face-api/dist/face-api.js

7209 lines
1.4 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var faceapi=(()=>{var AI=Object.defineProperty;var GF=e=>AI(e,"__esModule",{value:!0});var Xb=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var ih=(e,t)=>{GF(e);for(var n in t)AI(e,n,{get:t[n],enumerable:!0})};var abe={};ih(abe,{AgeGenderNet:()=>ig,BoundingBox:()=>ll,Box:()=>dt,ComposableTask:()=>Wr,ComputeAllFaceDescriptorsTask:()=>Do,ComputeFaceDescriptorsTaskBase:()=>mg,ComputeSingleFaceDescriptorTask:()=>Ro,DetectAllFaceLandmarksTask:()=>bg,DetectAllFacesTask:()=>Dp,DetectFaceLandmarksTaskBase:()=>gg,DetectFacesTaskBase:()=>vg,DetectSingleFaceLandmarksTask:()=>yg,DetectSingleFaceTask:()=>xg,Dimensions:()=>On,FACE_EXPRESSION_LABELS:()=>nI,FaceDetection:()=>St,FaceDetectionNet:()=>$$,FaceExpressionNet:()=>ag,FaceExpressions:()=>Fo,FaceLandmark68Net:()=>vl,FaceLandmark68TinyNet:()=>ug,FaceLandmarkNet:()=>v$,FaceLandmarks:()=>Sr,FaceLandmarks5:()=>s$,FaceLandmarks68:()=>pl,FaceMatch:()=>kp,FaceMatcher:()=>kg,FaceRecognitionNet:()=>xl,Gender:()=>Ys,LabeledBox:()=>Ip,LabeledFaceDescriptors:()=>qs,NetInput:()=>Ks,NeuralNetwork:()=>gn,ObjectDetection:()=>Ao,Point:()=>Pe,PredictedBox:()=>a$,Rect:()=>dl,SsdMobilenetv1:()=>wu,SsdMobilenetv1Options:()=>zr,TinyFaceDetector:()=>Cl,TinyFaceDetectorOptions:()=>fg,TinyYolov2:()=>Il,TinyYolov2Options:()=>Is,allFaces:()=>tbe,allFacesSsdMobilenetv1:()=>j$,allFacesTinyYolov2:()=>ebe,awaitMediaLoaded:()=>Yk,bufferToImage:()=>Qk,computeFaceDescriptor:()=>zge,createCanvas:()=>bu,createCanvasFromMedia:()=>Tp,createFaceDetectionNet:()=>Dge,createFaceRecognitionNet:()=>kge,createSsdMobilenetv1:()=>A$,createTinyFaceDetector:()=>nbe,createTinyYolov2:()=>Oge,detectAllFaces:()=>wg,detectFaceLandmarks:()=>G$,detectFaceLandmarksTiny:()=>Bge,detectLandmarks:()=>Zge,detectSingleFace:()=>Jge,draw:()=>oI,env:()=>rt,euclideanDistance:()=>gI,extendWithAge:()=>dg,extendWithFaceDescriptor:()=>lg,extendWithFaceDetection:()=>fu,extendWithFaceExpressions:()=>og,extendWithFaceLandmarks:()=>yl,extendWithGender:()=>pg,extractFaceTensors:()=>fl,extractFaces:()=>hl,fetchImage:()=>cge,fetchJson:()=>eI,fetchNetWeights:()=>lge,fetchOrThrow:()=>Xs,fetchVideo:()=>dge,getContext2dOrThrow:()=>Xn,getMediaDimensions:()=>gu,imageTensorToCanvas:()=>Zk,imageToSquare:()=>Jk,inverseSigmoid:()=>nge,iou:()=>Bk,isMediaElement:()=>Ym,isMediaLoaded:()=>Cp,isWithAge:()=>Ige,isWithFaceDetection:()=>ws,isWithFaceExpressions:()=>rI,isWithFaceLandmarks:()=>vu,isWithGender:()=>Sge,loadAgeGenderModel:()=>Xge,loadFaceDetectionModel:()=>Yge,loadFaceExpressionModel:()=>Kge,loadFaceLandmarkModel:()=>Hge,loadFaceLandmarkTinyModel:()=>jge,loadFaceRecognitionModel:()=>qge,loadSsdMobilenetv1Model:()=>H$,loadTinyFaceDetectorModel:()=>Uge,loadTinyYolov2Model:()=>Gge,loadWeightMap:()=>tI,locateFaces:()=>Qge,matchDimensions:()=>pge,minBbox:()=>zk,nets:()=>st,nonMaxSuppression:()=>Wk,normalize:()=>rs,padToSquare:()=>Vk,predictAgeAndGender:()=>Vge,recognizeFaceExpressions:()=>Wge,resizeResults:()=>q$,resolveInput:()=>mu,shuffleArray:()=>tge,sigmoid:()=>wp,ssdMobilenetv1:()=>U$,tf:()=>Rk,tinyFaceDetector:()=>Mge,tinyYolov2:()=>Lge,toNetInput:()=>xt,utils:()=>Lk,validateConfig:()=>pI,version:()=>sbe});var Rk={};ih(Rk,{Abs:()=>Vo,Acos:()=>Vu,Acosh:()=>Uu,AdadeltaOptimizer:()=>kf,AdagradOptimizer:()=>If,AdamOptimizer:()=>Sf,AdamaxOptimizer:()=>Cf,Add:()=>_s,AddN:()=>la,All:()=>Gu,Any:()=>Hu,ArgMax:()=>da,ArgMin:()=>ju,Asin:()=>qu,Asinh:()=>Ku,Atan:()=>Xu,Atan2:()=>Qu,Atanh:()=>Yu,AvgPool:()=>pa,AvgPool3D:()=>ql,AvgPool3DGrad:()=>gh,AvgPoolGrad:()=>mh,BackendWasm:()=>t$,BatchMatMul:()=>ha,BatchToSpaceND:()=>Uo,Bincount:()=>bh,BroadcastArgs:()=>yh,BroadcastTo:()=>jI,Callback:()=>rC,CallbackList:()=>H0,Cast:()=>fa,Ceil:()=>ma,ClipByValue:()=>Es,Complex:()=>Kl,ComplexAbs:()=>Xl,Concat:()=>Go,Conv2D:()=>ga,Conv2DBackpropFilter:()=>vh,Conv2DBackpropInput:()=>ba,Conv3D:()=>Yl,Conv3DBackpropFilterV2:()=>xh,Conv3DBackpropInputV2:()=>wh,Cos:()=>ya,Cosh:()=>va,CropAndResize:()=>jo,Cumsum:()=>Ho,CustomCallback:()=>q0,DataStorage:()=>Gl,DenseBincount:()=>kh,DepthToSpace:()=>qo,DepthwiseConv2dNative:()=>xa,DepthwiseConv2dNativeBackpropFilter:()=>Ih,DepthwiseConv2dNativeBackpropInput:()=>Sh,Diag:()=>Ch,Dilation2D:()=>Ql,Dilation2DBackpropFilter:()=>Nh,Dilation2DBackpropInput:()=>Th,ENV:()=>Wu,EarlyStopping:()=>aC,Einsum:()=>Zl,Elu:()=>ka,EluGrad:()=>_h,Environment:()=>GI,Equal:()=>Ko,Erf:()=>Zu,Exp:()=>Ia,ExpandDims:()=>Xo,Expm1:()=>Yo,FFT:()=>Eh,Fill:()=>Ju,FlipLeftRight:()=>Qo,Floor:()=>Sa,FloorDiv:()=>Ca,FromPixels:()=>ld,FusedBatchNorm:()=>Ta,FusedConv2D:()=>no,FusedDepthwiseConv2D:()=>ro,GPGPUContext:()=>a_,GatherNd:()=>Jo,GatherV2:()=>Zo,GraphModel:()=>MC,Greater:()=>ei,GreaterEqual:()=>Na,History:()=>j0,IFFT:()=>Ah,Identity:()=>_a,Imag:()=>Jl,InputSpec:()=>Gt,IsFinite:()=>ec,IsInf:()=>tc,IsNan:()=>nc,KernelBackend:()=>Mu,LRN:()=>td,LRNGrad:()=>Fh,LayerVariable:()=>z0,LayersModel:()=>Bs,LeakyRelu:()=>ti,Less:()=>ni,LessEqual:()=>ri,LinSpace:()=>$h,Log:()=>Ea,Log1p:()=>rc,LogSoftmax:()=>qI,LogicalAnd:()=>si,LogicalNot:()=>sc,LogicalOr:()=>ed,MathBackendCPU:()=>$w,MathBackendWebGL:()=>ik,Max:()=>Aa,MaxPool:()=>Fa,MaxPool3D:()=>nd,MaxPool3DGrad:()=>Rh,MaxPoolGrad:()=>Dh,MaxPoolWithArgmax:()=>Ph,Maximum:()=>$a,Mean:()=>Da,Min:()=>Ra,Minimum:()=>Pa,MirrorPad:()=>Oa,Mod:()=>ac,MomentumOptimizer:()=>Tf,Multinomial:()=>Oh,Multiply:()=>Ma,Neg:()=>ai,NonMaxSuppressionV3:()=>ii,NonMaxSuppressionV4:()=>oc,NonMaxSuppressionV5:()=>ui,NotEqual:()=>oi,OP_SCOPE_SUFFIX:()=>u1,OneHot:()=>li,OnesLike:()=>ci,Optimizer:()=>Os,OptimizerConstructors:()=>go,Pack:()=>di,PadV2:()=>La,Pool:()=>PD,Pow:()=>Ba,Prelu:()=>za,Prod:()=>pi,RMSPropOptimizer:()=>Nf,RNN:()=>zs,Range:()=>ic,Rank:()=>oy,Real:()=>rd,RealDiv:()=>wa,Reciprocal:()=>uc,Reduction:()=>En,Relu:()=>Wa,Relu6:()=>Ua,Reshape:()=>hi,ResizeBilinear:()=>Va,ResizeBilinearGrad:()=>Lh,ResizeNearestNeighbor:()=>cc,ResizeNearestNeighborGrad:()=>Mh,Reverse:()=>fi,RotateWithOffset:()=>_i,Round:()=>mi,Rsqrt:()=>Ga,SGDOptimizer:()=>Dd,ScatterNd:()=>gi,Select:()=>bi,Selu:()=>lc,Sequential:()=>Zf,Sigmoid:()=>ja,Sign:()=>dc,Sin:()=>Ha,Sinh:()=>vi,Slice:()=>yi,Softmax:()=>Xa,Softplus:()=>pc,SpaceToBatchND:()=>xi,SparseFillEmptyRows:()=>sd,SparseReshape:()=>hc,SparseSegmentMean:()=>ad,SparseSegmentSum:()=>od,SparseToDense:()=>id,SplitV:()=>wi,Sqrt:()=>qa,Square:()=>fc,SquaredDifference:()=>Ya,Step:()=>eo,StridedSlice:()=>ki,StringNGrams:()=>ud,StringSplit:()=>Bh,StringToHashBucketFast:()=>zh,Sub:()=>Qa,Sum:()=>Ka,SymbolicTensor:()=>Zr,Tan:()=>Ii,Tanh:()=>Za,Tensor:()=>Ae,TensorBuffer:()=>Kt,Tile:()=>As,TopK:()=>Si,Transform:()=>Ci,Transpose:()=>Ja,Unique:()=>Wh,Unpack:()=>Ti,UnsortedSegmentSum:()=>cd,Variable:()=>oo,ZerosLike:()=>Ni,_FusedMatMul:()=>to,abs:()=>Xt,acos:()=>j1,acosh:()=>q1,add:()=>Z,addN:()=>K1,all:()=>By,any:()=>Jh,argMax:()=>wc,argMin:()=>X1,asin:()=>Y1,asinh:()=>Q1,atan:()=>Z1,atan2:()=>J1,atanh:()=>eS,avgPool:()=>Ar,avgPool3d:()=>Vy,backend:()=>H1,backend_util:()=>N,basicLSTMCell:()=>_P,batchNorm:()=>ho,batchNorm2d:()=>sS,batchNorm3d:()=>aS,batchNorm4d:()=>oS,batchToSpaceND:()=>tf,bincount:()=>Uy,booleanMaskAsync:()=>BL,broadcastArgs:()=>iS,broadcastTo:()=>Sd,broadcast_util:()=>Ri,browser:()=>Pi,buffer:()=>$e,callbacks:()=>p6,cast:()=>ue,ceil:()=>uS,clipByValue:()=>dn,clone:()=>Fs,complex:()=>io,concat:()=>ot,concat1d:()=>cS,concat2d:()=>lS,concat3d:()=>dS,concat4d:()=>pS,constraints:()=>v0,conv1d:()=>Gy,conv2d:()=>Wt,conv2dTranspose:()=>jy,conv3d:()=>qy,conv3dTranspose:()=>fS,copyRegisteredKernels:()=>BD,cos:()=>nf,cosh:()=>Ky,cosineWindow:()=>vv,cumsum:()=>Xy,customGrad:()=>cs,data:()=>LC,denseBincount:()=>mS,deprecationWarn:()=>My,depthToSpace:()=>gS,depthwiseConv2d:()=>Bi,deregisterOp:()=>m6,device_util:()=>yc,diag:()=>sO,dilation2d:()=>bS,disableDeprecationWarnings:()=>z3,dispose:()=>Fe,disposeVariables:()=>W3,div:()=>me,divNoNan:()=>yS,dot:()=>dO,dropout:()=>qS,einsum:()=>vS,elu:()=>Cd,enableDebugMode:()=>B3,enableProdMode:()=>L3,enclosingPowerOfTwo:()=>KS,engine:()=>is,env:()=>X,equal:()=>mr,erf:()=>xS,exp:()=>Tn,expandDims:()=>Nn,expm1:()=>wS,eye:()=>Yy,fft:()=>ff,fill:()=>_n,findBackend:()=>K3,findBackendFactory:()=>X3,floor:()=>Td,floorDiv:()=>Ly,forceHalfFloat:()=>g_,fused:()=>mo,gather:()=>Sc,gatherND:()=>jS,gather_util:()=>Ey,getBackend:()=>j3,getGradient:()=>ny,getKernel:()=>Vh,getKernelsForBackend:()=>Uh,getThreadsCount:()=>Yme,gpgpu_util:()=>VN,grad:()=>OO,grads:()=>MO,greater:()=>nr,greaterEqual:()=>zi,ifft:()=>Ad,imag:()=>rf,image:()=>ar,inTopKAsync:()=>YL,initializers:()=>T0,input:()=>g2,io:()=>tn,irfft:()=>hv,isFinite:()=>TO,isInf:()=>_O,isNaN:()=>kS,keep:()=>nn,kernel_impls:()=>Dr,layers:()=>M0,leakyRelu:()=>sf,less:()=>Qy,lessEqual:()=>Wi,linalg:()=>s0,linspace:()=>IS,loadGraphModel:()=>y5,loadLayersModel:()=>IG,localResponseNormalization:()=>SS,log:()=>gr,log1p:()=>af,logSigmoid:()=>UO,logSoftmax:()=>Zy,logSumExp:()=>ES,logicalAnd:()=>Hr,logicalNot:()=>uf,logicalOr:()=>tv,logicalXor:()=>tM,losses:()=>Rz,matMul:()=>Re,math:()=>T1,max:()=>Gr,maxPool:()=>Vt,maxPool3d:()=>nv,maxPoolWithArgmax:()=>AS,maximum:()=>Ds,mean:()=>Ot,memory:()=>Zh,meshgrid:()=>iM,metrics:()=>eC,min:()=>cf,minimum:()=>Nd,mirrorPad:()=>$S,mod:()=>FS,model:()=>wG,models:()=>tC,moments:()=>lf,movingAverage:()=>VL,mul:()=>V,multiRNNCell:()=>mM,multinomial:()=>DS,neg:()=>Ft,nextFrame:()=>a0,norm:()=>bv,notEqual:()=>Tc,oneHot:()=>wd,ones:()=>rr,onesLike:()=>br,op:()=>W,outerProduct:()=>xM,pad:()=>Fr,pad1d:()=>IM,pad2d:()=>CM,pad3d:()=>NM,pad4d:()=>EM,pool:()=>RM,pow:()=>fo,prelu:()=>pf,print:()=>x1,prod:()=>rv,profile:()=>V3,rand:()=>BM,randomGamma:()=>UM,randomNormal:()=>RS,randomUniform:()=>Nc,range:()=>_c,ready:()=>H3,real:()=>_d,reciprocal:()=>PS,registerBackend:()=>kd,registerCallbackConstructor:()=>SG,registerGradient:()=>KI,registerKernel:()=>gc,registerOp:()=>f6,regularizers:()=>nC,relu:()=>Qe,relu6:()=>ov,removeBackend:()=>q3,reshape:()=>G,reverse:()=>yr,reverse1d:()=>ZM,reverse2d:()=>eL,reverse3d:()=>nL,reverse4d:()=>sL,rfft:()=>mf,round:()=>iv,rsqrt:()=>uv,scalar:()=>ke,scatterND:()=>HS,scatter_util:()=>Ay,selu:()=>cv,separableConv2d:()=>Ec,sequential:()=>kG,serialization:()=>oe,setBackend:()=>G3,setPlatform:()=>Y3,setThreadsCount:()=>Xme,setWasmPath:()=>qme,setWasmPaths:()=>Kme,setWebGLContext:()=>pN,setdiff1dAsync:()=>OS,shared:()=>fm,sigmoid:()=>$r,sign:()=>MS,signal:()=>Dz,sin:()=>lv,sinh:()=>dv,slice:()=>Ve,slice1d:()=>hf,slice2d:()=>pv,slice3d:()=>Ac,slice4d:()=>Ed,slice_util:()=>$t,softmax:()=>ls,softplus:()=>Cc,spaceToBatchND:()=>df,sparse:()=>Fd,sparseToDense:()=>yv,spectral:()=>Fz,split:()=>sr,sqrt:()=>vn,square:()=>ft,squaredDifference:()=>fv,squeeze:()=>Rs,stack:()=>Ut,step:()=>$d,stridedSlice:()=>LS,string:()=>wf,sub:()=>he,sum:()=>ve,sumOutType:()=>yd,tan:()=>BS,tanh:()=>Ic,tensor:()=>er,tensor1d:()=>je,tensor2d:()=>jr,tensor3d:()=>Qh,tensor4d:()=>qr,tensor5d:()=>AL,tensor6d:()=>$L,tensor_util:()=>Vr,test_util:()=>V1,tidy:()=>M,tile:()=>tr,time:()=>U3,topk:()=>zS,train:()=>Ui,transpose:()=>Oe,truncatedNormal:()=>gf,unique:()=>mv,unregisterGradient:()=>LD,unregisterKernel:()=>MD,unsortedSegmentSum:()=>WS,unstack:()=>vt,upcastType:()=>In,util:()=>w,valueAndGrad:()=>LO,valueAndGrads:()=>BO,variable:()=>VS,variableGrads:()=>CS,version:()=>Jme,version_converter:()=>v5,version_core:()=>M3,version_cpu:()=>aq,version_layers:()=>tx,version_wasm:()=>Qme,version_webgl:()=>_Q,webgl:()=>EQ,webgl_util:()=>dN,webgpu:()=>ZE,where:()=>Cn,whereAsync:()=>gv,zeros:()=>kt,zerosLike:()=>Xe});var HF=Object.create,uh=Object.defineProperty,jF=Object.getOwnPropertyDescriptor,qF=Object.getOwnPropertyNames,KF=Object.getPrototypeOf,XF=Object.prototype.hasOwnProperty,$I=e=>uh(e,"__esModule",{value:!0}),qt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Ee=(e,t)=>{$I(e);for(var n in t)uh(e,n,{get:t[n],enumerable:!0})},YF=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of qF(t))!XF.call(e,r)&&r!=="default"&&uh(e,r,{get:()=>t[r],enumerable:!(n=jF(t,r))||n.enumerable});return e},Bo=e=>YF($I(uh(e!=null?HF(KF(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),QF=qt({"src/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function r(R,_,L){this.low=R|0,this.high=_|0,this.unsigned=!!L}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(R){return(R&&R.__isLong__)===!0}r.isLong=s;var a={},o={};function i(R,_){var L,U,j;return _?(R>>>=0,(j=0<=R&&R<256)&&(U=o[R],U)?U:(L=l(R,(R|0)<0?-1:0,!0),j&&(o[R]=L),L)):(R|=0,(j=-128<=R&&R<128)&&(U=a[R],U)?U:(L=l(R,R<0?-1:0,!1),j&&(a[R]=L),L))}r.fromInt=i;function u(R,_){if(isNaN(R))return _?x:v;if(_){if(R<0)return x;if(R>=g)return F}else{if(R<=-b)return O;if(R+1>=b)return E}return R<0?u(-R,_).neg():l(R%m|0,R/m|0,_)}r.fromNumber=u;function l(R,_,L){return new r(R,_,L)}r.fromBits=l;var c=Math.pow;function d(R,_,L){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return v;if(typeof _=="number"?(L=_,_=!1):_=!!_,L=L||10,L<2||36<L)throw RangeError("radix");var U;if((U=R.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(R.substring(1),_,L).neg();for(var j=u(c(L,8)),K=v,q=0;q<R.length;q+=8){var Q=Math.min(8,R.length-q),ee=parseInt(R.substring(q,q+Q),L);if(Q<8){var re=u(c(L,Q));K=K.mul(re).add(u(ee))}else K=K.mul(j),K=K.add(u(ee))}return K.unsigned=_,K}r.fromString=d;function p(R,_){return typeof R=="number"?u(R,_):typeof R=="string"?d(R,_):l(R.low,R.high,typeof _=="boolean"?_:R.unsigned)}r.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=i(f),v=i(0);r.ZERO=v;var x=i(0,!0);r.UZERO=x;var k=i(1);r.ONE=k;var T=i(1,!0);r.UONE=T;var C=i(-1);r.NEG_ONE=C;var E=l(4294967295|0,2147483647|0,!1);r.MAX_VALUE=E;var F=l(4294967295|0,4294967295|0,!0);r.MAX_UNSIGNED_VALUE=F;var O=l(0,2147483648|0,!1);r.MIN_VALUE=O;var D=r.prototype;D.toInt=function(){return this.unsigned?this.low>>>0:this.low},D.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},D.toString=function(_){if(_=_||10,_<2||36<_)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var L=u(_),U=this.div(L),j=U.mul(L).sub(this);return U.toString(_)+j.toInt().toString(_)}else return"-"+this.neg().toString(_);for(var K=u(c(_,6),this.unsigned),q=this,Q="";;){var ee=q.div(K),re=q.sub(ee.mul(K)).toInt()>>>0,se=re.toString(_);if(q=ee,q.isZero())return se+Q;for(;se.length<6;)se="0"+se;Q=""+se+Q}},D.getHighBits=function(){return this.high},D.getHighBitsUnsigned=function(){return this.high>>>0},D.getLowBits=function(){return this.low},D.getLowBitsUnsigned=function(){return this.low>>>0},D.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var _=this.high!=0?this.high:this.low,L=31;L>0&&(_&1<<L)==0;L--);return this.high!=0?L+33:L+1},D.isZero=function(){return this.high===0&&this.low===0},D.eqz=D.isZero,D.isNegative=function(){return!this.unsigned&&this.high<0},D.isPositive=function(){return this.unsigned||this.high>=0},D.isOdd=function(){return(this.low&1)==1},D.isEven=function(){return(this.low&1)==0},D.equals=function(_){return s(_)||(_=p(_)),this.unsigned!==_.unsigned&&this.high>>>31==1&&_.high>>>31==1?!1:this.high===_.high&&this.low===_.low},D.eq=D.equals,D.notEquals=function(_){return!this.eq(_)},D.neq=D.notEquals,D.ne=D.notEquals,D.lessThan=function(_){return this.comp(_)<0},D.lt=D.lessThan,D.lessThanOrEqual=function(_){return this.comp(_)<=0},D.lte=D.lessThanOrEqual,D.le=D.lessThanOrEqual,D.greaterThan=function(_){return this.comp(_)>0},D.gt=D.greaterThan,D.greaterThanOrEqual=function(_){return this.comp(_)>=0},D.gte=D.greaterThanOrEqual,D.ge=D.greaterThanOrEqual,D.compare=function(_){if(s(_)||(_=p(_)),this.eq(_))return 0;var L=this.isNegative(),U=_.isNegative();return L&&!U?-1:!L&&U?1:this.unsigned?_.high>>>0>this.high>>>0||_.high===this.high&&_.low>>>0>this.low>>>0?-1:1:this.sub(_).isNegative()?-1:1},D.comp=D.compare,D.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(k)},D.neg=D.negate,D.add=function(_){s(_)||(_=p(_));var L=this.high>>>16,U=this.high&65535,j=this.low>>>16,K=this.low&65535,q=_.high>>>16,Q=_.high&65535,ee=_.low>>>16,re=_.low&65535,se=0,ne=0,ie=0,te=0;return te+=K+re,ie+=te>>>16,te&=65535,ie+=j+ee,ne+=ie>>>16,ie&=65535,ne+=U+Q,se+=ne>>>16,ne&=65535,se+=L+q,se&=65535,l(ie<<16|te,se<<16|ne,this.unsigned)},D.subtract=function(_){return s(_)||(_=p(_)),this.add(_.neg())},D.sub=D.subtract,D.multiply=function(_){if(this.isZero())return v;if(s(_)||(_=p(_)),n){var L=n.mul(this.low,this.high,_.low,_.high);return l(L,n.get_high(),this.unsigned)}if(_.isZero())return v;if(this.eq(O))return _.isOdd()?O:v;if(_.eq(O))return this.isOdd()?O:v;if(this.isNegative())return _.isNegative()?this.neg().mul(_.neg()):this.neg().mul(_).neg();if(_.isNegative())return this.mul(_.neg()).neg();if(this.lt(y)&&_.lt(y))return u(this.toNumber()*_.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,K=this.low>>>16,q=this.low&65535,Q=_.high>>>16,ee=_.high&65535,re=_.low>>>16,se=_.low&65535,ne=0,ie=0,te=0,pe=0;return pe+=q*se,te+=pe>>>16,pe&=65535,te+=K*se,ie+=te>>>16,te&=65535,te+=q*re,ie+=te>>>16,te&=65535,ie+=j*se,ne+=ie>>>16,ie&=65535,ie+=K*re,ne+=ie>>>16,ie&=65535,ie+=q*ee,ne+=ie>>>16,ie&=65535,ne+=U*se+j*re+K*ee+q*Q,ne&=65535,l(te<<16|pe,ne<<16|ie,this.unsigned)},D.mul=D.multiply,D.divide=function(_){if(s(_)||(_=p(_)),_.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&_.low===-1&&_.high===-1)return this;var L=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,_.low,_.high);return l(L,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var U,j,K;if(this.unsigned){if(_.unsigned||(_=_.toUnsigned()),_.gt(this))return x;if(_.gt(this.shru(1)))return T;K=x}else{if(this.eq(O)){if(_.eq(k)||_.eq(C))return O;if(_.eq(O))return k;var q=this.shr(1);return U=q.div(_).shl(1),U.eq(v)?_.isNegative()?k:C:(j=this.sub(_.mul(U)),K=U.add(j.div(_)),K)}else if(_.eq(O))return this.unsigned?x:v;if(this.isNegative())return _.isNegative()?this.neg().div(_.neg()):this.neg().div(_).neg();if(_.isNegative())return this.div(_.neg()).neg();K=v}for(j=this;j.gte(_);){U=Math.max(1,Math.floor(j.toNumber()/_.toNumber()));for(var Q=Math.ceil(Math.log(U)/Math.LN2),ee=Q<=48?1:c(2,Q-48),re=u(U),se=re.mul(_);se.isNegative()||se.gt(j);)U-=ee,re=u(U,this.unsigned),se=re.mul(_);re.isZero()&&(re=k),K=K.add(re),j=j.sub(se)}return K},D.div=D.divide,D.modulo=function(_){if(s(_)||(_=p(_)),n){var L=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,_.low,_.high);return l(L,n.get_high(),this.unsigned)}return this.sub(this.div(_).mul(_))},D.mod=D.modulo,D.rem=D.modulo,D.not=function(){return l(~this.low,~this.high,this.unsigned)},D.and=function(_){return s(_)||(_=p(_)),l(this.low&_.low,this.high&_.high,this.unsigned)},D.or=function(_){return s(_)||(_=p(_)),l(this.low|_.low,this.high|_.high,this.unsigned)},D.xor=function(_){return s(_)||(_=p(_)),l(this.low^_.low,this.high^_.high,this.unsigned)},D.shiftLeft=function(_){return s(_)&&(_=_.toInt()),(_&=63)==0?this:_<32?l(this.low<<_,this.high<<_|this.low>>>32-_,this.unsigned):l(0,this.low<<_-32,this.unsigned)},D.shl=D.shiftLeft,D.shiftRight=function(_){return s(_)&&(_=_.toInt()),(_&=63)==0?this:_<32?l(this.low>>>_|this.high<<32-_,this.high>>_,this.unsigned):l(this.high>>_-32,this.high>=0?0:-1,this.unsigned)},D.shr=D.shiftRight,D.shiftRightUnsigned=function(_){if(s(_)&&(_=_.toInt()),_&=63,_===0)return this;var L=this.high;if(_<32){var U=this.low;return l(U>>>_|L<<32-_,L>>>_,this.unsigned)}else return _===32?l(L,0,this.unsigned):l(L>>>_-32,0,this.unsigned)},D.shru=D.shiftRightUnsigned,D.shr_u=D.shiftRightUnsigned,D.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},D.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},D.toBytes=function(_){return _?this.toBytesLE():this.toBytesBE()},D.toBytesLE=function(){var _=this.high,L=this.low;return[L&255,L>>>8&255,L>>>16&255,L>>>24,_&255,_>>>8&255,_>>>16&255,_>>>24]},D.toBytesBE=function(){var _=this.high,L=this.low;return[_>>>24,_>>>16&255,_>>>8&255,_&255,L>>>24,L>>>16&255,L>>>8&255,L&255]},r.fromBytes=function(_,L,U){return U?r.fromBytesLE(_,L):r.fromBytesBE(_,L)},r.fromBytesLE=function(_,L){return new r(_[0]|_[1]<<8|_[2]<<16|_[3]<<24,_[4]|_[5]<<8|_[6]<<16|_[7]<<24,L)},r.fromBytesBE=function(_,L){return new r(_[4]<<24|_[5]<<16|_[6]<<8|_[7],_[0]<<24|_[1]<<16|_[2]<<8|_[3],L)}}}),ZF=qt({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),JF=qt({"(disabled):util"(){}}),eD=qt({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(l){var c=this,d=u();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(l),c.s0<0&&(c.s0+=1),c.s1-=d(l),c.s1<0&&(c.s1+=1),c.s2-=d(l),c.s2<0&&(c.s2+=1),d=null}function o(l,c){return c.c=l.c,c.s0=l.s0,c.s1=l.s1,c.s2=l.s2,c}function i(l,c){var d=new a(l),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function u(){var l=4022871197,c=function(d){d=String(d);for(var p=0;p<d.length;p++){l+=d.charCodeAt(p);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),tD=qt({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(u){var l=this,c="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var p=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^p^p>>>8},u===(u|0)?l.x=u:c+=u;for(var d=0;d<c.length+64;d++)l.x^=c.charCodeAt(d)|0,l.next()}function o(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function i(u,l){var c=new a(u),d=l&&l.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),nD=qt({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(u){var l=this,c="";l.next=function(){var p=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(p^p<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:c+=u;for(var d=0;d<c.length+64;d++)l.x^=c.charCodeAt(d)|0,d==c.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function o(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function i(u,l){var c=new a(u),d=l&&l.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),rD=qt({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(u){var l=this;l.next=function(){var d=l.x,p=l.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,l.i=p+1&7,f};function c(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}c(l,u)}function o(u,l){return l.x=u.x.slice(),l.i=u.i,l}function i(u,l){u==null&&(u=+new Date);var c=new a(u),d=l&&l.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),sD=qt({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(u){var l=this;l.next=function(){var d=l.w,p=l.X,h=l.i,f,m;return l.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,l.i=h,m+(d^d>>>16)|0};function c(d,p){var h,f,m,g,b,y=[],v=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,v=Math.max(v,p.length)),m=0,g=-32;g<v;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=b,d.X=y,d.i=m}c(l,u)}function o(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function i(u,l){u==null&&(u=+new Date);var c=new a(u),d=l&&l.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),aD=qt({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(u){var l=this,c="";l.next=function(){var p=l.b,h=l.c,f=l.d,m=l.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,l.b=p=p<<20^p>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-p|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):c+=u;for(var d=0;d<c.length+20;d++)l.b^=c.charCodeAt(d)|0,l.next()}function o(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function i(u,l){var c=new a(u),d=l&&l.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),oD=qt({"(disabled):crypto"(){}}),iD=qt({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,u="random",l=s.pow(a,o),c=s.pow(2,i),d=c*2,p=a-1,h;function f(k,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var F=y(b(T.entropy?[k,x(r)]:k==null?v():k,3),E),O=new m(E),D=function(){for(var R=O.g(o),_=l,L=0;R<c;)R=(R+L)*a,_*=a,L=O.g(1);for(;R>=d;)R/=2,_/=2,L>>>=1;return(R+L)/_};return D.int32=function(){return O.g(4)|0},D.quick=function(){return O.g(4)/4294967296},D.double=D,y(x(O.S),r),(T.pass||C||function(R,_,L,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),L?(s[u]=R,_):R})(D,F,"global"in T?T.global:this==s,T.state)}function m(k){var T,C=k.length,E=this,F=0,O=E.i=E.j=0,D=E.S=[];for(C||(k=[C++]);F<a;)D[F]=F++;for(F=0;F<a;F++)D[F]=D[O=p&O+k[F%C]+(T=D[F])],D[O]=T;(E.g=function(R){for(var _,L=0,U=E.i,j=E.j,K=E.S;R--;)_=K[U=p&U+1],L=L*a+K[p&(K[U]=K[j=p&j+_])+(K[j]=_)];return E.i=U,E.j=j,L})(a)}function g(k,T){return T.i=k.i,T.j=k.j,T.S=k.S.slice(),T}function b(k,T){var C=[],E=typeof k,F;if(T&&E=="object")for(F in k)try{C.push(b(k[F],T-1))}catch(O){}return C.length?C:E=="string"?k:k+"\0"}function y(k,T){for(var C=k+"",E,F=0;F<C.length;)T[p&F]=p&(E^=T[p&F]*19)+C.charCodeAt(F++);return x(T)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(k)),x(k)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,x(r)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(s.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{h=oD()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):s["seed"+u]=f})(typeof self!="undefined"?self:e,[],Math)}}),ch=qt({"src/node_modules/seedrandom/index.js"(e,t){var n=eD(),r=tD(),s=nD(),a=rD(),o=sD(),i=aD(),u=iD();u.alea=n,u.xor128=r,u.xorwow=s,u.xorshift7=a,u.xor4096=o,u.tychei=i,t.exports=u}}),FI=qt({"(disabled):src/node_modules/string_decoder/index.js"(){}}),lh=qt({"(disabled):fs"(){}}),Ul=qt({"(disabled):path"(){}}),uD=qt({"(disabled):worker_threads"(){}}),cD=qt({"(disabled):perf_hooks"(){}}),lD=qt({"(disabled):os"(){}}),dD=qt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};function a(){return te.buffer!=tt&&Wn(te.buffer),Qn}function o(){return te.buffer!=tt&&Wn(te.buffer),cn}function i(){return te.buffer!=tt&&Wn(te.buffer),Zn}function u(){return te.buffer!=tt&&Wn(te.buffer),dr}function l(){return te.buffer!=tt&&Wn(te.buffer),pr}var c=typeof s!="undefined"?s:{},d,p;c.ready=new Promise(function(S,A){d=S,p=A});var h;typeof process!="undefined"&&process.listeners&&(h={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f={},m;for(m in c)c.hasOwnProperty(m)&&(f[m]=c[m]);var g=[],b="./this.program",y=function(S,A){throw A},v=!1,x=!1,k=!1,T=!1;v=typeof window=="object",x=typeof importScripts=="function",k=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",T=!v&&!k&&!x;var C=c.ENVIRONMENT_IS_PTHREAD||!1;C&&(tt=c.buffer);var E="";function F(S){return c.locateFile?c.locateFile(S,E):E+S}var O,D,R,_,L,U;if(k){x?E=Ul().dirname(E)+"/":E=__dirname+"/",O=function(A,B){return L||(L=lh()),U||(U=Ul()),A=U.normalize(A),L.readFileSync(A,B?null:"utf8")},R=function(A){var B=O(A,!0);return B.buffer||(B=new Uint8Array(B)),Ie(B.buffer),B},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),g=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof Vl))throw S}),process.on("unhandledRejection",Cs),y=function(S){process.exit(S)},c.inspect=function(){return"[Emscripten Module object]"};var j;try{j=uD()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=j.Worker}else T?(typeof read!="undefined"&&(O=function(A){return read(A)}),R=function(A){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(A)):(B=read(A,"binary"),Ie(typeof B=="object"),B)},typeof scriptArgs!="undefined"?g=scriptArgs:typeof arguments!="undefined"&&(g=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(v||x)&&(x?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof r!="undefined"&&r&&(E=r),E.indexOf("blob:")!==0?E=E.substr(0,E.lastIndexOf("/")+1):E="",k?(O=function(A,B){return L||(L=lh()),U||(U=Ul()),A=U.normalize(A),L.readFileSync(A,B?null:"utf8")},R=function(A){var B=O(A,!0);return B.buffer||(B=new Uint8Array(B)),Ie(B.buffer),B}):(O=function(S){var A=new XMLHttpRequest;return A.open("GET",S,!1),A.send(null),A.responseText},x&&(R=function(S){var A=new XMLHttpRequest;return A.open("GET",S,!1),A.responseType="arraybuffer",A.send(null),new Uint8Array(A.response)}),D=function(S,A,B){var Y=new XMLHttpRequest;Y.open("GET",S,!0),Y.responseType="arraybuffer",Y.onload=function(){if(Y.status==200||Y.status==0&&Y.response){A(Y.response);return}B()},Y.onerror=B,Y.send(null)}),_=function(S){document.title=S});k&&typeof performance=="undefined"&&(global.performance=cD().performance);var K=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(m in f)f.hasOwnProperty(m)&&(c[m]=f[m]);f=null,c.arguments&&(g=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(y=c.quit);function Q(S){Q.shown||(Q.shown={}),Q.shown[S]||(Q.shown[S]=1,q(S))}var ee=Atomics.load,re=Atomics.store,se=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Cs("no native wasm support detected");var te,pe,be=!1,Ce;function Ie(S,A){S||Cs("Assertion failed: "+A)}function Ne(S){var A=c["_"+S];return Ie(A,"Cannot call unknown function "+S+", make sure it is exported"),A}function Le(S,A,B,Y,de){var ce={string:function(xn){var Ou=0;if(xn!=null&&xn!==0){var EI=(xn.length<<2)+1;Ou=Du(EI),et(xn,Ou,EI)}return Ou},array:function(xn){var Ou=Du(xn.length);return Ct(xn,Ou),Ou}};function le(xn){return A==="string"?Ge(xn):A==="boolean"?Boolean(xn):xn}var xe=Ne(S),it=[],Jt=0;if(Y)for(var jt=0;jt<Y.length;jt++){var oa=ce[B[jt]];oa?(Jt===0&&(Jt=Wl()),it[jt]=oa(Y[jt])):it[jt]=Y[jt]}var Pu=xe.apply(null,it);return Pu=le(Pu),Jt!==0&&Fu(Jt),Pu}function Je(S,A,B,Y){B=B||[];var de=B.every(function(le){return le==="number"}),ce=A!=="string";return ce&&de&&!Y?Ne(S):function(){return Le(S,A,B,arguments,Y)}}function qe(S,A,B){for(var Y=A+B,de="";!(A>=Y);){var ce=S[A++];if(!ce)return de;if(!(ce&128)){de+=String.fromCharCode(ce);continue}var le=S[A++]&63;if((ce&224)==192){de+=String.fromCharCode((ce&31)<<6|le);continue}var xe=S[A++]&63;if((ce&240)==224?ce=(ce&15)<<12|le<<6|xe:ce=(ce&7)<<18|le<<12|xe<<6|S[A++]&63,ce<65536)de+=String.fromCharCode(ce);else{var it=ce-65536;de+=String.fromCharCode(55296|it>>10,56320|it&1023)}}return de}function Ge(S,A){return S?qe(o(),S,A):""}function lt(S,A,B,Y){if(!(Y>0))return 0;for(var de=B,ce=B+Y-1,le=0;le<S.length;++le){var xe=S.charCodeAt(le);if(xe>=55296&&xe<=57343){var it=S.charCodeAt(++le);xe=65536+((xe&1023)<<10)|it&1023}if(xe<=127){if(B>=ce)break;A[B++]=xe}else if(xe<=2047){if(B+1>=ce)break;A[B++]=192|xe>>6,A[B++]=128|xe&63}else if(xe<=65535){if(B+2>=ce)break;A[B++]=224|xe>>12,A[B++]=128|xe>>6&63,A[B++]=128|xe&63}else{if(B+3>=ce)break;A[B++]=240|xe>>18,A[B++]=128|xe>>12&63,A[B++]=128|xe>>6&63,A[B++]=128|xe&63}}return A[B]=0,B-de}function et(S,A,B){return lt(S,o(),A,B)}function pt(S){for(var A=0,B=0;B<S.length;++B){var Y=S.charCodeAt(B);Y>=55296&&Y<=57343&&(Y=65536+((Y&1023)<<10)|S.charCodeAt(++B)&1023),Y<=127?++A:Y<=2047?A+=2:Y<=65535?A+=3:A+=4}return A}function Ct(S,A){a().set(S,A)}function Bn(S,A){return S%A>0&&(S+=A-S%A),S}var tt,Qn,cn,Cr,zn,Zn,dr,Tr,pr;function Wn(S){tt=S,c.HEAP8=Qn=new Int8Array(S),c.HEAP16=Cr=new Int16Array(S),c.HEAP32=Zn=new Int32Array(S),c.HEAPU8=cn=new Uint8Array(S),c.HEAPU16=zn=new Uint16Array(S),c.HEAPU32=dr=new Uint32Array(S),c.HEAPF32=Tr=new Float32Array(S),c.HEAPF64=pr=new Float64Array(S)}var Js=c.INITIAL_MEMORY||16777216;if(C)te=c.wasmMemory,tt=c.buffer;else if(c.wasmMemory)te=c.wasmMemory;else if(te=new WebAssembly.Memory({initial:Js/65536,maximum:2147483648/65536,shared:!0}),!(te.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),k&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");te&&(tt=te.buffer),Js=tt.byteLength,Wn(tt);var bn,ea=[],hr=[],Al=[],$l=[],Ss=[],Rp=!1,Ig=!1;C||hr.push({func:function(){Zp()}});function Pp(){if(!C){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Sg(c.preRun.shift());Nu(ea)}}function Op(){Rp=!0,!C&&Nu(hr)}function Mp(){C||Nu(Al)}function Vn(){C||(Ig=!0)}function Lp(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Cg(c.postRun.shift());Nu(Ss)}}function Sg(S){ea.unshift(S)}function Cg(S){Ss.unshift(S)}var Nr=0,Fl=null,Po=null;function Tg(S){Ie(!C,"addRunDependency cannot be used in a pthread worker"),Nr++,c.monitorRunDependencies&&c.monitorRunDependencies(Nr)}function Ng(S){if(Nr--,c.monitorRunDependencies&&c.monitorRunDependencies(Nr),Nr==0&&(Fl!==null&&(clearInterval(Fl),Fl=null),Po)){var A=Po;Po=null,A()}}c.preloadedImages={},c.preloadedAudios={};function Cs(S){c.onAbort&&c.onAbort(S),C&&console.error("Pthread aborting at "+new Error().stack),S+="",q(S),be=!0,Ce=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var A=new WebAssembly.RuntimeError(S);throw p(A),A}function Oo(S,A){return String.prototype.startsWith?S.startsWith(A):S.indexOf(A)===0}var _g="data:application/octet-stream;base64,";function Bp(S){return Oo(S,_g)}var Eg="file://";function zp(S){return Oo(S,Eg)}var Un="tfjs-backend-wasm-threaded-simd.wasm";Bp(Un)||(Un=F(Un));function Ag(S){try{if(S==Un&&ne)return new Uint8Array(ne);if(R)return R(S);throw"both async and sync fetching of the wasm failed"}catch(A){Cs(A)}}function Wp(){if(!ne&&(v||x)){if(typeof fetch=="function"&&!zp(Un))return fetch(Un,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+Un+"'";return S.arrayBuffer()}).catch(function(){return Ag(Un)});if(D)return new Promise(function(S,A){D(Un,function(B){S(new Uint8Array(B))},A)})}return Promise.resolve().then(function(){return Ag(Un)})}function $g(){var S={a:Ib};function A(le,xe){var it=le.exports;if(c.asm=it,bn=c.asm.nb,pe=xe,!C){var Jt=Se.unusedWorkers.length;Se.unusedWorkers.forEach(function(jt){Se.loadWasmModuleToWorker(jt,function(){--Jt||Ng("wasm-instantiate")})})}}C||Tg("wasm-instantiate");function B(le){A(le.instance,le.module)}function Y(le){return Wp().then(function(xe){return WebAssembly.instantiate(xe,S)}).then(le,function(xe){q("failed to asynchronously prepare wasm: "+xe),Cs(xe)})}function de(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Bp(Un)&&!zp(Un)&&typeof fetch=="function"?fetch(Un,{credentials:"same-origin"}).then(function(le){var xe=WebAssembly.instantiateStreaming(le,S);return xe.then(B,function(it){return q("wasm streaming compile failed: "+it),q("falling back to ArrayBuffer instantiation"),Y(B)})}):Y(B)}if(c.instantiateWasm)try{var ce=c.instantiateWasm(S,A);return ce}catch(le){return q("Module.instantiateWasm callback failed with error: "+le),!1}return de().catch(p),{}}var Vp={10216:function(){throw"Canceled!"},10234:function(S,A){setTimeout(function(){II(S,A)},0)}};function Fg(){Se.initRuntime()}function Nu(S){for(;S.length>0;){var A=S.shift();if(typeof A=="function"){A(c);continue}var B=A.func;typeof B=="number"?A.arg===void 0?bn.get(B)():bn.get(B)(A.arg):B(A.arg===void 0?null:A.arg)}}var ta={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function Dl(S,A){if(S<=0||S>a().length||S&!0||A<0)return-28;if(A==0)return 0;A>=2147483647&&(A=1/0);var B=Atomics.load(i(),Ru>>2),Y=0;if(B==S){var de=Atomics.compareExchange(i(),Ru>>2,B,0);if(de==B&&(--A,Y=1,A<=0))return 1}var ce=Atomics.notify(i(),S>>2,A);if(ce>=0)return ce+Y;throw"Atomics.notify returned an unexpected value "+ce}c._emscripten_futex_wake=Dl;function Dg(S){if(C)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var A=Se.pthreads[S];A.worker.terminate(),Se.freeThreadData(A),Se.runningWorkers.splice(Se.runningWorkers.indexOf(A.worker),1),A.worker.pthread=void 0}function Rg(S){if(C)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var A=Se.pthreads[S];A.worker.postMessage({cmd:"cancel"})}function Up(S){if(C)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var A=Se.pthreads[S];if(A){i()[S+12>>2]=0;var B=A.worker;Se.returnWorkerToPool(B)}}var Se={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,A=0;A<S;++A)Se.allocateUnusedWorker()},initRuntime:function(){for(var S=Lo(228),A=0;A<228/4;++A)u()[S/4+A]=0;i()[S+12>>2]=S;var B=S+152;i()[B>>2]=B;for(var Y=Lo(512),A=0;A<128;++A)u()[Y/4+A]=0;Atomics.store(u(),S+100>>2,Y),Atomics.store(u(),S+40>>2,S),qb(S,!x,1),wI(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Se.threadExitHandlers.length>0;)Se.threadExitHandlers.pop()();C&&aa()&&xI()},runExitHandlersAndDeinitThread:function(S,A){Atomics.store(u(),S+56>>2,1),Atomics.store(u(),S+60>>2,0),Se.runExitHandlers(),Atomics.store(u(),S+4>>2,A),Atomics.store(u(),S+0>>2,1),Dl(S+0,2147483647),qb(0,0,0)},threadExit:function(S){var A=aa();A&&(Se.runExitHandlersAndDeinitThread(A,S),C&&postMessage({cmd:"exit"}))},threadCancel:function(){Se.runExitHandlersAndDeinitThread(aa(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in Se.pthreads){var A=Se.pthreads[S];A&&A.worker&&Se.returnWorkerToPool(A.worker)}Se.pthreads={};for(var B=0;B<Se.unusedWorkers.length;++B){var Y=Se.unusedWorkers[B];Y.terminate()}Se.unusedWorkers=[];for(var B=0;B<Se.runningWorkers.length;++B){var Y=Se.runningWorkers[B],A=Y.pthread;Se.freeThreadData(A),Y.terminate()}Se.runningWorkers=[]},freeThreadData:function(S){if(!!S){if(S.threadInfoStruct){var A=i()[S.threadInfoStruct+100>>2];i()[S.threadInfoStruct+100>>2]=0,zl(A),zl(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&zl(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){Se.runWithoutMainThreadQueuedCalls(function(){delete Se.pthreads[S.pthread.threadInfoStruct],Se.unusedWorkers.push(S),Se.runningWorkers.splice(Se.runningWorkers.indexOf(S),1),Se.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[_I>>2]=0;try{S()}finally{i()[_I>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,A){S.onmessage=function(B){var Y=B.data,de=Y.cmd;if(S.pthread&&(Se.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),Y.targetThread&&Y.targetThread!=aa()){var ce=Se.pthreads[Y.targetThread];ce?ce.worker.postMessage(B.data,Y.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+Y.targetThread+", but that thread no longer exists!"),Se.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")rh();else if(de==="spawnThread")Yp(B.data);else if(de==="cleanupThread")Up(Y.thread);else if(de==="killThread")Dg(Y.thread);else if(de==="cancelThread")Rg(Y.thread);else if(de==="loaded")S.loaded=!0,A&&A(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(de==="print")K("Thread "+Y.threadId+": "+Y.text);else if(de==="printErr")q("Thread "+Y.threadId+": "+Y.text);else if(de==="alert")alert("Thread "+Y.threadId+": "+Y.text);else if(de==="exit"){var le=S.pthread&&Atomics.load(u(),S.pthread.threadInfoStruct+64>>2);le&&Se.returnWorkerToPool(S)}else if(de==="exitProcess")try{VF(Y.returnCode)}catch(xe){if(xe instanceof Vl)return;throw xe}else de==="cancelDone"?Se.returnWorkerToPool(S):de==="objectTransfer"?Se.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?S.postMessage(B.data):q("worker sent an unknown command "+de);Se.currentProxiedOperationCallerThread=void 0},S.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},k&&(S.on("message",function(B){S.onmessage({data:B})}),S.on("error",function(B){S.onerror(B)}),S.on("exit",function(B){})),S.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:te,wasmModule:pe})},allocateUnusedWorker:function(){var S=F("tfjs-backend-wasm-threaded-simd.worker.js");Se.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return Se.unusedWorkers.length==0&&(Se.allocateUnusedWorker(),Se.loadWasmModuleToWorker(Se.unusedWorkers[0])),Se.unusedWorkers.length>0?Se.unusedWorkers.pop():null},busySpinWait:function(S){for(var A=performance.now()+S;performance.now()<A;);}};function Pg(S,A){TI(S,A),Fu(S)}c.establishStackSpace=Pg;function Og(){return ie}c.getNoExitRuntime=Og;function Mg(S,A){return bn.get(S)(A)}c.invokeEntryPoint=Mg;function Lg(S,A,B,Y){Cs("Assertion failed: "+Ge(S)+", at: "+[A?Ge(A):"unknown filename",B,Y?Ge(Y):"unknown function"])}function Bg(S,A){var B=_main(S,A)}var Mo;k?Mo=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:C?Mo=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?Mo=dateNow:Mo=function(){return performance.now()};function zg(S){return i()[yI()>>2]=S,S}function Wg(S,A){if(C)return na(1,1,S,A)}function Vg(S,A){if(S==A)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var B=Se.pthreads[S],Y=B&&B.worker;if(!Y)return;Y.postMessage({cmd:"processThreadQueue"})}return 1}function Ug(){Cs()}function Gg(S,A,B){var Y=Kg(A,B);return Vp[S].apply(null,Y)}function Hg(S,A){}function Gp(S,A,B){if(S<=0||S>a().length||S&!0)return-28;if(v){if(Atomics.load(i(),S>>2)!=A)return-6;for(var de=performance.now(),ce=de+B,le=Atomics.exchange(i(),Ru>>2,S);;){if(de=performance.now(),de>ce)return le=Atomics.exchange(i(),Ru>>2,0),-73;if(le=Atomics.exchange(i(),Ru>>2,0),le==0)break;if(rh(),Atomics.load(i(),S>>2)!=A)return-6;le=Atomics.exchange(i(),Ru>>2,S)}return 0}else{var Y=Atomics.wait(i(),S>>2,A,B);if(Y==="timed-out")return-73;if(Y==="not-equal")return-6;if(Y==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Y}}function jg(S,A,B){o().copyWithin(S,A,A+B)}function qg(){return k?lD().cpus().length:navigator.hardwareConcurrency}function na(S,A){for(var B=arguments.length-2,Y=Wl(),de=B,ce=Du(de*8),le=ce>>3,xe=0;xe<B;xe++){var it=arguments[2+xe];l()[le+xe]=it}var Jt=CI(S,de,ce,A);return Fu(Y),Jt}var Rl=[],Pl=[];function Kg(S,A){Pl.length=0;var B;for(A>>=2;B=o()[S++];){var Y=B<105;Y&&A&1&&A++,Pl.push(Y?l()[A++>>1]:i()[A]),++A}return Pl}function Xg(S,A,B){Rl.length=A;for(var Y=B>>3,de=0;de<A;de++)Rl[de]=l()[Y+de];var ce=S<0,le=ce?Vp[-S-1]:kb[S];return le.apply(null,Rl)}function Yg(){return o().length}function Qg(S){try{return te.grow(S-tt.byteLength+65535>>>16),Wn(te.buffer),1}catch(A){}}function Zg(S){var A=Yg();if(S<=A)return!1;var B=2147483648;if(S>B)return!1;for(var Y=1;Y<=4;Y*=2){var de=A*(1+.2/Y);de=Math.min(de,S+100663296);var ce=Math.min(B,Bn(Math.max(S,de),65536)),le=Qg(ce);if(le)return!0}return!1}var Be={inEventHandler:0,removeAllEventListeners:function(){for(var S=Be.eventHandlers.length-1;S>=0;--S)Be._removeHandler(S);Be.eventHandlers=[],Be.deferredCalls=[]},registerRemoveEventListeners:function(){Be.removeEventListenersRegistered||($l.push(Be.removeAllEventListeners),Be.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,A,B){function Y(le,xe){if(le.length!=xe.length)return!1;for(var it in le)if(le[it]!=xe[it])return!1;return!0}for(var de in Be.deferredCalls){var ce=Be.deferredCalls[de];if(ce.targetFunction==S&&Y(ce.argsList,B))return}Be.deferredCalls.push({targetFunction:S,precedence:A,argsList:B}),Be.deferredCalls.sort(function(le,xe){return le.precedence<xe.precedence})},removeDeferredCalls:function(S){for(var A=0;A<Be.deferredCalls.length;++A)Be.deferredCalls[A].targetFunction==S&&(Be.deferredCalls.splice(A,1),--A)},canPerformEventHandlerRequests:function(){return Be.inEventHandler&&Be.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Be.canPerformEventHandlerRequests())for(var S=0;S<Be.deferredCalls.length;++S){var A=Be.deferredCalls[S];Be.deferredCalls.splice(S,1),--S,A.targetFunction.apply(null,A.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,A){for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==S&&(!A||A==Be.eventHandlers[B].eventTypeString)&&Be._removeHandler(B--)},_removeHandler:function(S){var A=Be.eventHandlers[S];A.target.removeEventListener(A.eventTypeString,A.eventListenerFunc,A.useCapture),Be.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var A=function(de){++Be.inEventHandler,Be.currentEventHandler=S,Be.runDeferredCalls(),S.handlerFunc(de),Be.runDeferredCalls(),--Be.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=A,S.target.addEventListener(S.eventTypeString,A,S.useCapture),Be.eventHandlers.push(S),Be.registerRemoveEventListeners();else for(var B=0;B<Be.eventHandlers.length;++B)Be.eventHandlers[B].target==S.target&&Be.eventHandlers[B].eventTypeString==S.eventTypeString&&Be._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(S,A,B,Y,de){var ce=Wl(),le=Du(12);i()[le>>2]=B,i()[le+4>>2]=Y,i()[le+8>>2]=de,jb(0,S,637534208,A,Y,le),Fu(ce)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return Se.