=function(){return(Vf=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},Uf=s._Equal=function(){return(Uf=s._Equal=s.asm.C).apply(null,arguments)},Gf=s._Exp=function(){return(Gf=s._Exp=s.asm.D).apply(null,arguments)},Hf=s._FlipLeftRight=function(){return(Hf=s._FlipLeftRight=s.asm.E).apply(null,arguments)},jf=s._Floor=function(){return(jf=s._Floor=s.asm.F).apply(null,arguments)},qf=s._FloorDiv=function(){return(qf=s._FloorDiv=s.asm.G).apply(null,arguments)},Mr=s._FusedBatchNorm=function(){return(Mr=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Pu=s._FusedConv2D=function(){return(Pu=s._FusedConv2D=s.asm.I).apply(null,arguments)},Ou=s._FusedDepthwiseConv2D=function(){return(Ou=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},Xf=s._Gather=function(){return(Xf=s._Gather=s.asm.K).apply(null,arguments)},Kf=s._GatherNd=function(){return(Kf=s._GatherNd=s.asm.L).apply(null,arguments)},Yf=s._Greater=function(){return(Yf=s._Greater=s.asm.M).apply(null,arguments)},Jf=s._GreaterEqual=function(){return(Jf=s._GreaterEqual=s.asm.N).apply(null,arguments)},Qf=s._LeakyRelu=function(){return(Qf=s._LeakyRelu=s.asm.O).apply(null,arguments)},Oe=s._Less=function(){return(Oe=s._Less=s.asm.P).apply(null,arguments)},Zf=s._LessEqual=function(){return(Zf=s._LessEqual=s.asm.Q).apply(null,arguments)},eg=s._Log=function(){return(eg=s._Log=s.asm.R).apply(null,arguments)},tg=s._LogicalAnd=function(){return(tg=s._LogicalAnd=s.asm.S).apply(null,arguments)},ng=s._Max=function(){return(ng=s._Max=s.asm.T).apply(null,arguments)},ag=s._MaxPool=function(){return(ag=s._MaxPool=s.asm.U).apply(null,arguments)},rg=s._Maximum=function(){return(rg=s._Maximum=s.asm.V).apply(null,arguments)},Lu=s._Mean=function(){return(Lu=s._Mean=s.asm.W).apply(null,arguments)},Vp=s._Min=function(){return(Vp=s._Min=s.asm.X).apply(null,arguments)},Up=s._Minimum=function(){return(Up=s._Minimum=s.asm.Y).apply(null,arguments)},sg=s._Multiply=function(){return(sg=s._Multiply=s.asm.Z).apply(null,arguments)},ig=s._Neg=function(){return(ig=s._Neg=s.asm._).apply(null,arguments)},og=s._NonMaxSuppressionV3=function(){return(og=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},lg=s._NonMaxSuppressionV4=function(){return(lg=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},ug=s._NonMaxSuppressionV5=function(){return(ug=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},cg=s._NotEqual=function(){return(cg=s._NotEqual=s.asm.ca).apply(null,arguments)},pg=s._OneHot=function(){return(pg=s._OneHot=s.asm.da).apply(null,arguments)},et=s._PadV2=function(){return(et=s._PadV2=s.asm.ea).apply(null,arguments)},dg=s._Pow=function(){return(dg=s._Pow=s.asm.fa).apply(null,arguments)},hg=s._Prelu=function(){return(hg=s._Prelu=s.asm.ga).apply(null,arguments)},mg=s._Prod=function(){return(mg=s._Prod=s.asm.ha).apply(null,arguments)},fo=s._RealDiv=function(){return(fo=s._RealDiv=s.asm.ia).apply(null,arguments)},Gp=s._Relu=function(){return(Gp=s._Relu=s.asm.ja).apply(null,arguments)},Hp=s._Relu6=function(){return(Hp=s._Relu6=s.asm.ka).apply(null,arguments)},jp=s._ResizeBilinear=function(){return(jp=s._ResizeBilinear=s.asm.la).apply(null,arguments)},fg=s._Reverse=function(){return(fg=s._Reverse=s.asm.ma).apply(null,arguments)},gg=s._RotateWithOffset=function(){return(gg=s._RotateWithOffset=s.asm.na).apply(null,arguments)},qp=s._Round=function(){return(qp=s._Round=s.asm.oa).apply(null,arguments)},yg=s._Rsqrt=function(){return(yg=s._Rsqrt=s.asm.pa).apply(null,arguments)},Xp=s._ScatterNd=function(){return(Xp=s._ScatterNd=s.asm.qa).apply(null,arguments)},Pr=s._SelectV2=function(){return(Pr=s._SelectV2=s.asm.ra).apply(null,arguments)},bg=s._Sigmoid=function(){return(bg=s._Sigmoid=s.asm.sa).apply(null,arguments)},xg=s._Sin=function(){return(xg=s._Sin=s.asm.ta).apply(null,arguments)},Cw=s._Softmax=function(){return(Cw=s._Softmax=s.asm.ua).apply(null,arguments)},Kp=s._Sqrt=function(){return(Kp=s._Sqrt=s.asm.va).apply(null,arguments)},vg=s._Square=function(){return(vg=s._Square=s.asm.wa).apply(null,arguments)},wg=s._SquaredDifference=function(){return(wg=s._SquaredDifference=s.asm.xa).apply(null,arguments)},kg=s._Step=function(){return(kg=s._Step=s.asm.ya).apply(null,arguments)},Ig=s._StridedSlice=function(){return(Ig=s._StridedSlice=s.asm.za).apply(null,arguments)},Tg=s._Sub=function(){return(Tg=s._Sub=s.asm.Aa).apply(null,arguments)},Ng=s._Sum=function(){return(Ng=s._Sum=s.asm.Ba).apply(null,arguments)},Sg=s._Tanh=function(){return(Sg=s._Tanh=s.asm.Ca).apply(null,arguments)},Cg=s._Tile=function(){return(Cg=s._Tile=s.asm.Da).apply(null,arguments)},_g=s._TopK=function(){return(_g=s._TopK=s.asm.Ea).apply(null,arguments)},Eg=s._Transpose=function(){return(Eg=s._Transpose=s.asm.Fa).apply(null,arguments)},Fg=s.__FusedMatMul=function(){return(Fg=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},Ag=s._malloc=function(){return(Ag=s._malloc=s.asm.Ha).apply(null,arguments)},$g=s._free=function(){return($g=s._free=s.asm.Ia).apply(null,arguments)},Yp=s.stackSave=function(){return(Yp=s.stackSave=s.asm.Ja).apply(null,arguments)},Jp=s.stackRestore=function(){return(Jp=s.stackRestore=s.asm.Ka).apply(null,arguments)},zu=s.stackAlloc=function(){return(zu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Q;var go;function Dg(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}lr=function K(){go||Wu(),go||(lr=K)};function Wu(K){if(K=K||u,ia>0||(Xn(),ia>0))return;function ae(){go||(go=!0,s.calledRun=!0,!G&&(Mn(),pn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),tn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=Wu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Wu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),dE=1e-7,hE=1e-4,sd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ju=class{refCount(e){return oa("refCount")}incRef(e){return oa("incRef")}timerAvailable(){return!0}time(e){return oa("time")}read(e){return oa("read")}readSync(e){return oa("readSync")}numDataIds(){return oa("numDataIds")}disposeData(e,t){return oa("disposeData")}write(e,t,n){return oa("write")}move(e,t,n,a,r){return oa("move")}memory(){return oa("memory")}floatPrecision(){return oa("floatPrecision")}epsilon(){return this.floatPrecision()===32?dE:hE}dispose(){return oa("dispose")}};function oa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Gw(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function mE(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function fE(e){return e%2==0?e:e+1}function gE(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function yE(e,t){let n=Math.random();return t*n+(1-n)*e}function bE(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function $(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function un(e,t,n=""){$(hr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ks(e){$(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Is(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let a=0;a<e.length;++a)Is(e[a],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function xE(e){return e.length===0}function hr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function vE(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function wE(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function kE(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Gw(t),t}function Xu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function IE(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function TE(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function la(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),$(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),$(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function Hw(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:la(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function jw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function qw(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Xw(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Kw(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function NE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Og(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Yw(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function zr(e){return typeof e=="string"||e instanceof String}function Jw(e){return typeof e=="boolean"}function Qw(e){return typeof e=="number"}function id(e){return Array.isArray(e)?id(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Qw(e)?"float32":zr(e)?"string":Jw(e)?"bool":"float32"}function Wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function od(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function To(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Zw(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;s<r;s++)a[s]=n[e+s]}else{let r=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<r;o++)a[o]=Zw(e+o*i,s,n)}return a}function No(e,t){if(e.length===0)return t[0];let n=e.reduce((a,r)=>a*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return Zw(0,e,t)}function Lg(e,t){let n=ld(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function ld(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function SE(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return No(e,new Float32Array(n));if(t==="int32")return No(e,new Int32Array(n));if(t==="bool")return No(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function zg(e){e.forEach(t=>{$(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function CE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function _E(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Wg(e){return e&&e.then&&typeof e.then=="function"}var e0="tfjsflags",t0=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Wg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=EE(this.global.location.search);e0 in e&&e[e0].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=FE(n,a)})}};function EE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(AE(t,a[0],a[1]),a.join("="))),t}function AE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function FE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return Bg}var Bg=null;function $E(e){Bg=e}var Vg;function n0(){if(Vg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Vg=e}return Vg}function DE(){let e=n0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ug(e,t){let n=DE();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var So="Abs",Co="Acos",_o="Acosh",Br="Add",Ts="AddN",ud="All",cd="Any",Ns="ArgMax",Ku="ArgMin",Eo="Asin",Fo="Asinh",Ao="Atan",$o="Atanh",Do="Atan2",Ss="AvgPool",pd="AvgPoolGrad",Yu="AvgPool3D",dd="AvgPool3DGrad",Cs="BatchMatMul",Ju="BatchToSpaceND",hd="Bincount",a0="BroadcastTo",_s="Cast",Es="Ceil",Vr="ClipByValue",md="Complex",Qu="ComplexAbs",Ro="Concat",Fs="Conv2D",fd="Conv2DBackpropFilter",As="Conv2DBackpropInput",Zu="Conv3D",gd="Conv3DBackpropFilterV2",yd="Conv3DBackpropInputV2",$s="Cos",Mo="Cosh",Ds="Cumsum",Po="CropAndResize",bd="DenseBincount",Oo="DepthToSpace",Rs="DepthwiseConv2dNative",xd="DepthwiseConv2dNativeBackpropFilter",vd="DepthwiseConv2dNativeBackpropInput",wd="Diag",ec="Dilation2D",kd="Dilation2DBackpropInput",Id="Dilation2DBackpropFilter",Ms="RealDiv",Lo="Elu",Td="EluGrad",zo="Erf",Wo="Equal",Ps="Exp",Bo="ExpandDims",Vo="Expm1",Nd="FFT",tc="Fill",Uo="FlipLeftRight",Os="Floor",Ls="FloorDiv",zs="FusedBatchNorm",Go="GatherV2",Ho="GatherNd",jo="Greater",Ws="GreaterEqual",Bs="Identity",Sd="IFFT",Cd="Imag",qo="IsFinite",Xo="IsInf",Ko="IsNan",Vs="LeakyRelu",Yo="Less",Jo="LessEqual",_d="LinSpace",Us="Log",Qo="Log1p",Zo="LogicalAnd",nc="LogicalNot",ac="LogicalOr",r0="LogSoftmax",rc="LRN",Ed="LRNGrad",Gs="Max",Hs="Maximum",js="MaxPool",Fd="MaxPoolGrad",sc="MaxPool3D",Ad="MaxPool3DGrad",$d="MaxPoolWithArgmax",qs="Mean",Xs="Min",Ks="Minimum",ic="MirrorPad",el="Mod",Dd="Multinomial",Ys="Multiply",tl="Neg",nl="NotEqual",al="NonMaxSuppressionV3",rl="NonMaxSuppressionV4",sl="NonMaxSuppressionV5",il="OnesLike",Js="OneHot",ol="Pack",Qs="PadV2",RE="Pool",Zs="Pow",ei="Prelu",ll="Prod",oc="Range",Rd="Real",ul="Reciprocal",ti="Relu",cl="Reshape",lc="ResizeNearestNeighbor",Md="ResizeNearestNeighborGrad",ni="ResizeBilinear",Pd="ResizeBilinearGrad",ai="Relu6",ri="Reverse",si="Round",ii="Rsqrt",pl="ScatterNd",dl="Select",hl="Selu",ml="Slice",oi="Sin",fl="Sinh",gl="Sign",li="Sigmoid",yl="Softplus",ui="Sqrt",ci="Sum",uc="SpaceToBatchND",bl="SplitV",pi="Softmax",di="SquaredDifference",cc="Square",hi="Sub",Od="SparseToDense",xl="StridedSlice",vl="Tan",mi="Tanh",Ur="Tile",wl="TopK",Ld="Transform",fi="Transpose",zd="Unique",kl="Unpack",pc="UnsortedSegmentSum",Il="ZerosLike",Gr="Step",Wd="FromPixels",Tl="RotateWithOffset",gi="_FusedMatMul",yi="FusedConv2D",bi="FusedDepthwiseConv2D",Nl=Ug("kernelRegistry",()=>new Map),dc=Ug("gradRegistry",()=>new Map);function Bd(e,t){let n=Gg(e,t);return Nl.get(n)}function Hg(e){return dc.get(e)}function Vd(e){let t=Nl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function hc(e){let{kernelName:t,backendName:n}=e,a=Gg(t,n);Nl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Nl.set(a,e)}function s0(e){let{kernelName:t}=e;dc.has(t)&&Z().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),dc.set(t,e)}function ME(e,t){let n=Gg(e,t);if(!Nl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Nl.delete(n)}function PE(e){if(!dc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);dc.delete(e)}function OE(e,t){Vd(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});hc(a)})}function Gg(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>hr,assert:()=>$,assertNonNegativeIntegerDimensions:()=>zg,assertNonNull:()=>ks,assertShapesMatch:()=>un,bytesFromStringArray:()=>Yw,bytesPerElement:()=>Og,checkConversionForErrors:()=>Xw,clamp:()=>qu,computeStrides:()=>To,createScalarValue:()=>LE,createShuffledIndices:()=>kE,decodeString:()=>Gd,distSquared:()=>bE,encodeString:()=>fc,fetch:()=>zE,flatten:()=>Is,getArrayFromDType:()=>qw,getTypedArrayFromDType:()=>jw,hasEncodingLoss:()=>NE,indexToLoc:()=>_E,inferDtype:()=>id,inferFromImplicitShape:()=>TE,isBoolean:()=>Jw,isFunction:()=>Wr,isInt:()=>Ht,isNumber:()=>Qw,isPromise:()=>Wg,isScalarShape:()=>xE,isString:()=>zr,isTypedArray:()=>cn,isValidDtype:()=>Kw,locToIndex:()=>CE,makeOnesTypedArray:()=>Lg,makeZerosNestedTypedArray:()=>SE,makeZerosTypedArray:()=>ld,nearestDivisor:()=>od,nearestLargerEven:()=>fE,now:()=>mc,parseAxisParam:()=>la,randUniform:()=>yE,repeatedTry:()=>IE,rightPad:()=>Xu,shuffle:()=>Gw,shuffleCombo:()=>mE,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>wE,squeezeShape:()=>Hw,sum:()=>gE,tanh:()=>vE,toNestedArray:()=>No,toTypedArray:()=>Ud});function LE(e,t){return t==="string"?fc(e):Ud([e],t)}function WE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ud(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Is(e)),Z().getBool("DEBUG")&&Xw(e,t),WE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function mc(){return Z().platform.now()}function zE(e,t){return Z().platform.fetch(e,t)}function fc(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function Gd(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var UE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new VE)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=mc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:mc()-i})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(c=>{BE(c,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function BE(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var VE=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Xu(`${a}ms`,9):a.error,o=Xu(e,25),l=t.rank,c=t.size,u=Xu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function GE(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let p in u){let d=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[d.id]){c.outputs.forEach(f=>a[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p<c.outputs.length;p++)if(s[c.outputs[p].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let h=c.inputs[d];a[h.id]&&(u[d]=h)}let p=Object.assign({},c);p.inputs=u,p.outputs=c.outputs,o.push(p)}}return o}function HE(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!hr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var i0=20,gc=3,jg=7;function qE(e,t,n,a){let r=To(t),s=jE(e,t,n,r),i=t.length,o=Hd(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function jE(e,t,n,a){let r=Ot(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?bc(e):e;if(o>1)for(let c=0;c<r/s;c++){let u=c*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],yc(l[u+p],0,n).length)}return i}function yc(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(jg))} + ${parseFloat(e[1].toFixed(jg))}j`:zr(e)?a=`'${e}'`:n==="bool"?a=o0(e):a=parseFloat(e.toFixed(jg)).toString(),Xu(a,t)}function o0(e){return e===0?"false":"true"}function Hd(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=bc(e);return[yc(f[0],0,n)]}return n==="bool"?[o0(e[0])]:[e[0].toString()]}if(l===1){if(o>i0){let g=gc*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-gc)*i,o*i));return n==="complex64"&&(y=bc(y),b=bc(b)),["["+y.map((x,v)=>yc(x,r[v],n)).join(", ")+", ..., "+b.map((x,v)=>yc(x,r[o-gc+v],n)).join(", ")+"]"]}let f=n==="complex64"?bc(e):Array.from(e);return["["+f.map((g,y)=>yc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>i0){for(let f=0;f<gc;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),c,n,u,r,!1))}d.push("...");for(let f=o-gc;f<o;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),c,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;d.push(...Hd(e.slice(g,y),c,n,u,r,f===o-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function bc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let a=n.length;$(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||qw(t,this.size),this.strides=To(e)}set(e,...t){t.length===0&&(t=[0]),$(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Ba().makeTensor(this.values,this.shape,this.dtype)}},Ba=null,Sl=null,XE=null;function KE(e){Ba=e}function YE(e){Sl=e}function JE(e){XE=e}var Ee=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=To(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Sl.buffer(this.shape,this.dtype,e)}bufferSync(){return Sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return No(this.shape,e)}arraySync(){return No(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Ba().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Gd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ba().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Gd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ba().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ba().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Sl.print(this,e)}clone(){return this.throwIfDisposed(),Sl.clone(this)}toString(e=!1){let t=this.dataSync();return qE(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ba().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return Ug("Tensor",()=>Ee)}Y();var Hr=class extends Ee{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!hr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ba().disposeTensor(this),this.dataId=e.dataId,Ba().incRef(this,null)}dispose(){Ba().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Hr,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var Ia={};Le(Ia,{assertTypesMatch:()=>l0,getTensorsInContainer:()=>qg,isTensorInList:()=>QE,makeTypesMatch:()=>Nt});var Xg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Xg||(Xg={}));var Kg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Kg||(Kg={}));var Yg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Yg||(Yg={}));var Jg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Jg||(Jg={}));var Qg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Qg||(Qg={}));var ZE={float32:Jg,int32:Kg,bool:Yg,complex64:Qg};function ua(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return ZE[e][t]}function jd(e){return ua(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ua(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function l0(e,t){$(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function QE(e,t){return t.some(n=>n.id===e.id)}function qg(e){let t=[],n=new Set;return u0(e,t,n),t}function u0(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!eF(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),u0(s,t,n))}}function eF(e){return Array.isArray(e)||typeof e=="object"}function Zg(e){return e.kernelName!=null}var c0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new c0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new UE(this.backendInstance),!0}setupRegisteredKernels(){Vd(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vd(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ju)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return xc.nextTensorId++}nextVariableId(){return xc.nextVariableId++}clone(e){let t=M.runKernel(Bs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(_s,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Bd(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Zg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Zg(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Bd(h,this.backendName);$(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(v=>{if(v.rank!=null)return v;let{dataId:T,shape:k,dtype:S}=v;return this.makeTensorFromDataId(T,k,S)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=Zg(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Hg(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?($(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&zr(e[0])&&(r=e.map(o=>fc(o)));let s=a.write(r,t,n),i=new Ee(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Yw(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Hr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Og(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Hr||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Og(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Hg(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=ld(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=qg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if($(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));$(r instanceof Ee,()=>"The result y returned by f() must be a tensor.");let s=GE(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?tF(r.shape):n,HE(i,s,l=>this.tidy(l),nF);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return $(Wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{$(t.every(i=>i instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),$(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),$(Wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];$(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),$(c.every(p=>p instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=mc(),n=await this.backend.time(e);return n.wallMs=mc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new c0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xc.nextTensorId=0;xc.nextVariableId=0;function tF(e){let t=Lg(Ot(e),"float32");return M.makeTensor(t,e,"float32")}function p0(){let e=n0();if(e._tfengine==null){let t=new t0(e);e._tfengine=new xc(t)}return $E(e._tfengine.ENV),KE(()=>e._tfengine),e._tfengine}var M=p0();function nF(e,t){let n={a:e,b:t};return M.runKernel(Br,n)}var vc={};Le(vc,{isBrowser:()=>d0,isMobile:()=>aF});function rF(){return typeof navigator!="undefined"&&navigator!=null}function aF(){if(rF()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function d0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ta=Z();Ta.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ta.registerFlag("IS_BROWSER",()=>d0());Ta.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ta.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ta.registerFlag("PROD",()=>!1);Ta.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ta.getBool("DEBUG"));Ta.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ta.registerFlag("IS_TEST",()=>!1);Ta.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ta.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Va(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&h0(e,a,[]),a}function h0(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){$(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}$(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),$(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)h0(e[r],a,n.concat(r))}function m0(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function E(e,t,n,a="numeric"){if(e instanceof Ee)return m0(a,e.dtype,t,n),e;let r=id(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),m0(a,r,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Va(e,r);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Ud(e,r):Is(e,[],!0);return M.makeTensor(i,s,r)}function wc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var f0="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+f0;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return Wg(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function sF(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");un(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(md,r)}var jr=O({complex_:sF});function qr(e,t,n,a){if(a==null&&(a=id(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){zg(t);let r=Ot(t),s=Ot(n);$(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;$(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Ud(e,a):Is(e,[],!0),M.makeTensor(e,t,a)}function Yn(e,t,n){let a=Va(e,n);return qr(e,t,a,n)}var ey={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},qd=4;async function oF(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+qd*d.length,m=new Uint8Array(h),f=0;for(let g=0;g<d.length;g++){let y=d[g],b=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(b,f),f+=qd,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(a);return{data:iF(s),specs:n}}function g0(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ot(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=ey[p.dtype],h=e.slice(r,r+c*d),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=lF()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];u[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*d}else if(o==="string"){let p=Ot(s.shape);u=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+qd))[0];r+=qd;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=ey[o],d=e.slice(r,r+c*p);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=Yn(h,l,"float32"),g=Yn(m,l,"float32");n[i]=jr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=c*p}o!=="complex64"&&(n[i]=Yn(u,l,o))}return n}function iF(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var ty=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function y0(e){return ty?Buffer.byteLength(e):new Blob([e]).size}function uF(e){if(ty)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function cF(e){if(ty){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function ny(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function b0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function kc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:y0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:y0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function pF(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function dF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function hF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function lF(){let e=pF(),t=dF(),n=hF();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},mF=e=>Ft.registerSaveRouter(e),fF=e=>Ft.registerLoadRouter(e),gF=e=>Ft.getSaveHandlers(e),yF=(e,t)=>Ft.getLoadHandlers(e,t),ay="tensorflowjs",ry=1,xi="models_store",Xr="model_info_store";function x0(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function sy(e){let t=e.result;t.createObjectStore(xi,{keyPath:"modelPath"}),t.createObjectStore(Xr,{keyPath:"modelPath"})}var vi=class{constructor(e){if(this.indexedDB=x0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(ay,ry);r.onupgradeneeded=()=>sy(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(xi,"readonly"),o=i.objectStore(xi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=kc(t),o=s.transaction(Xr,"readwrite"),l=o.objectStore(Xr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(xi,"readwrite");let p=u.objectStore(xi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Xr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};vi.URL_SCHEME="indexeddb://";var v0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vi.URL_SCHEME)?bF(e.slice(vi.URL_SCHEME.length)):null;Ft.registerSaveRouter(v0);Ft.registerLoadRouter(v0);function bF(e){return new vi(e)}function xF(e){return e.startsWith(vi.URL_SCHEME)?e.slice(vi.URL_SCHEME.length):e}var vF=class{constructor(){this.indexedDB=x0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ay,ry);n.onupgradeneeded=()=>sy(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Xr,"readonly"),s=r.objectStore(Xr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=xF(e),new Promise((t,n)=>{let a=this.indexedDB.open(ay,ry);a.onupgradeneeded=()=>sy(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Xr,"readwrite"),i=s.objectStore(Xr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(xi,"readwrite");let p=l.objectStore(xi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},mr="/",Cl="tensorflowjs_models",w0="info",wF="model_topology",kF="weight_specs",IF="weight_data",TF="model_metadata";function k0(e){return{info:[Cl,e,w0].join(mr),topology:[Cl,e,wF].join(mr),weightSpecs:[Cl,e,kF].join(mr),weightData:[Cl,e,IF].join(mr),modelMetadata:[Cl,e,TF].join(mr)}}function NF(e){let t=e.split(mr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(mr)}function SF(e){return e.startsWith(wi.URL_SCHEME)?e.slice(wi.URL_SCHEME.length):e}var wi=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=k0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=kc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,uF(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=cF(s),t}};wi.URL_SCHEME="localstorage://";var I0=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(wi.URL_SCHEME)?CF(e.slice(wi.URL_SCHEME.length)):null;Ft.registerSaveRouter(I0);Ft.registerLoadRouter(I0);function CF(e){return new wi(e)}var _F=class{constructor(){$(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),$(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Cl+mr,n=mr+w0;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=NF(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=SF(e);let t=k0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},_l="://",Jn=class{constructor(){this.managers={}}static getInstance(){return Jn.instance==null&&(Jn.instance=new Jn),Jn.instance}static registerManager(e,t){$(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(_l)&&(e=e.slice(0,e.indexOf(_l))),$(e.length>0,()=>"scheme must not be an empty string.");let n=Jn.getInstance();$(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xd(e){if(e.indexOf(_l)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Jn.getSchemes().join(",")}`);return{scheme:e.split(_l)[0],path:e.split(_l)[1]}}async function T0(e,t,n=!1){$(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Ft.getLoadHandlers(e);$(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),$(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Ft.getSaveHandlers(t);$(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),$(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Xd(e).scheme,l=Xd(e).path,c=o===Xd(e).scheme,u=await r.load();n&&c&&await Jn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Jn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function EF(){let e=Jn.getSchemes(),t={};for(let n of e){let a=await Jn.getManager(n).listModels();for(let r in a){let s=n+_l+r;t[s]=a[r]}}return t}async function FF(e){let t=Xd(e);return Jn.getManager(t.scheme).removeModel(t.path)}async function AF(e,t){return T0(e,t,!1)}async function $F(e,t){return T0(e,t,!0)}var DF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new DF);try{Jn.registerManager(wi.URL_SCHEME,new _F)}catch(e){}try{Jn.registerManager(vi.URL_SCHEME,new vF)}catch(e){}}var RF={importFetch:()=>j_()},iy,MF=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(iy==null&&(iy=RF.importFetch()),iy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&Z().setPlatform("node",new MF);function Me(e,t="float32",n){return t=t||"float32",zg(e),new Lt(e,t,n)}function PF(e,t){let n=E(e,"x","cast");if(!Kw(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(_s,a,r)}var ue=O({cast_:PF});function OF(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(Bs,t)}var Kr=O({clone_:OF});function N0(e,t=!1){console.log(e.toString(t))}p0();var LF={buffer:Me,cast:ue,clone:Kr,print:N0};YE(LF);var jt={};Le(jt,{browserFiles:()=>zF,browserHTTPRequest:()=>BF,concatenateArrayBuffers:()=>ny,copyModel:()=>AF,decodeWeights:()=>g0,encodeWeights:()=>oF,fromMemory:()=>VF,getLoadHandlers:()=>yF,getModelArtifactsInfoForJSON:()=>kc,getSaveHandlers:()=>gF,http:()=>ly,isHTTPScheme:()=>oy,listModels:()=>EF,loadWeights:()=>WF,moveModel:()=>$F,registerLoadRouter:()=>fF,registerSaveRouter:()=>mF,removeModel:()=>FF,weightsLoaderFactory:()=>S0,withSaveHandler:()=>UF});var GF="model",HF=".json",jF=".weights.bin";function C0(e){return new Promise(t=>setTimeout(t)).then(e)}var El=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(El.URL_SCHEME)&&(e=e.slice(El.URL_SCHEME.length)),(e==null||e.length===0)&&(e=GF),this.modelTopologyFileName=e+HF,this.weightDataFileName=e+jF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await C0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await C0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:kc(e)}}}};El.URL_SCHEME="downloads://";var qF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:ny(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>b0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=b0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},KF=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(El.URL_SCHEME)?XF(e.slice(El.URL_SCHEME.length)):null;Ft.registerSaveRouter(KF);function XF(e="model"){return new El(e)}function zF(e){return new qF(e)}function _0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){$(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){$(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),$(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),$(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function E0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await _0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await _0(i,t.onProgress,o,l)}async function WF(e,t="",n,a){return S0(r=>E0(r,{requestInit:a}))(e,t,n)}function S0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=ey[y]*Ot(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((v,T)=>{v===g.name&&(x(),i[T]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[d+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),b=0;for(let x=0;x<m;x++){let v=new Uint8Array(u[d+x]);y.set(v,b),b+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=g0(v,[x.manifestEntry]);for(let k in T)p[k]=T[k]}),d+=m}),p}}var YF="application/octet-stream",JF="application/json",uy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?($(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,$(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&$(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:JF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:YF}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:kc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=QF(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await E0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,ny(l)]}};uy.URL_SCHEME_REGEX=/^https?:\/\//;function QF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function oy(e){return e.match(uy.URL_SCHEME_REGEX)!=null}var F0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>oy(a)):n=oy(e),n)return ly(e,t)}return null};Ft.registerSaveRouter(F0);Ft.registerLoadRouter(F0);function ly(e,t){return new uy(e,t)}function BF(e,t){return ly(e,t)}var cy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},ZF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function VF(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new cy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function UF(e){return new ZF(e)}var A0={};Le(A0,{confusionMatrix:()=>eA});function tA(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Nt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Cs,i,o)}var ze=O({matMul_:tA});function nA(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(Js,r,s)}var Fl=O({oneHot_:nA});function aA(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{$(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(fi,a,r)}var Ve=O({transpose_:aA});function rA(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");$(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),$(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),$(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),$(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),$(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Fl(ue(a,"int32"),n),i=Fl(ue(r,"int32"),n),o=Ve(s),l=ze(o,i);return ue(l,"int32")}var eA=O({confusionMatrix_:rA}),ki={};Le(ki,{fromPixels:()=>oA,fromPixelsAsync:()=>sA,toPixels:()=>iA});function Kd(e,t,n){if(ks(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Va(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}var Al;function $0(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Bd(Wd,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel(Wd,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Al==null&&(Al=document.createElement("canvas").getContext("2d")),Al.canvas.width=l,Al.canvas.height=c,Al.drawImage(e,0,0,l,c),u=Al.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h<d;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return Kd(p,[c,l,t],"int32")}function lA(e){return e!=null&&e.data instanceof Uint8Array}function uA(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function cA(e){return e!=null&&e.width!==0&&e.height!==0}function pA(e){return uA()&&!(e instanceof ImageBitmap)&&cA(e)&&!lA(e)}async function sA(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&pA(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return $0(n,t)}async function iA(e,t){let n=E(e,"img","toPixels");if(!(e instanceof Ee)){let c=n;n=ue(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c<a*r;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let h=i[c*s+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var oA=O({fromPixels_:$0}),py={};Le(py,{prepareAndValidate:()=>D0});function D0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let c=1;for(let p=s;p<n;++p)c*=o[p],l.push(o[p]);let u=[...To(e.shape).map(p=>p/c),1].slice(0,s);return[l,i,c,u]}var dy={};Le(dy,{calculateShapes:()=>R0,validateInput:()=>my,validateUpdateShape:()=>hy});function hy(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function my(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}hy(n,t,e)}function R0(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Ot(t.shape)/o,c=[...To(n.slice(0,r)),1],u=Ot(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var an={};Le(an,{assertParamsValid:()=>dA,computeFlatOffset:()=>mA,computeOutShape:()=>M0,getNormalizedAxes:()=>O0,isSliceContinous:()=>hA,maskToAxes:()=>Yd,parseSliceParams:()=>U0,sliceInfo:()=>fA,startForAxis:()=>B0,startIndicesWithElidedDims:()=>L0,stopForAxis:()=>V0,stopIndicesWithElidedDims:()=>z0,stridesForAxis:()=>W0,stridesWithElidedDims:()=>P0});function dA(e,t,n){let a=e.shape.length;$(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),$(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)$(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Yd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function M0(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function P0(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function G0(e,t,n){return n<=e?n:n-(t-1)}function H0(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function O0(e,t,n,a,r,s,i,o,l){let c=e.length,u=new Array(c),p=new Array(c),d=new Array(c);if(t.length&&n>0){let h=t[0],m=n+1;u=L0(i,h,m,a,e),p=z0(o,h,m,r,e),d=P0(s,h,m,e)}else for(let h=0;h<c;h++)u[h]=B0(i,a,s,e,h,l),p[h]=V0(o,r,s,e,h,l),d[h]=W0(s,h,l);return{begin:u,end:p,strides:d}}function L0(e,t,n,a,r){let s=[...r],i=H0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=G0(t,n,o),c=a[l];e&1<<l&&(c=0),s[o]=c}return s}function z0(e,t,n,a,r){let s=[...r],i=H0(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=G0(t,n,o),c=a[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=qu(0,s[o],r[o])}return s}function W0(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function B0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=qu(0,i,l-1),i}function V0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=qu(0,i,l):i=qu(-1,i,l-1),i}function hA(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function mA(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function U0(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{$(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:($(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function fA(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=Yd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=Yd(o),f=e.slice();m.forEach(k=>{c[k]=0,u[k]=1,f.splice(k,0,1)});let{begin:g,end:y,strides:b}=O0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let x=Yd(l);x.forEach(k=>{u[k]=c[k]+1,p[k]=1});let v=M0(c,u,p),T=v.filter((k,S)=>x.indexOf(S)===-1);return{nonStrided:p.every(k=>k===1),$begin:c,$end:u,$strides:p,size:v,newShape:f,outShape:T}}var re={};Le(re,{Serializable:()=>j0,SerializationMap:()=>Ii,registerClass:()=>Yr});var j0=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ii=class{constructor(){this.classNameMap={}}static getMap(){return Ii.instance==null&&(Ii.instance=new Ii),Ii.instance}static register(e){Ii.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Yr(e){$(e.className!=null,()=>"Class being registered does not have the static className property defined."),$(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),$(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ii.register(e)}var q0={};Le(q0,{TEST_EPSILON_FLOAT16:()=>X0,encodeStrings:()=>K0,expectArrayBuffersEqual:()=>wA,expectArraysClose:()=>gA,expectArraysEqual:()=>bA,expectNumbersClose:()=>xA,expectPromiseToFail:()=>yA,expectValuesInRange:()=>vA,testEpsilon:()=>fy});var kA=.001,X0=.1;function gA(e,t,n){return n==null&&(n=fy()),gy(e,t,(a,r)=>yy(a,r,n))}function fy(){return M.backend.floatPrecision()===32?kA:X0}function gy(e,t,n){let a=!0;if((cn(e)||cn(t))&&(a=!1),cn(e)&&cn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Va(e),o=Va(t);if(!hr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=cn(e)?e:Is(e),s=cn(t)?t:Is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function yA(e,t){e().then(()=>t.fail(),()=>t())}function bA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return zr(e)||zr(e[0])||zr(t)||zr(t[0])?gy(e,n,(a,r)=>a==r):gy(e,t,(a,r)=>yy(a,r,0))}function xA(e,t,n){if(n==null&&(n=fy()),!yy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function yy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function vA(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function wA(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function K0(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?K0(n):e[t]=fc(n)}return e}var Y0="3.3.0";function IA(){Z().set("PROD",!0)}function TA(){Z().set("DEBUG",!0)}function NA(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function by(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}JE(by);function SA(){M.disposeVariables()}function Ua(){return M}function Jd(){return M.memory()}function CA(e){return M.profile(e)}function D(e,t){return M.tidy(e,t)}function Ae(e){qg(e).forEach(t=>t.dispose())}function qt(e){return M.keep(e)}function _A(e){return M.time(e)}function EA(e){return M.setBackend(e)}function FA(){return M.ready()}function AA(){return M.backendName}function $A(e){M.removeBackend(e)}function DA(e){return M.findBackend(e)}function RA(e){return M.findBackendFactory(e)}function Qd(e,t,n=1){return M.registerBackend(e,t,n)}function J0(){return M.backend}function MA(e,t){Z().setPlatform(e,t)}function PA(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Br,r)}var J=O({add_:PA});function OA(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Ls,r)}var Zd=O({floorDiv_:OA});function LA(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Nt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Zd(n,a);let r={a:n,b:a},s={};return M.runKernel(Ms,r,s)}var ye=O({div_:LA});function zA(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Ys,r)}var W=O({mul_:zA});function WA(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(Qu,n)}else{let n={x:t};return M.runKernel(So,n)}}var zt=O({abs_:WA});function BA(e){let t={x:E(e,"x","acos")};return M.runKernel(Co,t)}var xy=O({acos_:BA});function VA(e){let t={x:E(e,"x","acosh")};return M.runKernel(_o,t)}var vy=O({acosh_:VA});function UA(e){$(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),$(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!hr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel(Ts,a)}var Q0=O({addN_:UA});function GA(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(ud,a,r)}var eh=O({all_:GA});function HA(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(cd,a,r)}var Ic=O({any_:HA});function jA(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel(Ns,n,a)}var Tc=O({argMax_:jA});function qA(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(Ku,n,a)}var wy=O({argMin_:qA});function XA(e){let t={x:E(e,"x","asin")};return M.runKernel(Eo,t)}var ky=O({asin_:XA});function KA(e){let t={x:E(e,"x","asinh")};return M.runKernel(Fo,t)}var Iy=O({asinh_:KA});function YA(e){let t={x:E(e,"x","atan")};return M.runKernel(Ao,t)}var Ty=O({atan_:YA});function JA(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Do,r)}var Ny=O({atan2_:JA});function QA(e){let t={x:E(e,"x","atanh")};return M.runKernel($o,t)}var Sy=O({atanh_:QA});function ZA(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Z0(r);return Nc(e,o,n,s,a,null,null,l)}function ek(e,t,n,a,r,s,i="channelsLast"){let[o,l]=th(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Nc(e,c,n,a,r,s,!1,i)}function e$(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=Cy(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return tk(e,u,n,a,r,!1,p,s)}function Nc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=th(n),[y,b]=th(a),x=$l(d,y),v=$l(h,b),{padInfo:T,outHeight:k,outWidth:S}=t$(r,c,u,f,g,x,v,s,o),F=i?m*p:m,A;return o==="channelsFirst"?A=[l,F,k,S]:o==="channelsLast"&&(A=[l,k,S,F]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:k,outWidth:S,outChannels:F,padInfo:T,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:b,inShape:e,outShape:A,filterShape:t}}function tk(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=Cy(n),[v,T,k]=Cy(a),S=$l(h,v),F=$l(m,T),A=$l(f,k),{padInfo:R,outDepth:P,outHeight:z,outWidth:V}=n$(r,c,u,p,y,b,x,S,F,A,o),G=s?g*d:g,H;return i==="channelsFirst"?H=[l,G,P,z,V]:i==="channelsLast"&&(H=[l,P,z,V,G]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:P,outHeight:z,outWidth:V,outChannels:G,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:S,effectiveFilterHeight:F,effectiveFilterWidth:A,dilationDepth:v,dilationHeight:T,dilationWidth:k,inShape:e,outShape:H,filterShape:t}}function a$(e,t,n,a,r){a==null&&(a=_y(e,t,n));let s=e[0],i=e[1],o=Ti((s-t+2*a)/n+1,r),l=Ti((i-t+2*a)/n+1,r);return[o,l]}function r$(e,t,n,a,r,s){r==null&&(r=_y(e,t,a));let i=e[0],o=e[1],l=e[2],c=Ti((i-t+2*r)/a+1,s),u=Ti((o-t+2*r)/a+1,s),p=Ti((l-t+2*r)/a+1,s);return[c,u,p,n]}function _y(e,t,n,a=1){let r=$l(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function th(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Cy(e){return typeof e=="number"?[e,e,e]:e}function $l(e,t){return t<=1?e:e+(e-1)*(t-1)}function t$(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=a$([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=Ti((t-s+d+h)/a+1,o),p=Ti((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function n$(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=r$([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),x=f-b,v=Math.floor(g/2),T=g-v,k=Math.floor(y/2),S=y-k;p={top:v,bottom:T,left:k,right:S,front:b,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function Ti(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Jr(e){let[t,n,a]=th(e);return t===1&&n===1&&a===1}function Ga(e,t){return Jr(e)||Jr(t)}function Z0(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function s$(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(cl,n,a)}var U=O({reshape_:s$});function i$(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;$(Ga(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&$(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Ss,c,u);return p=ue(p,s.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Qn=O({avgPool_:i$});function o$(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Yu,c,u);return p=ue(p,o.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Ey=O({avgPool3d_:o$});function l$(e,t=0){$(e.length>=1,()=>"Pass at least one tensor to concat");let n=wc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Kr(n[0]);let a=n,r={axis:t};return M.runKernel(Ro,a,r)}var Je=O({concat_:l$});function u$(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(li,t)}var ca=O({sigmoid_:u$});function c$(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(ml,r,s)}var Be=O({slice_:c$});function p$(e){let t={x:E(e,"x","tanh")};return M.runKernel(mi,t)}var Dl=O({tanh_:p$});function d$(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Je([c,p],1),h=ze(d,o),m=J(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),v=Be(m,[0,g*2],y),T=Be(m,[0,g*3],y),k=J(W(ca(b),Dl(x)),W(u,ca(J(i,v)))),S=W(Dl(k),ca(T));return[k,S]}var h$=O({basicLSTMCell_:d$});function m$(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);$(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),$(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),$(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(Ju,s,i)}var Sc=O({batchToSpaceND_:m$});function f$(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function g$(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),$(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),$(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),$(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:f$(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(zs,p,d);return U(h,i.shape)}var fr=O({batchNorm_:g$});function y$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),$(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),$(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var nk=O({batchNorm2d_:y$});function b$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),$(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),$(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var ak=O({batchNorm3d_:b$});function x$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),$(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),$(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),$(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&$(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&$(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),fr(i,o,l,u,c,s)}var rk=O({batchNorm4d_:x$});function v$(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");$(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(hd,s,i)}var sk=O({bincount_:v$});function w$(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Kr(n);let i={x:n},o={reps:s};return M.runKernel(Ur,i,o)}var Cc=O({broadcastTo_:w$});function k$(e){let t={x:E(e,"x","ceil")};return M.runKernel(Es,t)}var Fy=O({ceil_:k$});function I$(e,t,n){let a=E(e,"x","clipByValue");$(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(Vr,r,s)}var Xt=O({clipByValue_:I$});function T$(e){return Je(e,0)}var ik=O({concat1d_:T$});function N$(e,t){return Je(e,t)}var ok=O({concat2d_:N$});function S$(e,t){return Je(e,t)}var lk=O({concat3d_:S$});function C$(e,t){return Je(e,t)}var uk=O({concat4d_:C$});function _$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];$(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),$(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Fs,d,h);return u?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=O({conv2d_:_$});function E$(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1]])),$(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),$(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&$(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),$(Ga(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),$(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=At(d,p,[1,n],a,"NHWC",[1,s],i);return u?U(h,[h.shape[2],h.shape[3]]):U(h,[h.shape[0],h.shape[2],h.shape[3]])}var nh=O({conv1d_:E$});function F$(e,t,n,a,r,s="NHWC",i){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),$(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),$(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),$(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];$(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),$(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&$(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(As,d,h);return c?U(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ay=O({conv2DBackpropInput_:F$});function A$(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return Ay(n,i,o,a,r,"NHWC",s)}var ah=O({conv2dTranspose_:A$});function $$(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),$(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),$(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),$(Ga(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(Zu,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var $y=O({conv3d_:$$});function D$(e,t,n,a,r){$(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];$(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),$(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),$(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),$(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),$(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(yd,u,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var ck=O({conv3DBackpropInput_:D$});function R$(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return ck(n,s,i,a,r)}var M$=O({conv3dTranspose_:R$});function P$(e){let t={x:E(e,"x","cos")};return M.runKernel($s,t)}var _c=O({cos_:P$});function O$(e){let t={x:E(e,"x","cosh")};return M.runKernel(Mo,t)}var rh=O({cosh_:O$});function L$(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Ds,r,s)}var sh=O({cumsum_:L$});function z$(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");$(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),$(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),$(n>=0,()=>`size must be non-negative, but got ${n}.`),$(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(bd,i,o)}var pk=O({denseBincount_:z$});function W$(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];$(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),$(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),$(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(Oo,o,l)}var Dy=O({depthToSpace_:W$});function B$(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),$(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),$(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&$(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Rs,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Qr=O({depthwiseConv2d_:B$});function V$(e){let t={x:E(e,"x","diag")};return M.runKernel(wd,t)}var U$=O({diag_:V$});function G$(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");$(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),$(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),$(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(ec,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ry=O({dilation2d_:G$});function H$(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function bt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function j$(e,t){let n=E(e,"a","equal"),a=E(t,"b","equal");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Wo,r)}var Zr=O({equal_:j$});function q$(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=bt(a.shape,r.shape),o=Cc(a,i),l=Cc(r,i);s.rank===1&&$(s.shape[0]===a.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&un(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(dl,c)}var Sn=O({where_:q$});function X$(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(Il,t)}var Ge=O({zerosLike_:X$});function K$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Nt(n,a);let r=ye(n,a),s=Ge(r),i=Zr(a,s);return Sn(i,s,r)}var My=O({divNoNan_:K$});function Y$(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");$((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if($(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=U(n,[1,-1]),o=U(a,[-1,1]),l=ze(i,o);return U(l,[])}else if(n.rank===1&&a.rank===2){let i=U(n,[1,-1]),o=U(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return U(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=U(a,[-1,1]),o=ze(n,i);return U(o,[o.size])}else{let i=U(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var dk=O({dot_:Y$});function J$(e){let t={x:E(e,"x","elu")};return M.runKernel(Lo,t)}var Rl=O({elu_:J$});function Q$(e){let t=E(e,"x","erf");$(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return M.runKernel(zo,n)}var Py=O({erf_:Q$});function Z$(e){let t={x:E(e,"x","exp")};return M.runKernel(Ps,t)}var dn=O({exp_:Z$});function eD(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");$(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(Bo,a,r)}var hn=O({expandDims_:eD});function tD(e){let t={x:E(e,"x","expm1")};return M.runKernel(Vo,t)}var Oy=O({expm1_:tD});function nD(e,t){let n=E(e,"x","tile","string_or_numeric");$(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(Ur,a,r)}var Ha=O({tile_:nD});function aD(e,t,n,a="float32"){t==null&&(t=e);let r=Me([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ha(hn(i,0),[n[0],1,1]);if(n.length===2)return Ha(hn(hn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ha(hn(hn(hn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Ly=O({eye_:aD});function Cn(e,t,n){let a={shape:e,value:t,dtype:n};return M.runKernel(tc,{},a)}function rD(e){let t={x:E(e,"x","floor")};return M.runKernel(Os,t)}var Ml=O({floor_:rD});function sD(e,t,n=0,a=0){let r=E(e,"x","gather"),s=E(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return M.runKernel(Go,i,o)}var Ni=O({gather_:sD});function iD(e,t){let n=E(e,"a","greater"),a=E(t,"b","greater");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(jo,r)}var pa=O({greater_:iD});function oD(e,t){let n=E(e,"a","greaterEqual"),a=E(t,"b","greaterEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Ws,r)}var es=O({greaterEqual_:oD});function lD(e){let t={input:E(e,"input","imag")};return M.runKernel(Cd,t)}var ih=O({imag_:lD});function uD(e){let t={x:E(e,"x","isFinite")};return M.runKernel(qo,t)}var hk=O({isFinite_:uD});function cD(e){let t={x:E(e,"x","isInf")};return M.runKernel(Xo,t)}var mk=O({isInf_:cD});function pD(e){let t={x:E(e,"x","isNaN")};return M.runKernel(Ko,t)}var fk=O({isNaN_:pD});function dD(e,t=.2){let n={x:E(e,"x","leakyRelu")},a={alpha:t};return M.runKernel(Vs,n,a)}var Ec=O({leakyRelu_:dD});function hD(e,t){let n=E(e,"a","less"),a=E(t,"b","less");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Yo,r)}var oh=O({less_:hD});function mD(e,t){let n=E(e,"a","lessEqual"),a=E(t,"b","lessEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Jo,r)}var Si=O({lessEqual_:mD});function gk(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return M.runKernel(_d,{},a)}function fD(e,t=5,n=1,a=1,r=.5){let s=E(e,"x","localResponseNormalization");$(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),$(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(rc,l,c);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var zy=O({localResponseNormalization_:fD});function gD(e){let t={x:E(e,"x","log")};return M.runKernel(Us,t)}var Pn=O({log_:gD});function yD(e){let t={x:E(e,"x","log1p")};return M.runKernel(Qo,t)}var lh=O({log1p_:yD});function bD(e){return $(Wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&un(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),uh(i),i[0]})}}function xD(e){return $(Wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{$(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=wc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&un(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),uh(i),i})}}function vD(e){return $(Wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{$(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return uh(a),{grad:a[0],value:r}}}function wD(e){return $(Wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{$(Array.isArray(t)&&t.every(r=>r instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),$(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&un(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),uh(a.grads),a}}function yk(e,t){$(Wr(e),()=>"The f passed in variableGrads(f) must be a function"),$(t==null||Array.isArray(t)&&t.every(c=>c instanceof Hr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),$(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);$(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),$(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function ja(e){return M.customGrad(e)}function uh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function kD(e){let t={x:E(e,"x","neg")};return M.runKernel(tl,t)}var St=O({neg_:kD});function ID(e){let t={x:E(e,"x","softplus")};return M.runKernel(yl,t)}var Pl=O({softplus_:ID});function TD(e){let t=E(e,"x","logSigmoid");return ja(n=>({value:St(Pl(St(n))),gradFunc:a=>W(a,ca(St(n)))}))(t)}var bk=O({logSigmoid_:TD});function ND(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Gs,a,r)}var Zn=O({max_:ND});function SD(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(hi,r)}var he=O({sub_:SD});function CD(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(ci,r,s)}var Se=O({sum_:CD});function _D(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ja((a,r)=>{let s=!0,i=Zn(a,t,!0),o=he(a,i),l=he(ue(o,"float32"),Pn(Se(dn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=dn(p);return he(c,W(Se(c,t,d),h))}}})(n)}var ch=O({logSoftmax_:_D});function Wy(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function xk(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function vk(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ci(e,t){let n=t.map(a=>1);return xk(e,n,t)}function ED(e,t,n){$(Wy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function wk(e,t){if(Wy(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function By(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function FD(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function AD(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=la(t,a.shape),s=Zn(a,r,!0),i=he(a,s),o=dn(i),l=Se(o,r),c=Pn(l),u=J(U(s,c.shape),c);if(n){let p=Ci(u.shape,r);return U(u,p)}return u}var Vy=O({logSumExp_:AD});function $D(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Zo,r)}var da=O({logicalAnd_:$D});function DD(e){let t={x:E(e,"x","logicalNot","bool")};return M.runKernel(nc,t)}var Fc=O({logicalNot_:DD});function RD(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ac,r)}var ph=O({logicalOr_:RD});function MD(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return bt(n.shape,a.shape),da(ph(e,t),Fc(da(e,t)))}var kk=O({logicalXor_:MD});function PD(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),$(Ga(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&$(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(js,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var $t=O({maxPool_:PD});function OD(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),$(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),$(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&$(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(sc,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Uy=O({maxPool3d_:OD});function LD(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel($d,s,i);return{result:o[0],indexes:o[1]}}var Ik=O({maxPoolWithArgmax_:LD});function zD(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Hs,r)}var qa=O({maximum_:zD});function WD(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(qs,a,r)}var Ct=O({mean_:WD});function BD(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(Xs,a,r)}var Ol=O({min_:BD});function VD(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ue(n,"int32"),a=ue(a,"int32")),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Ks,r)}var Ll=O({minimum_:VD});function UD(e,t,n){$(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");$(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)$(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(ic,i,s)}var Gy=O({mirrorPad_:UD});function GD(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(el,r)}var Hy=O({mod_:GD});function HD(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ot=O({square_:HD});function jD(e,t=null,n=!1){e=E(e,"x","moments");let a=la(t,e.shape),r=Ct(e,a,n),s=r.shape;n||(s=Ci(r.shape,a));let i=ot(he(ue(e,"float32"),U(r,s))),o=Ct(i,a,n);return{mean:r,variance:o}}var dh=O({moments_:jD});function qD(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=wc(n,"c","multiRNNCell"),i=wc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](o,s[p],i[p]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let p=0;p<l.length;p+=2)c.push(l[p]),u.push(l[p+1]);return[c,u]}var XD=O({multiRNNCell_:qD});function KD(e,t,n,a=!1){let r=E(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel(Dd,o,l);return i===1?U(c,[c.size]):c}var Tk=O({multinomial_:KD});function YD(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(nl,r)}var _i=O({notEqual_:YD});function xt(e,t="float32"){if(t==="complex64"){let a=xt(e,"float32"),r=xt(e,"float32");return jr(a,r)}let n=ld(Ot(e),t);return M.makeTensor(n,e,t)}function Xa(e,t="float32"){if(t==="complex64"){let a=Xa(e,"float32"),r=xt(e,"float32");return jr(a,r)}let n=Lg(Ot(e),t);return M.makeTensor(n,e,t)}function JD(e){let t={x:E(e,"x","onesLike")};return M.runKernel(il,t)}var On=O({onesLike_:JD});function QD(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");$(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=U(n,[-1,1]),s=U(a,[1,-1]);return ze(r,s)}var ZD=O({outerProduct_:QD});function eR(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(Qs,s,r)}var ea=O({pad_:eR});function tR(e,t,n=0){return $(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ea(e,[t],n)}var nR=O({pad1d_:tR});function aR(e,t,n=0){return $(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var rR=O({pad2d_:aR});function sR(e,t,n=0){return $(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var iR=O({pad3d_:sR});function oR(e,t,n=0){return $(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ea(e,t,n)}var lR=O({pad4d_:oR});function uR(e,t,n){let a=E(e,"x","spaceToBatchND");$(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),$(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),$(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(uc,r,s)}var Ac=O({spaceToBatchND_:uR});function dR(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),$(Ga(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=ek(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=pR([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=cR([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:Ac(o,u,h),y=(n==="avg"?()=>Qn(g,t,s,f):()=>$t(g,t,s,f))(),b=d?y:Sc(y,u,m);return l?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function cR(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function pR(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Nk=O({pool_:dR});function hR(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Zs,r)}var gr=O({pow_:hR});function mR(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(ei,r)}var $c=O({prelu_:mR});function fR(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ue(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(ll,r,s)}var hh=O({prod_:fR});function gR(e,t,n){let a=Ot(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return M.makeTensor(r,e,n)}var yR=O({rand_:gR}),jy=Io(Vw()),qy=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=jy.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},bR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=jy.alea(r.toString()),this.randn=new qy(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},xR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=jy.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function vR(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new bR(t,n,a,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var wR=O({randomGamma_:vR});function kR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new qy(t,n,a,!1,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Sk=O({randomNormal_:kR});function IR(e,t=0,n=1,a="float32",r){let s=Me(e,a),i=new xR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var zl=O({randomUniform_:IR});function mh(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return M.runKernel(oc,{},r)}function TR(e){let t={input:E(e,"input","real")};return M.runKernel(Rd,t)}var Dc=O({real_:TR});function NR(e){let t={x:E(e,"x","reciprocal")};return M.runKernel(ul,t)}var Xy=O({reciprocal_:NR});function SR(e){let t={x:E(e,"x","relu")};return M.runKernel(ti,t)}var qe=O({relu_:SR});function CR(e){let t={x:E(e,"x","relu6")};return M.runKernel(ai,t)}var fh=O({relu6_:CR});function _R(e,t){let n={x:E(e,"x","reverse")},a={dims:t};return M.runKernel(ri,n,a)}var Ln=O({reverse_:_R});function ER(e){let t=E(e,"x","reverse");return $(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ln(t,0)}var FR=O({reverse1d_:ER});function AR(e,t){let n=E(e,"x","reverse");return $(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ln(n,t)}var $R=O({reverse2d_:AR});function DR(e,t){let n=E(e,"x","reverse");return $(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ln(n,t)}var RR=O({reverse3d_:DR});function MR(e,t){let n=E(e,"x","reverse");return $(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ln(n,t)}var PR=O({reverse4d_:MR});function OR(e){let t={x:E(e,"x","round")};return M.runKernel(si,t)}var Ky=O({round_:OR});function LR(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(ii,t)}var gh=O({rsqrt_:LR});function ve(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return qr(e,[],[],t)}function zR(e){let t={x:E(e,"x","selu")};return M.runKernel(hl,t)}var yh=O({selu_:zR});function WR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");$(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),$(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),$(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),$(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];$(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=Qr(u,l,a,r,i,s),f=At(m,c,1,"valid",i);return p?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ei=O({separableConv2d_:WR});async function BR(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");$(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),$(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),$(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Lt([o],n.dtype),c=new Lt([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],c.values[p]=u,p++);return[l.toTensor(),c.toTensor()]}var Ck=BR;function VR(e){let t={x:E(e,"x","sign")};return M.runKernel(gl,t)}var Yy=O({sign_:VR});function UR(e){let t={x:E(e,"x","sin")};return M.runKernel(oi,t)}var bh=O({sin_:UR});function GR(e){let t={x:E(e,"x","sinh")};return M.runKernel(fl,t)}var xh=O({sinh_:GR});function HR(e,t,n){let a=E(e,"x","slice1d");return $(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var vh=O({slice1d_:HR});function jR(e,t,n){let a=E(e,"x","slice2d");return $(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Jy=O({slice2d_:jR});function qR(e,t,n){let a=E(e,"x","slice3d");return $(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Wl=O({slice3d_:qR});function XR(e,t,n){let a=E(e,"x","slice4d");return $(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Rc=O({slice4d_:XR});function KR(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(pi,a,r)}var Na=O({softmax_:KR});function YR(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Nd,t)}var Mc=O({fft_:YR});function JR(e){$(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Sd,t)}var Bl=O({ifft_:JR});function QR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=U(e,[n,t]);a=Bl(r)}else{let r=[n,2*(t-1)],s=U(Dc(e),[n,t]),i=U(ih(e),[n,t]),o=Ln(Be(s,[0,1],[n,t-2]),1),l=W(Ln(Be(i,[0,1],[n,t-2]),1),ve(-1)),c=Je([s,o],1),u=Je([i,l],1),p=U(jr(c,u),[r[0],r[1]]);a=Bl(p)}if(a=Dc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=U(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var wh=O({irfft_:QR});function ZR(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(bl,a,r)}var zn=O({split_:ZR});function eM(e,t){$(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,xt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=U(jr(r,s),[a,n]),o=Mc(i),l=Math.floor(n/2)+1,c=Dc(o),u=ih(o),p=zn(c,[l,n-l],c.shape.length-1),d=zn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(jr(p[0],d[0]),h)}var Pc=O({rfft_:eM});function tM(e){let t={x:E(e,"x","sqrt")};return M.runKernel(ui,t)}var rn=O({sqrt_:tM});function nM(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Nt(n,a),bt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(di,r,s)}var kh=O({squaredDifference_:nM});function aM(e,t){let n=E(e,"x","squeeze");return U(n,Hw(n.shape,t).newShape)}var ts=O({squeeze_:aM});function rM(e,t=0){let n=wc(e,"tensors","stack","string_or_numeric");$(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&$(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(ol,a,r)}var Dt=O({stack_:rM});function sM(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(Gr,n,a)}var Vl=O({step_:sM});function iM(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel(xl,c,u)}var Qy=O({stridedSlice_:iM});function oM(e){let t={x:E(e,"x","tan")};return M.runKernel(vl,t)}var Zy=O({tan_:oM});function Qe(e,t){ks(e);let n=Va(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return qr(e,null,n,t)}function Sa(e,t,n){if(ks(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Va(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return qr(e,t,a,n)}function Ca(e,t,n){if(ks(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Va(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function lM(e,t,n){if(ks(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Va(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return qr(e,t,a,n)}function uM(e,t,n){if(ks(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Va(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,qr(e,t,a,n)}function cM(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(wl,s,i);return{values:o,indices:l}}var eb=O({topk_:cM});function pM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new qy(t,n,a,!0,r),i=Me(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ih=O({truncatedNormal_:pM});function dM(e,t=0){let n=E(e,"x","unique","string_or_numeric");$(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(zd,a,r);return{values:s,indices:i}}var Th=O({unique_:dM});function hM(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");$(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(pc,s,i)}var tb=O({unsortedSegmentSum_:hM});function mM(e,t=0){let n=E(e,"x","unstack","string_or_numeric");$(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel(kl,a,r)}var ut=O({unstack_:mM});function _k(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function Ek(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Me(e,"int32"),r=Me([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function fM(e){let t=E(e,"condition","whereAsync","bool"),n=await t.data(),a=Ek(t.shape,n);return e!==t&&t.dispose(),a}var nb=fM;async function gM(e,t,n){let a=E(e,"tensor","boolMask"),r=E(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;$(i>0,()=>"mask cannot be scalar"),un(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=U(a,c),p=U(r,[-1]),d=await nb(p),h=ts(d,[1]),m=Ni(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),d.dispose(),m}var yM=gM;function bM(e,t="euclidean",n=null,a=!1){e=E(e,"x","norm");let r=Fk(e,t,n),s=r.shape;if(a){let i=la(n,e.shape);s=Ci(r.shape,i)}return U(r,s)}function Fk(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return Fk(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(zt(e),n);if(t===Infinity)return Zn(zt(e),n);if(t===-Infinity)return Ol(zt(e),n);if(t==="euclidean"||t===2)return rn(Se(gr(zt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Zn(Se(zt(e),n[0]),n[1]-1);if(t===Infinity)return Zn(Se(zt(e),n[1]),n[0]);if(t===-Infinity)return Ol(Se(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return rn(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Nh=O({norm_:bM});function xM(e,t,n,a,r=!0){let s=E(e,"v","movingAverage"),i=E(t,"x","movingAverage"),o=E(n,"decay","movingAverage");l0(s,i),$(hr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),c=he(l,o),u=W(he(i,s),c);if(r){$(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=ye(u,he(l,gr(o,p)))}return J(s,u)}var vM=O({movingAverage_:xM});function wM(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");my(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(pl,s,i)}var Ak=O({scatterND_:wM});function kM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function IM(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);kM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(Od,o,l)}var ab=O({sparseToDense_:IM});function TM(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(Ho,a)}var $k=O({gatherND_:TM});function NM(e,t){if(t==null)return e.shape.slice();if(hr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function SM(e,t,n,a){let r=E(e,"x","dropout");if($(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),$(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?r.clone():r;let s=NM(r,n),i=1-t,o=ye(Ml(J(zl(s,0,1,"float32",a),i)),i);return W(r,o)}var Dk=O({dropout_:SM});function Rk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function rb(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Qe(r,"float32")}async function CM(e,t,n=1){let a=E(e,"predictions","inTopK"),r=E(t,"targets","inTopK");$(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),$(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),un(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];$(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=jw("bool",l);for(let p=0;p<l;p++){let d=p*c,h=i.subarray(d,d+c),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),Yn(u,r.shape,"bool")}var _M=CM,ns={};Le(ns,{conv2d:()=>EM,depthwiseConv2d:()=>FM,matMul:()=>AM});function $M(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),$(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),$(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),$(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];$(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),$(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&$(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(fd,p,d)}var sb=O({conv2DBackpropFilter_:$M});function Sh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Vl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ch(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),U(n,e.shape)}function _h(e,t,n,a){if(t==="linear")return e;if(t==="relu")return qe(e);if(t==="elu")return Rl(e);if(t==="relu6")return fh(e);if(t==="prelu")return $c(e,n);if(t==="leakyrelu")return Ec(e,a);throw new Error(`Unknown fused activation ${t}.`)}var Eh=(e,t)=>!(e>0)||t==="linear";function DM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Eh(M.state.gradientDepth,l)===!1){let T=At(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),_h(T,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&$(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),$(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),$(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),$(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Nc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(T,k)=>{let[S,F,A,R]=k,P=Sh(T,A,l);$(Jr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=Ay(F.shape,P,S,n,a),V=sb(F,P,S.shape,n,a),G=[z,V];if(R!=null){let H=Ch(R,P);G.push(H)}return G},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?ja((T,k,S)=>{let F=M.runKernel(yi,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):ja((T,k,S,F)=>{let A=M.runKernel(yi,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var EM=O({fusedConv2d_:DM});function RM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(xd,c,u)}var Mk=O({depthwiseConv2dNativeBackpropFilter_:RM});function MM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(vd,c,u);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Pk=O({depthwiseConv2dNativeBackpropInput_:MM});function PM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Eh(M.state.gradientDepth,l)===!1){let T=Qr(e,t,n,a,r,s,i);return o!=null&&(T=J(T,o)),_h(T,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),$(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),$(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),$(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),$(Ga(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&$(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Nc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),bt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(T,k)=>{$(Jr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,F,A,R]=k,P=Sh(T,A,l),z=Pk(F.shape,P,S,n,a,s,i),V=Mk(F,P,S.shape,n,a,s,i);if(R!=null){let G=Ch(g,P);return[z,V,G]}return[z,V]},x={x:h,filter:d,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?ja((T,k,S)=>{let F=M.runKernel(bi,x,v);return S([k,T,F]),m&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d):ja((T,k,S,F)=>{let A=M.runKernel(bi,x,v);return F([k,T,A,S]),m&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:b}})(h,d,g)}var FM=O({fusedDepthwiseConv2d_:PM});function OM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Eh(M.state.gradientDepth,s)===!1){let R=ze(e,t,n,a);return r!=null&&(R=J(R,r)),_h(R,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Ot(m),y=Ot(f);$(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),$(hr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),$(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),x=n?U(l,[g,u,d]):U(l,[g,d,u]),v=a?U(c,[y,h,p]):U(c,[y,p,h]),T;r!=null&&(T=E(r,"bias","fused matMul"),[T]=Nt(T,l),bt(b,T.shape));let k;i!=null&&(k=E(i,"prelu weights","fused matMul"));let S=(R,P)=>{let[z,V,G,H]=P,X=Sh(U(R,G.shape),G,s),j,te;if(!n&&!a?(j=ze(X,V,!1,!0),te=ze(z,X,!0,!1)):!n&&a?(j=ze(X,V,!1,!1),te=ze(X,z,!0,!1)):n&&!a?(j=ze(V,X,!1,!0),te=ze(z,X,!1,!1)):(j=ze(V,X,!0,!0),te=ze(X,z,!0,!0)),r!=null){let Q=Ch(H,X);return[j,te,Q]}else return[j,te]},F={a:x,b:v,bias:T,preluActivationWeights:k},A={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ja((R,P,z)=>{let V=M.runKernel(gi,F,A);return z([R,P,V]),{value:U(V,b),gradFunc:S}})(x,v):ja((R,P,z,V)=>{let G=M.runKernel(gi,F,A);return V([R,P,G,z]),{value:U(G,b),gradFunc:S}})(x,v,T)}var AM=O({fusedMatMul_:OM});function LM(e){return rb(e,.54,.46)}var zM=O({hammingWindow_:LM});function WM(e){return rb(e,.5,.5)}var Ok=O({hannWindow_:WM});function BM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([Be(e,s,t-o),Cn([o],r)]);i.push(l),s+=n}return i.length===0?Sa([],[0,t]):U(Je(i),[i.length,t])}var Lk=O({frame_:BM});function VM(e,t,n,a,r=Ok){a==null&&(a=Rk(t));let s=Lk(e,t,n),i=W(s,r(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Pc(Be(i,[l,0],[1,t]),a));return Je(o)}var UM=O({stft_:VM});function GM(e,t,n,a,r="bilinear",s=0){let i=E(e,"image","cropAndResize"),o=E(t,"boxes","cropAndResize","float32"),l=E(n,"boxInd","cropAndResize","int32"),c=o.shape[0];$(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),$(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),$(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),$(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),$(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(Po,u,p)}var HM=O({cropAndResize_:GM});function jM(e){let t=E(e,"image","flipLeftRight","float32");$(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(Uo,n,{})}var qM=O({flipLeftRight_:jM});function XM(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");$(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(Tl,s,i)}var KM=O({rotateWithOffset_:XM});function Ul(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),$(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),$(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),$(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),$(t.rank===1,()=>"scores must be a 1D tensor"),$(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),$(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function YM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(al,{boxes:s,scores:i},l)}var JM=O({nonMaxSuppression_:YM});function ZM(e,t,n){let a=QM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function QM(e,t,n){return tP(e,t,n||eP)}function eP(e,t){return e>t?1:e<t?-1:0}function tP(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function zk(e,t,n,a,r){return ib(e,t,n,a,r,0)}function Wk(e,t,n,a,r,s){return ib(e,t,n,a,r,0,!1,s,!0)}function Bk(e,t,n,a,r,s){return ib(e,t,n,a,r,s,!0)}function ib(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Vk);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length<n&&c.length>0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let T=p.length-1;T>=x;--T){let k=nP(e,b,p[T]);if(k>=a){v=!0;break}if(g.score=g.score*aP(a,u,k),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&ZM(c,g,Vk))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function nP(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function aP(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function Vk(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function rP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Ul(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=zk(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qe(p,"int32")}var sP=rP;function iP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(sl,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var oP=O({nonMaxSuppressionWithScore_:iP});async function lP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=Bk(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(d,"int32"),selectedScores:Qe(h)}}var uP=lP;function cP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Ul(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(rl,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var pP=O({nonMaxSuppressionPadded_:cP});async function dP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Ul(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Wk(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qe(m,"int32"),validOutputs:ve(f,"int32")}}var hP=dP;function mP(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");$(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),$(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(ni,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Uk=O({resizeBilinear_:mP});function fP(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");$(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),$(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),$(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),$(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(lc,o,l);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gk=O({resizeNearestNeighbor_:fP});function gP(e,t,n="nearest",a="constant",r=0,s){let i=E(e,"image","transform","float32"),o=E(t,"transforms","transform","float32");$(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),$(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),$(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},c={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return M.runKernel(Ld,l,c)}var yP=O({transform_:gP});function bP(e,t,n){$(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),$(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");$(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=U(mh(0,s,1,"int32"),[-1,1]),l=mh(0,i,1,"int32"),c=he(o,l),u=da(Si(c,ve(+t,"int32")),es(c,ve(-n,"int32"))),p=xt([s,i],a.dtype);return U(Dt(ut(U(a,[-1,s,i])).map(d=>Sn(u,d,p))),r)}var xP=O({bandPart_:bP});function vP(e){let t;if(Array.isArray(e)){t=!1,$(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)$(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>ts(r,[0]));$(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(M.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=W(Se(W(n[i],s)),n[i]);s=he(s,o)}return ye(s,Nh(s,"euclidean"))}));return t?Dt(n,0):n}var wP=O({gramSchmidt_:vP});function kP(e,t=!1){if($(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Hk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=ut(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=Hk(l,t);r.push(c),s.push(u)});let i=U(Dt(r,0),e.shape),o=U(Dt(s,0),e.shape);return[i,o]}}function Hk(e,t=!1){return M.tidy(()=>{$(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Ly(n),s=Kr(e),i=Sa([[1]],[1,1]),o=Kr(i),l=n>=a?a:n;for(let c=0;c<l;++c){let u=s,p=o,d=r;[o,s,r]=M.tidy(()=>{let h=Be(s,[c,c],[n-c,1]),m=Nh(h),f=Be(s,[c,c],[1,1]),g=Sn(pa(f,0),Sa([[-1]]),Sa([[1]])),y=he(f,W(g,m)),b=ye(h,y);b.shape[0]===1?o=Kr(i):o=Je([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=St(ye(ze(g,y),m)),v=Be(s,[c,0],[n-c,a]),T=W(x,o),k=Ve(o);if(c===0)s=he(v,ze(T,ze(k,v)));else{let A=he(v,ze(T,ze(k,v)));s=Je([Be(s,[0,0],[c,a]),A],0)}let S=Ve(T),F=Be(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=he(F,ze(ze(F,o),S));else{let A=he(F,ze(ze(F,o),S));r=Je([Be(r,[0,0],[n,c]),A],1)}return[o,s,r]}),Ae([u,p,d])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var IP=O({qr_:kP}),mn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(mn||(mn={}));function TP(e,t,n=mn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:W(a,r);if(n===mn.NONE)return s;if(n===mn.SUM)return Se(s);if(n===mn.MEAN){if(r==null)return Ct(s);{let i=a.size/r.size,o=ye(Se(s),Se(r));return i>1?ye(o,ve(i)):o}}if(n===mn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ye(Se(s),ve(a.size));{let i=W(r,Xa(a.shape)),o=ue(Se(_i(i,ve(0))),"float32");return ye(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var yr=O({computeWeightedLoss_:TP});function NP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),un(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(he(r,s));return yr(o,i,a)}var SP=O({absoluteDifference_:NP});function CP(e,t,n,a,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),un(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),c=he(l,Se(W(s,i),n,!0));return yr(c,o,r)}var _P=O({cosineDistance_:CP});function EP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),un(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=he(W(ve(2),r),o);let l=qe(he(o,W(r,s)));return yr(l,i,a)}var FP=O({hingeLoss_:EP});function AP(e,t,n,a=1,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),un(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),c=zt(he(i,s)),u=Ll(c,l),p=he(c,u),d=J(W(ve(.5),ot(u)),W(l,p));return yr(d,o,r)}var $P=O({huberLoss_:AP});function DP(e,t,n,a=1e-7,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),un(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),c=ve(a),u=St(W(s,Pn(J(i,c)))),p=W(he(l,s),Pn(J(he(l,i),c))),d=he(u,p);return yr(d,o,r)}var RP=O({logLoss_:DP});function MP(e,t,n,a=mn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),un(r.shape,s.shape,"Error in meanSquaredError: ");let o=kh(r,s);return yr(o,i,a)}var PP=O({meanSquaredError_:MP});function OP(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");un(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=qe(a),s=W(a,n),i=lh(dn(St(zt(a))));return J(he(r,s),i)}function LP(e,t,n,a=0,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),un(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(.5);s=J(W(s,he(u,c)),W(p,c))}let l=OP(s,i);return yr(l,o,r)}var zP=O({sigmoidCrossEntropy_:LP});function WP(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ja((a,r,s)=>{let i=Vy(r,[n],!0),o=he(ue(r,"float32"),i);s([a,o]);let l=St(W(o,a));return{value:Se(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Ci(c.shape,[n]);return[W(U(c,h),he(ue(p,"float32"),dn(d))),W(U(c,h),he(dn(d),ue(p,"float32")))]}}})(e,t)}function BP(e,t,n,a=0,r=mn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),un(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=ve(a),u=ve(1),p=ve(s.shape[1]);s=J(W(s,he(u,c)),ye(c,p))}let l=WP(s,i);return yr(l,o,r)}var VP=O({softmaxCrossEntropy_:BP}),UP={fft:Mc,ifft:Bl,rfft:Pc,irfft:wh},GP={hammingWindow:zM,hannWindow:Ok,frame:Lk,stft:UM},Ka={flipLeftRight:qM,resizeNearestNeighbor:Gk,resizeBilinear:Uk,rotateWithOffset:KM,cropAndResize:HM,nonMaxSuppression:JM,nonMaxSuppressionAsync:sP,nonMaxSuppressionWithScore:oP,nonMaxSuppressionWithScoreAsync:uP,nonMaxSuppressionPadded:pP,nonMaxSuppressionPaddedAsync:hP,transform:yP},jk={bandPart:xP,gramSchmidt:wP,qr:IP},HP={absoluteDifference:SP,computeWeightedLoss:yr,cosineDistance:_P,hingeLoss:FP,huberLoss:$P,logLoss:RP,meanSquaredError:PP,sigmoidCrossEntropy:zP,softmaxCrossEntropy:VP},br=class extends j0{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ae(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return yk(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(br,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Fh=class extends br{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=J(W(i,this.rho),W(ot(s),1-this.rho)),c=W(ye(rn(J(o,this.epsilon)),rn(J(i,this.epsilon))),s),u=J(W(o,this.rho),W(ot(c),1-this.rho));i.assign(l),o.assign(u);let p=J(W(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Fh.className="Adadelta";Yr(Fh);var Ah=class extends br{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>Cn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=J(s,ot(r));s.assign(i);let o=J(W(ye(r,rn(J(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ah.className="Adagrad";Yr(Ah);var $h=class extends br{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=he(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=J(W(u,this.beta2),W(ot(l),1-this.beta2)),h=ye(p,n),m=ye(d,a);c.assign(p),u.assign(d);let f=J(W(ye(h,J(rn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(gr(this.beta1,this.iterations_+1)),this.accBeta2.assign(gr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};$h.className="Adam";Yr($h);var Dh=class extends br{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=he(1,this.accBeta1),a=ye(-this.learningRate,J(W(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=J(W(c,this.beta1),W(l,1-this.beta1)),d=W(u,this.beta2),h=zt(l),m=qa(d,h);c.assign(p),u.assign(m);let f=J(W(ye(a,n),ye(p,J(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(J(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Dh.className="Adamax";Yr(Dh);var Oc=class extends br{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=J(W(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=qt(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Oc.className="SGD";Yr(Oc);var Rh=class extends Oc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=J(W(this.m,r),s);this.useNesterov?i=J(W(this.c,J(s,W(o,this.m))),a):i=J(W(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Rh.className="Momentum";Yr(Rh);var Mh=class extends br{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=J(W(i,this.decay),W(ot(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=J(W(c,this.decay),W(s,1-this.decay)),p=ye(W(s,this.learningRate),rn(he(l,J(ot(u),this.epsilon)))),d=J(W(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=he(a,d);a.assign(h)}else{let c=J(W(i,this.decay),W(ot(s),1-this.decay)),u=J(W(o,this.momentum),ye(W(s,this.learningRate),rn(J(c,this.epsilon))));i.assign(c),o.assign(u);let p=he(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Mh.className="RMSProp";Yr(Mh);var Fi=class{static sgd(e){return new Oc(e)}static momentum(e,t,n=!1){return new Rh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Mh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new $h(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Fh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Dh(e,t,n,a,r)}static adagrad(e,t=.1){return new Ah(e,t)}},Ai={sgd:Fi.sgd,momentum:Fi.momentum,adadelta:Fi.adadelta,adagrad:Fi.adagrad,rmsprop:Fi.rmsprop,adamax:Fi.adamax,adam:Fi.adam},jP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ph(){return new Promise(e=>jP(()=>e()))}var _={};Le(_,{ERF_A1:()=>aO,ERF_A2:()=>rO,ERF_A3:()=>sO,ERF_A4:()=>iO,ERF_A5:()=>oO,ERF_P:()=>nO,PARALLELIZE_THRESHOLD:()=>ob,SELU_SCALE:()=>Xk,SELU_SCALEALPHA:()=>qk,applyActivation:()=>_h,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>ED,assertParamsConsistent:()=>qP,assignToTypedArray:()=>fO,axesAreInnerMostDims:()=>Wy,calculateShapes:()=>R0,combineLocations:()=>xk,complexWithEvenIndex:()=>dO,complexWithOddIndex:()=>hO,computeConv2DInfo:()=>Nc,computeConv3DInfo:()=>tk,computeDefaultPad:()=>_y,computeDilation2DInfo:()=>ZA,computeOptimalWindowSize:()=>KP,computeOutAndReduceShapes:()=>vk,computeOutShape:()=>XP,computePool2DInfo:()=>ek,computePool3DInfo:()=>e$,convertConv2DDataFormat:()=>Z0,eitherStridesOrDilationsAreOne:()=>Ga,expandShapeToKeepDim:()=>Ci,exponent:()=>yO,exponents:()=>gO,fromStringArrayToUint8:()=>vO,fromUint8ToStringArray:()=>xO,getAxesPermutation:()=>wk,getBroadcastDims:()=>H$,getComplexWithIndex:()=>mO,getFusedBiasGradient:()=>Ch,getFusedDyActivation:()=>Sh,getImageCenter:()=>YP,getInnerMostAxes:()=>FD,getPermuted:()=>QP,getReductionAxes:()=>Wt,getReshaped:()=>JP,getReshapedPermuted:()=>ZP,getSliceBeginCoords:()=>eO,getSliceSize:()=>tO,getUndoAxesPermutation:()=>By,log:()=>uO,mergeRealAndImagArrays:()=>cO,prepareAndValidate:()=>D0,prepareSplitSize:()=>bO,segment_util:()=>Kk,shouldFuse:()=>Eh,slice_util:()=>an,splitRealAndImagArrays:()=>pO,tupleValuesAreOne:()=>Jr,upcastType:()=>ua,validateInput:()=>my,validateUpdateShape:()=>hy,warn:()=>lO});function qP(e,t){let n=e[0].length;e.forEach((r,s)=>{$(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),$(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)$(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function XP(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var ob=30;function KP(e){return e<=ob?e:od(e,Math.floor(Math.sqrt(e)))}function YP(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function JP(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function QP(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function ZP(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function eO(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function tO(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var qk=1.7580993408473768,Xk=1.0507009873554805,nO=.3275911,aO=.254829592,rO=-.284496736,sO=1.421413741,iO=-1.453152027,oO=1.061405429;function lO(...e){Z().getBool("IS_TEST")||console.warn(...e)}function uO(...e){Z().getBool("IS_TEST")||console.log(...e)}function cO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function pO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function dO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function hO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function mO(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function fO(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function gO(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function yO(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}function bO(e,t,n=0){let a=[];if(typeof t=="number")$(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);$(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}$(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var Kk={};Le(Kk,{collectGatherOpShapeInfo:()=>IO,computeOutShape:()=>kO,segOpComputeOptimalWindowSize:()=>wO});function wO(e,t){let n=!1,a;for(e<=ob?(a=e,n=!0):a=od(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=od(e,a+1);return a}function kO(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function IO(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),c*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function xO(e){try{return e.map(t=>Gd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function vO(e){return e.map(t=>fc(t))}var Ya={};Le(Ya,{nonMaxSuppressionV3Impl:()=>zk,nonMaxSuppressionV4Impl:()=>Wk,nonMaxSuppressionV5Impl:()=>Bk,whereImpl:()=>Ek});var Yk={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Vl(ue(n,"float32"),-1))}}},TO={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(ue(n,"float32")),r=rn(he(ve(1),a));return St(ye(e,r))}}}},NO={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=rn(he(ot(ue(n,"float32")),1));return ye(e,a)}}}},SO={kernelName:Br,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},CO={kernelName:Ts,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},_O={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},EO={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},FO={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,rn(he(ve(1),ot(ue(n,"float32")))))}}},AO={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=rn(J(ve(1),ot(ue(n,"float32"))));return ye(e,a)}}}},$O={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=J(ot(n),ot(a)),i=W(e,ye(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Se(i,o)),U(i,n.shape)},b:()=>{let s=J(ot(n),ot(a)),i=St(W(e,ye(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Se(i,o)),U(i,a.shape)}}}},DO={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(ot(ue(n,"float32")),1))}}},RO={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,he(ve(1),ot(ue(n,"float32"))))}}};function MO(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),$(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),$(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&$(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(dd,p,d);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var PO=O({avgPool3dGrad_:MO}),OO={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>PO(e,a,r,s,i,o)}}};function LO(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");$(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=U(s,[1,s.shape[0],s.shape[1],s.shape[2]])),$(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),$(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(pd,u,p);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var zO=O({avgPoolGrad_:LO}),WO={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>zO(e,a,r,s,i)}}},BO={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},VO={kernelName:Ju,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Ac(e,a,r)}}},UO={kernelName:a0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},GO={kernelName:_s,gradFunc:e=>({x:()=>e.clone()})},HO={kernelName:Es,gradFunc:e=>({x:()=>Ge(e)})},jO={kernelName:Vr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>Sn(da(es(a,r),Si(a,s)),e,Ge(e))}}},qO={kernelName:Qu,inputsToSave:["x"],gradFunc:Yk.gradFunc},XO={kernelName:Ro,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=la(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},KO={kernelName:Fs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return $(Jr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Ay(a.shape,e,r,i,o,l),filter:()=>sb(a,e,r.shape,i,o,l)}}},YO={kernelName:As,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>sb(e,a,r.shape,s,i,o,l)}}};function JO(e,t,n,a,r){let s=e;e.rank===4&&(s=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),$(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),$(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),$(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),$(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),$(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(gd,o,l)}var QO=O({conv3DBackpropFilter_:JO}),ZO={kernelName:Zu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;$(Jr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>ck(i.shape,e,o,r,s),filter:()=>QO(i,e,o.shape,r,s)}}},eL={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(St(bh(ue(n,"float32"))),e)}}},tL={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(xh(ue(n,"float32")),e)}}},nL={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=wk([r],a.rank),l=sh(e,r,s,!i);return o!