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Jg(S){var A=pt(S)+1,B=Lo(A);return et(S,B,A),B}function eb(S,A,B,Y){var de=Wl(),ce=Du(12),le=0;A&&(le=Jg(A)),i()[ce>>2]=le,i()[ce+4>>2]=B,i()[ce+8>>2]=Y,jb(0,S,657457152,0,le,ce),Fu(de)}function tb(S,A,B,Y){A=A?Ge(A):"",eb(S,A,B,Y)}function nb(S){return S>2?Ge(S):S}var rb=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function sb(S){S=nb(S);var A=rb[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return A}function Ol(S){return sb(S)}function Hp(S,A,B){var Y=Ol(S);if(!Y)return-4;if(Y.canvasSharedPtr&&(i()[Y.canvasSharedPtr>>2]=A,i()[Y.canvasSharedPtr+4>>2]=B),Y.offscreenCanvas||!Y.controlTransferredOffscreen){Y.offscreenCanvas&&(Y=Y.offscreenCanvas);var de=!1;if(Y.GLctxObject&&Y.GLctxObject.GLctx){var ce=Y.GLctxObject.GLctx.getParameter(2978);de=ce[0]===0&&ce[1]===0&&ce[2]===Y.width&&ce[3]===Y.height}Y.width=A,Y.height=B,de&&Y.GLctxObject.GLctx.viewport(0,0,A,B)}else if(Y.canvasSharedPtr){var le=i()[Y.canvasSharedPtr+8>>2];return tb(le,S,A,B),1}else return-4;return 0}function jp(S,A,B){return C?na(2,1,S,A,B):Hp(S,A,B)}function ab(S,A,B){var Y=Ol(S);return Y?Hp(S,A,B):jp(S,A,B)}function ob(S){}function ib(S,A){}function ub(S){var A=S.getExtension("ANGLE_instanced_arrays");if(A)return S.vertexAttribDivisor=function(B,Y){A.vertexAttribDivisorANGLE(B,Y)},S.drawArraysInstanced=function(B,Y,de,ce){A.drawArraysInstancedANGLE(B,Y,de,ce)},S.drawElementsInstanced=function(B,Y,de,ce,le){A.drawElementsInstancedANGLE(B,Y,de,ce,le)},1}function cb(S){var A=S.getExtension("OES_vertex_array_object");if(A)return S.createVertexArray=function(){return A.createVertexArrayOES()},S.deleteVertexArray=function(B){A.deleteVertexArrayOES(B)},S.bindVertexArray=function(B){A.bindVertexArrayOES(B)},S.isVertexArray=function(B){return A.isVertexArrayOES(B)},1}function lb(S){var A=S.getExtension("WEBGL_draw_buffers");if(A)return S.drawBuffers=function(B,Y){A.drawBuffersWEBGL(B,Y)},1}function db(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var at={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(A){at.lastError||(at.lastError=A)},getNewId:function(S){for(var A=at.counter++,B=S.length;B<A;B++)S[B]=null;return A},getSource:function(S,A,B,Y){for(var de="",ce=0;ce<A;++ce){var le=Y?i()[Y+ce*4>>2]:-1;de+=Ge(i()[B+ce*4>>2],le<0?void 0:le)}return de},createContext:function(S,A){var B=S.getContext("webgl",A);if(!B)return 0;var Y=at.registerContext(B,A);return Y},registerContext:function(S,A){var B=Lo(8);i()[B+4>>2]=aa();var Y={handle:B,attributes:A,version:A.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=Y),at.contexts[B]=Y,(typeof A.enableExtensionsByDefault=="undefined"||A.enableExtensionsByDefault)&&at.initExtensions(Y),B},makeContextCurrent:function(S){return at.currentContext=at.contexts[S],c.ctx=ra=at.currentContext&&at.currentContext.GLctx,!(S&&!ra)},getContext:function(S){return at.contexts[S]},deleteContext:function(S){at.currentContext===at.contexts[S]&&(at.currentContext=null),typeof Be=="object"&&Be.removeAllHandlersOnTarget(at.contexts[S].GLctx.canvas),at.contexts[S]&&at.contexts[S].GLctx.canvas&&(at.contexts[S].GLctx.canvas.GLctxObject=void 0),zl(at.contexts[S].handle),at.contexts[S]=null},initExtensions:function(S){if(S||(S=at.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var A=S.GLctx;ub(A),cb(A),lb(A),A.disjointTimerQueryExt=A.getExtension("EXT_disjoint_timer_query"),db(A);var B=A.getSupportedExtensions()||[];B.forEach(function(Y){Y.indexOf("lose_context")<0&&Y.indexOf("debug")<0&&A.getExtension(Y)})}},populateUniformTable:function(S){for(var A=at.programs[S],B=at.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Y=B.uniforms,de=ra.getProgramParameter(A,35718),ce=0;ce<de;++ce){var le=ra.getActiveUniform(A,ce),xe=le.name;B.maxUniformLength=Math.max(B.maxUniformLength,xe.length+1),xe.slice(-1)=="]"&&(xe=xe.slice(0,xe.lastIndexOf("[")));var it=ra.getUniformLocation(A,xe);if(it){var Jt=at.getNewId(at.uniforms);Y[xe]=[le.size,Jt],at.uniforms[Jt]=it;for(var jt=1;jt<le.size;++jt){var oa=xe+"["+jt+"]";it=ra.getUniformLocation(A,oa),Jt=at.getNewId(at.uniforms),at.uniforms[Jt]=it}}}}},pb=["default","low-power","high-performance"];function hb(S,A){var B=A>>2,Y=i()[B+(24>>2)],de={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:pb[Y],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},ce=Ol(S);if(!ce||de.explicitSwapControl)return 0;var le=at.createContext(ce,de);return le}function fb(S,A){return hb(S,A)}var _u={mappings:{},buffers:[null,[],[]],printChar:function(S,A){var B=_u.buffers[S];A===0||A===10?((S===1?K:q)(qe(B,0)),B.length=0):B.push(A)},varargs:void 0,get:function(){_u.varargs+=4;var S=i()[_u.varargs-4>>2];return S},getStr:function(S){var A=Ge(S);return A},get64:function(S,A){return S}};function qp(S){return C?na(3,1,S):0}function Kp(S,A,B,Y,de){if(C)return na(4,1,S,A,B,Y,de)}function Xp(S,A,B,Y){if(C)return na(5,1,S,A,B,Y);for(var de=0,ce=0;ce<B;ce++){for(var le=i()[A+ce*8>>2],xe=i()[A+(ce*8+4)>>2],it=0;it<xe;it++)_u.printChar(S,o()[le+it]);de+=xe}return i()[Y>>2]=de,0}function mb(S){var A=Se.threadExitHandlers.pop();S&&A()}function gb(S,A){Se.threadExitHandlers.push(function(){bn.get(S)(A)})}function Yp(S){if(C)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var A=Se.getNewWorker();if(A.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";Se.runningWorkers.push(A);for(var B=Lo(128*4),Y=0;Y<128;++Y)i()[B+Y*4>>2]=0;var de=S.stackBase+S.stackSize,ce=Se.pthreads[S.pthread_ptr]={worker:A,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},le=ce.threadInfoStruct>>2;Atomics.store(u(),le+(64>>2),S.detached),Atomics.store(u(),le+(100>>2),B),Atomics.store(u(),le+(40>>2),ce.threadInfoStruct),Atomics.store(u(),le+(80>>2),S.stackSize),Atomics.store(u(),le+(76>>2),de),Atomics.store(u(),le+(104>>2),S.stackSize),Atomics.store(u(),le+(104+8>>2),de),Atomics.store(u(),le+(104+12>>2),S.detached);var xe=vI(),it=xe+40;Atomics.store(u(),le+(172>>2),it),A.pthread=ce;var Jt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};A.runPthread=function(){Jt.time=performance.now(),A.postMessage(Jt,S.transferList)},A.loaded&&(A.runPthread(),delete A.runPthread)}function bb(S,A,B,Y){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return q("pthread_create called with a null thread pointer!"),28;var de=[],ce=0;if(C&&(de.length===0||ce))return SI(687865856,S,A,B,Y);if(ce)return ce;var le=0,xe=0,it=0;A&&A!=-1?(le=i()[A>>2],le+=81920,xe=i()[A+8>>2],it=i()[A+12>>2]!==0):le=2097152;var Jt=xe==0;Jt?xe=NI(16,le):(xe-=le,Ie(xe>0));for(var jt=Lo(228),oa=0;oa<228>>2;++oa)u()[(jt>>2)+oa]=0;i()[S>>2]=jt,i()[jt+12>>2]=jt;var Pu=jt+152;i()[Pu>>2]=Pu;var xn={stackBase:xe,stackSize:le,allocatedOwnStack:Jt,detached:it,startRoutine:B,pthread_ptr:jt,arg:Y,transferList:de};return C?(xn.cmd="spawnThread",postMessage(xn,de)):Yp(xn),0}function yb(){if(!!C){var S=aa();if(!!S){var A=Atomics.load(u(),S+56>>2);if(!A){var B=Atomics.load(u(),S+0>>2);if(B==2)throw"Canceled!"}}}}function vb(){k||x||Q("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function xb(S,A,B){if(!S)return q("pthread_join attempted on a null thread pointer!"),ta.ESRCH;if(C&&aa()==S)return q("PThread "+S+" is attempting to join to itself!"),ta.EDEADLK;if(!C&&kI()==S)return q("Main thread "+S+" is attempting to join to itself!"),ta.EDEADLK;var Y=i()[S+12>>2];if(Y!==S)return q("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),ta.ESRCH;var de=Atomics.load(u(),S+64>>2);if(de)return q("Attempted to join thread "+S+", which was already detached!"),ta.EINVAL;for(B&&vb();;){var ce=Atomics.load(u(),S+0>>2);if(ce==1){var le=Atomics.load(u(),S+4>>2);return A&&(i()[A>>2]=le),Atomics.store(u(),S+64>>2,1),C?postMessage({cmd:"cleanupThread",thread:S}):Up(S),0}if(!B)return ta.EBUSY;yb(),C||rh(),Gp(S+0,ce,C?100:1)}}function wb(S,A){return xb(S,A,!0)}function Qp(S){if(C)return na(6,1,S);switch(S){case 30:return 16384;case 85:var A=2147483648;return A/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return zg(28),-1}C||Se.initMainThreadBlock();var ra,kb=[null,Wg,jp,qp,Kp,Xp,Qp],Ib={e:Lg,r:Bg,x:Vg,b:Ug,y:Gg,j:Hg,d:Gp,c:Dl,f:Mo,p:jg,A:qg,u:Xg,q:Zg,v:ab,i:ob,s:ib,w:fb,l:qp,n:Kp,g:Xp,o:Fg,a:te||c.wasmMemory,z:mb,k:gb,h:bb,m:wb,t:Qp},bI=$g(),Zp=c.___wasm_call_ctors=function(){return(Zp=c.___wasm_call_ctors=c.asm.B).apply(null,arguments)},Sb=c._init=function(){return(Sb=c._init=c.asm.C).apply(null,arguments)},Cb=c._init_with_threads_count=function(){return(Cb=c._init_with_threads_count=c.asm.D).apply(null,arguments)},Tb=c._get_threads_count=function(){return(Tb=c._get_threads_count=c.asm.E).apply(null,arguments)},Nb=c._register_tensor=function(){return(Nb=c._register_tensor=c.asm.F).apply(null,arguments)},_b=c._dispose_data=function(){return(_b=c._dispose_data=c.asm.G).apply(null,arguments)},Eb=c._dispose=function(){return(Eb=c._dispose=c.asm.H).apply(null,arguments)},Ab=c._Abs=function(){return(Ab=c._Abs=c.asm.I).apply(null,arguments)},$b=c._Add=function(){return($b=c._Add=c.asm.J).apply(null,arguments)},Fb=c._AddN=function(){return(Fb=c._AddN=c.asm.K).apply(null,arguments)},Db=c._All=function(){return(Db=c._All=c.asm.L).apply(null,arguments)},Rb=c._Any=function(){return(Rb=c._Any=c.asm.M).apply(null,arguments)},Pb=c._ArgMax=function(){return(Pb=c._ArgMax=c.asm.N).apply(null,arguments)},Ob=c._AvgPool=function(){return(Ob=c._AvgPool=c.asm.O).apply(null,arguments)},Mb=c._BatchMatMul=function(){return(Mb=c._BatchMatMul=c.asm.P).apply(null,arguments)},Lb=c._Ceil=function(){return(Lb=c._Ceil=c.asm.Q).apply(null,arguments)},Bb=c._ClipByValue=function(){return(Bb=c._ClipByValue=c.asm.R).apply(null,arguments)},zb=c._Conv2D=function(){return(zb=c._Conv2D=c.asm.S).apply(null,arguments)},Wb=c._Conv2DBackpropInput=function(){return(Wb=c._Conv2DBackpropInput=c.asm.T).apply(null,arguments)},Vb=c._Cos=function(){return(Vb=c._Cos=c.asm.U).apply(null,arguments)},Ub=c._Cosh=function(){return(Ub=c._Cosh=c.asm.V).apply(null,arguments)},Jp=c._CropAndResize=function(){return(Jp=c._CropAndResize=c.asm.W).apply(null,arguments)},eh=c._Cumsum=function(){return(eh=c._Cumsum=c.asm.X).apply(null,arguments)},Ml=c._DepthToSpace=function(){return(Ml=c._DepthToSpace=c.asm.Y).apply(null,arguments)},Eu=c._DepthwiseConv2dNative=function(){return(Eu=c._DepthwiseConv2dNative=c.asm.Z).apply(null,arguments)},Gb=c._Elu=function(){return(Gb=c._Elu=c.asm._).apply(null,arguments)},Ll=c._Equal=function(){return(Ll=c._Equal=c.asm.$).apply(null,arguments)},Au=c._Exp=function(){return(Au=c._Exp=c.asm.aa).apply(null,arguments)},$u=c._FlipLeftRight=function(){return($u=c._FlipLeftRight=c.asm.ba).apply(null,arguments)},Hb=c._Floor=function(){return(Hb=c._Floor=c.asm.ca).apply(null,arguments)},J=c._FloorDiv=function(){return(J=c._FloorDiv=c.asm.da).apply(null,arguments)},ae=c._FusedBatchNorm=function(){return(ae=c._FusedBatchNorm=c.asm.ea).apply(null,arguments)},ye=c._FusedConv2D=function(){return(ye=c._FusedConv2D=c.asm.fa).apply(null,arguments)},nt=c._FusedDepthwiseConv2D=function(){return(nt=c._FusedDepthwiseConv2D=c.asm.ga).apply(null,arguments)},Rt=c._Gather=function(){return(Rt=c._Gather=c.asm.ha).apply(null,arguments)},Tt=c._GatherNd=function(){return(Tt=c._GatherNd=c.asm.ia).apply(null,arguments)},He=c._Greater=function(){return(He=c._Greater=c.asm.ja).apply(null,arguments)},Ke=c._GreaterEqual=function(){return(Ke=c._GreaterEqual=c.asm.ka).apply(null,arguments)},ln=c._LeakyRelu=function(){return(ln=c._LeakyRelu=c.asm.la).apply(null,arguments)},Ts=c._Less=function(){return(Ts=c._Less=c.asm.ma).apply(null,arguments)},Ns=c._LessEqual=function(){return(Ns=c._LessEqual=c.asm.na).apply(null,arguments)},th=c._Log=function(){return(th=c._Log=c.asm.oa).apply(null,arguments)},Bl=c._LogicalAnd=function(){return(Bl=c._LogicalAnd=c.asm.pa).apply(null,arguments)},Jn=c._Max=function(){return(Jn=c._Max=c.asm.qa).apply(null,arguments)},sa=c._MaxPool=function(){return(sa=c._MaxPool=c.asm.ra).apply(null,arguments)},nh=c._Maximum=function(){return(nh=c._Maximum=c.asm.sa).apply(null,arguments)},X$=c._Mean=function(){return(X$=c._Mean=c.asm.ta).apply(null,arguments)},Y$=c._Min=function(){return(Y$=c._Min=c.asm.ua).apply(null,arguments)},Q$=c._Minimum=function(){return(Q$=c._Minimum=c.asm.va).apply(null,arguments)},Z$=c._MirrorPad=function(){return(Z$=c._MirrorPad=c.asm.wa).apply(null,arguments)},J$=c._Multiply=function(){return(J$=c._Multiply=c.asm.xa).apply(null,arguments)},eF=c._Neg=function(){return(eF=c._Neg=c.asm.ya).apply(null,arguments)},tF=c._NonMaxSuppressionV3=function(){return(tF=c._NonMaxSuppressionV3=c.asm.za).apply(null,arguments)},nF=c._NonMaxSuppressionV4=function(){return(nF=c._NonMaxSuppressionV4=c.asm.Aa).apply(null,arguments)},rF=c._NonMaxSuppressionV5=function(){return(rF=c._NonMaxSuppressionV5=c.asm.Ba).apply(null,arguments)},sF=c._NotEqual=function(){return(sF=c._NotEqual=c.asm.Ca).apply(null,arguments)},aF=c._OneHot=function(){return(aF=c._OneHot=c.asm.Da).apply(null,arguments)},oF=c._PadV2=function(){return(oF=c._PadV2=c.asm.Ea).apply(null,arguments)},iF=c._Pow=function(){return(iF=c._Pow=c.asm.Fa).apply(null,arguments)},uF=c._Prelu=function(){return(uF=c._Prelu=c.asm.Ga).apply(null,arguments)},cF=c._Prod=function(){return(cF=c._Prod=c.asm.Ha).apply(null,arguments)},lF=c._RealDiv=function(){return(lF=c._RealDiv=c.asm.Ia).apply(null,arguments)},dF=c._Relu=function(){return(dF=c._Relu=c.asm.Ja).apply(null,arguments)},pF=c._Relu6=function(){return(pF=c._Relu6=c.asm.Ka).apply(null,arguments)},hF=c._ResizeBilinear=function(){return(hF=c._ResizeBilinear=c.asm.La).apply(null,arguments)},fF=c._Reverse=function(){return(fF=c._Reverse=c.asm.Ma).apply(null,arguments)},mF=c._RotateWithOffset=function(){return(mF=c._RotateWithOffset=c.asm.Na).apply(null,arguments)},gF=c._Round=function(){return(gF=c._Round=c.asm.Oa).apply(null,arguments)},bF=c._Rsqrt=function(){return(bF=c._Rsqrt=c.asm.Pa).apply(null,arguments)},yF=c._ScatterNd=function(){return(yF=c._ScatterNd=c.asm.Qa).apply(null,arguments)},vF=c._SelectV2=function(){return(vF=c._SelectV2=c.asm.Ra).apply(null,arguments)},xF=c._Sigmoid=function(){return(xF=c._Sigmoid=c.asm.Sa).apply(null,arguments)},wF=c._Sin=function(){return(wF=c._Sin=c.asm.Ta).apply(null,arguments)},kF=c._Softmax=function(){return(kF=c._Softmax=c.asm.Ua).apply(null,arguments)},IF=c._SparseFillEmptyRows=function(){return(IF=c._SparseFillEmptyRows=c.asm.Va).apply(null,arguments)},SF=c._SparseReshape=function(){return(SF=c._SparseReshape=c.asm.Wa).apply(null,arguments)},CF=c._SparseSegmentReduction=function(){return(CF=c._SparseSegmentReduction=c.asm.Xa).apply(null,arguments)},TF=c._Sqrt=function(){return(TF=c._Sqrt=c.asm.Ya).apply(null,arguments)},NF=c._Square=function(){return(NF=c._Square=c.asm.Za).apply(null,arguments)},_F=c._SquaredDifference=function(){return(_F=c._SquaredDifference=c.asm._a).apply(null,arguments)},EF=c._Step=function(){return(EF=c._Step=c.asm.$a).apply(null,arguments)},AF=c._StridedSlice=function(){return(AF=c._StridedSlice=c.asm.ab).apply(null,arguments)},$F=c._Sub=function(){return($F=c._Sub=c.asm.bb).apply(null,arguments)},FF=c._Sum=function(){return(FF=c._Sum=c.asm.cb).apply(null,arguments)},DF=c._Tan=function(){return(DF=c._Tan=c.asm.db).apply(null,arguments)},RF=c._Tanh=function(){return(RF=c._Tanh=c.asm.eb).apply(null,arguments)},PF=c._Tile=function(){return(PF=c._Tile=c.asm.fb).apply(null,arguments)},OF=c._TopK=function(){return(OF=c._TopK=c.asm.gb).apply(null,arguments)},MF=c._Transform=function(){return(MF=c._Transform=c.asm.hb).apply(null,arguments)},LF=c._Transpose=function(){return(LF=c._Transpose=c.asm.ib).apply(null,arguments)},BF=c.__FusedMatMul=function(){return(BF=c.__FusedMatMul=c.asm.jb).apply(null,arguments)},Lo=c._malloc=function(){return(Lo=c._malloc=c.asm.kb).apply(null,arguments)},zl=c._free=function(){return(zl=c._free=c.asm.lb).apply(null,arguments)},yI=c.___errno_location=function(){return(yI=c.___errno_location=c.asm.mb).apply(null,arguments)},vI=c._emscripten_get_global_libc=function(){return(vI=c._emscripten_get_global_libc=c.asm.ob).apply(null,arguments)},aa=c._pthread_self=function(){return(aa=c._pthread_self=c.asm.pb).apply(null,arguments)},xI=c.___pthread_tsd_run_dtors=function(){return(xI=c.___pthread_tsd_run_dtors=c.asm.qb).apply(null,arguments)},rh=c._emscripten_main_thread_process_queued_calls=function(){return(rh=c._emscripten_main_thread_process_queued_calls=c.asm.rb).apply(null,arguments)},zF=c._emscripten_current_thread_process_queued_calls=function(){return(zF=c._emscripten_current_thread_process_queued_calls=c.asm.sb).apply(null,arguments)},wI=c._emscripten_register_main_browser_thread_id=function(){return(wI=c._emscripten_register_main_browser_thread_id=c.asm.tb).apply(null,arguments)},kI=c._emscripten_main_browser_thread_id=function(){return(kI=c._emscripten_main_browser_thread_id=c.asm.ub).apply(null,arguments)},II=c.__emscripten_do_dispatch_to_thread=function(){return(II=c.__emscripten_do_dispatch_to_thread=c.asm.vb).apply(null,arguments)},SI=c._emscripten_sync_run_in_main_thread_4=function(){return(SI=c._emscripten_sync_run_in_main_thread_4=c.asm.wb).apply(null,arguments)},CI=c._emscripten_run_in_main_runtime_thread_js=function(){return(CI=c._emscripten_run_in_main_runtime_thread_js=c.asm.xb).apply(null,arguments)},jb=c.__emscripten_call_on_thread=function(){return(jb=c.__emscripten_call_on_thread=c.asm.yb).apply(null,arguments)},WF=c._emscripten_tls_init=function(){return(WF=c._emscripten_tls_init=c.asm.zb).apply(null,arguments)},qb=c.__emscripten_thread_init=function(){return(qb=c.__emscripten_thread_init=c.asm.Ab).apply(null,arguments)},Wl=c.stackSave=function(){return(Wl=c.stackSave=c.asm.Bb).apply(null,arguments)},Fu=c.stackRestore=function(){return(Fu=c.stackRestore=c.asm.Cb).apply(null,arguments)},Du=c.stackAlloc=function(){return(Du=c.stackAlloc=c.asm.Db).apply(null,arguments)},TI=c._emscripten_stack_set_limits=function(){return(TI=c._emscripten_stack_set_limits=c.asm.Eb).apply(null,arguments)},NI=c._memalign=function(){return(NI=c._memalign=c.asm.Fb).apply(null,arguments)},_I=c.__emscripten_allow_main_runtime_queued_calls=10208,Ru=c.__emscripten_main_thread_futex=10412;c.cwrap=Je,c.PThread=Se,c.PThread=Se,c.wasmMemory=te,c.ExitStatus=Vl;var sh;function Vl(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Po=function S(){sh||Kb(),sh||(Po=S)};function Kb(S){if(S=S||g,Nr>0)return;if(C){d(c),Op(),postMessage({cmd:"loaded"});return}if(Pp(),Nr>0)return;function A(){sh||(sh=!0,c.calledRun=!0,!be&&(Op(),Mp(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),Lp()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),A()},1)):A()}c.run=Kb;function VF(S,A){if(!(A&&ie&&S===0)){if(!A&&C)throw postMessage({cmd:"exitProcess",returnCode:S}),new Vl(S);ie||(Se.terminateAllThreads(),Ce=S,Vn(),c.onExit&&c.onExit(S),be=!0),y(S,new Vl(S))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();C&&(ie=!1,Se.initWorker()),Kb();var ah;h&&(ah={uncaughtException:process.listeners("uncaughtException").filter(function(S){return!h.uncaughtException.indexOf(S)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(S){return!h.unhandledRejection.indexOf(S)>-1})});var oh;if(typeof WasmBackendModule!="undefined")oh=WasmBackendModule;else if(typeof s!="undefined")oh=s;else throw new Error("Could not find wasm module in post.js");if(ah){var UF=oh._dispose;oh._dispose=function(){UF(),ah.uncaughtException.forEach(function(S){process.removeListener("uncaughtException",S)}),ah.unhandledRejection.forEach(function(S){process.removeListener("unhandledRejection",S)})}}return s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),pD=qt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(J,ae){o=J,i=ae});var u;typeof process!="undefined"&&process.listeners&&(u={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var d=[],p="./this.program",h=function(J,ae){throw ae},f=!1,m=!1,g=!1,b=!1;f=typeof window=="object",m=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!f&&!g&&!m;var y="";function v(J){return a.locateFile?a.locateFile(J,y):y+J}var x,k,T,C,E,F;g?(m?y=Ul().dirname(y)+"/":y=__dirname+"/",x=function(ae,ye){return E||(E=lh()),F||(F=Ul()),ae=F.normalize(ae),E.readFileSync(ae,ye?null:"utf8")},T=function(ae){var ye=x(ae,!0);return ye.buffer||(ye=new Uint8Array(ye)),K(ye.buffer),ye},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(J){if(!(J instanceof Gb))throw J}),process.on("unhandledRejection",Ss),h=function(J){process.exit(J)},a.inspect=function(){return"[Emscripten Module object]"}):b?(typeof read!="undefined"&&(x=function(ae){return read(ae)}),T=function(ae){var ye;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ae)):(ye=read(ae,"binary"),K(typeof ye=="object"),ye)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(h=function(J){quit(J)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(J){var ae=new XMLHttpRequest;return ae.open("GET",J,!1),ae.send(null),ae.responseText},m&&(T=function(J){var ae=new XMLHttpRequest;return ae.open("GET",J,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),k=function(J,ae,ye){var nt=new XMLHttpRequest;nt.open("GET",J,!0),nt.responseType="arraybuffer",nt.onload=function(){if(nt.status==200||nt.status==0&&nt.response){ae(nt.response);return}ye()},nt.onerror=ye,nt.send(null)},C=function(J){document.title=J});var O=a.print||console.log.bind(console),D=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(d=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(h=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Ss("no native wasm support detected");var L,U=!1,j;function K(J,ae){J||Ss("Assertion failed: "+ae)}function q(J){var ae=a["_"+J];return K(ae,"Cannot call unknown function "+J+", make sure it is exported"),ae}function Q(J,ae,ye,nt,Rt){var Tt={string:function(Jn){var sa=0;if(Jn!=null&&Jn!==0){var nh=(Jn.length<<2)+1;sa=Ml(nh),te(Jn,sa,nh)}return sa},array:function(Jn){var sa=Ml(Jn.length);return pe(Jn,sa),sa}};function He(Jn){return ae==="string"?ne(Jn):ae==="boolean"?Boolean(Jn):Jn}var Ke=q(J),ln=[],Ts=0;if(nt)for(var Ns=0;Ns<nt.length;Ns++){var th=Tt[ye[Ns]];th?(Ts===0&&(Ts=Jp()),ln[Ns]=th(nt[Ns])):ln[Ns]=nt[Ns]}var Bl=Ke.apply(null,ln);return Bl=He(Bl),Ts!==0&&eh(Ts),Bl}function ee(J,ae,ye,nt){ye=ye||[];var Rt=ye.every(function(He){return He==="number"}),Tt=ae!=="string";return Tt&&Rt&&!nt?q(J):function(){return Q(J,ae,ye,arguments,nt)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(J,ae,ye){for(var nt=ae+ye,Rt=ae;J[Rt]&&!(Rt>=nt);)++Rt;if(Rt-ae>16&&J.subarray&&re)return re.decode(J.subarray(ae,Rt));for(var Tt="";ae<Rt;){var He=J[ae++];if(!(He&128)){Tt+=String.fromCharCode(He);continue}var Ke=J[ae++]&63;if((He&224)==192){Tt+=String.fromCharCode((He&31)<<6|Ke);continue}var ln=J[ae++]&63;if((He&240)==224?He=(He&15)<<12|Ke<<6|ln:He=(He&7)<<18|Ke<<12|ln<<6|J[ae++]&63,He<65536)Tt+=String.fromCharCode(He);else{var Ts=He-65536;Tt+=String.fromCharCode(55296|Ts>>10,56320|Ts&1023)}}return Tt}function ne(J,ae){return J?se(Ne,J,ae):""}function ie(J,ae,ye,nt){if(!(nt>0))return 0;for(var Rt=ye,Tt=ye+nt-1,He=0;He<J.length;++He){var Ke=J.charCodeAt(He);if(Ke>=55296&&Ke<=57343){var ln=J.charCodeAt(++He);Ke=65536+((Ke&1023)<<10)|ln&1023}if(Ke<=127){if(ye>=Tt)break;ae[ye++]=Ke}else if(Ke<=2047){if(ye+1>=Tt)break;ae[ye++]=192|Ke>>6,ae[ye++]=128|Ke&63}else if(Ke<=65535){if(ye+2>=Tt)break;ae[ye++]=224|Ke>>12,ae[ye++]=128|Ke>>6&63,ae[ye++]=128|Ke&63}else{if(ye+3>=Tt)break;ae[ye++]=240|Ke>>18,ae[ye++]=128|Ke>>12&63,ae[ye++]=128|Ke>>6&63,ae[ye++]=128|Ke&63}}return ae[ye]=0,ye-Rt}function te(J,ae,ye){return ie(J,Ne,ae,ye)}function pe(J,ae){Ie.set(J,ae)}function be(J,ae){return J%ae>0&&(J+=ae-J%ae),J}var Ce,Ie,Ne,Le,Je,qe,Ge,lt,et;function pt(J){Ce=J,a.HEAP8=Ie=new Int8Array(J),a.HEAP16=Le=new Int16Array(J),a.HEAP32=qe=new Int32Array(J),a.HEAPU8=Ne=new Uint8Array(J),a.HEAPU16=Je=new Uint16Array(J),a.HEAPU32=Ge=new Uint32Array(J),a.HEAPF32=lt=new Float32Array(J),a.HEAPF64=et=new Float64Array(J)}var Ct=a.INITIAL_MEMORY||16777216,Bn,tt=[],Qn=[],cn=[],Cr=[],zn=!1;Qn.push({func:function(){Wp()}});function Zn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)Wn(a.preRun.shift());Nr(tt)}function dr(){zn=!0,Nr(Qn)}function Tr(){Nr(cn)}function pr(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)Js(a.postRun.shift());Nr(Cr)}function Wn(J){tt.unshift(J)}function Js(J){Cr.unshift(J)}var bn=0,ea=null,hr=null;function Al(J){bn++,a.monitorRunDependencies&&a.monitorRunDependencies(bn)}function $l(J){if(bn--,a.monitorRunDependencies&&a.monitorRunDependencies(bn),bn==0&&(ea!==null&&(clearInterval(ea),ea=null),hr)){var ae=hr;hr=null,ae()}}a.preloadedImages={},a.preloadedAudios={};function Ss(J){a.onAbort&&a.onAbort(J),J+="",D(J),U=!0,j=1,J="abort("+J+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(J);throw i(ae),ae}function Rp(J,ae){return String.prototype.startsWith?J.startsWith(ae):J.indexOf(ae)===0}var Ig="data:application/octet-stream;base64,";function Pp(J){return Rp(J,Ig)}var Op="file://";function Mp(J){return Rp(J,Op)}var Vn="tfjs-backend-wasm.wasm";Pp(Vn)||(Vn=v(Vn));function Lp(J){try{if(J==Vn&&R)return new Uint8Array(R);if(T)return T(J);throw"both async and sync fetching of the wasm failed"}catch(ae){Ss(ae)}}function Sg(){if(!R&&(f||m)){if(typeof fetch=="function"&&!Mp(Vn))return fetch(Vn,{credentials:"same-origin"}).then(function(J){if(!J.ok)throw"failed to load wasm binary file at '"+Vn+"'";return J.arrayBuffer()}).catch(function(){return Lp(Vn)});if(k)return new Promise(function(J,ae){k(Vn,function(ye){J(new Uint8Array(ye))},ae)})}return Promise.resolve().then(function(){return Lp(Vn)})}function Cg(){var J={a:Un};function ae(He,Ke){var ln=He.exports;a.asm=ln,L=a.asm.h,pt(L.buffer),Bn=a.asm.Va,$l("wasm-instantiate")}Al("wasm-instantiate");function ye(He){ae(He.instance)}function nt(He){return Sg().then(function(Ke){return WebAssembly.instantiate(Ke,J)}).then(He,function(Ke){D("failed to asynchronously prepare wasm: "+Ke),Ss(Ke)})}function Rt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!Pp(Vn)&&!Mp(Vn)&&typeof fetch=="function"?fetch(Vn,{credentials:"same-origin"}).then(function(He){var Ke=WebAssembly.instantiateStreaming(He,J);return Ke.then(ye,function(ln){return D("wasm streaming compile failed: "+ln),D("falling back to ArrayBuffer instantiation"),nt(ye)})}):nt(ye)}if(a.instantiateWasm)try{var Tt=a.instantiateWasm(J,ae);return Tt}catch(He){return D("Module.instantiateWasm callback failed with error: "+He),!1}return Rt().catch(i),{}}function Nr(J){for(;J.length>0;){var ae=J.shift();if(typeof ae=="function"){ae(a);continue}var ye=ae.func;typeof ye=="number"?ae.arg===void 0?Bn.get(ye)():Bn.get(ye)(ae.arg):ye(ae.arg===void 0?null:ae.arg)}}function Fl(){Ss()}function Po(J,ae,ye){Ne.copyWithin(J,ae,ae+ye)}function Tg(){return Ne.length}function Ng(J){try{return L.grow(J-Ce.byteLength+65535>>>16),pt(L.buffer),1}catch(ae){}}function Cs(J){var ae=Tg(),ye=2147483648;if(J>ye)return!1;for(var nt=1;nt<=4;nt*=2){var Rt=ae*(1+.2/nt);Rt=Math.min(Rt,J+100663296);var Tt=Math.min(ye,be(Math.max(J,Rt),65536)),He=Ng(Tt);if(He)return!0}return!1}var Oo={mappings:{},buffers:[null,[],[]],printChar:function(J,ae){var ye=Oo.buffers[J];ae===0||ae===10?((J===1?O:D)(se(ye,0)),ye.length=0):ye.push(ae)},varargs:void 0,get:function(){Oo.varargs+=4;var J=qe[Oo.varargs-4>>2];return J},getStr:function(J){var ae=ne(J);return ae},get64:function(J,ae){return J}};function _g(J){return 0}function Bp(J,ae,ye,nt,Rt){}function Eg(J,ae,ye,nt){for(var Rt=0,Tt=0;Tt<ye;Tt++){for(var He=qe[ae+Tt*8>>2],Ke=qe[ae+(Tt*8+4)>>2],ln=0;ln<Ke;ln++)Oo.printChar(J,Ne[He+ln]);Rt+=Ke}return qe[nt>>2]=Rt,0}function zp(){return 28}var Un={a:Fl,d:Po,e:Cs,f:_g,c:Bp,b:Eg,g:zp},Ag=Cg(),Wp=a.___wasm_call_ctors=function(){return(Wp=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},$g=a._init=function(){return($g=a._init=a.asm.j).apply(null,arguments)},Vp=a._init_with_threads_count=function(){return(Vp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},Fg=a._get_threads_count=function(){return(Fg=a._get_threads_count=a.asm.l).apply(null,arguments)},Nu=a._register_tensor=function(){return(Nu=a._register_tensor=a.asm.m).apply(null,arguments)},ta=a._dispose_data=function(){return(ta=a._dispose_data=a.asm.n).apply(null,arguments)},Dl=a._dispose=function(){return(Dl=a._dispose=a.asm.o).apply(null,arguments)},Dg=a._Abs=function(){return(Dg=a._Abs=a.asm.p).apply(null,arguments)},Rg=a._Add=function(){return(Rg=a._Add=a.asm.q).apply(null,arguments)},Up=a._AddN=function(){return(Up=a._AddN=a.asm.r).apply(null,arguments)},Se=a._All=function(){return(Se=a._All=a.asm.s).apply(null,arguments)},Pg=a._Any=function(){return(Pg=a._Any=a.asm.t).apply(null,arguments)},Og=a._ArgMax=function(){return(Og=a._ArgMax=a.asm.u).apply(null,arguments)},Mg=a._AvgPool=function(){return(Mg=a._AvgPool=a.asm.v).apply(null,arguments)},Lg=a._BatchMatMul=function(){return(Lg=a._BatchMatMul=a.asm.w).apply(null,arguments)},Bg=a._Ceil=function(){return(Bg=a._Ceil=a.asm.x).apply(null,arguments)},Mo=a._ClipByValue=function(){return(Mo=a._ClipByValue=a.asm.y).apply(null,arguments)},zg=a._Conv2D=function(){return(zg=a._Conv2D=a.asm.z).apply(null,arguments)},Wg=a._Conv2DBackpropInput=function(){return(Wg=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},Vg=a._Cos=function(){return(Vg=a._Cos=a.asm.B).apply(null,arguments)},Ug=a._Cosh=function(){return(Ug=a._Cosh=a.asm.C).apply(null,arguments)},Gg=a._CropAndResize=function(){return(Gg=a._CropAndResize=a.asm.D).apply(null,arguments)},Hg=a._Cumsum=function(){return(Hg=a._Cumsum=a.asm.E).apply(null,arguments)},Gp=a._DepthToSpace=function(){return(Gp=a._DepthToSpace=a.asm.F).apply(null,arguments)},jg=a._DepthwiseConv2dNative=function(){return(jg=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},qg=a._Elu=function(){return(qg=a._Elu=a.asm.H).apply(null,arguments)},na=a._Equal=function(){return(na=a._Equal=a.asm.I).apply(null,arguments)},Rl=a._Exp=function(){return(Rl=a._Exp=a.asm.J).apply(null,arguments)},Pl=a._FlipLeftRight=function(){return(Pl=a._FlipLeftRight=a.asm.K).apply(null,arguments)},Kg=a._Floor=function(){return(Kg=a._Floor=a.asm.L).apply(null,arguments)},Xg=a._FloorDiv=function(){return(Xg=a._FloorDiv=a.asm.M).apply(null,arguments)},Yg=a._FusedBatchNorm=function(){return(Yg=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Qg=a._FusedConv2D=function(){return(Qg=a._FusedConv2D=a.asm.O).apply(null,arguments)},Zg=a._FusedDepthwiseConv2D=function(){return(Zg=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Be=a._Gather=function(){return(Be=a._Gather=a.asm.Q).apply(null,arguments)},Jg=a._GatherNd=function(){return(Jg=a._GatherNd=a.asm.R).apply(null,arguments)},eb=a._Greater=function(){return(eb=a._Greater=a.asm.S).apply(null,arguments)},tb=a._GreaterEqual=function(){return(tb=a._GreaterEqual=a.asm.T).apply(null,arguments)},nb=a._LeakyRelu=function(){return(nb=a._LeakyRelu=a.asm.U).apply(null,arguments)},rb=a._Less=function(){return(rb=a._Less=a.asm.V).apply(null,arguments)},sb=a._LessEqual=function(){return(sb=a._LessEqual=a.asm.W).apply(null,arguments)},Ol=a._Log=function(){return(Ol=a._Log=a.asm.X).apply(null,arguments)},Hp=a._LogicalAnd=function(){return(Hp=a._LogicalAnd=a.asm.Y).apply(null,arguments)},jp=a._Max=function(){return(jp=a._Max=a.asm.Z).apply(null,arguments)},ab=a._MaxPool=function(){return(ab=a._MaxPool=a.asm._).apply(null,arguments)},ob=a._Maximum=function(){return(ob=a._Maximum=a.asm.$).apply(null,arguments)},ib=a._Mean=function(){return(ib=a._Mean=a.asm.aa).apply(null,arguments)},ub=a._Min=function(){return(ub=a._Min=a.asm.ba).apply(null,arguments)},cb=a._Minimum=function(){return(cb=a._Minimum=a.asm.ca).apply(null,arguments)},lb=a._MirrorPad=function(){return(lb=a._MirrorPad=a.asm.da).apply(null,arguments)},db=a._Multiply=function(){return(db=a._Multiply=a.asm.ea).apply(null,arguments)},at=a._Neg=function(){return(at=a._Neg=a.asm.fa).apply(null,arguments)},pb=a._NonMaxSuppressionV3=function(){return(pb=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},hb=a._NonMaxSuppressionV4=function(){return(hb=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},fb=a._NonMaxSuppressionV5=function(){return(fb=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},_u=a._NotEqual=function(){return(_u=a._NotEqual=a.asm.ja).apply(null,arguments)},qp=a._OneHot=function(){return(qp=a._OneHot=a.asm.ka).apply(null,arguments)},Kp=a._PadV2=function(){return(Kp=a._PadV2=a.asm.la).apply(null,arguments)},Xp=a._Pow=function(){return(Xp=a._Pow=a.asm.ma).apply(null,arguments)},mb=a._Prelu=function(){return(mb=a._Prelu=a.asm.na).apply(null,arguments)},gb=a._Prod=function(){return(gb=a._Prod=a.asm.oa).apply(null,arguments)},Yp=a._RealDiv=function(){return(Yp=a._RealDiv=a.asm.pa).apply(null,arguments)},bb=a._Relu=function(){return(bb=a._Relu=a.asm.qa).apply(null,arguments)},yb=a._Relu6=function(){return(yb=a._Relu6=a.asm.ra).apply(null,arguments)},vb=a._ResizeBilinear=function(){return(vb=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},xb=a._Reverse=function(){return(xb=a._Reverse=a.asm.ta).apply(null,arguments)},wb=a._RotateWithOffset=function(){return(wb=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Qp=a._Round=function(){return(Qp=a._Round=a.asm.va).apply(null,arguments)},ra=a._Rsqrt=function(){return(ra=a._Rsqrt=a.asm.wa).apply(null,arguments)},kb=a._ScatterNd=function(){return(kb=a._ScatterNd=a.asm.xa).apply(null,arguments)},Ib=a._SelectV2=function(){return(Ib=a._SelectV2=a.asm.ya).apply(null,arguments)},bI=a._Sigmoid=function(){return(bI=a._Sigmoid=a.asm.za).apply(null,arguments)},Zp=a._Sin=function(){return(Zp=a._Sin=a.asm.Aa).apply(null,arguments)},Sb=a._Softmax=function(){return(Sb=a._Softmax=a.asm.Ba).apply(null,arguments)},Cb=a._SparseFillEmptyRows=function(){return(Cb=a._SparseFillEmptyRows=a.asm.Ca).apply(null,arguments)},Tb=a._SparseReshape=function(){return(Tb=a._SparseReshape=a.asm.Da).apply(null,arguments)},Nb=a._SparseSegmentReduction=function(){return(Nb=a._SparseSegmentReduction=a.asm.Ea).apply(null,arguments)},_b=a._Sqrt=function(){return(_b=a._Sqrt=a.asm.Fa).apply(null,arguments)},Eb=a._Square=function(){return(Eb=a._Square=a.asm.Ga).apply(null,arguments)},Ab=a._SquaredDifference=function(){return(Ab=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},$b=a._Step=function(){return($b=a._Step=a.asm.Ia).apply(null,arguments)},Fb=a._StridedSlice=function(){return(Fb=a._StridedSlice=a.asm.Ja).apply(null,arguments)},Db=a._Sub=function(){return(Db=a._Sub=a.asm.Ka).apply(null,arguments)},Rb=a._Sum=function(){return(Rb=a._Sum=a.asm.La).apply(null,arguments)},Pb=a._Tan=function(){return(Pb=a._Tan=a.asm.Ma).apply(null,arguments)},Ob=a._Tanh=function(){return(Ob=a._Tanh=a.asm.Na).apply(null,arguments)},Mb=a._Tile=function(){return(Mb=a._Tile=a.asm.Oa).apply(null,arguments)},Lb=a._TopK=function(){return(Lb=a._TopK=a.asm.Pa).apply(null,arguments)},Bb=a._Transform=function(){return(Bb=a._Transform=a.asm.Qa).apply(null,arguments)},zb=a._Transpose=function(){return(zb=a._Transpose=a.asm.Ra).apply(null,arguments)},Wb=a.__FusedMatMul=function(){return(Wb=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},Vb=a._malloc=function(){return(Vb=a._malloc=a.asm.Ta).apply(null,arguments)},Ub=a._free=function(){return(Ub=a._free=a.asm.Ua).apply(null,arguments)},Jp=a.stackSave=function(){return(Jp=a.stackSave=a.asm.Wa).apply(null,arguments)},eh=a.stackRestore=function(){return(eh=a.stackRestore=a.asm.Xa).apply(null,arguments)},Ml=a.stackAlloc=function(){return(Ml=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=ee;var Eu;function Gb(J){this.name="ExitStatus",this.message="Program terminated with exit("+J+")",this.status=J}hr=function J(){Eu||Ll(),Eu||(hr=J)};function Ll(J){if(J=J||d,bn>0||(Zn(),bn>0))return;function ae(){Eu||(Eu=!0,a.calledRun=!0,!U&&(dr(),Tr(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),pr()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ae()},1)):ae()}if(a.run=Ll,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Ll();var Au;u&&(Au={uncaughtException:process.listeners("uncaughtException").filter(function(J){return!u.uncaughtException.indexOf(J)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(J){return!u.unhandledRejection.indexOf(J)>-1})});var $u;if(typeof s!="undefined")$u=s;else if(typeof WasmBackendModuleThreadedSimd!="undefined")$u=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Au){var Hb=$u._dispose;$u._dispose=function(){Hb(),Au.uncaughtException.forEach(function(J){process.removeListener("uncaughtException",J)}),Au.unhandledRejection.forEach(function(J){process.removeListener("unhandledRejection",J)})}}return s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),hD=1e-7,fD=1e-4,Gl=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Mu=class{refCount(e){return _r("refCount")}incRef(e){return _r("incRef")}timerAvailable(){return!0}time(e){return _r("time")}read(e){return _r("read")}readSync(e){return _r("readSync")}numDataIds(){return _r("numDataIds")}disposeData(e,t){return _r("disposeData")}write(e,t,n){return _r("write")}move(e,t,n,r,s){return _r("move")}memory(){return _r("memory")}floatPrecision(){return _r("floatPrecision")}epsilon(){return this.floatPrecision()===32?hD:fD}dispose(){return _r("dispose")}};function _r(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function DI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,dh(e,t,n)}function mD(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,dh(e,n,r),dh(t,n,r)}function Hl(e,t,n){return Math.max(e,Math.min(t,n))}function gD(e){return e%2==0?e:e+1}function dh(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function bD(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function yD(e,t){let n=Math.random();return t*n+(1-n)*e}function vD(e,t){let n=0;for(let r=0;r<e.length;r++){let s=Number(e[r])-Number(t[r]);n+=s*s}return n}function P(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function wn(e,t,n=""){P(ia(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function zo(e){P(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Wo(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||yn(e)&&!n)for(let r=0;r<e.length;++r)Wo(e[r],t,n);else t.push(e);return t}function wt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function xD(e){return e.length===0}function ia(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Lu(e){return e%1==0}function wD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function kD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function ID(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return DI(t),t}function jl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function SD(e,t=r=>0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function CD(e,t){let n=1,r=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function Er(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),P(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),P(e.every(r=>Lu(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function RI(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:Er(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function PI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function OI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function MI(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function LI(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function TD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function yn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function Yb(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function BI(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ua(e){return typeof e=="string"||e instanceof String}function zI(e){return typeof e=="boolean"}function WI(e){return typeof e=="number"}function ph(e){return Array.isArray(e)?ph(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":WI(e)?"float32":ua(e)?"string":zI(e)?"bool":"float32"}function ca(e){return!!(e&&e.constructor&&e.call&&e.apply)}function hh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Bu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function VI(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;o<a;o++)s[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((u,l)=>u*l)*(r?2:1);for(let u=0;u<a;u++)s[u]=VI(e+u*i,o,n,r)}return s}function zu(e,t,n=!1){if(e.length===0)return t[0];let r=e.reduce((s,a)=>s*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return VI(0,e,t,n)}function Qb(e,t){let n=fh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function fh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function ND(e,t){let n=e.reduce((r,s)=>r*s,1);if(t==null||t==="float32")return zu(e,new Float32Array(n));if(t==="int32")return zu(e,new Int32Array(n));if(t==="bool")return zu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Zb(e){e.forEach(t=>{P(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function _D(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s<e.length-1;++s)r+=n[s]*e[s];return r}function ED(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let s=0;s<r.length-1;++s)r[s]=Math.floor(e/n[s]),e-=r[s]*n[s];return r[r.length-1]=e,r}function Jb(e){return e&&e.then&&typeof e.then=="function"}var UI="tfjsflags",GI=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=AD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Jb(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);UI in e&&e[UI].split(",").forEach(n=>{let[r,s]=n.split(":");this.urlFlags[r]=FD(r,s)})}};function AD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>($D(t,r[0],r[1]),r.join("="))),t}function $D(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function FD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Wu}var Wu=null;function DD(e){Wu=e}var ey;function HI(){if(ey==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ey=e}return ey}function RD(){let e=HI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ty(e,t){let n=RD();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Vo="Abs",Vu="Acos",Uu="Acosh",_s="Add",la="AddN",Gu="All",Hu="Any",da="ArgMax",ju="ArgMin",qu="Asin",Ku="Asinh",Xu="Atan",Yu="Atanh",Qu="Atan2",pa="AvgPool",mh="AvgPoolGrad",ql="AvgPool3D",gh="AvgPool3DGrad",ha="BatchMatMul",Uo="BatchToSpaceND",bh="Bincount",jI="BroadcastTo",yh="BroadcastArgs",fa="Cast",ma="Ceil",Es="ClipByValue",Kl="Complex",Xl="ComplexAbs",Go="Concat",ga="Conv2D",vh="Conv2DBackpropFilter",ba="Conv2DBackpropInput",Yl="Conv3D",xh="Conv3DBackpropFilterV2",wh="Conv3DBackpropInputV2",ya="Cos",va="Cosh",Ho="Cumsum",jo="CropAndResize",kh="DenseBincount",qo="DepthToSpace",xa="DepthwiseConv2dNative",Ih="DepthwiseConv2dNativeBackpropFilter",Sh="DepthwiseConv2dNativeBackpropInput",Ch="Diag",Ql="Dilation2D",Th="Dilation2DBackpropInput",Nh="Dilation2DBackpropFilter",wa="RealDiv",Zl="Einsum",ka="Elu",_h="EluGrad",Zu="Erf",Ko="Equal",Ia="Exp",Xo="ExpandDims",Yo="Expm1",Eh="FFT",Ju="Fill",Qo="FlipLeftRight",Sa="Floor",Ca="FloorDiv",Ta="FusedBatchNorm",Zo="GatherV2",Jo="GatherNd",ei="Greater",Na="GreaterEqual",_a="Identity",Ah="IFFT",Jl="Imag",ec="IsFinite",tc="IsInf",nc="IsNan",ti="LeakyRelu",ni="Less",ri="LessEqual",$h="LinSpace",Ea="Log",rc="Log1p",si="LogicalAnd",sc="LogicalNot",ed="LogicalOr",qI="LogSoftmax",td="LRN",Fh="LRNGrad",Aa="Max",$a="Maximum",Fa="MaxPool",Dh="MaxPoolGrad",nd="MaxPool3D",Rh="MaxPool3DGrad",Ph="MaxPoolWithArgmax",Da="Mean",Ra="Min",Pa="Minimum",Oa="MirrorPad",ac="Mod",Oh="Multinomial",Ma="Multiply",ai="Neg",oi="NotEqual",ii="NonMaxSuppressionV3",oc="NonMaxSuppressionV4",ui="NonMaxSuppressionV5",ci="OnesLike",li="OneHot",di="Pack",La="PadV2",PD="Pool",Ba="Pow",za="Prelu",pi="Prod",ic="Range",rd="Real",uc="Reciprocal",Wa="Relu",hi="Reshape",cc="ResizeNearestNeighbor",Mh="ResizeNearestNeighborGrad",Va="ResizeBilinear",Lh="ResizeBilinearGrad",Ua="Relu6",fi="Reverse",mi="Round",Ga="Rsqrt",gi="ScatterNd",bi="Select",lc="Selu",yi="Slice",Ha="Sin",vi="Sinh",dc="Sign",ja="Sigmoid",pc="Softplus",qa="Sqrt",Ka="Sum",xi="SpaceToBatchND",wi="SplitV",Xa="Softmax",sd="SparseFillEmptyRows",hc="SparseReshape",ad="SparseSegmentMean",od="SparseSegmentSum",id="SparseToDense",Ya="SquaredDifference",fc="Square",ki="StridedSlice",ud="StringNGrams",Bh="StringSplit",zh="StringToHashBucketFast",Qa="Sub",Ii="Tan",Za="Tanh",As="Tile",Si="TopK",Ci="Transform",Ja="Transpose",Wh="Unique",Ti="Unpack",cd="UnsortedSegmentSum",Ni="ZerosLike",eo="Step",ld="FromPixels",_i="RotateWithOffset",to="_FusedMatMul",no="FusedConv2D",ro="FusedDepthwiseConv2D";function so(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function OD(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var mc=ty("kernelRegistry",()=>new Map),dd=ty("gradRegistry",()=>new Map);function Vh(e,t){let n=ry(e,t);return mc.get(n)}function ny(e){return dd.get(e)}function Uh(e){let t=mc.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function gc(e){let{kernelName:t,backendName:n}=e,r=ry(t,n);mc.has(r)&&so(`The kernel '${t}' for backend '${n}' is already registered`),mc.set(r,e)}function KI(e){let{kernelName:t}=e;dd.has(t)&&X().getBool("DEBUG")&&so(`Overriding the gradient for '${t}'`),dd.set(t,e)}function MD(e,t){let n=ry(e,t);if(!mc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);mc.delete(n)}function LD(e){if(!dd.