=null&&(l=Ve(l,o)),l}}}},aL={kernelName:Rs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;$(Jr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return $(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),$(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),$(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),$(Ga(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&$(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Pk(l.shape,e,c,r,s,a,i),filter:()=>Mk(l,e,c.shape,r,s,a,i)}}},rL={kernelName:ec,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(kd,s,n),filter:()=>M.runKernel(Id,i,n)}}},sL={kernelName:Lo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(Td,a)}}},iL={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(dn(St(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,a)}}},oL={kernelName:Ps,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},lL={kernelName:Bo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},uL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,dn(n))}}},cL={kernelName:Os,gradFunc:e=>({x:()=>Ge(e)})},pL={kernelName:Ls,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return St(ye(s,ue(o,"float32")))}}}},dL={kernelName:zs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,c=Wt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=he(r,s),d=W(e,l),h=gh(J(i,ve(a))),m=W(W(W(h,h),h),ve(-.5));return{x:()=>s.rank===1?U(W(W(e,Ha(U(h,[1,1,1,s.shape[0]]),u)),l),r.shape):U(W(W(e,h),l),r.shape),mean:()=>{let f=W(W(h,ve(-1)),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},variance:()=>{let f=W(W(m,p),d);return s.rank===1&&(f=Se(f,c)),U(f,s.shape)},scale:()=>{let f=W(p,h),g=W(e,f);return s.rank===1&&(g=Se(g,c)),U(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,c)),U(f,s.shape)}}}},hL={kernelName:Go,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=la(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=Jk(0,u),m=Jk(u+1,u+1+d),f=Qk([c,[l],p]),g=U(e,f),y=U(r,[l]),b=Qk([[u],h,m]),x=Ve(g,b),v=tb(x,y,a.shape[i]),T=By(b);return v=Ve(v,T),v},indices:()=>r}}};function Jk(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Qk(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var mL={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},fL={kernelName:Bs,gradFunc:e=>({x:()=>ue(e,"float32")})},gL={kernelName:qo,gradFunc:e=>({x:()=>Ge(e)})},yL={kernelName:Xo,gradFunc:e=>({x:()=>Ge(e)})},bL={kernelName:Ko,gradFunc:e=>({x:()=>Ge(e)})},xL={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=pa(a,0);return{x:()=>Sn(s,e,W(e,r))}}},vL={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,J(n,1))}}},wL={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,ue(n,"float32"))}}},kL={kernelName:r0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return he(e,W(Se(e,r,s),i))}}}};function IL(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(Ed,o,l)}var TL=O({localResponseNormalizationBackprop_:IL}),NL={kernelName:rc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>TL(a,r,e,s,i,o,l)}}};function Zk(e,t,n,a){return t.rank<n.rank&&(t=U(t,Ci(t.shape,a))),e.rank<n.rank&&(e=U(e,Ci(e.shape,a))),{x:()=>W(e,ue(Zr(n,t),e.dtype))}}var e1={kernelName:Gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=la(r,s.shape),l=Zk(e,i,s,o);return{x:()=>l.x()}}},SL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(es(n,a),"float32")),b:()=>W(e,ue(oh(n,a),"float32"))}}};function CL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),$(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),$(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),$(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(Ad,m,f);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var _L=O({maxPool3dGrad_:CL}),EL={kernelName:sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>_L(e,a,r,s,i,o,l)}}};function FL(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");$(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),$(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),$(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&$(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(Fd,u,p)}var AL=O({maxPoolGrad_:FL}),$L={kernelName:js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>AL(e,a,r,s,i,o)}}},DL={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=la(r,a.shape),i=vk(a.shape,s)[1],o=Ot(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=U(e,l);return ye(W(c,Xa(a.shape,"float32")),o)}}}},RL={kernelName:Xs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=la(r,s.shape),l=Zk(e,i,s,o);return{x:()=>l.x()}}},ML={kernelName:Ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,ue(Si(n,a),"float32")),b:()=>W(e,ue(pa(n,a),"float32"))}}},PL={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},OL={kernelName:el,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?U(Se(e,s),n.shape):e},b:()=>{let s=W(e,St(Ml(ye(n,a)))),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},LL={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=W(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);return i.length>0?U(Se(s,i),a.shape):s}}}},zL={kernelName:tl,gradFunc:e=>({x:()=>St(e)})},WL={kernelName:Js,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>xt(n.shape,"float32")}}},BL={kernelName:il,gradFunc:e=>({x:()=>Ge(e)})},VL={kernelName:ol,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ut(e,a).map(r=>()=>r)}},t1={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},UL={kernelName:Zs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=bt(s.shape,i.shape);return{a:()=>{let l=ue(i,"float32"),c=W(e,W(l,gr(s,he(l,ve(1))))),u=Wt(s.shape,o);return u.length>0&&(c=Se(c,u)),U(c,s.shape)},b:()=>{let l=pa(s,0),c=Sn(l,Pn(s),Ge(s)),u=W(e,W(r,c)),p=Wt(i.shape,o);return p.length>0&&(u=Se(u,p)),U(u,i.shape)}}}},GL={kernelName:ei,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=pa(n,0);return{x:()=>Sn(r,e,W(e,a)),alpha:()=>{let s=Sn(r,Ge(e),W(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),U(s,a.shape)}}}},HL={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=ye(e,ue(a,"float32")),i=Wt(n.shape,r);return i.length>0?U(Se(s,i),n.shape):s},b:()=>{let s=W(e,ue(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=U(Se(s,i),a.shape));let o=ot(a);return St(ye(s,ue(o,"float32")))}}}},jL={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,St(ot(n)))}}},qL={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(Si(n,6),Vl(n));return{x:()=>W(e,ue(a,"float32"))}}},XL={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ue(Vl(n),"float32"))}}},KL={kernelName:cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},YL={kernelName:ni,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Pd,r,n)}}},JL={kernelName:lc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(Md,r,n)}}},QL={kernelName:ri,gradFunc:(e,t,n)=>{let{dims:a}=n,r=la(a,e.shape);return{x:()=>Ln(e,r)}}},ZL={kernelName:si,gradFunc:e=>({x:()=>Ge(e)})},e3={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(ye(e,W(gr(n,1.5),2)))}}},t3={kernelName:dl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Ge(n),"float32"),t:()=>W(e,ue(n,e.dtype)),e:()=>W(e,ue(Fc(n),e.dtype))}}},n3={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=pa(n,ve(0)),r=ve(qk),s=ve(Xk),i=W(e,s),o=W(W(e,r),dn(ue(n,"float32")));return Sn(a,i,o)}}}},a3={kernelName:li,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,he(ve(1),n)))}}},r3={kernelName:gl,gradFunc:e=>({x:()=>Ge(e)})},s3={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(_c(ue(n,"float32")),e)}}},i3={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(rh(ue(n,"float32")),e)}}},o3={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=U0(a,r,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>ea(e,c)}}},l3={kernelName:pi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=W(e,a);return{logits:()=>he(i,W(Se(i,[r],s),a))}}},u3={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ca(n))}}},n1={kernelName:uc,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Sc(e,a,r)}}},a1={kernelName:bl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},c3={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,W(rn(ue(n,"float32")),2))}}},p3={kernelName:cc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(ue(n,"float32"),2))}}},d3={kernelName:di,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>W(e,W(r,he(n,a))),b:()=>W(e,W(r,he(a,n)))}}},h3={kernelName:Gr,gradFunc:e=>({x:()=>Ge(e)})},m3={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=bt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),U(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),U(St(s),a.shape)}}}},f3={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;la(s,a.shape).forEach(l=>{r[l]=1});let i=U(e,r),o=W(i,Xa(a.shape,"float32"));return{x:()=>o}}},g3={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ye(e,ot(_c(n)))}}},y3={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(he(ve(1),ot(n)),e)}}},b3={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=J(s,Be(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)s=J(s,Be(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],c*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},x3={kernelName:fi,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=By(r);return{x:()=>Ve(e,s)}}},v3={kernelName:kl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},k3={kernelName:pc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>w3(e,n)}}};function w3(e,t){let n=qa(t,Ge(t)),a=Ni(e,n),r=es(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=hn(r,o+1);r=da(r,Xa(a.shape,"bool"));let i=Ge(a);return Sn(r,a,i)}var I3={kernelName:Il,gradFunc:e=>({x:()=>Ge(e)})},T3=[Yk,TO,NO,SO,CO,_O,EO,FO,AO,$O,DO,RO,OO,WO,BO,VO,UO,GO,HO,jO,qO,XO,YO,KO,ZO,eL,tL,nL,aL,rL,HL,sL,iL,oL,lL,uL,pL,cL,dL,hL,mL,fL,gL,yL,bL,xL,vL,wL,kL,NL,e1,e1,SL,EL,$L,DL,RL,ML,PL,OL,LL,zL,WL,BL,VL,t1,t1,UL,GL,jL,qL,XL,KL,YL,JL,QL,ZL,e3,t3,n3,a3,r3,s3,i3,o3,l3,u3,n1,n1,a1,a1,c3,d3,p3,h3,m3,f3,g3,y3,b3,x3,v3,k3,I3];for(let e of T3)s0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),xy(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),vy(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),J(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),eh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Ic(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Tc(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),wy(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),$(this.size===1,()=>"The array must have only 1 element."),U(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),U(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),U(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),ky(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Iy(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Ty(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Ny(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Sy(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Qn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Sc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),fr(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Cc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ue(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Fy(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Xt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),Je([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),nh(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),ah(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),_c(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),rh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),sh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Dy(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Qr(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Ry(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),My(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),dk(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Rl(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),Zr(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Py(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),hn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),Oy(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Mc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Ml(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Zd(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Ni(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),es(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),pa(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),Bl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),wh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),hk(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),mk(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),fk(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Ec(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Si(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),oh(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),zy(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),bk(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ch(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Vy(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),Pn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),lh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),da(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Fc(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),ph(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),kk(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),$t(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),qa(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),Ct(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Ol(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Ll(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Gy(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),Hy(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Nh(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),_i(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Fl(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),On(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),ea(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),Nk(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),gr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),$c(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),hh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Xy(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),qe(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),fh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Uk(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Gk(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Ln(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Pc(this)};Y().prototype.round=function(){return this.throwIfDisposed(),Ky(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),gh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),yh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ei(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),ca(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),Yy(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),bh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),xh(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Na(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Pl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Ac(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),rn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),kh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),ts(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return Dt(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Vl(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Qy(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),he(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),Zy(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Dl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Ha(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ue(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ue(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ue(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),eb(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ve(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Th(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),tb(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),ut(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),Sn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var r1={};Le(r1,{maxNorm:()=>N3,minMaxNorm:()=>_3,nonNeg:()=>C3,unitNorm:()=>S3});var lb;function Bt(){return lb==null&&(lb=J0().epsilon()),lb}function _a(){return"channelsLast"}var xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},Ea=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ea.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},s1=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,s1.prototype)}};function $i(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ja(e,t){if(!e)throw new s1(t)}function i1(e,t){let n=0;for(let a of e)a===t&&n++;return n}function _n(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function vr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Di(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ha={};function ub(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function cb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>cb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:cb(a))}}}function Lc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ha)i=ha[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ha?[o,l]=ha.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(ha))c[h]=ha[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},ha);for(let h of Object.keys(n))ha[h]=n[h];cb(s.config);let d=l(o,s.config,n,r);return ha=Object.assign({},p),d}else{let c=Object.assign({},ha);for(let p of Object.keys(n))ha[p]=n[p];let u=new o(s.config);return ha=Object.assign({},c),u}}}function E3(e,t){return e<t?-1:e>t?1:0}function Oh(e,t){return-1*E3(e,t)}function as(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function F3(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ri(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function pb(e,t,n=0,a=Infinity){return Ja(n>=0),Ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${o1(e)}.`)}function o1(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>o1(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function A3(e,t){let n=w.now(),a;return(...r)=>{let s=w.now();return s-n<t||(n=s,a=e(...r)),a}}function l1(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function db(e,t){return D(()=>rn(Se(W(e,e),t,!0)))}var zc=class extends re.Serializable{getConfig(){return{}}},hb=class extends zc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=db(e,this.axis),n=Xt(t,0,this.maxValue);return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};hb.className="MaxNorm";re.registerClass(hb);var mb=class extends zc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>ye(e,J(Bt(),db(e,this.axis))))}getConfig(){return{axis:this.axis}}};mb.className="UnitNorm";re.registerClass(mb);var fb=class extends zc{apply(e){return qe(e)}};fb.className="NonNeg";re.registerClass(fb);var gb=class extends zc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=db(e,this.axis),n=J(W(this.rate,Xt(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,ye(n,J(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};gb.className="MinMaxNorm";re.registerClass(gb);var u1={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return ub(e)}function c1(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Ut(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in u1?u1[e]:e,config:{}};return c1(t)}else return e instanceof zc?e:c1(e)}function N3(e){return new hb(e)}function S3(e){return new mb(e)}function C3(){return new fb}function _3(e){return new gb(e)}var p1={};Le(p1,{constant:()=>R3,glorotNormal:()=>B3,glorotUniform:()=>W3,heNormal:()=>V3,heUniform:()=>U3,identity:()=>L3,leCunNormal:()=>G3,leCunUniform:()=>H3,ones:()=>D3,orthogonal:()=>j3,randomNormal:()=>P3,randomUniform:()=>M3,truncatedNormal:()=>O3,varianceScaling:()=>z3,zeros:()=>$3});var q3=["channelsFirst","channelsLast"],X3=["nearest","bilinear"],K3=["valid","same","causal"],Y3=["max","avg"],J3=["sum","mul","concat","ave"],Gl=new Map;function Rt(e){Ri(q3,"DataFormat",e)}function Q3(e){Ri(X3,"InterpolationFormat",e)}function ta(e){Ri(K3,"PaddingMode",e)}function d1(e){Ri(Y3,"PoolMode",e)}var Wc=[],h1="/";function Mi(e,t){Wc.push(e);try{let n=t();return Wc.pop(),n}catch(n){throw Wc.pop(),n}}function Z3(){return Wc.length===0?"":Wc.join(h1)+h1}function f1(e){if(!m1(e))throw new Error("Not a valid tensor name: '"+e+"'");return Z3()+e}function g1(e){if(!m1(e))throw new Error("Not a valid tensor name: '"+e+"'");Gl.has(e)||Gl.set(e,0);let t=Gl.get(e);if(Gl.set(e,Gl.get(e)+1),t>0){let n=`${e}_${t}`;return Gl.set(n,1),n}else return e}var ez=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function m1(e){return!!e.match(ez)}function tz(e){return e===parseInt(e.toString(),10)}function rs(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function y1(e){return e=Array.isArray(e)?new Float32Array(e):e,Qe(e)}function Hl(e){return Ol(y1(e)).dataSync()[0]}function ss(e){return Zn(y1(e)).dataSync()[0]}function Fa(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Bc(e,t){return e.asType(t)}function Vc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function nz(e,t){return D(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Vc(e,1);return yb(n,[1,t,1])})}function az(e){let t=[rs(e.shape)];return e.reshape(t)}function rz(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],rs(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return D(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:return Jy(e,[t,0],[n,e.shape[1]]);case 3:return Wl(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Rc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function bb(e,t,n){return D(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:return Jy(e,[0,t],[e.shape[0],n]);case 3:return Wl(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Rc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lh(e,t,n,a){return D(()=>{switch(e.rank){case 1:return vh(e,t,n);case 2:switch(a){case 1:return Pi(e,t,n);case 2:return bb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Pi(e,t,n);case 2:return Wl(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return bb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Pi(e,t,n);case 2:return Rc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Rc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return bb(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function xb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function b1(e,t){switch(e.rank){case 1:return ik([e,t]);case 2:return ok([e,t],0);case 3:return lk([e,t],0);case 4:return uk([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function yb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ha(e,t)}function zh(e,t=0,n=1,a,r){return Sk(e,t,n,a,r)}function Qa(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return ns.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?vb(e.rank,a,_a()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return ns.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?vb(e.rank,a,_a()):null,activation:n}).reshape(p)}}function x1(e,t,n){return D(()=>(Array.isArray(t)?t=Qe(t,"int32"):t=t.toInt(),Ni(e,t,n)))}function Uc(e){return W(e,e)}function vb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Za(e,t,n){return D(()=>(n==null&&(n=_a()),Rt(n),e.add(vb(e.rank,t,n))))}function sz(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Rl(e)}function iz(e){return D(()=>ye(e,zt(e).add(1)))}function v1(e,t,n,a){return D(()=>Dk(e,t,n,a))}function oz(e){return D(()=>{let t=J(.5,W(.2,e));return Xt(t,0,1)})}function Gc(e,t,n=!1){return n?e():t()}var lz=["fanIn","fanOut","fanAvg"],uz=["normal","uniform","truncatedNormal"];function cz(e){Ri(lz,"FanMode",e)}function pz(e){Ri(uz,"Distribution",e)}var ma=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},wb=class extends ma{apply(e,t){return xt(e,t)}};wb.className="Zeros";re.registerClass(wb);var Wh=class extends ma{apply(e,t){return Xa(e,t)}};Wh.className="Ones";re.registerClass(Wh);var kb=class extends ma{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>W(ve(this.value),Xa(e,t)))}getConfig(){return{value:this.value}}};kb.className="Constant";re.registerClass(kb);var Ib=class extends ma{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return zl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Ib.className="RandomUniform";re.registerClass(Ib);var Tb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return zh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Tb.className="RandomNormal";re.registerClass(Tb);var Nb=class extends ma{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Ih(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Nb.className="TruncatedNormal";re.registerClass(Nb);var Sb=class extends ma{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,Ly(e[0]))})}getConfig(){return{gain:this.gain}}};Sb.className="Identity";re.registerClass(Sb);function dz(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=rs(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=rs(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=rs(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var En=class extends ma{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,cz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,pz(this.distribution),this.seed=e.seed}apply(e,t){let n=dz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Ih(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return zl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};En.className="VarianceScaling";re.registerClass(En);var Bh=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Bh.className="GlorotUniform";re.registerClass(Bh);var Vh=class extends En{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Vh.className="GlorotNormal";re.registerClass(Vh);var Uh=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Uh.className="HeNormal";re.registerClass(Uh);var Gh=class extends En{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};Gh.className="HeUniform";re.registerClass(Gh);var Hh=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return En.className}};Hh.className="LeCunNormal";re.registerClass(Hh);var jh=class extends En{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return En.className}};jh.className="LeCunNormal";re.registerClass(jh);var Cb=class extends ma{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=zh(n,0,1,"float32"),r=jk.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Cb.className="Orthogonal";re.registerClass(Cb);var w1={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function k1(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return ub(e)}function vt(e){if(typeof e=="string"){let t=e in w1?w1[e]:e;if(t==="GlorotNormal")return new Vh;if(t==="GlorotUniform")return new Bh;if(t==="HeNormal")return new Uh;if(t==="HeUniform")return new Gh;if(t==="LeCunNormal")return new Hh;if(t==="LeCunUniform")return new jh;{let n={};return n.className=t,n.config={},k1(n)}}else return e instanceof ma?e:k1(e)}function $3(){return new wb}function D3(){return new Wh}function R3(e){return new kb(e)}function M3(e){return new Ib(e)}function P3(e){return new Tb(e)}function O3(e){return new Nb(e)}function L3(e){return new Sb(e)}function z3(e){return new En(e)}function W3(e){return new Bh(e)}function B3(e){return new Vh(e)}function V3(e){return new Uh(e)}function U3(e){return new Gh(e)}function G3(e){return new Hh(e)}function H3(e){return new jh(e)}function j3(e){return new Cb(e)}var I1={};Le(I1,{Layer:()=>je,RNN:()=>er,RNNCell:()=>Hc,activation:()=>_z,add:()=>Oz,alphaDropout:()=>vW,average:()=>Lz,averagePooling1d:()=>_b,averagePooling2d:()=>Eb,averagePooling3d:()=>Fb,avgPool1d:()=>qz,avgPool2d:()=>Kz,avgPool3d:()=>Jz,avgPooling1d:()=>Xz,avgPooling2d:()=>Yz,avgPooling3d:()=>Qz,batchNormalization:()=>Gz,bidirectional:()=>dW,concatenate:()=>zz,conv1d:()=>vz,conv2d:()=>wz,conv2dTranspose:()=>kz,conv3d:()=>Iz,convLstm2d:()=>lW,convLstm2dCell:()=>uW,cropping2D:()=>Nz,dense:()=>Ez,depthwiseConv2d:()=>Cz,dot:()=>Uz,dropout:()=>Fz,elu:()=>mz,embedding:()=>Pz,flatten:()=>$z,gaussianDropout:()=>xW,gaussianNoise:()=>bW,globalAveragePooling1d:()=>Zz,globalAveragePooling2d:()=>eW,globalMaxPool1d:()=>mW,globalMaxPool2d:()=>fW,globalMaxPooling1d:()=>N1,globalMaxPooling2d:()=>S1,gru:()=>nW,gruCell:()=>aW,input:()=>T1,inputLayer:()=>hz,layerNormalization:()=>Hz,leakyReLU:()=>gz,lstm:()=>rW,lstmCell:()=>sW,masking:()=>wW,maxPool1d:()=>gW,maxPool2d:()=>yW,maxPooling1d:()=>C1,maxPooling2d:()=>_1,maxPooling3d:()=>tW,maximum:()=>Wz,minimum:()=>Bz,multiply:()=>Vz,permute:()=>Mz,prelu:()=>yz,reLU:()=>fz,repeatVector:()=>Dz,reshape:()=>Rz,rnn:()=>cW,separableConv2d:()=>Tz,simpleRNN:()=>iW,simpleRNNCell:()=>oW,softmax:()=>bz,spatialDropout1d:()=>Az,stackedRNNCells:()=>pW,thresholdedReLU:()=>xz,timeDistributed:()=>hW,upSampling2d:()=>Sz,zeroPadding2d:()=>jz});var kW=0;function E1(){return kW++}var qh={};function Xh(e=""){return e in qh||(qh[e]=0),qh[e]+=1,e+qh[e].toString()}function Ab(e){return Array.isArray(e)&&Array.isArray(e[0])}function Kh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Yh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var F1="Variable",A1=class{constructor(e,t="float32",n=F1,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=E1(),n=n==null?F1:n,this.originalName=f1(n),this.name=g1(this.originalName),this.trainable_=a,this.constraint=r,this.val=_k(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),IW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function IW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function $b(e){return e.map(t=>t.read())}function Db(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Aa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=E1(),s!=null&&(this.originalName=f1(s),this.name=g1(this.originalName)),this.rank=t.length}},TW=0,Jh=class{constructor(e,t){this.callArgs=t,this.id=TW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},NW=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=NW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=vr(n)+"_"+Xh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ea(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return _n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return _n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} is not connected, no input to return.`);return _n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new xr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new xr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return _n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),c=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),a=!0;for(let s of n)if(!(s instanceof Aa)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Aa){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Mi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(_n(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ft(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=_n(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=SW(e),i=this.computeOutputShape(s),o,l=CW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Aa(l,c,this,ft(e),t,this.name,u)):o=new Aa(l,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new xr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new xr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ea(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Yh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return $b(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=$b(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!w.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Db(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=vt("zeros"));let o=a.apply(t,n),l=new A1(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ft(e);t=ft(t),n=ft(n),a=ft(a),r=Kh(r),s=Kh(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new Jh({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function SW(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return _n(t)}function CW(e){return"float32"}function $1(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],c=$1(i,o,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var jl=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Xh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Aa(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";re.registerClass(jl);function D1(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function is(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ae(a)}}function R1(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var M1;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(M1||(M1={}));var _W=125,ql=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},P1=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},EW=class extends ql{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=D(()=>J(this.totals[a],W(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=W(ye(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),qt(t[n])}))}},O1=class extends ql{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},L1=class extends ql{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=_W),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=A3(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await is(n),a.push(this.yield(e,t,n))),a.push(Ph()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await is(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await is(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Ph()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await is(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await is(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Ph()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await is(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await is(e),await this.trainEnd(e))}};function z1(e,t){return e==null&&(e={}),e instanceof ql?[e]:Array.isArray(e)&&e[0]instanceof ql?e:ft(e).map(n=>new L1(n,t))}var fa=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),fa.checkForDuplicate(t),fa.constructors[e]==null&&(fa.constructors[e]=[]),fa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in fa.constructors)fa.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){fa.constructors={}}static createCallbacks(e){let t=[];for(let n in fa.constructors){let a=+n;e>=a&&t.push(...fa.constructors[a])}return t.map(n=>new n)}};fa.constructors={};function W1(e,t,n,a,r,s,i,o,l){let c=new O1,u=[new EW,...fa.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new P1(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function $a(e,t={},n=!1){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Qh(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Uc(e),t,!0),a=Cn(n.shape,Bt()),r=rn(qa(n,a));return ye(e,r)})}function Oi(e,t){return D(()=>Ct(Uc(he(t,e)),-1))}function Zh(e,t){return D(()=>Ct(zt(he(t,e)),-1))}function Xl(e,t){return D(()=>{let n=he(e,t),a=Xt(zt(e),Bt(),Number.MAX_VALUE),r=zt(ye(n,a));return W(100,Ct(r,-1))})}function FW(e,t){return D(()=>{let n=Xt(t,Bt(),Number.MAX_VALUE),a=Pn(J(1,n)),r=Xt(e,Bt(),Number.MAX_VALUE),s=Pn(J(1,r));return Ct(Uc(he(a,s)),-1)})}function AW(e,t){return D(()=>{let n=qa(0,he(1,W(e,t)));return Ct(Uc(n),-1)})}function $W(e,t){return D(()=>{let n=qa(0,he(1,W(e,t)));return Ct(n,-1)})}function DW(e,t){return D(()=>{let n=Se(W(e,t),-1),a=Zn(W(he(1,e),t),-1);return qa(0,J(1,he(a,n)))})}function RW(e,t){return D(()=>{let n=Math.log(2),a=he(t,e),r=he(J(a,Pl(W(-2,a))),n);return Ct(r,-1)})}function jc(e,t,n=!1){return D(()=>{if(n)t=Na(t);else{let a=Se(t,t.shape.length-1,!0);t=ye(t,a)}return t=Xt(t,Bt(),1-Bt()),St(Se(W(e.toFloat(),Pn(t)),t.shape.length-1))})}function em(e,t,n=!1){return D(()=>{let a=Ml(az(e)).toInt();t=Xt(t,Bt(),1-Bt());let r=t.shape,s=Fl(a,r[r.length-1]).reshape(r);return jc(s,t,n)})}function MW(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function tm(e,t){return D(()=>{let n;return n=Xt(t,Bt(),1-Bt()),n=Pn(ye(n,he(1,n))),Ct(MW(e,n),-1)})}function PW(e,t){return D(()=>{let n=Xt(e,Bt(),1),a=Xt(t,Bt(),1);return Se(W(e,Pn(ye(n,a))),-1)})}function OW(e,t){return D(()=>{let n=Pn(J(Bt(),t));return Ct(he(t,W(e,n)),-1)})}function Rb(e,t){return D(()=>{let n=Qh(e,-1),a=Qh(t,-1),r=W(n,a);return St(Se(r,-1))})}var nm={meanSquaredError:Oi,meanAbsoluteError:Zh,meanAbsolutePercentageError:Xl,meanSquaredLogarithmicError:FW,squaredHinge:AW,hinge:$W,categoricalHinge:DW,logcosh:RW,categoricalCrossentropy:jc,sparseCategoricalCrossentropy:em,binaryCrossentropy:tm,kullbackLeiblerDivergence:PW,poisson:OW,cosineProximity:Rb};function Mb(e){if(typeof e=="string"){if(e in nm)return nm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function Pb(e,t){return D(()=>{let n=W(.5,On(t)),a=Bc(pa(t,n),e.dtype);return Ct(Zr(e,a),-1)})}function Ob(e,t){return D(()=>Bc(Zr(Tc(e,-1),Tc(t,-1)),"float32"))}function B1(e,t){return D(()=>da(e.equal(1),t.equal(1)).sum().cast("float32"))}function LW(e,t){return D(()=>da(e.equal(1),t.equal(0)).sum().cast("float32"))}function zW(e,t){return D(()=>da(e.equal(0),t.equal(1)).sum().cast("float32"))}function V1(e,t){return D(()=>{let n=B1(e,t),a=zW(e,t),r=n.add(a);return Sn(pa(r,0),n.div(r),0).cast("float32")})}function WW(e,t){return D(()=>{let n=B1(e,t),a=LW(e,t),r=n.add(a);return Sn(pa(r,0),n.div(r),0).cast("float32")})}function U1(e,t){return tm(e,t)}function G1(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Zr(e,t).asType("float32")}var BW=Oi,VW=Oi,UW=Zh,GW=Zh,HW=Xl,jW=Xl,Lb=jc,qW=Rb,H1=em,am={binaryAccuracy:Pb,categoricalAccuracy:Ob,precision:V1,categoricalCrossentropy:Lb,sparseCategoricalCrossentropy:H1,mse:BW,MSE:VW,mae:UW,MAE:GW,mape:HW,MAPE:jW,cosine:qW};function XW(e){if(typeof e=="string"&&e in am)return am[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function rm(e){if(Ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(nm))if(nm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(am))if(am[n]===e){t=n;break}return t!==void 0?t:e.name}}function KW(e){let t={Adagrad:()=>Ai.adagrad(.01),Adadelta:()=>Ai.adadelta(1,.95,Bt()),Adam:()=>Ai.adam(.001,.9,.999,Bt()),Adamax:()=>Ai.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Ai.rmsprop(.001,.9,0,Bt()),SGD:()=>Ai.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var j1=1*1024*1024;function q1(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!zb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>j1&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${j1}.`)}}function zb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!zb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!zb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function eB(e,t,n,a=console.log){let r=JW(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),sm(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?QW(o[u],n,a):ZW(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=YW(e),c=Yh(e.nonTrainableWeights);a(`Total params: ${l+c}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${c}`),a("_".repeat(t))}function YW(e){let t;return e.collectedTrainableWeights!=null?t=Yh(e.collectedTrainableWeights):t=Yh(e.trainableWeights),t}function JW(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function sm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function QW(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];sm(i,t,n)}function ZW(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let d=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${d}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,r,e.countParams().toString(),l];sm(c,t,a);for(let u=1;u<s.length;++u)sm(["","","",s[u]],t,a)}function X1(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function qc(e,t){if(e===null)return null;if(typeof e=="string")return Di(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];X1(t,r,s)?n.push(s):n.push(qc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Di(a);n[s]=qc(r,s)}}return n}}function Wb(e,t){if(e==null)return null;if(typeof e=="string")return vr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];X1(t,r,s)?n.push(s):n.push(Wb(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=vr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Wb(r,a)}return n}}var im="3.3.0";function tB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Li=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Li)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=tB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Aa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Aa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},Bb={},K1={};function Xc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(Bb[u]==null){let m=nB(i,t);p=m.sorted,d=m.recipientCounts,Bb[u]=p,K1[u]=d}p=Bb[u],d={},r||Object.assign(d,K1[u]);let h=new Li(t);for(let m=0;m<p.length;++m){if(a!=null){let A=Jd().numTensors;A>a.maxNumTensors&&(a.maxNumTensors=A),A<a.minNumTensors&&(a.minNumTensors=A)}let f=p[m],g=f.sourceLayer;if(g instanceof jl)continue;let y=[],b=[],x=[],v=!1;for(let A of f.inputs){let R=h.getValue(A),P=h.getMask(A);y.push(R),b.push(P),P!=null&&(v=!0),r||(d[A.name]--,d[A.name]===0&&!t.hasKey(A)&&o.indexOf(A.name)===-1&&!R.isDisposed&&A.sourceLayer.stateful!==!0&&x.push(R))}v&&(n=n||{},n.mask=b[0]);let T=ft(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,b));let S=aB(f),F=Array.isArray(S)?S:[S];for(let A=0;A<F.length;++A){h.hasKey(F[A])||h.add(F[A],T[A],Array.isArray(k)?k[0]:k);let R=o.indexOf(F[A].name);R!==-1&&(l[R]=T[A])}r||Ae(x)}return h.disposeMasks(),s?l:l[0]}function nB(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=Y1(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Y1(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:rB(a)}}function rB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Y1(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function aB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Xh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],as(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);as(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Ja(x===0,"input layer has >1 nodes"),Ja(v===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let b=this.inputLayers[y];if(!(b instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${b.getClassName()}.`);this.inputNames.push(b.name),this.feedInputShapes.push(b.batchInputShape),this.feedInputNames.push(b.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,v,T,k)=>{(v==null||T==null||k==null)&&(v=y.sourceLayer,T=y.nodeIndex,k=y.tensorIndex);let S=v.inboundNodes[T];if(x.indexOf(S)!==-1)throw new Ea(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(b.indexOf(S)!==-1)return;this.containerNodes.add(tr.nodeKey(v,T)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(S)===-1&&x.push(S);let F=S.inboundLayers.length;for(let A=0;A<F;A++){let R=S.inputTensors[A],P=S.inboundLayers[A],z=S.nodeIndices[A],V=S.tensorIndices[A];o(R,b,x,P,z,V)}for(b.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);i.push(S)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let v=0;v<y.inboundLayers.length;v++){let T=y.inboundLayers[v],k=y.nodeIndices[v],S=T.inboundNodes[k],F=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(b+1,F),n[S.id]=S}}let p={};for(let y in t){let b=t[y];b in p||(p[b]=[]),p[b].push(n[y])}let d={};for(let y in a){let b=a[y];b in d||(d[b]=[]),d[b].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Oh);this.layers=[];for(let y of h){let b=d[y];b.sort((x,v)=>{let T=s[x.id],k=s[v.id];return T<k?-1:T>k?1:0});for(let x of b)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Oh);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let x=b.outboundLayer;if(x!=null){for(let v of b.inputTensors)if(m.indexOf(v)===-1)throw new Ea(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of b.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Ea(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}Db(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${im}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Wb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=ft(e);let n=new Li;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Xc(this.outputs,n,t)})}computeMask(e,t){return D(()=>{e=ft(e);let n;return t==null?n=$i(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Kh(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Oh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],b=`${f.name}_${g}_${y}`,x=n[b];u.push(x)}let p=c.computeOutputShape(_n(u)),d=Kh(p),h=c.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${c.name}_${h}_${m}`;n[f]=d[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Ja(o in n),r.push(n[o])}return _n(r)}runInternalGraph(e,t){t==null&&(t=$i(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Oh);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=ft(u.call(x,m)),b=ft(u.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=ft(u.call(f,m)),b=ft(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<d.length;++x){let v=d[x],T=y[x],k=b[x];n[v.id]=[T,k]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),r.push(l),s.push(c)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof tr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=tr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return D(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=tr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],d=tr.nodeKey(s,u),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],b=p.tensorIndices[f],x=tr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,b,h])}l.push(m)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,c,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],b;for(let x of g){let v=x[0],T=x[1],k=x[2];if(b=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let S=r[v];if(S.inboundNodes.length<=T){i(f,g);return}let F=S.inboundNodes[T];y.push(F.outputTensors[k])}y.length>0&&f.apply(_n(y),b)}function l(f){let g=f.name,y=$a(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!F3(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];Ja(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function sB(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function J1(e,t){return sB(e,t,"classWeight")}async function Q1(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ae(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qe(i,"float32")}else return null}function iB(e,t){return W(e,t)}var oB=32;function eI(e,t){let n,a,r=t;n=r.xs,a=r.ys,w.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Z1("input",e.inputNames,n),i=Z1("output",e.outputNames,a),o=s[0].shape[0];w.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)w.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)w.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Z1(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function lB(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function cB(e,t,n){let a=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(tI(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=lB(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=z1(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=W1(u,p,n.epochs,null,null,uB(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await d.onEpochBegin(m);let y=0,b=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:T}=eI(e,x.value),k={};k.batch=b,k.size=v[0].shape[0],await d.onBatchBegin(b,k);let S=[];if(n.classWeight!=null){let R=J1(n.classWeight,e.outputNames);for(let P=0;P<R.length;++P)S.push(await Q1(T[P],null,R[P]))}let F=v.concat(T).concat(S),A=o(F);Ae(F);for(let R=0;R<l.length;++R){let P=l[R],z=A[R];k[P]=z,qt(z)}await d.onBatchEnd(b,k),R1(k),b++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;tI(n.validationData)?v=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?oB:n.validationBatchSize,verbose:0}));for(let T=0;T<e.metricsNames.length;++T)g[`val_${e.metricsNames[T]}`]=v[T]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,g),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function uB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function tI(e){return typeof e.iterator=="function"}function pB(e){return typeof e.next=="function"}async function dB(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");w.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=pB(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let c=await i.next();if(s=D(()=>{if(c.value){let{xs:u,ys:p}=eI(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Ae(d),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=d[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=D(()=>J(s[f],W(m,g))),l>0&&Ae(y)}Ae(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=ye(s[c],o),Ae(u)}return _n(s)}function Vb(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Kc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Pi(a,t,n-t)):Pi(e,t,n-t)}function Ub(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>Ub(n,t)):x1(e,t.dtype==="int32"?t:t.toInt()))}function Gb(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function hB(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Fa(0,g)),i==null&&(i=1);let{callbackList:b,history:x}=W1(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=x,await b.onTrainBegin(),e.stopTraining_=!1;for(let v=d;v<s;++v){await b.onEpochBegin(v);let T={};if(h!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new $e("batch shuffling is not implemneted yet");u&&w.shuffle(y);let k=Qe(y),S=Gb(g,r);for(let F=0;F<S.length;++F){let A={};if(await b.onBatchBegin(F,A),D(()=>{let R=S[F][0],P=S[F][1],z=Pi(k,R,P-R);A.batch=F,A.size=P-R;let V=Ub(n,z),G=t(V);for(let H=0;H<a.length;++H){let X=a[H],j=G[H];A[X]=j,qt(j)}if(F===S.length-1&&f){let H=e.testLoop(l,c,r);for(let X=0;X<a.length;++X){let j=a[X],te=H[X];qt(te),T["val_"+j]=te}}}),await b.onBatchEnd(F,A),R1(A),e.stopTraining_)break}k.dispose()}if(await b.onEpochEnd(v,T),e.stopTraining_)break}return await b.onTrainEnd(),await e.history.syncData(),e.history}async function mB(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,c,u;try{let p=a.batchSize==null?32:a.batchSize;Vb(p);let d=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,d,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let k=!0,S=await e.standardizeUserData(i,o,null,null,k,p);l=S[0],c=S[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let k=Math.floor(r[0].shape[0]*(1-a.validationSplit)),S=r[0].shape[0];l=Kc(r,k,S),r=Kc(r,0,k),c=Kc(s,k,S),s=Kc(s,0,k),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=b.slice().concat(b.map(k=>"val_"+k))):(x=null,f=[],v=b.slice());let T=z1(a.callbacks,a.yieldEvery);return await hB(e,y,g,b,p,a.epochs,a.verbose,T,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,zi(r,t),zi(s,n),zi(l,i),zi(c,o),u!=null&&Ae(u)}}function nI(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Vc(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function zi(e,t){if(e==null)return;let n=[];if(t instanceof Ee)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function fB(e){return e instanceof Ee}function Hb(e){return Array.isArray(e)}function aI(e){return!fB(e)&&!Hb(e)}function rI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Hb(e)&&e.length>0)i=!0;else if(aI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(aI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Hb(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=nI(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function gB(e,t,n){let a=as(e.map(s=>s.shape[0]));a.sort();let r=as(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!w.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function yB(e,t,n){let a=[Oi,tm,jc];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===jc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],d=c[u];if(d!=null&&p!==d)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function sI(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function bB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var xB="layers-model",wr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");eB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=KW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof br))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Mb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Mb(s))}else{let s=Mb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Mi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=bB(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Mi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===tm?["accuracy","acc"].indexOf(d)!==-1?u=Pb:["crossentropy","ce"].indexOf(d)!==-1&&(u=U1):this.lossFunctions[s]===em?["accuracy","acc"].indexOf(d)!==-1?u=G1:["crossentropy","ce"].indexOf(d)!==-1&&(u=H1):["accuracy","acc"].indexOf(d)!==-1?u=Ob:["crossentropy","ce"].indexOf(d)!==-1&&(u=Lb);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=XW(d),c=l+rm(d);let h;Mi(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;Vb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return _n(l)}finally{zi(s[0],e),zi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),dB(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Li;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Xc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=$i(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=Gb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)D(()=>{let o=r[i][0],l=r[i][1],c=Kc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let p=new Li(u);return Xc(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return _n(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=nI(e);sI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return Vb(a),this.predictLoop(n,a)}finally{zi(n,e)}}predictOnBatch(e){sI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ea("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===em?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=rI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=rI(t,this.feedOutputNames,r,!1,"target"),gB(e,t,null),yB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=J1(a,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await Q1(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return D(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=Gb(s,n),l=Qe(Fa(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],p=o[c][1],d=Pi(l,u,p-u),h=Ub(t,d),m=e(h);if(c===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=J(i[f],W(p-u,g))}}for(let c=0;c<i.length;++c)i[c]=ye(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;i1(e,a)>1&&(r+=`_${i1(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h<this.inputs.length;++h)c.push({key:this.inputs[h],value:n[h]});let u=new Li(c),p=Xc(this.outputs,u,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=iB(m,r[h]));let f=Ct(m);t.push(f),h===0?d=m:d=J(d,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Ct(f(a[g],p[g]))}qt(m),s.push(m)}return d=Ct(d),this.calculateLosses().forEach(h=>{d=J(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Li(s),o=Xc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Ct(c(r[l],o[l]));l===0?n=u:n=J(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=Ct(c(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return mB(this,e,t,n)}async fitDataset(e,t){return cB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ae(s),_n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Jd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Jd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=vr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>vr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=vr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vr(rm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>vr(rm(e)));{let e={};for(let t in this.metrics)e[t]=vr(rm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=qc(e.optimizer_config),n=$a(t),a;if(typeof e.loss=="string")a=Di(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Di(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Di(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Di(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Di(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=jt.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await jt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:xB,generatedBy:`TensorFlow.js tfjs-layers v${im}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await jt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=jt.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;q1(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){q1(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};wr.className="Model";re.registerClass(wr);var iI=class extends wr{};iI.className="Functional";re.registerClass(iI);async function vB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=qc(n),r=$a(a,t);if(e.weightsManifest!=null){let s=await jt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ae(s)}return r}async function kB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=jt.getLoadHandlers(e,t);if(n.length===0)n.push(jt.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return wB(e,void 0,t)}async function wB(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=$a(qc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=IB(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ae(c),Ae(u.map(p=>p.tensor))}return o}function IB(e,t){let n=jt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Kl=class extends wr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Kl||e instanceof wr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=D1({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=$1(this.outputs[0])}this.inboundNodes=[],new Jh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:$i(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new wr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Kl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=$a(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Kl.className="Sequential";re.registerClass(Kl);function TB(e){return new wr(e)}function NB(e){return new Kl(e)}function SB(e,t){return t==null&&(t={}),kB(e,t)}function T1(e){return D1(e)}function CB(e,t){fa.registerCallbackConstructor(e,t)}var Wn=class extends re.Serializable{getConfig(){return{}}},oI=class extends Wn{apply(e,t=1){return sz(e,t)}};oI.className="elu";re.registerClass(oI);var lI=class extends Wn{apply(e){return yh(e)}};lI.className="selu";re.registerClass(lI);var uI=class extends Wn{apply(e){return qe(e)}};uI.className="relu";re.registerClass(uI);var cI=class extends Wn{apply(e){return D(()=>Ll(6,qe(e)))}};cI.className="relu6";re.registerClass(cI);var pI=class extends Wn{apply(e){return e}};pI.className="linear";re.registerClass(pI);var dI=class extends Wn{apply(e){return ca(e)}};dI.className="sigmoid";re.registerClass(dI);var hI=class extends Wn{apply(e){return oz(e)}};hI.className="hardSigmoid";re.registerClass(hI);var mI=class extends Wn{apply(e){return Pl(e)}};mI.className="softplus";re.registerClass(mI);var fI=class extends Wn{apply(e){return iz(e)}};fI.className="softsign";re.registerClass(fI);var gI=class extends Wn{apply(e){return Dl(e)}};gI.className="tanh";re.registerClass(gI);var jb=class extends Wn{apply(e,t=-1){return Na(e,t)}};jb.className="softmax";re.registerClass(jb);var yI=class extends Wn{apply(e,t=-1){return ch(e,t)}};yI.className="logSoftmax";re.registerClass(yI);var bI=class extends Wn{apply(e,t=1){return D(()=>ca(e.mul(t)).mul(e))}};bI.className="swish";re.registerClass(bI);function os(e){return e.getClassName()}function qb(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ls(e){if(e==null){let t={};return t.className="linear",t.config={},qb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},qb(t)}else return e instanceof Wn?e:qb(e)}function Xb(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var xI=class extends re.Serializable{},Yc=class extends xI{constructor(e){super();Xb(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=xt([1]);return this.hasL1&&(t=J(t,Se(W(this.l1,zt(e))))),this.hasL2&&(t=J(t,Se(W(this.l2,Uc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Yc.className="L1L2";re.registerClass(Yc);function _B(e){return Xb(e),new Yc({l1:e!=null?e.l1:null,l2:0})}function EB(e){return Xb(e),new Yc({l2:e!=null?e.l2:null,l1:0})}var vI={l1l2:"L1L2"};function pt(e){return ub(e)}function wI(e,t={}){return Lc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in vI?vI[e]:e,config:{}};return wI(t)}else return e instanceof xI?e:wI(e)}var Kb=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=qe(e);return this.maxValue!=null&&(n=Xt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Kb.className="ReLU";re.registerClass(Kb);var Yb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Ec(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Yb.className="LeakyReLU";re.registerClass(Yb);var Jb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=vt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=wt(e.alphaRegularizer),this.alphaConstraint=Ut(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),$c(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:pt(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Jb.className="PReLU";re.registerClass(Jb);var Qb=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Rl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Qb.className="ELU";re.registerClass(Qb);var Zb=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(Bc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Zb.className="ThresholdedReLU";re.registerClass(Zb);var ex=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new jb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ex.className="Softmax";re.registerClass(ex);function Yl(e,t,n){if(typeof e=="number")return $i(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!tz(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Da(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function om(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ss([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function tx(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,1]):e))}function kI(e,t){return D(()=>(Rt(t),t==="channelsFirst"?Ve(e,[0,2,3,4,1]):e))}function FB(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=_a()),Rt(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ve(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=nh(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Za(o,n)),o})}function II(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=_a()),Rt(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=tx(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ns.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ve(l,[0,3,1,2])),l})}function AB(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=_a()),Rt(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=kI(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=$y(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Za(o,n)),s==="channelsFirst"&&(o=Ve(o,[0,4,1,2,3])),o})}var nx=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",nx.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ta(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=vt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ut(t.biasConstraint),this.biasRegularizer=wt(t.biasRegularizer),this.activityRegularizer=wt(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!pb(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:os(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Jc=class extends nx{constructor(e,t){super(e,t);this.kernel=null,Jc.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=vt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ut(t.kernelConstraint),this.kernelRegularizer=wt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n,a=this.bias==null?null:this.bias.read(),r=l1(this.activation.getClassName());if(r!=null&&this.rank===2)n=II(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=FB(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=II(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=AB(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Da(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:pt(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Qc=class extends Jc{constructor(e){super(2,e);Qc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pb(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Qc.className="Conv2D";re.registerClass(Qc);var lm=class extends Jc{constructor(e){super(3,e);lm.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};lm.className="Conv3D";re.registerClass(lm);var ax=class extends Qc{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Pe(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=om(o,p,c,this.padding),m=om(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ve(n,[0,2,3,1]));let g=ah(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ve(g,[0,3,1,2])),this.bias!=null&&(g=Za(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=om(t[a],o,s,this.padding),t[r]=om(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ax.className="Conv2DTranspose";re.registerClass(ax);var TI=class extends Jc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=wt(t.depthwiseRegularizer),this.depthwiseConstraint=Ut(t.depthwiseConstraint),this.pointwiseInitializer=vt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=wt(t.pointwiseRegularizer),this.pointwiseConstraint=Ut(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ve(e,[0,2,3,1])),n=Ei(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ve(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.pointwiseRegularizer=pt(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};TI.className="SeparableConv";var rx=class extends TI{constructor(e){super(2,e)}};rx.className="SeparableConv2D";re.registerClass(rx);var um=class extends Jc{constructor(e){super(1,e);um.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pb(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};um.className="Conv1D";re.registerClass(um);var sx=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=Lh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Lh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Lh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Lh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};sx.className="Cropping2D";re.registerClass(sx);var ix=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Q3(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Pe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ve(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ve(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ix.className="UpSampling2D";re.registerClass(ix);function $B(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=_a()),Rt(r);let i=tx(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Qr(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}var ox=class extends nx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=vt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ut(e.depthwiseConstraint),this.depthwiseRegularizer=wt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Pe(e);let n=$B(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Za(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Da(t,this.kernelSize[0],this.padding,this.strides[0]),s=Da(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=pt(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};ox.className="DepthwiseConv2D";re.registerClass(ox);function NI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function SI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Fa(2,l));if(t=Ve(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=hn(r,-1)),r=Ve(r,c)),a&&(t=Ln(t,0),r!=null&&(r=Ln(r,0)));let u=[],p,d=n,h=t.shape[0],m=ut(t),f;r!=null&&(f=ut(r));for(let y=0;y<h;++y){let b=m[y],x=D(()=>e(b,d));if(r==null)p=x[0],d=x[1];else{let v=D(()=>{let T=f[y],k=On(T).sub(T),S=x[0].mul(T).add(d[0].mul(k)),F=d.map((A,R)=>x[1][R].mul(T).add(A.mul(k)));return{output:S,newStates:F}});p=v.output,d=v.newStates}o&&u.push(p)}let g;return o&&(g=Dt(u,1)),[p,g,d]})}var er=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new cm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Fa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ab(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");Ab(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Yt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_=[xt([n,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>xt([n,a])):this.states_[0]=xt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!w.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>qt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=NI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Yt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Aa){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Pe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=SI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=xt(e.shape);return t=Se(t,[1,2]),t=Vc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?yb(t,[1,n]):t):this.cell.stateSize>1?[yb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===er.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=$a(a,n);return new e(Object.assign(t,{cell:r}))}};er.className="RNN";re.registerClass(er);var Hc=class extends je{},pm=class extends Hc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Qa(W(e,s),this.kernel.read()):r=Qa(e,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),i!=null&&(n=W(n,i));let o=J(r,Qa(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};pm.className="SimpleRNNCell";re.registerClass(pm);var lx=class extends er{constructor(e){e.cell=new pm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};lx.className="SimpleRNN";re.registerClass(lx);var dm=class extends Hc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let c=Qa(e,this.kernel.read());this.useBias&&(c=Za(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,s[0]));let u=this.recurrentKernel.read(),[p,d]=zn(u,[2*this.units,this.units],u.rank-1),h=Qa(a,p),[m,f,g]=zn(c,3,c.rank-1),[y,b]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(J(m,y)),o=this.recurrentActivation.apply(J(f,b));let x=Qa(W(o,a),d);l=this.activation.apply(J(g,x));let v=J(W(i,a),W(J(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};dm.className="GRUCell";re.registerClass(dm);var ux=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new dm(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ux.className="GRU";re.registerClass(ux);var Zc=class extends Hc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=vt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=wt(e.kernelRegularizer),this.recurrentRegularizer=wt(e.recurrentRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.kernelConstraint=Ut(e.kernelConstraint),this.recurrentConstraint=Ut(e.recurrentConstraint),this.biasConstraint=Ut(e.biasConstraint),this.dropout=Hl([1,ss([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Hl([1,ss([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ma{apply(i,o){let l=r.apply([s]),c=new Wh().apply([s]),u=r.apply([s*2]);return b1(b1(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let p=Qa(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,i[0])),p=J(p,Qa(a,this.recurrentKernel.read())),this.useBias&&(p=Za(p,this.bias.read()));let[d,h,m,f]=zn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),c=J(W(l,r),W(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let g=W(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:os(this.activation),recurrentActivation:os(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:pt(this.kernelRegularizer),recurrentRegularizer:pt(this.recurrentRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Zc.className="LSTMCell";re.registerClass(Zc);var cx=class extends er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Zc(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};cx.className="LSTM";re.registerClass(cx);var cm=class extends Hc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Ab(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Mi(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push($a(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return $b(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Db(t)}};cm.className="StackedRNNCells";re.registerClass(cm);function us(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>v1(t(),n),i=()=>Gc(s,t,a);return!r||r<=1?qt(i().clone()):Array(r).fill(void 0).map(i).map(o=>qt(o.clone()))}var DB=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},CI=class extends er{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return D(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=xt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new xr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_=[xt(r)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xt(r)):this.states_[0]=xt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!w.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>qt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Da(l,a[0],r,s[0],i[0]),p=Da(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};CI.className="ConvRNN2D";var hm=class extends Zc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=Yl(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",ta(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ma{apply(u,p){let d=l.apply([c]),h=Xa([c]),m=l.apply([c*2]);return xb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=us({ones:()=>On(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Q,se,ne)=>!se||!se[ne]?Q:W(se[ne],Q),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=us({ones:()=>On(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,v,T,k]=zn(this.kernel.read(),i,b),[S,F,A,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,v,F,this.padding),p=this.inputConv(p,T,A,this.padding),d=this.inputConv(d,k,R,this.padding);let[P,z,V,G]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,P),f=this.recurrentConv(f,z),g=this.recurrentConv(g,V),y=this.recurrentConv(y,G);let H=this.recurrentActivation.apply(J(c,m)),X=this.recurrentActivation.apply(J(u,f)),j=J(W(X,s),W(H,this.activation.apply(J(p,g)))),te=W(this.recurrentActivation.apply(J(d,y)),this.activation.apply(j));return[te,te,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=DB(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Za(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};hm.className="ConvLSTM2DCell";re.registerClass(hm);var px=class extends CI{constructor(e){let t=new hm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};px.className="ConvLSTM2D";re.registerClass(px);var mm=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Gc(()=>v1(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};mm.className="Dropout";re.registerClass(mm);var dx=class extends mm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};dx.className="SpatialDropout1D";re.registerClass(dx);var hx=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=vt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=vt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ut(e.kernelConstraint),this.biasConstraint=Ut(e.biasConstraint),this.kernelRegularizer=wt(e.kernelRegularizer),this.biasRegularizer=wt(e.biasRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=l1(this.activation.getClassName()),r;return a!=null?r=Qa(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Qa(n,this.kernel.read()),this.bias!=null&&(r=Za(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:os(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:pt(this.kernelRegularizer),biasRegularizer:pt(this.biasRegularizer),activityRegularizer:pt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hx.className="Dense";re.registerClass(hx);var mx=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],rs(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return rz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};mx.className="Flatten";re.registerClass(mx);var fx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ls(e.activation)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:os(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};fx.className="Activation";re.registerClass(fx);var gx=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Pe(e),nz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};gx.className="RepeatVector";re.registerClass(gx);var yx=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=rs(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};yx.className="Reshape";re.registerClass(yx);var bx=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Fa(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ve(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};bx.className="Permute";re.registerClass(bx);var xx=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),a=-1;return Ic(_i(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=-1,r=!0,s=Ic(_i(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};xx.className="Masking";re.registerClass(xx);var vx=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=vt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=wt(e.embeddingsRegularizer),this.activityRegularizer=wt(e.activityRegularizer),this.embeddingsConstraint=Ut(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Pe(e),_i(e,Ge(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=Bc(n,"int32")),x1(this.embeddings.read(),n.as1D()).reshape(ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:pt(this.embeddingsRegularizer),activityRegularizer:pt(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};vx.className="Embedding";re.registerClass(vx);var Wi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=as(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&as(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ss(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Vc(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],p=c.slice(1).concat([u]),d=o.reshape([u].concat(rs(c.slice(1))));d=Ve(d,[1,0]),d=d.reshape(p),n.push(d),r=!0}else if(l>1){let c=Fa(1,l).concat([0]);n.push(Ve(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ve(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Fa(0,i-1));s=Ve(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=as(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return D(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:hn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=da(n,t[a]);return n})}},wx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return t})}};wx.className="Add";re.registerClass(wx);var kx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};kx.className="Multiply";re.registerClass(kx);var Ix=class extends Wi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=J(t,e[n]);return W(1/e.length,t)})}};Ix.className="Average";re.registerClass(Ix);var Tx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=qa(t,e[n]);return t})}};Tx.className="Maximum";re.registerClass(Tx);var Nx=class extends Wi{constructor(e){super(e)}mergeFunction(e){return D(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ll(t,e[n]);return t})}};Nx.className="Minimum";re.registerClass(Nx);var Sx=class extends Wi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(w.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>xb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(On(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(hn(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return eh(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Sx.className="Concatenate";re.registerClass(Sx);function ep(e,t){for(;e<0;)e+=t;return e}function RB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Cx=class extends Wi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>ep(r,e[s].shape.length)):a=[ep(this.axes,t.shape.length),ep(this.axes,n.shape.length)],this.normalize&&(t=Qh(t,a[0]),n=Qh(n,a[1])),RB(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[ep(this.axes,e.length),ep(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Cx.className="Dot";re.registerClass(Cx);var _x=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return Gc(()=>zh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};_x.className="GaussianNoise";re.registerClass(_x);var Ex=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?Gc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(zh(n.shape,1,a))},()=>n,t.training||!1):n})}};Ex.className="GaussianDropout";re.registerClass(Ex);var Fx=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Gc(()=>{let a=Pe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=es(zl(n),this.rate);o=Bc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Pe(e),t.training||!1)}return e})}};Fx.className="AlphaDropout";re.registerClass(Fx);function tp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=nk(e,t,n,a,r,s);else if(e.rank===3)i=ak(e,t,n,a,r,s);else if(e.rank===4)i=rk(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function MB(e,t,n,a,r=.001){return D(()=>{let s=dh(e,a),i=s.mean,o=s.variance;return[tp(e,i,o,n,t,r),i,o]})}function PB(e,t,n,a,r=.001){return D(()=>{let s=dh(e,a),i=s.mean,o=s.variance,l=[];for(let h of Fa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[tp(e,c,u,d,p,r),i,o]})}function OB(e,t,n,a,r=.001){return w.arraysEqual(a.slice().sort(),Fa(0,e.rank-1))?MB(e,t,n,a,r):PB(e,t,n,a,r)}var Ax=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.movingMeanInitializer=vt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=vt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ut(e.betaConstraint),this.gammaConstraint=Ut(e.gammaConstraint),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Pe(e),r=a.shape,s=r.length,i=Fa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=$i(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!w.arraysEqual(c,Fa(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return tp(a,g,y,b,x,this.epsilon)}else return tp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=OB(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let x=1-b,v=g.read(),T=v.sub(y).mul(x);g.write(v.sub(T))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="BatchNormalization";re.registerClass(Ax);var $x=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=vt(e.betaInitializer||"zeros"),this.gammaInitializer=vt(e.gammaInitializer||"ones"),this.betaRegularizer=wt(e.betaRegularizer),this.gammaRegularizer=wt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==as(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=dh(n,this.axis,s),l=$i(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(d.push(a[m]),h.push(1)):(d.push(1),h.push(a[m]));return i=i.tile(d),o=o.tile(d),u=u.tile(h),p=p.tile(h),tp(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:pt(this.betaRegularizer),gammaRegularizer:pt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};$x.className="LayerNormalization";re.registerClass($x);function LB(e,t,n){return D(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=_a()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ea(e,a)})}var Dx=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?_a():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>LB(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="ZeroPadding2D";re.registerClass(Dx);function fm(e,t,n,a,r,s){return D(()=>{Rt(r),d1(s),ta(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=_a()),s==null&&(s="max"),e=tx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=$t(e,t,n,o):i=Qn(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,3,1,2])),i})}function _I(e,t,n,a,r,s){return D(()=>{Rt(r),d1(s),ta(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=_a()),s==null&&(s="max"),e=kI(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Uy(e,t,n,o):i=Ey(e,t,n,o),r==="channelsFirst"&&(i=Ve(i,[0,4,1,2,3])),i})}var EI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ta(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=ct(e);let t=Da(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=Vc(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ts(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Rx=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),fm(e,t,n,a,r,"max")}};Rx.className="MaxPooling1D";re.registerClass(Rx);var Mx=class extends EI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),fm(e,t,n,a,r,"avg")}};Mx.className="AveragePooling1D";re.registerClass(Mx);var FI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Px=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),fm(e,t,n,a,r,"max")}};Px.className="MaxPooling2D";re.registerClass(Px);var Ox=class extends FI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),fm(e,t,n,a,r,"avg")}};Ox.className="AveragePooling2D";re.registerClass(Ox);var AI=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),ta(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),a=Da(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Lx=class extends AI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),_I(e,t,n,a,r,"max")}};Lx.className="MaxPooling3D";re.registerClass(Lx);var zx=class extends AI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),ta(a),_I(e,t,n,a,r,"avg")}};zx.className="AveragePooling3D";re.registerClass(zx);var $I=class extends je{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},Wx=class extends $I{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return Ct(n,1)})}};Wx.className="GlobalAveragePooling1D";re.registerClass(Wx);var Bx=class extends $I{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Pe(e);return Zn(n,1)})}};Bx.className="GlobalMaxPooling1D";re.registerClass(Bx);var DI=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Vx=class extends DI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Ct(n,[1,2]):Ct(n,[2,3])})}};Vx.className="GlobalAveragePooling2D";re.registerClass(Vx);var Ux=class extends DI{call(e,t){return D(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};Ux.className="GlobalMaxPooling2D";re.registerClass(Ux);var RI=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=$a(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},Gx=class extends RI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Pe(e),SI((n,a)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Gx.className="TimeDistributed";re.registerClass(Gx);function zB(e){Ri(J3,"BidirectionalMergeMode",e)}var WB="concat",Hx=class extends RI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$a(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=$a(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?WB:e.mergeMode,zB(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):_n(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=NI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Yt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Aa;for(let l of s)if(l instanceof Aa!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Ln(r,1));let i;return this.mergeMode==="concat"?i=xb([a,r]):this.mergeMode==="sum"?i=J(a,r):this.mergeMode==="ave"?i=W(.5,J(a,r)):this.mergeMode==="mul"?i=W(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Mi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Mi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$a(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};Hx.className="Bidirectional";re.registerClass(Hx);function hz(e){return new jl(e)}function mz(e){return new Qb(e)}function fz(e){return new Kb(e)}function gz(e){return new Yb(e)}function yz(e){return new Jb(e)}function bz(e){return new ex(e)}function xz(e){return new Zb(e)}function vz(e){return new um(e)}function wz(e){return new Qc(e)}function kz(e){return new ax(e)}function Iz(e){return new lm(e)}function Tz(e){return new rx(e)}function Nz(e){return new sx(e)}function Sz(e){return new ix(e)}function Cz(e){return new ox(e)}function _z(e){return new fx(e)}function Ez(e){return new hx(e)}function Fz(e){return new mm(e)}function Az(e){return new dx(e)}function $z(e){return new mx(e)}function Dz(e){return new gx(e)}function Rz(e){return new yx(e)}function Mz(e){return new bx(e)}function Pz(e){return new vx(e)}function Oz(e){return new wx(e)}function Lz(e){return new Ix(e)}function zz(e){return new Sx(e)}function Wz(e){return new Tx(e)}function Bz(e){return new Nx(e)}function Vz(e){return new kx(e)}function Uz(e){return new Cx(e)}function Gz(e){return new Ax(e)}function Hz(e){return new $x(e)}function jz(e){return new Dx(e)}function _b(e){return new Mx(e)}function qz(e){return _b(e)}function Xz(e){return _b(e)}function Eb(e){return new Ox(e)}function Kz(e){return Eb(e)}function Yz(e){return Eb(e)}function Fb(e){return new zx(e)}function Jz(e){return Fb(e)}function Qz(e){return Fb(e)}function Zz(e){return new Wx(e)}function eW(e){return new Vx(e)}function N1(e){return new Bx(e)}function S1(e){return new Ux(e)}function C1(e){return new Rx(e)}function _1(e){return new Px(e)}function tW(e){return new Lx(e)}function nW(e){return new ux(e)}function aW(e){return new dm(e)}function rW(e){return new cx(e)}function sW(e){return new Zc(e)}function iW(e){return new lx(e)}function oW(e){return new pm(e)}function lW(e){return new px(e)}function uW(e){return new hm(e)}function cW(e){return new er(e)}function pW(e){return new cm(e)}function dW(e){return new Hx(e)}function hW(e){return new Gx(e)}var mW=N1,fW=S1,gW=C1,yW=_1;function bW(e){return new _x(e)}function xW(e){return new Ex(e)}function vW(e){return new Fx(e)}function wW(e){return new xx(e)}var MI={};Le(MI,{MAPE:()=>JB,MSE:()=>e4,binaryAccuracy:()=>BB,binaryCrossentropy:()=>VB,categoricalAccuracy:()=>GB,categoricalCrossentropy:()=>HB,cosineProximity:()=>XB,mape:()=>QB,meanAbsoluteError:()=>KB,meanAbsolutePercentageError:()=>YB,meanSquaredError:()=>ZB,mse:()=>t4,precision:()=>jB,recall:()=>qB,sparseCategoricalAccuracy:()=>UB});function BB(e,t){return Pb(e,t)}function VB(e,t){return U1(e,t)}function UB(e,t){return G1(e,t)}function GB(e,t){return Ob(e,t)}function HB(e,t){return Lb(e,t)}function jB(e,t){return V1(e,t)}function qB(e,t){return WW(e,t)}function XB(e,t){return Rb(e,t)}function KB(e,t){return Zh(e,t)}function YB(e,t){return Xl(e,t)}function JB(e,t){return Xl(e,t)}function QB(e,t){return Xl(e,t)}function ZB(e,t){return Oi(e,t)}function e4(e,t){return Oi(e,t)}function t4(e,t){return Oi(e,t)}var PI={};Le(PI,{modelFromJSON:()=>vB});var OI={};Le(OI,{l1:()=>a4,l1l2:()=>n4,l2:()=>r4});function n4(e){return new Yc(e)}function a4(e){return _B(e)}function r4(e){return EB(e)}var LI=class extends ql{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof wr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function gm(e,t){return e<t}function zI(e,t){return e>t}var WI=class extends LI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=gm:this.mode==="max"?this.monitorFunc=zI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=zI:this.monitorFunc=gm,this.monitorFunc===gm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===gm?Infinity:-Infinity}async onEpochEnd(e,t){await is(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function s4(e){return new WI(e)}var i4={earlyStopping:s4},Ra;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ra||(Ra={}));var BI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(BI||(BI={}));var jx={};function o4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};jx[e]=n}function VI(e){return jx[e]}function l4(e){delete jx[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Fn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>Fn(p,n,a,r));let c=Fn(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:w.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function Fn(e,t,n,a){let[r,s]=Bn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[ym(r,o)]);return i!==void 0?t[ym(r,i)][s]:void 0}function u4(e,t,n){return t[ym(e,n.currentContextId)]}function kr(e,t){let[n,a]=Bn(e);return[ym(n,t&&t.currentContextId),a]}function ym(e,t){return t?`${e}-${t}`:e}function Bn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function bm(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Ir(e){return e.kept?e:Kr(e)}var UI={};Le(UI,{json:()=>c4});var c4=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],GI={};Le(GI,{json:()=>p4});var p4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],HI={};Le(HI,{json:()=>d4});var d4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],jI={};Le(jI,{json:()=>h4});var h4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],qI={};Le(qI,{json:()=>m4});var m4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],XI={};Le(XI,{json:()=>f4});var f4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],KI={};Le(KI,{json:()=>g4});var g4=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],YI={};Le(YI,{json:()=>y4});var y4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],JI={};Le(JI,{json:()=>b4});var b4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],QI={};Le(QI,{json:()=>x4});var x4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],ZI={};Le(ZI,{json:()=>v4});var v4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],eT={};Le(eT,{json:()=>w4});var w4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],tT={};Le(tT,{json:()=>k4});var k4=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],nT={};Le(nT,{json:()=>I4});var I4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],aT={};Le(aT,{json:()=>T4});var T4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],rT={};Le(rT,{json:()=>N4});var N4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],sT={};Le(sT,{json:()=>S4});var S4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],oT=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[UI,GI,HI,jI,qI,XI,KI,ZI,QI,YI,eT,tT,nT,aT,rT,sT,JI],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=kr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=kr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=kr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=VI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=qx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=qx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=tv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Kx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=ev(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ev(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Xx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=av(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=av(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Zx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=nv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Jx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Qx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=iT(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=iT(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=kr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Yx(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=kr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=kr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function C4(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function lT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):C4(e);return t?n:n.toLowerCase()}function qx(e,t,n,a=!1){let r=e[t];return r!=null?lT(r.s,a):n}function Xx(e,t,n){let a=e[t];return a?a.b:n}function Kx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function Yx(e){switch(typeof e=="string"&&(e=Ra[e]),e){case Ra.DT_FLOAT:return"float32";case Ra.DT_INT32:case Ra.DT_INT64:case Ra.DT_INT8:case Ra.DT_UINT8:return"int32";case Ra.DT_BOOL:return"bool";case Ra.DT_DOUBLE:return"float32";case Ra.DT_STRING:return"string";default:return null}}function iT(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Jx(e,t,n){let a=e[t];return a&&a.type?Yx(a.type):n}function Qx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>Yx(r)):n}function uT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Zx(e,t,n){let a=e[t];return a&&a.shape?uT(a.shape):n}function ev(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function tv(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>lT(s,a)):n}function nv(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>uT(r)):n}function av(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var _4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Fn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Fn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Kx(this.node.rawAttrs,e,t);if(n.s!=null)return qx(this.node.rawAttrs,e,t);if(n.b!=null)return Xx(this.node.rawAttrs,e,t);if(n.shape!=null)return Zx(this.node.rawAttrs,e,t);if(n.type!=null)return Jx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ev(this.node.rawAttrs,e,t);if(n.list.s!=null)return tv(this.node.rawAttrs,e,t);if(n.list.shape!=null)return nv(this.node.rawAttrs,e,t);if(n.list.b!=null)return av(this.node.rawAttrs,e,t);if(n.list.type!=null)return Qx(this.node.rawAttrs,e,t)}return t}},E4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[J(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Q0(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Hy(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[W(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ye(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[My(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Zd(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[he(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Ll(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[qa(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[gr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[kh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},F4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[zt(I("x",e,t,n))];case"Acos":return[xy(I("x",e,t,n))];case"Acosh":return[vy(I("x",e,t,n))];case"Asin":return[ky(I("x",e,t,n))];case"Asinh":return[Iy(I("x",e,t,n))];case"Atan":return[Ty(I("x",e,t,n))];case"Atan2":return[Ny(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Sy(I("x",e,t,n))];case"Ceil":return[Fy(I("x",e,t,n))];case"Complex":return[jr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[_c(I("x",e,t,n))];case"Cosh":return[rh(I("x",e,t,n))];case"Elu":return[Rl(I("x",e,t,n))];case"Erf":return[Py(I("x",e,t,n))];case"Exp":return[dn(I("x",e,t,n))];case"Expm1":return[Oy(I("x",e,t,n))];case"Floor":return[Ml(I("x",e,t,n))];case"Log":return[Pn(I("x",e,t,n))];case"Log1p":return[lh(I("x",e,t,n))];case"Imag":return[ih(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[Xy(I("x",e,t,n))];case"Real":return[Dc(I("x",e,t,n))];case"Relu":return[qe(I("x",e,t,n))];case"Round":return[Ky(I("x",e,t,n))];case"Selu":return[yh(I("x",e,t,n))];case"Sigmoid":return[ca(I("x",e,t,n))];case"Sin":return[bh(I("x",e,t,n))];case"Sign":return[Yy(I("x",e,t,n))];case"Sinh":return[xh(I("x",e,t,n))];case"Softplus":return[Pl(I("x",e,t,n))];case"Sqrt":return[rn(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[Dl(I("x",e,t,n))];case"Tan":return[Zy(I("x",e,t,n))];case"ClipByValue":return[Xt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[fh(I("x",e,t,n))];case"Rsqrt":return[gh(Fn(e.inputNames[0],t,n))];case"Prod":return[hh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Ec(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[$c(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ga(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];w.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function cT(e){return!(typeof e=="number"||e.some(t=>t<0))}function np(e,t,n){let a=rv(e,n),r=!cT(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=rv(s.shape,a)}),!cT(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function rv(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var A4=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ga(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return Yn([],[0].concat(this.elementShape));let n=this.readMany(e);return ga(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Yn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ga(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ut(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],c=[0,l,0],u=[1,e[o],r];s[o]=U(Be(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},ap=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ga(t,r.shape,"TensorList shape mismatch: "),qt(r)}),this.idTensor=ve(0),this.maxNumElements=a,qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ap([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ga(e,this.elementShape,"TensorList shape mismatch: ");let a=np(this.elementShape,this.tensors,e);return D(()=>{let r=this.tensors.map(s=>U(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=np(this.elementShape,this.tensors,e),a=this.tensors.pop();return ga(a.shape,e,"TensorList shape mismatch: "),U(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ga(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ga(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=np(this.elementShape,this.tensors,t);return U(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ga(this.elementShape,t.shape,"TensorList shape mismatch: "),qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ga(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=np(this.elementShape,this.tensors,n);return e.length===0?Yn([],[0].concat(a)):D(()=>{let r=e.map(s=>U(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ga(this.elementShape,t,"TensorList shape mismatch: ");let n=np(this.elementShape,this.tensors,t);return this.size()===0?Yn([],[0].concat(n)):D(()=>{let a=this.tensors.map(r=>U(r,n));return Je(a,0)})}};function $4(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ga(r,t,"TensorList shape mismatch: ");let s=ut(e);return new ap(s,t,a)}function D4(e,t,n){return new ap([],e,t,n)}function R4(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new ap([],n,e.dtype,a),i=ut(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function M4(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=rv(s,n),o=a===0?0:e.size/a,l=D(()=>{let u=[];e=U(e,[1,a,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],m=[1,t[p],o];u[p]=U(Be(e,h,m),i)}return e.dispose(),u}),c=new ap([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var P4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=I("pred",e,t,n);return[Ir(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Ir(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Fn(r,t,n)!==void 0);if(a){let r=Fn(a,t,n);return[Ir(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Ir(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Ir(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Ir(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new A4(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=R4(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=D4(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=$4(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=M4(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function pT(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=bm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var O4=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[nh(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=bm(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[At(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=pT(e,t,n);return[ns.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=pT(e,t,n);return[ns.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=bm(e,t,n);return[ah(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=bm(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Qr(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[$y(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Qn(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[$t(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Ik(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ey(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Uy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[Ry(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},L4=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[Cn(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[gk(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Tk(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Fl(a,r,s,i)]}case"Ones":return[Xa(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[On(I("x",e,t,n))];case"RandomUniform":return[zl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[mh(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ih(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[xt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sv(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var z4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=sv(e,t,n),c=await Ka.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=sv(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ka.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=sv(e,t,n);return[await Ka.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ue(I("condition",e,t,n),"bool"),r=[await nb(a)];return a.dispose(),r}case"ListDiff":return Ck(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},W4=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=eb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Th(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Th(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},B4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[Fn(e.name,t,n)||a];case"Placeholder":return[Fn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Ir(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Ir(c));case"Snapshot":let r=I("x",e,t,n);return[Ir(r)];case"Shape":return[Qe(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Qe(c.shape));case"Size":return[ve(I("x",e,t,n).size,"int32")];case"Rank":return[ve(I("x",e,t,n).rank,"int32")];case"NoOp":return[ve(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},V4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,qt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=ut(t),r=n.length,s=a.length;w.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];qt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return D(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},U4=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new V4(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},G4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ka.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ka.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ka.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},H4=(e,t,n)=>{switch(e.op){case"Equal":return[Zr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[_i(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[pa(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[es(I("a",e,t,n),I("b",e,t,n))];case"Less":return[oh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Si(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[da(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Fc(I("a",e,t,n))];case"LogicalOr":return[ph(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Sn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},j4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[Ve(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[ns.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},q4=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[fr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[fr(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[zy(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Na(I("x",e,t,n))];case"LogSoftmax":return[ch(I("x",e,t,n))];case"SparseToDense":return[ab(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},X4=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ct(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ol(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Se(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[eh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ic(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Tc(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[wy(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[hh(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[sh(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[sk(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[pk(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},K4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Je(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Ni(a,ue(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Ni(s,ue(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[Ln(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[Ln(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Be(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[Qy(p,a,r,s,i,o,l,c,u)]}case"Pack":return D(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=ts(r[0]).shape,o=r.map(l=>{let c=w.arraysEqual(l.shape,s);if(!c&&!w.arraysEqual(ts(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:U(l,s)});return[Dt(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return ut(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Ha(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return zn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[Ak(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[$k(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[ab(a,s,r,s.dtype===i.dtype?i:ue(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Y4=(e,t,n)=>{switch(e.op){case"FFT":return[Mc(I("x",e,t,n))];case"IFFT":return[Bl(I("x",e,t,n))];case"RFFT":return[Pc(I("x",e,t,n))];case"IRFFT":return[wh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},J4=(e,t,n)=>{switch(e.op){case"Cast":return[ue(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[hn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[ts(I("x",e,t,n),a)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Gy(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ea(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Ac(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Sc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[Dy(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Cc(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function dT(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>E4(s,i,o));case"basic_math":return D(()=>F4(s,i,o));case"control":return P4(s,i,o);case"convolution":return D(()=>O4(s,i,o));case"creation":return D(()=>L4(s,i,o));case"dynamic":return z4(s,i,o);case"evaluation":return D(()=>W4(s,i,o));case"image":return D(()=>G4(s,i,o));case"graph":return D(()=>B4(s,i,o));case"logical":return D(()=>H4(s,i,o));case"matrices":return D(()=>j4(s,i,o));case"normalization":return D(()=>q4(s,i,o));case"reduction":return D(()=>X4(s,i,o));case"slice_join":return D(()=>K4(s,i,o));case"spectral":return D(()=>Y4(s,i,o));case"transformation":return D(()=>J4(s,i,o));case"hash_table":return U4(s,i,o,a);case"custom":let l=VI(s.op);if(l&&l.customExecutor)return l.customExecutor(new _4(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var hT=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function fT(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Bn(d)[0]),u=[];a!=null&&(u=a.map(d=>Bn(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((mT(d)||Q4(d)||Z4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function eV(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Bn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var tV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],nV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],aV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function mT(e){return tV.indexOf(e.op)>=0}function Q4(e){return nV.indexOf(e.op)>=0}function Z4(e){return aV.indexOf(e.op)>=0}var iv=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new iv(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=fT(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return eV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Bn(u)[0]]),r=t.map(u=>Bn(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new hT(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Bn(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=dT(f,p,u,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,u,d,r,h)}}return this.parent==null&&u.dispose(d),t.map(m=>Fn(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=u4(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new hT(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>Fn(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Bn(b)[0]]),i=n.map(b=>Bn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=fT(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,v]=Bn(b),T=[];T[v]=e[b],h[x]=T});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!mT(b)&&!Fn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=kr(u.node.name,n)),a[u.node.name]==null){let d=dT(u.node,a,n,this._resourceManager);p||([p]=kr(u.node.name,n));let h=n.currentContext;w.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=kr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Fn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Fn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Bn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Bn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Bn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},rV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},sV="?tfjs-format=file",iV="model.json",gT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new rV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=jt.browserHTTPRequest(e,this.loadOptions);else{let t=jt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(jt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=jt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new iv(oT.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=oT.Instance.transformGraph(e.modelInitializer);this.initializer=new iv(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=jt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function oV(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${iV}${sV}`);let n=new gT(e,t);return await n.load(),n}var yT="3.3.0",bT={};Le(bT,{CSVDataset:()=>vT,Dataset:()=>Jl,FileDataSource:()=>wT,TextLineDataset:()=>xT,URLDataSource:()=>kT,array:()=>lV,csv:()=>cV,func:()=>pV,generator:()=>dV,microphone:()=>mV,version_data:()=>IT,webcam:()=>hV,zip:()=>uV});var fV=Io(Uw()),gV=Io(Uw());function yV(e,t){return xm(e,t)}function xm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=xm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function bV(e,t=NT){return TT(e,t)}function TT(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Ql(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=TT(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function NT(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function ST(e,t){let n=new Map;xm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(w.isPromise(r)){let s=await r;n.set(a,s)}}return xm(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee))}function vV(e){return e==null||xV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function xV(e){return e===null||typeof e!="object"&&typeof e!="function"}function kV(e){return yV(e,wV)}function wV(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var CT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},ov=class extends CT{constructor(){super(ov.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};ov.INITIAL_CAPACITY=32;function _T(e){return new IV(e)}function lv(e){return new TV(e)}function NV(e,t){return new ET(e,t)}function CV(e,t=cs.FAIL){return new SV(e,t)}var Jt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new RV(this,e)}filter(e){return new $V(this,e)}map(e){return new DV(this,e)}mapAsync(e){return new FT(this,e)}serialMapAsync(e){return new FT(this,e).serial()}flatmap(e){return new MV(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new AV(this,e,t)}columnMajorBatch(e,t=!0,n=NT){return this.rowMajorBatch(e,t).map(a=>bV(a,n))}concatenate(e,t){return new ET(_T([this,e]),t)}take(e){return e<0||e==null?this:new FV(this,e)}skip(e){return e<0||e==null?this:new EV(this,e)}prefetch(e){return new AT(this,e)}shuffle(e,t){return new PV(this,e,t)}serial(){return new _V(this)}},IV=class extends Jt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:kV(e),done:!1}}},TV=class extends Jt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},_V=class extends Jt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},EV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},FV=class extends Jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},AV=class extends Jt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},$V=class extends Jt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},DV=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},RV=class extends Jt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},FT=class extends Jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ia.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ia.getTensorsInContainer(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},uv=class extends Jt{constructor(){super();this.outputQueue=new ov,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},MV=class extends uv{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ia.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ia.