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);dd.delete(e)}function BD(e,t){Uh(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});gc(s)})}function ry(e,t){return`${t}_${e}`}var w={};Ee(w,{arraysEqual:()=>ia,assert:()=>P,assertNonNegativeIntegerDimensions:()=>Zb,assertNonNull:()=>zo,assertShapesMatch:()=>wn,bytesFromStringArray:()=>BI,bytesPerElement:()=>Yb,checkConversionForErrors:()=>MI,clamp:()=>Hl,computeStrides:()=>Bu,createScalarValue:()=>HD,createShuffledIndices:()=>ID,decodeString:()=>jh,distSquared:()=>vD,encodeString:()=>fd,fetch:()=>qD,fingerPrint64:()=>GD,flatten:()=>Wo,getArrayFromDType:()=>OI,getTypedArrayFromDType:()=>PI,hasEncodingLoss:()=>TD,hexToLong:()=>pd,indexToLoc:()=>ED,inferDtype:()=>ph,inferFromImplicitShape:()=>CD,isBoolean:()=>zI,isFunction:()=>ca,isInt:()=>Lu,isNumber:()=>WI,isPromise:()=>Jb,isScalarShape:()=>xD,isString:()=>ua,isTypedArray:()=>yn,isValidDtype:()=>LI,locToIndex:()=>_D,makeOnesTypedArray:()=>Qb,makeZerosNestedTypedArray:()=>ND,makeZerosTypedArray:()=>fh,nearestDivisor:()=>hh,nearestLargerEven:()=>gD,now:()=>hd,parseAxisParam:()=>Er,randUniform:()=>yD,repeatedTry:()=>SD,rightPad:()=>jl,shuffle:()=>DI,shuffleCombo:()=>mD,sizeFromShape:()=>wt,sizeToSquarishShape:()=>kD,squeezeShape:()=>RI,sum:()=>bD,swap:()=>dh,tanh:()=>wD,toNestedArray:()=>zu,toTypedArray:()=>Hh});var XI=Bo(QF()),Ei=XI.default||XI;function pd(e){return Ei.fromString(e,!0,16)}var YI=pd("c3a5c85c97cb3127"),Ai=pd("b492b66fbe98f273"),kn=pd("9ae16a3b2f90404f");function sy(e){return e.xor(e.shru(47))}function QI(e,t,n){let r=e.slice(t,t+n);return Ei.fromBytes(Array.from(r),!0,!0)}function yt(e,t){return QI(e,t,8)}function ZI(e,t){return QI(e,t,4)}function en(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ao(e,t,n=pd("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function zD(e,t,n,r,s,a){s=s.add(e),a=en(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(en(s,44)),[s.add(r),a.add(o)]}function Gh(e,t,n,r){return zD(yt(e,t),yt(e,t+8),yt(e,t+16),yt(e,t+24),n,r)}function WD(e,t=e.length){if(t>=8){let n=kn.add(t*2),r=yt(e,0).add(kn),s=yt(e,t-8),a=en(s,37).mul(n).add(r),o=en(r,25).add(s).mul(n);return ao(a,o,n)}if(t>=4){let n=kn.add(t*2),r=ZI(e,0);return ao(r.shl(3).add(t),ZI(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return sy(kn.mul(a).xor(YI.mul(o))).mul(kn)}return kn}function VD(e,t=e.length){let n=kn.add(t*2),r=yt(e,0).mul(Ai),s=yt(e,8),a=yt(e,t-8).mul(n),o=yt(e,t-16).mul(kn);return ao(en(r.add(s),43).add(en(a,30)).add(o),r.add(en(s.add(kn),18)).add(a),n)}function UD(e,t=e.length){let n=kn.add(t*2),r=yt(e,0).mul(kn),s=yt(e,8),a=yt(e,t-8).mul(n),o=yt(e,t-16).mul(kn),i=en(r.add(s),43).add(en(a,30)).add(o),u=ao(i,r.add(en(s.add(kn),18)).add(a),n),l=yt(e,16).mul(n),c=yt(e,24),d=i.add(yt(e,t-32)).mul(n),p=u.add(yt(e,t-24)).mul(n);return ao(en(l.add(c),43).add(en(d,30)).add(p),l.add(en(c.add(r),18)).add(d),n)}function GD(e,t=e.length){let n=Ei.fromNumber(81,!0);if(t<=32)return t<=16?WD(e,t):VD(e,t);if(t<=64)return UD(e,t);let r=n,s=n.mul(Ai).add(113),a=sy(s.mul(kn).add(113)).mul(kn),o=[Ei.UZERO,Ei.UZERO],i=[Ei.UZERO,Ei.UZERO];r=r.mul(kn).add(yt(e,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do r=en(r.add(s).add(o[0]).add(yt(e,u+8)),37).mul(Ai),s=en(s.add(o[1]).add(yt(e,u+48)),42).mul(Ai),r=r.xor(i[1]),s=s.add(o[0]).add(yt(e,u+40)),a=en(a.add(i[0]),33).mul(Ai),o=Gh(e,u,o[1].mul(Ai),r.add(i[0])),i=Gh(e,u+32,a.add(i[1]),s.add(yt(e,u+16))),[a,r]=[r,a],u+=64;while(u!==l);let d=Ai.add(a.and(255).shl(1));return u=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=en(r.add(s).add(o[0]).add(yt(e,u+8)),37).mul(d),s=en(s.add(o[1]).add(yt(e,u+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(yt(e,u+40))),a=en(a.add(i[0]),33).mul(d),o=Gh(e,u,o[1].mul(d),r.add(i[0])),i=Gh(e,u+32,a.add(i[1]),s.add(yt(e,u+16))),[a,r]=[r,a],ao(ao(o[0],i[0],d).add(sy(s).mul(YI)).add(a),ao(o[1],i[1],d).add(r),d)}function HD(e,t){return t==="string"?fd(e):Hh([e],t)}function jD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Hh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Wo(e)),X().getBool("DEBUG")&&MI(e,t),jD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function hd(){return X().platform.now()}function qD(e,t){return X().platform.fetch(e,t)}function fd(e,t="utf-8"){return t=t||"utf-8",X().platform.encode(e,t)}function jh(e,t="utf-8"){return t=t||"utf-8",X().platform.decode(e,t)}var KD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new YD)}profileKernel(e,t,n){let r,s=()=>{r=n()},a,o=hd();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of r)u.dataSync();a=Promise.resolve({kernelMs:hd()-o})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<r.length;u++){let l=r[u];l.data().then(c=>{XD(c,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function XD(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let s=e[r];if(isNaN(s)||!isFinite(s))return console.warn(`Found ${s} in the result of '${n}'`),!0}return!1}var YD=class{logKernelProfile(e,t,n,r,s,a){let o=typeof r=="number"?jl(`${r}ms`,9):r.error,i=jl(e,25),u=t.rank,l=t.size,c=jl(t.shape.toString(),14),d="";for(let p in s){let h=s[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${u}D ${c} %c${l} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function QD(e,t,n){let r={},s={};for(let u=0;u<t.length;u++)r[t[u].id]=!0;for(let u=0;u<e.length;u++){let l=e[u],c=l.inputs;for(let d in c){let p=c[d],h=!1;for(let f=0;f<t.length;f++)if(r[p.id]){l.outputs.forEach(m=>r[m.id]=!0),h=!0,s[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let u=e.length-1;u>=0;u--){let l=e[u],c=l.inputs;for(let d=0;d<l.outputs.length;d++)if(a[l.outputs[d].id]){for(let p in c)a[c[p].id]=!0,o[l.id]=!0;break}}let i=[];for(let u=0;u<e.length;u++){let l=e[u];if(s[l.id]&&o[l.id]){let c={};for(let p in l.inputs){let h=l.inputs[p];r[h.id]&&(c[p]=h)}let d=Object.assign({},l);d.inputs=c,d.outputs=l.outputs,i.push(d)}}return i}function ZD(e,t,n,r){for(let s=t.length-1;s>=0;s--){let a=t[s],o=[];if(a.outputs.forEach(u=>{let l=e[u.id];l!=null?o.push(l):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let u in a.inputs){if(!(u in i))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(i)}.`);let l=n(()=>i[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=a.inputs[u];if(!ia(l.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=l;else{let d=e[c.id];e[c.id]=r(d,l),d.dispose()}}}}var JI=20,md=3,ay=7;function JD(e,t,n,r){let s=Bu(t),a=eR(e,t,n,s),o=t.length,i=qh(e,t,n,s,a),u=["Tensor"];return r&&(u.push(` dtype: ${n}`),u.push(` rank: ${o}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(i.map(l=>" "+l).join(`
`)),u.join(`
`)}function eR(e,t,n,r){let s=wt(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,u=n==="complex64"?bd(e):e;if(i>1)for(let l=0;l<s/a;l++){let c=l*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],gd(u[c+d],0,n).length)}return o}function gd(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(ay))} + ${parseFloat(e[1].toFixed(ay))}j`:ua(e)?r=`'${e}'`:n==="bool"?r=e1(e):r=parseFloat(e.toFixed(ay)).toString(),jl(r,t)}function e1(e){return e===0?"false":"true"}function qh(e,t,n,r,s,a=!0){let o=n==="complex64"?2:1,i=t[0],u=t.length;if(u===0){if(n==="complex64"){let m=bd(e);return[gd(m[0],0,n)]}return n==="bool"?[e1(e[0])]:[e[0].toString()]}if(u===1){if(i>JI){let g=md*o,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-md)*o,i*o));return n==="complex64"&&(b=bd(b),y=bd(y)),["["+b.map((v,x)=>gd(v,s[x],n)).join(", ")+", ..., "+y.map((v,x)=>gd(v,s[i-md+x],n)).join(", ")+"]"]}let m=n==="complex64"?bd(e):Array.from(e);return["["+m.map((g,b)=>gd(g,s[b],n)).join(", ")+"]"]}let l=t.slice(1),c=r.slice(1),d=r[0]*o,p=[];if(i>JI){for(let m=0;m<md;m++){let g=m*d,b=g+d;p.push(...qh(e.slice(g,b),l,n,c,s,!1))}p.push("...");for(let m=i-md;m<i;m++){let g=m*d,b=g+d;p.push(...qh(e.slice(g,b),l,n,c,s,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,b=g+d;p.push(...qh(e.slice(g,b),l,n,c,s,m===i-1))}let h=u===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
`;for(let m=2;m<u;m++)f+=`
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function bd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Kt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=wt(e),n!=null){let r=n.length;P(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||OI(t,this.size),this.strides=Bu(e)}set(e,...t){t.length===0&&(t=[0]),P(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return as().makeTensor(this.values,this.shape,this.dtype)}},as=null,bc=null,tR=null;function nR(e){as=e}function rR(e){bc=e}function sR(e){tR=e}var Ae=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=wt(e),this.strides=Bu(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return bc.buffer(this.shape,this.dtype,e)}bufferSync(){return bc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return zu(this.shape,e,this.dtype==="complex64")}arraySync(){return zu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=as().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>jh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=as().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>jh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await as().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(as().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return bc.print(this,e)}clone(){return this.throwIfDisposed(),bc.clone(this)}toString(e=!1){let t=this.dataSync();return JD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),bc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),as().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function aR(){return ty("Tensor",()=>Ae)}aR();var oo=class extends Ae{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ia(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);as().disposeTensor(this),this.dataId=e.dataId,as().incRef(this,null)}dispose(){as().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(oo,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var Vr={};Ee(Vr,{assertTypesMatch:()=>t1,getTensorsInContainer:()=>dy,isTensorInList:()=>iR,makeTypesMatch:()=>At});var oy;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(oy||(oy={}));var iy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(iy||(iy={}));var uy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(uy||(uy={}));var cy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(cy||(cy={}));var ly;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(ly||(ly={}));var oR={float32:cy,int32:iy,bool:uy,complex64:ly};function In(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return oR[e][t]}function yd(e){return In(e,"int32")}function At(e,t){if(e.dtype===t.dtype)return[e,t];let n=In(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function t1(e,t){P(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function iR(e,t){return t.some(n=>n.id===e.id)}function dy(e){let t=[],n=new Set;return n1(e,t,n),t}function n1(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!uR(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),n1(a,t,n))}}function uR(e){return Array.isArray(e)||typeof e=="object"}function py(e){return e.kernelName!=null}var r1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},hy=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new r1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(so(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new KD(this.backendInstance),!0}setupRegisteredKernels(){Uh(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Uh(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Mu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,so(`Initialization of backend ${e} failed`),so(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return so(`Initialization of backend ${e} failed`),so(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:s}=this.initializeBackend(n);if(s||r)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,s=this.readSync(t),a=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,s,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return hy.nextTensorId++}nextVariableId(){return hy.nextVariableId++}clone(e){let t=z.runKernel(_a,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},u={dtype:o};return z.runKernel(fa,i,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Vh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,u=py(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(py(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Vh(h,this.backendName);P(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let b=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>{if(x.rank!=null)return x;let{dataId:k,shape:T,dtype:C}=x;return this.makeTensorFromDataId(k,T,C)});if(r){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,m,g),g}}let{inputs:l,attrs:c}=e,d=py(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(u,l,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),r&&this.addTapeNode(u,l,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=ny(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(P(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(u=>t[u])):o=s.map(u=>t[u]);let i=n.filter((u,l)=>a[l]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&ua(e[0])&&(s=e.map(i=>fd(i)));let a=r.write(s,t,n),o=new Ae(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),u=BI(s);this.state.numBytes+=u-i.bytes,i.bytes=u}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ae(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new oo(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Yb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof oo||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Yb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=ny(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=u=>(u=u.map((l,c)=>{if(l==null){let d=n[c],p=fh(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return l}),r(u.length>1?u:u[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=dy(e),n=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!n.has(a.id)&&a.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(P(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));P(s instanceof Ae,()=>"The result y returned by f() must be a tensor.");let a=QD(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?cR(s.shape):n,ZD(o,a,u=>this.tidy(u),lR);let i=t.map(u=>o[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let l of u.saved)l.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return P(ca(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{P(t.every(o=>o instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),P(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),P(ca(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let u=n.gradFunc(o,i),l=Array.isArray(u)?u:[u];P(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),P(l.every(d=>d instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return l.forEach((d,p)=>{c[p]=()=>d}),c};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=hd(),n=await this.backend.time(e);return n.wallMs=hd()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new r1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},fy=hy;fy.nextTensorId=0;fy.nextVariableId=0;function cR(e){let t=Qb(wt(e),"float32");return z.makeTensor(t,e,"float32")}function s1(){let e=HI();if(e._tfengine==null){let t=new GI(e);e._tfengine=new fy(t)}return DD(e._tfengine.ENV),nR(()=>e._tfengine),e._tfengine}var z=s1();function lR(e,t){let n={a:e,b:t};return z.runKernel(_s,n)}var yc={};Ee(yc,{isBrowser:()=>a1,isMobile:()=>hR,mockIsMobile:()=>pR});function dR(){return typeof navigator!="undefined"&&navigator!=null}var my;function pR(e){my=e}function hR(e){if(my!==void 0)return my;if(e||dR()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function a1(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ur=X();Ur.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ur.registerFlag("IS_BROWSER",()=>a1());Ur.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ur.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ur.registerFlag("PROD",()=>!1);Ur.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ur.getBool("DEBUG"));Ur.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ur.registerFlag("IS_TEST",()=>!1);Ur.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Ur.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function os(e,t){let n=e;if(yn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||yn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&X().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&o1(e,r,[]),r}function o1(e,t,n){if(n=n||[],!Array.isArray(e)&&!yn(e)){P(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}P(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),P(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s<e.length;++s)o1(e[s],r,n.concat(s))}function i1(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function $(e,t,n,r="numeric"){if(e instanceof Ae)return i1(r,e.dtype,t,n),e;let s=ph(e);if(s!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(s=r),i1(r,s,t,n),e==null||!yn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let u=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${u}'`)}let a=os(e,s);!yn(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?Hh(e,s):Wo(e,[],!0);return z.makeTensor(i,a,s)}function vd(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>$(a,`${t}[${o}]`,n,r))}var u1="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+u1;let s=(...a)=>{z.startScope(n);try{let o=r(...a);return Jb(o)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(o),o}catch(o){throw z.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function fR(e,t){let n=$(e,"real","complex"),r=$(t,"imag","complex");wn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return z.runKernel(Kl,s)}var io=W({complex_:fR});function uo(e,t,n,r){if(r==null&&(r=ph(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!yn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Zb(t);let s=wt(t),a=wt(n);P(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],u=o===n.length-1?i!==wt(t.slice(o)):!0;P(n[o]===t[o]||!u,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!yn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Hh(e,r):Wo(e,[],!0),z.makeTensor(e,t,r)}function er(e,t,n){let r=os(e,n);return uo(e,t,r,n)}var gy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Kh=4;async function mR(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<s.length;++o){let i=s[o],u=Array.isArray(e)?e[o].tensor:e[i];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${u.dtype}`);let l={name:i,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async d=>{let p=await u.bytes(),h=p.reduce((g,b)=>g+b.length,0)+Kh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let b=p[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=Kh,f.set(b,m),m+=b.length}d(f)});r.push(c)}else r.push(u.data());t!=null&&(l.group=t),n.push(l)}let a=await Promise.all(r);return{data:gR(a),specs:n}}function c1(e,t){let n={},r,s=0;for(let a of t){let o=a.name,i=a.dtype,u=a.shape,l=wt(u),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=gy[d.dtype],h=e.slice(s,s+l*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*d.scale+d.min}}else if(d.dtype==="float16")r===void 0&&(r=kR()),c=r(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=l*p}else if(i==="string"){let d=wt(a.shape);c=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(s,s+Kh))[0];s+=Kh;let f=new Uint8Array(e.slice(s,s+h));c.push(f),s+=h}}else{let d=gy[i],p=e.slice(s,s+l*d);if(i==="float32")c=new Float32Array(p);else if(i==="int32")c=new Int32Array(p);else if(i==="bool")c=new Uint8Array(p);else if(i==="complex64"){c=new Float32Array(p);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let b=0;b<h.length;b++)h[b]=c[b*2],f[b]=c[b*2+1];let m=er(h,u,"float32"),g=er(f,u,"float32");n[o]=io(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);s+=l*d}i!=="complex64"&&(n[o]=er(c,u,i))}return n}function gR(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var by=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function l1(e){return by?Buffer.byteLength(e):new Blob([e]).size}function bR(e){if(by)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r<s;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function yR(e){if(by){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function yy(e){if(e.length===1)return e[0];let t=0;e.forEach(s=>{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function d1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function p1(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function vy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function xd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:l1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:l1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function vR(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function xR(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function wR(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function kR(){let e=vR(),t=xR(),n=wR();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o<r.length;o++){let i=r[o],u=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=u}return new Float32Array(s)}}var Pt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Pt.instance==null&&(Pt.instance=new Pt),Pt.instance}static registerSaveRouter(e){Pt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Pt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Pt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Pt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Pt.getInstance().loadRouters:Pt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},IR=e=>Pt.registerSaveRouter(e),SR=e=>Pt.registerLoadRouter(e),CR=e=>Pt.getSaveHandlers(e),TR=(e,t)=>Pt.getLoadHandlers(e,t),xy="tensorflowjs",wy=1,$i="models_store",co="model_info_store";function h1(){if(!X().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function ky(e){let t=e.result;t.createObjectStore($i,{keyPath:"modelPath"}),t.createObjectStore(co,{keyPath:"modelPath"})}var Fi=class{constructor(e){if(this.indexedDB=h1(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(xy,wy);s.onupgradeneeded=()=>ky(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction($i,"readonly"),u=o.objectStore($i).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=l=>(a.close(),r(u.error)),o.oncomplete=()=>a.close()}else{let o=xd(t),i=a.transaction(co,"readwrite"),u=i.objectStore(co),l=u.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;l.onsuccess=()=>{c=a.transaction($i,"readwrite");let p=c.objectStore($i).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{u=i.objectStore(co);let f=u.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(p.error)),f.onerror=m=>(a.close(),r(p.error))}},l.onerror=d=>(a.close(),r(l.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Fi.URL_SCHEME="indexeddb://";var f1=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Fi.URL_SCHEME)?NR(e.slice(Fi.URL_SCHEME.length)):null;Pt.registerSaveRouter(f1);Pt.registerLoadRouter(f1);function NR(e){return new Fi(e)}function _R(e){return e.startsWith(Fi.URL_SCHEME)?e.slice(Fi.URL_SCHEME.length):e}var ER=class{constructor(){this.indexedDB=h1()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(xy,wy);n.onupgradeneeded=()=>ky(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(co,"readonly"),o=s.objectStore(co).getAll();o.onsuccess=()=>{let i={};for(let u of o.result)i[u.modelPath]=u.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=_R(e),new Promise((t,n)=>{let r=this.indexedDB.open(xy,wy);r.onupgradeneeded=()=>ky(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(co,"readwrite"),o=a.objectStore(co),i=o.get(e),u;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=o.delete(e),c=()=>{u=s.transaction($i,"readwrite");let p=u.objectStore($i).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};l.onsuccess=c,l.onerror=d=>(c(),s.close(),n(i.error))}},i.onerror=l=>(s.close(),n(i.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},$s="/",vc="tensorflowjs_models",m1="info",AR="model_topology",$R="weight_specs",FR="weight_data",DR="model_metadata";function g1(e){return{info:[vc,e,m1].join($s),topology:[vc,e,AR].join($s),weightSpecs:[vc,e,$R].join($s),weightData:[vc,e,FR].join($s),modelMetadata:[vc,e,DR].join($s)}}function b1(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function RR(e){let t=e.split($s);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join($s)}function PR(e){return e.startsWith(Di.URL_SCHEME)?e.slice(Di.URL_SCHEME.length):e}var Di=class{constructor(e){if(!X().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=g1(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=xd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,bR(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw b1(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=yR(a),t}};Di.URL_SCHEME="localstorage://";var y1=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Di.URL_SCHEME)?OR(e.slice(Di.URL_SCHEME.length)):null;Pt.registerSaveRouter(y1);Pt.registerLoadRouter(y1);function OR(e){return new Di(e)}var MR=class{constructor(){P(X().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),P(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=vc+$s,n=$s+m1;for(let r=0;r<this.LS.length;++r){let s=this.LS.key(r);if(s.startsWith(t)&&s.endsWith(n)){let a=RR(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=PR(e);let t=g1(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return b1(t),n}},xc="://",fr=class{constructor(){this.managers={}}static getInstance(){return fr.instance==null&&(fr.instance=new fr),fr.instance}static registerManager(e,t){P(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(xc)&&(e=e.slice(0,e.indexOf(xc))),P(e.length>0,()=>"scheme must not be an empty string.");let n=fr.getInstance();P(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Xh(e){if(e.indexOf(xc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${fr.getSchemes().join(",")}`);return{scheme:e.split(xc)[0],path:e.split(xc)[1]}}async function v1(e,t,n=!1){P(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Pt.getLoadHandlers(e);P(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),P(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=Pt.getSaveHandlers(t);P(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),P(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Xh(e).scheme,u=Xh(e).path,l=i===Xh(e).scheme,c=await s.load();n&&l&&await fr.getManager(i).removeModel(u);let d=await o.save(c);return n&&!l&&await fr.getManager(i).removeModel(u),d.modelArtifactsInfo}async function LR(){let e=fr.getSchemes(),t={};for(let n of e){let r=await fr.getManager(n).listModels();for(let s in r){let a=n+xc+s;t[a]=r[s]}}return t}async function BR(e){let t=Xh(e);return fr.getManager(t.scheme).removeModel(t.path)}async function zR(e,t){return v1(e,t,!1)}async function WR(e,t){return v1(e,t,!0)}var VR=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(X().get("IS_BROWSER")){X().setPlatform("browser",new VR);try{fr.registerManager(Di.URL_SCHEME,new MR)}catch(e){}try{fr.registerManager(Fi.URL_SCHEME,new ER)}catch(e){}}var UR={importFetch:()=>ZF()},Iy,GR=class{constructor(){this.util=JF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return X().global.fetch!=null?X().global.fetch(e,t):(Iy==null&&(Iy=UR.importFetch()),Iy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};X().get("IS_NODE")&&X().setPlatform("node",new GR);function $e(e,t="float32",n){return t=t||"float32",Zb(e),new Kt(e,t,n)}function HR(e,t){let n=$(e,"x","cast");if(!LI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return z.runKernel(fa,r,s)}var ue=W({cast_:HR});function jR(e){let n={x:$(e,"x","clone","string_or_numeric")};return z.runKernel(_a,n)}var Fs=W({clone_:jR});function x1(e,t=!1){console.log(e.toString(t))}s1();var qR={buffer:$e,cast:ue,clone:Fs,print:x1};rR(qR);var tn={};Ee(tn,{browserFiles:()=>e3,browserHTTPRequest:()=>a3,concatenateArrayBuffers:()=>yy,copyModel:()=>zR,decodeWeights:()=>c1,encodeWeights:()=>mR,fromMemory:()=>i3,getLoadHandlers:()=>TR,getModelArtifactsForJSON:()=>vy,getModelArtifactsInfoForJSON:()=>xd,getSaveHandlers:()=>CR,http:()=>Ny,isHTTPScheme:()=>Ty,listModels:()=>LR,loadWeights:()=>t3,moveModel:()=>WR,registerLoadRouter:()=>SR,registerSaveRouter:()=>IR,removeModel:()=>BR,weightsLoaderFactory:()=>S1,withSaveHandler:()=>u3});var KR="model",XR=".json",YR=".weights.bin";function w1(e){return new Promise(t=>setTimeout(t)).then(e)}var Sy=class{constructor(e){if(!X().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Sy.URL_SCHEME)&&(e=e.slice(Sy.URL_SCHEME.length)),(e==null||e.length===0)&&(e=KR),this.modelJsonFileName=e+XR,this.weightDataFileName=e+YR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=p1(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await w1(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await w1(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:xd(e)}}}},Yh=Sy;Yh.URL_SCHEME="downloads://";var QR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=vy(s,u=>this.loadWeights(u));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,yy(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>d1(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=d1(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},ZR=e=>X().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Yh.URL_SCHEME)?JR(e.slice(Yh.URL_SCHEME.length)):null;Pt.registerSaveRouter(ZR);function JR(e="model"){return new Yh(e)}function e3(e){return new QR(e)}function k1(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=u=>(u.then(l=>{let c=n+ ++s/e.length*(r-n);return t(c),l}),u);function o(u){P(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function i(u,l){P(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),P(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),P(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(e.map(a))}async function I1(e,t){t==null&&(t={});let n=t.fetchFunc==null?X().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await k1(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(i):await k1(i,t.onProgress,u,l)}async function t3(e,t="",n,r){return S1(o=>I1(o,{requestInit:r}))(e,t,n)}function S1(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=gy[b]*wt(g.shape),v=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};r!=null?r.forEach((x,k)=>{x===g.name&&(v(),o[k]=!0)}):v(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let u=s.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];u.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let c=await e(l),d={},p=0;return u.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=c[p+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let k=new Uint8Array(c[p+x]);b.set(k,y),y+=k.byteLength}a[h].forEach(x=>{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),T=c1(k,[x.manifestEntry]);for(let C in T)d[C]=T[C]}),p+=f}),d}}var n3="application/octet-stream",r3="application/json",Cy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(P(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=X().platform.fetch,P(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&P(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=p1(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:r3}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:n3}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:xd(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return vy(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=s3(t),s=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let o=[],i=[];for(let l of e)for(let c of l.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(s+c+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let u=await I1(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,yy(u)]}};Cy.URL_SCHEME_REGEX=/^https?:\/\//;function s3(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function Ty(e){return e.match(Cy.URL_SCHEME_REGEX)!=null}var C1=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Ty(r)):n=Ty(e),n)return Ny(e,t)}return null};Pt.registerSaveRouter(C1);Pt.registerLoadRouter(C1);function Ny(e,t){return new Cy(e,t)}function a3(e,t){return Ny(e,t)}var _y=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},o3=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function i3(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new _y(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new _y({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new _y({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function u3(e){return new o3(e)}var T1={};Ee(T1,{confusionMatrix:()=>h3});function c3(e,t,n=!1,r=!1){let s=$(e,"a","matMul"),a=$(t,"b","matMul");[s,a]=At(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return z.runKernel(ha,o,i)}var Re=W({matMul_:c3});function l3(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:$(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return z.runKernel(li,a,o)}var wd=W({oneHot_:l3});function d3(e,t){let n=$(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{P(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return z.runKernel(Ja,r,s)}var Oe=W({transpose_:d3});function p3(e,t,n){let r=$(e,"labels","confusionMatrix"),s=$(t,"predictions","confusionMatrix");P(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),P(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),P(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),P(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),P(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=wd(ue(r,"int32"),n),o=wd(ue(s,"int32"),n),i=Oe(a),u=Re(i,o);return ue(u,"int32")}var h3=W({confusionMatrix_:p3}),Ri={};Ee(Ri,{assertAndGetBroadcastShape:()=>ht,getBroadcastDims:()=>N1,getReductionAxes:()=>zt});function N1(e,t){let n=e.length,r=[];for(let s=0;s<n;s++){let a=n-1-s,o=e[a]||1;(t[t.length-1-s]||1)>1&&o===1&&r.unshift(a)}return r}function zt(e,t){let n=[];for(let r=0;r<t.length;r++){let s=e[e.length-r-1],a=t.length-r-1,o=t[a];(s==null||s===1&&o>1)&&n.unshift(a)}return n}function ht(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s<r;s++){let a=e[e.length-s-1];a==null&&(a=1);let o=t[t.length-s-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Pi={};Ee(Pi,{fromPixels:()=>x3,fromPixelsAsync:()=>y3,toPixels:()=>v3});function Qh(e,t,n){if(zo(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=os(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return uo(e,t,r,n)}var Oi;function _1(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Vh(ld,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(ld,f,m)}let[l,c]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,l,c).data;else if(r||n)d=e.data;else if(a||s||i){if(Oi==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Oi=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Oi=document.createElement("canvas").getContext("2d");Oi.canvas.width=l,Oi.canvas.height=c,Oi.drawImage(e,0,0,l,c),d=Oi.getImageData(0,0,l,c).data}let p;if(t===4)p=new Int32Array(d);else{let f=l*c;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Qh(p,[c,l,t],"int32")}function f3(e){return e!=null&&e.data instanceof Uint8Array}function m3(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function g3(e){return e!=null&&e.width!==0&&e.height!==0}function b3(e){return m3()&&!(e instanceof ImageBitmap)&&g3(e)&&!f3(e)}async function y3(e,t=3){let n=null;if(X().getBool("WRAP_TO_IMAGEBITMAP")&&b3(e)){let r;try{r=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(s){r=null}r!=null&&r.width===e.width&&r.height===e.height?n=r:n=e}else n=e;return _1(n,t)}async function v3(e,t){let n=$(e,"img","toPixels");if(!(e instanceof Ae)){let l=n;n=ue(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,s]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,u=new Uint8ClampedArray(s*r*4);for(let l=0;l<r*s;++l){let c=[0,0,0,255];for(let p=0;p<a;p++){let h=o[l*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[p]=h*i}let d=l*4;u[d+0]=Math.round(c[0]),u[d+1]=Math.round(c[1]),u[d+2]=Math.round(c[2]),u[d+3]=Math.round(c[3])}if(t!=null){t.width=s,t.height=r;let l=t.getContext("2d"),c=new ImageData(u,s,r);l.putImageData(c,0,0)}return n!==e&&n.dispose(),u}var x3=W({fromPixels_:_1}),Ey={};Ee(Ey,{prepareAndValidate:()=>E1});function E1(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(wt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;d<s.length-1;++d)o*=s[d];let i=e.shape,u=s.slice();u.pop();let l=1;for(let d=a;d<n;++d)l*=i[d],u.push(i[d]);let c=[...Bu(e.shape).map(d=>d/l),1].slice(0,a);return[u,o,l,c]}var Ay={};Ee(Ay,{calculateShapes:()=>A1,validateInput:()=>Fy,validateUpdateShape:()=>$y});function $y(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank<s)throw new Error(a+` update.rank < ${s}. `);if(e.length<r+(n.rank-s))throw new Error(a+` Output shape length < ${r+(n.rank-s)}`);if(n.rank!==s+e.length-r)throw new Error(a+` update.rank != ${s+e.length-r}`);for(let o=0;o<s;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-s;++o)if(n.shape[o+s]!==e[o+r])throw new Error(a+` updates.shape[${o+s}] (${n.shape[o+s]}) != shape[${o+s}] (${e[o+s]})`)}function Fy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}$y(n,t,e)}function A1(e,t,n){let r=t.shape.length,s=r>1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;d<a;++d)o*=n[d];let i=s<1?1:s,u=wt(t.shape)/i,l=[...Bu(n.slice(0,s)),1],c=wt(n);return{sliceRank:s,numUpdates:u,sliceSize:o,strides:l,outputSize:c}}var $t={};Ee($t,{assertParamsValid:()=>k3,computeFlatOffset:()=>N3,computeOutShape:()=>S3,getNormalizedAxes:()=>C3,isSliceContinous:()=>T3,maskToAxes:()=>I3,parseSliceParams:()=>B1,sliceInfo:()=>_3,startForAxis:()=>M1,startIndicesWithElidedDims:()=>R1,stopForAxis:()=>L1,stopIndicesWithElidedDims:()=>P1,stridesForAxis:()=>O1,stridesWithElidedDims:()=>$1});var Dy=-2,w3=-1;function k3(e,t,n){let r=e.shape.length;P(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),P(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s<r;++s)P(t[s]+n[s]<=e.shape[s],()=>`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function I3(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function S3(e,t,n){let r=[];for(let s=0;s<e.length;s++)r[s]=Math.ceil((t[s]-e[s])/n[s]);return r}function $1(e,t,n,r){let s=[...e];for(let a=s.length;a<r.length;a++)s.push(1);for(let a=0;a<n;a++)a===0?s[t]=1:(s.splice(t,0,1),s.pop());return s}function F1(e,t,n){return n<=e?n:n-(t-1)}function D1(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function C3(e,t,n,r,s,a,o,i,u){let l=e.length,c=new Array(l),d=new Array(l),p=new Array(l);if(t.length&&n>0){let h=t[0],f=n+1;c=R1(o,h,f,r,e),d=P1(i,h,f,s,e),p=$1(a,h,f,e)}else for(let h=0;h<l;h++)c[h]=M1(o,r,a,e,h,u),d[h]=L1(i,s,a,e,h,u),p[h]=O1(a,h,u);return{begin:c,end:d,strides:p}}function R1(e,t,n,r,s){let a=[...s],o=D1(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let u=F1(t,n,i),l=r[u];e&1<<u&&(l=0),a[i]=l}return a}function P1(e,t,n,r,s){let a=[...s],o=D1(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let u=F1(t,n,i),l=r[u];e&1<<u&&(l=Number.MAX_SAFE_INTEGER),a[i]=l}for(let i=0;i<a.length;i++){let u=s[i];a[i]<0&&(a[i]+=u),a[i]=Hl(0,a[i],s[i])}return a}function O1(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function M1(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let u=r[s];return o<0&&(o+=u),o=Hl(0,o,u-1),o}function L1(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<<s||a&1<<s||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let u=r[s];return o<0&&(o+=u),i>0?o=Hl(0,o,u):o=Hl(-1,o,u-1),o}function T3(e,t,n){let r=n.length;for(let s=0;s<n.length;s++)if(n[s]>1){r=s;break}for(let s=r+1;s<n.length;s++)if(t[s]>0||n[s]!==e[s])return!1;return!0}function N3(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function B1(e,t,n){let r,s=e.shape.length;typeof t=="number"?r=[t,...new Array(s-1).fill(0)]:t.length<s?r=t.concat(new Array(s-t.length).fill(0)):r=t.slice(),r.forEach(o=>{P(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.length<s?a=n.concat(new Array(s-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(P(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function _3(e,t,n,r,s,a,o,i,u){let l;if(r==null?(l=new Array(t.length),l.fill(1)):l=r,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,d={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:u};for(let v=0;v<d.dims;v++)c&&(1<<v&i)!=0&&d.numAddAxisAfterEllipsis++,1<<v&o&&(c=!0);c||(d.ellipsisMask|=1<<d.dims,d.dims++);let p={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};E3(d,p);let h=!0,f=!0,m=!0,g=[],b=[];for(let v=0;v<e.length;++v){if(p.strides[v]===0)throw Error(`strides[${v}] must be non-zero`);let x=!!(p.shrinkAxisMask&1<<v),k=e[v];if(k===-1){g.push(x?1:-1);continue}let T=[p.beginMask&1<<v,p.endMask&1<<v],C=[p.strides[v]>0?0:-1,p.strides[v]>0?k:k-1];if(x&&p.strides[v]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[v]===1;let E=!!(p.beginMask&1<<v&&p.endMask&1<<v);if(p.beginValid&&p.endValid){if(x){let R=p.begin[v]<0?k+p.begin[v]:p.begin[v];if(p.begin[v]=R,p.end[v]=p.begin[v]+1,R<0||R>=k)throw Error(`slice index ${p.begin[v]} of dimension ${v} out of bounds.`)}else p.begin[v]=z1(p.begin[v],0,p.strides[v],k,T,C),p.end[v]=z1(p.end[v],1,p.strides[v],k,T,C);let D=p.strides[v]===1&&p.begin[v]===0&&p.end[v]===k;h=h&&D,f=f&&(v===0&&p.strides[v]===1||D)}else h=h&&p.strides[v]===1&&E,f=f&&(v===0&&p.strides[v]===1||E);let F,O=!1;if(p.beginValid&&p.endValid?(F=p.end[v]-p.begin[v],O=!0):x?(F=1,O=!0):E&&k>=0&&(p.strides[v]<0?F=-k:F=k,O=!0),O){let D;F===0||F<0!=p.strides[v]<0?D=0:D=Math.trunc(F/p.strides[v])+(F%p.strides[v]!=0?1:0),g.push(D)}else g.push(-1)}for(let v=0;v<p.finalShapeGatherIndices.length;++v){let x=p.finalShapeGatherIndices[v];x>=0?b.push(g[x]):x===Dy&&b.push(1)}return{finalShapeSparse:b.filter((v,x)=>p.finalShapeGatherIndices[x]!==Dy),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function E3(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let r=0;r<e.dims;r++)if(1<<r&e.ellipsisMask){let s=Math.min(t.dims-(e.dims-r)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<s;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=r}else if(1<<r&e.newAxisMask)t.finalShapeGatherIndices.push(Dy),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[r]),e.end!=null&&(t.end[n]=e.end[r]),t.strides[n]=e.strides[r],e.beginMask&1<<r&&(t.beginMask|=1<<n),e.endMask&1<<r&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<r?(t.finalShapeGatherIndices.push(w3),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(r)),t.inputShapeGatherIndicesSparse[n]=r,n++}}function z1(e,t,n,r,s,a){if(s[t])return n>0?a[t]:a[t+1&1];{let o=e<0?r+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var oe={};Ee(oe,{Serializable:()=>W1,SerializationMap:()=>Mi,registerClass:()=>lo});var W1=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Mi=class{constructor(){this.classNameMap={}}static getMap(){return Mi.instance==null&&(Mi.instance=new Mi),Mi.instance}static register(e){Mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function lo(e){P(e.className!=null,()=>"Class being registered does not have the static className property defined."),P(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),P(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Mi.register(e)}var V1={};Ee(V1,{TEST_EPSILON_FLOAT16:()=>U1,encodeStrings:()=>G1,expectArrayBuffersEqual:()=>O3,expectArraysClose:()=>$3,expectArraysEqual:()=>D3,expectNumbersClose:()=>R3,expectPromiseToFail:()=>F3,expectValuesInRange:()=>P3,testEpsilon:()=>Ry});var A3=.001,U1=.1;function $3(e,t,n){return n==null&&(n=Ry()),Py(e,t,(r,s)=>Oy(r,s,n))}function Ry(){return z.backend.floatPrecision()===32?A3:U1}function Py(e,t,n){let r=!0;if((yn(e)||yn(t))&&(r=!1),yn(e)&&yn(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=os(e),i=os(t);if(!ia(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=yn(e)?e:Wo(e),a=yn(t)?t:Wo(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}.
Actual: ${s}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=s[o],u=a[o];if(!n(i,u))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${u}.