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ia.isTensorInList(r,a)||r.dispose();return!0}},ET=class extends Jt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},cs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(cs||(cs={}));var SV=class extends Jt{constructor(e,t=cs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Jt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await ST(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case cs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case cs.SHORTEST:return{value:null,done:!0};case cs.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},AT=class extends Jt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new CT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},PV=class extends AT{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=gV.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Vn(async()=>(await n.iterator()).columnMajorBatch(e,t,OV),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Vn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Vn(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Vn(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return Vn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Vn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Vn(async()=>{let a=lv(async()=>({value:await t.iterator(),done:!1}));return NV(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Vn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=fV.alea(t||w.now().toString());return Vn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Vn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function Vn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function lV(e){return Vn(async()=>_T(e),e.length)}function uV(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Vn(async()=>{let n=await ST(e,a=>{if(a instanceof Jl)return{value:a.iterator(),recurse:!1};if(Ql(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return CV(n,cs.SHORTEST)},t)}function OV(e){if(e===null)return null;let t=e[0];return vV(t)?{value:LV(e),recurse:!1}:{value:null,recurse:!0}}function LV(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Dt(e):Yn(e)}var xT=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},vm='"',rp=Symbol("out"),$T=Symbol("field"),wm=Symbol("quote"),cv=Symbol("quoteafterquote"),DT=Symbol("quoteinquote"),vT=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new xT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=rp;for(let i=0;i<r;i++)switch(s){case rp:switch(e.charAt(i)){case vm:a=i+1,s=wm;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=rp;break;default:s=$T,a=i;break}break;case $T:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=rp,a=i+1;break;default:}break;case wm:switch(e.charAt(i)){case vm:s=cv;break;default:}break;case cv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=rp,a=i+1;break;case vm:s=wm;break;default:s=DT;break}break;case DT:switch(e.charAt(i)){case vm:s=wm;break;default:}break;default:}if(s===cv?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},RT=class extends Jt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Z().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new RT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),Yn(n,t)}},MT=class extends Jt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qe([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Sa([s,r,o,i],[1,4])}else this.cropBox=Sa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Z().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new MT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=ki.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=hn(ue(e,"float32"),0),n;n=Ka.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return U(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},PT=class{},OT=class extends Jt{split(e){return new zV(this,e)}},zV=class extends OT{constructor(e,t){super();this.upstream=e,this.impl=new WV(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},WV=class extends uv{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},VV=class extends Jt{decodeUTF8(){return new BV(this)}},BV=class extends OT{constructor(e){super();this.upstream=e,this.impl=new UV(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},UV=class extends uv{constructor(e){super();if(this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=oE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},LT=class extends VV{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function HV(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=GV(e));let r=await w.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new LT(s,t)}else throw new Error(r.statusText)}var GV=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function zT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var wT=class extends PT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(zT(this.input)&&Z().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new LT(this.input,this.options)}},kT=class extends PT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return zT(this.url)?new wT(this.url,this.fileOptions).iterator():HV(this.url,this.fileOptions)}};function cV(e,t={}){return new vT(new kT(e),t)}function pV(e){let t=lv(e);return Vn(async()=>t)}function dV(e){return Vn(async()=>{let t=await e();return lv(()=>t.next())})}async function hV(e,t){return MT.create(e,t)}async function mV(e){return RT.create(e)}var IT="3.3.0";function xe(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var jV=Ya.whereImpl,pv=class extends ju{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new sd(this,Ua())}nextDataId(){return pv.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&_.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Ua().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){xe([e],"where");let t=this.readSync(e.dataId);return jV(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};pv.nextDataId=0;var WT={};Le(WT,{addImpl:()=>VT,bincountImpl:()=>dv,bincountReduceImpl:()=>UT,ceilImpl:()=>GT,concatImpl:()=>HT,expImpl:()=>jT,expm1Impl:()=>qT,floorImpl:()=>XT,gatherV2Impl:()=>KT,greaterImpl:()=>YT,lessImpl:()=>JT,linSpaceImpl:()=>QT,logImpl:()=>ZT,maxImpl:()=>e2,maximumImpl:()=>t2,minimumImpl:()=>n2,multiplyImpl:()=>hv,negImpl:()=>a2,notEqualImpl:()=>r2,prodImpl:()=>s2,rangeImpl:()=>i2,rsqrtImpl:()=>o2,simpleAbsImpl:()=>BT,sliceImpl:()=>l2,squaredDifferenceImpl:()=>u2,stridedSliceImpl:()=>c2,subImpl:()=>p2,tileImpl:()=>d2,topKImpl:()=>h2,transposeImpl:()=>mv,uniqueImpl:()=>m2});function BT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var qV=e=>{let{x:t}=e.inputs,n=e.backend;xe(t,"abs");let a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=BT(r),n.makeOutput(a,t.shape,"float32")},XV={kernelName:So,backendName:"cpu",kernelFunc:qV};function Mt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=w.computeStrides(i),c=w.sizeFromShape(i),u=w.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=w.computeStrides(t),m=w.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let b=w.indexToLoc(y,o,l),x=b.slice(-p);f.forEach(S=>x[S]=0);let v=w.locToIndex(x,p,h),T=b.slice(-d);g.forEach(S=>T[S]=0);let k=w.locToIndex(T,d,m);u[y]=e(a[v],r[k])}return[u,i]}}function Un(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var KV={kernelName:md,backendName:"cpu",kernelFunc:Un};function km(e,t,n="float32"){if(n==="complex64"){let r=km(e,t,"float32"),s=km(e,t,"float32");return Un({inputs:{real:r,imag:s},backend:e})}let a=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function nr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var YV={kernelName:Bs,backendName:"cpu",kernelFunc:nr};function Bi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var JV={kernelName:Rd,backendName:"cpu",kernelFunc:Bi};function ps(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return nr({inputs:{x:r},backend:n});let i=km(n,r.shape,r.dtype),o=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Un({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Bi({inputs:{input:r},backend:n}),o=ps({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=nr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[l,c]=Mt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var QV={kernelName:_s,backendName:"cpu",kernelFunc:ps};function Qt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;xe([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=ps({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=ps({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(b.dataId).values,[T,k,S]=n(i.shape,o.shape,h,m,x,v),F=l.makeTensorInfo(S,"float32",T),A=l.makeTensorInfo(S,"float32",k),R=Un({inputs:{real:F,imag:A},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(F),l.disposeIntermediateTensorInfo(A),R}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function fv(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(o),c=o.length,u=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",l),d=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=w.computeStrides(t),x=n.length,v=w.computeStrides(n);if(h.length+m.length===0)for(let T=0;T<p.length;T++){let k=T%f.length,S=T%g.length,F=e(f[k*2],f[k*2+1],g[S*2],g[S*2+1]);p[T]=F.real,d[T]=F.imag}else for(let T=0;T<p.length;T++){let k=w.indexToLoc(T,c,u),S=k.slice(-y);h.forEach(z=>S[z]=0);let F=w.locToIndex(S,y,b),A=k.slice(-x);m.forEach(z=>A[z]=0);let R=w.locToIndex(A,x,v),P=e(f[F*2],f[F*2+1],g[R*2],g[R*2+1]);p[T]=P.real,d[T]=P.imag}return[p,d,o]}}var VT=Mt((e,t)=>e+t),ZV=fv((e,t,n,a)=>({real:e+n,imag:t+a})),sp=Qt(Br,VT,ZV),eU={kernelName:Br,backendName:"cpu",kernelFunc:sp};function dv(e,t,n,a,r){let s=w.sizeFromShape(a),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function UT(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Me([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function Zl(e){return(t,n,a)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function st(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=w.sizeFromShape(i.shape),u=n||i.dtype,p=w.getArrayFromDType(u,c);for(let d=0;d<c;++d)p[d]=t(l[d],r);return o.makeTensorInfo(i.shape,u,p)}}function eu(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(xe(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var GT=Zl(e=>Math.ceil(e)),tU=eu(Es,GT),nU={kernelName:Es,backendName:"cpu",kernelFunc:tU};function HT(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var jT=Zl(e=>Math.exp(e)),f2=eu(Ps,jT),aU={kernelName:Ps,backendName:"cpu",kernelFunc:f2},qT=Zl(e=>Math.expm1(e)),rU=eu(Vo,qT),sU={kernelName:Vo,backendName:"cpu",kernelFunc:rU},XT=Zl(e=>Math.floor(e)),iU=eu(Os,XT),oU={kernelName:Os,backendName:"cpu",kernelFunc:iU};function KT(e,t,n){let a=Me(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);a.values[r]=e.values[c]}return a}var YT=Mt((e,t)=>e>t?1:0),lU=Qt(jo,YT,null,"bool"),uU={kernelName:jo,backendName:"cpu",kernelFunc:lU},JT=Mt((e,t)=>e<t?1:0),cU=Qt(Yo,JT,null,"bool"),pU={kernelName:Yo,backendName:"cpu",kernelFunc:cU};function QT(e,t,n){let a=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var ZT=Zl(e=>Math.log(e)),dU=eu(Us,ZT),hU={kernelName:Us,backendName:"cpu",kernelFunc:dU};function e2(e,t,n,a){let r=w.getTypedArrayFromDType(a,w.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}r[s]=o}return r}var t2=Mt((e,t)=>Math.max(e,t)),mU=Qt(Hs,t2),fU={kernelName:Hs,backendName:"cpu",kernelFunc:mU},n2=Mt((e,t)=>Math.min(e,t)),gU=Qt(Ks,n2),yU={kernelName:Ks,backendName:"cpu",kernelFunc:gU},hv=Mt((e,t)=>e*t),bU=fv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),gv=Qt(Ys,hv,bU),xU={kernelName:Ys,backendName:"cpu",kernelFunc:gv};function a2(e,t,n){let a=w.createScalarValue(-1,n);return hv([],t,a,e,n)}function vU(e){let{inputs:t,backend:n}=e,{x:a}=t;xe(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=a2(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var wU={kernelName:tl,backendName:"cpu",kernelFunc:vU},r2=Mt((e,t)=>e!==t?1:0),kU=Qt(nl,r2,null,"bool"),IU={kernelName:nl,backendName:"cpu",kernelFunc:kU};function mv(e,t,n,a,r){let s=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),l=w.computeStrides(r),c=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let u=0;u<i;++u){let p=w.indexToLoc(u,s,o),d=new Array(p.length);for(let m=0;m<d.length;m++)d[m]=p[a[m]];let h=w.locToIndex(d,s,l);c[h]=e[u]}return c}function ya(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;xe(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,c=mv(l,r.shape,r.dtype,s,o);return{dataId:a.write(c,o,r.dtype),shape:o,dtype:r.dtype}}var TU={kernelName:fi,backendName:"cpu",kernelFunc:ya};function s2(e,t,n,a){let[r,s]=_.computeOutAndReduceShapes(e,a),i=ua(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),l=w.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,p=1;for(let d=0;d<l;++d)p*=n[u+d];o[c]=p}return{outVals:o,outShape:r,outDtype:i}}function NU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"prod");let o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=_.getAxesPermutation(l,o),u=l,p=r,d=[];c!=null&&(p=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),d.push(p),u=_.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=s2(p.shape,p.dtype,h,u),y=f;return i&&(y=_.expandShapeToKeepDim(f,l)),d.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var SU={kernelName:ll,backendName:"cpu",kernelFunc:NU};function i2(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var o2=Zl(e=>1/Math.sqrt(e)),CU=eu(ii,o2),_U={kernelName:ii,backendName:"cpu",kernelFunc:CU};function l2(e,t,n,a,r){let s=an.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=an.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Vi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;xe(r,"slice");let[o,l]=an.parseSliceParams(r,s,i);an.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=l2(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var EU={kernelName:ml,backendName:"cpu",kernelFunc:Vi},u2=Mt((e,t)=>{let n=e-t;return n*n}),FU=Qt(di,u2),AU={kernelName:di,backendName:"cpu",kernelFunc:FU};function c2(e,t,n,a){let r=Me(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var p2=Mt((e,t)=>e-t),$U=fv((e,t,n,a)=>({real:e-n,imag:t-a})),yv=Qt(hi,p2,$U),DU={kernelName:hi,backendName:"cpu",kernelFunc:yv};function d2(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Me(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function h2(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=w.getTypedArrayFromDType(n,i*a),c=w.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),m=[];for(let b=0;b<h.length;b++)m.push({value:h[b],index:b});m.sort((b,x)=>x.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b<a;b++)g[b]=m[b].value,y[b]=m[b].index}let u=t.slice();return u[u.length-1]=a,[Me(u,n,l),Me(u,"int32",c)]}function m2(e,t,n,a){let r=w.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Lt(s,a,e),c=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let b=0;b<s[2];b++)g.push(l.get(y,m,b));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,c.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let d=new Lt(p,a);c.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)d.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var RU="3.3.0";Qd("cpu",()=>new pv,1);var g2=st(Lo,e=>e>=0?e:Math.exp(e)-1),MU={kernelName:Lo,backendName:"cpu",kernelFunc:g2};function y2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;xe([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(r.shape,"float32",l)}var PU={kernelName:Vs,backendName:"cpu",kernelFunc:y2},OU=Mt((e,t)=>e<0?t*e:e);function b2(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;xe([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=OU(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var LU={kernelName:ei,backendName:"cpu",kernelFunc:b2},x2=st(ti,e=>Math.max(0,e)),zU={kernelName:ti,backendName:"cpu",kernelFunc:x2},v2=st(ai,e=>Math.min(Math.max(0,e),6)),WU={kernelName:ai,backendName:"cpu",kernelFunc:v2};function bv(e,t,n,a,r){if(n==="linear")return nr({inputs:{x:t},backend:e});if(n==="relu")return x2({inputs:{x:t},backend:e});if(n==="elu")return g2({inputs:{x:t},backend:e});if(n==="relu6")return v2({inputs:{x:t},backend:e});if(n==="prelu")return b2({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return y2({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function kt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,i),l=w.sizeFromShape(o);w.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var BU={kernelName:cl,backendName:"cpu",kernelFunc:kt};function w2(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;xe([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=kt({inputs:{x:r},backend:n,attrs:{shape:v}}),S=kt({inputs:{x:s},backend:n,attrs:{shape:T}}),F=i?k.shape[1]:k.shape[2],A=i?k.shape[2]:k.shape[1],R=o?S.shape[1]:S.shape[2],P=Math.max(g,y),z=n.data.get(k.dataId).values,V=n.data.get(S.dataId).values,G=w.computeStrides(k.shape),H=w.computeStrides(S.shape),[X,j,te]=i?[G[0],1,G[1]]:[G[0],G[1],1],[Q,se,ne]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=A*R,ee=Me([P,A,R],k.dtype),pe=ee.values,oe=n.blockSize;for(let fe=0;fe<P;fe++)for(let me=0;me<A;me+=oe)for(let we=0;we<R;we+=oe)for(let Te=0;Te<F;Te+=oe){let _e=Math.min(me+oe,A),Re=Math.min(we+oe,R),Fe=Math.min(Te+oe,F);for(let tt=me;tt<_e;tt++)for(let nt=we;nt<Re;nt++){let it=0;for(let Ke=Te;Ke<Fe;Ke++){let mt=Math.min(fe,g-1)*X,We=Math.min(fe,y-1)*ne,wn=z[mt+tt*j+Ke*te],It=V[Ke*Q+nt*se+We];it+=wn*It}pe[fe*ie+(tt*R+nt)]+=it}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(x,ee.dtype,ee.values)}var VU={kernelName:Cs,backendName:"cpu",kernelFunc:w2};function UU(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d,h,m,f=[];d=w2({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(h=sp({inputs:{a:d,b:i},backend:n}),f.push(d),d=h),u&&(m=bv(n,d,u,o,p),f.push(d),d=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return d}var GU={kernelName:gi,backendName:"cpu",kernelFunc:UU},HU=st(Co,e=>Math.acos(e)),jU={kernelName:Co,backendName:"cpu",kernelFunc:HU},qU=st(_o,e=>Math.acosh(e)),XU={kernelName:_o,backendName:"cpu",kernelFunc:qU};function KU(e){let{inputs:t,backend:n}=e,a=t;xe(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Me(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var YU={kernelName:Ts,backendName:"cpu",kernelFunc:KU};function JU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"all");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x&&T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var QU={kernelName:ud,backendName:"cpu",kernelFunc:JU};function ZU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"any");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];x=x||T}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var eG={kernelName:cd,backendName:"cpu",kernelFunc:ZU};function tG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMax");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T>b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var nG={kernelName:Ns,backendName:"cpu",kernelFunc:tG};function aG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;xe(r,"argMin");let i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ya({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=w.sizeFromShape(u),h=w.makeZerosTypedArray(d,"int32"),m=w.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,b=f[y],x=0;for(let v=0;v<m;++v){let T=f[y+v];T<b&&(b=T,x=v)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var rG={kernelName:Ku,backendName:"cpu",kernelFunc:aG},sG=st(Eo,e=>Math.asin(e)),iG={kernelName:Eo,backendName:"cpu",kernelFunc:sG},oG=st(Fo,e=>Math.asinh(e)),lG={kernelName:Fo,backendName:"cpu",kernelFunc:oG},uG=st(Ao,e=>Math.atan(e)),cG={kernelName:Ao,backendName:"cpu",kernelFunc:uG},pG=Mt((e,t)=>Math.atan2(e,t)),dG=Qt(Do,pG),hG={kernelName:Do,backendName:"cpu",kernelFunc:dG},mG=st($o,e=>Math.atanh(e)),fG={kernelName:$o,backendName:"cpu",kernelFunc:mG};function xv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Me(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let T=v*y,k=v*a[0];for(let S=0;S<r.inChannels;++S)for(let F=0;F<r.outHeight;++F){let A=F*i-d,R=Math.max(0,A),P=Math.min(r.inHeight,u+A),z=T+F*b;for(let V=0;V<r.outWidth;++V){let G=V*o-h,H=Math.max(0,G),X=Math.min(r.inWidth,p+G),j=m,te=0,Q=0;for(let ne=R;ne<P;ne+=l){let ie=k+ne*a[1];for(let ee=H;ee<X;ee+=c){let pe=ie+ee*a[2],oe=e[pe+S];s==="max"&&oe>j?j=oe:s==="avg"&&(te+=oe,Q++)}if(isNaN(j))break}let se=z+V*x+S;g[se]=s==="avg"?te/Q:j}}}return f}function k2(e,t,n,a,r=!1,s=!1){let i=Me(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Me(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let b=0;b<a.outHeight;++b){let x=b*o-h,v=x;for(;v<0;)v+=c;let T=Math.min(a.inHeight,p+x);for(let k=0;k<a.outWidth;++k){let S=k*l-m,F=S;for(;F<0;)F+=u;let A=Math.min(a.inWidth,d+S),R=Number.NEGATIVE_INFINITY,P=-1;for(let z=v;z<T;z+=c){let V=z-x;for(let G=F;G<A;G+=u){let H=G-S,X=f.get(g,z,G,y);X>R&&(R=X,r?P=s?((g*a.inHeight+z)*a.inWidth+G)*a.inChannels+y:(z*a.inWidth+G)*a.inChannels+y:P=V*d+H)}}i.set(P,g,b,k,y)}}return i}function I2(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Me(r.outShape,n),v=x.values,T=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],F=r.outShape[4];for(let A=0;A<r.batchSize;++A){let R=A*T,P=A*a[0];for(let z=0;z<r.inChannels;++z)for(let V=0;V<r.outDepth;++V){let G=V*i-f,H=G;for(;H<0;)H+=c;let X=Math.min(r.inDepth,d+G),j=R+V*k;for(let te=0;te<r.outHeight;++te){let Q=te*o-g,se=Q;for(;se<0;)se+=u;let ne=Math.min(r.inHeight,h+Q),ie=j+te*S;for(let ee=0;ee<r.outWidth;++ee){let pe=ee*l-y,oe=pe;for(;oe<0;)oe+=p;let fe=Math.min(r.inWidth,m+pe),me=ie+ee*F,we=b,Te=0,_e=0;for(let Fe=H;Fe<X;Fe+=c){let tt=P+Fe*a[1];for(let nt=se;nt<ne;nt+=u){let it=tt+nt*a[2];for(let Ke=oe;Ke<fe;Ke+=p){let mt=it+Ke*a[3],We=e[mt+z];if(s==="max"&&We>we?we=We:s==="avg"&&(Te+=We,_e++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Re=me+z;v[Re]=s==="avg"?Te/_e:we}}}}return x}function gG(e,t){let n=Me(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let b=y*a-d,x=b;for(;x<0;)x+=i;let v=Math.min(t.inDepth,c+b);for(let T=0;T<t.outHeight;++T){let k=T*r-h,S=k;for(;S<0;)S+=o;let F=Math.min(t.inHeight,u+k);for(let A=0;A<t.outWidth;++A){let R=A*s-m,P=R;for(;P<0;)P+=l;let z=Math.min(t.inWidth,p+R),V=Number.NEGATIVE_INFINITY,G=-1;for(let H=x;H<v;H+=i){let X=H-b;for(let j=S;j<F;j+=o){let te=j-k;for(let Q=P;Q<z;Q+=l){let se=Q-R,ne=e.get(f,H,j,Q,g);ne>=V&&(V=ne,G=X*u*p+te*u+se)}}}n.set(G,f,y,T,A,g)}}}return n}function yG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=xv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var bG={kernelName:Ss,backendName:"cpu",kernelFunc:yG};function xG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=I2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var vG={kernelName:Yu,backendName:"cpu",kernelFunc:xG};function wG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,x=u.dilationWidth,v=u.effectiveFilterDepth,T=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=v-1-u.padInfo.front,F=k-1-u.padInfo.left,A=T-1-u.padInfo.top,R=Me(s.shape,"float32"),P=1/(m*f*g),z=n.bufferSync(r);for(let V=0;V<u.batchSize;++V)for(let G=0;G<u.inChannels;++G)for(let H=0;H<u.inDepth;++H)for(let X=0;X<u.inHeight;++X)for(let j=0;j<u.inWidth;++j){let te=H-S,Q=X-A,se=j-F,ne=0;for(let ie=0;ie<v;ie+=y){let ee=(te+ie)/p;if(!(ee<0||ee>=u.outDepth||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(Q+pe)/d;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<k;fe+=x){let me=(se+fe)/h;me<0||me>=u.outWidth||Math.floor(me)!==me||(ne+=z.get(V,ee,oe,me,G))}}}R.set(ne*P,V,H,X,j,G)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var kG={kernelName:dd,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;xe([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,x=b-1-u.padInfo.left,v=y-1-u.padInfo.top,T=Me(i.shape,"float32"),k=1/(h*m),S=n.data.get(r.dataId).values,F=Me(r.shape,"float32",S);for(let A=0;A<u.batchSize;++A)for(let R=0;R<u.inChannels;++R)for(let P=0;P<u.inHeight;++P)for(let z=0;z<u.inWidth;++z){let V=P-v,G=z-x,H=0;for(let X=0;X<y;X+=f){let j=(V+X)/p;if(!(j<0||j>=u.outHeight||Math.floor(j)!==j))for(let te=0;te<b;te+=g){let Q=(G+te)/d;Q<0||Q>=u.outWidth||Math.floor(Q)!==Q||(H+=F.get(A,j,Q,R))}}T.set(H*k,A,P,z,R)}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var TG={kernelName:pd,backendName:"cpu",kernelFunc:IG};function NG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;w.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),xe([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,x=p.length,v=0,T=0,k=0,S=0;for(let F=0;F<u.length;++F)f[F]=m[v++]+(u[F]-p[T++])*h[k++]/Math.sqrt(d[S++]+c),v>=g&&(v=0),T>=x&&(T=0),k>=y&&(k=0),S>=b&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var SG={kernelName:zs,backendName:"cpu",kernelFunc:NG};function CG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;xe([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=kt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:c}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Vi({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var _G={kernelName:Ju,backendName:"cpu",kernelFunc:CG};function EG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=dv(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var FG={kernelName:hd,backendName:"cpu",kernelFunc:EG},AG=st(Vr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),$G={kernelName:Vr,backendName:"cpu",kernelFunc:AG},DG=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],p=l[c];a[c]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},RG={kernelName:Qu,backendName:"cpu",kernelFunc:DG};function tu(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var MG={kernelName:Cd,backendName:"cpu",kernelFunc:tu};function nu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(f=>f.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>w.sizeFromShape(f.shape)>0);if(o.length===1)return nr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>Bi({inputs:{input:v},backend:n})),g=o.map(v=>tu({inputs:{input:v},backend:n})),y=nu({inputs:f,backend:n,attrs:{axis:s}}),b=nu({inputs:g,backend:n,attrs:{axis:s}}),x=Un({inputs:{real:y,imag:b},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let c=o.map(f=>{let g=w.sizeFromShape(f.shape.slice(s));return kt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=HT(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var PG={kernelName:Ro,backendName:"cpu",kernelFunc:nu};function T2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;xe([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,x=d.dataFormat==="channelsLast",v=new Lt(d.outShape,r.dtype),T=w.computeStrides(r.shape),k=w.computeStrides(s.shape),S=T[0],F=x?T[1]:T[2],A=x?T[2]:1,R=x?1:T[1],P=v.strides[0],z=x?v.strides[1]:v.strides[2],V=x?v.strides[2]:1,G=x?1:v.strides[1],H=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,j=v.values;for(let te=0;te<d.batchSize;++te){let Q=te*S,se=te*P;for(let ne=0;ne<d.outHeight;++ne){let ie=se+ne*z,ee=ne*d.strideHeight-b;for(let pe=0;pe<h;++pe){let oe=ee+pe*f;if(oe<0||oe>=d.inHeight)continue;let fe=pe*k[0],me=Q+oe*F;for(let we=0;we<d.outWidth;++we){let Te=ie+we*V,_e=we*d.strideWidth-y;for(let Re=0;Re<m;++Re){let Fe=_e+Re*g;if(Fe<0||Fe>=d.inWidth)continue;let tt=fe+Re*k[1],nt=me+Fe*A,it=tt;for(let Ke=0;Ke<d.inChannels;++Ke){let mt=H[nt+Ke*R];for(let We=0;We<d.outChannels;++We)j[Te+We*G]+=mt*X[it+We];it+=d.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,j)}var OG={kernelName:Fs,backendName:"cpu",kernelFunc:T2};function LG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"conv2dBackpropFilter");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=d,y=d.dataFormat==="channelsLast",b=new Lt(d.filterShape,"float32"),x=d.padInfo.left,v=d.padInfo.top,T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=new Lt(r.shape,r.dtype,T),F=new Lt(s.shape,s.dtype,k);for(let A=0;A<f;++A){let R=Math.max(0,Math.ceil((v-A)/h)),P=Math.min(d.outHeight,(d.inHeight+v-A)/h);for(let z=0;z<g;++z){let V=Math.max(0,Math.ceil((x-z)/m)),G=Math.min(d.outWidth,(d.inWidth+x-z)/m);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let j=0;for(let te=0;te<d.batchSize;++te)for(let Q=R;Q<P;++Q){let se=A+Q*h-v;for(let ne=V;ne<G;++ne){let ie=z+ne*m-x;y?j+=S.get(te,se,ie,H)*F.get(te,Q,ne,X):j+=S.get(te,H,se,ie)*F.get(te,X,Q,ne)}}b.set(j,A,z,H,X)}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var zG={kernelName:fd,backendName:"cpu",kernelFunc:LG};function WG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a;xe([r,s],"conv2dBackpropInput");let p=w.computeStrides(s.shape),d=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(c),m=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Lt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,b=n.data.get(s.dataId).values,[x,v,T]=p,{batchSize:k,filterHeight:S,filterWidth:F,inChannels:A,inHeight:R,inWidth:P,outChannels:z,outHeight:V,outWidth:G,strideHeight:H,strideWidth:X}=m;h=m.dataFormat;let j=S-1-m.padInfo.top,te=F-1-m.padInfo.left,Q=h==="channelsLast",se=f.strides[0],ne=Q?f.strides[1]:f.strides[2],ie=Q?f.strides[2]:1,ee=Q?1:f.strides[1],pe=d[0],oe=Q?d[1]:d[2],fe=Q?d[2]:1,me=Q?1:d[1];for(let we=0;we<k;++we)for(let Te=0;Te<A;++Te)for(let _e=0;_e<R;++_e){let Re=_e-j,Fe=Math.max(0,Math.ceil(Re/H)),tt=Math.min(V,(S+Re)/H);for(let nt=0;nt<P;++nt){let it=nt-te,Ke=Math.max(0,Math.ceil(it/X)),mt=Math.min(G,(F+it)/X),We=0;for(let It=Fe;It<tt;++It){let qn=It*H-Re;for(let en=Ke;en<mt;++en){let kn=en*X-it,Xn=pe*we+oe*It+fe*en,Mn=x*(S-1-qn)+v*(F-1-kn)+T*Te;for(let pn=0;pn<z;++pn){let tn=y[Xn+me*pn],Wa=b[Mn+pn];We+=tn*Wa}}}let wn=se*we+ne*_e+ie*nt+ee*Te;g[wn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var BG={kernelName:As,backendName:"cpu",kernelFunc:WG};function VG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;xe([r,s],"conv3d");let c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=c,y=g.front,b=g.left,x=g.top,v=new Lt(c.outShape,r.dtype),T=n.data.get(r.dataId).values,k=n.data.get(s.dataId).values,S=v.values,F=w.computeStrides(r.shape),A=w.computeStrides(s.shape);for(let R=0;R<c.batchSize;++R){let P=R*F[0],z=R*v.strides[0];for(let V=0;V<c.outDepth;++V){let G=z+V*v.strides[1],H=V*c.strideDepth-y;for(let X=0;X<u;++X){let j=H+X*h;if(j<0||j>=c.inDepth)continue;let te=X*A[0],Q=P+j*F[1];for(let se=0;se<c.outHeight;++se){let ne=G+se*v.strides[2],ie=se*c.strideHeight-x;for(let ee=0;ee<p;++ee){let pe=ie+ee*m;if(pe<0||pe>=c.inHeight)continue;let oe=te+ee*A[1],fe=Q+pe*F[2];for(let me=0;me<c.outWidth;++me){let we=ne+me*c.outChannels,Te=me*c.strideWidth-b;for(let _e=0;_e<d;++_e){let Re=Te+_e*f;if(Re<0||Re>=c.inWidth)continue;let Fe=oe+_e*A[2],tt=fe+Re*c.inChannels,nt=Fe;for(let it=0;it<c.inChannels;++it){let Ke=T[tt+it];for(let mt=0;mt<c.outChannels;++mt)S[we+mt]+=Ke*k[nt+mt];nt+=c.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var UG={kernelName:Zu,backendName:"cpu",kernelFunc:VG};function GG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;xe([r,s],"conv3dBackpropFilterV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(r.shape,l,i,1,o),d=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,b=new Lt(p.filterShape,"float32"),x=b.values,[v,T,k,S]=b.strides,F=n.data.get(s.dataId).values,[A,R,P,z]=u,V=n.data.get(r.dataId).values,[G,H,X,j]=c,te=p.padInfo.front,Q=p.padInfo.left,se=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((te-ne)/d)),ee=Math.min(p.outDepth,(p.inDepth+te-ne)/d),pe=ne*v;for(let oe=0;oe<g;++oe){let fe=Math.max(0,Math.ceil((se-oe)/h)),me=Math.min(p.outHeight,(p.inHeight+se-oe)/h),we=oe*T+pe;for(let Te=0;Te<y;++Te){let _e=Math.max(0,Math.ceil((Q-Te)/m)),Re=Math.min(p.outWidth,(p.inWidth+Q-Te)/m),Fe=Te*k+we;for(let tt=0;tt<p.inChannels;++tt){let nt=tt*S+Fe;for(let it=0;it<p.outChannels;++it){let Ke=0;for(let mt=0;mt<p.batchSize;++mt){let We=mt*G,wn=mt*A;for(let It=ie;It<ee;++It){let qn=(ne+It*d-te)*H+We,en=It*R+wn;for(let kn=fe;kn<me;++kn){let Xn=(oe+kn*h-se)*X+qn,Mn=kn*P+en;for(let pn=_e;pn<Re;++pn){let tn=(Te+pn*m-Q)*j+Xn,Wa=pn*z+Mn;Ke+=V[tn+tt]*F[Wa+it]}}}}x[nt+it]=Ke}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var HG={kernelName:gd,backendName:"cpu",kernelFunc:GG};function jG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;xe([r],"conv3dBackpropInputV2");let c=w.computeStrides(r.shape),u=w.computeStrides(s.shape),p=_.computeConv3DInfo(l,s.shape,o,1,i),d=new Lt(p.inShape,"float32"),h=d.values,[m,f,g,y]=d.strides,b=n.data.get(r.dataId).values,[x,v,T,k]=c,S=n.data.get(s.dataId).values,[F,A,R,P]=u,{batchSize:z,filterDepth:V,filterHeight:G,filterWidth:H,inChannels:X,inDepth:j,inHeight:te,inWidth:Q,outChannels:se,outDepth:ne,outHeight:ie,outWidth:ee,strideDepth:pe,strideHeight:oe,strideWidth:fe}=p,me=V-1-p.padInfo.front,we=G-1-p.padInfo.top,Te=H-1-p.padInfo.left;for(let _e=0;_e<z;++_e)for(let Re=0;Re<X;++Re)for(let Fe=0;Fe<j;++Fe){let tt=Fe-me,nt=Math.max(0,Math.ceil(tt/pe)),it=Math.min(ne,(V+tt)/pe);for(let Ke=0;Ke<te;++Ke){let mt=Ke-we,We=Math.max(0,Math.ceil(mt/oe)),wn=Math.min(ie,(G+mt)/oe);for(let It=0;It<Q;++It){let qn=It-Te,en=Math.max(0,Math.ceil(qn/fe)),kn=Math.min(ee,(H+qn)/fe),Xn=0;for(let Mn=nt;Mn<it;++Mn){let pn=Mn*pe-tt;for(let tn=We;tn<wn;++tn){let Wa=tn*oe-mt;for(let sa=en;sa<kn;++sa){let ia=sa*fe-qn,$r=x*_e+v*Mn+T*tn+k*sa,lr=F*(V-1-pn)+A*(G-1-Wa)+R*(H-1-ia)+P*Re;for(let Dr=0;Dr<se;++Dr){let co=b[$r+Dr],ka=S[lr+Dr];Xn+=co*ka}}}}h[m*_e+f*Fe+g*Ke+y*It+Re]=Xn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var qG={kernelName:yd,backendName:"cpu",kernelFunc:jG},XG=st($s,e=>Math.cos(e)),KG={kernelName:$s,backendName:"cpu",kernelFunc:XG},YG=st(Mo,e=>Math.cosh(e)),JG={kernelName:Mo,backendName:"cpu",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Me([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,T=w.computeStrides(r.shape),k=w.computeStrides(y.shape);for(let S=0;S<m;S++){let F=S*4,A=b[F],R=b[F+1],P=b[F+2],z=b[F+3],V=x[S];if(V>=u)continue;let G=f>1?(P-A)*(p-1)/(f-1):0,H=g>1?(z-R)*(d-1)/(g-1):0;for(let X=0;X<f;X++){let j=f>1?A*(p-1)+X*G:.5*(A+P)*(p-1);if(j<0||j>p-1){for(let te=0;te<g;te++)for(let Q=0;Q<h;Q++){let se=Q+te*k[2]+X*k[1]+S*k[0];y.values[se]=c}continue}if(l==="bilinear"){let te=Math.floor(j),Q=Math.ceil(j),se=j-te;for(let ne=0;ne<g;ne++){let ie=g>1?R*(d-1)+ne*H:.5*(R+z)*(d-1);if(ie<0||ie>d-1){for(let fe=0;fe<h;fe++){let me=fe+ne*k[2]+X*k[1]+S*k[0];y.values[me]=c}continue}let ee=Math.floor(ie),pe=Math.ceil(ie),oe=ie-ee;for(let fe=0;fe<h;fe++){let me=fe+ee*T[2]+te*T[1]+V*T[0],we=v[me];me=fe+pe*T[2]+te*T[1]+V*T[0];let Te=v[me];me=fe+ee*T[2]+Q*T[1]+V*T[0];let _e=v[me];me=fe+pe*T[2]+Q*T[1]+V*T[0];let Re=v[me],Fe=we+(Te-we)*oe,tt=_e+(Re-_e)*oe;me=fe+ne*k[2]+X*k[1]+S*k[0],y.values[me]=Fe+(tt-Fe)*se}}}else for(let te=0;te<g;++te){let Q=g>1?R*(d-1)+te*H:.5*(R+z)*(d-1);if(Q<0||Q>d-1){for(let ie=0;ie<h;ie++){let ee=ie+te*k[2]+X*k[1]+S*k[0];y.values[ee]=c}continue}let se=Math.round(Q),ne=Math.round(j);for(let ie=0;ie<h;ie++){let ee=ie+se*T[2]+ne*T[1]+V*T[0],pe=ie+te*k[2]+X*k[1]+S*k[0];y.values[pe]=v[ee]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var ZG={kernelName:Po,backendName:"cpu",kernelFunc:QG};function eH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;xe(r,"cumsum");let l=_.getAxesPermutation([s],r.shape.length),c=r;l!=null&&(c=ya({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=_.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let p=ua(c.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(c.shape),p),h=n.data.get(c.dataId).values,m=c.shape[c.shape.length-1],f=o?(y,b)=>y+m-b-1:(y,b)=>y+b;for(let y=0;y<h.length;y+=m)for(let b=0;b<m;b++){let x=f(y,b);if(b===0)d[x]=i?0:h[x];else{let v=f(y,b-1);d[x]=i?h[v]+d[v]:h[x]+d[v]}}let g=n.makeTensorInfo(c.shape,p,d);if(l!=null){let y=_.getUndoAxesPermutation(l),b=ya({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),b}return g}var tH={kernelName:Ds,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=dv(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=UT(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var aH={kernelName:bd,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y<o;++y)for(let b=0;b<p;++b){let x=Math.floor(b/s),v=b%s;for(let T=0;T<d;++T){let k=Math.floor(T/s),S=T%s,F=(v*s+S)*h;for(let A=0;A<h;++A){let R=A+F+u*(k+c*(x+l*y));f[g++]=m[R]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,f)}var sH={kernelName:Oo,backendName:"cpu",kernelFunc:rH};function N2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a;xe([r,s],"depthwiseConv2DNative");let u=w.computeStrides(r.shape),p=w.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,v=b.top,T=h.outChannels/h.inChannels,k=new Lt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,F=n.data.get(s.dataId).values,A=k.values;for(let R=0;R<h.batchSize;++R){let P=R*u[0],z=R*k.strides[0];for(let V=0;V<h.outHeight;++V){let G=z+V*k.strides[1],H=V*h.strideHeight-x;for(let X=0;X<m;++X){let j=H+X*g;if(j<0||j>=h.inHeight)continue;let te=X*p[0],Q=P+j*u[1];for(let se=0;se<h.outWidth;++se){let ne=G+se*k.strides[2],ie=se*h.strideWidth-v;for(let ee=0;ee<f;++ee){let pe=ie+ee*y;if(pe<0||pe>=h.inWidth)continue;let oe=te+ee*p[1],fe=Q+pe*h.inChannels,me=ne,we=oe;for(let Te=0;Te<h.inChannels;++Te){let _e=S[fe+Te];for(let Re=0;Re<T;++Re)A[me+Re]+=_e*F[we+Re];me+=T,we+=T}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var iH={kernelName:Rs,backendName:"cpu",kernelFunc:N2};function oH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a;xe([r,s],"depthwiseConv2dNativeBackpropFilter");let p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Lt(p.filterShape,"float32"),y=p.padInfo.left,b=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,T=new Lt(r.shape,r.dtype,v),k=n.data.get(s.dataId).values,S=new Lt(s.shape,s.dtype,k);for(let F=0;F<m;++F){let A=Math.max(0,Math.ceil((b-F)/d)),R=Math.min(p.outHeight,(p.inHeight+b-F)/d);for(let P=0;P<f;++P){let z=Math.max(0,Math.ceil((y-P)/h)),V=Math.min(p.outWidth,(p.inWidth+y-P)/h);for(let G=0;G<p.outChannels;++G){let H=Math.trunc(G/x),X=G%x,j=0;for(let te=0;te<p.batchSize;++te)for(let Q=A;Q<R;++Q){let se=F+Q*d-b;for(let ne=z;ne<V;++ne){let ie=P+ne*h-y;j+=T.get(te,se,ie,H)*S.get(te,Q,ne,G)}}g.set(j,F,P,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var lH={kernelName:xd,backendName:"cpu",kernelFunc:oH};function uH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a;xe([r,s],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(s.shape),h=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),m=new Lt(h.inShape,"float32"),f=m.values,[g,y,b]=m.strides,x=n.data.get(r.dataId).values,[v,T,k]=p,S=n.data.get(s.dataId).values,[F,A,R]=d,{batchSize:P,filterHeight:z,filterWidth:V,inChannels:G,inHeight:H,inWidth:X,outChannels:j,outHeight:te,outWidth:Q,strideHeight:se,strideWidth:ne}=h,ie=z-1-h.padInfo.top,ee=V-1-h.padInfo.left,pe=j/G;for(let oe=0;oe<P;++oe)for(let fe=0;fe<G;++fe)for(let me=0;me<H;++me){let we=me-ie,Te=Math.max(0,Math.ceil(we/se)),_e=Math.min(te,(z+we)/se);for(let Re=0;Re<X;++Re){let Fe=Re-ee,tt=Math.max(0,Math.ceil(Fe/ne)),nt=Math.min(Q,(V+Fe)/ne),it=0;for(let Ke=Te;Ke<_e;++Ke){let mt=Ke*se-we;for(let We=tt;We<nt;++We){let wn=We*ne-Fe,It=v*oe+T*Ke+k*We,qn=F*(z-1-mt)+A*(V-1-wn)+R*fe;for(let en=0;en<pe;++en){let kn=fe*pe+en,Xn=x[It+kn],Mn=S[qn+en];it+=Xn*Mn}}}f[g*oe+y*me+b*Re+fe]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var cH={kernelName:vd,backendName:"cpu",kernelFunc:uH};function pH(e){let{inputs:t,backend:n}=e,{x:a}=t,r=w.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Me([r,r],a.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*r+c]=s[c];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var dH={kernelName:wd,backendName:"cpu",kernelFunc:pH},hH={kernelName:ec,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:v,strideWidth:T,filterHeight:k,filterWidth:S,dilationHeight:F,dilationWidth:A,outShape:R}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),P=w.sizeFromShape(R),z=R.length,V=w.getArrayFromDType(a.dtype,P);for(let G=0;G<h;++G)for(let H=0;H<y;++H){let X=H*v-x.top;for(let j=0;j<b;++j){let te=j*T-x.left;for(let Q=0;Q<g;++Q){let se=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<k;++ie){let ee=X+ie*F;if(ee>=0&&ee<m)for(let pe=0;pe<S;++pe){let oe=te+pe*A;if(oe>=0&&oe<f){let fe=w.locToIndex([G,ee,oe,Q],u,w.computeStrides(a.shape)),me=w.locToIndex([ie,pe,Q],d,w.computeStrides(r.shape)),we=c[fe]+p[me];we>se&&(se=we)}}}let ne=w.locToIndex([G,H,j,Q],z,w.computeStrides(R));V[ne]=se}}}return{dataId:l.write(w.toTypedArray(V,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},mH={kernelName:Id,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${Id}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=0,se=0;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=X+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ne,se=ee)}}}P[Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},fH={kernelName:kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=w.toNestedArray(a.shape,c.data.get(a.dataId).values),p=w.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:v,filterHeight:T,filterWidth:k,dilationHeight:S,dilationWidth:F,outShape:A}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);w.assert(s.rank===A.length,()=>`Error in ${kd}, dy must have the same rank as output ${A.length}, but got ${s.rank}`);let R=w.toNestedArray(A,c.data.get(s.dataId).values),P=w.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z<d;++z)for(let V=0;V<g;++V){let G=V*x-b.top;for(let H=0;H<y;++H){let X=H*v-b.left;for(let j=0;j<f;++j){let te=Number.MIN_SAFE_INTEGER,Q=G<0?0:G,se=X<0?0:X;for(let ne=0;ne<T;++ne){let ie=G+ne*S;if(ie>=0&&ie<h)for(let ee=0;ee<k;++ee){let pe=X+ee*F;if(pe>=0&&pe<m){let oe=u[z][ie][pe][j]+p[ne][ee][j];oe>te&&(te=oe,Q=ie,se=pe)}}}P[z][Q][se][j]+=R[z][V][H][j]}}}return{dataId:c.write(w.toTypedArray(P,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function gH(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;xe([a,r],"eluGrad");let s=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var yH={kernelName:Td,backendName:"cpu",kernelFunc:gH},bH=Mt((e,t)=>e===t?1:0),S2=Qt(Wo,bH,null,"bool"),xH={kernelName:Wo,backendName:"cpu",kernelFunc:S2},vH=_.ERF_P,wH=_.ERF_A1,kH=_.ERF_A2,IH=_.ERF_A3,TH=_.ERF_A4,NH=_.ERF_A5,SH=st(zo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+vH*n);return t*(1-((((NH*a+TH)*a+IH)*a+kH)*a+wH)*a*Math.exp(-n*n))}),CH={kernelName:zo,backendName:"cpu",kernelFunc:SH};function Im(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),kt({inputs:{x:r},backend:n,attrs:{shape:o}})}var _H={kernelName:Bo,backendName:"cpu",kernelFunc:Im},EH=Mt((e,t)=>e/t),vv=Qt(Ms,EH),wv={kernelName:Ms,backendName:"cpu",kernelFunc:vv};function C2(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=w.sizeFromShape(c),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let y=Vi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),b=Vi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Un({inputs:{real:y,imag:b},backend:n}),{real:v,imag:T}=FH(x,t,n),k=_.mergeRealAndImagArrays(v,T);for(let S=0;S<s;S++){let F=_.getComplexWithIndex(k,S);p[g*s+S]=F.real,d[g*s+S]=F.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",p),m=n.makeTensorInfo(c,"float32",d),f=Un({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function FH(e,t,n){let a=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(AH(a)){let o=kv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),d=nr({inputs:{x:p},backend:n}),h=wv.kernelFunc({inputs:{a:c,b:p},backend:n}),m=wv.kernelFunc({inputs:{a:u,b:d},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=_.mergeRealAndImagArrays(s,i),l=$H(o,a,t);return _.splitRealAndImagArrays(l)}}function AH(e){return(e&e-1)==0}function kv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=_.mergeRealAndImagArrays(e,t),i=n/2,o=_.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),d=r.makeTensorInfo(u,"float32",c),h=Un({inputs:{real:p,imag:d},backend:r}),m=_.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],b=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=Un({inputs:{real:b,imag:x},backend:r}),T=kv(l,c,i,a,r),k=T.real,S=T.imag,F=[k.length],A=r.makeTensorInfo(F,"float32",k),R=r.makeTensorInfo(F,"float32",S),P=Un({inputs:{real:A,imag:R},backend:r}),z=kv(f,g,i,a,r),V=z.real,G=z.imag,H=[V.length],X=r.makeTensorInfo(H,"float32",V),j=r.makeTensorInfo(H,"float32",G),te=Un({inputs:{real:X,imag:j},backend:r}),Q=_.exponents(n,a),se=[Q.real.length],ne=r.makeTensorInfo(se,"float32",Q.real),ie=r.makeTensorInfo(se,"float32",Q.imag),ee=Un({inputs:{real:ne,imag:ie},backend:r}),pe=gv({inputs:{a:ee,b:te},backend:r}),oe=sp({inputs:{a:P,b:pe},backend:r}),fe=yv({inputs:{a:P,b:pe},backend:r}),me=Bi({inputs:{input:oe},backend:r}),we=Bi({inputs:{input:fe},backend:r}),Te=tu({inputs:{input:oe},backend:r}),_e=tu({inputs:{input:fe},backend:r}),Re=nu({inputs:[me,we],backend:r,attrs:{axis:0}}),Fe=nu({inputs:[Te,_e],backend:r,attrs:{axis:0}}),tt=r.data.get(Re.dataId).values,nt=r.data.get(Fe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Fe),{real:tt,imag:nt}}function $H(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=_.exponent(r*o,t,n),c=_.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),_.assignToTypedArray(a,s,i,r)}return a}function DH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=C2(o,!1,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var RH={kernelName:Nd,backendName:"cpu",kernelFunc:DH};function Iv(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(a));return MH(o,r,i),t.makeTensorInfo(a,i,o)}var PH={kernelName:tc,backendName:"cpu",kernelFunc:Iv};function MH(e,t,n){e.fill(t)}var OH={kernelName:Uo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let d=p*l*o*c;for(let h=0;h<o;h++){let m=h*(l*c);for(let f=0;f<l;f++){let g=f*c;for(let y=0;y<c;y++){let b=[i,h,f,y][2],x=Math.round(l-b),v=d+m+g+y,T=u[v];if(x>=0&&x<l){let k=x*c,S=d+m+k+y;T=u[S]}s[v]=T}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},LH=Mt((e,t)=>Math.floor(e/t)),zH=Qt(Ls,LH,null,"int32"),WH={kernelName:Ls,backendName:"cpu",kernelFunc:zH};function BH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=T2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=sp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=bv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var VH={kernelName:yi,backendName:"cpu",kernelFunc:BH};function UH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=N2({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=sp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=bv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var GH={kernelName:bi,backendName:"cpu",kernelFunc:UH};function HH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=w.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Me([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<c;f++){let g=[],y=0;for(let b=0;b<o;b++){let x=h[f*o+b];y+=x*p[b],g.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;b<u;b++)d.values[f*u+b]=m[y*u+b]}return n.makeTensorInfo(l,d.dtype,d.values)}var jH={kernelName:Ho,backendName:"cpu",kernelFunc:HH};function qH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;xe([r,s],"gatherV2");let l=o;o==null&&(l=0);let c=w.sizeFromShape(s.shape),u=w.parseAxisParam(i,r.shape)[0],p=_.segment_util.collectGatherOpShapeInfo(r,s,u,l),d=kt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=kt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,c/p.batchSize]}}),m=[p.batchSize,p.outerSize,c/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(d),y=KT(g,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var XH={kernelName:Go,backendName:"cpu",kernelFunc:qH},KH=Mt((e,t)=>e>=t?1:0),YH=Qt(Ws,KH,null,"bool"),JH={kernelName:Ws,backendName:"cpu",kernelFunc:YH};function QH(e){let{inputs:t,backend:n}=e,{input:a}=t,r=w.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=kt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=C2(o,!0,n),c=kt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var ZH={kernelName:Sd,backendName:"cpu",kernelFunc:QH},ej=st(qo,e=>Number.isFinite(e)?1:0,"bool"),tj={kernelName:qo,backendName:"cpu",kernelFunc:ej},nj=st(Xo,e=>Math.abs(e)===Infinity?1:0,"bool"),aj={kernelName:Xo,backendName:"cpu",kernelFunc:nj},rj=st(Ko,e=>Number.isNaN(e)?1:0,"bool"),sj={kernelName:Ko,backendName:"cpu",kernelFunc:rj},ij=Mt((e,t)=>e<=t?1:0),oj=Qt(Jo,ij,null,"bool"),lj={kernelName:Jo,backendName:"cpu",kernelFunc:oj};function uj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=QT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var cj={kernelName:_d,backendName:"cpu",kernelFunc:uj},pj=st(Qo,e=>Math.log1p(e)),dj={kernelName:Qo,backendName:"cpu",kernelFunc:pj},hj=Mt((e,t)=>e&&t),mj=Qt(Zo,hj,null,"bool"),fj={kernelName:Zo,backendName:"cpu",kernelFunc:mj},gj=st(nc,e=>e?0:1,"bool"),yj={kernelName:nc,backendName:"cpu",kernelFunc:gj},bj=Mt((e,t)=>e||t),xj=Qt(ac,bj,null,"bool"),vj={kernelName:ac,backendName:"cpu",kernelFunc:xj};function wj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;xe(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),x=0;for(;y<=b;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<d;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var kj={kernelName:rc,backendName:"cpu",kernelFunc:wj};function Ij(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a;xe(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let b=0;b<y;b++){let x=b%d,v=b-x+Math.max(0,x-o),T=b-x+Math.min(d,x+o+1),k=0;for(let S=v;S<T;S++)k+=Math.pow(m[S],2);k=c*k+l;for(let S=v;S<T;S++){let F=-2*c*u*m[S]*f[b]/k;b===S&&(F+=Math.pow(k,-u)),F*=h[b],g[S]+=F}}return n.makeTensorInfo(i.shape,r.dtype,g)}var Tj={kernelName:Ed,backendName:"cpu",kernelFunc:Ij};function _2(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,c=l.length,u=w.parseAxisParam(s,l),p=u,d=_.getAxesPermutation(p,c),h=o.data.get(r.dataId).values;if(d!=null){let v=new Array(c);for(let T=0;T<v.length;T++)v[T]=l[d[T]];h=mv(h,l,r.dtype,d,v),p=_.getInnerMostAxes(p.length,c),l=v}xe(r,"max"),_.assertAxesAreInnerMostDims("max",p,c);let[m,f]=_.computeOutAndReduceShapes(l,p),g=w.sizeFromShape(f),y=e2(h,g,m,r.dtype),b=o.write(y,m,r.dtype),x=m;return i&&(x=_.expandShapeToKeepDim(m,u)),{dataId:b,shape:x,dtype:r.dtype}}var Nj={kernelName:Gs,backendName:"cpu",kernelFunc:_2};function Sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;xe(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))p=nr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),m=xv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var Cj={kernelName:js,backendName:"cpu",kernelFunc:Sj};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;xe(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=I2(p,r.shape,r.dtype,w.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var Ej={kernelName:sc,backendName:"cpu",kernelFunc:_j};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;xe([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=gG(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,x=u.effectiveFilterDepth,v=u.effectiveFilterHeight,T=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=T-1-u.padInfo.left,F=v-1-u.padInfo.top,A=Me(s.shape,"float32"),R=n.bufferSync(r);for(let P=0;P<u.batchSize;++P)for(let z=0;z<u.inChannels;++z)for(let V=0;V<u.inDepth;++V)for(let G=0;G<u.inHeight;++G)for(let H=0;H<u.inWidth;++H){let X=V-k,j=G-F,te=H-S,Q=0;for(let se=0;se<x;se+=g){let ne=(X+se)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<v;ie+=y){let ee=(j+ie)/m;if(!(ee<0||ee>=u.outHeight||Math.floor(ee)!==ee))for(let pe=0;pe<T;pe+=b){let oe=(te+pe)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let fe=x*v*T-1-d.get(P,ne,ee,oe,z),me=se*v*T+ie*T+pe,we=fe===me?1:0;we!==0&&(Q+=R.get(P,ne,ee,oe,z)*we)}}}A.set(Q,P,V,G,H,z)}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Aj={kernelName:Ad,backendName:"cpu",kernelFunc:Fj};function $j(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;xe([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Me(d.outShape,o.dtype,k2(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,x=d.effectiveFilterHeight,v=d.effectiveFilterWidth,T=v-1-d.padInfo.left,k=x-1-d.padInfo.top,S=Me(o.shape,"float32"),F=n.data.get(r.dataId).values,A=Me(r.shape,"float32",F);for(let R=0;R<d.batchSize;++R)for(let P=0;P<d.inChannels;++P)for(let z=0;z<d.inHeight;++z)for(let V=0;V<d.inWidth;++V){let G=z-k,H=V-T,X=0;for(let j=0;j<x;j+=y){let te=(G+j)/f;if(!(te<0||te>=d.outHeight||Math.floor(te)!==te))for(let Q=0;Q<v;Q+=b){let se=(H+Q)/g;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=x*v-1-m.get(R,te,se,P),ie=j*v+Q,ee=ne===ie?1:0;ee!==0&&(X+=A.get(R,te,se,P)*ee)}}S.set(X,R,z,V,P)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var Dj={kernelName:Fd,backendName:"cpu",kernelFunc:$j};function Rj(e,t,n,a,r){let s=w.computeStrides(t),i=xv(e,t,n,s,r,"max"),o=k2(e,t,n,r,!0,a);return[i.values,o.values]}var Mj={kernelName:$d,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;xe(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=Rj(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Tm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"sum");let o;r.dtype==="bool"?o=ps({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=nr({inputs:{x:r},backend:n});let l=o.shape.length,c=w.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=ya({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=km(n,h,f),y=w.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(d.dataId).values;for(let v=0;v<b.length;++v){let T=v*y,k=0;for(let S=0;S<y;++S)k+=x[T+S];b[v]=k}if(i){let v=_.expandShapeToKeepDim(g.shape,c),T=g;g=kt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(T)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),g}var Pj={kernelName:ci,backendName:"cpu",kernelFunc:Tm};function Oj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=w.parseAxisParam(s,r.shape),l=_.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(p);let d=ps({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(d);let h=vv({inputs:{a:d,b:p},backend:n});u.push(h);let m=Tm({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Lj={kernelName:qs,backendName:"cpu",kernelFunc:Oj};function zj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;xe(r,"min");let o=w.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ya({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=w.sizeFromShape(d),m=w.makeZerosTypedArray(w.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let b=y*h,x=f[b];for(let v=0;v<h;++v){let T=f[b+v];T<x&&(x=T)}m[y]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(p,u.dtype,m);if(i){let y=_.expandShapeToKeepDim(p,o),b=kt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),b}return g}var Wj={kernelName:Xs,backendName:"cpu",kernelFunc:zj};function Bj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;xe(r,"mirrorPad");let o=s.map((b,x)=>b[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),c=s.map((b,x)=>b[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),m=w.sizeFromShape(o),f=o.length,g=w.computeStrides(o),y=w.getTypedArrayFromDType(r.dtype,m);for(let b=0;b<m;b++){let x=w.indexToLoc(b,f,g);for(let T=0;T<f;T++)x[T]<l[T]?x[T]=l[T]*2-x[T]-u:x[T]>=c[T]&&(x[T]=(c[T]-1)*2-x[T]+u);x=x.map((T,k)=>T-l[k]);let v=w.locToIndex(x,d,h);y[b]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Vj={kernelName:ic,backendName:"cpu",kernelFunc:Bj},Uj=Mt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Gj=Qt(el,Uj),Hj={kernelName:el,backendName:"cpu",kernelFunc:Gj},jj=Io(Vw());function E2(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=w.parseAxisParam([o],r.shape),c=_2({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=yv({inputs:{a:r,b:p},backend:n}),h=f2({inputs:{x:d},backend:n}),m=Tm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:u}}),g=vv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var qj={kernelName:pi,backendName:"cpu",kernelFunc:E2};function Xj(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;xe(r,"multinomial");let l=o?r:E2({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let m=0;m<c;++m){let f=m*u,g=new Float32Array(u-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=jj.alea(i.toString()),b=m*s;for(let x=0;x<s;++x){let v=y();h[b+x]=g.length;for(let T=0;T<g.length;T++)if(v<g[T]){h[b+x]=T;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var Kj={kernelName:Dd,backendName:"cpu",kernelFunc:Xj},Yj=Ya.nonMaxSuppressionV3Impl;function Jj(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;xe(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=Yj(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Qj={kernelName:al,backendName:"cpu",kernelFunc:Jj},Zj=Ya.nonMaxSuppressionV4Impl;function e6(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a;xe(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:h}=Zj(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var t6={kernelName:rl,backendName:"cpu",kernelFunc:e6},n6=Ya.nonMaxSuppressionV5Impl;function a6(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a;xe(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=n6(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var r6={kernelName:sl,backendName:"cpu",kernelFunc:a6};function s6(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;xe(r,"oneHot");let l=w.sizeFromShape(r.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(c[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",c)}var i6={kernelName:Js,backendName:"cpu",kernelFunc:s6};function Nm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Bi({inputs:{input:a},backend:n}),s=Nm({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Nm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Iv({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var o6={kernelName:Il,backendName:"cpu",kernelFunc:Nm};function F2(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Bi({inputs:{input:a},backend:n}),s=F2({inputs:{x:r},backend:n}),i=tu({inputs:{input:a},backend:n}),o=Nm({inputs:{x:i},backend:n}),l=Un({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Iv({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var l6={kernelName:il,backendName:"cpu",kernelFunc:F2};function A2(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Im({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Im({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=nu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var u6={kernelName:ol,backendName:"cpu",kernelFunc:A2};function c6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;xe(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),m=o.length,f=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<u;y++){let b=w.indexToLoc(y,p,d).map((v,T)=>v+l[T]),x=w.locToIndex(b,m,f);g[x]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var $2={kernelName:Qs,backendName:"cpu",kernelFunc:c6},p6=Mt((e,t)=>Math.pow(e,t)),d6=Qt(Zs,p6),h6={kernelName:Zs,backendName:"cpu",kernelFunc:d6};function m6(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=i2(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var f6={kernelName:oc,backendName:"cpu",kernelFunc:m6},g6=st(ul,e=>1/e),y6={kernelName:ul,backendName:"cpu",kernelFunc:g6};function b6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeBilinear");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=0,v=y[0]/b[0],T=y[1]/b[1];for(let k=0;k<p;k++)for(let S=0;S<c;S++){let F;i?F=v*(S+.5)-.5:F=v*S;let A=Math.max(0,Math.floor(F)),R=F-A,P=Math.min(d-1,Math.ceil(F)),z=k*l[0]+A*l[1],V=k*l[0]+P*l[1];for(let G=0;G<u;G++){let H;i?H=T*(G+.5)-.5:H=T*G;let X=Math.max(0,Math.floor(H)),j=H-X,te=Math.min(h-1,Math.ceil(H)),Q=z+X*l[2],se=V+X*l[2],ne=z+te*l[2],ie=V+te*l[2];for(let ee=0;ee<m;ee++){let pe=f[Q+ee],oe=f[se+ee],fe=f[ne+ee],me=f[ie+ee],we=pe+(fe-pe)*j,Te=oe+(me-oe)*j,_e=we+(Te-we)*R;g[x++]=_e}}}return n.makeTensorInfo([p,c,u,m],"float32",g)}var x6={kernelName:ni,backendName:"cpu",kernelFunc:b6};function v6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[l,c,u,p]=r.shape,[,d,h]=s.shape,m=new Float32Array(l*c*u*p),f=[i&&d>1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let T=0;T<l;T++){let k=T*o[0];for(let S=0;S<d;S++){let F=S*y,A=Math.floor(F),R=Math.min(Math.ceil(F),c-1),P=k+A*o[1],z=k+R*o[1],V=F-A,G=1-V;for(let H=0;H<h;H++){let X=H*b,j=Math.floor(X),te=Math.min(Math.ceil(X),u-1),Q=X-j,se=1-Q,ne=P+j*o[2],ie=P+te*o[2],ee=z+j*o[2],pe=z+te*o[2],oe=G*se,fe=G*Q,me=V*se,we=V*Q;for(let Te=0;Te<p;Te++){let _e=x[v++];m[ne+Te]+=_e*oe,m[ie+Te]+=_e*fe,m[ee+Te]+=_e*me,m[pe+Te]+=_e*we}}}}return n.makeTensorInfo([l,u,c,p],"float32",m)}var w6={kernelName:Pd,backendName:"cpu",kernelFunc:v6};function k6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;xe(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*c*u*m),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],x=y[0]/b[0],v=y[1]/b[1],T=0;for(let k=0;k<p;k++){let S=k*l[0];for(let F=0;F<c;F++){let A=i?x*(F+.5):x*F,R=Math.min(d-1,s?Math.round(A):Math.floor(A));i&&(R=Math.max(0,R));let P=S+R*l[1];for(let z=0;z<u;z++){let V=i?v*(z+.5):v*z,G=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(G=Math.max(0,G));let H=P+G*l[2];for(let X=0;X<m;X++){let j=f[H+X];g[T++]=j}}}}return n.makeTensorInfo([p,c,u,m],r.dtype,g)}var I6={kernelName:lc,backendName:"cpu",kernelFunc:k6};function T6(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;xe([s,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),l=w.computeStrides(s.shape),[c,u,p,d]=r.shape,[,h,m]=s.shape,f=new Float32Array(c*u*p*d),g=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],v=y[1]/b[1],T=1/x,k=1/v,S=Math.ceil(T)*2+2,F=Math.ceil(k)*2+2;for(let A=0;A<c;A++){let R=A*o[0];for(let P=0;P<u;P++){let z=R+P*o[1],V=Math.floor(P*T),G=Math.floor(V-S/2);for(let H=0;H<p;H++){let X=z+H*o[2],j=Math.floor(H*k),te=Math.floor(j-F/2);for(let Q=0;Q<d;Q++){let se=0;for(let ne=0;ne<S;ne++){let ie=ne+G;if(ie<0||ie>=h)continue;let ee=R+ie*l[1],pe=ie*x,oe=Math.min(u-1,i?Math.round(pe):Math.floor(pe));if(P===oe)for(let fe=0;fe<F;fe++){let me=fe+te;if(me<0||me>=m)continue;let we=ee+me*l[2],Te=me*v,_e=Math.min(p-1,i?Math.round(Te):Math.floor(Te));H===_e&&(se+=g[we+Q])}}f[X+Q]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var N6={kernelName:Md,backendName:"cpu",kernelFunc:T6};function S6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;xe(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return nr({inputs:{x:r},backend:n});let l=new Lt(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var C6={kernelName:ri,backendName:"cpu",kernelFunc:S6},_6={kernelName:Tl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=w.getTypedArrayFromDType(a.dtype,w.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x<c;x++){let v=x*p*u*d;for(let T=0;T<u;T++){let k=T*(p*d);for(let S=0;S<p;S++){let F=S*d;for(let A=0;A<d;A++){let R=[c,T,S,A],P=R[2],z=R[1],V=(P-h)*y-(z-m)*g,G=(P-h)*g+(z-m)*y;V=Math.round(V+h),G=Math.round(G+m);let H=s;if(typeof s!="number"&&(A===3?H=f:H=s[A]),V>=0&&V<p&&G>=0&&G<u){let j=G*(p*d),te=V*d,Q=v+j+te+A;H=b[Q]}let X=v+k+F+A;l[X]=H}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},E6=st(si,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),F6={kernelName:si,backendName:"cpu",kernelFunc:E6};function D2(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Me(n,t.dtype);let h=Me(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let b=p[m*i+y];f.push(b),g+=b*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)c?h.values[g*r+y]+=d[m*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[m*r+y]}return h}function A6(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=D2(h,m,i,p,c,l,o,u,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var $6={kernelName:pl,backendName:"cpu",kernelFunc:A6};function D6(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;xe([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(s.dataId).values,u=ua(r.dtype,s.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),u),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[d++]=l[m]:p[d++]=c[m];return n.makeTensorInfo(r.shape,u,p)}var R6={kernelName:dl,backendName:"cpu",kernelFunc:D6},M6=_.SELU_SCALEALPHA,P6=_.SELU_SCALE,O6=st(hl,e=>e>=0?P6*e:M6*(Math.exp(e)-1)),L6={kernelName:hl,backendName:"cpu",kernelFunc:O6},z6=st(li,e=>1/(1+Math.exp(-e))),W6={kernelName:li,backendName:"cpu",kernelFunc:z6},B6=st(gl,e=>e<0?-1:e>0?1:0),V6={kernelName:gl,backendName:"cpu",kernelFunc:B6},U6=st(oi,e=>Math.sin(e)),G6={kernelName:oi,backendName:"cpu",kernelFunc:U6},H6=st(fl,e=>Math.sinh(e)),j6={kernelName:fl,backendName:"cpu",kernelFunc:H6},q6=11920928955078125e-23,R2=Math.log(q6)+2,X6=st(yl,e=>{let t=e>-R2,n=e<R2,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),K6={kernelName:yl,backendName:"cpu",kernelFunc:X6};function Y6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;xe([r],"spaceToBatchND");let o=w.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let c=$2.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=_.getReshaped(c.shape,s,o,!1),p=_.getPermuted(u.length,s.length,!1),d=_.getReshapedPermuted(c.shape,s,o,!1),h=kt({inputs:{x:c},backend:n,attrs:{shape:u}}),m=ya({inputs:{x:h},backend:n,attrs:{perm:p}}),f=kt({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var J6={kernelName:uc,backendName:"cpu",kernelFunc:Y6};function Q6(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=_.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=D2(m,f,o,d,u,c,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var Z6={kernelName:Od,backendName:"cpu",kernelFunc:Q6};function eq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Vi({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var tq={kernelName:bl,backendName:"cpu",kernelFunc:eq},nq=st(ui,e=>Math.sqrt(e)),aq={kernelName:ui,backendName:"cpu",kernelFunc:nq},rq={kernelName:cc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;xe(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},sq=st(Gr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),iq={kernelName:Gr,backendName:"cpu",kernelFunc:sq};function oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;xe(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=an.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=kt({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=Vi({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=kt({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else{let k=n.bufferSync(x),S=c2(b,k,f,m);v=n.makeTensorInfo(S.shape,S.dtype,S.values)}let T=kt({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var lq={kernelName:xl,backendName:"cpu",kernelFunc:oq},uq=st(vl,e=>Math.tan(e)),cq={kernelName:vl,backendName:"cpu",kernelFunc:uq},pq=st(mi,e=>Math.tanh(e)),dq={kernelName:mi,backendName:"cpu",kernelFunc:pq};function hq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;xe(r,"tile");let i=d2(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var mq={kernelName:Ur,backendName:"cpu",kernelFunc:hq};function fq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;xe(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=h2(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var gq={kernelName:wl,backendName:"cpu",kernelFunc:fq};function xq(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=n,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=w.computeStrides(r.shape),b=y[0],x=y[1],v=y[2],T=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));T.fill(l);let k=a.data.get(r.dataId).values,S=a.data.get(s.dataId).values;for(let F=0;F<u;++F){let A=s.shape[0]===1?S:S.subarray(F*8,F*8+8);for(let R=0;R<m;++R)for(let P=0;P<f;++P)for(let z=0;z<h;++z){let V,G=A[6]*P+A[7]*R+1;if(G===0)continue;let H=(A[0]*P+A[1]*R+A[2])/G,X=(A[3]*P+A[4]*R+A[5])/G,j=M2(H,d,o),te=M2(X,p,o);switch(i){case"nearest":V=yq(k,p,d,b,x,v,F,te,j,z,l);break;case"bilinear":V=bq(k,p,d,b,x,v,F,te,j,z,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Q=F*b+R*x+P*v+z;T[Q]=V}return a.makeTensorInfo(g,r.dtype,T)}return{dataId:a.write(T,g,r.dtype),shape:r.shape,dtype:r.dtype}}var vq={kernelName:Ld,backendName:"cpu",kernelFunc:xq};function M2(e,t,n){switch(n){case"reflect":return wq(e,t);case"wrap":return kq(e,t);case"nearest":return Tq(e,t);case"constant":default:return Iq(e,t)}}function wq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return w.clamp(0,n,t-1)}function kq(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return w.clamp(0,n,t-1)}function Iq(e,t){return e}function Tq(e,t){return w.clamp(0,e,t-1)}function ip(e,t,n,a,r,s,i,o,l,c,u){let p=i*a+o*r+l*s+c;return 0<=o&&o<t&&0<=l&&l<n?e[p]:u}function yq(e,t,n,a,r,s,i,o,l,c,u){let p=Math.round(o),d=Math.round(l);return ip(e,t,n,a,r,s,i,p,d,c,u)}function bq(e,t,n,a,r,s,i,o,l,c,u){let p=Math.floor(o),d=Math.floor(l),h=p+1,m=d+1,f=(m-l)*ip(e,t,n,a,r,s,i,p,d,c,u)+(l-d)*ip(e,t,n,a,r,s,i,p,m,c,u),g=(m-l)*ip(e,t,n,a,r,s,i,h,d,c,u)+(l-d)*ip(e,t,n,a,r,s,i,h,m,c,u);return(h-o)*f+(o-p)*g}function Nq(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;xe(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=m2(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Sq={kernelName:zd,backendName:"cpu",kernelFunc:Nq};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let d=new Array(o);for(let h=0;h<d.length;h++){u[s]=h;let m=Vi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});d[h]=kt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var _q={kernelName:kl,backendName:"cpu",kernelFunc:Cq};function Eq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;xe(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,c=[],u=[],p=o-l,d=s;for(let m=0;m<p;++m){let f=Im({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,u.push(f)}for(let m=0;m<i;++m){let f=w.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=S2({inputs:{a:g,b:d},backend:n}),b=ps({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=gv({inputs:{a:b,b:r},backend:n}),v=Tm({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(v),u.push(g),u.push(y),u.push(b),u.push(x),u.push(v)}let h=A2({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Fq={kernelName:pc,backendName:"cpu",kernelFunc:Eq},Aq=[GU,XV,jU,XU,eU,YU,QU,eG,nG,rG,iG,lG,cG,hG,fG,bG,vG,kG,TG,VU,SG,_G,FG,QV,nU,$G,KV,RG,PG,zG,BG,OG,HG,qG,UG,KG,JG,ZG,tH,aH,sH,iH,lH,cH,dH,hH,fH,mH,wv,MU,yH,xH,CH,aU,_H,sU,RH,PH,OH,oU,WH,VH,GH,jH,XH,uU,JH,YV,ZH,MG,tj,aj,sj,PU,pU,lj,cj,hU,dj,fj,yj,vj,kj,Tj,fU,Cj,Ej,Aj,Dj,Mj,Nj,Lj,Wj,yU,Vj,Hj,Kj,xU,wU,Qj,t6,r6,IU,i6,l6,u6,$2,h6,LU,SU,f6,JV,y6,zU,WU,BU,x6,w6,I6,N6,C6,_6,F6,_U,$6,R6,L6,W6,V6,G6,j6,EU,qj,K6,J6,Z6,tq,aq,rq,AU,iq,lq,DU,Pj,cq,dq,mq,gq,TU,vq,Sq,_q,Fq,o6];for(let e of Aq)hc(e);var Ui={},Tv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function $q(e,t){Ui[e]=t}function ar(e){if(!(e in Ui)){let n=Dq(e);if(n!==null)Ui[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ui[e];return t.isContextLost()?(delete Ui[e],ar(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ui[e])}function Rq(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Dq(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Rq(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ui[e]},!1),e===1?t.getContext("webgl",Tv)||t.getContext("experimental-webgl",Tv):t.getContext("webgl2",Tv)}var op;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(op||(op={}));var na;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(na||(na={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function lp(e,t){return[t,e]}function Mq(e,t){return e*t}function up(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function au(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Pq(e,t){let[n,a]=au(e,t);return n*a*4}function Nv(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return Z().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&Oq(e),n}function Oq(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Lq(e,t))}var zq=596e-10,Wq=65504;function Bq(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||zq<Math.abs(e)&&Math.abs(e)<Wq)}function Lq(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Sm(e,t){return Tr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Vq(e,t){let n=Tr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Gq(e,t){let n=Tr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Uq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Hq=/ERROR: [0-9]+:([0-9]+):/g;function Uq(e,t){let n=Hq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),c=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function jq(e){return Tr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function qq(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Sv(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function Xq(e,t){let n=Tr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Kq(e,t){let n=Tr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Yq(e){return Tr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Jq(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Qq(e){return Tr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function P2(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ie(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ie(e,()=>e.enableVertexAttribArray(o)),!0)}function e5(e,t,n){Zq(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function t5(e,t,n){return Tr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function n5(e,t,n){return e.getUniformLocation(t,n)}function a5(e,t,n,a){Ie(e,()=>e5(e,t,a)),Ie(e,()=>e.uniform1i(n,a))}function Cv(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function O2(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Cm(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+r5(e,t))}function r5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Tr(e,t,n){let a=Ie(e,()=>t());if(a==null)throw new Error(n);return a}function Zq(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ru(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function su(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function _v(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ru(e),...su(e)]),t}function s5(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?w.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let a=w.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ru(e),s=2,i=2;return e.length&&([s,i]=su(e)),a=r*(s/2)*(i/2),w.sizeToSquarishShape(a).map(o=>o*2)}return w.sizeToSquarishShape(a)}function _m(e){return e%2==0}function Em(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||_m(n)&&_m(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&_m(e[0])&&_m(t[0])}var Ev,Fv;function i5(e){if(Ev==null){let t=ar(e);Ev=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ev}function o5(e){if(Fv==null){let t=ar(e);Fv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Fv)}function l5(e){if(e===0)return 0;let t,n=ar(e);return ba(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ba(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ba(e,t){return e.getExtension(t)!=null}function L2(e){try{if(ar(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function u5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float"))return!1}else if(!ba(t,"EXT_color_buffer_float"))return!1;return Av(t)}function p5(e){if(e===0)return!1;let t=ar(e);if(e===1){if(!ba(t,"OES_texture_float")||!ba(t,"WEBGL_color_buffer_float"))return!1}else{if(ba(t,"EXT_color_buffer_float"))return Av(t);let n="EXT_color_buffer_half_float";if(ba(t,n)){let a=t.getExtension(n);return c5(t,a)}return!1}return Av(t)}function Av(e){let t=Nv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function c5(e,t){let n=Nv(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function d5(e){return e!==2?!1:ar(e).fenceSync!=null}function cp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ce=Z();Ce.registerFlag("HAS_WEBGL",()=>Ce.getNumber("WEBGL_VERSION")>0);Ce.registerFlag("WEBGL_VERSION",()=>L2(2)?2:L2(1)?1:0);Ce.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ce.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ce.get("WEBGL_VERSION")===2);Ce.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ce.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ce.registerFlag("WEBGL_PACK",()=>Ce.getBool("HAS_WEBGL"));Ce.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_CLIP",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ce.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_PACK_REDUCE",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_CONV_IM2COL",()=>Ce.getBool("WEBGL_PACK"));Ce.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>i5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>o5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ce.getNumber("WEBGL_VERSION");return e===0?0:l5(e)});Ce.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ce.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!vc.isMobile());Ce.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>u5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ce.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ce.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ce.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>p5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_FENCE_API_ENABLED",()=>d5(Ce.getNumber("WEBGL_VERSION")));Ce.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ce.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ce.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ce.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>vc.isMobile()&&Ce.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function fn(){let e,t,n,a,r,s,i,o,l,c;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Gi(e,t,n="index"){let a=w.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function $v(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var z2=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,h5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=op.DENSE;let t=up(e),n=fn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Gi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},m5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=op.DENSE;let t=up(e),n=fn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Gi(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},f5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=na.DOWNLOAD;let t=fn();this.outputShape=e,this.userCode=`
${z2}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},g5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=na.DOWNLOAD;let t=fn();this.outputShape=e,this.userCode=`
${z2}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},y5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=fn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${$v(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
vec4 values = ${a.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${a.output} = vec4(${i}, 0., 0., 0.);
}
`}},b5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=fn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
values = ${a.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${$v(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${a.output} = ${o};
}
`}};function x5(e){let t=fn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Vq(e,n)}function v5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Xq(e,t)}function w5(e){let t=new Uint16Array([0,1,2,2,1,3]);return Kq(e,t)}function pp(e,t,n,a,r,s){Jq(t,n);let i=Yq(e),o=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(o,i)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function W2(e){return e.internalFormatFloat}function k5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,W2(a),a.textureFormatFloat,e.FLOAT)}function B2(e){return e.internalFormatHalfFloat}function I5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,B2(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function V2(e){return e.downloadTextureFormat}function T5(e,t,n,a){let[r,s]=lp(t,n);return pp(e,r,s,V2(a),e.RGBA,e.UNSIGNED_BYTE)}function U2(e){return e.internalFormatPackedFloat}function N5(e,t,n,a){let[r,s]=au(t,n);return pp(e,r,s,U2(a),e.RGBA,e.FLOAT)}function G2(e){return e.internalFormatPackedHalfFloat}function S5(e,t,n,a){let[r,s]=au(t,n);return pp(e,r,s,G2(a),e.RGBA,a.textureTypeHalfFloat)}function C5(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),P2(e,t,"clipSpacePos",n,3,s,a)&&P2(e,t,"uv",n,2,s,r)}function _5(e,t,n,a,r,s){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function E5(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function F5(e,t,n,a){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function A5(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function $5(e,t,n,a){let[r,s]=lp(t,n),i=4,o=new Uint8Array(Mq(t*n,i));return Ie(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function D5(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(Pq(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function R5(e,t,n){let a=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var P5=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,$q(t,e)):this.gl=ar(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Sm(this.gl,r),ba(this.gl,s))this.textureHalfFloatExtension=Sm(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ba(this.gl,a))this.colorBufferHalfFloatExtension=Sm(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ba(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ba(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=v5(this.gl),this.indexBuffer=w5(this.gl),this.framebuffer=Qq(this.gl),this.textureConfig=Nv(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),k5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),I5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),T5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),E5(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),_5(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),S5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),N5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(O2(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>$5(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return D5(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return A5(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=F5(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>R5(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Gq(t,e),a=x5(t),r=jq(t);return Ie(t,()=>t.attachShader(r,a)),Ie(t,()=>t.attachShader(r,n)),qq(t,r),this.debug&&Sv(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=C5(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Sv(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?t5(this.gl,e,t):n5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),a5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=au(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Sv(this.gl,this.program),Cm(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Sm(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=M5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Cv(this.gl,e,this.framebuffer),this.debug&&Cm(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Cv(this.gl,this.outputTexture,this.framebuffer),this.debug&&Cm(this.gl)):O2(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;Cv(a,e,this.framebuffer),this.debug&&Cm(a),this.outputTexture=e,Ie(a,()=>a.viewport(0,0,t,n)),Ie(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function M5(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:H2}=_;function H5(e,t,n,a){let r=[];e.forEach(h=>{let m=w.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
`),i=e.map(h=>O5(h,t,a)).join(`
`),o=t.texShape,l=fn(),c=W5(l),u,p,d=U5(l);return t.isPacked?(u=L5(t.logicalShape,o),p=V5(l)):(u=z5(t.logicalShape,o),p=B5(l)),a&&(d+=G5),[d,c,p,s,u,i,n].join(`
`)}function iu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return j5(e);case 1:return q5(e);case 2:return X5(e);case 3:return K5(e);case 4:return Y5(e);case 5:return J5(e);case 6:return Q5(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function j2(e){switch(e.shapeInfo.logicalShape.length){case 0:return Z5(e);case 1:return e8(e);case 2:return t8(e);case 3:return n8(e);default:return a8(e)}}function O5(e,t,n=!1){let a="";n?a+=j2(e):a+=iu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=r8(e,t):a+=s8(e,t)),a}function L5(e,t){switch(e.length){case 0:return q2();case 1:return i8(e,t);case 2:return u8(e,t);case 3:return o8(e,t);default:return l8(e,t)}}function z5(e,t){switch(e.length){case 0:return q2();case 1:return c8(e,t);case 2:return f8(e,t);case 3:return p8(e,t);case 4:return d8(e,t);case 5:return h8(e,t);case 6:return m8(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function W5(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function B5(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function V5(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function U5(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${g8}
${y8}
${b8}
`}var g8=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,y8=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,b8=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,G5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function q2(){return`
int getOutputCoords() {
return 0;
}
`}function i8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function c8(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function o8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function p8(e,t){let n=Gi(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function l8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${o});
}
`}function d8(e,t){let n=Gi(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function h8(e,t){let n=Gi(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function m8(e,t){let n=Gi(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function u8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function f8(e,t){return w.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Hi(e){return`offset${e}`}function Z5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=fn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function j5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Hi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function e8(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=fn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${r[0]}, ${r[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function q5(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${ou(e)}
}
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Hi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
return sampleTexture(${t}, uv);
}
`:r===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function t8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=fn();if(r!=null&&w.arraysEqual(t,r))return`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function X5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&w.arraysEqual(t,r)){let p=r[0],d=r[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=w.squeezeShape(t),o=s;if(o.length<t.length){let p=lu(e,o),d=["row","col"];return`
${iu(p)}
float ${a}(int row, int col) {
return ${a}(${uu(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${ou(e)}
}
`;let l=r[0],c=r[1],u=Hi(n);return c===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function n8(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),d=[1,2],h=lu(e,p),m=["b","row","col"];return`
${j2(h)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${uu(m,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=fn();return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function K5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=w.squeezeShape(t),l=i;if(l.length<t.length){let m=lu(e,l),f=["row","col","depth"];return`
${iu(m)}
float ${a}(int row, int col, int depth) {
return ${a}(${uu(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${r}, ${s}, 1)));
${ou(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],p=c[1],d=e.shapeInfo.flatOffset;if(p===r&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(p===s&&d==null)return`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let h=Hi(n);return`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r} + col * ${s} + depth + ${h};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function a8(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),p="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],d=`b${m} * ${u} + `+d;let h=fn();return`
vec4 ${r}(${p}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${h.texture2D}(${a}, uv);
}
`}function Y5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=w.squeezeShape(t);if(o.length<t.length){let m=lu(e,o),f=["row","col","depth","depth2"];return`
${iu(m)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${uu(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${r}, 1)));
${ou(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],d=u[1];if(d===i&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(d===r&&c==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let h=Hi(n);return`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${r} + depth2;
vec2 uv = uvFromFlat(${p}, ${d}, index + ${h});
return sampleTexture(${n}, uv);
}
`}function J5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=w.squeezeShape(t);if(l.length<t.length){let f=lu(e,l),g=["row","col","depth","depth2","depth3"];return`
${iu(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${uu(g,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${ou(e)}
}
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let m=Hi(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function Q5(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=w.squeezeShape(t);if(r.length<t.length){let g=lu(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${iu(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${uu(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${ou(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],m=d[1];if(m===u&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Hi(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function ou(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function r8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=H2(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),c=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,f=w.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${a}(${d});
${h}
}
`}function s8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let c=dt(l),u=H2(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${c} coords = getOutputCoords();
${d}
return get${a}(${m});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function lu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function uu(e,t){return t.map(n=>e[n]).join(", ")}function x8(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=H5(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);Z().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;d[m]=e.getUniformLocation(c,m,f),d[`offset${m}`]=e.getUniformLocation(c,`offset${m}`,f)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function X2(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!w.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function v8(e,t,n,a,r){X2(t.inShapeInfos,n),X2([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(w.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function w8(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:k8,bincountImpl:K2,bincountReduceImpl:I8,ceilImpl:T8,concatImpl:N8,expImpl:S8,expm1Impl:C8,floorImpl:_8,gatherV2Impl:E8,greaterImpl:F8,lessImpl:A8,linSpaceImpl:$8,logImpl:D8,maxImpl:R8,maximumImpl:M8,minimumImpl:P8,multiplyImpl:O8,negImpl:L8,prodImpl:z8,rangeImpl:W8,rsqrtImpl:B8,simpleAbsImpl:Y2,sliceImpl:V8,stridedSliceImpl:U8,subImpl:G8,tileImpl:H8,topKImpl:j8,transposeImpl:Dv,uniqueImpl:q8}=WT;function J2(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function gn(e,t){return t===1?[e]:J2(e,t)}function X8(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var Q8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=gn("rc",t),a=dt(t),r=K8(t,e,n),s=Y8(t,e[e.length-1],e[e.length-2],n),i=J8(e,n);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function Z8(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function K8(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function Y8(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function J8(e,t){let n=e.length,a=Z8(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${a[0]}),
cEdge ? 0. : getA(${a[1]}),
rEdge ? 0. : getA(${a[2]}),
rEdge || cEdge ? 0. : getA(${a[3]})`}var Q2=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${eX(t)}
${$v(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function eX(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Gi(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var tX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=eN(t,n),r=tN(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Z2(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===sn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===sn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===sn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===sn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=eN(n,a),s=tN(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Z2(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function nX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Z2(e,t,n,a,r){let s=aX(t,a),i;if(r){let[l,c]=au(e[0],e[1]);i=l*c}else{let[l,c]=lp(e[0],e[1]);i=l*c}let o=nX(n,s);return i*o}function aX(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return U2(t);case sn.PACKED_2X2_FLOAT16:return G2(t);case sn.UNPACKED_FLOAT32:return W2(t);case sn.UNPACKED_FLOAT16:return B2(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return V2(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function rX(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function eN(e,t){if(e===na.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===na.RENDER||e==null)return rX(t);if(e===na.DOWNLOAD||e===na.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function tN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ds=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ma="if (isnan(x)) return x;",sX="return x;",nN="return abs(x);",iX="return (x >= 0.0) ? x : (exp(x) - 1.0);",oX=Ma+`
return (x < 0.0) ? 0.0 : x;
`,lX=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Fm="return x;",uX="return x;",cX=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,pX=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,dX=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,cu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},hX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=gn("rc",t),a=dt(t),r=X8(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},mX=Ya.whereImpl,fX=1e-7,gX=1e-4,Rv={};function yX(e){return e in Rv||(Rv[e]={}),Rv[e]}var bX=128,xX=600;function vX(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*xX/1024/1024}var Mv=class extends ju{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ar(Z().getNumber("WEBGL_VERSION"));this.binaryCache=yX(Z().getNumber("WEBGL_VERSION")),this.gpgpu=new P5(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new tX(this.gpgpu),this.numMBBeforeWarning=vX(),this.texData=new sd(this,Ua())}nextDataId(){return Mv.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:na.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:na.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new cu(i,Fm):p=new ds(i,Fm);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=w.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new cu(a,Fm):h=new ds(a,Fm);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...up(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ua().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>w.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Me(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Bq(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=w.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...up(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=Z().getBool("WEBGL_PACK")&&a===!0,i=s?_v(t):t,o=s?new g5(i):new f5(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Z().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ua().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=bX){let n=this.getCPUBackend();return!Z().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&w.sizeFromShape(a.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return mX(e.shape,t)}packedUnaryOp(e,t,n){let a=new cu(e.shape,t),r=this.compileAndRun(a,[e],n);return Ua().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=Y2(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,nN,e.dtype);let t=new ds(e.shape,nN),n=this.compileAndRun(t,[e]);return Ua().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(s=>w.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Ua().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new hX(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Q8(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ru(e.shape),...su(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ru(t),...su(t)],s=new Q2(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=_v(a),i;n?i=new m5(s):i=new h5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===op.DENSE){let f=up(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),w.sizeFromShape(s.shape)===0)return i.values=w.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(f.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!Em(g.shape,f.shape)){let y=f,b=f.shape;f.shape=g.shape,f=this.packedReshape(f,b),o.push(f),g=this.texData.get(f.dataId),y.shape=b}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=w8(e,l,c),p=this.getAndSaveBinary(u,()=>x8(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),v8(this.gpgpu,p,l,c,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=Z().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=w.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?fX:gX}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=w.now());let u=t.texShape;if(u==null&&(u=s5(n,o),t.texShape=u),r!=null){let p=_v(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=au(u[0],u[1]),d=new b5(p,[m,h],f)):d=new y5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=na.PIXELS:this.texData.get(g.dataId).usage=na.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),x=this.texData.get(b.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=wX(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};Mv.nextDataId=0;function wX(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var kX="3.3.0";vc.isBrowser()&&Qd("webgl",()=>new Mv,2);var aN=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,pu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Am=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,dp=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||w.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${dt(r)} coords = getOutputCoords();
`,r===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=gn("coords",r);s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Gn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var IX={kernelName:Bs,backendName:"webgl",kernelFunc:Gn};function hs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Gn({inputs:{x:a},backend:n}),l=Gn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var TX={kernelName:md,backendName:"webgl",kernelFunc:hs},rN="return (a < 0.) ? b * a : a;",sN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function NX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),o=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(sN,r.shape,i.shape):new pu(rN,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var SX={kernelName:Vs,backendName:"webgl",kernelFunc:NX},iN="return (a < 0.) ? b * a : a;",oN=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function CX(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(oN,a.shape,r.shape):new pu(iN,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var _X={kernelName:ei,backendName:"webgl",kernelFunc:CX},lN="if (isnan(x)) return x;",EX=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,FX=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new cu(i.shape,t):u=new ds(i.shape,e),o.runWebGLProgram(u,[i],l)}}function on({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,T]=x,k={dataId:v.dataId,dtype:v.dtype,shape:l.shape},S={dataId:T.dataId,dtype:T.dtype,shape:c.shape},F=new pu(e,l.shape,c.shape);return u.runWebGLProgram(F,[k,S],ua(v.dtype,T.dtype))}),b=hs({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||ua(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),x=u.texData.get(b.dataId);return x.values=g,b}let d=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new dp(t,l.shape,c.shape,n):h=new pu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function $m(e,t=!1){if(e==="linear")return t?uX:sX;if(e==="relu")return t?pX:oX;if(e==="elu")return t?cX:iX;if(e==="relu6")return t?dX:lX;if(e==="prelu")return t?oN:iN;if(e==="leakyrelu")return t?sN:rN;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var uN=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]<t[0]?b=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${b};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},cN={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},pN=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},dN="return a * b;";function hN(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=_.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),c=new pN(cN.REAL,a.shape,r.shape),u=new pN(cN.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[c,u]=O8(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),d=n.texData.get(p.dataId);return d.values=c,p}let i;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new dp(dN,a.shape,r.shape):i=new pu(dN,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var AX={kernelName:Ys,backendName:"webgl",kernelFunc:hN};function $X(e,t,n){let a=[ru(e.shape),...su(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[ru(t),...su(t)],i=new Q2(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(s,o),c=w.sizeFromShape(l);w.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!Em(r.shape,l)&&!(u.texture!==null&&Em(u.shape,l))?$X(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var DX={kernelName:cl,backendName:"webgl",kernelFunc:ge},mN=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},RX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function MX(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function ji(e,t,n,a){let r=MX(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:c}=r[i],u,p;n==="mean"?u=i===0?new mN({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new mN({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new RX({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var OX=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=PX(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function PX(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var LX=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=dt(this.rank),r=J2("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=r[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Dm(e,t,n){let a=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new LX(e.shape,t):new OX(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function zX(e,t,n,a){let r=t,s=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,l=_.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=Dm(e,l,a),o=_.getInnerMostAxes(o.length,s)),_.assertAxesAreInnerMostDims("sum",o,s);let[p,d]=_.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=_.expandShapeToKeepDim(p,i));let m=w.sizeFromShape(d),f=w.sizeFromShape(e.shape)/m,g=ge({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=jd(e.dtype),b=ji(g,y,"sum",a),x=ge({inputs:{x:b},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),c&&a.disposeIntermediateTensorInfo(u),x}function Pv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return zX(r,s,i,n)}var WX={kernelName:ci,backendName:"webgl",kernelFunc:Pv};function An(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let c;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=Dv(u,r.shape,r.dtype,s,l);c=i.makeTensorInfo(l,r.dtype);let d=i.texData.get(c.dataId);d.values=p}else c=Dm(r,s,i);return c}var BX={kernelName:fi,backendName:"webgl",kernelFunc:An},fN=1e3;function Rm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,p=n?e.shape[c-2]:e.shape[c-1],d=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=w.sizeFromShape(f),b=w.sizeFromShape(g),x=y===b||y===1||b===1;w.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let T=n?[y,p,h]:[y,h,p],k=a?[b,m,d]:[b,d,m],S=ge({inputs:{x:e},backend:r,attrs:{shape:T}}),F=ge({inputs:{x:t},backend:r,attrs:{shape:k}}),A=[S,F],R=Math.max(y,b),P=n?S.shape[1]:S.shape[2],z=s!=null,V=i!=null,G=l==="leakyrelu",H=l!=null?$m(l,!0):null,X=z||V||G||H!=null,j;if((h===1||m===1)&&P>fN&&X===!1){let Q=S,se=F;n&&(Q=An({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),A.push(Q)),a&&(se=An({inputs:{x:F},backend:r,attrs:{perm:[0,2,1]}}),A.push(se));let ne=m!==1,ie=m===1,ee=Q;ne&&(ee=ge({inputs:{x:Q},backend:r,attrs:{shape:[R,P,1]}}),A.push(ee));let pe=m===1?2:1,oe=se;ie&&(oe=ge({inputs:{x:se},backend:r,attrs:{shape:[R,1,P]}}),A.push(oe));let fe=hN({inputs:{a:ee,b:oe},backend:r});j=Pv({inputs:{x:fe},backend:r,attrs:{axis:pe,keepDims:!0}}),A.push(fe)}else{let Q=ua(e.dtype,t.dtype),se=new uN(T,k,[R,h,m],n,a,z,H,V,G),ne=[S,F];if(s!=null&&ne.push(s),V&&ne.push(i),G){let ie=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ne.push(ie),A.push(ie)}j=r.runWebGLProgram(se,ne,Q)}let te=ge({inputs:{x:j},backend:r,attrs:{shape:v}});A.push(j);for(let Q of A)r.disposeIntermediateTensorInfo(Q);return te}function VX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return Rm({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var UX={kernelName:gi,backendName:"webgl",kernelFunc:VX},gN="return abs(x);";function GX(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=Y2(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,gN):r=new ds(a.shape,gN),n.runWebGLProgram(r,[a],a.dtype)}var HX={kernelName:So,backendName:"webgl",kernelFunc:GX},jX=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,qX=Xe({opSnippet:jX}),XX={kernelName:Co,backendName:"webgl",kernelFunc:qX},KX=Ma+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,YX=Xe({opSnippet:KX}),JX={kernelName:_o,backendName:"webgl",kernelFunc:YX},yN="return a + b;",QX=on({opSnippet:yN,packedOpSnippet:yN,supportsComplex:!0,cpuKernelImpl:k8}),ZX={kernelName:Br,backendName:"webgl",kernelFunc:QX},eK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},tK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Mm(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Gn({inputs:{x:a[0]},backend:n});if(a.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Mm({inputs:a.slice(0,o),backend:n}),c=Mm({inputs:a.slice(o),backend:n});return Mm({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ua(o,l)),s=a.map(o=>o.shape),i=Z().getBool("WEBGL_PACK")?new tK(a[0].shape,s):new eK(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var nK={kernelName:Ts,backendName:"webgl",kernelFunc:Mm};function aK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var rK={kernelName:ud,backendName:"webgl",kernelFunc:aK};function sK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var iK={kernelName:cd,backendName:"webgl",kernelFunc:sK},oK=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},lK=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),c=gn("coords",o),u,p;if(s===1){p=o+1;let S=dt(p);u=`
${S} sourceLocR = ${S}(${c.join()}, 0);
++${c[o-1]};
${S} sourceLocG = ${S}(${c.join()}, 0);
++${c[o-2]};
${S} sourceLocA = ${S}(${c.join()}, 0);
--${c[o-1]};
${S} sourceLocB = ${S}(${c.join()}, 0);
--${c[o-2]};`}else p=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(S=>"int "+S),f=gn("sourceLocR",p-1).concat("inIdx.r"),g=gn("sourceLocG",p-1).concat("inIdx.g"),y=gn("sourceLocB",p-1).concat("inIdx.b"),b=gn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${b.join()})));`,T=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,k=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${T};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${v}
vec4 candidate = ${T};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function bN(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new oK(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=bN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function xN(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new lK(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=xN(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function vN(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=w.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=bN(e,c,a);s.push(u);let p=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return xN(e,t,a)}function uK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=An({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=vN(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var cK={kernelName:Ns,backendName:"webgl",kernelFunc:uK};function pK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=w.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=An({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=vN(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var dK={kernelName:Ku,backendName:"webgl",kernelFunc:pK},hK=Ma+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,mK=Xe({opSnippet:hK}),fK={kernelName:Eo,backendName:"webgl",kernelFunc:mK},gK=Ma+"return log(x + sqrt(x * x + 1.0));",yK=Xe({opSnippet:gK}),bK={kernelName:Fo,backendName:"webgl",kernelFunc:yK},xK=Ma+`
return atan(x);
`,vK=Xe({opSnippet:xK}),wK={kernelName:Ao,backendName:"webgl",kernelFunc:vK},kK=EX+`
return atan(a, b);
`,IK=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+FX+`
return result;
`,TK=on({opSnippet:kK,packedOpSnippet:IK}),NK={kernelName:Do,backendName:"webgl",kernelFunc:TK},SK=Ma+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,CK=Xe({opSnippet:SK}),_K={kernelName:$o,backendName:"webgl",kernelFunc:CK},hp=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,T=s%4,k=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${k}
}
int xC = xCCorner + ${v};
if (${T===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${T===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${k}
} else if (${T===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${k}
}
}
setOutput(${x});
}
`}},Ov=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let A=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${A} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let v="max",T=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(T="avgValue / count");let k=Math.floor(s/4)*4,S=s%4,F=`
if (${b}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${v}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${F}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${F}
}
}
setOutput(${T});
}
}