Actual: ${s}.
Expected: ${a}.`)}}function F3(e,t){e().then(()=>t.fail(),()=>t())}function D3(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ua(e)||ua(e[0])||ua(t)||ua(t[0])?Py(e,n,(r,s)=>r==s):Py(e,t,(r,s)=>Oy(r,s,0))}function R3(e,t,n){if(n==null&&(n=Ry()),!Oy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Oy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function P3(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function O3(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function G1(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?G1(n):e[t]=fd(n)}return e}var M3="0.0.0";function L3(){X().set("PROD",!0)}function B3(){X().set("DEBUG",!0)}function z3(){X().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function My(e){X().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}sR(My);function W3(){z.disposeVariables()}function is(){return z}function Zh(){return z.memory()}function V3(e){return z.profile(e)}function M(e,t){return z.tidy(e,t)}function Fe(e){dy(e).forEach(n=>n.dispose())}function nn(e){return z.keep(e)}function U3(e){return z.time(e)}function G3(e){return z.setBackend(e)}function H3(){return z.ready()}function j3(){return z.backendName}function q3(e){z.removeBackend(e)}function K3(e){return z.findBackend(e)}function X3(e){return z.findBackendFactory(e)}function kd(e,t,n=1){return z.registerBackend(e,t,n)}function H1(){return z.backend}function Y3(e,t){X().setPlatform(e,t)}function Q3(e,t){let n=$(e,"a","add"),r=$(t,"b","add");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(_s,s)}var Z=W({add_:Q3});function Z3(e,t){let n=$(e,"a","floorDiv"),r=$(t,"b","floorDiv");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(Ca,s)}var Ly=W({floorDiv_:Z3});function J3(e,t){let n=$(e,"a","div"),r=$(t,"b","div");if([n,r]=At(n,r),n.dtype==="int32"&&r.dtype==="int32")return Ly(n,r);let s={a:n,b:r},a={};return z.runKernel(wa,s,a)}var me=W({div_:J3});function eP(e,t){let n=$(e,"a","mul"),r=$(t,"b","mul");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(Ma,s)}var V=W({mul_:eP});function tP(e){let t=$(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(Xl,n)}else{let n={x:t};return z.runKernel(Vo,n)}}var Xt=W({abs_:tP});function nP(e){let n={x:$(e,"x","acos")};return z.runKernel(Vu,n)}var j1=W({acos_:nP});function rP(e){let n={x:$(e,"x","acosh")};return z.runKernel(Uu,n)}var q1=W({acosh_:rP});function sP(e){P(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),P(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>$(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!ia(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return z.runKernel(la,r)}var K1=W({addN_:sP});function aP(e,t=null,n=!1){let s={x:$(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(Gu,s,a)}var By=W({all_:aP});function oP(e,t=null,n=!1){let s={x:$(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(Hu,s,a)}var Jh=W({any_:oP});function iP(e,t=0){let r={x:$(e,"x","argMax")},s={axis:t};return z.runKernel(da,r,s)}var wc=W({argMax_:iP});function uP(e,t=0){let r={x:$(e,"x","argMin")},s={axis:t};return z.runKernel(ju,r,s)}var X1=W({argMin_:uP});function cP(e){let n={x:$(e,"x","asin")};return z.runKernel(qu,n)}var Y1=W({asin_:cP});function lP(e){let n={x:$(e,"x","asinh")};return z.runKernel(Ku,n)}var Q1=W({asinh_:lP});function dP(e){let n={x:$(e,"x","atan")};return z.runKernel(Xu,n)}var Z1=W({atan_:dP});function pP(e,t){let n=$(e,"a","atan2"),r=$(t,"b","atan2");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(Qu,s)}var J1=W({atan2_:pP});function hP(e){let n={x:$(e,"x","atanh")};return z.runKernel(Yu,n)}var eS=W({atanh_:hP});function fP(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],u=rS(s);return Id(e,i,n,a,r,null,null,u)}function tS(e,t,n,r,s,a,o="channelsLast"){let[i,u]=ef(t),l;if(o==="channelsLast")l=[i,u,e[3],e[3]];else if(o==="channelsFirst")l=[i,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Id(e,l,n,r,s,a,!1,o)}function mP(e,t,n,r,s,a,o="NDHWC"){let[i,u,l]=Wy(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,u,l,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,u,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return nS(e,c,n,r,s,!1,d,a)}function Id(e,t,n,r,s,a,o=!1,i="channelsLast"){let[u,l,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,d]=e;else if(i==="channelsFirst")[u,d,l,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=ef(n),[b,y]=ef(r),v=kc(p,b),x=kc(h,y),{padInfo:k,outHeight:T,outWidth:C}=yP(s,l,c,m,g,v,x,a,i),E=o?f*d:f,F;return i==="channelsFirst"?F=[u,E,T,C]:i==="channelsLast"&&(F=[u,T,C,E]),{batchSize:u,dataFormat:i,inHeight:l,inWidth:c,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:F,filterShape:t}}function nS(e,t,n,r,s,a=!1,o="channelsLast",i){let[u,l,c,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[u,l,c,d,p]=e;else if(o==="channelsFirst")[u,p,l,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[b,y,v]=Wy(n),[x,k,T]=Wy(r),C=kc(h,x),E=kc(f,k),F=kc(m,T),{padInfo:O,outDepth:D,outHeight:R,outWidth:_}=vP(s,l,c,d,b,y,v,C,E,F,i),L=a?g*p:g,U;return o==="channelsFirst"?U=[u,L,D,R,_]:o==="channelsLast"&&(U=[u,D,R,_,L]),{batchSize:u,dataFormat:o,inDepth:l,inHeight:c,inWidth:d,inChannels:p,outDepth:D,outHeight:R,outWidth:_,outChannels:L,padInfo:O,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:F,dilationDepth:x,dilationHeight:k,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function gP(e,t,n,r,s){r==null&&(r=zy(e,t,n));let a=e[0],o=e[1],i=Li((a-t+2*r)/n+1,s),u=Li((o-t+2*r)/n+1,s);return[i,u]}function bP(e,t,n,r,s,a){s==null&&(s=zy(e,t,r));let o=e[0],i=e[1],u=e[2],l=Li((o-t+2*s)/r+1,a),c=Li((i-t+2*s)/r+1,a),d=Li((u-t+2*s)/r+1,a);return[l,c,d,n]}function zy(e,t,n,r=1){let s=kc(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function ef(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Wy(e){return typeof e=="number"?[e,e,e]:e}function kc(e,t){return t<=1?e:e+(e-1)*(t-1)}function yP(e,t,n,r,s,a,o,i,u){let l,c,d;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=gP([t,n],a,r,e,i);c=h[0],d=h[1]}else if(e==="same"){c=Math.ceil(t/r),d=Math.ceil(n/s);let p=Math.max(0,(c-1)*r+a-t),h=Math.max(0,(d-1)*s+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let p=u==="channelsLast"?e[1][0]:e[2][0],h=u==="channelsLast"?e[1][1]:e[2][1],f=u==="channelsLast"?e[2][0]:e[3][0],m=u==="channelsLast"?e[2][1]:e[3][1];l={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Li((t-a+p+h)/r+1,i),d=Li((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:c,outWidth:d}}function vP(e,t,n,r,s,a,o,i,u,l,c){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=bP([t,n,r,1],i,1,s,e,c);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/s),h=Math.ceil(n/a),f=Math.ceil(r/o);let m=(p-1)*s+i-t,g=(h-1)*a+u-n,b=(f-1)*o+l-r,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),k=g-x,T=Math.floor(b/2),C=b-T;d={top:x,bottom:k,left:T,right:C,front:y,back:v,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/s),h=Math.ceil((n-u+1)/a),f=Math.ceil((r-l+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Li(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function po(e){let[t,n,r]=ef(e);return t===1&&n===1&&r===1}function us(e,t){return po(e)||po(t)}function rS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Sn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")P(Lu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(r=>{r.forEach(s=>{P(Lu(s),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${s}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function xP(e,t){let r={x:$(e,"x","reshape","string_or_numeric")},s={shape:t};return z.runKernel(hi,r,s)}var G=W({reshape_:xP});function wP(e,t,n,r,s){let a=$(e,"x","avgPool","float32"),o=1;P(us(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,u=!1;a.rank===3&&(u=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),Sn("avgPool",r,s);let l={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(pa,l,c);return d=ue(d,a.dtype),u?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ar=W({avgPool_:wP});function kP(e,t,n,r,s,a="NDHWC"){let o=$(e,"x","avgPool3d","float32"),i=o,u=!1;o.rank===4&&(u=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),Sn("avgPool3d",r,s);let l={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(ql,l,c);return d=ue(d,i.dtype),u?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Vy=W({avgPool3d_:kP});function IP(e,t=0){P(e.length>=1,()=>"Pass at least one tensor to concat");let n=vd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Fs(n[0]);let r=n,s={axis:t};return z.runKernel(Go,r,s)}var ot=W({concat_:IP});function SP(e){let n={x:$(e,"x","sigmoid","float32")};return z.runKernel(ja,n)}var $r=W({sigmoid_:SP});function CP(e,t,n){let r=$(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return z.runKernel(yi,s,a)}var Ve=W({slice_:CP});function TP(e){let n={x:$(e,"x","tanh","float32")};return z.runKernel(Za,n)}var Ic=W({tanh_:TP});function NP(e,t,n,r,s,a){let o=$(e,"forgetBias","basicLSTMCell"),i=$(t,"lstmKernel","basicLSTMCell"),u=$(n,"lstmBias","basicLSTMCell"),l=$(r,"data","basicLSTMCell"),c=$(s,"c","basicLSTMCell"),d=$(a,"h","basicLSTMCell"),p=ot([l,d],1),h=Re(p,i),f=Z(h,u),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=Ve(f,[0,0],b),v=Ve(f,[0,g],b),x=Ve(f,[0,g*2],b),k=Ve(f,[0,g*3],b),T=Z(V($r(y),Ic(v)),V(c,$r(Z(o,x)))),C=V(Ic(T),$r(k));return[T,C]}var _P=W({basicLSTMCell_:NP});function EP(e,t,n){let r=$(e,"x","batchToSpaceND"),s=t.reduce((i,u)=>i*u);P(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),P(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),P(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return z.runKernel(Uo,a,o)}var tf=W({batchToSpaceND_:EP});function AP(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function $P(e,t,n,r,s,a){a==null&&(a=.001);let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),u=$(n,"variance","batchNorm"),l;s!=null&&(l=$(s,"scale","batchNorm"));let c;r!=null&&(c=$(r,"offset","batchNorm")),P(i.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),P(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),P(l==null||i.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:AP(o),scale:l,offset:c,mean:i,variance:u},h={varianceEpsilon:a},f=z.runKernel(Ta,p,h);return G(f,o.shape)}var ho=W({batchNorm_:$P});function FP(e,t,n,r,s,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),u=$(n,"variance","batchNorm"),l;s!=null&&(l=$(s,"scale","batchNorm"));let c;return r!=null&&(c=$(r,"offset","batchNorm")),P(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),P(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),P(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&P(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),ho(o,i,u,c,l,a)}var sS=W({batchNorm2d_:FP});function DP(e,t,n,r,s,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),u=$(n,"variance","batchNorm"),l;s!=null&&(l=$(s,"scale","batchNorm"));let c;return r!=null&&(c=$(r,"offset","batchNorm")),P(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),P(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),P(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&P(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),ho(o,i,u,c,l,a)}var aS=W({batchNorm3d_:DP});function RP(e,t,n,r,s,a){let o=$(e,"x","batchNorm"),i=$(t,"mean","batchNorm"),u=$(n,"variance","batchNorm"),l;s!=null&&(l=$(s,"scale","batchNorm"));let c;return r!=null&&(c=$(r,"offset","batchNorm")),P(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),P(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),P(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&P(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&P(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),ho(o,i,u,c,l,a)}var oS=W({batchNorm4d_:RP});function PP(e,t,n){let r=$(e,"x","bincount"),s=$(t,"weights","bincount");P(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return z.runKernel(bh,a,o)}var Uy=W({bincount_:PP});function OP(e,t){let n=$(e,"s0","broadcastArgs","int32"),r=$(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(r.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${r.rank}`);let s={s0:n,s1:r};return z.runKernel(yh,s)}var iS=W({broadcastArgs_:OP});function MP(e,t){let n=$(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=G(n,l)}let s=n.shape,a=Array.from(t);for(let l=t.length-1;l>=0;l--)if(s[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Fs(n);let i={x:n},u={reps:a};return z.runKernel(As,i,u)}var Sd=W({broadcastTo_:MP});function LP(e){let n={x:$(e,"x","ceil","float32")};return z.runKernel(ma,n)}var uS=W({ceil_:LP});function BP(e,t,n){let r=$(e,"x","clipByValue");P(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Es,s,a)}var dn=W({clipByValue_:BP});function zP(e){return ot(e,0)}var cS=W({concat1d_:zP});function WP(e,t){return ot(e,t)}var lS=W({concat2d_:WP});function VP(e,t){return ot(e,t)}var dS=W({concat3d_:VP});function UP(e,t){return ot(e,t)}var pS=W({concat4d_:UP});function GP(e,t,n,r,s="NHWC",a=[1,1],o){let i=$(e,"x","conv2d","float32"),u=$(t,"filter","conv2d","float32"),l=i,c=!1;i.rank===3&&(c=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Sn("conv2d",r,o);let d=s==="NHWC"?l.shape[3]:l.shape[1];P(d===u.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${u.shape[2]}.`),P(us(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:l,filter:u},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=z.runKernel(ga,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wt=W({conv2d_:GP});function HP(e,t,n,r,s="NWC",a=1,o){let i=$(e,"x","conv1d"),u=$(t,"filter","conv1d"),l=i,c=!1;i.rank===2&&(c=!0,l=G(i,[1,i.shape[0],i.shape[1]])),P(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),P(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Sn("conv1d",r,o),P(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),P(us(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),P(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=G(u,[1,u.shape[0],u.shape[1],u.shape[2]]),p=G(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Wt(p,d,[1,n],r,"NHWC",[1,a],o);return c?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var Gy=W({conv1d_:HP});function jP(e,t,n,r,s,a="NHWC",o){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,u=t,l=!1;t.rank===3&&(l=!0,u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),P(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),P(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),P(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?u.shape[3]:u.shape[1];P(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),P(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Sn("conv2dDerInput",s,o);let p={dy:u,filter:n},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=z.runKernel(ba,p,h);return l?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Hy=W({conv2DBackpropInput_:jP});function qP(e,t,n,r,s,a){let o=$(e,"x","conv2dTranspose"),i=$(t,"filter","conv2dTranspose");return Hy(n,o,i,r,s,"NHWC",a)}var jy=W({conv2dTranspose_:qP});function KP(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=$(e,"x","conv3d"),i=$(t,"filter","conv3d"),u=o,l=!1;o.rank===4&&(l=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),P(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),P(u.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${i.shape[3]}.`),P(us(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let c={x:u,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},p=z.runKernel(Yl,c,d);return l?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var qy=W({conv3d_:KP});function XP(e,t,n,r,s){P(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let u=a[4],l=o.shape[4];P(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),P(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),P(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),P(u===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[3]}.`),P(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},p=z.runKernel(wh,c,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var hS=W({conv3DBackpropInput_:XP});function YP(e,t,n,r,s){let a=$(e,"x","conv3dTranspose"),o=$(t,"filter","conv3dTranspose");return hS(n,a,o,r,s)}var fS=W({conv3dTranspose_:YP});function QP(e){let n={x:$(e,"x","cos","float32")};return z.runKernel(ya,n)}var nf=W({cos_:QP});function ZP(e){let n={x:$(e,"x","cosh","float32")};return z.runKernel(va,n)}var Ky=W({cosh_:ZP});function JP(e,t=0,n=!1,r=!1){let a={x:$(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return z.runKernel(Ho,a,o)}var Xy=W({cumsum_:JP});function eO(e,t,n,r=!1){let s=$(e,"x","denseBincount"),a=$(t,"weights","denseBincount");P(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),P(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),P(n>=0,()=>`size must be non-negative, but got ${n}.`),P(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return z.runKernel(kh,o,i)}var mS=W({denseBincount_:eO});function tO(e,t,n="NHWC"){let r=$(e,"x","depthToSpace","float32"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];P(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),P(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),P(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),P(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},u={blockSize:t,dataFormat:n};return z.runKernel(qo,i,u)}var gS=W({depthToSpace_:tO});function nO(e,t,n,r,s="NHWC",a=[1,1],o){let i=$(e,"x","depthwiseConv2d","float32"),u=$(t,"filter","depthwiseConv2d","float32"),l=i,c=!1;i.rank===3&&(c=!0,l=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),P(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),Sn("depthwiseConv2d",r,o);let d={x:l,filter:u},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},h=z.runKernel(xa,d,p);return c?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Bi=W({depthwiseConv2d_:nO});function rO(e){let n={x:$(e,"x","diag")};return z.runKernel(Ch,n)}var sO=W({diag_:rO});function aO(e,t,n,r,s=[1,1],a="NHWC"){let o=$(e,"x","dilation2d"),i=$(t,"filter","dilation2d");P(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),P(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),P(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let u=o,l=!1;o.rank===3&&(u=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=!0);let c={x:u,filter:i},d={strides:n,pad:r,dilations:s},p=z.runKernel(Ql,c,d);return l?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bS=W({dilation2d_:aO});function oO(e,t){let n=$(e,"a","equal","string_or_numeric"),r=$(t,"b","equal","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Ko,s)}var mr=W({equal_:oO});function iO(e,t,n){let r=$(t,"a","where"),s=$(n,"b","where"),a=$(e,"condition","where","bool"),o=ht(ht(a.shape,r.shape),s.shape),i=Sd(a,o),u=Sd(r,o),l=Sd(s,o),c={condition:i,t:u,e:l};return z.runKernel(bi,c)}var Cn=W({where_:iO});function uO(e){let n={x:$(e,"x","zerosLike")};return z.runKernel(Ni,n)}var Xe=W({zerosLike_:uO});function cO(e,t){let n=$(e,"a","div"),r=$(t,"b","div");[n,r]=At(n,r);let s=me(n,r),a=Xe(s),o=mr(r,a);return Cn(o,a,s)}var yS=W({divNoNan_:cO});function lO(e,t){let n=$(e,"t1","dot"),r=$(t,"t2","dot");P((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(P(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=G(n,[1,-1]),i=G(r,[-1,1]),u=Re(o,i);return G(u,[])}else if(n.rank===1&&r.rank===2){let o=G(n,[1,-1]),i=G(r,[r.shape[0],r.shape[1]]),u=Re(o,i);return G(u,[u.size])}else if(n.rank===2&&r.rank===1){let o=G(r,[-1,1]),i=Re(n,o);return G(i,[i.size])}else{let o=G(r,[r.shape[0],r.shape[1]]);return Re(n,o)}}var dO=W({dot_:lO});function pO(e,...t){let n=t.map((s,a)=>$(s,`tensors${a}`,"einsum")),r={equation:e};return z.runKernel(Zl,n,r)}var vS=W({einsum_:pO});function hO(e){let n={x:$(e,"x","elu","float32")};return z.runKernel(ka,n)}var Cd=W({elu_:hO});function fO(e){let t=$(e,"x","erf");P(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ue(t,"float32"));let n={x:t};return z.runKernel(Zu,n)}var xS=W({erf_:fO});function mO(e){let n={x:$(e,"x","exp")};return z.runKernel(Ia,n)}var Tn=W({exp_:mO});function gO(e,t=0){let n=$(e,"x","expandDims","string_or_numeric");P(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return z.runKernel(Xo,r,s)}var Nn=W({expandDims_:gO});function bO(e){let n={x:$(e,"x","expm1")};return z.runKernel(Yo,n)}var wS=W({expm1_:bO});function yO(e,t){let n=$(e,"x","tile","string_or_numeric");P(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return z.runKernel(As,r,s)}var tr=W({tile_:yO});function vO(e,t,n,r="float32"){t==null&&(t=e);let s=$e([e,t],r),a=e<=t?e:t;for(let i=0;i<a;++i)s.set(1,i,i);let o=G(s.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return tr(Nn(o,0),[n[0],1,1]);if(n.length===2)return tr(Nn(Nn(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return tr(Nn(Nn(Nn(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Yy=W({eye_:vO});function _n(e,t,n){let r={shape:e,value:t,dtype:n};return z.runKernel(Ju,{},r)}function xO(e){let n={x:$(e,"x","floor","float32")};return z.runKernel(Sa,n)}var Td=W({floor_:xO});function wO(e,t,n=0,r=0){let s=$(e,"x","gather"),a=$(t,"indices","gather","int32"),o={x:s,indices:a},i={axis:n,batchDims:r};return z.runKernel(Zo,o,i)}var Sc=W({gather_:wO});function kO(e,t){let n=$(e,"a","greater","string_or_numeric"),r=$(t,"b","greater","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ei,s)}var nr=W({greater_:kO});function IO(e,t){let n=$(e,"a","greaterEqual","string_or_numeric"),r=$(t,"b","greaterEqual","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Na,s)}var zi=W({greaterEqual_:IO});function SO(e){let n={input:$(e,"input","imag")};return z.runKernel(Jl,n)}var rf=W({imag_:SO});function CO(e){let n={x:$(e,"x","isFinite")};return z.runKernel(ec,n)}var TO=W({isFinite_:CO});function NO(e){let n={x:$(e,"x","isInf")};return z.runKernel(tc,n)}var _O=W({isInf_:NO});function EO(e){let n={x:$(e,"x","isNaN")};return z.runKernel(nc,n)}var kS=W({isNaN_:EO});function AO(e,t=.2){let r={x:$(e,"x","leakyRelu")},s={alpha:t};return z.runKernel(ti,r,s)}var sf=W({leakyRelu_:AO});function $O(e,t){let n=$(e,"a","less","string_or_numeric"),r=$(t,"b","less","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ni,s)}var Qy=W({less_:$O});function FO(e,t){let n=$(e,"a","lessEqual","string_or_numeric"),r=$(t,"b","lessEqual","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ri,s)}var Wi=W({lessEqual_:FO});function IS(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return z.runKernel($h,{},r)}function DO(e,t=5,n=1,r=1,s=.5){let a=$(e,"x","localResponseNormalization");P(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),P(Lu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let u={x:o},l={depthRadius:t,bias:n,alpha:r,beta:s},c=z.runKernel(td,u,l);return i?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var SS=W({localResponseNormalization_:DO});function RO(e){let n={x:$(e,"x","log","float32")};return z.runKernel(Ea,n)}var gr=W({log_:RO});function PO(e){let n={x:$(e,"x","log1p")};return z.runKernel(rc,n)}var af=W({log1p_:PO});function OO(e){return P(ca(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=$(t,"x","tf.grad","string_or_numeric"),s=n!=null?$(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(r),[r],s);return s!=null&&wn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),of(o),o[0]})}}function MO(e){return P(ca(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{P(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=vd(t,"args","tf.grads","string_or_numeric"),s=n!=null?$(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(...r),r,s);return s!=null&&wn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),of(o),o})}}function LO(e){return P(ca(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{P(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),P(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=z.gradients(()=>e(t),[t],n);return of(r),{grad:r[0],value:s}}}function BO(e){return P(ca(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{P(Array.isArray(t)&&t.every(s=>s instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),P(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=z.gradients(()=>e(...t),t,n);return n!=null&&wn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),of(r.grads),r}}function CS(e,t){P(ca(e),()=>"The f passed in variableGrads(f) must be a function"),P(t==null||Array.isArray(t)&&t.every(l=>l instanceof oo),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in z.registeredVariables)t.push(z.registeredVariables[l])}let r=n?t.filter(l=>!l.trainable):null,s=t.length;t=t.filter(l=>l.trainable),P(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=z.gradients(e,t,null,a);P(i.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),P(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let u={};return t.forEach((l,c)=>{i[c]!=null&&(u[l.name]=i[c])}),r!=null&&r.forEach(l=>u[l.name]=null),{value:o,grads:u}}function cs(e){return z.customGrad(e)}function of(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function zO(e){let n={x:$(e,"x","neg")};return z.runKernel(ai,n)}var Ft=W({neg_:zO});function WO(e){let n={x:$(e,"x","softplus")};return z.runKernel(pc,n)}var Cc=W({softplus_:WO});function VO(e){let t=$(e,"x","logSigmoid");return cs(r=>({value:Ft(Cc(Ft(r))),gradFunc:o=>V(o,$r(Ft(r)))}))(t)}var UO=W({logSigmoid_:VO});function GO(e,t=null,n=!1){let s={x:$(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(Aa,s,a)}var Gr=W({max_:GO});function HO(e,t){let n=$(e,"a","sub"),r=$(t,"b","sub");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(Qa,s)}var he=W({sub_:HO});function jO(e,t=null,n=!1){let r=$(e,"x","sum");r.dtype==="bool"&&(r=ue(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(Ka,s,a)}var ve=W({sum_:jO});function qO(e,t=-1){let n=$(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return cs((s,a)=>{let o=!0,i=Gr(s,t,!0),u=he(s,i),l=he(ue(u,"float32"),gr(ve(Tn(u),t,o)));return a([l]),{value:l,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Tn(h);return he(d,V(ve(d,t,f),m))}}})(n)}var Zy=W({logSoftmax_:qO});function Jy(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function TS(e,t,n){let r=e.length+t.length,s=[],a=0,o=0;for(let i=0;i<r;i++)n.indexOf(i)===-1?s.push(e[a++]):s.push(t[o++]);return s}function NS(e,t){let n=[],r=e.length;for(let a=0;a<r;a++)t.indexOf(a)===-1&&n.push(e[a]);let s=t.map(a=>e[a]);return[n,s]}function Vi(e,t){let n=t.map(r=>1);return TS(e,n,t)}function KO(e,t,n){P(Jy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function _S(e,t){if(Jy(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function ev(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function XO(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function YO(e,t=null,n=!1){let r=$(e,"x","logSumExp"),s=Er(t,r.shape),a=Gr(r,s,!0),o=he(r,a),i=Tn(o),u=ve(i,s),l=gr(u),c=Z(G(a,l.shape),l);if(n){let d=Vi(c.shape,s);return G(c,d)}return c}var ES=W({logSumExp_:YO});function QO(e,t){let n=$(e,"a","logicalAnd","bool"),r=$(t,"b","logicalAnd","bool");ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(si,s)}var Hr=W({logicalAnd_:QO});function ZO(e){let n={x:$(e,"x","logicalNot","bool")};return z.runKernel(sc,n)}var uf=W({logicalNot_:ZO});function JO(e,t){let n=$(e,"a","logicalOr","bool"),r=$(t,"b","logicalOr","bool");ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ed,s)}var tv=W({logicalOr_:JO});function eM(e,t){let n=$(e,"a","logicalXor","bool"),r=$(t,"b","logicalXor","bool");return ht(n.shape,r.shape),Hr(tv(e,t),uf(Hr(e,t)))}var tM=W({logicalXor_:eM});function nM(e,t,n,r,s){let a=$(e,"x","maxPool"),o=1,i=a,u=!1;a.rank===3&&(u=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),P(us(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),Sn("maxPool",r,s);let l={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(Fa,l,c);return u?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Vt=W({maxPool_:nM});function rM(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=$(e,"x","maxPool3d"),i=o,u=!1;o.rank===4&&(u=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),P(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),P(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),Sn("maxPool3d",r,s);let l={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(nd,l,c);return u?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var nv=W({maxPool3d_:rM});function sM(e,t,n,r,s=!1){let o={x:$(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},u=z.runKernel(Ph,o,i);return{result:u[0],indexes:u[1]}}var AS=W({maxPoolWithArgmax_:sM});function aM(e,t){let n=$(e,"a","maximum"),r=$(t,"b","maximum");[n,r]=At(n,r),n.dtype==="bool"&&(n=ue(n,"int32"),r=ue(r,"int32")),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel($a,s)}var Ds=W({maximum_:aM});function oM(e,t=null,n=!1){let s={x:$(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(Da,s,a)}var Ot=W({mean_:oM});function kt(e,t="float32"){if(t==="complex64"){let r=kt(e,"float32"),s=kt(e,"float32");return io(r,s)}let n=fh(wt(e),t);return z.makeTensor(n,e,t)}function rr(e,t="float32"){if(t==="complex64"){let r=rr(e,"float32"),s=kt(e,"float32");return io(r,s)}let n=Qb(wt(e),t);return z.makeTensor(n,e,t)}function iM(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=$(e,"x","meshgrid",e instanceof Ae?e.dtype:"float32");if(t===void 0)return[r];let s=$(t,"y","meshgrid",t instanceof Ae?t.dtype:"float32"),a=wt(r.shape),o=wt(s.shape);return n==="xy"?(r=G(r,[1,-1]),s=G(s,[-1,1]),[Re(rr([o,1],r.dtype),r),Re(s,rr([1,a],s.dtype))]):(r=G(r,[-1,1]),s=G(s,[1,-1]),[Re(r,rr([1,o],r.dtype)),Re(rr([a,1],s.dtype),s)])}function uM(e,t=null,n=!1){let s={x:$(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(Ra,s,a)}var cf=W({min_:uM});function cM(e,t){let n=$(e,"a","minimum"),r=$(t,"b","minimum");[n,r]=At(n,r),n.dtype==="bool"&&(n=ue(n,"int32"),r=ue(r,"int32")),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Pa,s)}var Nd=W({minimum_:cM});function lM(e,t,n){P(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=$(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");P(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i<r.rank;i++)P(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),P(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return z.runKernel(Oa,o,a)}var $S=W({mirrorPad_:lM});function dM(e,t){let n=$(e,"a","mod"),r=$(t,"b","mod");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(ac,s)}var FS=W({mod_:dM});function pM(e){let t=$(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ft=W({square_:pM});function hM(e,t=null,n=!1){e=$(e,"x","moments");let r=Er(t,e.shape),s=Ot(e,r,n),a=s.shape;n||(a=Vi(s.shape,r));let o=ft(he(ue(e,"float32"),G(s,a))),i=Ot(o,r,n);return{mean:s,variance:i}}var lf=W({moments_:hM});function fM(e,t,n,r){let s=$(t,"data","multiRNNCell"),a=vd(n,"c","multiRNNCell"),o=vd(r,"h","multiRNNCell"),i=s,u=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);u.push(p[0]),u.push(p[1]),i=p[1]}let l=[],c=[];for(let d=0;d<u.length;d+=2)l.push(u[d]),c.push(u[d+1]);return[l,c]}var mM=W({multiRNNCell_:fM});function gM(e,t,n,r=!1){let s=$(e,"logits","multinomial"),a=s.size,o=s.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let u={logits:o===1?G(s,[1,-1]):s},l={numSamples:t,seed:n,normalized:r},c=z.runKernel(Oh,u,l);return o===1?G(c,[c.size]):c}var DS=W({multinomial_:gM});function bM(e,t){let n=$(e,"a","notEqual","string_or_numeric"),r=$(t,"b","notEqual","string_or_numeric");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(oi,s)}var Tc=W({notEqual_:bM});function yM(e){let n={x:$(e,"x","onesLike")};return z.runKernel(ci,n)}var br=W({onesLike_:yM});function vM(e,t){let n=$(e,"v1","outerProduct"),r=$(t,"v2","outerProduct");P(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=G(n,[-1,1]),a=G(r,[1,-1]);return Re(s,a)}var xM=W({outerProduct_:vM});function wM(e,t,n=0){let r=$(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return z.runKernel(La,a,s)}var Fr=W({pad_:wM});function kM(e,t,n=0){return P(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Fr(e,[t],n)}var IM=W({pad1d_:kM});function SM(e,t,n=0){return P(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(e,t,n)}var CM=W({pad2d_:SM});function TM(e,t,n=0){return P(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(e,t,n)}var NM=W({pad3d_:TM});function _M(e,t,n=0){return P(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Fr(e,t,n)}var EM=W({pad4d_:_M});function AM(e,t,n){let r=$(e,"x","spaceToBatchND");P(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),P(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),P(r.shape.reduce((o,i,u)=>u>0&&u<=t.length?o&&(i+n[u-1][0]+n[u-1][1])%t[u-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return z.runKernel(xi,s,a)}var df=W({spaceToBatchND_:AM});function $M(e,t,n,r,s,a,o){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let i=$(e,"x","maxPool"),u=i,l=!1;i.rank===3&&(l=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),P(us(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let c=tS(u.shape,t,a,s,r),d=[c.dilationHeight,c.dilationWidth],p;r==="same"?p=DM([c.filterHeight,c.filterWidth],d):p=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[f,m]=FM([c.inHeight,c.inWidth],d,p),g=h?r:"valid",b=h?u:df(u,d,f),v=(n==="avg"?()=>Ar(b,t,a,g,o):()=>Vt(b,t,a,g,o))(),x=h?v:tf(v,d,m);return l?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function FM(e,t,n){let r=n.map(c=>c[0]),s=n.map(c=>c[1]),a=e.concat(r,s),o=t.map((c,d)=>(c-a[d]%c)%c),i=s.map((c,d)=>c+o[d]),u=t.map((c,d)=>[r[d],i[d]]),l=t.map((c,d)=>[0,o[d]]);return[u,l]}function DM(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var RM=W({pool_:$M});function PM(e,t){let n=$(e,"base","pow"),r=$(t,"exp","pow");[n,r]=At(n,r);let s={a:n,b:r};return z.runKernel(Ba,s)}var fo=W({pow_:PM});function OM(e,t){let n=$(e,"x","prelu"),r=$(t,"alpha","prelu"),s={x:n,alpha:r};return z.runKernel(za,s)}var pf=W({prelu_:OM});function MM(e,t=null,n=!1){let r=$(e,"x","prod");r.dtype==="bool"&&(r=ue(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(pi,s,a)}var rv=W({prod_:MM});function LM(e,t,n){let r=wt(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<r;a++)s[a]=t();return z.makeTensor(s,e,n)}var BM=W({rand_:LM}),sv=Bo(ch()),av=class{constructor(e,t,n,r,s){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=sv.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,s,a;do r=2*this.random()-1,s=2*this.random()-1,a=r*r+s*s;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},zM=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=sv.alea(s.toString()),this.randn=new av(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},WM=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=sv.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function VM(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new zM(t,n,r,s),o=$e(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var UM=W({randomGamma_:VM});function GM(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let a=new av(t,n,r,!1,s),o=$e(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var RS=W({randomNormal_:GM});function HM(e,t=0,n=1,r="float32",s){let a=$e(e,r),o=new WM(t,n,null,s);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Nc=W({randomUniform_:HM});function _c(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let s={start:e,stop:t,step:n,dtype:r};return z.runKernel(ic,{},s)}function jM(e){let n={input:$(e,"input","real")};return z.runKernel(rd,n)}var _d=W({real_:jM});function qM(e){let n={x:$(e,"x","reciprocal")};return z.runKernel(uc,n)}var PS=W({reciprocal_:qM});function KM(e){let n={x:$(e,"x","relu")};return z.runKernel(Wa,n)}var Qe=W({relu_:KM});function XM(e){let n={x:$(e,"x","relu6")};return z.runKernel(Ua,n)}var ov=W({relu6_:XM});function YM(e,t){let r={x:$(e,"x","reverse")},s={dims:t};return z.runKernel(fi,r,s)}var yr=W({reverse_:YM});function QM(e){let t=$(e,"x","reverse");return P(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),yr(t,0)}var ZM=W({reverse1d_:QM});function JM(e,t){let n=$(e,"x","reverse");return P(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),yr(n,t)}var eL=W({reverse2d_:JM});function tL(e,t){let n=$(e,"x","reverse");return P(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),yr(n,t)}var nL=W({reverse3d_:tL});function rL(e,t){let n=$(e,"x","reverse");return P(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),yr(n,t)}var sL=W({reverse4d_:rL});function aL(e){let n={x:$(e,"x","round")};return z.runKernel(mi,n)}var iv=W({round_:aL});function oL(e){let n={x:$(e,"x","rsqrt","float32")};return z.runKernel(Ga,n)}var uv=W({rsqrt_:oL});function ke(e,t){if((yn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&yn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return uo(e,[],[],t)}function iL(e){let n={x:$(e,"x","selu")};return z.runKernel(lc,n)}var cv=W({selu_:iL});function uL(e,t,n,r,s,a=[1,1],o="NHWC"){let i=$(e,"x","separableConv2d"),u=$(t,"depthwiseFilter","separableConv2d"),l=$(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");P(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),P(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),P(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),P(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let p=u.shape[2],h=u.shape[3];P(l.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${l.shape[2]}.`);let f=Bi(c,u,r,s,o,a),g=Wt(f,l,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Ec=W({separableConv2d_:uL});async function cL(e,t){let n=$(e,"x","setdiff1d"),r=$(t,"y","setdiff1d");P(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),P(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),P(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let c=0;c<s.length;c++)o.has(s[c])||i++;let u=new Kt([i],n.dtype),l=new Kt([i],"int32");for(let c=0,d=0;c<s.length;c++)o.has(s[c])||(u.values[d]=s[c],l.values[d]=c,d++);return[u.toTensor(),l.toTensor()]}var OS=cL;function lL(e){let n={x:$(e,"x","sign")};return z.runKernel(dc,n)}var MS=W({sign_:lL});function dL(e){let n={x:$(e,"x","sin","float32")};return z.runKernel(Ha,n)}var lv=W({sin_:dL});function pL(e){let n={x:$(e,"x","sinh")};return z.runKernel(vi,n)}var dv=W({sinh_:pL});function hL(e,t,n){let r=$(e,"x","slice1d");return P(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ve(r,[t],[n])}var hf=W({slice1d_:hL});function fL(e,t,n){let r=$(e,"x","slice2d");return P(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ve(r,t,n)}var pv=W({slice2d_:fL});function mL(e,t,n){let r=$(e,"x","slice3d");return P(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ve(r,t,n)}var Ac=W({slice3d_:mL});function gL(e,t,n){let r=$(e,"x","slice4d");return P(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ve(r,t,n)}var Ed=W({slice4d_:gL});function bL(e,t=-1){let n=$(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return z.runKernel(Xa,r,s)}var ls=W({softmax_:bL});function yL(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Eh,t)}var ff=W({fft_:yL});function vL(e){P(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Ah,t)}var Ad=W({ifft_:vL});function xL(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=G(e,[n,t]);r=Ad(s)}else{let s=[n,2*(t-1)],a=G(_d(e),[n,t]),o=G(rf(e),[n,t]),i=yr(Ve(a,[0,1],[n,t-2]),1),u=V(yr(Ve(o,[0,1],[n,t-2]),1),ke(-1)),l=ot([a,i],1),c=ot([o,u],1),d=G(io(l,c),[s[0],s[1]]);r=Ad(d)}if(r=_d(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=G(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var hv=W({irfft_:xL});function wL(e,t,n=0){let s={x:$(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(wi,s,a)}var sr=W({split_:wL});function kL(e,t){P(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=Ve(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=ot([e,kt(f)],e.shape.length-1),n=t}else s=e;let a=Xe(s),o=G(io(s,a),[r,n]),i=ff(o),u=Math.floor(n/2)+1,l=_d(i),c=rf(i),d=sr(l,[u,n-u],l.shape.length-1),p=sr(c,[u,n-u],c.shape.length-1),h=s.shape.slice();return h[s.shape.length-1]=u,G(io(d[0],p[0]),h)}var mf=W({rfft_:kL});function IL(e){let n={x:$(e,"x","sqrt","float32")};return z.runKernel(qa,n)}var vn=W({sqrt_:IL});function SL(e,t){let n=$(e,"a","squaredDifference"),r=$(t,"b","squaredDifference");[n,r]=At(n,r),ht(n.shape,r.shape);let s={a:n,b:r},a={};return z.runKernel(Ya,s,a)}var fv=W({squaredDifference_:SL});function CL(e,t){let n=$(e,"x","squeeze");return G(n,RI(n.shape,t).newShape)}var Rs=W({squeeze_:CL});function TL(e,t=0){let n=vd(e,"tensors","stack","string_or_numeric");P(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&P(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return z.runKernel(di,r,s)}var Ut=W({stack_:TL});function NL(e,t=0){let r={x:$(e,"x","step")},s={alpha:t};return z.runKernel(eo,r,s)}var $d=W({step_:NL});function _L(e,t,n,r,s=0,a=0,o=0,i=0,u=0){let c={x:$(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:u};return z.runKernel(ki,c,d)}var LS=W({stridedSlice_:_L});function EL(e){let n={x:$(e,"x","tan","float32")};return z.runKernel(Ii,n)}var BS=W({tan_:EL});function je(e,t){zo(e);let n=os(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return uo(e,null,n,t)}function jr(e,t,n){if(zo(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=os(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return uo(e,t,r,n)}function qr(e,t,n){if(zo(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=os(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return uo(e,t,r,n)}function AL(e,t,n){if(zo(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=os(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return uo(e,t,r,n)}function $L(e,t,n){if(zo(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=os(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,uo(e,t,r,n)}function FL(e,t=1,n=!0){let r=$(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,u]=z.runKernel(Si,a,o);return{values:i,indices:u}}var zS=W({topk_:FL});function DL(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new av(t,n,r,!0,s),o=$e(e,r);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var gf=W({truncatedNormal_:DL});function RL(e,t=0){let n=$(e,"x","unique","string_or_numeric");P(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=z.runKernel(Wh,r,s);return{values:a,indices:o}}var mv=W({unique_:RL});function PL(e,t,n){let r=$(e,"x","unsortedSegmentSum"),s=$(t,"segmentIds","unsortedSegmentSum","int32");P(Lu(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return z.runKernel(cd,a,o)}var WS=W({unsortedSegmentSum_:PL});function OL(e,t=0){let n=$(e,"x","unstack","string_or_numeric");P(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return z.runKernel(Ti,r,s)}var vt=W({unstack_:OL});function VS(e,t=!0,n,r){return z.makeVariable(e,t,n,r)}function US(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let r=$e(e,"int32"),s=$e([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=r.indexToLoc(n[a]),i=a*e.length;s.values.set(o,i)}return s.toTensor()}async function ML(e){let t=$(e,"condition","whereAsync","bool"),n=await t.data(),r=US(t.shape,n);return e!==t&&t.dispose(),r}var gv=ML;async function LL(e,t,n){let r=$(e,"tensor","boolMask"),s=$(t,"mask","boolMask","bool"),a=n==null?0:n,o=s.rank,i=r.shape;P(o>0,()=>"mask cannot be scalar"),wn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let m=a;m<a+o;m++)u*=i[m];let l=i.slice(0,a).concat([u],i.slice(a+o)),c=G(r,l),d=G(s,[-1]),p=await gv(d),h=Rs(p,[1]),f=Sc(c,h,a);return e!==r&&r.dispose(),t!==s&&s.dispose(),h.dispose(),c.dispose(),d.dispose(),p.dispose(),f}var BL=LL;function zL(e,t="euclidean",n=null,r=!1){e=$(e,"x","norm");let s=GS(e,t,n),a=s.shape;if(r){let o=Er(n,e.shape);a=Vi(s.shape,o)}return G(s,a)}function GS(e,t,n=null){if(e.rank===0)return Xt(e);if(e.rank!==1&&n===null)return GS(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Xt(e),n);if(t===1/0)return Gr(Xt(e),n);if(t===-1/0)return cf(Xt(e),n);if(t==="euclidean"||t===2)return vn(ve(fo(Xt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Gr(ve(Xt(e),n[0]),n[1]-1);if(t===1/0)return Gr(ve(Xt(e),n[1]),n[0]);if(t===-1/0)return cf(ve(Xt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return vn(ve(ft(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var bv=W({norm_:zL});function WL(e,t,n,r,s=!0){let a=$(e,"v","movingAverage"),o=$(t,"x","movingAverage"),i=$(n,"decay","movingAverage");t1(a,o),P(ia(a.shape,o.shape),()=>"Shape mismatch in v and x");let u=ke(1),l=he(u,i),c=V(he(o,a),l);if(s){P(r!=null,()=>"When using zeroDebias: true, step is required.");let d=$(r,"step","movingAverage");c=me(c,he(u,fo(i,d)))}return Z(a,c)}var VL=W({movingAverage_:WL});function UL(e,t,n){let r=$(e,"indices","scatterND","int32"),s=$(t,"updates","scatterND");Fy(s,r,n);let a={indices:r,updates:s},o={shape:n};return z.runKernel(gi,a,o)}var HS=W({scatterND_:UL});function GL(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function HL(e,t,n,r=0){let s=$(e,"sparseIndices","sparseToDense","int32"),a=$(t,"sparseValues","sparseToDense"),o=$(r,"defaultValue","sparseToDense",a.dtype);GL(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},u={outputShape:n};return z.runKernel(id,i,u)}var yv=W({sparseToDense_:HL});function jL(e,t){let n=$(t,"indices","gatherND","int32"),s={params:$(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(Jo,s)}var jS=W({gatherND_:jL});function qL(e,t){if(t==null)return e.shape.slice();if(ia(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function KL(e,t,n,r){let s=$(e,"x","dropout");if(P(s.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),P(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?s.clone():s;let a=qL(s,n),o=1-t,i=me(Td(Z(Nc(a,0,1,"float32",r),o)),o);return V(s,i)}var qS=W({dropout_:KL});function KS(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function vv(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+r-1);s[a]=t-n*Math.cos(o)}return je(s,"float32")}async function XL(e,t,n=1){let r=$(e,"predictions","inTopK"),s=$(t,"targets","inTopK");P(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),P(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),wn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];P(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[u,l]=[o.length/a,a],c=PI("bool",u);for(let d=0;d<u;d++){let p=d*l,h=o.subarray(p,p+l),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){c[d]=1;break}}return e!==r&&r.dispose(),t!==s&&s.dispose(),er(c,s.shape,"bool")}var YL=XL,mo={};Ee(mo,{conv2d:()=>JL,depthwiseConv2d:()=>rB,matMul:()=>aB});function QL(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),P(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),P(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),P(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?u.shape[3]:u.shape[1];P(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),P(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),Sn("conv2dDerFilter",s,o);let d={x:i,dy:u},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return z.runKernel(vh,d,p)}var xv=W({conv2DBackpropFilter_:QL});function bf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,$d(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function yf(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=ve(n,r)),G(n,e.shape)}function vf(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Qe(e);if(t==="elu")return Cd(e);if(t==="relu6")return ov(e);if(t==="prelu")return pf(e,n);if(t==="leakyrelu")return sf(e,r);if(t==="sigmoid")return $r(e);throw new Error(`Unknown fused activation ${t}.`)}var xf=(e,t)=>!(e>0)||t==="linear";function ZL({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",xf(z.state.gradientDepth,u)===!1){let k=Wt(e,t,n,r,s,a,o);return i!=null&&(k=Z(k,i)),vf(k,u,l,c)}let d=$(e,"x","conv2d","float32"),p=$(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),Sn("fused conv2d",r,o),P(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),P(us(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),P(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=Id(h.shape,p.shape,n,a,r,o),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=At(g,d),ht(m.outShape,g.shape));let b;l!=null&&(b=$(l,"prelu weights","fused conv2d"));let y=(k,T)=>{let[C,E,F,O]=T,D=bf(k,F,u);P(po(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Hy(E.shape,D,C,n,r),_=xv(E,D,C.shape,n,r),L=[R,_];if(O!=null){let U=yf(O,D);L.push(U)}return L},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:u,leakyreluAlpha:c};return i==null?cs((T,C,E)=>{let F=z.runKernel(no,v,x);return E([C,T,F]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,p):cs((T,C,E,F)=>{let O=z.runKernel(no,v,x);return F([C,T,O,E]),f&&(O=G(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var JL=W({fusedConv2d_:ZL});function eB(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:i,dy:u},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return z.runKernel(Ih,l,c)}var XS=W({depthwiseConv2dNativeBackpropFilter_:eB});function tB(e,t,n,r,s,a=[1,1],o){let i=t,u=!1;t.rank===3&&(u=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:i,filter:n},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=z.runKernel(Sh,l,c);return u?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var YS=W({depthwiseConv2dNativeBackpropInput_:tB});function nB({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(xf(z.state.gradientDepth,u)===!1){let k=Bi(e,t,n,r,s,a,o);return i!=null&&(k=Z(k,i)),vf(k,u,l,c)}let d=$(e,"x","depthwiseConv2d","float32"),p=$(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),P(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),P(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),P(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),P(us(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),Sn("fused depthwiseConv2d",r,o);let m=Id(h.shape,p.shape,n,a,r,o,!0),g;i!=null&&(g=$(i,"bias","fused conv2d"),[g]=At(g,d),ht(m.outShape,g.shape));let b;l!=null&&(b=$(l,"prelu weights","fused depthwiseConv2d"));let y=(k,T)=>{P(po(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,E,F,O]=T,D=bf(k,F,u),R=YS(E.shape,D,C,n,r,a,o),_=XS(E,D,C.shape,n,r,a,o);if(O!=null){let L=yf(g,D);return[R,_,L]}return[R,_]},v={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:u,leakyreluAlpha:c};return i==null?cs((T,C,E)=>{let F=z.runKernel(ro,v,x);return E([C,T,F]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,p):cs((T,C,E,F)=>{let O=z.runKernel(ro,v,x);return F([C,T,O,E]),f&&(O=G(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var rB=W({fusedDepthwiseConv2d_:nB});function sB({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(xf(z.state.gradientDepth,a)===!1){let D=Re(e,t,n,r);return s!=null&&(D=Z(D,s)),vf(D,a,o,i)}let u=$(e,"a","fused matMul"),l=$(t,"b","fused matMul");[u,l]=At(u,l);let c=n?u.shape[u.rank-2]:u.shape[u.rank-1],d=r?l.shape[l.rank-1]:l.shape[l.rank-2],p=n?u.shape[u.rank-1]:u.shape[u.rank-2],h=r?l.shape[l.rank-2]:l.shape[l.rank-1],f=u.shape.slice(0,-2),m=l.shape.slice(0,-2),g=wt(f),b=wt(m);P(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${n} and transposeB=${r} must match.`);let v=ht(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([p,h]),x=n?G(u,[g,c,p]):G(u,[g,p,c]),k=r?G(l,[b,h,d]):G(l,[b,d,h]),T;s!=null&&(T=$(s,"bias","fused matMul"),[T]=At(T,u),ht(v,T.shape));let C;o!=null&&(C=$(o,"prelu weights","fused matMul"));let E=(D,R)=>{let[_,L,U,j]=R,K=bf(G(D,U.shape),U,a),q,Q;if(!n&&!r?(q=Re(K,L,!1,!0),Q=Re(_,K,!0,!1)):!n&&r?(q=Re(K,L,!1,!1),Q=Re(K,_,!0,!1)):n&&!r?(q=Re(L,K,!1,!0),Q=Re(_,K,!1,!1)):(q=Re(L,K,!0,!0),Q=Re(K,_,!0,!0)),s!=null){let ee=yf(j,K);return[q,Q,ee]}else return[q,Q]},F={a:x,b:k,bias:T,preluActivationWeights:C},O={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?cs((R,_,L)=>{let U=z.runKernel(to,F,O);return L([R,_,U]),{value:G(U,v),gradFunc:E}})(x,k):cs((R,_,L,U)=>{let j=z.runKernel(to,F,O);return U([R,_,j,L]),{value:G(j,v),gradFunc:E}})(x,k,T)}var aB=W({fusedMatMul_:sB});function oB(e){return vv(e,.54,.46)}var iB=W({hammingWindow_:oB});function uB(e){return vv(e,.5,.5)}var QS=W({hannWindow_:uB});function cB(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Ve(e,a,t)),a+=n;if(r)for(;a<e.size;){let i=a+t-e.size,u=ot([Ve(e,a,t-i),_n([i],s)]);o.push(u),a+=n}return o.length===0?jr([],[0,t]):G(ot(o),[o.length,t])}var ZS=W({frame_:cB});function lB(e,t,n,r,s=QS){r==null&&(r=KS(t));let a=ZS(e,t,n),o=V(a,s(t));return mf(o,r)}var dB=W({stft_:lB});function pB(e,t,n,r,s="bilinear",a=0){let o=$(e,"image","cropAndResize"),i=$(t,"boxes","cropAndResize","float32"),u=$(n,"boxInd","cropAndResize","int32"),l=i.shape[0];P(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${i.shape}.`),P(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${i.shape}.`),P(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),P(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),P(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let c={image:o,boxes:i,boxInd:u},d={method:s,extrapolationValue:a,cropSize:r};return z.runKernel(jo,c,d)}var hB=W({cropAndResize_:pB});function fB(e){let t=$(e,"image","flipLeftRight","float32");P(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(Qo,n,{})}var mB=W({flipLeftRight_:fB});function gB(e){let t=$(e,"image","grayscaleToRGB"),n=t.rank-1,r=t.shape[n];P(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),P(r===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${r}.`);let s=new Array(t.rank);return s.fill(1,0,n),s[n]=3,tr(t,s)}var bB=W({grayscaleToRGB_:gB});function yB(e,t,n=0,r=.5){let s=$(e,"image","rotateWithOffset","float32");P(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return z.runKernel(_i,a,o)}var vB=W({rotateWithOffset_:yB});function $c(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),P(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),P(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),P(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),P(t.rank===1,()=>"scores must be a 1D tensor"),P(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),P(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function xB(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppression","float32"),o=$(t,"scores","nonMaxSuppression","float32"),i=$c(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let u={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return z.runKernel(ii,{boxes:a,scores:o},u)}var wB=W({nonMaxSuppression_:xB});function kB(e,t,n){let r=IB(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function IB(e,t,n){return CB(e,t,n||SB)}function SB(e,t){return e>t?1:e<t?-1:0}function CB(e,t,n){let r=0,s=e.length,a=0,o=!1;for(;r<s;){a=r+(s-r>>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function JS(e,t,n,r,s){return wv(e,t,n,r,s,0)}function e0(e,t,n,r,s,a){return wv(e,t,n,r,s,0,!1,a,!0)}function t0(e,t,n,r,s,a){return wv(e,t,n,r,s,a,!0)}function wv(e,t,n,r,s,a,o=!1,i=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>s&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(n0);let c=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&l.length>0;){let g=l.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<s)break;let x=!1;for(let k=d.length-1;k>=v;--k){let T=TB(e,y,d[k]);if(T>=r){x=!0;break}if(g.score=g.score*NB(r,c,T),g.score<=s)break}g.suppressBeginIndex=d.length,x||(g.score===b?