`}};function EK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;cp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new hp(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var FK={kernelName:Ss,backendName:"webgl",kernelFunc:EK};function AK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new Ov(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var $K={kernelName:Yu,backendName:"webgl",kernelFunc:AK},DK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},RK=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function MK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new RK(d);return n.runWebGLProgram(h,[r],i.dtype)}var PK={kernelName:dd,backendName:"webgl",kernelFunc:MK};function OK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;cp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new DK(u);return n.runWebGLProgram(p,[r],i.dtype)}var LK={kernelName:pd,backendName:"webgl",kernelFunc:OK};function zK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Rm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var WK={kernelName:Cs,backendName:"webgl",kernelFunc:zK},BK=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},VK=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},UK=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;w.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=Z().getBool("WEBGL_PACK_NORMALIZATION")?new VK(a.shape,r.shape,s.shape,u,p,l):new BK(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},GK={kernelName:zs,backendName:"webgl",kernelFunc:UK},jK=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,a=HK(this.rank),r,s=e.map((i,o)=>`sourceLoc.${Lv[o]} = start[${o}] + coords.${Lv[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${r}
setOutput(getSource(${a}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Lv=["x","y","z","w","u","v"];function HK(e){if(e===1)return"sourceLoc";if(e<=6)return Lv.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var qK=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=gn("coords",this.rank),a=gn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function XK(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function mp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=an.parseSliceParams(r,s,i);if(an.assertParamsValid(r,o,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=V8(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=an.isSliceContinous(r.shape,o,l);if(c||!u){let p=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qK(l):new jK(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),XK(r,o,l,n)}var KK={kernelName:ml,backendName:"webgl",kernelFunc:mp},YK=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=ge({inputs:{x:r},backend:n,attrs:{shape:l}}),f=An({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:u}}),y=mp({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},JK={kernelName:Ju,backendName:"webgl",kernelFunc:YK};function QK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=K2(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var ZK={kernelName:hd,backendName:"webgl",kernelFunc:QK},eY="return float(a != b);",wN=on({opSnippet:eY,dtype:"bool"}),tY={kernelName:nl,backendName:"webgl",kernelFunc:wN};function fp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.real},backend:n})}var nY={kernelName:Rd,backendName:"webgl",kernelFunc:fp},aY="return float(int(x));";function rY(e,t){let n=new ds(e.shape,aY),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function zv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Gn({inputs:{x:r},backend:n});let i=xt(r.shape),o=zv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=fp({inputs:{input:r},backend:n}),o=zv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,s)){let i=Gn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return rY(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),o=wN({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var sY={kernelName:_s,backendName:"webgl",kernelFunc:zv},kN="return ceil(x);",iY=Xe({opSnippet:kN,packedOpSnippet:kN,cpuKernelImpl:T8}),oY={kernelName:Es,backendName:"webgl",kernelFunc:iY},lY=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},uY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;Z().getBool("WEBGL_PACK_CLIP")?o=new uY(r.shape):o=new lY(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var pY={kernelName:Vr,backendName:"webgl",kernelFunc:cY},dY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function IN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function hY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new dY(a.shape),i=[IN(a,r.complexTensorInfos.real),IN(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var mY={kernelName:Qu,backendName:"webgl",kernelFunc:hY},fY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},gY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=dt(a),s=gn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],c=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Pm(i,l,f)}),
vec2(${Pm(c,l,f)}));
}`}let d=o.length,h=o[o.length-1];p+=`
return getChannel(
getT${d}(${Pm(i,l,h)}),
vec2(${Pm(c,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Pm(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Om(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Gn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var yY={kernelName:Cd,backendName:"webgl",kernelFunc:Om};function du(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>fp({inputs:{input:m},backend:n})),u=e.map(m=>Om({inputs:{input:m},backend:n})),p=du(c,t,n),d=du(u,t,n),h=hs({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=TN(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=N8(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=du(e.slice(0,c),t,n),p=du(e.slice(c),t,n),d=du([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new gY(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=TN(e,t,n),i=new fY(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function TN(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ge({inputs:{x:r},attrs:{shape:[-1,w.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function NN(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=w.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>w.sizeFromShape(c.shape)>0);if(o.length===1)return Gn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),du(o,s,n)}var bY={kernelName:Ro,backendName:"webgl",kernelFunc:NN},SN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,v="result = activation(result);");let T=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${b}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${T}
${v}
setOutput(result);
}
`}},xY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},vY=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=fn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,x="";for(let v=0;v<=1;v++)for(let T=0;T<=1;T++)x+=`
blockIndex = rc.y + ${T};
pos = rc.x + ${v};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
d0 = offsetY + ${u} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.));
if(d1 < ${t[b]} && d1 >= 0) {
ch = int(mod(float(pos), ${r}.));
if (${g}) {
innerDims = vec2(d1, ch);
result[${v*2+T}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${v*2+T}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${f.output} = result;
}
`}};function CN({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>fN,x=l[2]%2!=0&&!!c.isPacked;if(b||!Z().getBool("WEBGL_LAZILY_UNPACK")||!Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],T=ge({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Rm({a:T,b:k,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ge({inputs:{x:S},backend:a,attrs:{shape:n.outShape}}),y.push(T),y.push(k),y.push(S)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),T={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,w.assert(Em(c.shape,T.shape),()=>`packed reshape ${c.shape} to ${T.shape} isn't free`);let S=ge({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let F=Rm({a:T,b:S,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),A=a.texData.get(F.dataId);w.assert(A.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,A.shape=n.outShape,g=Gn({inputs:{x:F},backend:a}),g.shape=n.outShape,y.push(F)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function _N({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,x=!1,v=[],T=ge({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),k=ge({inputs:{x:t},backend:a,attrs:{shape:[1,f,w.sizeFromShape(t.shape)/f]}});v.push(T),v.push(k);let S=new vY(y,T.shape,n),F=a.runWebGLProgram(S,[T],"float32"),A=ge({inputs:{x:F},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(F),v.push(A);let R=r!=null,P=s!=null,z=o==="leakyrelu",V=o?$m(o,!0):null,G=new uN(A.shape,k.shape,[1,g,n.outChannels],b,x,R,V,P,z),H=[A,k];if(r&&H.push(r),P&&H.push(s),z){let Q=a.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));H.push(Q),v.push(Q)}let X=a.runWebGLProgram(G,H,"float32"),j=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],te=ge({inputs:{x:X},backend:a,attrs:{shape:j}});v.push(X);for(let Q of v)a.disposeIntermediateTensorInfo(Q);return te}function wY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=CN({x:r,filter:s,convInfo:d,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=_N({x:r,filter:s,convInfo:d,backend:n});else{let f=new SN(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ge({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var kY={kernelName:Fs,backendName:"webgl",kernelFunc:wY},IY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},TY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},NY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},SY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function CY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new IY(d);return n.runWebGLProgram(h,[r,s],"float32")}var _Y={kernelName:fd,backendName:"webgl",kernelFunc:CY};function EY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new TY(d);return n.runWebGLProgram(h,[r,s],"float32")}var FY={kernelName:As,backendName:"webgl",kernelFunc:EY};function AY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new xY(c);return n.runWebGLProgram(u,[r,s],"float32")}var $Y={kernelName:Zu,backendName:"webgl",kernelFunc:AY};function DY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new NY(c);return n.runWebGLProgram(u,[r,s],"float32")}var RY={kernelName:gd,backendName:"webgl",kernelFunc:DY};function MY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new SY(c);return n.runWebGLProgram(u,[r,s],"float32")}var PY={kernelName:yd,backendName:"webgl",kernelFunc:MY},OY=lN+`
return cos(x);
`,LY=Xe({opSnippet:OY}),zY={kernelName:$s,backendName:"webgl",kernelFunc:LY},WY=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,BY=Xe({opSnippet:WY}),VY={kernelName:Mo,backendName:"webgl",kernelFunc:BY},UY=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${b});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${v};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},GY=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new UY(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},HY={kernelName:Po,backendName:"webgl",kernelFunc:GY},AN=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${EN(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${dt(a)} coords = getOutputCoords();
int end = ${FN(a,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${FN(a,"coords")} = idx;
val += getX(${EN(a,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function EN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function FN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function jY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=An({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=u.shape[p],h=Gn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new AN(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new AN(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=An({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var qY={kernelName:Ds,backendName:"webgl",kernelFunc:jY};function XY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=K2(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=I8(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var KY={kernelName:bd,backendName:"webgl",kernelFunc:XY},YY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function JY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new YY(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var QY={kernelName:Oo,backendName:"webgl",kernelFunc:JY},$N=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?g=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${b}
${y}
setOutput(result);
}
`}},DN=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`
vec4 xTexelR${v}C${T*2} = vec4(0.);
vec4 wR${v}C${T} = vec4(0.);
vec4 xR${v}C${T} = vec4(0.);`;for(let v=0;v<h;v++)for(let T=0;T<f;T++){let k=T*2;if(g+=`
xR = xRCorner + ${v*p};
xC = xCCorner + ${k*d};
`,u===1){if(k<m&&(l%2==1?g+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${v}C${k}.zw = vec2(0.);
}
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${v}C${k} = vec4(previous.zw, xTexelR${v}C${k}.xy);
} else {
xR${v}C${k} = vec4(0, 0, xTexelR${v}C${k}.xy);
}
`:g+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xR${v}C${k} = xTexelR${v}C${k};
`,k+1<m)){let S=l%2==0?w.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(g+=`
xCOffset = xC + ${l%2} + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(g+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
`),g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.xy);
`):g+=`
xCOffset = xC + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = xTexelR${v}C${k+2};
`}}else k<m&&(g+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(g+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`,k+1<m&&(g+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${v}C${k+1} = vec4(xTexelR${v}C${k+2}.xy, final.xy);
`)):(g+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${v}C${k} = getX(batch, xR, xC, d1);
} else {
xTexelR${v}C${k} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${v}C${k+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${v}C${k+2} = vec4(0.);
}
xR${v}C${k} = vec4(
xTexelR${v}C${k}.xy, xTexelR${v}C${k+2}.xy);
`,k+1<m&&(g+=`
xR${v}C${k+1} = vec4(
xTexelR${v}C${k}.zw, xTexelR${v}C${k+2}.zw);
`)),g+="}");k<m&&(g+=`
vec4 wTexelR${v}C${k} = getW(${v}, ${k}, d1, q);
wR${v}C${k} = vec4(wTexelR${v}C${k}.xz, wTexelR${v}C${k}.xz);
`,k+1<m&&(g+=`
vec4 wTexelR${v}C${k+1} = getW(${v}, ${k+1}, d1, q);
wR${v}C${k+1} =
vec4(wTexelR${v}C${k+1}.xz, wTexelR${v}C${k+1}.xz);`))}for(let v=0;v<h;v++)for(let T=0;T<m;T++)g+=`dotProd += xR${v}C${T} * wR${v}C${T};`;let y="",b="";n&&(a?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,b="result = activation(result);");let x=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${g}
vec4 result = dotProd;
${x}
${b}
setOutput(result);
}
`}};function ZY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=a,u=l;u==null&&(u=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new DN(p):d=new $N(p),n.runWebGLProgram(d,[r,s],"float32")}var e7={kernelName:Rs,backendName:"webgl",kernelFunc:ZY},t7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},n7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function a7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new t7(p);return n.runWebGLProgram(d,[r,s],"float32")}var r7={kernelName:xd,backendName:"webgl",kernelFunc:a7};function s7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new n7(p);return n.runWebGLProgram(d,[r,s],"float32")}var i7={kernelName:vd,backendName:"webgl",kernelFunc:s7},o7=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function l7(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=w.sizeFromShape(a.shape),i=ge({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new o7(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var u7={kernelName:wd,backendName:"webgl",kernelFunc:l7},c7=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${u}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function p7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new c7(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var d7={kernelName:ec,backendName:"webgl",kernelFunc:p7},h7="return (x >= 0.0) ? x : (exp(x) - 1.0);",m7=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,f7=Xe({opSnippet:h7,packedOpSnippet:m7}),g7={kernelName:Lo,backendName:"webgl",kernelFunc:f7},y7="return (b >= 1.0) ? a : a * (b + 1.0);",b7=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,x7=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new dp(b7,a.shape,r.shape):new pu(y7,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},v7={kernelName:Td,backendName:"webgl",kernelFunc:x7},w7=`
return vec4(equal(a, b));
`,k7="return float(a == b);",I7=on({opSnippet:k7,packedOpSnippet:w7,dtype:"bool"}),T7={kernelName:Wo,backendName:"webgl",kernelFunc:I7},N7=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${_.ERF_P};
float a1 = ${_.ERF_A1};
float a2 = ${_.ERF_A2};
float a3 = ${_.ERF_A3};
float a4 = ${_.ERF_A4};
float a5 = ${_.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,S7=Xe({opSnippet:N7}),C7={kernelName:zo,backendName:"webgl",kernelFunc:S7},RN="return exp(x);",MN=Xe({opSnippet:RN,packedOpSnippet:RN,cpuKernelImpl:S8}),_7={kernelName:Ps,backendName:"webgl",kernelFunc:MN};function Wv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ge({inputs:{x:s},backend:a,attrs:{shape:o}})}var E7={kernelName:Bo,backendName:"webgl",kernelFunc:Wv},PN="return exp(x) - 1.0;",F7=Xe({opSnippet:PN,packedOpSnippet:PN,cpuKernelImpl:C8}),A7={kernelName:Vo,backendName:"webgl",kernelFunc:F7},ON=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function LN(e,t,n){let a=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new ON("real",l,t),u=new ON("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=hs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=ge({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function $7(e){let{inputs:t,backend:n}=e,{input:a}=t;return LN(a,!1,n)}var D7={kernelName:Nd,backendName:"webgl",kernelFunc:$7},R7=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Bv(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||w.inferDtype(r),s==="string"){let i=w.getArrayFromDType(s,w.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new R7(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var M7={kernelName:tc,backendName:"webgl",kernelFunc:Bv},P7=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},O7={kernelName:Uo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new P7(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},zN="return floor(x);",L7=Xe({opSnippet:zN,packedOpSnippet:zN,cpuKernelImpl:_8}),z7={kernelName:Os,backendName:"webgl",kernelFunc:L7},W7=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,B7=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,V7=on({opSnippet:W7,packedOpSnippet:B7,dtype:"int32"}),U7={kernelName:Ls,backendName:"webgl",kernelFunc:V7},G7=class{constructor(e){this.variableNames=["A"];let t=fn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},H7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=fn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},q7={kernelName:Wd,backendName:"webgl",kernelFunc:j7},hu;function j7(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],p=[c,l,s];(o||i)&&(hu==null&&(hu=document.createElement("canvas").getContext("2d")),hu.canvas.width=l,hu.canvas.height=c,hu.drawImage(r,0,0,l,c),r=hu.canvas);let d=n.makeTensorInfo(u,"int32");n.texData.get(d.dataId).usage=na.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Z().getBool("WEBGL_PACK")?new H7(p):new G7(p),m=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),m}function X7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=CN({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(Z().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=_N({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,T=o!=null,k=h==="leakyrelu",S=h?$m(h,!1):null,F=new SN(g,v,S,T,k),A=[r,s];if(i&&A.push(i),o&&A.push(o),k){let R=n.makeTensorInfo([],"float32",w.createScalarValue(m,"float32"));A.push(R),b.push(R)}y=n.runWebGLProgram(F,A,"float32")}let x=ge({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var K7={kernelName:yi,backendName:"webgl",kernelFunc:X7};function Y7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?$m(d,y):null,x=[r,s],v=i!=null,T=o!=null,k=d==="leakyrelu";if(v&&x.push(i),T&&x.push(o),k){let A=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(A),m.push(A)}let S;y?S=new DN(g,v,b,T,k):S=new $N(g,v,b,T,k);let F=n.runWebGLProgram(S,x,"float32");return m.forEach(A=>n.disposeIntermediateTensorInfo(A)),F}var J7={kernelName:bi,backendName:"webgl",kernelFunc:Y7},Q7=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=dt(t.length),r=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function Z7(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=ge({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape)/c,c]}}),h=new Q7(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var e9={kernelName:Ho,backendName:"webgl",kernelFunc:Z7},n9=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),a=t9(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function t9(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function a9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=w.sizeFromShape(s.shape),p=[],d=ge({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=ge({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});p.push(d),p.push(h);let m=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(d),v=E8(x,b,m);return p.forEach(T=>n.disposeIntermediateTensorInfo(T)),n.makeTensorInfo(c.outputShape,v.dtype,v.values)}let f=new n9(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=ge({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var r9={kernelName:Go,backendName:"webgl",kernelFunc:a9},s9="return float(a > b);",i9=`
return vec4(greaterThan(a, b));
`,o9=on({opSnippet:s9,packedOpSnippet:i9,cpuKernelImpl:F8,dtype:"bool"}),l9={kernelName:jo,backendName:"webgl",kernelFunc:o9},u9="return float(a >= b);",c9=`
return vec4(greaterThanEqual(a, b));
`,p9=on({opSnippet:u9,packedOpSnippet:c9,dtype:"bool"}),d9={kernelName:Ws,backendName:"webgl",kernelFunc:p9};function h9(e){let{inputs:t,backend:n}=e,{input:a}=t;return LN(a,!0,n)}var m9={kernelName:Sd,backendName:"webgl",kernelFunc:h9},f9="return float(!isnan(x) && !isinf(x));",g9=Xe({opSnippet:f9,dtype:"bool"}),y9={kernelName:qo,backendName:"webgl",kernelFunc:g9},b9="return float(isinf(x));",x9=Xe({opSnippet:b9,dtype:"bool"}),v9={kernelName:Xo,backendName:"webgl",kernelFunc:x9},w9="return float(isnan(x));",k9=Xe({opSnippet:w9,dtype:"bool"}),I9={kernelName:Ko,backendName:"webgl",kernelFunc:k9},T9="return float(a < b);",N9=`
return vec4(lessThan(a, b));
`,S9=on({opSnippet:T9,packedOpSnippet:N9,cpuKernelImpl:A8,dtype:"bool"}),C9={kernelName:Yo,backendName:"webgl",kernelFunc:S9},_9="return float(a <= b);",E9=`
return vec4(lessThanEqual(a, b));
`,F9=on({opSnippet:_9,packedOpSnippet:E9,dtype:"bool"}),A9={kernelName:Jo,backendName:"webgl",kernelFunc:F9};function $9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=$8(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var D9={kernelName:_d,backendName:"webgl",kernelFunc:$9},R9=`if (x < 0.0) return NAN;
return log(x);`,M9=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,P9=Xe({opSnippet:R9,packedOpSnippet:M9,cpuKernelImpl:D8}),O9={kernelName:Us,backendName:"webgl",kernelFunc:P9},L9="return log(1.0 + x);",z9=Xe({opSnippet:L9}),W9={kernelName:Qo,backendName:"webgl",kernelFunc:z9},B9="return float(a >= 1.0 && b >= 1.0);",V9=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,U9=on({opSnippet:B9,packedOpSnippet:V9,dtype:"bool"}),G9={kernelName:Zo,backendName:"webgl",kernelFunc:U9},H9="return float(!(x >= 1.0));",j9=Xe({opSnippet:H9}),q9={kernelName:nc,backendName:"webgl",kernelFunc:j9},X9="return float(a >= 1.0 || b >= 1.0);",K9=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Y9=on({opSnippet:X9,packedOpSnippet:K9,dtype:"bool"}),J9={kernelName:ac,backendName:"webgl",kernelFunc:Y9},Q9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Z9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},eJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Z9(r.shape,s,i,o,l):new Q9(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},tJ={kernelName:rc,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},aJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new nJ(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},rJ={kernelName:Ed,backendName:"webgl",kernelFunc:aJ};function sJ(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,e.dtype,"max",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function WN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let k=0;k<x.length;k++)x[k]=r.shape[u[k]];let v=Dv(b,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let T=n.texData.get(h.dataId);T.values=v}else h=Dm(r,u,n);c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("max",c,o);let[m,f]=_.computeOutAndReduceShapes(h.shape,c),g=m;i&&(g=_.expandShapeToKeepDim(m,l));let y;if(d){let b=n.texData.get(h.dataId).values,x=R8(b,w.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=sJ(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var iJ={kernelName:Gs,backendName:"webgl",kernelFunc:WN},oJ=aN+`
return max(a, b);
`,lJ=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Am+`
return result;
`,uJ=on({opSnippet:oJ,packedOpSnippet:lJ,cpuKernelImpl:M8}),cJ={kernelName:Hs,backendName:"webgl",kernelFunc:uJ};function pJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;cp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;w.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return Gn({inputs:{x:r},backend:n});let p=new hp(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var dJ={kernelName:js,backendName:"webgl",kernelFunc:pJ};function hJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new Ov(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var mJ={kernelName:sc,backendName:"webgl",kernelFunc:hJ},fJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},gJ=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function yJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new Ov(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new gJ(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var bJ={kernelName:Ad,backendName:"webgl",kernelFunc:yJ};function xJ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;cp([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new hp(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new fJ(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var vJ={kernelName:Fd,backendName:"webgl",kernelFunc:xJ};function wJ(e,t,n,a){let r=new hp(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new hp(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var kJ={kernelName:$d,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;w.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=wJ(a,o,u,l);return[p,d]}};function IJ(e,t,n,a){let r=w.sizeFromShape(t),s=w.sizeFromShape(e.shape)/r,i=ge({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=ji(i,"float32","mean",a),l=ge({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var TJ={kernelName:qs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=w.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let S=0;S<v.length;S++)v[S]=a.shape[u[S]];let T=Dv(x,a.shape,a.dtype,u,v);m=i.makeTensorInfo(v,a.dtype);let k=i.texData.get(m.dataId);k.values=T}else m=Dm(a,u,i);h.push(m),c=_.getInnerMostAxes(c.length,o)}_.assertAxesAreInnerMostDims("sum",c,o);let[f,g]=_.computeOutAndReduceShapes(m.shape,c),y=f;r&&(y=_.expandShapeToKeepDim(f,l));let b=IJ(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return b}};function NJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=w.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=w.sizeFromShape(h),f=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=ji(f,f.dtype,"min",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=ge({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=ge({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var SJ={kernelName:Xs,backendName:"webgl",kernelFunc:NJ},CJ=aN+`
return min(a, b);
`,_J=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Am+`
return result;
`,EJ=on({opSnippet:CJ,packedOpSnippet:_J,cpuKernelImpl:P8}),FJ={kernelName:Ks,backendName:"webgl",kernelFunc:EJ},AJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let a=e.length,r=dt(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},$J=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=dt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=gn("rc",a),l=gn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${c}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},DJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $J(a.shape,r,s):new AJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},RJ={kernelName:ic,backendName:"webgl",kernelFunc:DJ},MJ=`if (b == 0.0) return NAN;
return mod(a, b);`,PJ=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Am+`
return result;
`,OJ=on({opSnippet:MJ,packedOpSnippet:PJ}),LJ={kernelName:el,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},WJ=`
if (a == b) {
return 1.0;
};
return a / b;`,BJ=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,BN=on({opSnippet:WJ,packedOpSnippet:BJ,checkOutOfBounds:!0}),VJ={kernelName:Ms,backendName:"webgl",kernelFunc:BN},VN="return a - b;",UN=on({opSnippet:VN,packedOpSnippet:VN,supportsComplex:!0,cpuKernelImpl:G8}),UJ={kernelName:hi,backendName:"webgl",kernelFunc:UN};function GN(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=w.parseAxisParam([s],r.shape),o=WN({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=UN({inputs:{a:r,b:c},backend:n}),p=MN({inputs:{x:u},backend:n}),d=Pv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),m=BN({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var GJ={kernelName:pi,backendName:"webgl",kernelFunc:GN};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:GN({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new zJ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var jJ={kernelName:Dd,backendName:"webgl",kernelFunc:HJ},HN="return -x;";function qJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=L8(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new cu(a.shape,HN):r=new ds(a.shape,HN),n.runWebGLProgram(r,[a],a.dtype)}var XJ={kernelName:tl,backendName:"webgl",kernelFunc:qJ},KJ=Ya.nonMaxSuppressionV3Impl;function YJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=KJ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var JJ={kernelName:al,backendName:"webgl",kernelFunc:YJ},QJ=Ya.nonMaxSuppressionV4Impl;function ZJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=QJ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var eQ={kernelName:rl,backendName:"webgl",kernelFunc:ZJ},tQ=Ya.nonMaxSuppressionV5Impl;function nQ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=tQ(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var aQ={kernelName:sl,backendName:"webgl",kernelFunc:nQ},rQ=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},sQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=w.sizeFromShape(r.shape),c=new rQ(l,s,i,o),u=ge({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=ge({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},iQ={kernelName:Js,backendName:"webgl",kernelFunc:sQ};function Lm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=fp({inputs:{input:a},backend:n}),s=Lm({inputs:{x:r},backend:n}),i=Om({inputs:{input:a},backend:n}),o=Lm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Bv({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var oQ={kernelName:Il,backendName:"webgl",kernelFunc:Lm};function jN(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=fp({inputs:{input:a},backend:n}),s=jN({inputs:{x:r},backend:n}),i=Om({inputs:{input:a},backend:n}),o=Lm({inputs:{x:i},backend:n}),l=hs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Bv({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var lQ={kernelName:il,backendName:"webgl",kernelFunc:jN};function uQ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Wv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Wv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=NN({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var cQ={kernelName:ol,backendName:"webgl",kernelFunc:uQ},pQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=dt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},dQ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=dt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=gn("rc",a),l=gn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${c}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${p[m]}
if (${d}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},qN=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new dQ(r.shape,s,i):new pQ(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},hQ={kernelName:Qs,backendName:"webgl",kernelFunc:qN},mQ=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,fQ=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Am+`
return result;
`,gQ=on({opSnippet:mQ,packedOpSnippet:fQ}),yQ={kernelName:Zs,backendName:"webgl",kernelFunc:gQ};function bQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=w.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=An({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=z8(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=w.sizeFromShape(f),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=jd(r.dtype),x=ji(y,b,"prod",n);h=ge({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=ge({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var xQ={kernelName:ll,backendName:"webgl",kernelFunc:bQ},XN=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=W8(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},vQ={kernelName:oc,backendName:"webgl",kernelFunc:XN},wQ="return 1.0 / x;",kQ=Xe({opSnippet:wQ}),IQ={kernelName:ul,backendName:"webgl",kernelFunc:kQ},TQ=Ma+`
return (x < 0.0) ? 0.0 : x;
`,NQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,SQ=Xe({opSnippet:TQ,packedOpSnippet:NQ}),CQ={kernelName:ti,backendName:"webgl",kernelFunc:SQ},_Q=Ma+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,EQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,FQ=Xe({opSnippet:_Q,packedOpSnippet:EQ}),AQ={kernelName:ai,backendName:"webgl",kernelFunc:FQ},$Q=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},DQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function RQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new DQ(r.shape,l,c,s,i):new $Q(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var MQ={kernelName:ni,backendName:"webgl",kernelFunc:RQ},PQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new PQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var LQ={kernelName:Pd,backendName:"webgl",kernelFunc:OQ},zQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function WQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new zQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var BQ={kernelName:lc,backendName:"webgl",kernelFunc:WQ},VQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function UQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new VQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var GQ={kernelName:Md,backendName:"webgl",kernelFunc:UQ},HQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=dt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},jQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=gn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${c(a.slice())};
if(${r}) {
result.a = ${u(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function qQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=w.parseAxisParam(s,r.shape);if(i===0)return Gn({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jQ(r.shape,o):new HQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var XQ={kernelName:ri,backendName:"webgl",kernelFunc:qQ},KQ=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},YQ={kernelName:Tl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new KQ(a.shape,s),[c,u]=_.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(c,u,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},JQ=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,QQ=Xe({opSnippet:JQ}),ZQ={kernelName:si,backendName:"webgl",kernelFunc:QQ},eZ="return inversesqrt(x);",tZ=Xe({opSnippet:eZ,cpuKernelImpl:B8}),nZ={kernelName:ii,backendName:"webgl",kernelFunc:tZ},KN=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(r.length),l=dt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function aZ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=ge({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new KN(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var rZ={kernelName:pl,backendName:"webgl",kernelFunc:aZ},sZ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);a=o.join(),r=l.join()}let s=dt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function iZ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new sZ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ua(r.dtype,s.dtype))}var oZ={kernelName:dl,backendName:"webgl",kernelFunc:iZ},lZ=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${_.SELU_SCALEALPHA};
float scale = ${_.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,uZ=Xe({opSnippet:lZ}),cZ={kernelName:hl,backendName:"webgl",kernelFunc:uZ},pZ="return 1.0 / (1.0 + exp(-1.0 * x));",dZ=Xe({opSnippet:pZ}),hZ={kernelName:li,backendName:"webgl",kernelFunc:dZ},mZ=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,fZ=Xe({opSnippet:mZ}),gZ={kernelName:gl,backendName:"webgl",kernelFunc:fZ},yZ=lN+`
return sin(x);
`,bZ=Xe({opSnippet:yZ}),xZ={kernelName:oi,backendName:"webgl",kernelFunc:bZ},vZ=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,wZ=Xe({opSnippet:vZ}),kZ={kernelName:fl,backendName:"webgl",kernelFunc:wZ},IZ=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,TZ=Xe({opSnippet:IZ}),NZ={kernelName:yl,backendName:"webgl",kernelFunc:TZ},SZ=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let c=[],u=qN({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=_.getReshaped(u.shape,s,o,!1),d=_.getPermuted(p.length,s.length,!1),h=_.getReshapedPermuted(u.shape,s,o,!1),m=ge({inputs:{x:u},backend:n,attrs:{shape:p}}),f=An({inputs:{x:m},backend:n,attrs:{perm:d}}),g=ge({inputs:{x:f},backend:n,attrs:{shape:h}});return c.push(u),c.push(m),c.push(f),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},CZ={kernelName:uc,backendName:"webgl",kernelFunc:SZ};function _Z(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new KN(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=ge({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var EZ={kernelName:Od,backendName:"webgl",kernelFunc:_Z};function FZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=mp({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var AZ={kernelName:bl,backendName:"webgl",kernelFunc:FZ},$Z="return sqrt(x);",DZ=Xe({opSnippet:$Z}),RZ={kernelName:ui,backendName:"webgl",kernelFunc:DZ},MZ="return x * x;",PZ=Xe({opSnippet:MZ}),OZ={kernelName:cc,backendName:"webgl",kernelFunc:PZ},YN="return (a - b) * (a - b);",LZ=on({opSnippet:YN,packedOpSnippet:YN}),zZ={kernelName:di,backendName:"webgl",kernelFunc:LZ};function WZ({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ma+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new ds(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var BZ={kernelName:Gr,backendName:"webgl",kernelFunc:WZ},VZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=dt(n.length),s=dt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function UZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=an.sliceInfo(r.shape,s,i,o,l,c,u,p,d),x=ge({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let k=mp({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=ge({inputs:{x:k},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(k)}else if(b.some(k=>k===0))v=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let k=n.texData.get(x.dataId).values,S=Me(x.shape,x.dtype,k),F=U8(b,S,f,m);v=n.makeTensorInfo(b,x.dtype,F.values)}else{let k=new VZ(m,f,b);v=n.runWebGLProgram(k,[x],x.dtype)}let T=ge({inputs:{x:v},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),T}var GZ={kernelName:xl,backendName:"webgl",kernelFunc:UZ},HZ="return tan(x);",jZ=Xe({opSnippet:HZ}),qZ={kernelName:vl,backendName:"webgl",kernelFunc:jZ},XZ=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,KZ=Xe({opSnippet:XZ}),YZ={kernelName:mi,backendName:"webgl",kernelFunc:KZ},QZ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=JZ(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function JZ(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function JN(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"){let o=n.readSync(r.dataId).map(u=>w.decodeString(u)),l=Me(r.shape,r.dtype,o),c=H8(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new QZ(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var ZZ={kernelName:Ur,backendName:"webgl",kernelFunc:JN};function eee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=j8(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var tee={kernelName:wl,backendName:"webgl",kernelFunc:eee},nee=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function aee(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:c}=a,[u,p,d,h]=r.shape,[m,f]=c!=null?c:[p,d],g=[u,m,f,h],y=new nee(p,d,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var ree={kernelName:Ld,backendName:"webgl",kernelFunc:aee};function see(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;cp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=q8(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var iee={kernelName:zd,backendName:"webgl",kernelFunc:see};function oee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(c[u++]=i.shape[f]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let g=mp({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),y=ge({inputs:{x:g},backend:n,attrs:{shape:c}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var lee={kernelName:kl,backendName:"webgl",kernelFunc:oee},uee=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function cee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=An({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=w.sizeFromShape([p.shape[c]]),m=ge({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=jd(r.dtype),g=(v,T,k,S,F)=>{let A=v.shape[0],R=v.shape[1],P=_.segment_util.segOpComputeOptimalWindowSize(R,F),z={windowSize:P,inSize:R,batchSize:A,numSegments:F},V=new uee(z,T),G=n.compileAndRun(V,[v,k],S);if(l.push(G),G.shape[1]===F)return G;let H=XN({backend:n,attrs:{start:0,stop:F,step:1,dtype:"float32"}}),X=JN({inputs:{x:H},backend:n,attrs:{reps:[R/P]}});return l.push(H),l.push(X),g(G,T,X,S,F)},y=g(m,"unsortedSegmentSum",s,f,i),b=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),x=b;if(u!=null){l.push(b);let v=_.getUndoAxesPermutation(u);x=An({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var pee={kernelName:pc,backendName:"webgl",kernelFunc:cee},dee=[tJ,rJ,UX,HX,XX,JX,ZX,nK,rK,iK,cK,dK,fK,bK,NK,wK,_K,$K,FK,PK,LK,WK,GK,JK,ZK,sY,oY,pY,mY,TX,bY,_Y,FY,kY,RY,PY,$Y,zY,VY,HY,qY,KY,QY,r7,i7,e7,u7,d7,g7,v7,T7,C7,_7,E7,A7,D7,M7,O7,z7,U7,q7,K7,J7,e9,r9,l9,d9,IX,m9,yY,y9,v9,I9,SX,C9,A9,D9,W9,O9,G9,q9,J9,iJ,mJ,dJ,bJ,vJ,kJ,cJ,TJ,SJ,FJ,RJ,LJ,jJ,AX,XJ,JJ,eQ,aQ,tY,iQ,lQ,cQ,hQ,yQ,_X,xQ,vQ,nY,VJ,IQ,AQ,CQ,DX,MQ,LQ,BQ,GQ,XQ,YQ,ZQ,nZ,rZ,oZ,cZ,hZ,gZ,xZ,kZ,KK,GJ,NZ,CZ,EZ,AZ,RZ,OZ,zZ,BZ,GZ,UJ,WX,qZ,YZ,ZZ,tee,ree,BX,iee,lee,pee,oQ];for(let e of dee)hc(e);var hee="3.3.0",mee={"tfjs-core":Y0,"tfjs-backend-cpu":RU,"tfjs-backend-webgl":kX,"tfjs-data":IT,"tfjs-layers":im,"tfjs-converter":yT,tfjs:hee},Hn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Hn||(Hn={}));var gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(gp||(gp={}));var QN;function fee(e){QN=e.wasm.cwrap(gi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function gee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let F=n.dataIdMap.get(i.dataId);if(F.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${F.shape.length}.`);m=F.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=gp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,b],r.dtype),T=n.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return QN(d,k,r.shape.length,h,S,s.shape.length,l,c,g,m,f,p||0,T),v}var yee={kernelName:gi,backendName:"wasm",setupFunc:fee,kernelFunc:gee};function $n(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var bee=$n(So);function yn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(w.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,c.shape.length,d,y,u.shape.length,Hn[c.dtype],b);if(t&&c.dtype==="float32")return x(),f;let v=_.getBroadcastDims(c.shape,m),T=_.getBroadcastDims(u.shape,m),k=v.every((F,A)=>F===A),S=T.every((F,A)=>F===A);if(k&&S)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var xee=!0,vee=yn(Br,xee),ZN;function wee(e){ZN=e.wasm.cwrap(Ts,null,["array","number","number","number"])}function kee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return ZN(s,r.length,Hn[a.dtype],i),a}var Iee={kernelName:Ts,backendName:"wasm",setupFunc:wee,kernelFunc:kee};function zm(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Tee={kernelName:Bs,backendName:"wasm",kernelFunc:zm},eS;function Nee(e){eS=e.wasm.cwrap(fi,null,["number","array","number","number","number","array","number"])}function Wm(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Cee(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=See(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=zm({inputs:t,backend:n});return m.shape=o,m}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return eS(u,h,l.shape.length,Hn[l.dtype],p,d,s.length),c}function See(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Cee(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var _ee={kernelName:fi,backendName:"wasm",kernelFunc:Wm,setupFunc:Nee};function mu(e,t,n){let a=e.shape,r=e.shape.length,s=w.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d<u.length;d++)u[d]=a[o[d]];i=_.getInnerMostAxes(i.length,r),l=Wm({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var tS;function Eee(e){tS=e.wasm.cwrap(Ns,null,["number","number","number","number","number"])}function Fee(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:p}=mu(s,r,t);if(p){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),m=t.dataIdMap.get(h.dataId).id,f=w.sizeFromShape(h.shape),g=l.shape[u[0]];return tS(o,Hn[l.dtype],f,g,m),p&&t.disposeData(c.dataId),h}var Aee={kernelName:Ns,backendName:"wasm",kernelFunc:Fee,setupFunc:Eee},nS;function $ee(e){nS=e.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dee(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.strideHeight,b=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let v=a.makeOutput(u.outShape,"float32"),T=a.dataIdMap.get(v.dataId).id;return nS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,T),v}var Ree={kernelName:Ss,backendName:"wasm",setupFunc:$ee,kernelFunc:Dee};function Pa(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=w.sizeFromShape(a.shape),i=w.inferFromImplicitShape(r,s);return w.assert(s===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Mee={kernelName:cl,backendName:"wasm",kernelFunc:Pa},aS;function Pee(e){aS=e.wasm.cwrap(Cs,null,["number","array","number","number","array","number","number","number","number"])}function Oee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=w.sizeFromShape(m),y=w.sizeFromShape(f),b=g===y||g===1||y===1;w.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);w.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,u,d]:[g,d,u],T=o?[y,h,p]:[y,p,h],k=Pa({inputs:{x:r},backend:n,attrs:{shape:v}}),S=Pa({inputs:{x:s},backend:n,attrs:{shape:T}}),F=n.dataIdMap.get(k.dataId).id,A=n.dataIdMap.get(S.dataId).id,R=i?k.shape[2]:k.shape[1],P=o?S.shape[1]:S.shape[2],z=Math.max(g,y),V=n.makeOutput([z,R,P],k.dtype),G=n.dataIdMap.get(V.dataId).id,H=new Uint8Array(new Int32Array(k.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return aS(F,H,k.shape.length,A,X,S.shape.length,i,o,G),n.disposeData(k.dataId),n.disposeData(S.dataId),V.shape=x,V}var Lee={kernelName:Cs,backendName:"wasm",setupFunc:Pee,kernelFunc:Oee};function Bm(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var zee={kernelName:_s,backendName:"wasm",kernelFunc:Bm},Wee=$n(Es),rS;function Bee(e){rS=e.wasm.cwrap(Vr,null,["number","number","number","number"])}function Vee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return rS(o,s,i,c),l}var Uee={kernelName:Vr,backendName:"wasm",setupFunc:Bee,kernelFunc:Vee};function Gee(e,t,n,a){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}function Hee(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return w.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}function sS(e,t,n,a,r){let s=an.isSliceContinous(a,t,n),i=w.sizeFromShape(n),o=w.computeStrides(a);if(s){let p=an.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Me(a,r,l),u=Me(n,r);for(let p=0;p<u.size;++p){let d=u.indexToLoc(p),h=d.map((m,f)=>m+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function iS(e){let{inputs:t,backend:n}=e,a=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>w.sizeFromShape(h.shape)>0);if(s.length===1)return zm({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=w.sizeFromShape(x.shape.slice(a));return Pa({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=Gee(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=w.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=w.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*c;for(let f=0;f<p.length;f++){let g=u[f],y=h*g,b=p[f].subarray(y,y+g);d.set(b,m),m+=g}}return i}var jee={kernelName:Ro,backendName:"wasm",kernelFunc:iS},oS;function qee(e){oS=e.wasm.cwrap(Fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xee(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p,dataFormat:d}=n,h=_.convertConv2DDataFormat(d),m=_.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,b=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,T=m.dilationHeight,k=m.dilationWidth,S=m.strideHeight,F=m.strideWidth,A=m.inChannels,R=m.outChannels,P=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(z.dataId).id;return oS(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,b,x,v,P,T,k,S,F,A,R,V),z}var Kee={kernelName:Fs,backendName:"wasm",setupFunc:qee,kernelFunc:Xee},lS;function Yee(e){lS=e.wasm.cwrap(As,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jee(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=a,p=1,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(u,s.shape,i,p,o,c,!1,d),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:b,inWidth:x,outChannels:v,outHeight:T,outWidth:k,strideHeight:S,strideWidth:F}=h,A=f-1-h.padInfo.top,R=g-1-h.padInfo.left,P=h.dataFormat==="channelsLast",z=w.computeStrides(h.inShape),V=w.computeStrides(r.shape),[G,H,X]=w.computeStrides(s.shape),j=z[0],te=P?z[1]:z[2],Q=P?z[2]:1,se=P?1:z[1],ne=V[0],ie=P?V[1]:V[2],ee=P?V[2]:1,pe=P?1:V[1],oe=t.makeOutput(h.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,me=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(s.dataId).id;return lS(me,we,m,f,g,b,x,y,T,k,v,S,F,A,R,G,H,X,j,te,Q,se,ne,ie,ee,pe,fe),oe}var Qee={kernelName:As,backendName:"wasm",setupFunc:Yee,kernelFunc:Jee},Zee=$n($s),Vv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Vv||(Vv={}));var uS;function ete(e){uS=e.wasm.cwrap(Po,null,["number","number","number","number","array","number","number","number","number","number"])}function tte(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[p,d]=i,h=[u,p,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Bm({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,b=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(o.shape).buffer);return uS(g,y,b,u,T,p,d,Vv[r],s,v),f!=null&&t.disposeData(f.dataId),x}var nte={kernelName:Po,backendName:"wasm",setupFunc:ete,kernelFunc:tte},cS;function ate(e){cS=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number"])}function rte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=Wm({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;cS(m,i?1:0,o?1:0,h,f,Hn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=Wm({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var ste={kernelName:Ds,backendName:"wasm",setupFunc:ate,kernelFunc:rte},pS;function ite(e){pS=e.wasm.cwrap(Oo,null,["number","number","number","array","number","array","array","number","number"])}function ote(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;w.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return pS(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,v),f}var lte={kernelName:Oo,backendName:"wasm",setupFunc:ite,kernelFunc:ote},dS;function ute(e){dS=e.wasm.cwrap(Rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,T=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,F=h.inChannels,A=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(h.outShape,"float32"),z=a.dataIdMap.get(P.dataId).id;return dS(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,v,T,k,S,F,A,z),P}var pte={kernelName:Rs,backendName:"wasm",setupFunc:ute,kernelFunc:cte},dte=!1,hte=yn(Wo,dte,"bool"),mte=$n(Ps);function Uv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(w.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pa({inputs:{x:r},backend:a,attrs:{shape:o}})}var fte={kernelName:Bo,backendName:"wasm",kernelFunc:Uv};function gte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var yte={kernelName:tc,backendName:"wasm",kernelFunc:gte},hS;function bte(e){hS=e.wasm.cwrap(Uo,null,["number","number","number","number","number","number"])}function xte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return hS(s,o,l,c,u,i),r}var vte={kernelName:Uo,backendName:"wasm",kernelFunc:xte,setupFunc:bte},wte=$n(Os),kte=!1,Ite=yn(Ls,kte),mS;function Tte(e){mS=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number"])}function Nte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(w.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return mS(u,p,d,h,m,r,g),f}var Ste={kernelName:zs,backendName:"wasm",setupFunc:Tte,kernelFunc:Nte},fS;function Cte(e){fS=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _te(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return fS(y,j,te,Q,b,T,k,v,S,F,A,R,X,P,z,V,G,H,x,g,ie,m||0,ne),se}var Ete={kernelName:yi,backendName:"wasm",setupFunc:Cte,kernelFunc:_te},gS;function Fte(e){gS=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ate(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let ee=a.dataIdMap.get(i.dataId);if(ee.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ee.shape.length}.`);if(ee.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ee.shape}) does not match the number of output channels (${x})`);v=ee.id}let T=f.filterHeight,k=f.filterWidth,S=f.padInfo.top,F=f.padInfo.right,A=f.padInfo.bottom,R=f.padInfo.left,P=f.dilationHeight,z=f.dilationWidth,V=f.strideHeight,G=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,j=f.batchSize,te=f.inHeight,Q=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(se.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return gS(y,j,te,Q,b,T,k,v,S,F,A,R,X,P,z,V,G,H,x,g,ie,m||0,ne),se}var $te={kernelName:bi,backendName:"wasm",setupFunc:Fte,kernelFunc:Ate},yS;function Dte(e){yS=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number","array","number"])}function Rte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=py.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return yS(d,Hn[a.dtype],h,i,p,o,m,f),c}var Mte={kernelName:Ho,backendName:"wasm",setupFunc:Dte,kernelFunc:Rte},bS;function Pte(e){bS=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Ote(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=w.