(d.push(y),p.push(g.score)):g.score>s&&kB(l,g,n0))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),u&&(m.validOutputs=h),m}function TB(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),u=Math.max(r[1],r[3]),l=Math.min(s[0],s[2]),c=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),p=Math.max(s[1],s[3]),h=(i-a)*(u-o),f=(d-l)*(p-c);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(o,c),b=Math.min(i,d),y=Math.min(u,p),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function NB(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function n0(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function _B(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=$(e,"boxes","nonMaxSuppressionAsync"),o=$(t,"scores","nonMaxSuppressionAsync"),i=$c(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let u=await Promise.all([a.data(),o.data()]),l=u[0],c=u[1],{selectedIndices:d}=JS(l,c,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),je(d,"int32")}var EB=_B;function AB(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),u=$c(o,i,n,r,s,a);n=u.maxOutputSize,r=u.iouThreshold,s=u.scoreThreshold,a=u.softNmsSigma;let l={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=z.runKernel(ui,l,c);return{selectedIndices:d[0],selectedScores:d[1]}}var $B=W({nonMaxSuppressionWithScore_:AB});async function FB(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),u=$c(o,i,n,r,s,a);n=u.maxOutputSize,r=u.iouThreshold,s=u.scoreThreshold,a=u.softNmsSigma;let l=await Promise.all([o.data(),i.data()]),c=l[0],d=l[1],{selectedIndices:p,selectedScores:h}=t0(c,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:je(p,"int32"),selectedScores:je(h)}}var DB=FB;function RB(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppression"),i=$(t,"scores","nonMaxSuppression"),u=$c(o,i,n,r,s,null),l=u.maxOutputSize,c=u.iouThreshold,d=u.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:l,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=z.runKernel(oc,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var PB=W({nonMaxSuppressionPadded_:RB});async function OB(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=$(e,"boxes","nonMaxSuppressionAsync"),i=$(t,"scores","nonMaxSuppressionAsync"),u=$c(o,i,n,r,s,null),l=u.maxOutputSize,c=u.iouThreshold,d=u.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=e0(p,h,l,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:je(f,"int32"),validOutputs:ke(m,"int32")}}var MB=OB;function LB(e,t,n=!1,r=!1){let s=$(e,"images","resizeBilinear");P(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),P(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),P(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=G(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},u={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(Va,i,u);return o?G(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var BB=W({resizeBilinear_:LB});function zB(e,t,n=!1,r=!1){let s=$(e,"images","resizeNearestNeighbor");P(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),P(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),P(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),P(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=G(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},u={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(cc,i,u);return o?G(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var WB=W({resizeNearestNeighbor_:zB});function VB(e,t="binary",n=!1,r=.5){let s=$(e,"image","threshold"),a=.2989,o=.587,i=.114,u=s.shape[0]*s.shape[1],l=V(je([r]),255),c,d,p,h;if(P(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),P(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),P(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),P(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[c,d,p]=sr(s,[1,1,1],-1);let g=V(c,a),b=V(d,o),y=V(p,i);h=Z(Z(g,b),y)}else h=e;if(t==="otsu"){let g=Uy(ue(iv(h),"int32"),er([]),256);l=UB(g,u)}let f=n?Wi(h,l):nr(h,l);return ue(V(f,255),"int32")}function UB(e,t){let n=je([-1]),r=je([0]),s=je([0]),a,o,i,u,l,c;for(let d=0;d<e.size-1;d++){a=Ve(e,0,d+1),o=Ve(e,d+1),l=me(ve(a),t),c=me(ve(o),t);let p=ve(V(a,_c(0,a.size)));i=me(p,ve(a));let h=_n(o.shape,a.size),f=Z(_c(0,o.size),h),m=V(o,f);u=me(ve(m),ve(o));let g=he(i,u),b=he(i,u),y=V(l,c);s=V(V(y,g),b);let v=nr(s,r);r=Cn(v,s,r),n=Cn(v,je([d]),n)}return n}var GB=W({threshold_:VB});function HB(e,t,n="nearest",r="constant",s=0,a){let o=$(e,"image","transform","float32"),i=$(t,"transforms","transform","float32");P(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),P(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),P(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let u={image:o,transforms:i},l={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return z.runKernel(Ci,u,l)}var jB=W({transform_:HB});function qB(e,t,n){P(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),P(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=$(e,"a","bandPart");P(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(_c(0,a,1,"int32"),[-1,1]),u=_c(0,o,1,"int32"),l=he(i,u),c=Hr(Wi(l,ke(+t,"int32")),zi(l,ke(-n,"int32"))),d=kt([a,o],r.dtype);return G(Ut(vt(G(r,[-1,a,o])).map(p=>Cn(c,p,d))),s)}var KB=W({bandPart_:qB});function XB(e){let t;if(Array.isArray(e)){t=!1,P(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a<e.length;++a)P(e[a].shape[0]===s,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=sr(e,e.shape[0],0).map(s=>Rs(s,[0]));P(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s<e.length;++s)n.push(z.tidy(()=>{let a=r[s];if(s>0)for(let o=0;o<s;++o){let i=V(ve(V(n[o],a)),n[o]);a=he(a,i)}return me(a,bv(a,"euclidean"))}));return t?Ut(n,0):n}var YB=W({gramSchmidt_:XB});function QB(e,t=!1){if(P(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return r0(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((u,l)=>u*l),r=vt(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(u=>{let[l,c]=r0(u,t);s.push(l),a.push(c)});let o=G(Ut(s,0),e.shape),i=G(Ut(a,0),e.shape);return[o,i]}}function r0(e,t=!1){return z.tidy(()=>{P(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=Yy(n),a=Fs(e),o=jr([[1]],[1,1]),i=Fs(o),u=n>=r?r:n;for(let l=0;l<u;++l){let c=a,d=i,p=s;[i,a,s]=z.tidy(()=>{let h=Ve(a,[l,l],[n-l,1]),f=bv(h),m=Ve(a,[l,l],[1,1]),g=Cn(nr(m,0),jr([[-1]]),jr([[1]])),b=he(m,V(g,f)),y=me(h,b);y.shape[0]===1?i=Fs(o):i=ot([o,Ve(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=Ft(me(Re(g,b),f)),x=Ve(a,[l,0],[n-l,r]),k=V(v,i),T=Oe(i);if(l===0)a=he(x,Re(k,Re(T,x)));else{let F=he(x,Re(k,Re(T,x)));a=ot([Ve(a,[0,0],[l,r]),F],0)}let C=Oe(k),E=Ve(s,[0,l],[n,s.shape[1]-l]);if(l===0)s=he(E,Re(Re(E,i),C));else{let F=he(E,Re(Re(E,i),C));s=ot([Ve(s,[0,0],[n,l]),F],1)}return[i,a,s]}),Fe([c,d,p])}return!t&&n>r&&(s=Ve(s,[0,0],[n,r]),a=Ve(a,[0,0],[r,r])),[s,a]})}var ZB=W({qr_:QB}),En;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(En||(En={}));function JB(e,t,n=En.SUM_BY_NONZERO_WEIGHTS){let r=$(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=$(t,"weights","computeWeightedLoss"));let a=s==null?r:V(r,s);if(n===En.NONE)return a;if(n===En.SUM)return ve(a);if(n===En.MEAN){if(s==null)return Ot(a);{let o=r.size/s.size,i=me(ve(a),ve(s));return o>1?me(i,ke(o)):i}}if(n===En.SUM_BY_NONZERO_WEIGHTS){if(s==null)return me(ve(a),ke(r.size));{let o=V(s,rr(r.shape)),i=ue(ve(Tc(o,ke(0))),"float32");return me(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ps=W({computeWeightedLoss_:JB});function ez(e,t,n,r=En.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"labels","absoluteDifference"),a=$(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=$(n,"weights","absoluteDifference")),wn(s.shape,a.shape,"Error in absoluteDifference: ");let i=Xt(he(s,a));return Ps(i,o,r)}var tz=W({absoluteDifference_:ez});function nz(e,t,n,r,s=En.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","cosineDistance"),o=$(t,"predictions","cosineDistance"),i=null;r!=null&&(i=$(r,"weights","cosineDistance")),wn(a.shape,o.shape,"Error in cosineDistance: ");let u=ke(1),l=he(u,ve(V(a,o),n,!0));return Ps(l,i,s)}var rz=W({cosineDistance_:nz});function sz(e,t,n,r=En.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"labels","hingeLoss"),a=$(t,"predictions","hingeLoss"),o=null;n!=null&&(o=$(n,"weights","hingeLoss")),wn(s.shape,a.shape,"Error in hingeLoss: ");let i=ke(1);s=he(V(ke(2),s),i);let u=Qe(he(i,V(s,a)));return Ps(u,o,r)}var az=W({hingeLoss_:sz});function oz(e,t,n,r=1,s=En.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","huberLoss"),o=$(t,"predictions","huberLoss"),i=null;n!=null&&(i=$(n,"weights","huberLoss")),wn(a.shape,o.shape,"Error in huberLoss: ");let u=ke(r),l=Xt(he(o,a)),c=Nd(l,u),d=he(l,c),p=Z(V(ke(.5),ft(c)),V(u,d));return Ps(p,i,s)}var iz=W({huberLoss_:oz});function uz(e,t,n,r=1e-7,s=En.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"labels","logLoss"),o=$(t,"predictions","logLoss"),i=null;n!=null&&(i=$(n,"weights","logLoss")),wn(a.shape,o.shape,"Error in logLoss: ");let u=ke(1),l=ke(r),c=Ft(V(a,gr(Z(o,l)))),d=V(he(u,a),gr(Z(he(u,o),l))),p=he(c,d);return Ps(p,i,s)}var cz=W({logLoss_:uz});function lz(e,t,n,r=En.SUM_BY_NONZERO_WEIGHTS){let s=$(e,"labels","meanSquaredError"),a=$(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=$(n,"weights","meanSquaredError")),wn(s.shape,a.shape,"Error in meanSquaredError: ");let i=fv(s,a);return Ps(i,o,r)}var dz=W({meanSquaredError_:lz});function pz(e,t){let n=$(e,"labels","sigmoidCrossEntropyWithLogits"),r=$(t,"logits","sigmoidCrossEntropyWithLogits");wn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=Qe(r),a=V(r,n),o=af(Tn(Ft(Xt(r))));return Z(he(s,a),o)}function hz(e,t,n,r=0,s=En.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"multiClassLabels","sigmoidCrossEntropy"),o=$(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","sigmoidCrossEntropy")),wn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let l=ke(r),c=ke(1),d=ke(.5);a=Z(V(a,he(c,l)),V(d,l))}let u=pz(a,o);return Ps(u,i,s)}var fz=W({sigmoidCrossEntropy_:hz});function mz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return cs((s,a,o)=>{let u=ES(a,[n],!0),l=he(ue(a,"float32"),u);o([s,l]);let c=Ft(V(l,s));return{value:ve(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=Vi(h.shape,[n]);return[V(G(h,b),he(ue(m,"float32"),Tn(g))),V(G(h,b),he(Tn(g),ue(m,"float32")))]}}})(e,t)}function gz(e,t,n,r=0,s=En.SUM_BY_NONZERO_WEIGHTS){let a=$(e,"onehotLabels","softmaxCrossEntropy"),o=$(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=$(n,"weights","softmaxCrossEntropy")),wn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let l=ke(r),c=ke(1),d=ke(a.shape[1]);a=Z(V(a,he(c,l)),me(l,d))}let u=mz(a,o);return Ps(u,i,s)}var bz=W({softmaxCrossEntropy_:gz});function yz(e,t,n,r){let s=$(e,"indices","sparseFillEmptyRows","int32"),a=$(t,"values","sparseFillEmptyRows"),o=$(n,"denseShape","sparseFillEmptyRows","int32"),i=$(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let u={indices:s,values:a,denseShape:o,defaultValue:i},l=z.runKernel(sd,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var vz=W({sparseFillEmptyRows_:yz});function xz(e,t,n){let r=$(e,"inputIndices","sparseReshape","int32"),s=$(t,"inputShape","sparseReshape","int32"),a=$(n,"newShape","sparseReshape","int32");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=z.runKernel(hc,o);return{outputIndices:i[0],outputShape:i[1]}}var wz=W({sparseReshape_:xz});function kz(e,t,n){let r=$(e,"data","sparseSegmentMean"),s=$(t,"indices","sparseSegmentMean","int32"),a=$(n,"segmentIds","sparseSegmentMean","int32");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(ad,o)}var Iz=W({sparseSegmentMean_:kz});function Sz(e,t,n){let r=$(e,"data","sparseSegmentSum"),s=$(t,"indices","sparseSegmentSum","int32"),a=$(n,"segmentIds","sparseSegmentSum","int32");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(od,o)}var Cz=W({sparseSegmentSum_:Sz});function Tz(e,t,n,r,s,a,o,i){let u=$(e,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=$(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:u,dataSplits:l},p=z.runKernel(ud,d,c);return{nGrams:p[0],nGramsSplits:p[1]}}var Nz=W({stringNGrams_:Tz});function _z(e,t,n=!0){let r=$(e,"input","stringSplit","string"),s=$(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=z.runKernel(Bh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var Ez=W({stringSplit_:_z});function Az(e,t){let n=$(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return z.runKernel(zh,s,r)}var $z=W({stringToHashBucketFast_:Az}),Fz={fft:ff,ifft:Ad,rfft:mf,irfft:hv},Dz={hammingWindow:iB,hannWindow:QS,frame:ZS,stft:dB},ar={flipLeftRight:mB,grayscaleToRGB:bB,resizeNearestNeighbor:WB,resizeBilinear:BB,rotateWithOffset:vB,cropAndResize:hB,nonMaxSuppression:wB,nonMaxSuppressionAsync:EB,nonMaxSuppressionWithScore:$B,nonMaxSuppressionWithScoreAsync:DB,nonMaxSuppressionPadded:PB,nonMaxSuppressionPaddedAsync:MB,threshold:GB,transform:jB},s0={bandPart:KB,gramSchmidt:YB,qr:ZB},Rz={absoluteDifference:tz,computeWeightedLoss:Ps,cosineDistance:rz,hingeLoss:az,huberLoss:iz,logLoss:cz,meanSquaredError:dz,sigmoidCrossEntropy:fz,softmaxCrossEntropy:bz},Fd={sparseFillEmptyRows:vz,sparseReshape:wz,sparseSegmentMean:Iz,sparseSegmentSum:Cz},wf={stringNGrams:Nz,stringSplit:Ez,stringToHashBucketFast:$z},Os=class extends W1{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return Fe(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return CS(e,t)}dispose(){this.iterations_!=null&&Fe(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Os,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var kf=class extends Os{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:M(()=>Xe(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:M(()=>Xe(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,u=this.accumulatedUpdates[r].variable;M(()=>{let l=Z(V(i,this.rho),V(ft(o),1-this.rho)),c=V(me(vn(Z(u,this.epsilon)),vn(Z(i,this.epsilon))),o),d=Z(V(u,this.rho),V(ft(c),1-this.rho));i.assign(l),u.assign(d);let p=Z(V(c,-this.learningRate),s);s.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Fe(this.accumulatedGrads.map(e=>e.variable)),Fe(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};kf.className="Adadelta";lo(kf);var If=class extends Os{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:M(()=>_n(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;M(()=>{let i=Z(o,ft(a));o.assign(i);let u=Z(V(me(a,vn(Z(i,z.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Fe(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};If.className="Adagrad";lo(If);var Sf=class extends Os{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],M(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=he(1,this.accBeta1),r=he(1,this.accBeta2);t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:M(()=>Xe(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:M(()=>Xe(o).variable(i))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=Z(V(l,this.beta1),V(u,1-this.beta1)),p=Z(V(c,this.beta2),V(ft(u),1-this.beta2)),h=me(d,n),f=me(p,r);l.assign(d),c.assign(p);let m=Z(V(me(h,Z(vn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Fe(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),M(()=>{this.accBeta1.assign(fo(this.beta1,this.iterations_+1)),this.accBeta2.assign(fo(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Sf.className="Adam";lo(Sf);var Cf=class extends Os{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],M(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=he(1,this.accBeta1),r=me(-this.learningRate,Z(V(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Xe(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Xe(o).variable(i)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=Z(V(l,this.beta1),V(u,1-this.beta1)),p=V(c,this.beta2),h=Xt(u),f=Ds(p,h);l.assign(d),c.assign(f);let m=Z(V(me(r,n),me(d,Z(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Z(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Fe(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Cf.className="Adamax";lo(Cf);var Dd=class extends Os{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=z.registeredVariables[n];M(()=>{let o=Z(V(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=nn(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Dd.className="SGD";lo(Dd);var Tf=class extends Dd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:M(()=>Xe(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&M(()=>{let i,u=Z(V(this.m,a),o);this.useNesterov?i=Z(V(this.c,Z(o,V(u,this.m))),s):i=Z(V(this.c,u),s),a.assign(u),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Fe(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Tf.className="Momentum";lo(Tf);var Nf=class extends Os{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:M(()=>Xe(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:M(()=>Xe(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:M(()=>Xe(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,u=this.accumulatedMoments[r].variable;M(()=>{let l=Z(V(i,this.decay),V(ft(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[r].variable,d=Z(V(c,this.decay),V(o,1-this.decay)),p=me(V(o,this.learningRate),vn(he(l,Z(ft(d),this.epsilon)))),h=Z(V(u,this.momentum),p);i.assign(l),c.assign(d),u.assign(h);let f=he(s,h);s.assign(f)}else{let c=Z(V(i,this.decay),V(ft(o),1-this.decay)),d=Z(V(u,this.momentum),me(V(o,this.learningRate),vn(Z(c,this.epsilon))));i.assign(c),u.assign(d);let p=he(s,d);s.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Fe(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Fe(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Fe(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Nf.className="RMSProp";lo(Nf);var go=class{static sgd(e){return new Dd(e)}static momentum(e,t,n=!1){return new Tf(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new Nf(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new Sf(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new kf(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new Cf(e,t,n,r,s)}static adagrad(e,t=.1){return new If(e,t)}},Ui={sgd:go.sgd,momentum:go.momentum,adadelta:go.adadelta,adagrad:go.adagrad,rmsprop:go.rmsprop,adamax:go.adamax,adam:go.adam},Pz=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function a0(){return new Promise(e=>Pz(()=>e()))}var N={};Ee(N,{ERF_A1:()=>jz,ERF_A2:()=>qz,ERF_A3:()=>Kz,ERF_A4:()=>Xz,ERF_A5:()=>Yz,ERF_P:()=>Hz,PARALLELIZE_THRESHOLD:()=>kv,SELU_SCALE:()=>i0,SELU_SCALEALPHA:()=>o0,applyActivation:()=>vf,assertAndGetBroadcastShape:()=>ht,assertAxesAreInnerMostDims:()=>KO,assertParamsConsistent:()=>Oz,assignToTypedArray:()=>nW,axesAreInnerMostDims:()=>Jy,calculateShapes:()=>A1,checkEinsumDimSizes:()=>uW,checkPadOnDimRoundingMode:()=>Sn,combineLocations:()=>TS,complexWithEvenIndex:()=>Jz,complexWithOddIndex:()=>eW,computeConv2DInfo:()=>Id,computeConv3DInfo:()=>nS,computeDefaultPad:()=>zy,computeDilation2DInfo:()=>fP,computeOptimalWindowSize:()=>Lz,computeOutAndReduceShapes:()=>NS,computeOutShape:()=>Mz,computePool2DInfo:()=>tS,computePool3DInfo:()=>mP,convertConv2DDataFormat:()=>rS,decodeEinsumEquation:()=>oW,eitherStridesOrDilationsAreOne:()=>us,expandShapeToKeepDim:()=>Vi,exponent:()=>sW,exponents:()=>rW,fromStringArrayToUint8:()=>EW,fromUint8ToStringArray:()=>_W,getAxesPermutation:()=>_S,getBroadcastDims:()=>N1,getComplexWithIndex:()=>tW,getEinsumComputePath:()=>cW,getEinsumPermutation:()=>iW,getFusedBiasGradient:()=>yf,getFusedDyActivation:()=>bf,getImageCenter:()=>Bz,getInnerMostAxes:()=>XO,getPermuted:()=>Wz,getReductionAxes:()=>zt,getReshaped:()=>zz,getReshapedPermuted:()=>Vz,getSliceBeginCoords:()=>Uz,getSliceSize:()=>Gz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>hW,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>fW,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>mW,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>yW,getSparseReshapeInputOutputMismatchErrorMessage:()=>xW,getSparseReshapeInputOutputMultipleErrorMessage:()=>vW,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>gW,getSparseReshapeNegativeOutputDimErrorMessage:()=>bW,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>SW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>wW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>kW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>IW,getUndoAxesPermutation:()=>ev,isIdentityPermutation:()=>lW,log:()=>OD,mergeRealAndImagArrays:()=>Qz,prepareAndValidate:()=>E1,prepareSplitSize:()=>pW,segment_util:()=>l0,shouldFuse:()=>xf,slice_util:()=>$t,splitRealAndImagArrays:()=>Zz,tupleValuesAreOne:()=>po,upcastType:()=>In,validateInput:()=>Fy,validateUpdateShape:()=>$y,warn:()=>so});function Oz(e,t){let n=e[0].length;e.forEach((s,a)=>{P(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),P(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o<n;o++)P(o===t||s[o]===r[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function Mz(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var kv=30;function Lz(e){return e<=kv?e:hh(e,Math.floor(Math.sqrt(e)))}function Bz(e,t,n){let r=n*(typeof e=="number"?e:e[0]),s=t*(typeof e=="number"?e:e[1]);return[r,s]}function zz(e,t,n,r=!0){let s=[];if(r)s=s.concat(t.slice(0)),s.push(e[0]/n),s=s.concat(e.slice(1));else{s=s.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)s=s.concat([e[o+1]/t[o],t[o]]);s=s.concat(e.slice(a+1))}return s}function Wz(e,t,n=!0){let r=[];if(n){r.push(t);for(let s=t+1;s<e;++s)s<=2*t?(r.push(s),r.push(s-(t+1))):r.push(s)}else{let s=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function Vz(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?r?s.push(t[a-1]*e[a]):s.push(e[a]/t[a-1]):s.push(e[a]);return s}function Uz(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function Gz(e,t,n){let r=e.slice(0,1);for(let s=0;s<n;++s)r.push(e[s+1]-t[s][0]-t[s][1]);return r}var o0=1.7580993408473768,i0=1.0507009873554805,Hz=.3275911,jz=.254829592,qz=-.284496736,Kz=1.421413741,Xz=-1.453152027,Yz=1.061405429;function Qz(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function Zz(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function Jz(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=0;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function eW(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let s=2;s<e.length;s+=4)n[Math.floor(s/4)]=e[s],r[Math.floor(s/4)]=e[s+1];return{real:n,imag:r}}function tW(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function nW(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function rW(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let s=0;s<Math.ceil(e/2);s++){let a=(t?2:-2)*Math.PI*(s/e);n[s]=Math.cos(a),r[s]=Math.sin(a)}return{real:n,imag:r}}function sW(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),s=Math.cos(r),a=Math.sin(r);return{real:s,imag:a}}var Iv="->",aW=/->/g,u0=",",c0="...";function oW(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(aW,"").length)/Iv.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Iv}").`);let[r,s]=e.split(Iv);P(r.indexOf(c0)===-1,()=>`The ellipsis notation ("${c0}") is not supported yet.`);let a=r.split(u0),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<s.length;++p){let h=s[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<r.length;++p){let h=r[p];i.indexOf(h)===-1&&h!==u0&&i.push(h)}let u=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);u[p]=[];for(let h=0;h<a[p].length;++h)u[p].push(i.indexOf(a[p][h]))}let l=i.length,c=s.length,d=[];for(let p=c;p<l;++p)d.push(p);return{allDims:i,summedDims:d,idDims:u}}function iW(e,t){let n=new Array(e);n.fill(-1);for(let s=0;s<t.length;++s)n[t[s]]=s;let r=[];for(let s=0;s<e;++s)n[s]===-1&&r.push(s);return n=n.filter(s=>s!==-1),{permutationIndices:n,expandDims:r}}function uW(e,t,n){let r=new Array(e);for(let s=0;s<n.length;++s){let a=n[s].shape;for(let o=0;o<t[s].length;++o)r[t[s][o]]===void 0?r[t[s][o]]=a[o]:P(r[t[s][o]]===a[o],()=>`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function cW(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;o<s;++o)r.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],u=dW(t,i);for(let l of u)a.indexOf(l)===-1&&(r[o].push(l),a.push(l))}return{path:n,steps:r}}function lW(e){return e.every((t,n)=>t===n)}function dW(e,t){let n=[];for(let r=0;r<e.length;++r)(e[r].length===0||e[r].indexOf(t)!==-1||t===-1)&&n.push(r);return n}function pW(e,t,n=0){let r=[];if(typeof t=="number")P(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);P(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,u)=>u>0?i+u:i);t[a]=e.shape[n]-o}P(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}function hW(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function fW(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function mW(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function gW(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function bW(e,t){return`size ${e} must be non-negative, not ${t}`}function yW(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function vW(e,t){let n=wt(e),r=wt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${r}. inputShape=${e} outputShape= ${t}`}function xW(e,t){let n=wt(e),r=wt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${r}. inputShape=${e} outputShape=${t}`}function wW(){return"segment ids must be >= 0"}function kW(){return"segment ids are not increasing"}function IW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function SW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var l0={};Ee(l0,{collectGatherOpShapeInfo:()=>NW,computeOutShape:()=>TW,segOpComputeOptimalWindowSize:()=>CW});function CW(e,t){let n=!1,r;for(e<=kv?(r=e,n=!0):r=hh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=hh(e,r+1);return r}function TW(e,t,n){let r=[],s=e.length;for(let a=0;a<s;a++)a!==t?r.push(e[a]):r.push(n);return r}function NW(e,t,n,r){let s=t.shape.length,a=e.shape.length;if(r!==0&&(r<-s||r>s))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) (
${a}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let d=0;d<r;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],u=1,l=1,c=1;for(let d=0;d<r;++d)i.push(e.shape[d]),u*=e.shape[d];for(let d=r;d<n;d++)i.push(e.shape[d]),l*=e.shape[d];for(let d=r;d<s;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:o,outputShape:i}}function _W(e){try{return e.map(t=>jh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function EW(e){return e.map(t=>fd(t))}var Dr={};Ee(Dr,{nonMaxSuppressionV3Impl:()=>JS,nonMaxSuppressionV4Impl:()=>e0,nonMaxSuppressionV5Impl:()=>t0,whereImpl:()=>US});var d0={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,$d(ue(n,"float32"),-1))}}},AW={kernelName:Vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ft(ue(n,"float32")),s=vn(he(ke(1),r));return Ft(me(e,s))}}}},$W={kernelName:Uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=vn(he(ft(ue(n,"float32")),1));return me(e,r)}}}},FW={kernelName:_s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=e,u=zt(n.shape,s);return u.length>0&&(i=ve(i,u)),G(i,n.shape)},b:()=>{let i=e,u=zt(r.shape,s);return u.length>0&&(i=ve(i,u)),G(i,r.shape)}}}},DW={kernelName:la,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},RW={kernelName:da,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},PW={kernelName:ju,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},OW={kernelName:qu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,vn(he(ke(1),ft(ue(n,"float32")))))}}},MW={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=vn(Z(ke(1),ft(ue(n,"float32"))));return me(e,r)}}}},LW={kernelName:Qu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=Z(ft(n),ft(r)),u=V(e,me(r,i)),l=zt(n.shape,s);return l.length>0&&(u=ve(u,l)),G(u,n.shape)},b:()=>{let i=Z(ft(n),ft(r)),u=Ft(V(e,me(n,i))),l=zt(r.shape,s);return l.length>0&&(u=ve(u,l)),G(u,r.shape)}}}},BW={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Z(ft(ue(n,"float32")),1))}}},zW={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,he(ke(1),ft(ue(n,"float32"))))}}};function WW(e,t,n,r,s,a){let o=$(e,"dy","avgPool3dGrad"),i=$(t,"input","avgPool3dGrad"),u=o,l=i,c=!1;i.rank===4&&(c=!0,u=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),l=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),P(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),P(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Sn("avgPool3dGrad",s,a);let d={dy:u,input:l},p={filterSize:n,strides:r,pad:s,dimRoundingMode:a},h=z.runKernel(gh,d,p);return c?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var VW=W({avgPool3dGrad_:WW}),UW={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>VW(e,r,s,a,o,i)}}};function GW(e,t,n,r,s){let a=$(e,"dy","avgPoolGrad"),o=$(t,"input","avgPoolGrad");P(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,u=a,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),P(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),P(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:u,input:i},d={filterSize:n,strides:r,pad:s},p=z.runKernel(mh,c,d);return l?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var HW=W({avgPoolGrad_:GW}),jW={kernelName:pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>HW(e,r,s,a,o)}}},qW={kernelName:ha,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Re(e,s,!1,!0),b:()=>Re(r,e,!0,!1)}:!a&&o?{a:()=>Re(e,s,!1,!1),b:()=>Re(e,r,!0,!1)}:a&&!o?{a:()=>Re(s,e,!1,!0),b:()=>Re(r,e,!1,!1)}:{a:()=>Re(s,e,!0,!0),b:()=>Re(e,r,!0,!0)}}},KW={kernelName:Uo,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>df(e,r,s)}}},XW={kernelName:jI,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let u=s.length-1;u>=0;u--)if(s[u]===a[u])o[u]=1;else if(s[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let u=0;u<o.length;u++)o[u]>1&&i.push(u);return{x:()=>ve(e,i,!0)}}},YW={kernelName:fa,gradFunc:e=>({x:()=>e.clone()})},QW={kernelName:ma,gradFunc:e=>({x:()=>Xe(e)})},ZW={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>Cn(Hr(zi(r,s),Wi(r,a)),e,Xe(e))}}},JW={kernelName:Xl,inputsToSave:["x"],gradFunc:d0.gradFunc},e4={kernelName:Go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(u=>u.shape),{axis:s}=n,a=Er(s,t[0].shape)[0],o=r.map(u=>u[a]);return sr(e,o,a).map(u=>()=>u)}},t4={kernelName:ga,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:u}=n;return P(po(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Hy(r.shape,e,s,o,i,u),filter:()=>xv(r,e,s.shape,o,i,u)}}},n4={kernelName:ba,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:u}=n;return{dy:()=>Wt(e,s,a,o,i,1,u),filter:()=>xv(e,r,s.shape,a,o,i,u)}}};function r4(e,t,n,r,s){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),P(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),P(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),P(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),P(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),P(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},u={strides:r,pad:s,filterShape:n};return z.runKernel(xh,i,u)}var s4=W({conv3DBackpropFilter_:r4}),a4={kernelName:Yl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;P(po(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>hS(o.shape,e,i,s,a),filter:()=>s4(o,e,i.shape,s,a)}}},o4={kernelName:ya,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Ft(lv(ue(n,"float32"))),e)}}},i4={kernelName:va,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(dv(ue(n,"float32")),e)}}},u4={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=_S([s],r.rank),u=Xy(e,s,a,!o);return i!=null&&(u=Oe(u,i)),u}}}},c4={kernelName:xa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;P(po(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[u,l]=t;return P(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),P(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),P(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),P(us(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),Sn("depthwiseConv2d",a,o),{x:()=>YS(u.shape,e,l,s,a,i,o),filter:()=>XS(u,e,l.shape,s,a,i,o)}}},l4={kernelName:Ql,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>z.runKernel(Th,a,n),filter:()=>z.runKernel(Nh,o,n)}}},d4={kernelName:ka,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>z.runKernel(_h,r)}}},p4={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(Tn(Ft(ft(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,r)}}},h4={kernelName:Ia,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},f4={kernelName:Xo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},m4={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Tn(n))}}},g4={kernelName:Sa,gradFunc:e=>({x:()=>Xe(e)})},b4={kernelName:Ca,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=me(e,ue(r,"float32")),u=zt(n.shape,s);return u.length>0?G(ve(i,u),n.shape):i},b:()=>{let i=V(e,ue(n,"float32")),u=zt(r.shape,s);u.length>0&&(i=G(ve(i,u),r.shape));let l=ft(r);return Ft(me(i,ue(l,"float32")))}}}},y4={kernelName:Ta,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,u=i==null?ke(1):i,l=zt(a.shape,s.shape),c=[];if(a.rank===1){for(let x=0;x<s.shape.length-1;++x)c.push(s.shape[x]);c.push(1)}let d=he(s,a),p=V(e,u),h=uv(Z(o,ke(r))),f=V(V(V(h,h),h),ke(-.5));return{x:()=>a.rank===1?G(V(V(e,tr(G(h,[1,1,1,a.shape[0]]),c)),u),s.shape):G(V(V(e,h),u),s.shape),mean:()=>{let x=V(V(h,ke(-1)),p);return a.rank===1&&(x=ve(x,l)),G(x,a.shape)},variance:()=>{let x=V(V(f,d),p);return a.rank===1&&(x=ve(x,l)),G(x,a.shape)},scale:()=>{let x=V(d,h),k=V(e,x);return a.rank===1&&(k=ve(k,l)),G(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,l)),G(x,a.shape)}}}},v4={kernelName:Zo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=Er(a,r.shape)[0];return{x:()=>{let u=r.shape,l=s.size,c=u.slice(0,o),d=c.length,p=u.slice(a,u.length).slice(1),h=p.length,f=p0(0,d),m=p0(d+1,d+1+h),g=h0([c,[l],p]),b=G(e,g),y=G(s,[l]),v=h0([[d],f,m]),x=Oe(b,v),k=WS(x,y,r.shape[o]),T=ev(v);return k=Oe(k,T),k},indices:()=>s}}};function p0(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function h0(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var x4={kernelName:Na,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Xe(n),b:()=>Xe(r)}}},w4={kernelName:_a,gradFunc:e=>({x:()=>ue(e,"float32")})},k4={kernelName:ec,gradFunc:e=>({x:()=>Xe(e)})},I4={kernelName:tc,gradFunc:e=>({x:()=>Xe(e)})},S4={kernelName:nc,gradFunc:e=>({x:()=>Xe(e)})},C4={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=nr(r,0);return{x:()=>Cn(a,e,V(e,s))}}},T4={kernelName:rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Z(n,1))}}},N4={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ue(n,"float32"))}}},_4={kernelName:qI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=Tn(r);return he(e,V(ve(e,s,a),o))}}}};function E4(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},u={depthRadius:r,bias:s,alpha:a,beta:o};return z.runKernel(Fh,i,u)}var A4=W({localResponseNormalizationBackprop_:E4}),$4={kernelName:td,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:u}=n;return{x:()=>A4(r,s,e,a,o,i,u)}}};function f0(e,t,n,r){return t.rank<n.rank&&(t=G(t,Vi(t.shape,r))),e.rank<n.rank&&(e=G(e,Vi(e.shape,r))),{x:()=>V(e,ue(mr(n,t),e.dtype))}}var m0={kernelName:Aa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=Er(s,a.shape),u=f0(e,o,a,i);return{x:()=>u.x()}}},F4={kernelName:$a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ue(zi(n,r),"float32")),b:()=>V(e,ue(Qy(n,r),"float32"))}}};function D4(e,t,n,r,s,a,o){let i=$(e,"dy","maxPool3dGrad"),u=$(t,"input","maxPool3dGrad"),l=$(n,"output","maxPool3dGrad"),c=i,d=u,p=l,h=!1;u.rank===4&&(h=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),p=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),P(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),P(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),P(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),Sn("maxPool3dGrad",a,o);let f={dy:c,input:d,output:p},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=z.runKernel(Rh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var R4=W({maxPool3dGrad_:D4}),P4={kernelName:nd,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=n;return{x:()=>R4(e,r,s,a,o,i,u)}}};function O4(e,t,n,r,s,a,o){let i=$(e,"dy","maxPoolGrad"),u=$(t,"input","maxPoolGrad"),l=$(n,"output","maxPoolGrad");P(u.rank===i.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${i.rank})`),P(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),P(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Sn("maxPoolGrad",a,o);let c={dy:i,input:u,output:l},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return z.runKernel(Dh,c,d)}var M4=W({maxPoolGrad_:O4}),L4={kernelName:Fa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>M4(e,r,s,a,o,i)}}},B4={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=Er(s,r.shape),i=NS(r.shape,a)[1],u=wt(i);return{x:()=>{let c=r.shape.slice();a.forEach(h=>{c[h]=1});let d=G(e,c);return me(V(d,rr(r.shape,"float32")),u)}}}},z4={kernelName:Ra,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=Er(s,a.shape),u=f0(e,o,a,i);return{x:()=>u.x()}}},W4={kernelName:Pa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ue(Wi(n,r),"float32")),b:()=>V(e,ue(nr(n,r),"float32"))}}},V4={kernelName:Oa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>Ve(e,a,r.shape)}}},U4={kernelName:ac,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=zt(n.shape,s);return i.length>0?G(ve(e,i),n.shape):e},b:()=>{let i=V(e,Ft(Td(me(n,r)))),u=zt(r.shape,s);return u.length>0?G(ve(i,u),r.shape):i}}}},G4={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=V(e,ue(r,"float32")),u=zt(n.shape,s);return u.length>0?G(ve(i,u),n.shape):i},b:()=>{let i=V(e,ue(n,"float32")),u=zt(r.shape,s);return u.length>0?G(ve(i,u),r.shape):i}}}},H4={kernelName:ai,gradFunc:e=>({x:()=>Ft(e)})},j4={kernelName:li,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>kt(n.shape,"float32")}}},q4={kernelName:ci,gradFunc:e=>({x:()=>Xe(e)})},K4={kernelName:di,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return vt(e,r).map(a=>()=>a)}},g0={kernelName:La,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>Ve(e,a,r.shape)}}},X4={kernelName:Ba,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=ht(a.shape,o.shape);return{a:()=>{let c=ue(o,"float32"),d=V(e,V(c,fo(a,he(c,ke(1))))),p=zt(a.shape,i);return p.length>0&&(d=ve(d,p)),G(d,a.shape)},b:()=>{let c=nr(a,0),d=Cn(c,gr(a),Xe(a)),p=V(e,V(s,d)),h=zt(o.shape,i);return h.length>0&&(p=ve(p,h)),G(p,o.shape)}}}},Y4={kernelName:za,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=nr(n,0);return{x:()=>Cn(s,e,V(e,r)),alpha:()=>{let a=Cn(s,Xe(e),V(e,n)),o=zt(r.shape,e.shape);return o.length>0&&(a=ve(a,o)),G(a,r.shape)}}}},Q4={kernelName:wa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=me(e,ue(r,"float32")),u=zt(n.shape,s);return u.length>0?G(ve(i,u),n.shape):i},b:()=>{let i=V(e,ue(n,"float32")),u=zt(r.shape,s);u.length>0&&(i=G(ve(i,u),r.shape));let l=ft(r);return Ft(me(i,ue(l,"float32")))}}}},Z4={kernelName:uc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Ft(ft(n)))}}},J4={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(Wi(n,6),$d(n));return{x:()=>V(e,ue(r,"float32"))}}},eV={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ue($d(n),"float32"))}}},tV={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},nV={kernelName:Va,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(Lh,s,n)}}},rV={kernelName:cc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(Mh,s,n)}}},sV={kernelName:fi,gradFunc:(e,t,n)=>{let{dims:r}=n,s=Er(r,e.shape);return{x:()=>yr(e,s)}}},aV={kernelName:mi,gradFunc:e=>({x:()=>Xe(e)})},oV={kernelName:Ga,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ft(me(e,V(fo(n,1.5),2)))}}},iV={kernelName:bi,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ue(Xe(n),"float32"),t:()=>V(e,ue(n,e.dtype)),e:()=>V(e,ue(uf(n),e.dtype))}}},uV={kernelName:lc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=nr(n,ke(0)),s=ke(o0),a=ke(i0),o=V(e,a),i=V(V(e,s),Tn(ue(n,"float32")));return Cn(r,o,i)}}}},cV={kernelName:ja,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,he(ke(1),n)))}}},lV={kernelName:dc,gradFunc:e=>({x:()=>Xe(e)})},dV={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(nf(ue(n,"float32")),e)}}},pV={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Ky(ue(n,"float32")),e)}}},hV={kernelName:yi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,u]=B1(r,s,a),l=[];for(let c=0;c<e.rank;c++)l.push([i[c],o[c]-i[c]-u[c]]);return{x:()=>Fr(e,l)}}},fV={kernelName:Xa,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=V(e,r);return{logits:()=>he(o,V(ve(o,[s],a),r))}}},mV={kernelName:pc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,$r(n))}}},b0={kernelName:xi,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>tf(e,r,s)}}},y0={kernelName:wi,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},gV={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,V(vn(ue(n,"float32")),2))}}},bV={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(ue(n,"float32"),2))}}},yV={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ke(2);return{a:()=>V(e,V(s,he(n,r))),b:()=>V(e,V(s,he(r,n)))}}},vV={kernelName:eo,gradFunc:e=>({x:()=>Xe(e)})},xV={kernelName:Qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=ht(n.shape,r.shape);return{a:()=>{let i=e,u=zt(n.shape,s);return u.length>0&&(i=ve(i,u)),G(i,n.shape)},b:()=>{let i=e,u=zt(r.shape,s);return u.length>0&&(i=ve(i,u)),G(Ft(i),r.shape)}}}},wV={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;Er(a,r.shape).forEach(l=>{s[l]=1});let i=G(e,s),u=V(i,rr(r.shape,"float32"));return{x:()=>u}}},kV={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ft(nf(n)))}}},IV={kernelName:Za,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(he(ke(1),ft(n)),e)}}},SV={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=Xe(r);if(r.rank===1)for(let i=0;i<s[0];++i)o=Z(o,Ve(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<s[0];++i)for(let u=0;u<s[1];++u)o=Z(o,Ve(e,[i*r.shape[0],u*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<s[0];++i)for(let u=0;u<s[1];++u)for(let l=0;l<s[2];++l)o=Z(o,Ve(e,[i*r.shape[0],u*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<s[0];++i)for(let u=0;u<s[1];++u)for(let l=0;l<s[2];++l)for(let c=0;c<s[3];++c)o=Z(o,Ve(e,[i*r.shape[0],u*r.shape[1],l*r.shape[2],c*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return o}}}},CV={kernelName:Ja,gradFunc:(e,t,n)=>{let r=n,{perm:s}=r,a=ev(s);return{x:()=>Oe(e,a)}}},TV={kernelName:Ti,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Ut(e,s)}}},NV={kernelName:cd,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_V(e,n)}}};function _V(e,t){let n=Ds(t,Xe(t)),r=Sc(e,n),s=zi(t,ke(0,"int32")),a=r.rank-s.rank;for(let i=0;i<a;++i)s=Nn(s,i+1);s=Hr(s,rr(r.shape,"bool"));let o=Xe(r);return Cn(s,r,o)}var EV={kernelName:Ni,gradFunc:e=>({x:()=>Xe(e)})},AV=[d0,AW,$W,FW,DW,RW,PW,OW,MW,LW,BW,zW,UW,jW,qW,KW,XW,YW,QW,ZW,JW,e4,n4,t4,a4,o4,i4,u4,c4,l4,Q4,d4,p4,h4,f4,m4,b4,g4,y4,v4,x4,w4,k4,I4,S4,C4,T4,N4,_4,$4,m0,m0,F4,P4,L4,B4,z4,W4,V4,U4,G4,H4,j4,q4,K4,g0,g0,X4,Y4,Z4,J4,eV,tV,nV,rV,sV,aV,oV,iV,uV,cV,lV,dV,pV,hV,fV,mV,b0,b0,y0,y0,gV,yV,bV,vV,xV,wV,kV,IV,SV,CV,TV,NV,EV];for(let e of AV)KI(e);var v0={};Ee(v0,{maxNorm:()=>RV,minMaxNorm:()=>MV,nonNeg:()=>OV,unitNorm:()=>PV});var Sv;function Yt(){return Sv==null&&(Sv=H1().epsilon()),Sv}function Kr(){return"channelsLast"}var Ms=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ms.prototype)}},Xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Xr.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},De=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,De.prototype)}},x0=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,x0.prototype)}};function Gi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ds(e,t){if(!e)throw new x0(t)}function w0(e,t){let n=0;for(let r of e)r===t&&n++;return n}function Gn(e){return e.length===1?e[0]:e}function It(e){return Array.isArray(e)?e:[e]}function Ls(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Hi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Rr={};function Cv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Tv(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Tv(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Tv(r))}}}function Rd(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Rr)o=Rr[a];else if(o=t[a],o==null)throw new H(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${r}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,u;if(o in n?[i,u]=n[o]:o in Rr?[i,u]=Rr.className:o in t&&([i,u]=t[o]),i==null)throw new H(`Unknown ${r}: ${o}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let h of Object.keys(Rr))l[h]=Rr[h];for(let h of Object.keys(n))l[h]=n[h];let c=a.config;c.customObjects=l;let d={...Rr};for(let h of Object.keys(n))Rr[h]=n[h];Tv(a.config);let p=u(i,a.config,n,s);return Rr={...d},p}else{let l={...Rr};for(let d of Object.keys(n))Rr[d]=n[d];let c=new i(a.config);return Rr={...l},c}}}function $V(e,t){return e<t?-1:e>t?1:0}function _f(e,t){return-1*$V(e,t)}function bo(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function FV(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function ji(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Nv(e,t,n=0,r=1/0){return ds(n>=0),ds(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function rn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>rn(n,`element ${r+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${k0(e)}.`)}function k0(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>k0(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function DV(e,t,n){let r=n!=null?n():w.now(),s;return(...o)=>{let i=n!=null?n():w.now();return i-r<t||(r=i,s=e(...o)),s}}function I0(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function _v(e,t){return M(()=>vn(ve(V(e,e),t,!0)))}var Pd=class extends oe.Serializable{getConfig(){return{}}},Ev=class extends Pd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=_v(e,this.axis),n=dn(t,0,this.maxValue);return V(e,me(n,Z(Yt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Ev.className="MaxNorm";oe.registerClass(Ev);var Av=class extends Pd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>me(e,Z(Yt(),_v(e,this.axis))))}getConfig(){return{axis:this.axis}}};Av.className="UnitNorm";oe.registerClass(Av);var $v=class extends Pd{apply(e){return Qe(e)}};$v.className="NonNeg";oe.registerClass($v);var Fv=class extends Pd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=_v(e,this.axis),n=Z(V(this.rate,dn(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,me(n,Z(Yt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Fv.className="MinMaxNorm";oe.registerClass(Fv);var S0={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Qt(e){return Cv(e)}function C0(e,t={}){return Rd(e,oe.SerializationMap.getMap().classNameMap,t,"constraint")}function Zt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in S0?S0[e]:e,config:{}};return C0(n)}else return e instanceof Pd?e:C0(e)}function RV(e){return new Ev(e)}function PV(e){return new Av(e)}function OV(){return new $v}function MV(e){return new Fv(e)}var T0={};Ee(T0,{constant:()=>oU,glorotNormal:()=>hU,glorotUniform:()=>pU,heNormal:()=>fU,heUniform:()=>mU,identity:()=>lU,leCunNormal:()=>gU,leCunUniform:()=>bU,ones:()=>aU,orthogonal:()=>yU,randomNormal:()=>uU,randomUniform:()=>iU,truncatedNormal:()=>cU,varianceScaling:()=>dU,zeros:()=>sU});var LV=["channelsFirst","channelsLast"],BV=["nearest","bilinear"],zV=["valid","same","causal"],WV=["max","avg"],VV=["sum","mul","concat","ave"],Fc=new Map;function Bt(e){ji(LV,"DataFormat",e)}function UV(e){ji(BV,"InterpolationFormat",e)}function vr(e){ji(zV,"PaddingMode",e)}function N0(e){ji(WV,"PoolMode",e)}var Od=[],_0="/";function qi(e,t){Od.push(e);try{let n=t();return Od.pop(),n}catch(n){throw Od.pop(),n}}function GV(){return Od.length===0?"":Od.join(_0)+_0}function E0(e){if(!$0(e))throw new Error("Not a valid tensor name: '"+e+"'");return GV()+e}function A0(e){if(!$0(e))throw new Error("Not a valid tensor name: '"+e+"'");Fc.has(e)||Fc.set(e,0);let t=Fc.get(e);if(Fc.set(e,Fc.get(e)+1),t>0){let n=`${e}_${t}`;return Fc.set(n,1),n}else return e}var HV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function $0(e){return!!e.match(HV)}function jV(e){return e===parseInt(e.toString(),10)}function yo(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;s<n;++s)r*=e[s];return r}function Dc(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r<t&&(t=r)}return t}function vo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let r=e[n];r>t&&(t=r)}return t}function Yr(e,t){if(t<e)throw new H(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Ef(e,t){return ue(e,t)}function Md(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function qV(e,t){return M(()=>{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Md(e,1);return Pv(n,[1,t,1])})}function KV(e){let t=[yo(e.shape)];return G(e,t)}function XV(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],yo(e.shape,1)];return G(e,t)}function Ki(e,t,n){return M(()=>{switch(e.rank){case 1:return hf(e,t,n);case 2:return pv(e,[t,0],[n,e.shape[1]]);case 3:return Ac(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ed(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ve(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ve(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Dv(e,t,n){return M(()=>{switch(e.rank){case 1:return hf(e,t,n);case 2:return pv(e,[0,t],[e.shape[0],n]);case 3:return Ac(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ed(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Af(e,t,n,r){return M(()=>{switch(e.rank){case 1:return hf(e,t,n);case 2:switch(r){case 1:return Ki(e,t,n);case 2:return Dv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Ki(e,t,n);case 2:return Ac(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Dv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Ki(e,t,n);case 2:return Ed(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ed(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Dv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Rv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function F0(e,t){switch(e.rank){case 1:return cS([e,t]);case 2:return lS([e,t],0);case 3:return dS([e,t],0);case 4:return pS([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Pv(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return tr(e,t)}function $f(e,t=0,n=1,r,s){return RS(e,t,n,r,s)}function ps(e,t,n,r){if(e.rank<2||t.rank<2)throw new De(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new De(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return mo.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?Ov(e.rank,r,Kr()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),u=o.pop(),l=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(Oe(t,c),[u,-1]);let d=[...s,...l],p=!1,h=!1;return G(mo.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:r?Ov(e.rank,r,Kr()):null,activation:n}),d)}}function D0(e,t,n){return M(()=>(Array.isArray(t)?t=je(t,"int32"):t=ue(t,"int32"),Sc(e,t,n)))}function Ld(e){return V(e,e)}function Ov(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?G(t,[1,r[0],1,1,1]):G(t,[1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?G(t,[1,1,1,1,r[0]]):G(t,[1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?G(t,[1,r[0],1,1]):G(t,[1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?G(t,[1,1,1,r[0]]):G(t,[1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?G(t,[1,r[0],1]):G(t,[1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?G(t,[1,1,r[0]]):G(t,[1].concat(r))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Qr(e,t,n){return M(()=>(n==null&&(n=Kr()),Bt(n),Z(e,Ov(e.rank,t,n))))}function YV(e,t=1){if(t!==1)throw new De(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Cd(e)}function QV(e){return M(()=>me(e,Z(Xt(e),1)))}function R0(e,t,n,r){return M(()=>qS(e,t,n,r))}function ZV(e){return M(()=>{let t=Z(.5,V(.2,e));return dn(t,0,1)})}function Bd(e,t,n=!1){return n?e():t()}var JV=["fanIn","fanOut","fanAvg"],eU=["normal","uniform","truncatedNormal"];function tU(e){ji(JV,"FanMode",e)}function nU(e){ji(eU,"Distribution",e)}var Pr=class extends oe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Mv=class extends Pr{apply(e,t){return kt(e,t)}};Mv.className="Zeros";oe.registerClass(Mv);var Ff=class extends Pr{apply(e,t){return rr(e,t)}};Ff.className="Ones";oe.registerClass(Ff);var Lv=class extends Pr{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return M(()=>V(ke(this.value),rr(e,t)))}getConfig(){return{value:this.value}}};Lv.className="Constant";oe.registerClass(Lv);var Bv=class extends Pr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Nc(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Bv.className="RandomUniform";oe.registerClass(Bv);var zv=class extends Pr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`randomNormal does not support dType ${t}.`);return $f(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};zv.className="RandomNormal";oe.registerClass(zv);var Wv=class extends Pr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`truncatedNormal does not support dType ${t}.`);return gf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Wv.className="TruncatedNormal";oe.registerClass(Wv);var Vv=class extends Pr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return M(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,Yy(e[0]))})}getConfig(){return{gain:this.gain}}};Vv.className="Identity";oe.registerClass(Vv);function rU(e,t="channelsLast"){let n,r;if(Bt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=yo(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=yo(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=yo(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var Hn=class extends Pr{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,tU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,nU(this.distribution),this.seed=e.seed}apply(e,t){let n=rU(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new De(`${this.getClassName()} does not support dType ${t}.`);return gf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Nc(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Hn.className="VarianceScaling";oe.registerClass(Hn);var Df=class extends Hn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Df.className="GlorotUniform";oe.registerClass(Df);var Rf=class extends Hn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Rf.className="GlorotNormal";oe.registerClass(Rf);var Pf=class extends Hn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Pf.className="HeNormal";oe.registerClass(Pf);var Of=class extends Hn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Of.className="HeUniform";oe.registerClass(Of);var Mf=class extends Hn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Mf.className="LeCunNormal";oe.registerClass(Mf);var Lf=class extends Hn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Hn.className}};Lf.className="LeCunNormal";oe.registerClass(Lf);var Uv=class extends Pr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new De("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return M(()=>{if(e.length<2)throw new De("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=$f(n,0,1,"float32"),s=s0.gramSchmidt(r);return e[0]>e[1]&&(s=Oe(s)),V(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Uv.className="Orthogonal";oe.registerClass(Uv);var P0={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function O0(e,t={}){return Rd(e,oe.SerializationMap.getMap().classNameMap,t,"initializer")}function Dt(e){return Cv(e)}function Nt(e){if(typeof e=="string"){let t=e in P0?P0[e]:e;if(t==="GlorotNormal")return new Rf;if(t==="GlorotUniform")return new Df;if(t==="HeNormal")return new Pf;if(t==="HeUniform")return new Of;if(t==="LeCunNormal")return new Mf;if(t==="LeCunUniform")return new Lf;{let n={};return n.className=t,n.config={},O0(n)}}else return e instanceof Pr?e:O0(e)}function sU(){return new Mv}function aU(){return new Ff}function oU(e){return new Lv(e)}function iU(e){return new Bv(e)}function uU(e){return new zv(e)}function cU(e){return new Wv(e)}function lU(e){return new Vv(e)}function dU(e){return new Hn(e)}function pU(e){return new Df(e)}function hU(e){return new Rf(e)}function fU(e){return new Pf(e)}function mU(e){return new Of(e)}function gU(e){return new Mf(e)}function bU(e){return new Lf(e)}function yU(e){return new Uv(e)}var M0={};Ee(M0,{Layer:()=>Ye,RNN:()=>zs,RNNCell:()=>jd,activation:()=>JG,add:()=>uH,alphaDropout:()=>HH,average:()=>cH,averagePooling1d:()=>lw,averagePooling2d:()=>dw,averagePooling3d:()=>pw,avgPool1d:()=>yH,avgPool2d:()=>xH,avgPool3d:()=>kH,avgPooling1d:()=>vH,avgPooling2d:()=>wH,avgPooling3d:()=>IH,batchNormalization:()=>mH,bidirectional:()=>MH,concatenate:()=>lH,conv1d:()=>GG,conv2d:()=>HG,conv2dTranspose:()=>jG,conv3d:()=>qG,conv3dTranspose:()=>KG,convLstm2d:()=>DH,convLstm2dCell:()=>RH,cropping2D:()=>YG,dense:()=>eH,depthwiseConv2d:()=>ZG,dot:()=>fH,dropout:()=>tH,elu:()=>LG,embedding:()=>iH,flatten:()=>rH,gaussianDropout:()=>GH,gaussianNoise:()=>UH,globalAveragePooling1d:()=>SH,globalAveragePooling2d:()=>CH,globalMaxPool1d:()=>BH,globalMaxPool2d:()=>zH,globalMaxPooling1d:()=>Y2,globalMaxPooling2d:()=>Q2,gru:()=>NH,gruCell:()=>_H,input:()=>g2,inputLayer:()=>MG,layerNormalization:()=>gH,leakyReLU:()=>zG,lstm:()=>EH,lstmCell:()=>AH,masking:()=>jH,maxPool1d:()=>WH,maxPool2d:()=>VH,maxPooling1d:()=>Z2,maxPooling2d:()=>J2,maxPooling3d:()=>TH,maximum:()=>dH,minimum:()=>pH,multiply:()=>hH,permute:()=>oH,prelu:()=>WG,reLU:()=>BG,repeatVector:()=>sH,reshape:()=>aH,rnn:()=>PH,separableConv2d:()=>XG,simpleRNN:()=>$H,simpleRNNCell:()=>FH,softmax:()=>VG,spatialDropout1d:()=>nH,stackedRNNCells:()=>OH,thresholdedReLU:()=>UG,timeDistributed:()=>LH,upSampling2d:()=>QG,zeroPadding2d:()=>bH});var vU=0;function L0(){return vU++}var Bf={};function zf(e=""){return e in Bf||(Bf[e]=0),Bf[e]+=1,e+Bf[e].toString()}function Gv(e){return Array.isArray(e)&&Array.isArray(e[0])}function Wf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ut(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Vf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var B0="Variable",z0=class{constructor(e,t="float32",n=B0,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=L0(),n=n==null?B0:n,this.originalName=E0(n),this.name=A0(this.originalName),this.trainable_=r,this.constraint=s,this.val=VS(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),xU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function xU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Hv(e){return e.map(t=>t.read())}function jv(e){e.forEach(t=>{t[0].write(t[1])})}var Gt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Zr=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=L0(),a!=null&&(this.originalName=E0(a),this.name=A0(this.originalName)),this.rank=t.length}},wU=0,Uf=class{constructor(e,t){this.callArgs=t,this.id=wU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},kU=0,Ye=class extends oe.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=kU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ls(n)+"_"+zf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Gn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Gn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ms(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ms(`Layer ${this.name} is not connected, no input to return.`);return Gn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ms(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ms(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Gn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=It(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=It(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],s=t[n];if(s==null)continue;let a=r.rank;if(s.ndim!=null&&a!==s.ndim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&r.dtype!==s.dtype)throw new H(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${r.dtype}.`);if(s.axes){let o=r.shape;for(let i in s.axes){let u=Number(i),l=s.axes[i],c=u>=0?o[u]:o[o.length+u];if(l!=null&&[l,null].indexOf(c)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${l} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o<s.shape.length;++o){let i=s.shape[o],u=r.shape[o];if(i!=null&&u!=null&&i!==u)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=It(e),r=!0;for(let a of n)if(!(a instanceof Zr)){r=!1;break}let s=!0;for(let a of n)if(a instanceof Zr){s=!1;break}if(r===s)throw new H("Arguments to apply() must be all SymbolicTensors or all Tensors");return qi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of It(e))a.push(o.shape);this.build(Gn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=It(a),i=[];for(let u of o)n.indexOf(u)!==-1&&(u=u.clone()),i.push(u);if(a=Gn(i),this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=IU(e),o=this.computeOutputShape(a),i,u=SU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((l,c)=>new Zr(u,l,this,It(e),t,this.name,c)):i=new Zr(u,o,this,It(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new De("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ms(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ms(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Vf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Hv(e?this.trainableWeights:this.weights)}setWeights(e){M(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=Hv(t);for(let s=0;s<r.length;++s){let a=r[s],o=t[s],i=e[s];if(!w.arraysEqual(a.shape,i.shape))throw new H(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}jv(n)})}addWeight(e,t,n,r,s,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new H(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=i!=null?i():Nt("zeros"));let u=r.apply(t,n),l=new z0(u,n,e,a,o);return u.dispose(),s!=null&&this.addLoss(()=>s.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=It(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=It(e);t=It(t),n=It(n),r=It(r),s=Wf(s),a=Wf(a);let u=[],l=[],c=[];for(let d of i)u.push(d.sourceLayer),l.push(d.nodeIndex),c.push(d.tensorIndex);new Uf({outboundLayer:this,inboundLayers:u,nodeIndices:l,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function IU(e){e=It(e);let t=[];for(let n of e)t.push(n.shape);return Gn(t)}function SU(e){return"float32"}function W0(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a<r.inboundLayers.length;a++){let o=r.inputTensors[a],i=r.inboundLayers[a],u=r.nodeIndices[a],l=W0(o,i,u);for(let c of l)s.indexOf(c)===-1&&s.push(c)}return s}}}var Rc=class extends Ye{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:zf("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new H("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new H("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new H("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Zr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new H(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Rc.className="InputLayer";oe.registerClass(Rc);function V0(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new H("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Rc({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function xo(e){if(e==null)return;let t=[],n=[],r=[];for(let s in e){let a=e[s];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(s),r.push(o)}}if(t.length>0){let s=await Promise.all(t);for(let a=0;a<s.length;++a)e[n[a]]=s[a][0];Fe(r)}}function U0(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var G0;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(G0||(G0={}));var CU=125,Pc=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},H0=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},TU=class extends Pc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let s=t[r];if(typeof s=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+s*n;else{let a;r in this.totals?a=this.totals[r]:this.totals[r]=0;let o=M(()=>Z(this.totals[r],V(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:M(()=>{let r=V(me(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),nn(t[n])}))}},j0=class extends Pc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(s),n.push(o)}}let r=await Promise.all(e);for(let s=0;s<r.length;++s)this.history[t[s]][n[s]].dispose(),this.history[t[s]][n[s]]=r[s][0]}},q0=class extends Pc{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||a0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=CU),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=DV(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await xo(n),r.push(this.yield(e,t,n))),r.push(this.nextFrameFunc()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await xo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await xo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await xo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await xo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await xo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await xo(e),await this.trainEnd(e))}};function K0(e,t){return e==null&&(e={}),e instanceof Pc?[e]:Array.isArray(e)&&e[0]instanceof Pc?e:It(e).map(r=>new q0(r,t))}var hs=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),hs.checkForDuplicate(t),hs.constructors[e]==null&&(hs.constructors[e]=[]),hs.constructors[e].push(t)}static checkForDuplicate(e){for(let t in hs.constructors)hs.constructors[+t].forEach(r=>{if(r===e)throw new H("Duplicate callback constructor.")})}static clear(){hs.constructors={}}static createCallbacks(e){let t=[];for(let n in hs.constructors){let r=+n;e>=r&&t.push(...hs.constructors[r])}return t.map(n=>new n)}},qv=hs;qv.constructors={};function X0(e,t,n,r,s,a,o,i,u){let l=new j0,c=[new TU,...qv.createCallbacks(t)];e!=null&&c.push(...e),c.push(l);let d=new H0(c);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:u}),{callbackList:d,history:l}}function Jr(e,t={},n=!1){return Rd(e,oe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Gf(e,t){return M(()=>{e.dtype!=="float32"&&(e=ue(e,"float32"));let n=ve(Ld(e),t,!0),r=_n(n.shape,Yt()),s=vn(Ds(n,r));return me(e,s)})}function Xi(e,t){return M(()=>Ot(Ld(he(t,e)),-1))}function Hf(e,t){return M(()=>Ot(Xt(he(t,e)),-1))}function Oc(e,t){return M(()=>{let n=he(e,t),r=dn(Xt(e),Yt(),Number.MAX_VALUE),s=Xt(me(n,r));return V(100,Ot(s,-1))})}function NU(e,t){return M(()=>{let n=dn(t,Yt(),Number.MAX_VALUE),r=gr(Z(1,n)),s=dn(e,Yt(),Number.MAX_VALUE),a=gr(Z(1,s));return Ot(Ld(he(r,a)),-1)})}function _U(e,t){return M(()=>{let n=Ds(0,he(1,V(e,t)));return Ot(Ld(n),-1)})}function EU(e,t){return M(()=>{let n=Ds(0,he(1,V(e,t)));return Ot(n,-1)})}function AU(e,t){return M(()=>{let n=ve(V(e,t),-1),r=Gr(V(he(1,e),t),-1);return Ds(0,Z(1,he(r,n)))})}function $U(e,t){return M(()=>{let n=Math.log(2),r=he(t,e),s=he(Z(r,Cc(V(-2,r))),n);return Ot(s,-1)})}function zd(e,t,n=!1){return M(()=>{if(n)t=ls(t);else{let r=ve(t,t.shape.length-1,!0);t=me(t,r)}return t=dn(t,Yt(),1-Yt()),Ft(ve(V(ue(e,"float32"),gr(t)),t.shape.length-1))})}function jf(e,t,n=!1){return M(()=>{let r=ue(Td(KV(e)),"int32");t=dn(t,Yt(),1-Yt());let s=t.shape,a=G(wd(r,s[s.length-1]),s);return zd(a,t,n)})}function FU(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return M(()=>{let n=Qe(t),r=Ft(Xt(t));return Z(he(n,V(t,e)),af(Tn(r)))})}function qf(e,t){return M(()=>{let n;return n=dn(t,Yt(),1-Yt()),n=gr(me(n,he(1,n))),Ot(FU(e,n),-1)})}function DU(e,t){return M(()=>{let n=dn(e,Yt(),1),r=dn(t,Yt(),1);return ve(V(e,gr(me(n,r))),-1)})}function RU(e,t){return M(()=>{let n=gr(Z(Yt(),t));return Ot(he(t,V(e,n)),-1)})}function Kv(e,t){return M(()=>{let n=Gf(e,-1),r=Gf(t,-1),s=V(n,r);return Ft(ve(s,-1))})}var Kf={meanSquaredError:Xi,meanAbsoluteError:Hf,meanAbsolutePercentageError:Oc,meanSquaredLogarithmicError:NU,squaredHinge:_U,hinge:EU,categoricalHinge:AU,logcosh:$U,categoricalCrossentropy:zd,sparseCategoricalCrossentropy:jf,binaryCrossentropy:qf,kullbackLeiblerDivergence:DU,poisson:RU,cosineProximity:Kv};function Xv(e){if(typeof e=="string"){if(e in Kf)return Kf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Yv(e,t){return M(()=>{let n=V(.5,br(t)),r=Ef(nr(t,n),e.dtype);return Ot(mr(e,r),-1)})}function Qv(e,t){return M(()=>Ef(mr(wc(e,-1),wc(t,-1)),"float32"))}function Y0(e,t){return M(()=>ue(ve(Hr(mr(e,1),mr(t,1))),"float32"))}function PU(e,t){return M(()=>ue(ve(Hr(mr(e,1),mr(t,0))),"float32"))}function OU(e,t){return M(()=>ue(ve(Hr(mr(e,0),mr(t,1))),"float32"))}function Q0(e,t){return M(()=>{let n=Y0(e,t),r=OU(e,t),s=Z(n,r);return ue(Cn(nr(s,0),me(n,s),0),"float32")})}function MU(e,t){return M(()=>{let n=Y0(e,t),r=PU(e,t),s=Z(n,r);return ue(Cn(nr(s,0),me(n,s),0),"float32")})}function Z0(e,t){return qf(e,t)}function J0(e,t){return e.rank===t.rank&&(e=Rs(e,[e.rank-1])),t=wc(t,-1),t.dtype!==e.dtype&&(t=ue(t,e.dtype)),ue(mr(e,t),"float32")}var LU=Xi,BU=Xi,zU=Hf,WU=Hf,VU=Oc,UU=Oc,Zv=zd,GU=Kv,e2=jf,Xf={binaryAccuracy:Yv,categoricalAccuracy:Qv,precision:Q0,categoricalCrossentropy:Zv,sparseCategoricalCrossentropy:e2,mse:LU,MSE:BU,mae:zU,MAE:WU,mape:VU,MAPE:UU,cosine:GU};function HU(e){if(typeof e=="string"&&e in Xf)return Xf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Yf(e){if(ds(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Kf))if(Kf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Xf))if(Xf[n]===e){t=n;break}return t!==void 0?t:e.name}}function jU(e){let t={Adagrad:()=>Ui.adagrad(.01),Adadelta:()=>Ui.adadelta(1,.95,Yt()),Adam:()=>Ui.adam(.001,.9,.999,Yt()),Adamax:()=>Ui.adamax(.002,.9,.999,Yt(),0),RMSProp:()=>Ui.rmsprop(.001,.9,0,Yt()),SGD:()=>Ui.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var t2=1*1024*1024;function n2(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Jv(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>t2&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${t2}.`)}}function Jv(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Jv(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Jv(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function qU(e,t,n,r=console.log){let s=XU(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!s){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}r("_".repeat(t)),Qf(a,n,r),r("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)s?YU(i[c],n,r):QU(i[c],n,o,r),r((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let u=KU(e),l=Vf(e.nonTrainableWeights);r(`Total params: ${u+l}`),r(`Trainable params: ${u}`),r(`Non-trainable params: ${l}`),r("_".repeat(t))}function KU(e){let t;return e.collectedTrainableWeights!=null?t=Vf(e.collectedTrainableWeights):t=Vf(e.trainableWeights),t}function XU(e){let t=!0,n=[],r=[];for(let s in e.nodesByDepth)n.push(e.nodesByDepth[s]);for(let s of n){if(s.length>1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Qf(e,t,n=console.log){let r="";for(let s=0;s<e.length;++s)s>0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function YU(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];Qf(o,t,n)}function QU(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(c){s="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let p=c.inboundLayers[d].name,h=c.nodeIndices[d],f=c.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),u=a.length===0?"":a[0],l=[`${o} (${i})`,s,e.countParams().toString(),u];Qf(l,t,r);for(let c=1;c<a.length;++c)Qf(["","","",a[c]],t,r)}function r2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Wd(e,t){if(e===null)return null;if(typeof e=="string")return Hi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];r2(t,s,a)?n.push(a):n.push(Wd(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r];if(r==="name"&&typeof s=="string")n[r]=s;else{let a=Hi(r);n[a]=Wd(s,a)}}return n}}function ex(e,t){if(e==null)return null;if(typeof e=="string")return Ls(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let s=0;s<r;++s){let a=e[s];r2(t,s,a)?n.push(a):n.push(ex(a,t))}return n}else{let n={};for(let r of Object.keys(e)){let s=e[r],a=Ls(r);(r==="name"||r==="className")&&typeof s=="string"?n[a]=s:n[a]=ex(s,r)}return n}}var tx="0.0.0";function ZU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ue(t,e.dtype)}catch(n){throw new H(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Yi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Yi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=ZU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new H(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Zr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Zr){if(this.id2Value[e.id]==null)throw new H(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new H(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Fe(this.id2Mask)}},nx={},s2={};function Vd(e,t,n,r){let s=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),u=[],l=t.names();for(let f of i)l.indexOf(f)!==-1?u.push(t.getValue(f)):u.push(null);r!=null&&(r.maxNumTensors=-1/0,r.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,p;if(nx[c]==null){let f=JU(o,t);d=f.sorted,p=f.recipientCounts,nx[c]=d,s2[c]=p}d=nx[c],p={},s||Object.assign(p,s2[c]);let h=new Yi(t);for(let f=0;f<d.length;++f){if(r!=null){let F=Zh().numTensors;F>r.maxNumTensors&&(r.maxNumTensors=F),F<r.minNumTensors&&(r.minNumTensors=F)}let m=d[f],g=m.sourceLayer;if(g instanceof Rc)continue;let b=[],y=[],v=[],x=!1;for(let F of m.inputs){let O=h.getValue(F),D=h.getMask(F);b.push(O),y.push(D),D!=null&&(x=!0),s||(p[F.name]--,p[F.name]===0&&!t.hasKey(F)&&i.indexOf(F.name)===-1&&!O.isDisposed&&F.sourceLayer.stateful!==!0&&v.push(O))}x&&(n=n||{},n.mask=y[0]);let k=It(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=tG(m),E=Array.isArray(C)?C:[C];for(let F=0;F<E.length;++F){h.hasKey(E[F])||h.add(E[F],k[F],Array.isArray(T)?T[0]:T);let O=i.indexOf(E[F].name);O!==-1&&(u[O]=k[F])}s||Fe(v)}return h.disposeMasks(),a?u:u[0]}function JU(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=a2(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=a2(a,t);for(let u of o)s.has(u.name)||(n.push(u),s.add(u.name));for(let u in i)r[u]==null&&(r[u]=new Set),i[u].forEach(l=>r[u].add(l))}}return{sorted:n,recipientCounts:eG(r)}}function eG(e){let t={};for(let n in e)t[n]=e[n].size;return t}function a2(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let u=o[o.length-1]===a.length-1;if(i.inputs.length===0||u)a.pop(),r.push(i),n.add(i.name),u&&o.pop();else{o.push(a.length-1);for(let l of i.inputs)s[l.name]==null&&(s[l.name]=new Set),s[l.name].add(i.name),!n.has(l.name)&&a.push(l)}}return{sorted:r,recipientMap:s}}function tG(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let s of e.sourceLayer.inboundNodes[r].outputTensors)if(s.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var fs=class extends Ye{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=zf(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],bo(this.inputs).length!==this.inputs.length)throw new H(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);bo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;ds(v===0,"input layer has >1 nodes"),ds(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof Rc))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},r={},s={},a={},o=[],i=(b,y,v,x,k,T)=>{(x==null||k==null||T==null)&&(x=b.sourceLayer,k=b.nodeIndex,T=b.tensorIndex);let C=x.inboundNodes[k];if(v.indexOf(C)!==-1)throw new Xr(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(fs.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf(C)===-1&&v.push(C);let E=C.inboundLayers.length;for(let F=0;F<E;F++){let O=C.inputTensors[F],D=C.inboundLayers[F],R=C.nodeIndices[F],_=C.tensorIndices[F];i(O,y,v,D,R,_)}for(y.push(C);v.indexOf(C)>=0;)v.splice(v.indexOf(C),1);o.push(C)},u=[],l=[];for(let b of this.outputs)i(b,u,l);let c=o.slice().reverse();for(let b of c){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=r[b.outboundLayer.id]==null?0:r[b.outboundLayer.id];y=Math.max(y,v),r[b.outboundLayer.id]=y,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let k=b.inboundLayers[x],T=b.nodeIndices[x],C=k.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let p={};for(let b in r){let y=r[b];y in p||(p[y]=[]),p[y].push(s[b])}let h=Object.keys(p).map(b=>parseInt(b,10)).sort(_f);this.layers=[];for(let b of h){let y=p[b];y.sort((v,x)=>{let k=a[v.id],T=a[x.id];return k<T?-1:k>T?1:0});for(let v of y)v instanceof fs&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=p,h=Object.keys(d).map(b=>parseInt(b,10)).sort(_f);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of d[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new Xr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new Xr(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${r} weights are not set: ${a}`)}jv(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${tx}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ex(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return M(()=>{e=It(e);let n=new Yi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Vd(this.outputs,n,t)})}computeMask(e,t){return M(()=>{e=It(e);let n;return t==null?n=Gi(null,e.length):n=It(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Wf(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],u=t[o],l=i.name+"_0_0";n[l]=u}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(_f);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let u of i){let l=u.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let c=[];for(let f=0;f<u.inboundLayers.length;f++){let m=u.inboundLayers[f],g=u.nodeIndices[f],b=u.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];c.push(v)}let d=l.computeOutputShape(Gn(c)),p=Wf(d),h=l.inboundNodes.indexOf(u);for(let f=0;f<p.length;f++){let m=`${l.name}_${h}_${f}`;n[m]=p[f]}}}let s=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],u=this.outputLayersNodeIndices[o],l=this.outputLayersTensorIndices[o],c=`${i.name}_${u}_${l}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];ds(i in n),s.push(n[i])}return Gn(s)}runInternalGraph(e,t){t==null&&(t=Gi(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let u=this.inputs[i],l=e[i],c=t[i];n[u.id]=[l,c]}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(_f);for(let i of r){let u=this.nodesByDepth[i];for(let l of u){let c=l.outboundLayer,d=l.inputTensors,p=l.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,b,y;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=It(c.call(v,f)),y=It(c.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=It(c.call(m,f)),y=It(c.computeMask(m,g));if(c.activityRegularizer)throw new De("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<p.length;++v){let x=p[v],k=b[v],T=y[v];n[x.id]=[k,T]}}}}let s=[],a=[],o=[];for(let i of this.outputs){ds(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[u,l]=n[i.id];o.push(u.shape),s.push(u),a.push(l)}return[s,a,o]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof fs?1:0;for(let s=0;s<r.inboundNodes.length;s++){let a=fs.nodeKey(r,s);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new H(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new H("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new H(`No such layer: ${e}`)}calculateLosses(){return M(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=fs.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),u=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],p=fs.nodeKey(a,c),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],b=d.nodeIndices[m],y=d.tensorIndices[m],v=fs.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}u.push(f)}}}let l={};l.name=a.name,l.className=o,l.config=i,l.inboundNodes=u,n.push(l)}e.layers=n;let r=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],u=fs.nodeKey(o,i);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.inputLayersTensorIndices[a];r.push([o.name,l,c])}e.inputLayers=r;let s=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],u=fs.nodeKey(o,i);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.outputLayersTensorIndices[a];s.push([o.name,l,c])}return e.outputLayers=s,e}static fromConfig(e,t,n={},r=!1){let s={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let b=[],y;for(let v of g){let x=v[0],k=v[1],T=v[2];if(y=v[3]==null?{}:v[3],!(x in s)){o(m,g);return}let C=s[x];if(C.inboundNodes.length<=k){o(m,g);return}let E=C.inboundNodes[k];b.push(E.outputTensors[T])}b.length>0&&m.apply(Gn(b),y)}function u(m){let g=m.name,b=Jr(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(r),s[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${v}`);o(b,v)})}let l=t.name,c=t.layers;for(let m of c)u(m);for(;!FV(a);)for(let m of c){let g=s[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];ds(g in s);let x=s[g].inboundNodes[b].outputTensors;d.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];ds(g in s);let x=s[g].inboundNodes[b].outputTensors;p.push(x[y])}return new e({inputs:d,outputs:p,name:l})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){M(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function nG(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function o2(e,t){return nG(e,t,"classWeight")}async function i2(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=M(()=>{if(e.shape.length===1)return Fs(e);if(e.shape.length===2){if(e.shape[1]>1)return wc(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());Fe(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),je(o,"float32")}else return null}function rG(e,t){return V(e,t)}var sG=32;function u2(e,t){let n,r,s=t;n=s.xs,r=s.ys,w.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=c2("input",e.inputNames,n),o=c2("output",e.outputNames,r),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let u=0;u<a.length;u++)w.assert(a[u].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[u]} has ${a[u].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let u=0;u<o.length;u++)w.assert(o[u].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[u]} has ${o[u].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function c2(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function aG(e){if(e.length===3)throw new De("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function oG(e,t,n){let r=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(l2(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=aG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),u=e.getDedupedMetricsNames(),l;s?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=K0(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=X0(c,d,n.epochs,null,null,iG(t,n),null,s,l);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let b=0,y=0;for(r||(m=await t.iterator());r?b<n.batchesPerEpoch:!0;){let v=await m.next();if(r&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:k}=u2(e,v.value),T={};T.batch=y,T.size=x[0].shape[0],await p.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let O=o2(n.classWeight,e.outputNames);for(let D=0;D<O.length;++D)C.push(await i2(k[D],null,O[D]))}let E=x.concat(k).concat(C),F=i(E);Fe(E);for(let O=0;O<u.length;++O){let D=u[O],R=F[O];T[D]=R,nn(R)}await p.onBatchEnd(y,T),U0(T),y++,b++}if(r?b>=n.batchesPerEpoch:v.done){if(s){let x;l2(n.validationData)?x=It(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=It(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?sG:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=x[k]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function iG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function l2(e){return typeof e.iterator=="function"}function uG(e){return typeof e.next=="function"}async function cG(e,t,n){n=n||{};let r=n.batches!=null,s=e.testFunction,a=[];if(n.verbose>0)throw new De("Verbose mode is not implemented yet.");w.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=uG(t)?t:await t.iterator(),i=0,u=0;for(;r?u<n.batches:!0;){let l=await o.next();if(a=M(()=>{if(l.value){let{xs:c,ys:d}=u2(e,l.value),p=c.concat(d),h=M(()=>s(p));if(Fe(p),u===0)for(let m=0;m<h.length;++m)a.push(ke(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=M(()=>Z(a[m],V(f,g))),u>0&&Fe(b)}Fe(h),i+=f,++u}return a}),l.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<a.length;++l){let c=a[l];a[l]=me(a[l],i),Fe(c)}return Gn(a)}function rx(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ud(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Ki(r,t,n-t)):Ki(e,t,n-t)}function sx(e,t){return M(()=>e==null?null:Array.isArray(e)?e.map(n=>sx(n,t)):D0(e,t.dtype==="int32"?t:ue(t,"int32")))}function ax(e,t){let n=[],r=0,s=null;for(;r<e;)s=r+t,s>=e&&(s=e),n.push([r,s]),r=s;return n}async function lG(e,t,n,r,s,a,o,i,u,l,c,d,p,h,f){s==null&&(s=32),a==null&&(a=1),c==null&&(c=!0),p==null&&(p=0);let m=!1;if(u!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,h,"steps_per_epoch"),b;g!=null&&(b=Yr(0,g)),o==null&&(o=1);let{callbackList:y,history:v}=X0(i,o,a,p,g,h,s,m,d);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=p;x<a;++x){await y.onEpochBegin(x);let k={};if(h!=null)throw new De("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new De("batch shuffling is not implemneted yet");c&&w.shuffle(b);let T=je(b),C=ax(g,s);for(let E=0;E<C.length;++E){let F={};if(await y.onBatchBegin(E,F),M(()=>{let O=C[E][0],D=C[E][1],R=Ki(T,O,D-O);F.batch=E,F.size=D-O;let _=sx(n,R),L=t(_);for(let U=0;U<r.length;++U){let j=r[U],K=L[U];F[j]=K,nn(K)}if(E===C.length-1&&m){let U=e.testLoop(u,l,s);for(let j=0;j<r.length;++j){let K=r[j],q=U[j];nn(q),k["val_"+K]=q}}}),await y.onBatchEnd(E,F),U0(F),e.stopTraining_)break}T.dispose()}if(await y.onEpochEnd(x,k),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function dG(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let s,a,o,i,u,l,c;try{let d=r.batchSize==null?32:r.batchSize;rx(d);let p=!1,h=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,p,d);s=h[0],a=h[1],c=h[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)o=r.validationData[0],i=r.validationData[1];else throw r.validationData.length===3?new De("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let C=!0,E=await e.standardizeUserData(o,i,null,null,C,d);u=E[0],l=E[1],m=u.concat(l)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let C=Math.floor(s[0].shape[0]*(1-r.validationSplit)),E=s[0].shape[0];u=Ud(s,C,E),s=Ud(s,0,C),l=Ud(a,C,E),a=Ud(a,0,C),m=u.concat(l)}else r.validationSteps!=null&&(f=!0);let g=s.concat(a).concat(c);e.checkTrainableWeightsConsistency();let b=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),v,x;f?(e.makeTestFunction(),v=e.testFunction,x=y.slice().concat(y.map(C=>"val_"+C))):(v=null,m=[],x=y.slice());let k=K0(r.callbacks,r.yieldEvery);return await lG(e,b,g,y,d,r.epochs,r.verbose,k,v,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,Qi(s,t),Qi(a,n),Qi(u,o),Qi(l,i),c!=null&&Fe(c)}}function d2(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Md(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Qi(e,t){if(e==null)return;let n=[];if(t instanceof Ae)n.push(t.id);else if(Array.isArray(t))t.forEach(s=>n.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function pG(e){return e instanceof Ae}function ox(e){return Array.isArray(e)}function p2(e){return!pG(e)&&!ox(e)}function h2(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ox(e)&&e.length>0)o=!0;else if(p2(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(p2(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ox(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=d2(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let u=0;u<n[o].length;++u){if(u===0&&!r)continue;let l=i.shape[u],c=n[o][u];if(c!=null&&c>=0&&l!==c)throw new H(`${s} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${s} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function hG(e,t,n){let r=bo(e.map(a=>a.shape[0]));r.sort();let s=bo(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!w.arraysEqual(r,s))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function fG(e,t,n){let r=[Xi,qf,zd];for(let s=0;s<e.length;++s){let a=e[s],o=t[s],i=n[s];if(o!=null){if(o===zd&&a.shape[a.shape.length-1]===1)throw new H(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(o)!==-1){let u=a.shape.slice(1),l=i.slice(1);for(let c=0;c<u.length;++c){let d=u[c],p=l[c];if(p!=null&&d!==p)throw new H(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function f2(e,t,n,r=!0,s=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new H(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new H(`Error when checking ${s}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let u=0;u<n[o].length;++u){if(u===0&&!r)continue;let l=i.shape[u],c=n[o][u];if(c!=null&&c!==l)throw new H(`Error when checking ${s}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function mG(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var gG="layers-model",Bs=class extends fs{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");qU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=jU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Os))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Xv(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>Xv(o))}else{let a=Xv(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],qi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=mG(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};qi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=r[a];(u=>{let l="",c,d,p;for(let h of u){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===qf?["accuracy","acc"].indexOf(h)!==-1?d=Yv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Z0):this.lossFunctions[a]===jf?["accuracy","acc"].indexOf(h)!==-1?d=J0:["crossentropy","ce"].indexOf(h)!==-1&&(d=e2):["accuracy","acc"].indexOf(h)!==-1?d=Qv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Zv);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,c=l+g}else p=HU(h),c=l+Yf(h);let f;qi(c,()=>{f=p}),s(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;rx(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,u=this.testLoop(i,o,r,n.verbose,n.steps);return Gn(u)}finally{Qi(a[0],e),Qi(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),cG(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new H(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new Yi;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let u=e[i.name];if(u==null)throw new H(`No value is provided for the model's input ${i.name}`);a.add(i,u)}let o=Vd(s,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Gi(null,e.length),n=e.length;for(let r of this.layers){let s=Array.isArray(r.output)?r.output:[r.output],a=s.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=s[i],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return M(()=>{let r=this.checkNumSamples(e);if(n)throw new De("Verbose predictLoop() is not implemented yet.");let s=ax(r,t),a=this.outputs.map(o=>[]);for(let o=0;o<s.length;++o)M(()=>{let u=s[o][0],l=s[o][1],c=Ud(e,u,l),d=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)d.push({key:this.inputs[h],value:c[h]});else d.push({key:this.inputs[0],value:c});let p=new Yi(d);return Vd(this.outputs,p)}).forEach((u,l)=>a[l].push(u));return Gn(a.map(o=>ot(o,0)))})}predict(e,t={}){let n=d2(e);f2(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return rx(r),this.predictLoop(n,r)}finally{Qi(n,e)}}predictOnBatch(e){f2(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===jf?s.push(o.slice(0,o.length-1).concat([1])):s.push(o)}if(e=h2(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=h2(t,this.feedOutputNames,s,!1,"target"),hG(e,t,null),fG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(r!=null){let l=o2(r,this.outputNames);u=[];for(let c=0;c<l.length;++c)u.push(await i2(i[c],null,l[c]))}return[o,i,u]}testLoop(e,t,n,r=0,s){return M(()=>{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new De("Verbose mode is not implemented yet.");if(s!=null)throw new De("steps mode in testLoop() is not implemented yet");{let i=ax(a,n),u=je(Yr(0,a));for(let l=0;l<i.length;++l){let c=i[l][0],d=i[l][1],p=Ki(u,c,d-c),h=sx(t,p),f=e(h);if(l===0)for(let m=0;m<f.length;++m)o.push(ke(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=Z(o[m],V(d-c,g))}}for(let l=0;l<o.length;++l)o[l]=me(o[l],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],s=r;w0(e,r)>1&&(s+=`_${w0(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let d=new Yi(c),p=Vd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](r[f],p[f]);s[f]!=null&&(g=rG(g,s[f]));let b=Ot(g);t.push(b),f===0?h=g:h=Z(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=Ot(g(r[b],p[b]))}nn(m),a.push(m)}return h=Ot(h),this.calculateLosses().forEach(f=>{h=Z(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),u=!0;return[this.optimizer_.minimize(o,u,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>M(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:r[u]});let o=new Yi(a),i=Vd(this.outputs,o);for(let u=0;u<this.lossFunctions.length;++u){let l=this.lossFunctions[u],c=Ot(l(s[u],i[u]));u===0?n=c:n=Z(n,c),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let l=this.metricsTensors[u][0],c=this.metricsTensors[u][1],d=Ot(l(s[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return dG(this,e,t,n)}async fitDataset(e,t){return oG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],s=n[1],o=this.makeTrainFunction()(r.concat(s)),i=[];for(let u of o){let l=await u.data();i.push(l[0])}return Fe(o),Gn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let a=0;a<r.length;++a)n&&!r[a].trainable||t.push({name:r[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Zh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Zh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Ls(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Ls(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=Ls(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ls(Yf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ls(Yf(e)));{let e={};for(let t in this.metrics)e[t]=Ls(Yf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Wd(e.optimizer_config),n=Jr(t),r;if(typeof e.loss=="string")r=Hi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>Hi(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=Hi(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Hi(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Hi(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=tn.getSaveHandlers(e);if(u.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new H(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await tn.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:gG,generatedBy:`TensorFlow.js tfjs-layers v${tx}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:l,specs:c}=await tn.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...c),n.data=tn.concatenateArrayBuffers([n.data,l])}if(this.userDefinedMetadata!=null){let u=!0;n2(this.userDefinedMetadata,this.name,u),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){n2(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Bs.className="Model";oe.registerClass(Bs);var m2=class extends Bs{};m2.className="Functional";oe.registerClass(m2);async function bG(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Wd(n),s=Jr(r,t);if(e.weightsManifest!=null){let a=await tn.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),Fe(a)}return s}async function yG(e,t){if(t==null&&(t={}),typeof e=="string"){let n=tn.getLoadHandlers(e,t);if(n.length===0)n.push(tn.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return vG(e,void 0,t)}async function vG(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=Jr(Wd(s),t,o),u=r.trainingConfig;if(u!=null&&i.loadTrainingConfig(u),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=xG(r.weightData,r.weightSpecs);i.loadWeights(l,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Fe(l),Fe(c.map(d=>d.tensor))}return i}function xG(e,t){let n=tn.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var ix=class extends Bs{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:zf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ix||e instanceof Bs,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=V0({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=W0(this.outputs[0])}this.inboundNodes=[],new Uf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Gi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ut(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Bs({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");s=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ix))throw new De(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let l=Jr(i,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),o.add(l)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Zf=ix;Zf.className="Sequential";oe.registerClass(Zf);function wG(e){return new Bs(e)}function kG(e){return new Zf(e)}function IG(e,t){return t==null&&(t={}),yG(e,t)}function g2(e){return V0(e)}function SG(e,t){qv.registerCallbackConstructor(e,t)}var jn=class extends oe.Serializable{getConfig(){return{}}},b2=class extends jn{apply(e,t=1){return YV(e,t)}};b2.className="elu";oe.registerClass(b2);var y2=class extends jn{apply(e){return cv(e)}};y2.className="selu";oe.registerClass(y2);var v2=class extends jn{apply(e){return Qe(e)}};v2.className="relu";oe.registerClass(v2);var x2=class extends jn{apply(e){return M(()=>Nd(6,Qe(e)))}};x2.className="relu6";oe.registerClass(x2);var w2=class extends jn{apply(e){return e}};w2.className="linear";oe.registerClass(w2);var k2=class extends jn{apply(e){return $r(e)}};k2.className="sigmoid";oe.registerClass(k2);var I2=class extends jn{apply(e){return ZV(e)}};I2.className="hardSigmoid";oe.registerClass(I2);var S2=class extends jn{apply(e){return Cc(e)}};S2.className="softplus";oe.registerClass(S2);var C2=class extends jn{apply(e){return QV(e)}};C2.className="softsign";oe.registerClass(C2);var T2=class extends jn{apply(e){return Ic(e)}};T2.className="tanh";oe.registerClass(T2);var ux=class extends jn{apply(e,t=-1){return ls(e,t)}};ux.className="softmax";oe.registerClass(ux);var N2=class extends jn{apply(e,t=-1){return Zy(e,t)}};N2.className="logSoftmax";oe.registerClass(N2);var _2=class extends jn{apply(e,t=1){return M(()=>V($r(V(e,t)),e))}};_2.className="swish";oe.registerClass(_2);var E2=class extends jn{apply(e){return M(()=>V(e,Ic(Cc(e))))}};E2.className="mish";oe.registerClass(E2);function wo(e){return e.getClassName()}function cx(e,t={}){return Rd(e,oe.SerializationMap.getMap().classNameMap,t,"activation")}function ko(e){if(e==null){let t={};return t.className="linear",t.config={},cx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},cx(t)}else return e instanceof jn?e:cx(e)}function lx(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var A2=class extends oe.Serializable{},Gd=class extends A2{constructor(e){super();lx(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return M(()=>{let t=kt([1]);return this.hasL1&&(t=Z(t,ve(V(this.l1,Xt(e))))),this.hasL2&&(t=Z(t,ve(V(this.l2,Ld(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Gd.className="L1L2";oe.registerClass(Gd);function CG(e){return lx(e),new Gd({l1:e!=null?e.l1:null,l2:0})}function TG(e){return lx(e),new Gd({l2:e!=null?e.l2:null,l1:0})}var $2={l1l2:"L1L2"};function mt(e){return Cv(e)}function F2(e,t={}){return Rd(e,oe.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in $2?$2[e]:e,config:{}};return F2(n)}else return e instanceof A2?e:F2(e)}var dx=class extends Ye{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=Qe(e);return this.maxValue!=null&&(n=dn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};dx.className="ReLU";oe.registerClass(dx);var px=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return sf(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};px.className="LeakyReLU";oe.registerClass(px);var hx=class extends Ye{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Nt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=Zt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ut(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Gt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Me(e),pf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Dt(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Qt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};hx.className="PReLU";oe.registerClass(hx);var fx=class extends Ye{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new De(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return Cd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};fx.className="ELU";oe.registerClass(fx);var mx=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Me(e);return V(n,ue(nr(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};mx.className="ThresholdedReLU";oe.registerClass(mx);var gx=class extends Ye{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new ux().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Me(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};gx.className="Softmax";oe.registerClass(gx);function Mc(e,t,n){if(typeof e=="number")return Gi(e,t);if(e.length!==t)throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let s=e[r];if(!jV(s))throw new H(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${s}`)}return e}function es(e,t,n,r,s=1){if(e==null)return e;let a=t+(t-1)*(s-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+r-1)/r)}function ms(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+vo([n-t,0]);else if(r==="same")e=e*t;else throw new H(`Unsupport padding mode: ${r}.`);return e}function bx(e,t){return M(()=>(Bt(t),t==="channelsFirst"?Oe(e,[0,2,3,1]):e))}function D2(e,t){return M(()=>(Bt(t),t==="channelsFirst"?Oe(e,[0,2,3,4,1]):e))}function NG(e,t,n,r=1,s="valid",a,o=1){return M(()=>{if(a==null&&(a=Kr()),Bt(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Oe(e,[0,2,1])),s==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Gy(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=Qr(i,n)),i})}function R2(e,t,n,r=[1,1],s="valid",a,o,i=null){return M(()=>{if(a==null&&(a=Kr()),Bt(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let u=bx(e,a);if(s==="causal")throw new De("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=mo.conv2d({x:u,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(u=Oe(u,[0,3,1,2])),u})}function _G(e,t,n,r=[1,1,1],s="valid",a,o){return M(()=>{if(a==null&&(a=Kr()),Bt(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=D2(e,a);if(s==="causal")throw new De("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=qy(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Qr(i,n)),a==="channelsFirst"&&(i=Oe(i,[0,4,1,2,3])),i})}var yx=class extends Ye{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",yx.verifyArgs(t),this.rank=e,rn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new De(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Mc(t.kernelSize,e,"kernelSize"),this.strides=Mc(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,vr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Bt(this.dataFormat),this.activation=ko(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Nt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Zt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Mc(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ds("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Nv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:wo(this.activation),useBias:this.useBias,biasInitializer:Dt(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hd=class extends yx{constructor(e,t){super(e,t);this.kernel=null,Hd.verifyArgs(t),this.filters=t.filters,rn(this.filters,"filters"),this.kernelInitializer=Nt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Zt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n,r=this.bias==null?null:this.bias.read(),s=I0(this.activation.getClassName());if(s!=null&&this.rank===2)n=R2(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=NG(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=R2(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=_G(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new De("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ut(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<n.length;++s){let a=es(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:Dt(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Qt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new H(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},P2=class extends Hd{constructor(e){super(2,e);P2.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Nv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Jf=P2;Jf.className="Conv2D";oe.registerClass(Jf);var O2=class extends Hd{constructor(e){super(3,e);O2.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},em=O2;em.className="Conv3D";oe.registerClass(em);var vx=class extends Jf{constructor(e){super(e);if(this.inputSpec=[new Gt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ut(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Gt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],u=r[o],l=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=ms(i,d,l,this.padding),f=ms(u,p,c,this.padding),m=[s,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Oe(n,[0,2,3,1]));let g=jy(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Oe(g,[0,3,1,2])),this.bias!=null&&(g=Qr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ut(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[r]=ms(t[r],i,a,this.padding),t[s]=ms(t[s],u,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};vx.className="Conv2DTranspose";oe.registerClass(vx);var xx=class extends em{constructor(e){super(e);if(this.inputSpec=[new Gt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ut(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Gt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Me(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let u=r[i],l=r[a],c=r[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=ms(u,f,d,this.padding),y=ms(l,m,p,this.padding),v=ms(c,g,h,this.padding),x=[s,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Oe(n,[0,2,3,4,1]));let k=fS(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Oe(k,[0,4,1,2,3])),this.bias!==null&&(k=Qr(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=ut(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],u=this.kernelSize[2],l=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=ms(t[r],l,o,this.padding),t[s]=ms(t[s],c,i,this.padding),t[a]=ms(t[a],d,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};xx.className="Conv3DTranspose";oe.registerClass(xx);var M2=class extends Hd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=Zt(t.depthwiseConstraint),this.pointwiseInitializer=Nt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=Zt(t.pointwiseConstraint)}build(e){if(e=ut(e),e.length<this.rank+2)throw new H(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let o=0;o<this.rank;++o)s.push(1);s.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Gt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{e=Me(e);let n;if(this.rank===1)throw new De("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Oe(e,[0,2,3,1])),n=Ec(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Qr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Oe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Dt(this.depthwiseInitializer),e.pointwiseInitializer=Dt(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Qt(this.depthwiseConstraint),e.pointwiseConstraint=Qt(this.pointwiseConstraint),e}};M2.className="SeparableConv";var wx=class extends M2{constructor(e){super(2,e)}};wx.className="SeparableConv2D";oe.registerClass(wx);var L2=class extends Hd{constructor(e){super(1,e);L2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Nv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},kx=L2;kx.className="Conv1D";oe.registerClass(kx);var Ix=class extends Ye{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return M(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=Af(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Af(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Af(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Af(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ix.className="Cropping2D";oe.registerClass(Ix);var Sx=class extends Ye{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,UV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return M(()=>{let n=Me(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Oe(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?ar.resizeNearestNeighbor(n,[s,a]):ar.resizeBilinear(n,[s,a]);return Oe(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?ar.resizeNearestNeighbor(n,[s,a]):ar.resizeBilinear(n,[s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sx.className="UpSampling2D";oe.registerClass(Sx);function EG(e,t,n=[1,1],r="valid",s,a){return M(()=>{s==null&&(s=Kr()),Bt(s);let o=bx(e,s);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Bi(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=Oe(o,[0,3,1,2])),o})}var Cx=class extends yx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Nt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Zt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=ut(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{e=Me(e);let n=EG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Qr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=es(t,this.kernelSize[0],this.padding,this.strides[0]),a=es(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Dt(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Qt(this.depthwiseRegularizer),e}};Cx.className="DepthwiseConv2D";oe.registerClass(Cx);function B2(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function z2(e,t,n,r=!1,s,a,o=!1,i=!1){return M(()=>{let u=t.shape.length;if(u<3)throw new H(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(Yr(2,u));if(t=Oe(t,l),a!=null)throw new De("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=ue(ue(s,"bool"),"float32"),s.rank===u-1&&(s=Nn(s,-1)),s=Oe(s,l)),r&&(t=yr(t,0),s!=null&&(s=yr(s,0)));let c=[],d,p=n,h=t.shape[0],f=vt(t),m;s!