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Pa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=w.sizeFromShape(s.shape),d=Pa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(w.computeStrides(u.shape)).buffer),v=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return bS(g,Hn[r.dtype],x,f,y,c.batchSize,v,b),t.disposeData(u.dataId),t.disposeData(d.dataId),m.shape=c.outputShape,m}var Lte={kernelName:Go,backendName:"wasm",setupFunc:Pte,kernelFunc:Ote},zte=!1,Wte=yn(jo,zte,"bool"),Bte=!1,Vte=yn(Ws,Bte,"bool"),xS;function Ute(e){xS=e.wasm.cwrap(Vs,null,["number","number","number"])}function Gte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;xS(r,n,i)}return s}var Hte={kernelName:Vs,backendName:"wasm",setupFunc:Ute,kernelFunc:Gte},jte=!1,qte=yn(Yo,jte,"bool"),Xte=!1,Kte=yn(Jo,Xte,"bool"),Yte=$n(Us),Jte=!1,Qte=yn(Zo,Jte,"bool"),vS;function Zte(e){vS=e.wasm.cwrap(Gs,null,["number, number, number"])}function ene(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=mu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=w.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;vS(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var tne={kernelName:Gs,backendName:"wasm",setupFunc:Zte,kernelFunc:ene},nne=!1,ane=yn(Hs,nne),wS;function rne(e){wS=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,x=u.strideHeight,v=u.strideWidth,T=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(u.outShape,"float32"),F=a.dataIdMap.get(S.dataId).id;return wS(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,x,v,T,k,F),S}var ine={kernelName:js,backendName:"wasm",setupFunc:rne,kernelFunc:sne},kS;function one(e){kS=e.wasm.cwrap(qs,null,["number, number, number"])}function lne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=Bm({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(w.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;kS(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(x.shape,d);x.shape=v}return c.dtype!=="float32"&&t.disposeData(b.dataId),x}var une={kernelName:qs,backendName:"wasm",setupFunc:one,kernelFunc:lne},IS;function cne(e){IS=e.wasm.cwrap(Xs,null,["number, number, number"])}function pne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;IS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var dne={kernelName:Xs,backendName:"wasm",setupFunc:cne,kernelFunc:pne},hne=!1,mne=yn(Ks,hne),fne=!0,gne=yn(Ys,fne),yne=$n(tl);function Gv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var TS;function bne(e){TS=e.wasm.cwrap(al,"number",["number","number","number","number","number"])}function xne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=TS(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Gv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var vne={kernelName:al,backendName:"wasm",setupFunc:bne,kernelFunc:xne},NS;function wne(e){NS=e.wasm.cwrap(rl,"number",["number","number","number","number","number","bool"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=NS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Gv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Ine={kernelName:rl,backendName:"wasm",setupFunc:wne,kernelFunc:kne},SS;function Tne(e){SS=e.wasm.cwrap(sl,"number",["number","number","number","number","number","number"])}function Nne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=SS(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=Gv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Sne={kernelName:sl,backendName:"wasm",setupFunc:Tne,kernelFunc:Nne},Cne=!1,_ne=yn(nl,Cne,"bool"),CS;function Ene(e){CS=e.wasm.cwrap(Js,null,["number","number","number","number","number"])}function Fne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return CS(u,s,i,o,c),l}var Ane={kernelName:Js,backendName:"wasm",setupFunc:Ene,kernelFunc:Fne};function $ne(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Dne={kernelName:il,backendName:"wasm",kernelFunc:$ne};function Rne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Uv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Uv({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=iS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),c}var Mne={kernelName:ol,backendName:"wasm",kernelFunc:Rne},_S;function Pne(e){_S=e.wasm.cwrap(Qs,null,["number","array","number","number","array","array","number","number"])}function One(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return _S(i,c,t.shape.length,Hn[t.dtype],d,h,r,l),o}var Lne={kernelName:Qs,backendName:"wasm",kernelFunc:One,setupFunc:Pne},zne=!1,Wne=yn(Zs,zne),ES;function Bne(e){ES=e.wasm.cwrap(ei,null,["number","number","number"])}function Vne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return ES(s,i,l),o}var Une={kernelName:ei,backendName:"wasm",setupFunc:Bne,kernelFunc:Vne},FS;function Gne(e){FS=e.wasm.cwrap(ll,null,["number","number","number","number"])}function Hne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;FS(l,y,Hn[b.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var jne={kernelName:ll,backendName:"wasm",setupFunc:Gne,kernelFunc:Hne},qne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Hee(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Xne={kernelName:oc,backendName:"wasm",kernelFunc:qne},Kne=!0,Yne=yn(Ms,Kne),Jne=$n(ti),Qne=$n(ai),AS;function Zne(e){AS=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number"])}function eae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Bm({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(w.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return AS(y,u,p,d,h,l,c,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var tae={kernelName:ni,backendName:"wasm",setupFunc:Zne,kernelFunc:eae},$S;function nae(e){$S=e.wasm.cwrap(ri,null,["number","array","number","array","number","number"])}function aae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=w.parseAxisParam(s,r.shape);if(r.shape.length===0)return zm({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);$S(l,u,i.length,p,r.shape.length,c);let d=Pa({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var rae={kernelName:ri,backendName:"wasm",kernelFunc:aae,setupFunc:nae},DS;function sae(e){DS=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function iae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],v=new Uint8Array(new Int32Array(x).buffer);return DS(c,p,d,h,m,s,f,g,v,x.length,u),l}var oae={kernelName:Tl,backendName:"wasm",kernelFunc:iae,setupFunc:sae},lae=$n(si),uae=$n(ii),RS;function cae(e){RS=e.wasm.cwrap(pl,null,["number","number","number","number","number","number","array","number","number"])}function pae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=dy.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return RS(h,m,Hn[s.dtype],l,c,u,f,d,g),o}var dae={kernelName:pl,backendName:"wasm",setupFunc:cae,kernelFunc:pae},MS;function hae(e){MS=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function mae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return MS(i,o,l,h,u),c}var fae={kernelName:dl,backendName:"wasm",kernelFunc:mae,setupFunc:hae},PS;function gae(e){PS=e.wasm.cwrap(li,null,["number","number"])}function yae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||PS(a,s),r}var bae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:gae,kernelFunc:yae},xae=$n(oi);function Vm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=an.parseSliceParams(t,n,a),o=an.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=w.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=an.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+w.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+w.sizeFromShape(i))),c}if(t.dtype==="string"){let m=sS(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)vae(l,u[0],d,s,i);else if(h===3)wae(l,u[0],u[1],d,s,i);else if(h===4)kae(l,u[0],u[1],u[2],d,s,i);else{let m=sS(l,s,i,t.shape,t.dtype);d.set(m)}return c}function vae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function wae(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],c=r[2],u=o+s[0],p=l+s[1];for(let d=o;d<u;d++)for(let h=l;h<p;h++){let m=d*t+h*n+c;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function kae(e,t,n,a,r,s,i){let o=0,l=s[0],c=s[1],u=s[2],p=l+i[0],d=c+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=c;g<d;g++)for(let y=u;y<h;y++){let b=f*t+g*n+y*a+m;r.set(e.subarray(b,b+i[3]),o),o+=i[3]}}var Iae={kernelName:ml,backendName:"wasm",kernelFunc:Vm},OS;function Tae(e){OS=e.wasm.cwrap(pi,null,["number","number","number","number"])}function Nae(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(s.shape)===0||OS(r,i,o,l),s}var Sae={kernelName:pi,backendName:"wasm",setupFunc:Tae,kernelFunc:Nae};function Cae(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let d=[...u];d[o]=p;let h=Vm({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var _ae={kernelName:bl,backendName:"wasm",kernelFunc:Cae},Eae=$n(ui),Fae=$n(cc),Aae=!0,$ae=yn(di,Aae),LS;function Dae(e){LS=e.wasm.cwrap(Gr,null,["number","number","number"])}function Rae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return LS(i,r,l),o}var Mae={kernelName:Gr,backendName:"wasm",setupFunc:Dae,kernelFunc:Rae},zS;function Pae(e){zS=e.wasm.cwrap(xl,null,["number","array","number","array","array","array","array","array","number","number"])}function Oae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(R=>{s[R]=0,i[R]=1,g.splice(R,0,1)});let y=Pa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:x,strides:v}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=x,o=v;let T=_.slice_util.maskToAxes(d);T.forEach(R=>{i[R]=s[R]+1,o[R]=1});let k=_.slice_util.computeOutShape(s,i,o),S=k.filter((R,P)=>T.indexOf(P)===-1);if(o.every(R=>R===1)){let R=Vm({inputs:{x:y},attrs:{begin:s,size:k},backend:t});t.disposeData(y.dataId);let P=Pa({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),P}let F=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(y.dataId).id,P=new Uint8Array(new Int32Array(w.computeStrides(y.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),j=t.dataIdMap.get(F.dataId).id;zS(R,P,y.shape.length,z,V,G,H,X,S.length,j)}t.disposeData(y.dataId);let A=Pa({inputs:{x:F},attrs:{shape:S},backend:t});return t.disposeData(F.dataId),A}var Lae={kernelName:xl,backendName:"wasm",setupFunc:Pae,kernelFunc:Oae},zae=!0,Wae=yn(hi,zae),WS;function Bae(e){WS=e.wasm.cwrap(ci,null,["number, number, number"])}function Vae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=mu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=w.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(w.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;WS(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(b.shape,d);b.shape=x}return b}var Uae={kernelName:ci,backendName:"wasm",setupFunc:Bae,kernelFunc:Vae},Gae=$n(mi),BS;function Hae(e){BS=e.wasm.cwrap(Ur,null,["number","array","number","array","number","number"])}function jae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return BS(s,l,r.shape.length,c,o.length,Hn[u.dtype],p),u}var qae={kernelName:Ur,backendName:"wasm",setupFunc:Hae,kernelFunc:jae},VS;function Xae(e){VS=e.wasm.cwrap(wl,null,["number","array","number","number","number","bool","number","number"])}var Kae=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return VS(i,o,a.shape.length,Hn[a.dtype],r,s,u,d),[c,p]},Yae={kernelName:wl,backendName:"wasm",setupFunc:Xae,kernelFunc:Kae};function Jae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==s&&(l[c++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=Vm({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var Qae={kernelName:kl,backendName:"wasm",kernelFunc:Jae};function Zae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var ere={kernelName:Il,backendName:"wasm",kernelFunc:Zae},tre=[bee,vee,Iee,Aee,Ree,Lee,zee,Wee,Uee,jee,Kee,Qee,Zee,nte,ste,lte,pte,hte,mte,fte,yte,vte,wte,Ite,yee,Ste,Ete,$te,Mte,Lte,Wte,Vte,Tee,Hte,qte,Kte,Yte,Qte,tne,ane,ine,une,dne,mne,gne,yne,vne,Ine,Sne,_ne,Ane,Dne,Mne,Lne,Wne,Une,jne,Xne,Yne,Jne,Qne,Mee,tae,rae,oae,uae,lae,dae,fae,bae,xae,Iae,Sae,_ae,Eae,Fae,$ae,Mae,Lae,Wae,Uae,Gae,qae,Yae,_ee,Qae,ere];for(let e of tre)hc(e);var Hv=Z();Hv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Hv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Hv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var US=Io(cE()),nre='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',are=Io(pE()),GS=class extends ju{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new sd(this,Ua())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let c=t;this.dataIdMap.set(e,{id:s,stringBytes:c,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(a)*w.bytesPerElement(n));return rre(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function sre(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function HS(e,t,n){if(Um!=null)return Um;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),yp!=null&&yp[a]!=null?yp[a]:n+a}async function ire(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let c=nre,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?HS(e,t,bp!=null?bp:l):l+o},jv&&(r.instantiateWasm=sre(HS(e,t,bp!=null?bp:"")));let s=!1;r.onAbort=()=>{s||xp||(xp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Um==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+US.default.toString()],{type:"text/javascript"}),i=(0,US.default)(r)):i=(0,are.default)(r),i.then(o=>{s=!0,xp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function rre(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ore=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Um=null,bp=null,yp={},xp=!1,jv=!1;function lre(e,t=!1){if(by("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Um=e,jv=t}function ure(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")bp=e;else{yp=e;let n=ore.filter(a=>yp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}jv=t}var cre="3.3.0",pre=2;Qd("wasm",async()=>{let{wasm:e}=await ire();return new GS(e)},pre);var tC={};ad(tC,{AnchorPosition:()=>ir,DrawBox:()=>qm,DrawBoxOptions:()=>iw,DrawFaceLandmarks:()=>gw,DrawFaceLandmarksOptions:()=>fw,DrawTextField:()=>fs,DrawTextFieldOptions:()=>Ip,drawContour:()=>Nr,drawDetections:()=>kre,drawFaceExpressions:()=>Sre,drawFaceLandmarks:()=>_re});function Nr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var jS={};ad(jS,{computeReshapedDimensions:()=>Kv,getCenterPoint:()=>Ki,isDimensions:()=>Hm,isEven:()=>Gm,isFloat:()=>Xv,isTensor:()=>qi,isTensor1D:()=>dre,isTensor2D:()=>qv,isTensor3D:()=>Sr,isTensor4D:()=>aa,isValidNumber:()=>Oa,isValidProbablitiy:()=>fu,range:()=>rr,round:()=>Xi});var bn=class{constructor(t,n){if(!Oa(t)||!Oa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new bn(1/this.width,1/this.height)}};function qi(e,t){return e instanceof Ee&&e.shape.length===t}function dre(e){return qi(e,1)}function qv(e){return qi(e,2)}function Sr(e){return qi(e,3)}function aa(e){return qi(e,4)}function Xv(e){return e%1!=0}function Gm(e){return e%2==0}function Xi(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Hm(e){return e&&e.width&&e.height}function Kv({width:e,height:t},n){let a=n/Math.max(t,e);return new bn(Math.round(e*a),Math.round(t*a))}function Ki(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function rr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Oa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function fu(e){return Oa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var lt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Oa)}static assertIsValidBox(t,n,a=!1){if(!lt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Oa),s=[a.x,a.y,a.width,a.height].every(Oa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];lt.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new lt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new lt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new lt({x:t,y:n,width:a,height:r})}rescale(t){let n=Hm(t)?t.width:t,a=Hm(t)?t.height:t;return new lt({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new lt({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),c=s-o,u=i-l,p=Math.min(c,t-o),d=Math.min(u,n-l);return new lt({x:o,y:l,width:p,height:d}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new lt({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,c=this.left,u=this.top,p=this.right,d=this.bottom;return p>n&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new lt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var gu=class extends lt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ms=class{constructor(t,n,a,r,s){this._imageDims=new bn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new lt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new lt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ms(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var gt=class extends ms{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new gt(a,r,s)}};function Yv(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function Jv(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,Infinity),r=n.reduce((o,l)=>l<o?l:o,Infinity),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new gu(a,r,s,i)}function Qv(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;c<o.length;c++){let u=o[c],p=e[i],d=e[u];l.push(Yv(p,d,a))}r=r.filter((c,u)=>l[u]<=n)}return s}function La(e,t){return D(()=>{let[n,a,r]=t,s=Cn([...e.shape.slice(0,3),1],n,"float32"),i=Cn([...e.shape.slice(0,3),1],a,"float32"),o=Cn([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return he(e,l)})}function Zv(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,Cn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ue(d,"float32"));return Je(p,i)})}function hre(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function vp(e){return 1/(1+Math.exp(-e))}function mre(e){return Math.log(e/(1-e))}var yu=class extends lt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var fre=.5,gre=.43,yre=.45,ra=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new bn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof gt?t.box.floor():new lt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/yre),l=Ki(t),c=Math.floor(Math.max(0,l.x-fre*o)),u=Math.floor(Math.max(0,l.y-gre*o));return new yu(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=Jv(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var qS=class extends ra{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ki([t[3],t[4]])]}};var bu=class extends ra{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ki)}};var wp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Xi(this.distance)})`:""}`}};var kp=class extends lt{static assertIsValidLabeledBox(t,n){if(lt.assertIsValidBox(t,n),!Oa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Cr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Cr(t.label,n)}};var XS=class extends kp{static assertIsValidPredictedBox(t,n){if(kp.assertIsValidLabeledBox(t,n),!fu(t.score)||!fu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function sr(e){return e.detection instanceof gt}function Yi(e,t){return{...e,...{detection:t}}}function ew(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function jm(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function tw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=jm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function nw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var aw=L_(YS()),Zt;function vre(){if(!Zt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Zt}function rw(e){Zt=e}function sw(){return nw()?rw(ew()):(0,aw.isNodejs)()?rw(tw()):null}function wre(e){if(Zt||sw(),!Zt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Zt.Canvas,Image:n=Zt.Image}=e;Zt.Canvas=t,Zt.Image=n,Zt.createCanvasElement=e.createCanvasElement||(()=>new t),Zt.createImageElement=e.createImageElement||(()=>new n),Zt.ImageData=e.ImageData||Zt.ImageData,Zt.Video=e.Video||Zt.Video,Zt.fetch=e.fetch||Zt.fetch,Zt.readFile=e.readFile||Zt.readFile}var rt={getEnv:vre,setEnv:rw,initialize:sw,createBrowserEnv:ew,createFileSystem:jm,createNodejsEnv:tw,monkeyPatch:wre,isBrowser:nw,isNodejs:aw.isNodejs};sw();function Ji(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Dn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=Ji(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ir;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ir||(ir={}));var Ip=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ir.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},fs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof fs?t.text:t,this.anchor=n,this.options=new Ip(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a===ir.BOTTOM_RIGHT||a===ir.TOP_RIGHT,s=a===ir.BOTTOM_LEFT||a===ir.BOTTOM_RIGHT,i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,c=s?this.anchor.y-o:this.anchor.y;if(n){let{width:u,height:p}=n,d=Math.max(Math.min(l,u-i),0),h=Math.max(Math.min(c,p-o),0);return{x:d,y:h}}return{x:l,y:c}}draw(t){let n=Ji(t),a=Dn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let c=this.measureWidth(a),u=this.measureHeight();a.fillStyle=r;let p=this.getUpperLeft(a,n);a.fillRect(p.x,p.y,c,u),a.fillStyle=s,this.text.forEach((d,h)=>{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var iw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ir.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ip({...i,...s})}},qm=class{constructor(t,n={}){this.box=new lt(t),this.options=new iw(n)}draw(t){let n=Dn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new fs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function kre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof gt?a.score:sr(a)?a.detection.score:void 0,s=a instanceof gt?a.box:sr(a)?a.detection.box:new lt(a),i=r?`${Xi(r)}`:void 0;new qm(s,{label:i}).draw(e)})}function Tp(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function ow(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||Tp(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function lw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Qi(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new bn(e.naturalWidth,e.naturalHeight):e instanceof n?new bn(e.videoWidth,e.videoHeight):new bn(e.width,e.height)}function Zi({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Np(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!Tp(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Qi(e),s=Zi({width:a,height:r});return e instanceof n?Dn(s).putImageData(e,0,0):Dn(s).drawImage(e,0,0,a,r),s}async function uw(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(aa(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await ki.toPixels(i,n),i.dispose(),n}function Xm(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function cw(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Zi({width:1,height:1});let s=Qi(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=Zi({width:t,height:t}),u=e instanceof r?e:Np(e),p=Math.abs(o-l)/2,d=n&&o<l?p:0,h=n&&l<o?p:0;return u.width>0&&u.height>0&&Dn(c).drawImage(u,d,h,o,l),c}var _r=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Sr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(aa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Np(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return rr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Kv({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=rr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ee){let o=aa(i)?i:hn(i);return o=Zv(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ka.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return ki.fromPixels(cw(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ue(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function ht(e){if(e instanceof _r)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Ji);return a.forEach((r,s)=>{if(!Xm(r)&&!Sr(r)&&!aa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(aa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Xm(r)&&ow(r))),new _r(a,Array.isArray(e))}async function xu(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await ht(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await uw(o)}let r=Dn(a);return t.map(i=>i instanceof gt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=Zi({width:l,height:c});return l>0&&c>0&&Dn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function vu(e,t){if(!Sr(e)&&!aa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(aa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(aa(e)?1:0);return t.map(o=>o instanceof gt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Wl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function eo(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function Ire(e){let t=await eo(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return lw(n)}async function pw(e){return(await eo(e)).json()}async function Tre(e){return new Float32Array(await(await eo(e)).arrayBuffer())}function Km(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function dw(e,t){let{manifestUri:n,modelBaseUri:a}=Km(e,t),r=await pw(n);return jt.loadWeights(r,a)}function Nre(e,t,n=!1){let{width:a,height:r}=n?Qi(t):t;return e.width=a,e.height=r,{width:a,height:r}}var ln=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Hr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Hr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Yn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await dw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=Km(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=jt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Rn(e,t,n){return D(()=>{let a=Ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=J(a,t.bias),a})}function Ym(e,t,n=!1){return D(()=>{let a=qe(n?J(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Rn(e,t.conv0,[2,2])),r=Rn(a,t.conv1,[1,1]),s=qe(J(a,r)),i=Rn(s,t.conv2,[1,1]);return qe(J(a,J(r,i)))})}function Sp(e,t,n=!1,a=!0){return D(()=>{let r=qe(n?J(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Rn(e,t.conv0,a?[2,2]:[1,1])),s=Rn(r,t.conv1,[1,1]),i=qe(J(r,s)),o=Rn(i,t.conv2,[1,1]),l=qe(J(r,J(s,o))),c=Rn(l,t.conv3,[1,1]);return qe(J(r,J(s,J(o,c))))})}function to(e,t,n="same",a=!1){return D(()=>{let r=J(At(e,t.filters,[1,1],n),t.bias);return a?qe(r):r})}function xn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function wu(e,t){return(n,a,r,s)=>{let i=Ca(e(n*a*r*r),[r,r,n,a]),o=Qe(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Jm(e,t){return(n,a,r)=>{let s=Sa(e(n*a),[n,a]),i=Qe(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Qm=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function ku(e,t){return(n,a,r)=>{let s=Ca(e(3*3*n),[3,3,n,1]),i=Ca(e(n*a),[1,1,n,a]),o=Qe(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Qm(s,i,o)}}function Iu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Qm(n,a,r)}}function jn(e,t){return(n,a,r)=>{let s=e[n];if(!qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function vn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Zm(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function JS(e){let t=[],{extractWeights:n,getRemainingWeights:a}=vn(e),{extractDenseBlock4Params:r}=Zm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function ef(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function tf(e,t){let n=jn(e,t),a=ef(n),r=Iu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function QS(e){let t=[],{extractDenseBlock4Params:n}=tf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return xn(e,t),{params:a,paramMappings:t}}var Cp=class extends ln{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(255),i=Sp(s,n.dense0,!0);return i=Sp(i,n.dense1),i=Sp(i,n.dense2),i=Sp(i,n.dense3),i=Qn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return QS(t)}extractParams(t){return JS(t)}};function _p(e,t){return D(()=>J(ze(e,t.weights),t.bias))}function ZS(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=vn(e),o=Jm(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function eC(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return xn(e,t),{params:r,paramMappings:t}}function nf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Ep=class extends ln{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t;return _p(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return ZS(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=nf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),eC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var hw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],gs=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);hw.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return hw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var af=class extends Ep{constructor(t=new Cp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Na(this.runNet(t)))}async forward(t){return this.forwardInput(await ht(t))}async predictExpressions(t){let n=await ht(t),a=await this.forwardInput(n),r=await Promise.all(ut(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new gs(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function mw(e){return e.expressions instanceof gs}function rf(e,t){return{...e,...{expressions:t}}}function Sre(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof gs?s:mw(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=sr(s)?s.detection.box.bottomLeft:a||new De(0,0);new fs(l.map(p=>`${p.expression} (${Xi(p.probability)})`),c).draw(e)})}function no(e){return sr(e)&&e.landmarks instanceof ra&&e.unshiftedLandmarks instanceof ra&&e.alignedRect instanceof gt}function Cre(e){let t=(o,l,c,u)=>Math.atan2(u-l,c-o)%Math.PI,n=o=>o*180/Math.PI,a={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return a;let r=e._positions;a.roll=-t(r[36]._x,r[36]._y,r[45]._x,r[45]._y),a.pitch=t(0,Math.abs(r[0]._x-r[30]._x)/r[30]._x,Math.PI,Math.abs(r[16]._x-r[30]._x)/r[30]._x);let s=r.reduce((o,l)=>o<l._y?o:l._y,Infinity),i=r.reduce((o,l)=>o>l._y?o:l._y,-Infinity);return a.yaw=Math.PI*(e._imgDims._height/(i-s)/1.4-1),a}function Tu(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new gt(e.detection.score,r.rescale(s.reverse()),s),o=Cre(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var fw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},gw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new fw(n)}draw(t){let n=Dn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof bu&&(n.strokeStyle=i,n.lineWidth=s,Nr(n,this.faceLandmarks.getJawOutline()),Nr(n,this.faceLandmarks.getLeftEyeBrow()),Nr(n,this.faceLandmarks.getRightEyeBrow()),Nr(n,this.faceLandmarks.getNose()),Nr(n,this.faceLandmarks.getLeftEye(),!0),Nr(n,this.faceLandmarks.getRightEye(),!0),Nr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function _re(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ra?a:no(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new gw(r).draw(e)})}var nC="1.1.4";function Ere(e,t){let n=wu(e,t),a=ku(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function aC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=vn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Ere(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};rr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function Fre(e,t){let n=jn(e,t),a=ef(n),r=Iu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function rC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Fre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};rr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return xn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function sC(e,t,n){return J(At(e,t.filters,n,"same"),t.bias)}function yw(e,t,n=!0){let a=n?qe(e):e;return a=Rn(a,t.separable_conv0,[1,1]),a=Rn(qe(a),t.separable_conv1,[1,1]),a=$t(a,[3,3],[2,2],"same"),a=J(a,sC(e,t.expansion_conv,[2,2])),a}function Are(e,t){let n=Rn(qe(e),t.separable_conv0,[1,1]);return n=Rn(qe(n),t.separable_conv1,[1,1]),n=Rn(qe(n),t.separable_conv2,[1,1]),n=J(n,e),n}var bw=class extends ln{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(255),i=qe(sC(s,n.entry_flow.conv_in,[2,2]));return i=yw(i,n.entry_flow.reduction_block_0,!1),i=yw(i,n.entry_flow.reduction_block_1),rr(this._numMainBlocks,0,1).forEach(o=>{i=Are(i,n.middle_flow[`main_block_${o}`])}),i=yw(i,n.exit_flow.reduction_block),i=qe(Rn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return rC(t,this._numMainBlocks)}extractParams(t){return aC(t,this._numMainBlocks)}};function iC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=vn(e),r=Jm(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function oC(e){let t=[],n=jn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return xn(e,t),{params:r,paramMappings:t}}var Er;(function(e){e.FEMALE="female",e.MALE="male"})(Er||(Er={}));var sf=class extends ln{constructor(t=new bw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t,r=Qn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=_p(r,n.fc.age).as1D(),i=_p(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Na(a)}})}async forward(t){return this.forwardInput(await ht(t))}async predictAgeAndGender(t){let n=await ht(t),a=await this.forwardInput(n),r=ut(a.age),s=ut(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=l.dataSync()[0],p=c.dataSync()[0],d=p>.5,h=d?Er.MALE:Er.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return iC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=nf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),oC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Fp=class extends Ep{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>Dt([Cn([68],p,"float32"),Cn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>d<h),c=p=>o(p,(d,h)=>h<d);return t.mul(Cn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(p,d)=>i(l(d),c(d))))).div(Dt(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await ht(t))}async detectLandmarks(t){let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((u,p)=>Gm(p)),c=o.filter((u,p)=>!Gm(p));return new bu(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var Nu=class extends Fp{constructor(t=new Cp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function lC(e){let t=[],{extractDenseBlock3Params:n}=tf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return xn(e,t),{params:a,paramMappings:t}}function uC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=vn(e),{extractDenseBlock3Params:r}=Zm(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var xw=class extends ln{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(112,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(255),i=Ym(s,n.dense0,!0);return i=Ym(i,n.dense1),i=Ym(i,n.dense2),i=Qn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await ht(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return lC(t)}extractParams(t){return uC(t)}};var of=class extends Fp{constructor(t=new xw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var cC=class extends Nu{};function pC(e,t){return J(W(e,t.weights),t.biases)}function vw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=J(o,i),o=pC(o,t.scale),a?qe(o):o}function dC(e,t){return vw(e,t,[1,1],!0)}function ww(e,t){return vw(e,t,[1,1],!1)}function lf(e,t){return vw(e,t,[2,2],!0,"valid")}function $re(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(Xv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ve(Ca(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=Qe(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=Qe(e(o)),u=Qe(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function hC(e){let{extractWeights:t,getRemainingWeights:n}=vn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=$re(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),v=s(589824,256,3,"conv256_down_out"),T=D(()=>Ve(Sa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:v,fc:T},paramMappings:a}}function Dre(e,t){let n=jn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function mC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Dre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!qv(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let v={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return xn(e,t),{params:v,paramMappings:t}}function za(e,t){let n=dC(e,t.conv1);return n=ww(n,t.conv2),n=J(n,e),n=qe(n),n}function Ap(e,t){let n=lf(e,t.conv1);n=ww(n,t.conv2);let a=Qn(e,2,2,"valid"),r=xt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=xt(o);n=Je([n,l],1);let c=[...n.shape];c[2]=1;let u=xt(c);n=Je([n,u],2)}return a=s?Je([a,r],3):a,n=J(a,n),n=qe(n),n}var Su=class extends ln{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(150,!0),"float32"),s=La(a,[122.782,117.001,104.298]).div(255),i=lf(s,n.conv32_down);i=$t(i,3,2,"valid"),i=za(i,n.conv32_1),i=za(i,n.conv32_2),i=za(i,n.conv32_3),i=Ap(i,n.conv64_down),i=za(i,n.conv64_1),i=za(i,n.conv64_2),i=za(i,n.conv64_3),i=Ap(i,n.conv128_down),i=za(i,n.conv128_1),i=za(i,n.conv128_2),i=Ap(i,n.conv256_down),i=za(i,n.conv256_1),i=za(i,n.conv256_2),i=Ap(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await ht(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await ht(t),a=D(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return mC(t)}extractParams(t){return hC(t)}};function Rre(e){let t=new Su;return t.extractWeights(e),t}function uf(e,t){return{...e,...{descriptor:t}}}function Mre(e){return typeof e.age=="number"}function cf(e,t){return{...e,...{age:t}}}function Pre(e){return(e.gender===Er.MALE||e.gender===Er.FEMALE)&&fu(e.genderProbability)}function pf(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Ore(e,t){function n(l,c){let u=Ca(e(3*3*l),[3,3,l,1]),p=Qe(e(l)),d=Qe(e(l)),h=Qe(e(l)),m=Qe(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Ca(e(l*c*u*u),[u,u,l,c]),m=Qe(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),v=s(512,1024,"mobilenetv1/conv_12"),T=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:v,conv_13:T}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),v=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),T=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),k=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),S=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),F=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),A=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),P=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:v,class_predictor:T},box_predictor_3:{box_encoding_predictor:k,class_predictor:S},box_predictor_4:{box_encoding_predictor:F,class_predictor:A},box_predictor_5:{box_encoding_predictor:R,class_predictor:P}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function fC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=vn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Ore(n,t),i=r(),o=s(),c={extra_dim:Kd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function Lre(e,t){let n=jn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function gC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Lre(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Sr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return xn(e,t),{params:s,paramMappings:t}}function xa(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=J(a,t.batch_norm_offset),Xt(a,0,6)})}var zre=.0010000000474974513;function Wre(e,t,n){return D(()=>{let a=Qr(e,t.filters,n,"same");return a=fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,zre),Xt(a,0,6)})}function Bre(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function yC(e,t){return D(()=>{let n,a=xa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Bre(o);a=Wre(a,s.depthwise_conv,l),a=xa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Vre(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function bC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=Vre(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function Ure(e){let t=ut(Ve(e,[1,0])),n=[he(t[2],t[0]),he(t[3],t[1])],a=[J(t[0],ye(n[0],2)),J(t[1],ye(n[1],2))];return{sizes:n,centers:a}}function Gre(e,t){let{sizes:n,centers:a}=Ure(e),r=ut(Ve(t,[1,0])),s=ye(W(dn(ye(r[2],5)),n[0]),2),i=J(W(ye(r[0],10),n[0]),a[0]),o=ye(W(dn(ye(r[3],5)),n[1]),2),l=J(W(ye(r[1],10),n[1]),a[1]);return Ve(Dt([he(i,s),he(l,o),J(i,s),J(l,o)]),[1,0])}function xC(e,t,n){return D(()=>{let a=e.shape[0],r=Gre(U(Ha(n.extra_dim,[a,1,1]),[-1,4]),U(e,[-1,4]));r=U(r,[a,r.shape[0]/a,4]);let s=ca(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=U(i,[a,i.shape[1]]);let o=ut(r),l=ut(i);return{boxes:o,scores:l}})}function ao(e,t){return D(()=>{let n=e.shape[0],a=U(to(e,t.box_encoding_predictor),[n,-1,1,4]),r=U(to(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function vC(e,t,n){return D(()=>{let a=xa(e,n.conv_0,[1,1]),r=xa(a,n.conv_1,[2,2]),s=xa(r,n.conv_2,[1,1]),i=xa(s,n.conv_3,[2,2]),o=xa(i,n.conv_4,[1,1]),l=xa(o,n.conv_5,[2,2]),c=xa(l,n.conv_6,[1,1]),u=xa(c,n.conv_7,[2,2]),p=ao(t,n.box_predictor_0),d=ao(e,n.box_predictor_1),h=ao(r,n.box_predictor_2),m=ao(i,n.box_predictor_3),f=ao(l,n.box_predictor_4),g=ao(u,n.box_predictor_5),y=Je([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Je([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var va=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ro=class extends ln{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ue(t.toBatchTensor(512,!1),"float32"),r=he(ye(a,127.5),1),s=yC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=vC(s.out,s.conv11,n.prediction_layer);return xC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await ht(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new va(n),s=await ht(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let u=Array.from(c.dataSync()),d=bC(l,u,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,y=l.arraySync(),b=d.map(x=>{let[v,T]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(F=>F*g),[k,S]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(F=>F*f);return new gt(u[x],new yu(k,v,S-k,T-v),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return gC(t)}extractParams(t){return fC(t)}};function wC(e){let t=new ro;return t.extractWeights(e),t}function Hre(e){return wC(e)}var kC=class extends ro{};var IC=.4,TC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],NC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],SC=[117.001,114.697,97.404],CC="tiny_yolov2_model",_C="tiny_yolov2_separable_conv_model";var df=e=>typeof e=="number";function kw(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!df(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>df(t.x)&&df(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(df)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Cu(e){return D(()=>{let t=W(e,ve(.10000000149011612));return J(qe(he(e,t)),t)})}function Fr(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=he(n,t.bn.sub),n=W(n,t.bn.truediv),n=J(n,t.conv.bias),Cu(n)})}function Ar(e,t){return D(()=>{let n=ea(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=J(n,t.bias),Cu(n)})}function jre(e,t){let n=wu(e,t);function a(i,o){let l=Qe(e(i)),c=Qe(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=ku(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function EC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=vn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=jre(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,x]=a,v=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),T=c(d,h,"conv1"),k=c(h,m,"conv2"),S=c(m,f,"conv3"),F=c(f,g,"conv4"),A=c(g,y,"conv5"),R=b?c(y,b,"conv6"):void 0,P=x?c(b,x,"conv7"):void 0,z=o(x||b||y,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}else{let[p,d,h,m,f,g,y,b,x]=a,v=l(p,d,"conv0"),T=l(d,h,"conv1"),k=l(h,m,"conv2"),S=l(m,f,"conv3"),F=l(f,g,"conv4"),A=l(g,y,"conv5"),R=l(y,b,"conv6"),P=l(b,x,"conv7"),z=o(x,5*n,1,"conv8");u={conv0:v,conv1:T,conv2:k,conv3:S,conv4:F,conv5:A,conv6:R,conv7:P,conv8:z}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function qre(e,t){let n=jn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Iu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function FC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=qre(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return xn(e,n),{params:i,paramMappings:n}}var or=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Iw=class extends ln{constructor(t){super("TinyYolov2");kw(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Fr(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Fr(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Fr(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Fr(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Fr(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Fr(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=Fr(a,n.conv6),a=Fr(a,n.conv7),to(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Cu(to(t,n.conv0,"valid",!1)):Ar(t,n.conv0);return a=$t(a,[2,2],[2,2],"same"),a=Ar(a,n.conv1),a=$t(a,[2,2],[2,2],"same"),a=Ar(a,n.conv2),a=$t(a,[2,2],[2,2],"same"),a=Ar(a,n.conv3),a=$t(a,[2,2],[2,2],"same"),a=Ar(a,n.conv4),a=$t(a,[2,2],[2,2],"same"),a=Ar(a,n.conv5),a=$t(a,[2,2],[1,1],"same"),a=n.conv6?Ar(a,n.conv6):a,a=n.conv7?Ar(a,n.conv7):a,to(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ue(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?La(r,this.config.meanRgb):r,r=r.div(255),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await ht(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new or(n),s=await ht(t),i=await this.forwardInput(s,a),o=D(()=>ut(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return Qv(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ms(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return FC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Iw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return EC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),x=y.slice([0,0,0,4],[c,c,u,1]),v=this.withClassScores?Na(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):ve(0);return[b,x,v]}),m=[],f=await d.array(),g=await p.array();for(let y=0;y<c;y++)for(let b=0;b<c;b++)for(let x=0;x<u;x++){let v=vp(f[y][b][x][0]);if(!a||v>a){let T=(b+vp(g[y][b][x][0]))/c*o,k=(y+vp(g[y][b][x][1]))/c*l,S=Math.exp(g[y][b][x][2])*this.config.anchors[x].x/c*o,F=Math.exp(g[y][b][x][3])*this.config.anchors[x].y/c*l,A=T-S/2,R=k-F/2,P={row:y,col:b,anchor:x},{classScore:z,label:V}=this.withClassScores?await this.extractPredictedClass(h,P):{classScore:1,label:0};m.push({box:new gu(A,R,A+S,R+F),score:v,classScore:v*z,label:V,...P})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},_u=Iw;_u.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Eu=class extends _u{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:IC,classes:["face"],...t?{anchors:NC,meanRgb:SC}:{anchors:TC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new gt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?_C:CC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Xre(e,t=!0){let n=new Eu(t);return n.extractWeights(e),n}var hf=class extends or{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var wa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function so(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>no(l)?r(l):l.detection),i=a||(t instanceof Ee?await vu(t,s):await xu(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ee&&l.dispose()),o}async function Fu(e,t,n,a,r){return so([e],t,async s=>n(s[0]),a,r)}var AC=.4,$C=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],DC=[117.001,114.697,97.404];var Au=class extends _u{constructor(){let t={withSeparableConvs:!0,iouThreshold:AC,classes:["face"],anchors:$C,meanRgb:DC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new gt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Ze={ssdMobilenetv1:new ro,tinyFaceDetector:new Au,tinyYolov2:new Eu,faceLandmark68Net:new Nu,faceLandmark68TinyNet:new of,faceRecognitionNet:new Su,faceExpressionNet:new af,ageGenderNet:new sf},RC=(e,t)=>Ze.ssdMobilenetv1.locateFaces(e,t),Kre=(e,t)=>Ze.tinyFaceDetector.locateFaces(e,t),Yre=(e,t)=>Ze.tinyYolov2.locateFaces(e,t),MC=e=>Ze.faceLandmark68Net.detectLandmarks(e),Jre=e=>Ze.faceLandmark68TinyNet.detectLandmarks(e),Qre=e=>Ze.faceRecognitionNet.computeFaceDescriptor(e),Zre=e=>Ze.faceExpressionNet.predictExpressions(e),ese=e=>Ze.ageGenderNet.predictAgeAndGender(e),PC=e=>Ze.ssdMobilenetv1.load(e),tse=e=>Ze.tinyFaceDetector.load(e),nse=e=>Ze.tinyYolov2.load(e),ase=e=>Ze.faceLandmark68Net.load(e),rse=e=>Ze.faceLandmark68TinyNet.load(e),sse=e=>Ze.faceRecognitionNet.load(e),ise=e=>Ze.faceExpressionNet.load(e),ose=e=>Ze.ageGenderNet.load(e),lse=PC,use=RC,cse=MC;var Tw=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Ru=class extends Tw{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>rf(a,n[r]))}withAgeAndGender(){return new $u(this,this.input)}},Mu=class extends Tw{async run(){let t=await this.parentTask;if(!t)return;let n=await Fu(t,this.input,a=>Ze.faceExpressionNet.predictExpressions(a),this.extractedFaces);return rf(t,n)}withAgeAndGender(){return new Du(this,this.input)}},lo=class extends Ru{withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},uo=class extends Mu{withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var Nw=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},$u=class extends Nw{async run(){let t=await this.parentTask,n=await so(t,this.input,async a=>Promise.all(a.map(r=>Ze.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return cf(pf(a,i,o),s)})}withFaceExpressions(){return new Ru(this,this.input)}},Du=class extends Nw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Fu(t,this.input,s=>Ze.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return cf(pf(t,a,r),n)}withFaceExpressions(){return new Mu(this,this.input)}},io=class extends $u{withFaceExpressions(){return new lo(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},oo=class extends Du{withFaceExpressions(){return new uo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var mf=class extends wa{constructor(t,n){super();this.parentTask=t;this.input=n}},ys=class extends mf{async run(){let t=await this.parentTask;return(await so(t,this.input,a=>Promise.all(a.map(r=>Ze.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>uf(t[r],a))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}},bs=class extends mf{async run(){let t=await this.parentTask;if(!t)return;let n=await Fu(t,this.input,a=>Ze.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return uf(t,n)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}};var ff=class extends wa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?Ze.faceLandmark68TinyNet:Ze.faceLandmark68Net}},gf=class extends ff{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ee?await vu(this.input,n):await xu(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ee&&s.dispose()),t.map((s,i)=>Tu(s,r[i]))}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}withFaceDescriptors(){return new ys(this,this.input)}},yf=class extends ff{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ee?await vu(this.input,[n]):await xu(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ee&&s.dispose()),Tu(t,r)}withFaceExpressions(){return new uo(this,this.input)}withAgeAndGender(){return new oo(this,this.input)}withFaceDescriptor(){return new bs(this,this.input)}};var bf=class extends wa{constructor(t,n=new va){super();this.input=t;this.options=n}},$p=class extends bf{async run(){let{input:t,options:n}=this,a;if(n instanceof hf)a=Ze.tinyFaceDetector.locateFaces(t,n);else if(n instanceof va)a=Ze.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof or)a=Ze.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>Yi({},a)))})}withFaceLandmarks(t=!1){return new gf(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ru(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new $u(this.runAndExtendWithFaceDetections(),this.input)}},xf=class extends bf{async run(){let t=await new $p(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yi({},n):void 0)})}withFaceLandmarks(t=!1){return new yf(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Mu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Du(this.runAndExtendWithFaceDetection(),this.input)}};function pse(e,t=new va){return new xf(e,t)}function vf(e,t=new va){return new $p(e,t)}async function OC(e,t){return vf(e,new va(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function dse(e,t={}){return vf(e,new or(t)).withFaceLandmarks().withFaceDescriptors()}var hse=OC;function Sw(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var wf=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Cr)return i;if(i instanceof Float32Array)return new Cr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Cr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Sw(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new wp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this.distanceThreshold?n:new wp("unknown",n.distance)}toJSON(){return{distanceThreshold:this.distanceThreshold,labeledDescriptors:this.labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Cr.fromJSON(a));return new wf(n,t.distanceThreshold)}};function mse(e){let t=new Au;return t.extractWeights(e),t}function LC(e,t){let{width:n,height:a}=new bn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>LC(r,{width:n,height:a}));if(no(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Tu(Yi(e,r),s)}return sr(e)?Yi(e,e.detection.forSize(n,a)):e instanceof ra||e instanceof gt?e.forSize(n,a):e}var fse=typeof process!="undefined",gse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",yse={faceapi:nC,node:fse,browser:gse};export{sf as AgeGenderNet,gu as BoundingBox,lt as Box,wa as ComposableTask,ys as ComputeAllFaceDescriptorsTask,mf as ComputeFaceDescriptorsTaskBase,bs as ComputeSingleFaceDescriptorTask,gf as DetectAllFaceLandmarksTask,$p as DetectAllFacesTask,ff as DetectFaceLandmarksTaskBase,bf as DetectFacesTaskBase,yf as DetectSingleFaceLandmarksTask,xf as DetectSingleFaceTask,bn as Dimensions,hw as FACE_EXPRESSION_LABELS,gt as FaceDetection,kC as FaceDetectionNet,af as FaceExpressionNet,gs as FaceExpressions,Nu as FaceLandmark68Net,of as FaceLandmark68TinyNet,cC as FaceLandmarkNet,ra as FaceLandmarks,qS as FaceLandmarks5,bu as FaceLandmarks68,wp as FaceMatch,wf as FaceMatcher,Su as FaceRecognitionNet,Er as Gender,kp as LabeledBox,Cr as LabeledFaceDescriptors,_r as NetInput,ln as NeuralNetwork,ms as ObjectDetection,De as Point,XS as PredictedBox,yu as Rect,ro as SsdMobilenetv1,va as SsdMobilenetv1Options,Au as TinyFaceDetector,hf as TinyFaceDetectorOptions,Eu as TinyYolov2,or as TinyYolov2Options,hse as allFaces,OC as allFacesSsdMobilenetv1,dse as allFacesTinyYolov2,ow as awaitMediaLoaded,lw as bufferToImage,Qre as computeFaceDescriptor,Zi as createCanvas,Np as createCanvasFromMedia,Hre as createFaceDetectionNet,Rre as createFaceRecognitionNet,wC as createSsdMobilenetv1,mse as createTinyFaceDetector,Xre as createTinyYolov2,vf as detectAllFaces,MC as detectFaceLandmarks,Jre as detectFaceLandmarksTiny,cse as detectLandmarks,pse as detectSingleFace,tC as draw,rt as env,Sw as euclideanDistance,cf as extendWithAge,uf as extendWithFaceDescriptor,Yi as extendWithFaceDetection,rf as extendWithFaceExpressions,Tu as extendWithFaceLandmarks,pf as extendWithGender,vu as extractFaceTensors,xu as extractFaces,Ire as fetchImage,pw as fetchJson,Tre as fetchNetWeights,eo as fetchOrThrow,Dn as getContext2dOrThrow,Qi as getMediaDimensions,uw as imageTensorToCanvas,cw as imageToSquare,mre as inverseSigmoid,Yv as iou,Xm as isMediaElement,Tp as isMediaLoaded,Mre as isWithAge,sr as isWithFaceDetection,mw as isWithFaceExpressions,no as isWithFaceLandmarks,Pre as isWithGender,ose as loadAgeGenderModel,lse as loadFaceDetectionModel,ise as loadFaceExpressionModel,ase as loadFaceLandmarkModel,rse as loadFaceLandmarkTinyModel,sse as loadFaceRecognitionModel,PC as loadSsdMobilenetv1Model,tse as loadTinyFaceDetectorModel,nse as loadTinyYolov2Model,dw as loadWeightMap,use as locateFaces,Nre as matchDimensions,Jv as minBbox,Ze as nets,Qv as nonMaxSuppression,La as normalize,Zv as padToSquare,ese as predictAgeAndGender,Zre as recognizeFaceExpressions,LC as resizeResults,Ji as resolveInput,hre as shuffleArray,vp as sigmoid,RC as ssdMobilenetv1,Ww as tf,Kre as tinyFaceDetector,Yre as tinyYolov2,ht as toNetInput,jS as utils,kw as validateConfig,yse as version};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=face-api.esm.js.map