=null&&(m=vt(s));for(let b=0;b<h;++b){let y=f[b],v=M(()=>e(y,p));if(s==null)d=v[0],p=v[1];else{let x=M(()=>{let k=m[b],T=he(br(k),k),C=Z(V(v[0],k),V(p[0],T)),E=p.map((F,O)=>Z(V(v[1][O],k),V(F,T)));return{output:C,newStates:E}});d=x.output,p=x.newStates}i&&c.push(d)}let g;return i&&(g=Ut(c,1)),[d,g,p]})}var W2=class extends Ye{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new rm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Gt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Yr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Gv(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return M(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new De("Constants support is not implemented in RNN yet.");Gv(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Gt({shape:[n,null,...r]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new De("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Gt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Ms("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>kt([n,r])):this.states_=[kt([n,this.cell.stateSize])];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>kt([n,r])):this.states_[0]=kt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let r=0;r<this.states_.length;++r){let s=e[r],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(s.shape,o))throw new H(`State ${r} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${s.shape}`);this.states_[r]=s}}this.states_=this.states_.map(r=>nn(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=B2(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Gt({shape:u.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof Zr){let u=[e].concat(a),l=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=l;let d=super.apply(u,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=Me(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},u=z2((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),l=u[0],c=u[1],d=u[2];this.stateful&&this.resetStates(d,r);let p=this.returnSequences?c:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return M(()=>{let t=kt(e.shape);return t=ve(t,[1,2]),t=Md(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Pv(t,[1,n]):t):this.cell.stateSize>1?[Pv(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===W2.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let r=t.cell,s=Jr(r,n);return new e(Object.assign(t,{cell:s}))}},zs=W2;zs.className="RNN";oe.registerClass(zs);var jd=class extends Ye{},tm=class extends jd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,rn(this.units,"units"),this.activation=ko(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Dc([1,vo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Dc([1,vo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Io({ones:()=>br(e),rate:this.dropout,training:r,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Io({ones:()=>br(n),rate:this.recurrentDropout,training:r,dropoutFunc:this.dropoutFunc}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=ps(V(e,a),this.kernel.read()):s=ps(e,this.kernel.read()),this.bias!=null&&(s=Qr(s,this.bias.read())),o!=null&&(n=V(n,o));let i=Z(s,ps(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wo(this.activation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Qt(this.kernelConstraint),recurrentConstraint:Qt(this.recurrentConstraint),biasConstraint:Qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};tm.className="SimpleRNNCell";oe.registerClass(tm);var Tx=class extends zs{constructor(e){e.cell=new tm(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};Tx.className="SimpleRNN";oe.registerClass(Tx);var nm=class extends jd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,rn(this.units,"units"),this.activation=ko(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ko(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Dc([1,vo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Dc([1,vo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Io({ones:()=>br(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Io({ones:()=>br(r),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,u;0<this.dropout&&this.dropout<1&&(e=V(e,s[0]));let l=ps(e,this.kernel.read());this.useBias&&(l=Qr(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,a[0]));let c=this.recurrentKernel.read(),[d,p]=sr(c,[2*this.units,this.units],c.rank-1),h=ps(r,d),[f,m,g]=sr(l,3,l.rank-1),[b,y]=sr(h,2,h.rank-1);o=this.recurrentActivation.apply(Z(f,b)),i=this.recurrentActivation.apply(Z(m,y));let v=ps(V(i,r),p);u=this.activation.apply(Z(g,v));let x=Z(V(o,r),V(Z(1,Ft(o)),u));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wo(this.activation),recurrentActivation:wo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Qt(this.kernelConstraint),recurrentConstraint:Qt(this.recurrentConstraint),biasConstraint:Qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};nm.className="GRUCell";oe.registerClass(nm);var Nx=class extends zs{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new nm(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Nx.className="GRU";oe.registerClass(Nx);var qd=class extends jd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,rn(this.units,"units"),this.activation=ko(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ko(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Nt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Zt(e.kernelConstraint),this.recurrentConstraint=Zt(e.recurrentConstraint),this.biasConstraint=Zt(e.biasConstraint),this.dropout=Dc([1,vo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Dc([1,vo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ut(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Pr{apply(o,i){let u=s.apply([a]),l=new Ff().apply([a]),c=s.apply([a*2]);return F0(F0(u,l),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Io({ones:()=>br(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Io({ones:()=>br(r),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,u,l,c;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let d=ps(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=V(r,o[0])),d=Z(d,ps(r,this.recurrentKernel.read())),this.useBias&&(d=Qr(d,this.bias.read()));let[p,h,f,m]=sr(d,4,d.rank-1);i=this.recurrentActivation.apply(p),u=this.recurrentActivation.apply(h),l=Z(V(u,s),V(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=V(c,this.activation.apply(l));return[g,g,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:wo(this.activation),recurrentActivation:wo(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),recurrentInitializer:Dt(this.recurrentInitializer),biasInitializer:Dt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Qt(this.kernelConstraint),recurrentConstraint:Qt(this.recurrentConstraint),biasConstraint:Qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};qd.className="LSTMCell";oe.registerClass(qd);var _x=class extends zs{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new qd(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};_x.className="LSTM";oe.registerClass(_x);var rm=class extends jd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return M(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=r[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),s.push(a.slice(1))}n=[];for(let o of s.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){Gv(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{qi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(Jr(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Hv(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],s[a]])}jv(t)}};rm.className="StackedRNNCells";oe.registerClass(rm);function Io(e){let{ones:t,rate:n,training:r=!1,count:s=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):R0(t(),n),i=()=>Bd(o,t,r);return!s||s<=1?nn(i().clone()):Array(s).fill(void 0).map(i).map(l=>nn(l.clone()))}var V2=class extends zs{constructor(e){if(e.unroll)throw new De("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new De("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Gt({ndim:5})]}call(e,t){return M(()=>{if(this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return M(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=kt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Ms("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>kt(s)):this.states_=[kt(s)];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>kt(s)):this.states_[0]=kt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],u=s;if(!w.arraysEqual(i.shape,u))throw new H(`State ${o} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>nn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",u=e[i?3:2],l=e[i?4:3],c=es(u,r[0],s,a[0],o[0]),d=es(l,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};V2.className="ConvRNN2D";var sm=class extends qd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,rn(this.filters,"filters"),this.kernelSize=Mc(n,2,"kernelSize"),this.kernelSize.forEach(i=>rn(i,"kernelSize")),this.strides=Mc(r||1,2,"strides"),this.strides.forEach(i=>rn(i,"strides")),this.padding=s||"valid",vr(this.padding),this.dataFormat=a||"channelsLast",Bt(this.dataFormat),this.dilationRate=Mc(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>rn(i,"dilationRate"))}build(e){var t;e=ut(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let u=this.biasInitializer,l=this.filters;i=new(t=class extends Pr{apply(c,d){let p=u.apply([l]),h=rr([l]),f=u.apply([l*2]);return Rv([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return M(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Io({ones:()=>br(r),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,u=(Q,ee,re)=>!ee||!ee[re]?Q:V(ee[re],Q),l=u(r,i,0),c=u(r,i,1),d=u(r,i,2),p=u(r,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Io({ones:()=>br(s),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=u(s,h,0),m=u(s,h,1),g=u(s,h,2),b=u(s,h,3),y=3,[v,x,k,T]=sr(this.kernel.read(),o,y),[C,E,F,O]=this.useBias?sr(this.bias.read(),o):[null,null,null,null];l=this.inputConv(l,v,C,this.padding),c=this.inputConv(c,x,E,this.padding),d=this.inputConv(d,k,F,this.padding),p=this.inputConv(p,T,O,this.padding);let[D,R,_,L]=sr(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,D),m=this.recurrentConv(m,R),g=this.recurrentConv(g,_),b=this.recurrentConv(b,L);let U=this.recurrentActivation.apply(Z(l,f)),j=this.recurrentActivation.apply(Z(c,m)),K=Z(V(j,a),V(U,this.activation.apply(Z(d,g)))),q=V(this.recurrentActivation.apply(Z(p,b)),this.activation.apply(K));return[q,q,K]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,r){let s=Wt(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Qr(s,n,this.dataFormat):s}recurrentConv(e,t){return Wt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};sm.className="ConvLSTM2DCell";oe.registerClass(sm);var Ex=class extends V2{constructor(e){let t=new sm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};Ex.className="ConvLSTM2D";oe.registerClass(Ex);var am=class extends Ye{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,s=this.getNoiseShape(n);return Bd(()=>R0(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};am.className="Dropout";oe.registerClass(am);var Ax=class extends am{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ax.className="SpatialDropout1D";oe.registerClass(Ax);var $x=class extends Ye{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,rn(this.units,"units"),this.activation=ko(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Nt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Nt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Zt(e.kernelConstraint),this.biasConstraint=Zt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ut(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ut(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=I0(this.activation.getClassName()),s;return r!=null?s=ps(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=ps(n,this.kernel.read()),this.bias!=null&&(s=Qr(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:wo(this.activation),useBias:this.useBias,kernelInitializer:Dt(this.kernelInitializer),biasInitializer:Dt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Qt(this.kernelConstraint),biasConstraint:Qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};$x.className="Dense";oe.registerClass($x);var Fx=class extends Ye{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ut(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],yo(e,1)]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s<n.rank;++s)r.push(s);r.push(1),n=Oe(n,r)}return XV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Fx.className="Flatten";oe.registerClass(Fx);var Dx=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.activation=ko(e.activation)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:wo(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="Activation";oe.registerClass(Dx);var Rx=class extends Ye{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return M(()=>(e=Me(e),qV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="RepeatVector";oe.registerClass(Rx);var Px=class extends Ye{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),s=1,a=null;for(let i=0;i<r.length;++i){let u=r[i];if(this.isUnknown(u))if(a===null)a=i;else throw new H("Can only specifiy one unknown dimension.");else s*=u}let o=yo(e);if(a!==null){if(s===0||o%s!=0)throw new H(n);r[a]=o/s}else if(o!==s)throw new H(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return G(n,s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Px.className="Reshape";oe.registerClass(Px);var Ox=class extends Ye{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Yr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Gt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ut(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Oe(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ox.className="Permute";oe.registerClass(Ox);var Mx=class extends Ye{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),r=-1;return Jh(Tc(n,this.maskValue),r)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e),r=-1,s=!0,a=Jh(Tc(n,this.maskValue),r,s);return V(n,ue(a,n.dtype))})}};Mx.className="Masking";oe.registerClass(Mx);var Lx=class extends Ye{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(It(e.inputLength))}this.inputDim=e.inputDim,rn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,rn(this.outputDim,"outputDim"),this.embeddingsInitializer=Nt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=Zt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return M(()=>this.maskZero?(e=Me(e),Tc(e,Xe(e))):null)}computeOutputShape(e){if(e=ut(e),this.inputLength==null)return[...e,this.outputDim];let t=It(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let s=t[r],a=e[r+1];if(s!=null&&a!=null&&s!==a)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);n.dtype!=="int32"&&(n=Ef(n,"int32"));let r=D0(this.embeddings.read(),G(n,[n.size]));return G(r,ut(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Dt(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Lx.className="Embedding";oe.registerClass(Lx);var Zi=class extends Ye{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new De}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let s=e[e.length-t.length+r],a=t[r];if(s==null||a==null||s<0||a<0)n.push(null);else if(s===1)n.push(a);else if(a===1)n.push(s);else{if(s!==a)throw new H("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(s)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ut(e)]),e=e,e.length<2)throw new H(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=bo(t),t.length>1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let r=e.map(s=>s.length);e.indexOf(null)===-1&&bo(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return M(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=vo(r);for(let a of e){let o=a.rank;for(let i=0;i<s-o;++i)a=Md(a,1);n.push(a)}return this.mergeFunction(n)}else{let s=!1;for(let i of e){let u=i.rank;if(u==null){let l=i.shape,c=l[0],d=l.slice(1).concat([c]),p=G(i,[c].concat(yo(l.slice(1))));p=Oe(p,[1,0]),p=G(p,d),n.push(p),s=!0}else if(u>1){let l=Yr(1,u).concat([0]);n.push(Oe(i,l)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,u=i.length,l=i[u-1],c=[l].concat(i.slice(0,i.length-1));a=G(Oe(G(a,[-1,l]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Yr(0,o-1));a=Oe(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=bo(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return M(()=>{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Nn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=Hr(n,t[r]);return n})}},Bx=class extends Zi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return t})}};Bx.className="Add";oe.registerClass(Bx);var zx=class extends Zi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};zx.className="Multiply";oe.registerClass(zx);var Wx=class extends Zi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=Z(t,e[n]);return V(1/e.length,t)})}};Wx.className="Average";oe.registerClass(Wx);var Vx=class extends Zi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ds(t,e[n]);return t})}};Vx.className="Maximum";oe.registerClass(Vx);var Ux=class extends Zi{constructor(e){super(e)}mergeFunction(e){return M(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Nd(t,e[n]);return t})}};Ux.className="Minimum";oe.registerClass(Ux);var Gx=class extends Zi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new H("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let s=e[r].slice();s.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,s)){a=!0;break}a||n.push(s)}if(n.length>1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return M(()=>Rv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return M(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a<e.length;++a)t[a]==null?r.push(ue(br(e[a]),"bool")):t[a].rank<e[a].rank?r.push(Nn(t[a],-1)):r.push(t[a]);let s=ot(r,this.axis);return By(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Gx.className="Concatenate";oe.registerClass(Gx);function Kd(e,t){for(;e<0;)e+=t;return e}function AG(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new De("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new De("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return M(()=>{let o;if(r>s){o=r-s;let u=[];for(let l=0;l<o;++l)u.push(1);t=G(t,t.shape.concat(u))}else if(s>r){o=s-r;let u=[];for(let l=0;l<o;++l)u.push(1);e=G(e,e.shape.concat(u))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ve(V(e,t),a[0]):i=ve(V(Oe(e,[1,0]),t),a[1]);else{let u=a[0]!==e.shape.length-1,l=a[1]===t.shape.length-1;i=Re(e,t,u,l)}if(o>0){let u;r>s?u=r+s-3:u=r-1;let l=[];for(let c=u;c<u+o;++c)l.push(c);i=Rs(i,l)}return i.shape.length===1&&(i=Nn(i,1)),i})}var Hx=class extends Zi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new H(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>Kd(s,e[a].shape.length)):r=[Kd(this.axes,t.shape.length),Kd(this.axes,n.shape.length)],this.normalize&&(t=Gf(t,r[0]),n=Gf(n,r[1])),AG(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Kd(this.axes,e.length),Kd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new De("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Hx.className="Dot";oe.registerClass(Hx);var jx=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return Bd(()=>Z($f(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};jx.className="GaussianNoise";oe.registerClass(jx);var qx=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?Bd(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return V(n,$f(n.shape,1,s))},()=>n,t.training||!1):n})}};qx.className="GaussianDropout";oe.registerClass(qx);var Kx=class extends Ye{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Bd(()=>{let s=Me(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,u=zi(Nc(n),this.rate);u=Ef(u,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate,d=Z(V(s,u),V(Z(u,-1),i));return Z(V(d,l),c)},()=>Me(e),t.training||!1)}return e})}};Kx.className="AlphaDropout";oe.registerClass(Kx);function Xd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=sS(e,t,n,r,s,a);else if(e.rank===3)o=aS(e,t,n,r,s,a);else if(e.rank===4)o=oS(e,t,n,r,s,a);else throw new De(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function $G(e,t,n,r,s=.001){return M(()=>{let a=lf(e,r),o=a.mean,i=a.variance;return[Xd(e,o,i,n,t,s),o,i]})}function FG(e,t,n,r,s=.001){return M(()=>{let a=lf(e,r),o=a.mean,i=a.variance,u=[];for(let f of Yr(0,e.rank))r.indexOf(f)!==-1?u.push(1):u.push(e.shape[f]);let l=G(o,u),c=G(i,u),d=t==null?null:G(t,u),p=n==null?null:G(n,u);return[Xd(e,l,c,p,d,s),o,i]})}function DG(e,t,n,r,s=.001){return w.arraysEqual(r.slice().sort(),Yr(0,e.rank-1))?$G(e,t,n,r,s):FG(e,t,n,r,s)}var Xx=class extends Ye{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Nt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Nt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Zt(e.betaConstraint),this.gammaConstraint=Zt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=ut(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Gt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training,r=Me(e),s=r.shape,a=s.length,o=Yr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let u=Gi(1,a);u[i]=s[i];let l=o.slice();l.sort();let c=!w.arraysEqual(l,Yr(0,a).slice(0,a-1)),d=()=>{if(c){let b=G(this.movingMean.read(),u),y=G(this.movingVariance.read(),u),v=this.center?G(this.beta.read(),u):null,x=this.scale?G(this.gamma.read(),u):null;return Xd(r,b,y,v,x,this.epsilon)}else return Xd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=DG(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(b,y,v)=>{M(()=>{let x=1-v,k=b.read(),T=V(he(k,y),x);b.write(he(k,T))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Dt(this.betaInitializer),gammaInitializer:Dt(this.gammaInitializer),movingMeanInitializer:Dt(this.movingMeanInitializer),movingVarianceInitializer:Dt(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Qt(this.betaConstraint),gammaConstraint:Qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Xx.className="BatchNormalization";oe.registerClass(Xx);var Yx=class extends Ye{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Nt(e.betaInitializer||"zeros"),this.gammaInitializer=Nt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ut(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==bo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Me(e),r=n.shape,s=r.length;return M(()=>{let a=!0,{mean:o,variance:i}=lf(n,this.axis,a),u=Gi(1,s);for(let f of this.axis)u[f]=r[f];let l=f=>f!=null&&f.shape.length!==s?G(f,u):f,c=l(this.gamma.read()),d=l(this.beta.read()),p=[],h=[];for(let f=0;f<s;++f)this.axis.indexOf(f)!==-1?(p.push(r[f]),h.push(1)):(p.push(1),h.push(r[f]));return o=tr(o,p),i=tr(i,p),c=tr(c,h),d=tr(d,h),Xd(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Dt(this.betaInitializer),gammaInitializer:Dt(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Yx.className="LayerNormalization";oe.registerClass(Yx);function RG(e,t,n){return M(()=>{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Kr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Fr(e,r)})}var Qx=class extends Ye{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Kr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=ut(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return M(()=>RG(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Qx.className="ZeroPadding2D";oe.registerClass(Qx);function om(e,t,n,r,s,a){return M(()=>{Bt(s),N0(a),vr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=Kr()),a==null&&(a="max"),e=bx(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Vt(e,t,n,i):o=Ar(e,t,n,i),s==="channelsFirst"&&(o=Oe(o,[0,3,1,2])),o})}function U2(e,t,n,r,s,a){return M(()=>{Bt(s),N0(a),vr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=Kr()),a==null&&(a="max"),e=D2(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=nv(e,t,n,i):o=Vy(e,t,n,i),s==="channelsFirst"&&(o=Oe(o,[0,4,1,2,3])),o})}var G2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(rn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,vr(this.padding),this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){e=ut(e);let t=es(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return M(()=>{this.invokeCallHook(e,t),e=Md(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Rs(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Zx=class extends G2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),om(e,t,n,r,s,"max")}};Zx.className="MaxPooling1D";oe.registerClass(Zx);var Jx=class extends G2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),om(e,t,n,r,s,"avg")}};Jx.className="AveragePooling1D";oe.registerClass(Jx);var H2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];rn(this.poolSize,"poolSize"),rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),vr(this.padding),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=es(t,this.poolSize[0],this.padding,this.strides[0]),n=es(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ew=class extends H2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),om(e,t,n,r,s,"max")}};ew.className="MaxPooling2D";oe.registerClass(ew);var tw=class extends H2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),om(e,t,n,r,s,"avg")}};tw.className="AveragePooling2D";oe.registerClass(tw);var j2=class extends Ye{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];rn(this.poolSize,"poolSize"),rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),vr(this.padding),this.inputSpec=[new Gt({ndim:5})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=es(t,this.poolSize[0],this.padding,this.strides[0]),n=es(n,this.poolSize[1],this.padding,this.strides[1]),r=es(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},nw=class extends j2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),U2(e,t,n,r,s,"max")}};nw.className="MaxPooling3D";oe.registerClass(nw);var rw=class extends j2{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Bt(s),vr(r),U2(e,t,n,r,s,"avg")}};rw.className="AveragePooling3D";oe.registerClass(rw);var q2=class extends Ye{constructor(e){super(e);this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new De}},sw=class extends q2{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return Ot(n,1)})}};sw.className="GlobalAveragePooling1D";oe.registerClass(sw);var aw=class extends q2{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Me(e);return Gr(n,1)})}};aw.className="GlobalMaxPooling1D";oe.registerClass(aw);var K2=class extends Ye{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Bt(this.dataFormat),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new De}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ow=class extends K2{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Ot(n,[1,2]):Ot(n,[2,3])})}};ow.className="GlobalAveragePooling2D";oe.registerClass(ow);var iw=class extends K2{call(e,t){return M(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Gr(n,[1,2]):Gr(n,[2,3])})}};iw.className="GlobalMaxPooling2D";oe.registerClass(iw);var X2=class extends Ye{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=Jr(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},uw=class extends X2{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ut(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ut(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return M(()=>(e=Me(e),z2((a,o)=>[Me(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};uw.className="TimeDistributed";oe.registerClass(uw);function PG(e){ji(VV,"BidirectionalMergeMode",e)}var OG="concat",cw=class extends X2{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Jr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Jr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?OG:e.mergeMode,PG(this.mergeMode),e.weights)throw new De("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Gn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=B2(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let u=n.length;if(u%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(c=>new Gt({shape:c.shape}));this.forwardLayer.stateSpec=l.slice(0,u/2),this.backwardLayer.stateSpec=l.slice(u/2),o.push(...l)}if(r!=null)throw new De("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Zr;for(let u of a)if(u instanceof Zr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let u=[e].concat(a),l=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=l;let d=super.apply(u,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),u=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=yr(s,1));let o;return this.mergeMode==="concat"?o=Rv([r,s]):this.mergeMode==="sum"?o=Z(r,s):this.mergeMode==="ave"?o=V(.5,Z(r,s)):this.mergeMode==="mul"?o=V(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){qi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),qi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Jr(t.layer);if(delete t.layer,t.numConstants!=null)throw new De("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};cw.className="Bidirectional";oe.registerClass(cw);function MG(e){return new Rc(e)}function LG(e){return new fx(e)}function BG(e){return new dx(e)}function zG(e){return new px(e)}function WG(e){return new hx(e)}function VG(e){return new gx(e)}function UG(e){return new mx(e)}function GG(e){return new kx(e)}function HG(e){return new Jf(e)}function jG(e){return new vx(e)}function qG(e){return new em(e)}function KG(e){return new xx(e)}function XG(e){return new wx(e)}function YG(e){return new Ix(e)}function QG(e){return new Sx(e)}function ZG(e){return new Cx(e)}function JG(e){return new Dx(e)}function eH(e){return new $x(e)}function tH(e){return new am(e)}function nH(e){return new Ax(e)}function rH(e){return new Fx(e)}function sH(e){return new Rx(e)}function aH(e){return new Px(e)}function oH(e){return new Ox(e)}function iH(e){return new Lx(e)}function uH(e){return new Bx(e)}function cH(e){return new Wx(e)}function lH(e){return new Gx(e)}function dH(e){return new Vx(e)}function pH(e){return new Ux(e)}function hH(e){return new zx(e)}function fH(e){return new Hx(e)}function mH(e){return new Xx(e)}function gH(e){return new Yx(e)}function bH(e){return new Qx(e)}function lw(e){return new Jx(e)}function yH(e){return lw(e)}function vH(e){return lw(e)}function dw(e){return new tw(e)}function xH(e){return dw(e)}function wH(e){return dw(e)}function pw(e){return new rw(e)}function kH(e){return pw(e)}function IH(e){return pw(e)}function SH(e){return new sw(e)}function CH(e){return new ow(e)}function Y2(e){return new aw(e)}function Q2(e){return new iw(e)}function Z2(e){return new Zx(e)}function J2(e){return new ew(e)}function TH(e){return new nw(e)}function NH(e){return new Nx(e)}function _H(e){return new nm(e)}function EH(e){return new _x(e)}function AH(e){return new qd(e)}function $H(e){return new Tx(e)}function FH(e){return new tm(e)}function DH(e){return new Ex(e)}function RH(e){return new sm(e)}function PH(e){return new zs(e)}function OH(e){return new rm(e)}function MH(e){return new cw(e)}function LH(e){return new uw(e)}var BH=Y2,zH=Q2,WH=Z2,VH=J2;function UH(e){return new jx(e)}function GH(e){return new qx(e)}function HH(e){return new Kx(e)}function jH(e){return new Mx(e)}var eC={};Ee(eC,{MAPE:()=>r6,MSE:()=>o6,binaryAccuracy:()=>qH,binaryCrossentropy:()=>KH,categoricalAccuracy:()=>YH,categoricalCrossentropy:()=>QH,cosineProximity:()=>e6,mape:()=>s6,meanAbsoluteError:()=>t6,meanAbsolutePercentageError:()=>n6,meanSquaredError:()=>a6,mse:()=>i6,precision:()=>ZH,recall:()=>JH,sparseCategoricalAccuracy:()=>XH});function qH(e,t){return Yv(e,t)}function KH(e,t){return Z0(e,t)}function XH(e,t){return J0(e,t)}function YH(e,t){return Qv(e,t)}function QH(e,t){return Zv(e,t)}function ZH(e,t){return Q0(e,t)}function JH(e,t){return MU(e,t)}function e6(e,t){return Kv(e,t)}function t6(e,t){return Hf(e,t)}function n6(e,t){return Oc(e,t)}function r6(e,t){return Oc(e,t)}function s6(e,t){return Oc(e,t)}function a6(e,t){return Xi(e,t)}function o6(e,t){return Xi(e,t)}function i6(e,t){return Xi(e,t)}var tC={};Ee(tC,{modelFromJSON:()=>bG});var nC={};Ee(nC,{l1:()=>c6,l1l2:()=>u6,l2:()=>l6});function u6(e){return new Gd(e)}function c6(e){return CG(e)}function l6(e){return TG(e)}var rC=class extends Pc{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Bs))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function im(e,t){return e<t}function sC(e,t){return e>t}var aC=class extends rC{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new De("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=im:this.mode==="max"?this.monitorFunc=sC:this.monitor.indexOf("acc")!==-1?this.monitorFunc=sC:this.monitorFunc=im,this.monitorFunc===im&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===im?1/0:-1/0}async onEpochEnd(e,t){await xo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function d6(e){return new aC(e)}var p6={earlyStopping:d6},h6=X();h6.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Or;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Or||(Or={}));var oC;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(oC||(oC={}));var hw={};function f6(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};hw[e]=n}function iC(e){return hw[e]}function m6(e){delete hw[e]}function I(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,u=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return An(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,u).map(p=>An(p,n,r,s));let l=An(t.inputNames.slice(i)[0],n,r,s),c=l.dataSync();return a.type==="number"?c[0]:w.toNestedArray(l.shape,c)}let o=t.attrParams[e];return o&&o.value}function An(e,t,n,r){let[s,a]=or(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[um(s,i)]);return o!==void 0?t[um(s,o)][a]:void 0}function g6(e,t,n){return t[um(e,n.currentContextId)]}function gs(e,t){let[n,r,s]=or(e);return[um(n,t&&t.currentContextId),r,s]}function um(e,t){return t?`${e}-${t}`:e}function or(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function cm(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function Ws(e){return e.kept?e:Fs(e)}var uC={};Ee(uC,{json:()=>b6});var b6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],cC={};Ee(cC,{json:()=>y6});var y6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],lC={};Ee(lC,{json:()=>v6});var v6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],dC={};Ee(dC,{json:()=>x6});var x6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],pC={};Ee(pC,{json:()=>w6});var w6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],hC={};Ee(hC,{json:()=>k6});var k6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],fC={};Ee(fC,{json:()=>I6});var I6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],mC={};Ee(mC,{json:()=>S6});var S6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],gC={};Ee(gC,{json:()=>C6});var C6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],bC={};Ee(bC,{json:()=>T6});var T6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],yC={};Ee(yC,{json:()=>N6});var N6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],vC={};Ee(vC,{json:()=>_6});var _6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],xC={};Ee(xC,{json:()=>E6});var E6=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],wC={};Ee(wC,{json:()=>A6});var A6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],kC={};Ee(kC,{json:()=>$6});var $6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],IC={};Ee(IC,{json:()=>F6});var F6=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],SC={};Ee(SC,{json:()=>D6});var D6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],CC={};Ee(CC,{json:()=>R6});var R6=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],TC={};Ee(TC,{json:()=>P6});var P6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],NC=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[uC,cC,lC,dC,pC,hC,fC,mC,gC,bC,yC,vC,xC,wC,kC,IC,SC,CC,TC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],u=[],l={},c={};t!=null&&(l=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,b)=>{let[y,,v]=gs(g),x=o[y];if(x.outputs!=null){let k=x.outputs.indexOf(v);if(k!==-1){let T=`${y}:${k}`;m.inputNames[b]=T}}m.inputs.push(x),x.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&u.push(m)}):Object.keys(c).forEach(f=>{let[m]=gs(f),g=o[m];g!=null&&(g.signatureKey=c[f],u.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=gs(f),g=o[m];g&&(g.signatureKey=l[f],i.push(g))}):i=r;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:u,weights:s,placeholders:r,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=iC(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=fw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=fw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=kw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=kw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=gw(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=gw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=ww(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=ww(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=mw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=mw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=Sw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Sw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=xw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=xw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=Iw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Iw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=yw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=yw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=vw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=vw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=EC(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=EC(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&r.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=gs(c.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:bw(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,a.push(p),s[d]=p}),Object.keys(s).forEach(c=>{let d=s[c];d.inputNames.forEach((p,h)=>{let[f,,m]=gs(p),g=s[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let u=e.ret;e.signature.outputArg.forEach(c=>{let[d,p]=gs(u[c.name]),h=s[d];h!=null&&(h.defaultOutput=p,o.push(h))});let l=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function O6(e){let t=X().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function _C(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):O6(e);return t?n:n.toLowerCase()}function fw(e,t,n,r=!1){let s=e[t];return s!=null?_C(s.s,r):n}function mw(e,t,n){let r=e[t];return r?r.b:n}function gw(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function bw(e){switch(typeof e=="string"&&(e=Or[e]),e){case Or.DT_FLOAT:case Or.DT_HALF:return"float32";case Or.DT_INT32:case Or.DT_INT64:case Or.DT_INT8:case Or.DT_UINT8:return"int32";case Or.DT_BOOL:return"bool";case Or.DT_DOUBLE:return"float32";case Or.DT_STRING:return"string";default:return null}}function EC(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function yw(e,t,n){let r=e[t];return r&&r.type?bw(r.type):n}function vw(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>bw(s)):n}function AC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function xw(e,t,n){let r=e[t];return r&&r.shape?AC(r.shape):n}function ww(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function kw(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>_C(a,r)):n}function Iw(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>AC(s)):n}function Sw(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var M6=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return An(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return An(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return gw(this.node.rawAttrs,e,t);if(n.s!=null)return fw(this.node.rawAttrs,e,t);if(n.b!=null)return mw(this.node.rawAttrs,e,t);if(n.shape!=null)return xw(this.node.rawAttrs,e,t);if(n.type!=null)return yw(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return ww(this.node.rawAttrs,e,t);if(n.list.s!=null)return kw(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Iw(this.node.rawAttrs,e,t);if(n.list.b!=null)return Sw(this.node.rawAttrs,e,t);if(n.list.type!=null)return vw(this.node.rawAttrs,e,t)}return t}},L6=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Z(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[K1(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[FS(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[V(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[yS(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Ly(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[he(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Nd(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ds(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[fo(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[fv(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},B6=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Xt(I("x",e,t,n))];case"Acos":return[j1(I("x",e,t,n))];case"Acosh":return[q1(I("x",e,t,n))];case"Asin":return[Y1(I("x",e,t,n))];case"Asinh":return[Q1(I("x",e,t,n))];case"Atan":return[Z1(I("x",e,t,n))];case"Atan2":return[J1(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[eS(I("x",e,t,n))];case"Ceil":return[uS(I("x",e,t,n))];case"Complex":return[io(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[nf(I("x",e,t,n))];case"Cosh":return[Ky(I("x",e,t,n))];case"Elu":return[Cd(I("x",e,t,n))];case"Erf":return[xS(I("x",e,t,n))];case"Exp":return[Tn(I("x",e,t,n))];case"Expm1":return[wS(I("x",e,t,n))];case"Floor":return[Td(I("x",e,t,n))];case"Log":return[gr(I("x",e,t,n))];case"Log1p":return[af(I("x",e,t,n))];case"Imag":return[rf(I("x",e,t,n))];case"Neg":return[Ft(I("x",e,t,n))];case"Reciprocal":return[PS(I("x",e,t,n))];case"Real":return[_d(I("x",e,t,n))];case"Relu":return[Qe(I("x",e,t,n))];case"Round":return[iv(I("x",e,t,n))];case"Selu":return[cv(I("x",e,t,n))];case"Sigmoid":return[$r(I("x",e,t,n))];case"Sin":return[lv(I("x",e,t,n))];case"Sign":return[MS(I("x",e,t,n))];case"Sinh":return[dv(I("x",e,t,n))];case"Softplus":return[Cc(I("x",e,t,n))];case"Sqrt":return[vn(I("x",e,t,n))];case"Square":return[ft(I("x",e,t,n))];case"Tanh":return[Ic(I("x",e,t,n))];case"Tan":return[BS(I("x",e,t,n))];case"ClipByValue":return[dn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[ov(I("x",e,t,n))];case"Rsqrt":return[uv(An(e.inputNames[0],t,n))];case"Prod":return[rv(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[sf(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[pf(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[kS(An(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Mr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let s=e[r],a=t[r];w.assert(s<0||a<0||s===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function $C(e){return!(typeof e=="number"||e.some(t=>t<0))}function Yd(e,t,n){let r=Cw(e,n),s=!$C(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=Cw(a.shape,r)}),!$C(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Cw(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let s=e[r],a=t[r];if(s>=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var z6=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),nn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Mr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,nn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return er([],[0].concat(this.elementShape));let n=this.readMany(e);return Mr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Ut(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return er([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return Mr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,vt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];M(()=>{t=G(t,[1,n,s]);for(let i=0;i<e.length;++i){let u=i===0?0:r[i-1],l=[0,u,0],c=[1,e[i],s];a[i]=G(Ve(t,l,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Qd=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Mr(t,s.shape,"TensorList shape mismatch: "),nn(s)}),this.idTensor=ke(0),this.maxNumElements=r,nn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Mr(e,this.elementShape,"TensorList shape mismatch: ");let r=Yd(this.elementShape,this.tensors,e);return M(()=>{let s=this.tensors.map(a=>G(a,r));return Ut(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Yd(this.elementShape,this.tensors,e),r=this.tensors.pop();return Mr(r.shape,e,"TensorList shape mismatch: "),G(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Mr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");nn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Mr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Yd(this.elementShape,this.tensors,t);return G(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Mr(this.elementShape,t.shape,"TensorList shape mismatch: "),nn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Mr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Yd(this.elementShape,this.tensors,n);return e.length===0?er([],[0].concat(r)):M(()=>{let s=e.map(a=>G(this.tensors[a],r));return Ut(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Mr(this.elementShape,t,"TensorList shape mismatch: ");let n=Yd(this.elementShape,this.tensors,t);return this.size()===0?er([],[0].concat(n)):M(()=>{let r=this.tensors.map(s=>G(s,n));return ot(r,0)})}};function W6(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);Mr(s,t,"TensorList shape mismatch: ");let a=vt(e);return new Qd(a,t,r)}function V6(e,t,n){return new Qd([],e,t,n)}function U6(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new Qd([],n,e.dtype,r),o=vt(e,0);return t.forEach((i,u)=>{a.setItem(i,o[u])}),a}function G6(e,t,n){let r=0,s=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=Cw(a,n),i=r===0?0:e.size/r,u=M(()=>{let c=[];e=G(e,[1,r,i]);for(let d=0;d<t.length;++d){let p=d===0?0:s[d-1],h=[0,p,0],f=[1,t[d],i];c[d]=G(Ve(e,h,f),o)}return e.dispose(),c}),l=new Qd([],n,e.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var H6=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),s=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),s=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),u=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let l=a;for(;u[0];){let c=l;l=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let d=l.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);u=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let r=I("pred",e,t,n);return[Ws(r)]}case"Switch":{let r=I("pred",e,t,n),s=I("data",e,t,n);return s.kept||(s=Ws(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>An(s,t,n)!==void 0);if(r){let s=An(r,t,n);return[Ws(s)]}return}case"Enter":{let r=I("frameName",e,t,n),s=I("tensor",e,t,n);return n.enterFrame(r),[Ws(s)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[Ws(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[Ws(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),s=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),u=I("identicalElementShapes",e,t,n),l=I("name",e,t,n),c=new z6(l,s,r,a,u,o,i);return n.addTensorArray(c),[c.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=I("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),s=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[ke(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),s=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=U6(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=V6(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),s=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=W6(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),s=n.getTensorList(r.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),s=I("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=G6(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function FC(e,t,n){let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",u=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(a){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),d=cm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var j6=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Gy(I("x",e,t,n),I("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=I("strides",e,t,n),s=cm(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Wt(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:u,activationFunc:l,leakyreluAlpha:c}=FC(e,t,n);return[mo.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:u,activationFunc:l,leakyreluAlpha:c}=FC(e,t,n);return[mo.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),s=I("strides",e,t,n),a=cm(e,t,n);return[jy(I("x",e,t,n),I("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),s=cm(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Bi(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[qy(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ar(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Vt(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:u}=AS(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,u]}case"AvgPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Vy(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[nv(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dilations",e,t,n),o=r[1],i=r[2],u=a[1],l=a[2];return[bS(I("x",e,t,n),I("filter",e,t,n),[o,i],s,[u,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},q6=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),s=I("dtype",e,t,n),a=I("value",e,t,n);return[_n(r,a,s)]}case"LinSpace":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("num",e,t,n);return[IS(r,s,a)]}case"Multinomial":{let r=I("logits",e,t,n),s=I("numSamples",e,t,n),a=I("seed",e,t,n);return[DS(r,s,a)]}case"OneHot":{let r=I("indices",e,t,n),s=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[wd(r,s,a,o)]}case"Ones":return[rr(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[br(I("x",e,t,n))];case"RandomUniform":return[Nc(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("step",e,t,n);return[_c(r,s,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),s=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[gf(r,s,a,I("dtype",e,t,n),o)]}case"Zeros":return[kt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Xe(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Tw(e,t,n){let r=I("boxes",e,t,n),s=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),u=I("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:u}}var K6=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:u}=Tw(e,t,n),l=await ar.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Tw(e,t,n),u=I("padToMaxOutputSize",e,t,n),l=await ar.nonMaxSuppressionPaddedAsync(r,s,a,o,i,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=Tw(e,t,n);return[await ar.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=ue(I("condition",e,t,n),"bool"),s=[await gv(r)];return r.dispose(),s}case"ListDiff":return OS(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},X6=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),s=I("k",e,t,n),a=I("sorted",e,t,n),o=zS(r,s,a);return[o.values,o.indices]}case"Unique":{let r=I("x",e,t,n),s=mv(r);return[s.values,s.indices]}case"UniqueV2":{let r=I("x",e,t,n),s=I("axis",e,t,n),a=mv(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Y6=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[An(e.name,t,n)||r];case"Placeholder":return[An(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=I("x",e,t,n);return[Ws(l)]}case"IdentityN":return I("x",e,t,n).map(l=>Ws(l));case"Snapshot":let s=I("x",e,t,n);return[Ws(s)];case"Shape":return[je(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(l=>je(l.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let l=0;l<o.length;l++)console.log(Array.prototype.slice.call(o[l].dataSync()).slice(0,u));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Q6=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,nn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),M(()=>{let r=vt(t),s=n.length,a=r.length;w.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o<s;o++){let i=n[o],u=r[o];nn(u),this.tensorMap.set(i,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return M(()=>{let r=[];for(let s=0;s<n.length;s++){let a=n[s],o=this.findWithDefault(a,t);r.push(o)}return Ut(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Z6=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let s=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new Q6(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=I("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},J6=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[ar.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[ar.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=I("image",e,t,n),s=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[ar.cropAndResize(r,s,a,o,i,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},e5=(e,t,n)=>{switch(e.op){case"Equal":return[mr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Tc(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[nr(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[zi(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Qy(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Wi(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Hr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[uf(I("a",e,t,n))];case"LogicalOr":return[tv(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Cn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},t5=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Re(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[vS(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Oe(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,c]=I("args",e,t,n);return[mo.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:l,activation:s,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},n5=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ho(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[ho(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[SS(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ls(I("x",e,t,n))];case"LogSoftmax":return[Zy(I("x",e,t,n))];case"SparseToDense":return[yv(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},r5=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Gr(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ot(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[cf(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ve(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[By(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Jh(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[wc(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[X1(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[rv(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[Xy(I("x",e,t,n),o,i,u)]}case"Bincount":let r=I("x",e,t,n),s=I("weights",e,t,n),a=I("size",e,t,n);return[Uy(r,s,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),u=I("size",e,t,n),l=I("binaryOutput",e,t,n);return[mS(o,i,u,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},s5=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),s=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,r),[ot(a,s)]}case"Gather":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Sc(r,ue(s,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),s=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Sc(a,ue(o,"int32"),r,s)]}case"Reverse":{let r=I("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let a=I("x",e,t,n);return[yr(a,s)]}case"ReverseV2":{let r=I("axis",e,t,n),s=I("x",e,t,n);return[yr(s,r)]}case"Slice":{let r=I("begin",e,t,n),s=I("size",e,t,n);return[Ve(I("x",e,t,n),r,s)]}case"StridedSlice":{let r=I("begin",e,t,n),s=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),u=I("ellipsisMask",e,t,n),l=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[LS(d,r,s,a,o,i,u,l,c)]}case"Pack":return M(()=>{let r=I("axis",e,t,n),s=I("tensors",e,t,n),a=s[0].shape,o=Rs(s[0]).shape,i=s.map(u=>{let l=w.arraysEqual(u.shape,a);if(!l&&!w.arraysEqual(Rs(u).shape,o))throw new Error("the input tensors shape does not match");return l?u:G(u,a)});return[Ut(i,r)]});case"Unpack":{let r=I("axis",e,t,n),s=I("tensor",e,t,n);return vt(s,r)}case"Tile":{let r=I("reps",e,t,n);return[tr(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),s=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return sr(a,s,r)}case"ScatterNd":{let r=I("indices",e,t,n),s=I("values",e,t,n),a=I("shape",e,t,n);return[HS(r,s,a)]}case"GatherNd":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[jS(r,s)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),s=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[yv(r,a,s,a.dtype===o.dtype?o:ue(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},a5=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=Fd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=Fd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[Fd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[Fd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},o5=(e,t,n)=>{switch(e.op){case"FFT":return[ff(I("x",e,t,n))];case"IFFT":return[Ad(I("x",e,t,n))];case"RFFT":return[mf(I("x",e,t,n))];case"IRFFT":return[hv(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},i5=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=wf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=wf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[wf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},u5=(e,t,n)=>{switch(e.op){case"Cast":return[ue(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[Nn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[Rs(I("x",e,t,n),r)]}case"Reshape":return[G(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[$S(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Fr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),s=I("paddings",e,t,n);return[df(I("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),s=I("crops",e,t,n);return[tf(I("x",e,t,n),r,s)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),s=I("dataFormat",e,t,n).toUpperCase();return[gS(I("x",e,t,n),r,s)]}case"BroadcastTo":return[Sd(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[iS(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function DC(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return M(()=>L6(a,o,i));case"basic_math":return M(()=>B6(a,o,i));case"control":return H6(a,o,i);case"convolution":return M(()=>j6(a,o,i));case"creation":return M(()=>q6(a,o,i));case"dynamic":return K6(a,o,i);case"evaluation":return M(()=>X6(a,o,i));case"image":return M(()=>J6(a,o,i));case"graph":return M(()=>Y6(a,o,i));case"logical":return M(()=>e5(a,o,i));case"matrices":return M(()=>t5(a,o,i));case"normalization":return M(()=>n5(a,o,i));case"reduction":return M(()=>r5(a,o,i));case"slice_join":return M(()=>s5(a,o,i));case"sparse":return M(()=>a5(a,o,i));case"spectral":return M(()=>o5(a,o,i));case"string":return M(()=>i5(a,o,i));case"transformation":return M(()=>u5(a,o,i));case"hash_table":return Z6(a,o,i,r);case"custom":let u=iC(a.op);if(u&&u.customExecutor)return u.customExecutor(new M6(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var RC=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function PC(e,t,n,r){let s=new Set,a=[],o=null,i=null,u=new Set,l=Object.keys(e).map(p=>or(p)[0]),c=[];r!=null&&(c=r.map(p=>or(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((OC(p)||h5(p)||f5(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>s.has(h))),s.add(p.name),n[p.name]==null&&l.indexOf(p.name)===-1&&c.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{u.has(h.name)||(u.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function c5(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(c=>or(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{r.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{r.has(c.name)&&a.push(c)});let u=new Set,l=[];for(;a.length>0;){let c=a.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(d=>{!u.has(d.name)&&r.has(d.name)&&d.inputs.every(p=>u.has(p.name))&&a.push(d)})}return l}var l5=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],d5=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],p5=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function OC(e){return l5.indexOf(e.op)>=0}function h5(e){return d5.indexOf(e.op)>=0}function f5(e){return p5.indexOf(e.op)>=0}var Nw=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Nw(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=PC(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(u=>u.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return c5(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[or(c)[0]]),s=t.map(c=>or(c)[0]),a=s.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let u={},l={};return M(()=>{let c=new RC(this.weightMap,u,l,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=or(f),b=[];b[g]=e[f],d[m]=b});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=DC(m,d,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,c,p,s,h)}}return this.parent==null&&c.dispose(p),t.map(f=>An(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let u=g6(i.name,n,r);u!=null&&u.forEach(l=>{if(l&&!l.kept&&!s.has(l.id)){let c=o[l.id];if(c===1){if(!this.keepTensorForDebug)l.dispose();else{let[d,p]=gs(t.name,r);this.intermediateTensors[d]?this.intermediateTensors[d][p]=l:(this.intermediateTensors[d]=[],this.intermediateTensors[d][p]=l)}delete o[l.id]}else c!=null&&o[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=X().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(l){console.warn(l.message)}this.resetIntermediateTensors();let a=new RC(this.weightMap,r,s,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(l=>An(l,this.tensorsMap,a)),i=o.map(l=>l.id),u=Object.keys(e).map(l=>e[l].id);return this.keepIds=new Set([...i,...u,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(y=>this.graph.nodes[or(y)[0]]),o=n.map(y=>or(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:u,missingInputs:l,dynamicNode:c,syncInputs:d}=PC(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(y=>{let[v,x]=or(y),k=[];k[x]=e[y],h[v]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,u);await Promise.all(y)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=i.filter(y=>!OC(y)&&!An(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${l}]. ${y}`)}return h}processStack(e,t,n,r,s,a,o,i,u){let l=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&I("isConstant",c.node,r,n)&&([d]=gs(c.node.name,n)),r[c.node.name]==null){let p=DC(c.node,r,n,this._resourceManager);d||([d]=gs(c.node.name,n));let h=n.currentContext;w.isPromise(p)?l.push(p.then(f=>(r[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,u),f))):(r[d]=p,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,u))}else this.processChildNodes(c.node,t,n,r,s,u)}return l}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=gs(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(u=>!!An(u,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(u=>!!An(u,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=or(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,u)=>a[u]===-1||a[u]===i);w.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&w.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=or(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=or(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},m5=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},g5="?tfjs-format=file",b5="model.json",MC=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new m5}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=tn.browserHTTPRequest(e,this.loadOptions);else{let t=tn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(tn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=tn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Nw(NC.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=NC.Instance.transformGraph(e.modelInitializer);this.initializer=new Nw(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=tn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function y5(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${b5}${g5}`);let n=new MC(e,t);return await n.load(),n}var v5="0.0.0",LC={};Ee(LC,{CSVDataset:()=>ZC,Dataset:()=>Bc,FileDataSource:()=>aT,TextLineDataset:()=>XC,URLDataSource:()=>oT,array:()=>V5,csv:()=>J5,func:()=>ej,generator:()=>tj,microphone:()=>rj,version_data:()=>sj,webcam:()=>nj,zip:()=>U5});var x5=Bo(ch()),w5=Bo(ch());function k5(e,t){return lm(e,t)}function lm(e,t,n=new Map,r=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(Lc(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],u=lm(i,t,n,r);a[o]=u}return r.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function I5(e,t=zC){return BC(e,t)}function BC(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(Lc(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(l=>l[o]),u=BC(i,t,n);a[o]=u}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function zC(e){return e===null?null:Lc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function WC(e,t){let n=new Map;lm(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(w.isPromise(a)){let o=await a;n.set(s,o)}}return lm(e,t,n)}function Lc(e){let t=!1;if(X().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=FI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae)&&!(e instanceof Promise)&&!t)}function S5(e){return e==null||C5(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||w.isTypedArray(e)}function C5(e){return e===null||typeof e!="object"&&typeof e!="function"}function T5(e){return k5(e,N5)}function N5(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:Lc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var VC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},UC=class extends VC{constructor(){super(UC.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},GC=UC;GC.INITIAL_CAPACITY=32;function HC(e){return new A5(e)}function _w(e){return new $5(e)}function _5(e,t){return new qC(e,t)}function E5(e,t=dm.FAIL){return new z5(e,t)}var sn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new L5(this,e)}filter(e){return new O5(this,e)}map(e){return new M5(this,e)}mapAsync(e){return new jC(this,e)}serialMapAsync(e){return new jC(this,e).serial()}flatmap(e){return new B5(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new P5(this,e,t)}columnMajorBatch(e,t=!0,n=zC){return this.rowMajorBatch(e,t).map(s=>I5(s,n))}concatenate(e,t){return new qC(HC([this,e]),t)}take(e){return e<0||e==null?this:new R5(this,e)}skip(e){return e<0||e==null?this:new D5(this,e)}prefetch(e){return new KC(this,e)}shuffle(e,t){return new W5(this,e,t)}serial(){return new F5(this)}},A5=class extends sn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:T5(e),done:!1}}},$5=class extends sn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},F5=class extends sn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},D5=class extends sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Fe(e.value)}return this.upstream.next()}},R5=class extends sn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},P5=class extends sn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},O5=class extends sn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Fe(e.value)}}},M5=class extends sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=Vr.getTensorsInContainer(n);for(let s of t)Vr.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},L5=class extends sn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},jC=class extends sn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Vr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=Vr.getTensorsInContainer(n);for(let s of t)Vr.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},Ew=class extends sn{constructor(){super();this.outputQueue=new GC,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},B5=class extends Ew{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=Vr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Vr.isTensorInList(s,r)||s.dispose();return!0}},qC=class extends sn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},dm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(dm||(dm={}));var z5=class extends sn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof sn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await WC(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},KC=class extends sn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new VC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},W5=class extends KC{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=w5.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Bc=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===1/0||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),ir(async()=>(await n.iterator()).columnMajorBatch(e,t,G5),r)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ir(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ir(async()=>(await t.iterator()).filter(r=>M(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ir(async()=>(await t.iterator()).map(n=>M(()=>e(n))),this.size)}mapAsync(e){let t=this;return ir(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ir(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ir(async()=>{let r=_w(async()=>({value:await t.iterator(),done:!1}));return _5(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ir(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=x5.alea(t||w.now().toString());return ir(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ir(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Bc.MAX_BUFFER_SIZE=1e4;function ir(e,t=null){return new class extends Bc{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function V5(e){return ir(async()=>HC(e),e.length)}function U5(e){if(!Lc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ir(async()=>{let n=await WC(e,r=>{if(r instanceof Bc)return{value:r.iterator(),recurse:!1};if(Lc(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return E5(n,dm.SHORTEST)},t)}function G5(e){if(e===null)return null;let t=e[0];return S5(t)?{value:H5(e),recurse:!1}:{value:null,recurse:!0}}function H5(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?Ut(e):er(e)}var XC=class extends Bc{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},pm='"',Zd=Symbol("out"),YC=Symbol("field"),hm=Symbol("quote"),Aw=Symbol("quoteafterquote"),QC=Symbol("quoteinquote"),ZC=class extends Bc{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new XC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[s],u=null;if(i==="")if(o&&o.default!==void 0)u=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let l=Number(i);if(isNaN(l))o&&o.dtype==="bool"?u=this.getBoolean(i):u=i;else if(!o||!o.dtype)u=l;else switch(o.dtype){case"float32":u=l;break;case"int32":u=Math.floor(l);break;case"bool":u=this.getBoolean(i);break;default:u=l}}o&&o.isLabel?r[a]=u:n[a]=u}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,s=e.length,a=Zd;for(let o=0;o<s;o++)switch(a){case Zd:switch(e.charAt(o)){case pm:r=o+1,a=hm;break;case this.delimiter:if(r=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Zd;break;default:a=YC,r=o;break}break;case YC:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o)),a=Zd,r=o+1;break;default:}break;case hm:switch(e.charAt(o)){case pm:a=Aw;break;default:}break;case Aw:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(r,o-1)),a=Zd,r=o+1;break;case pm:a=hm;break;default:a=QC;break}break;case QC:switch(e.charAt(o)){case pm:a=hm;break;default:}break;default:}if(a===Aw?n.push(e.substring(r,s-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},JC=class extends sn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(X().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new JC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),er(n,t)}},eT=class extends sn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=je([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=jr([a,s,i,o],[1,4])}else this.cropBox=jr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(X().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new eT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Pi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return M(()=>{let t=Nn(ue(e,"float32"),0),n;n=ar.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return G(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},tT=class{},nT=class extends sn{split(e){return new j5(this,e)}},j5=class extends nT{constructor(e,t){super();this.upstream=e,this.impl=new q5(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},q5=class extends Ew{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},K5=class extends sn{decodeUTF8(){return new X5(this)}},X5=class extends nT{constructor(e){super();this.upstream=e,this.impl=new Y5(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Y5=class extends Ew{constructor(e){super();if(this.upstream=e,X().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=FI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return X().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},rT=class extends K5{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(X().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function Q5(e,t={},n){let r,s;typeof e=="string"?r=e:(r=e.url,s=Z5(e));let a=await(n||w.fetch)(r,s);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new rT(o,t)}else throw new Error(a.statusText)}var Z5=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function sT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var aT=class extends tT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(sT(this.input)&&X().get("IS_NODE")){let e=lh();this.input=e.readFileSync(this.input.substr(7))}return new rT(this.input,this.options)}},oT=class extends tT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return sT(this.url)?new aT(this.url,this.fileOptions).iterator():Q5(this.url,this.fileOptions)}};function J5(e,t={}){return new ZC(new oT(e),t)}function ej(e){let t=_w(e);return ir(async()=>t)}function tj(e){return ir(async()=>{let t=await e();return _w(()=>t.next())})}async function nj(e,t){return eT.create(e,t)}async function rj(e){return JC.create(e)}var sj="0.0.0";function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var aj=Dr.whereImpl,iT=class extends Mu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Gl(this,is())}nextDataId(){return iT.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,X().get("IS_NODE")&&N.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return $e(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return is().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return aj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},$w=iT;$w.nextDataId=0;var fm={};Ee(fm,{addImpl:()=>cT,bincountImpl:()=>Dw,bincountReduceImpl:()=>lT,ceilImpl:()=>dT,concatImpl:()=>Rw,equalImpl:()=>pT,expImpl:()=>fT,expm1Impl:()=>gT,floorImpl:()=>bT,gatherNdImpl:()=>yT,gatherV2Impl:()=>vT,greaterEqualImpl:()=>wT,greaterImpl:()=>xT,lessEqualImpl:()=>IT,lessImpl:()=>kT,linSpaceImpl:()=>ST,logImpl:()=>CT,maxImpl:()=>TT,maximumImpl:()=>NT,minimumImpl:()=>_T,multiplyImpl:()=>Pw,negImpl:()=>ET,notEqualImpl:()=>AT,prodImpl:()=>$T,rangeImpl:()=>Mw,rsqrtImpl:()=>FT,sigmoidImpl:()=>qj,simpleAbsImpl:()=>uT,sliceImpl:()=>bm,sparseFillEmptyRowsImpl:()=>RT,sparseReshapeImpl:()=>PT,sparseSegmentReductionImpl:()=>Lw,sqrtImpl:()=>Yj,squaredDifferenceImpl:()=>OT,stridedSliceImpl:()=>MT,stringNGramsImpl:()=>LT,stringSplitImpl:()=>BT,stringToHashBucketFastImpl:()=>zT,subImpl:()=>WT,tileImpl:()=>VT,topKImpl:()=>GT,transposeImpl:()=>Ow,uniqueImpl:()=>HT});function uT(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var oj=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=uT(s),n.makeOutput(r,t.shape,t.dtype)},ij={kernelName:Vo,backendName:"cpu",kernelFunc:oj};function Ht(e){return(t,n,r,s,a)=>{let o=N.assertAndGetBroadcastShape(t,n),i=o.length,u=w.computeStrides(o),l=w.sizeFromShape(o),c=w.getTypedArrayFromDType(a,l),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=N.getBroadcastDims(t,o),g=N.getBroadcastDims(n,o);if(m.length+g.length===0)for(let b=0;b<c.length;++b)c[b]=e(r[b%r.length],s[b%s.length]);else for(let b=0;b<c.length;++b){let y=w.indexToLoc(b,i,u),v=y.slice(-d);m.forEach(C=>v[C]=0);let x=w.locToIndex(v,d,h),k=y.slice(-p);g.forEach(C=>k[C]=0);let T=w.locToIndex(k,p,f);c[b]=e(r[x],s[T])}return[c,o]}}function ur(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),u=n.data.get(i.dataId);return u.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var uj={kernelName:Kl,backendName:"cpu",kernelFunc:ur};function mm(e,t,n="float32"){if(n==="complex64"){let s=mm(e,t,"float32"),a=mm(e,t,"float32");return ur({inputs:{real:s,imag:a},backend:e})}let r=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function bs(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var cj={kernelName:_a,backendName:"cpu",kernelFunc:bs};function Ji(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var lj={kernelName:rd,backendName:"cpu",kernelFunc:Ji};function So(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return bs({inputs:{x:s},backend:n});let o=mm(n,s.shape,s.dtype),i=So({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),u=ur({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),u}if(s.dtype==="complex64"){let o=Ji({inputs:{input:s},backend:n}),i=So({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=bs({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=w.toTypedArray([0],s.dtype),[u,l]=Ht((c,d)=>c!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var dj={kernelName:fa,backendName:"cpu",kernelFunc:So};function an(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,u=a;we([o,i],e);let l=u.data.get(o.dataId).values,c=u.data.get(i.dataId).values,d=o.dtype==="string"?N.fromUint8ToStringArray(l):l,p=o.dtype==="string"?N.fromUint8ToStringArray(c):c,h=r||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return u.makeTensorInfo(m,h,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,u=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let l=So({inputs:{x:o},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),d=c.complexTensorInfos.real,p=c.complexTensorInfos.imag,h=u.data.get(d.dataId).values,f=u.data.get(p.dataId).values,m=So({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=u.data.get(b.dataId).values,x=u.data.get(y.dataId).values,[k,T,C]=n(o.shape,i.shape,h,f,v,x),E=u.makeTensorInfo(C,"float32",k),F=u.makeTensorInfo(C,"float32",T),O=ur({inputs:{real:E,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(m),u.disposeIntermediateTensorInfo(E),u.disposeIntermediateTensorInfo(F),O}else{let l=u.data.get(o.dataId).values,c=u.data.get(i.dataId).values,d=r||o.dtype,[p,h]=t(o.shape,i.shape,l,c,d);return u.makeTensorInfo(h,d,p)}}}function Fw(e){return(t,n,r,s,a,o)=>{let i=N.assertAndGetBroadcastShape(t,n),u=w.sizeFromShape(i),l=i.length,c=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u),h=N.getBroadcastDims(t,i),f=N.getBroadcastDims(n,i),m=N.mergeRealAndImagArrays(r,s),g=N.mergeRealAndImagArrays(a,o),b=t.length,y=w.computeStrides(t),v=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;k<d.length;k++){let T=k%m.length,C=k%g.length,E=e(m[T*2],m[T*2+1],g[C*2],g[C*2+1]);d[k]=E.real,p[k]=E.imag}else for(let k=0;k<d.length;k++){let T=w.indexToLoc(k,l,c),C=T.slice(-b);h.forEach(R=>C[R]=0);let E=w.locToIndex(C,b,y),F=T.slice(-v);f.forEach(R=>F[R]=0);let O=w.locToIndex(F,v,x),D=e(m[E*2],m[E*2+1],g[O*2],g[O*2+1]);d[k]=D.real,p[k]=D.imag}return[d,p,i]}}var cT=Ht((e,t)=>e+t),pj=Fw((e,t,n,r)=>({real:e+n,imag:t+r})),Jd=an(_s,cT,pj),hj={kernelName:_s,backendName:"cpu",kernelFunc:Jd};function Dw(e,t,n,r,s){let a=w.sizeFromShape(r),o=w.makeZerosTypedArray(s,n);for(let i=0;i<e.length;i++){let u=e[i];if(u<0)throw new Error("Input x must be non-negative!");u>=s||(a>0?o[u]+=t[i]:o[u]+=1)}return o}function lT(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=$e([s,n],t.dtype);for(let i=0;i<s;i++)for(let u=0;u<a;u++){let l=e.get(i,u);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(r?o.set(1,i,l):t.size>0?o.set(o.get(i,l)+t.get(i,u),i,l):o.set(o.get(i,l)+1,i,l))}return o}function Co(e){return(t,n,r)=>{let s=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)s[a]=e(t[a],r);return s}}function ct(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(we(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,u=i.data.get(o.dataId).values,l=w.sizeFromShape(o.shape),c=n||o.dtype,d=w.getArrayFromDType(c,l);for(let p=0;p<l;++p)d[p]=t(u[p],s);return i.makeTensorInfo(o.shape,c,d)}}function zc(e,t,n){return({inputs:r,attrs:s,backend:a})=>{let{x:o}=r;if(we(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,u=i.data.get(o.dataId).values,l=n||o.dtype,c=t(u,l,s);return i.makeTensorInfo(o.shape,l,c)}}var dT=Co(e=>Math.ceil(e)),fj=zc(ma,dT),mj={kernelName:ma,backendName:"cpu",kernelFunc:fj};function Rw(e,t,n,r){let s=w.getArrayFromDType(n,w.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?N.fromUint8ToStringArray(o.vals):o.vals,u=0;for(let l=0;l<o.shape[0];++l){let c=l*t[1]+a;for(let d=0;d<o.shape[1];++d)s[c+d]=i[u++]}a+=o.shape[1]})}return s}var pT=Ht((e,t)=>e===t?1:0),hT=an(Ko,pT,null,"bool"),gj={kernelName:Ko,backendName:"cpu",kernelFunc:hT},fT=Co(e=>Math.exp(e)),mT=zc(Ia,fT,"float32"),bj={kernelName:Ia,backendName:"cpu",kernelFunc:mT},gT=Co(e=>Math.expm1(e)),yj=zc(Yo,gT),vj={kernelName:Yo,backendName:"cpu",kernelFunc:yj},bT=Co(e=>Math.floor(e)),xj=zc(Sa,bT),wj={kernelName:Sa,backendName:"cpu",kernelFunc:xj};function yT(e,t,n,r,s,a,o,i,u){let l=$e([r,a],n);for(let c=0;c<r;c++){let d=[],p=0;for(let h=0;h<s;h++){let f=e[c*s+h];p+=f*o[h],d.push(f)}if(p<0||p>=u/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)l.values[c*a+h]=t.get(...t.indexToLoc(p*a+h))}return l}function vT(e,t,n){let r=$e(n,e.dtype);for(let s=0;s<r.size;++s){let o=r.indexToLoc(s).slice(),i=o[0],u=o[2],l=t.locToIndex([i,u]);o[2]=t.values[l];let c=e.locToIndex(o);r.values[s]=e.values[c]}return r}var xT=Ht((e,t)=>e>t?1:0),kj=an(ei,xT,null,"bool"),Ij={kernelName:ei,backendName:"cpu",kernelFunc:kj},wT=Ht((e,t)=>e>=t?1:0),Sj=an(Na,wT,null,"bool"),Cj={kernelName:Na,backendName:"cpu",kernelFunc:Sj},kT=Ht((e,t)=>e<t?1:0),Tj=an(ni,kT,null,"bool"),Nj={kernelName:ni,backendName:"cpu",kernelFunc:Tj},IT=Ht((e,t)=>e<=t?1:0),_j=an(ri,IT,null,"bool"),Ej={kernelName:ri,backendName:"cpu",kernelFunc:_j};function ST(e,t,n){let r=(t-e)/(n-1),s=w.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;a<s.length;a++)s[a]=s[a-1]+r;return s}var CT=Co(e=>Math.log(e)),Aj=zc(Ea,CT),$j={kernelName:Ea,backendName:"cpu",kernelFunc:Aj};function TT(e,t,n,r){let s=w.getTypedArrayFromDType(r,w.sizeFromShape(n));for(let a=0;a<s.length;++a){let o=a*t,i=e[o];for(let u=0;u<t;++u){let l=e[o+u];(Number.isNaN(l)||l>i)&&(i=l)}s[a]=i}return s}var NT=Ht((e,t)=>Math.max(e,t)),Fj=an($a,NT),Dj={kernelName:$a,backendName:"cpu",kernelFunc:Fj},_T=Ht((e,t)=>Math.min(e,t)),Rj=an(Pa,_T),Pj={kernelName:Pa,backendName:"cpu",kernelFunc:Rj},Pw=Ht((e,t)=>e*t),Oj=Fw((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),gm=an(Ma,Pw,Oj),Mj={kernelName:Ma,backendName:"cpu",kernelFunc:gm};function ET(e,t,n){let r=w.createScalarValue(-1,n);return Pw([],t,r,e,n)}function Lj(e){let{inputs:t,backend:n}=e,{x:r}=t;we(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=ET(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var Bj={kernelName:ai,backendName:"cpu",kernelFunc:Lj},AT=Ht((e,t)=>e!==t?1:0),zj=an(oi,AT,null,"bool"),Wj={kernelName:oi,backendName:"cpu",kernelFunc:zj};function Ow(e,t,n,r,s){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),u=w.computeStrides(s),l=w.getTypedArrayFromDType(n,w.sizeFromShape(s));for(let c=0;c<o;++c){let d=w.indexToLoc(c,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[r[f]];let h=w.locToIndex(p,a,u);l[h]=e[c]}return l}function xr(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{perm:a}=n;we(s,"transpose");let o=s.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=s.shape[a[d]];let u=r.data.get(s.dataId).values,l=Ow(u,s.shape,s.dtype,a,i);return{dataId:r.write(l,i,s.dtype),shape:i,dtype:s.dtype}}var Vj={kernelName:Ja,backendName:"cpu",kernelFunc:xr};function $T(e,t,n,r){let[s,a]=N.computeOutAndReduceShapes(e,r),o=In(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(s),o),u=w.sizeFromShape(a);for(let l=0;l<i.length;++l){let c=l*u,d=1;for(let p=0;p<u;++p)d*=n[c+p];i[l]=d}return{outVals:i,outShape:s,outDtype:o}}function Uj(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"prod");let i=s.shape.length,u=w.parseAxisParam(a,s.shape),l=N.getAxesPermutation(u,i),c=u,d=s,p=[];l!=null&&(d=xr({inputs:{x:s},backend:n,attrs:{perm:l}}),p.push(d),c=N.getInnerMostAxes(c.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=$T(d.shape,d.dtype,h,c),b=m;return o&&(b=N.expandShapeToKeepDim(m,u)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var Gj={kernelName:pi,backendName:"cpu",kernelFunc:Uj};function Mw(e,t,n,r){let s=e===t,a=e<t&&n<0,o=t<e&&n>1;if(s||a||o)return w.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),u=w.makeZerosTypedArray(i,r);t<e&&n===1&&(n=-1),u[0]=e;for(let l=1;l<u.length;l++)u[l]=u[l-1]+n;return u}var FT=Co(e=>1/Math.sqrt(e)),Hj=zc(Ga,FT),jj={kernelName:Ga,backendName:"cpu",kernelFunc:Hj},qj=Co(e=>1/(1+Math.exp(-e))),DT=ct(ja,e=>1/(1+Math.exp(-e))),Kj={kernelName:ja,backendName:"cpu",kernelFunc:DT};function bm(e,t,n,r,s){let a=$t.isSliceContinous(r,t,n),o=w.sizeFromShape(n),i=w.computeStrides(r);if(a){let d=$t.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let u=s==="string"?N.fromUint8ToStringArray(e):e,l=$e(r,s,u),c=$e(n,s);for(let d=0;d<c.size;++d){let p=c.indexToLoc(d),h=p.map((f,m)=>f+t[m]);c.set(l.get(...h),...p)}return s==="string"?N.fromStringArrayToUint8(c.values):c.values}function eu(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;we(s,"slice");let[i,u]=$t.parseSliceParams(s,a,o);$t.assertParamsValid(s,i,u);let l=n.data.get(s.dataId).values,c=bm(l,i,u,s.shape,s.dtype);return n.makeTensorInfo(u,s.dtype,c)}var Xj={kernelName:yi,backendName:"cpu",kernelFunc:eu};function RT(e,t,n,r,s,a,o){let i=t[0],u=a[0],l=new Array(u),c=new Array(i),d=t[1];if(u===0){if(i!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(s,0);return[g,[0,d],b,l,c]}let p=!0,h=0,f=new Array(u).fill(0);for(let g=0;g<i;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=u)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,u));++f[b],p=p&&b>=h,h=b}let m=!0;for(let g=0;g<u;++g){let b=f[g]===0;l[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,b=r;for(let y=0;y<i;++y)c[y]=y;return[g,[i,d],b,l,c]}else{let g=f[u-1],b=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(s,g),v=new Array(u).fill(0);for(let x=0;x<i;++x){let k=e[x*d],T=v[k],C=(k===0?0:f[k-1])+T;v[k]++;for(let E=0;E<d;++E)b[C*d+E]=e[x*d+E];y[C]=r[x],c[x]=C}for(let x=0;x<u;++x)if(v[x]===0){let T=x===0?0:f[x-1];b[T*d+0]=x;for(let C=1;C<d;++C)b[T*d+C]=0;y[T]=o}return[b,[g,d],y,l,c]}}function PT(e,t,n,r,s){let a=w.sizeFromShape(r),o=t[0],i=s.length,u=[],l=1,c=-1;for(let g=0;g<i;++g){let b=s[g];if(b===-1){if(c!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(b<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(g,b));l*=b,u.push(b)}}if(c!==-1){if(l<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/l);if(l*g!==a)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(r,u));u[c]=g}if(w.sizeFromShape(u)!==a)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(r,u));let p=r.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*u[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let b=0;for(let y=0;y<p;++y)b+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[o,i],u]}function Lw(e,t,n,r,s,a=!1,o=0){let i=r.length,u=[t[0],e.length/t[0]],l=u[1],d=i>0?s[i-1]+1:0;if(d<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=t.slice();p[0]=d;let h=p.reduce((v,x)=>v*x,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,b=0,y=s[m];for(;;){let v=0;if(g<i){if(v=s[g],y===v){++g;continue}if(y>=v)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=d)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,d));y>b&&f.fill(o,b*l,y*l);for(let x=m;x<g;++x){let k=r[x];if(k<0||k>=u[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,r[x],u[0]));for(let T=0;T<l;T++)f[y*l+T]+=e[k*l+T]}if(a)for(let x=0;x<l;x++)f[y*l+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>i)break}return b<d&&f.fill(o,b*l,d*l),[f,p]}var Yj=Co(e=>Math.sqrt(e)),Qj=ct(qa,e=>Math.sqrt(e)),Zj={kernelName:qa,backendName:"cpu",kernelFunc:Qj},OT=Ht((e,t)=>{let n=e-t;return n*n}),Jj=an(Ya,OT),eq={kernelName:Ya,backendName:"cpu",kernelFunc:Jj};function MT(e,t,n,r){let s=$e(e,t.dtype);for(let a=0;a<s.size;a++){let o=s.indexToLoc(a),i=new Array(o.length);for(let u=0;u<i.length;u++)i[u]=o[u]*n[u]+r[u];s.set(t.get(...i),...o)}return s}var tq=class{constructor(e,t,n,r,s,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(r),this.padWidth=s,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,r,s,a){for(let o=0;o<s;++o){let i=this.getPadWidth(a),u=Math.max(0,i-o),l=Math.max(0,i-(s-(o+1))),c=a-(u+l),d=t+(u>0?0:o-i),p=0;p+=u*this.leftPad.length;for(let b=0;b<c;++b)p+=e[d+b].length;p+=l*this.rightPad.length,p+=(u+l+c-1)*this.separator.length,n[r+o]=new Uint8Array(p);let f=n[r+o],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<u;++b)g(this.leftPad),g(this.separator);for(let b=0;b<c-1;++b)g(e[d+b]),g(this.separator);if(c>0){g(e[d+c-1]);for(let b=0;b<l;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<l-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,r=t.length;if(r>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let u=1;u<r;++u){let l=t[u]>=i;if(l=l&&t[u]<=n,!l)throw new Error(`Invalid split value ${t[u]}, must be in [${i}, ${n}]`);i=t[u]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=w.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let u=0;u<=s;++u)a[u]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let u=t[i]-t[i-1],l=0;this.nGramWidths.forEach(c=>{l+=this.getNumNGrams(u,c)}),this.preserveShort&&u>0&&l===0&&(l=1),a[i]=a[i-1]+l}let o=new Array(a[s]);for(let i=0;i<s;++i){let u=t[i],l=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,c);this.createNGrams(e,u,o,l,p,c),l+=p}),this.preserveShort&&l===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,p=1;this.createNGrams(e,u,o,l,p,d)}}return[o,a]}};function LT(e,t,n,r,s,a,o,i){return new tq(n,r,s,a,o,i).compute(e,t)}function nq(e,t,n,r){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)r.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&r.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&r.push(e);return}let s=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(s,a);(!n||o.length!==0)&&r.push(o),s=a+1}}function BT(e,t,n){let r=e.length,s=[],a=0,o=0,i=new Array(r);for(let p=0;p<r;++p){let h=s.length;nq(e[p],t,n,s);let f=s.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let u=w.getArrayFromDType("int32",a*2),l=new Array(a),c=[r,o],d=0;for(let p=0;p<r;++p)for(let h=0;h<i[p];++h)u[d*2]=p,u[d*2+1]=h,l[d]=s[d],++d;return[u,l,c]}function zT(e,t){let n=w.getArrayFromDType("int32",e.length);for(let r=0;r<e.length;++r)n[r]=w.fingerPrint64(e[r]).modulo(t).getLowBitsUnsigned();return n}var WT=Ht((e,t)=>e-t),rq=Fw((e,t,n,r)=>({real:e-n,imag:t-r})),Bw=an(Qa,WT,rq),sq={kernelName:Qa,backendName:"cpu",kernelFunc:Bw};function VT(e,t){let n=new Array(e.rank);for(let s=0;s<n.length;s++)n[s]=e.shape[s]*t[s];let r=$e(n,e.dtype);for(let s=0;s<r.values.length;++s){let a=r.indexToLoc(s),o=new Array(e.rank);for(let u=0;u<o.length;u++)o[u]=a[u]%e.shape[u];let i=e.locToIndex(o);r.values[s]=e.values[i]}return r}var ep=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function UT(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,u=t-n+1,l=Math.log(i),c=.5*Math.exp(2*l/3),d=.5*Math.sqrt(l*c*(i-c)/i)*Math.sign(u-i/2),p=Math.max(n,Math.floor(t-u*c/i+d)),h=Math.min(r,Math.floor(t+(i-u)*c/i+d));UT(e,t,p,h)}let s=e[t],a=n,o=r;for(w.swap(e,n,t),ep(e[r],s)>0&&w.swap(e,n,r);a<o;){for(w.swap(e,a,o),a++,o--;ep(e[a],s)<0;)a=a+1;for(;ep(e[o],s)>0;)o=o-1}ep(e[n],s)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function GT(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],u=w.getTypedArrayFromDType(n,o*r),l=w.getTypedArrayFromDType("int32",o*r);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),r<f.length&&(UT(f,r),f=f.slice(0,r)),s&&f.sort(ep);let m=d*r,g=u.subarray(m,m+r),b=l.subarray(m,m+r);for(let y=0;y<r;y++)g[y]=f[y].value,b[y]=f[y].index}let c=t.slice();return c[c.length-1]=r,[$e(c,n,u),$e(c,"int32",l)]}function HT(e,t,n,r){let s=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<s;f++)a[0]*=n[f];a[1]=n[s];for(let f=s+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[s]),u=new Kt(a,r,e),l=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[s];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(u.get(b,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,l.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Kt(d,r);l.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)p.set(u.get(g,f,b),g,m,b)});let h=n.slice();return h[s]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var aq="0.0.0";kd("cpu",()=>new $w,1);var jT=ct(ka,e=>e>=0?e:Math.exp(e)-1),oq={kernelName:ka,backendName:"cpu",kernelFunc:jT};function qT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;we([s],"leakyRelu");let o=w.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,u=w.getTypedArrayFromDType("float32",o);for(let l=0;l<i.length;l++)u[l]=i[l]<0?a*i[l]:i[l];return n.makeTensorInfo(s.shape,"float32",u)}var iq={kernelName:ti,backendName:"cpu",kernelFunc:qT},uq=Ht((e,t)=>e<0?t*e:e);function KT(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;we([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,u]=uq(r.shape,s.shape,a,o,"float32");return n.makeTensorInfo(u,"float32",i)}var cq={kernelName:za,backendName:"cpu",kernelFunc:KT},XT=ct(Wa,e=>Math.max(0,e)),lq={kernelName:Wa,backendName:"cpu",kernelFunc:XT},YT=ct(Ua,e=>Math.min(Math.max(0,e),6)),dq={kernelName:Ua,backendName:"cpu",kernelFunc:YT};function zw(e,t,n,r,s){if(n==="linear")return bs({inputs:{x:t},backend:e});if(n==="relu")return XT({inputs:{x:t},backend:e});if(n==="elu")return jT({inputs:{x:t},backend:e});if(n==="relu6")return YT({inputs:{x:t},backend:e});if(n==="prelu")return KT({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return qT({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return DT({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Et(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(a,o),u=w.sizeFromShape(i);w.assert(o===u,()=>`The new shape (${i}) has ${u} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let l=n.data.get(s.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,d=l.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var pq={kernelName:hi,backendName:"cpu",kernelFunc:Et};function QT(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;we([s,a],"matMul");let u=s.shape.length,l=a.shape.length,c=o?s.shape[u-2]:s.shape[u-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-1]:s.shape[u-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Ri.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let x=o?[g,c,p]:[g,p,c],k=i?[b,h,d]:[b,d,h],T=Et({inputs:{x:s},backend:n,attrs:{shape:x}}),C=Et({inputs:{x:a},backend:n,attrs:{shape:k}}),E=o?T.shape[1]:T.shape[2],F=o?T.shape[2]:T.shape[1],O=i?C.shape[1]:C.shape[2],D=Math.max(g,b),R=n.data.get(T.dataId).values,_=n.data.get(C.dataId).values,L=w.computeStrides(T.shape),U=w.computeStrides(C.shape),[j,K,q]=o?[L[0],1,L[1]]:[L[0],L[1],1],[Q,ee,re]=i?[1,U[1],U[0]]:[U[1],1,U[0]],se=F*O,ne=$e([D,F,O],T.dtype),ie=ne.values,te=n.blockSize;for(let pe=0;pe<D;pe++)for(let be=0;be<F;be+=te)for(let Ce=0;Ce<O;Ce+=te)for(let Ie=0;Ie<E;Ie+=te){let Ne=Math.min(be+te,F),Le=Math.min(Ce+te,O),Je=Math.min(Ie+te,E);for(let qe=be;qe<Ne;qe++)for(let Ge=Ce;Ge<Le;Ge++){let lt=0;for(let et=Ie;et<Je;et++){let pt=Math.min(pe,g-1)*j,Ct=Math.min(pe,b-1)*re,Bn=R[pt+qe*K+et*q],tt=_[et*Q+Ge*ee+Ct];lt+=Bn*tt}ie[pe*se+(qe*O+Ge)]+=lt}}return n.disposeIntermediateTensorInfo(T),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(v,ne.dtype,ne.values)}var hq={kernelName:ha,backendName:"cpu",kernelFunc:QT};function fq(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:d}=r,p,h,f,m=[];p=QT({inputs:{a:s,b:a},attrs:{transposeA:u,transposeB:l},backend:n}),o&&(h=Jd({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),c&&(f=zw(n,p,c,i,d),m.push(p),p=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return p}var mq={kernelName:to,backendName:"cpu",kernelFunc:fq},gq=ct(Vu,e=>Math.acos(e)),bq={kernelName:Vu,backendName:"cpu",kernelFunc:gq},yq=ct(Uu,e=>Math.acosh(e)),vq={kernelName:Uu,backendName:"cpu",kernelFunc:yq};function xq(e){let{inputs:t,backend:n}=e,r=t;we(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=$e(r[0].shape,r[0].dtype),o=a.values;for(let i=0;i<r.length;i++){let u=s[i];for(let l=0;l<o.length;l++)o[l]+=u[l]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var wq={kernelName:la,backendName:"cpu",kernelFunc:xq};function kq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"all");let i=w.parseAxisParam(a,s.shape),u=i,l=N.getAxesPermutation(u,s.shape.length),c=s;l!=null&&(c=xr({inputs:{x:s},backend:n,attrs:{perm:l}}),u=N.getInnerMostAxes(u.length,s.shape.length)),N.assertAxesAreInnerMostDims("all",u,c.shape.length);let[d,p]=N.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v&&k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let b=N.expandShapeToKeepDim(d,i),y=Et({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Iq={kernelName:Gu,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"any");let i=w.parseAxisParam(a,s.shape),u=i,l=N.getAxesPermutation(u,s.shape.length),c=s;l!=null&&(c=xr({inputs:{x:s},backend:n,attrs:{perm:l}}),u=N.getInnerMostAxes(u.length,s.shape.length)),N.assertAxesAreInnerMostDims("any",u,c.shape.length);let[d,p]=N.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v||k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let b=N.expandShapeToKeepDim(d,i),y=Et({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var Cq={kernelName:Hu,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;we(s,"argMax");let o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=xr({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMax",o,u.shape.length);let[c,d]=N.computeOutAndReduceShapes(u.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k>y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var Nq={kernelName:da,backendName:"cpu",kernelFunc:Tq};function _q(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;we(s,"argMin");let o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=xr({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMin",o,u.shape.length);let[c,d]=N.computeOutAndReduceShapes(u.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k<y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var Eq={kernelName:ju,backendName:"cpu",kernelFunc:_q},Aq=ct(qu,e=>Math.asin(e)),$q={kernelName:qu,backendName:"cpu",kernelFunc:Aq},Fq=ct(Ku,e=>Math.asinh(e)),Dq={kernelName:Ku,backendName:"cpu",kernelFunc:Fq},Rq=ct(Xu,e=>Math.atan(e)),Pq={kernelName:Xu,backendName:"cpu",kernelFunc:Rq},Oq=Ht((e,t)=>Math.atan2(e,t)),Mq=an(Qu,Oq),Lq={kernelName:Qu,backendName:"cpu",kernelFunc:Mq},Bq=ct(Yu,e=>Math.atanh(e)),zq={kernelName:Yu,backendName:"cpu",kernelFunc:Bq};function Ww(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,u=s.dilationHeight,l=s.dilationWidth,c=s.effectiveFilterHeight,d=s.effectiveFilterWidth,p=s.padInfo.top,h=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=$e(s.outShape,n),g=m.values,b=s.outShape[1]*s.outShape[2]*s.outShape[3],y=s.outShape[2]*s.outShape[3],v=s.outShape[3];for(let x=0;x<s.batchSize;++x){let k=x*b,T=x*r[0];for(let C=0;C<s.inChannels;++C)for(let E=0;E<s.outHeight;++E){let F=E*o-p,O=Math.max(0,F),D=Math.min(s.inHeight,c+F),R=k+E*y;for(let _=0;_<s.outWidth;++_){let L=_*i-h,U=Math.max(0,L),j=Math.min(s.inWidth,d+L),K=f,q=0,Q=0;for(let re=O;re<D;re+=u){let se=T+re*r[1];for(let ne=U;ne<j;ne+=l){let ie=se+ne*r[2],te=e[ie+C];a==="max"&&te>K?K=te:a==="avg"&&(q+=te,Q++)}if(isNaN(K))break}let ee=R+_*v+C;g[ee]=a==="avg"?q/Q:K}}}return m}function ZT(e,t,n,r,s=!1,a=!1){let o=$e(r.outShape,"int32"),i=r.strideHeight,u=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,h=r.padInfo.top,f=r.padInfo.left,m=$e(t,n,e);for(let g=0;g<r.batchSize;++g)for(let b=0;b<r.inChannels;++b)for(let y=0;y<r.outHeight;++y){let v=y*i-h,x=v;for(;x<0;)x+=l;let k=Math.min(r.inHeight,d+v);for(let T=0;T<r.outWidth;++T){let C=T*u-f,E=C;for(;E<0;)E+=c;let F=Math.min(r.inWidth,p+C),O=Number.NEGATIVE_INFINITY,D=-1;for(let R=x;R<k;R+=l){let _=R-v;for(let L=E;L<F;L+=c){let U=L-C,j=m.get(g,R,L,b);j>O&&(O=j,s?D=a?((g*r.inHeight+R)*r.inWidth+L)*r.inChannels+b:(R*r.inWidth+L)*r.inChannels+b:D=_*p+U)}}o.set(D,g,y,T,b)}}return o}function JT(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,u=s.strideWidth,l=s.dilationDepth,c=s.dilationHeight,d=s.dilationWidth,p=s.effectiveFilterDepth,h=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,b=s.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=$e(s.outShape,n),x=v.values,k=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],T=s.outShape[2]*s.outShape[3]*s.outShape[4],C=s.outShape[3]*s.outShape[4],E=s.outShape[4];for(let F=0;F<s.batchSize;++F){let O=F*k,D=F*r[0];for(let R=0;R<s.inChannels;++R)for(let _=0;_<s.outDepth;++_){let L=_*o-m,U=L;for(;U<0;)U+=l;let j=Math.min(s.inDepth,p+L),K=O+_*T;for(let q=0;q<s.outHeight;++q){let Q=q*i-g,ee=Q;for(;ee<0;)ee+=c;let re=Math.min(s.inHeight,h+Q),se=K+q*C;for(let ne=0;ne<s.outWidth;++ne){let ie=ne*u-b,te=ie;for(;te<0;)te+=d;let pe=Math.min(s.inWidth,f+ie),be=se+ne*E,Ce=y,Ie=0,Ne=0;for(let Je=U;Je<j;Je+=l){let qe=D+Je*r[1];for(let Ge=ee;Ge<re;Ge+=c){let lt=qe+Ge*r[2];for(let et=te;et<pe;et+=d){let pt=lt+et*r[3],Ct=e[pt+R];if(a==="max"&&Ct>Ce?Ce=Ct:a==="avg"&&(Ie+=Ct,Ne++),isNaN(Ce))break}if(isNaN(Ce))break}if(isNaN(Ce))break}let Le=be+R;x[Le]=a==="avg"?Ie/Ne:Ce}}}}return v}function Wq(e,t){let n=$e(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*r-p,v=y;for(;v<0;)v+=o;let x=Math.min(t.inDepth,l+y);for(let k=0;k<t.outHeight;++k){let T=k*s-h,C=T;for(;C<0;)C+=i;let E=Math.min(t.inHeight,c+T);for(let F=0;F<t.outWidth;++F){let O=F*a-f,D=O;for(;D<0;)D+=u;let R=Math.min(t.inWidth,d+O),_=Number.NEGATIVE_INFINITY,L=-1;for(let U=v;U<x;U+=o){let j=U-y;for(let K=C;K<E;K+=i){let q=K-T;for(let Q=D;Q<R;Q+=u){let ee=Q-O,re=e.get(m,U,K,Q,g);re>=_&&(_=re,L=j*c*d+q*c+ee)}}}n.set(L,m,b,k,F,g)}}}return n}function Vq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;we(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1;w.assert(N.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let c=N.computePool2DInfo(s.shape,a,o,l,i,u),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=bs({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Ww(p,s.shape,s.dtype,h,c,"avg");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var Uq={kernelName:pa,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u,dataFormat:l}=r;we(s,"avgPool3d");let c=N.computePool3DInfo(s.shape,a,o,1,i,u,l),d=n.data.get(s.dataId).values,p=JT(d,s.shape,s.dtype,w.computeStrides(s.shape),c,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var Hq={kernelName:ql,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:u,dimRoundingMode:l}=r;we([s,a],"avgPool3DGrad");let c=N.computePool3DInfo(a.shape,o,i,1,u,l),d=c.strideDepth,p=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,b=c.dilationDepth,y=c.dilationHeight,v=c.dilationWidth,x=c.effectiveFilterDepth,k=c.effectiveFilterHeight,T=c.effectiveFilterWidth,C=x-1-c.padInfo.front,E=T-1-c.padInfo.left,F=k-1-c.padInfo.top,O=$e(a.shape,"float32"),D=1/(f*m*g),R=n.bufferSync(s);for(let _=0;_<c.batchSize;++_)for(let L=0;L<c.inChannels;++L)for(let U=0;U<c.inDepth;++U)for(let j=0;j<c.inHeight;++j)for(let K=0;K<c.inWidth;++K){let q=U-C,Q=j-F,ee=K-E,re=0;for(let se=0;se<x;se+=b){let ne=(q+se)/d;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<k;ie+=y){let te=(Q+ie)/p;if(!(te<0||te>=c.outHeight||Math.floor(te)!==te))for(let pe=0;pe<T;pe+=v){let be=(ee+pe)/h;if(be<0||be>=c.outWidth||Math.floor(be)!==be)continue;re+=R.get(_,ne,te,be,L)}}}O.set(re*D,_,U,j,K,L)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var qq={kernelName:gh,backendName:"cpu",kernelFunc:jq};function Kq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;we([s,a],"avgPoolGrad");let{filterSize:i,strides:u,pad:l}=r,c=N.computePool2DInfo(o.shape,i,u,1,l),d=c.strideHeight,p=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterHeight,y=c.effectiveFilterWidth,v=y-1-c.padInfo.left,x=b-1-c.padInfo.top,k=$e(o.shape,"float32"),T=1/(h*f),C=n.data.get(s.dataId).values,E=$e(s.shape,"float32",C);for(let F=0;F<c.batchSize;++F)for(let O=0;O<c.inChannels;++O)for(let D=0;D<c.inHeight;++D)for(let R=0;R<c.inWidth;++R){let _=D-x,L=R-v,U=0;for(let j=0;j<b;j+=m){let K=(_+j)/d;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let q=0;q<y;q+=g){let Q=(L+q)/p;if(Q<0||Q>=c.outWidth||Math.floor(Q)!==Q)continue;U+=E.get(F,K,Q,O)}}k.set(U*T,F,D,R,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var Xq={kernelName:mh,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:u}=t;w.assert(i.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([s,i,u,a,o],"batchNorm");let{varianceEpsilon:l}=r;l==null&&(l=.001);let c=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(u.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,b=h.length,y=p.length,v=d.length,x=0,k=0,T=0,C=0;for(let E=0;E<c.length;++E)m[E]=f[x++]+(c[E]-d[k++])*h[T++]/Math.sqrt(p[C++]+l),x>=g&&(x=0),k>=v&&(k=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var Qq={kernelName:Ta,backendName:"cpu",kernelFunc:Yq};function Zq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;we([s],"batchToSpaceND");let i=a.reduce((b,y)=>b*y),u=N.getReshaped(s.shape,a,i),l=N.getPermuted(u.length,a.length),c=N.getReshapedPermuted(s.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(c,o,a.length),h=Et({inputs:{x:s},backend:n,attrs:{shape:u}}),f=xr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:c}}),g=eu({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Jq={kernelName:Uo,backendName:"cpu",kernelFunc:Zq};function eK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,l=Dw(i,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var tK={kernelName:bh,backendName:"cpu",kernelFunc:eK};function nK(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var rK={kernelName:yh,backendName:"cpu",kernelFunc:nK},sK=ct(Es,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),aK={kernelName:Es,backendName:"cpu",kernelFunc:sK},oK=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values;for(let l=0;l<i.length;l++){let c=i[l],d=u[l];r[l]=Math.hypot(c,d)}return n.makeOutput(r,t.shape,"float32")},iK={kernelName:Xl,backendName:"cpu",kernelFunc:oK};function Wc(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.imag,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var uK={kernelName:Jl,backendName:"cpu",kernelFunc:Wc};function Vc(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=N.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return bs({inputs:{x:i[0]},backend:n});let u=i.map(m=>m.shape);if(N.assertParamsConsistent(u,a),i[0].dtype==="complex64"){let m=i.map(x=>Ji({inputs:{input:x},backend:n})),g=i.map(x=>Wc({inputs:{input:x},backend:n})),b=Vc({inputs:m,backend:n,attrs:{axis:a}}),y=Vc({inputs:g,backend:n,attrs:{axis:a}}),v=ur({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let l=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return Et({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=N.computeOutShape(l.map(m=>m.shape),1);let d=l[0].shape[0]===1,p=Rw(c,o,t[0].dtype,d),h=N.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var cK={kernelName:Go,backendName:"cpu",kernelFunc:Vc};function eN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:u,dilations:l,dimRoundingMode:c}=r;we([s,a],"conv2d");let d=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(s.shape,a.shape,o,l,i,c,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,b=p.padInfo.left,y=p.padInfo.top,v=p.dataFormat==="channelsLast",x=new Kt(p.outShape,s.dtype),k=w.computeStrides(s.shape),T=w.computeStrides(a.shape),C=k[0],E=v?k[1]:k[2],F=v?k[2]:1,O=v?1:k[1],D=x.strides[0],R=v?x.strides[1]:x.strides[2],_=v?x.strides[2]:1,L=v?1:x.strides[1],U=n.data.get(s.dataId).values,j=n.data.get(a.dataId).values,K=x.values;for(let q=0;q<p.batchSize;++q){let Q=q*C,ee=q*D;for(let re=0;re<p.outHeight;++re){let se=ee+re*R,ne=re*p.strideHeight-y;for(let ie=0;ie<h;++ie){let te=ne+ie*m;if(te<0||te>=p.inHeight)continue;let pe=ie*T[0],be=Q+te*E;for(let Ce=0;Ce<p.outWidth;++Ce){let Ie=se+Ce*_,Ne=Ce*p.strideWidth-b;for(let Le=0;Le<f;++Le){let Je=Ne+Le*g;if(Je<0||Je>=p.inWidth)continue;let qe=pe+Le*T[1],Ge=be+Je*F,lt=qe;for(let et=0;et<p.inChannels;++et){let pt=U[Ge+et*O];for(let Ct=0;Ct<p.outChannels;++Ct)K[Ie+Ct*L]+=pt*j[lt+Ct];lt+=p.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,K)}var lK={kernelName:ga,backendName:"cpu",kernelFunc:eN};function dK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:u,dimRoundingMode:l,filterShape:c}=r;we([s,a],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(s.shape,c,o,1,i,l,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,b=p.dataFormat==="channelsLast",y=new Kt(p.filterShape,"float32"),v=p.padInfo.left,x=p.padInfo.top,k=n.data.get(s.dataId).values,T=n.data.get(a.dataId).values,C=new Kt(s.shape,s.dtype,k),E=new Kt(a.shape,a.dtype,T);for(let F=0;F<m;++F){let O=Math.max(0,Math.ceil((x-F)/h)),D=Math.min(p.outHeight,(p.inHeight+x-F)/h);for(let R=0;R<g;++R){let _=Math.max(0,Math.ceil((v-R)/f)),L=Math.min(p.outWidth,(p.inWidth+v-R)/f);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let K=0;for(let q=0;q<p.batchSize;++q)for(let Q=O;Q<D;++Q){let ee=F+Q*h-x;for(let re=_;re<L;++re){let se=R+re*f-v;b?K+=C.get(q,ee,se,U)*E.get(q,Q,re,j):K+=C.get(q,U,ee,se)*E.get(q,j,Q,re)}}y.set(K,F,R,U,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var pK={kernelName:vh,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:u,dataFormat:l,dimRoundingMode:c}=r;we([s,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(s.shape),h=N.convertConv2DDataFormat(l),f=N.computeConv2DInfo(o,a.shape,i,1,u,c,!1,h),m=new Kt(f.inShape,"float32"),g=m.values,b=n.data.get(s.dataId).values,y=n.data.get(a.dataId).values,[v,x,k]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:F,inHeight:O,inWidth:D,outChannels:R,outHeight:_,outWidth:L,strideHeight:U,strideWidth:j}=f;h=f.dataFormat;let K=C-1-f.padInfo.top,q=E-1-f.padInfo.left,Q=h==="channelsLast",ee=m.strides[0],re=Q?m.strides[1]:m.strides[2],se=Q?m.strides[2]:1,ne=Q?1:m.strides[1],ie=p[0],te=Q?p[1]:p[2],pe=Q?p[2]:1,be=Q?1:p[1];for(let Ce=0;Ce<T;++Ce)for(let Ie=0;Ie<F;++Ie)for(let Ne=0;Ne<O;++Ne){let Le=Ne-K,Je=Math.max(0,Math.ceil(Le/U)),qe=Math.min(_,(C+Le)/U);for(let Ge=0;Ge<D;++Ge){let lt=Ge-q,et=Math.max(0,Math.ceil(lt/j)),pt=Math.min(L,(E+lt)/j),Ct=0;for(let tt=Je;tt<qe;++tt){let Qn=tt*U-Le;for(let cn=et;cn<pt;++cn){let Cr=cn*j-lt,zn=ie*Ce+te*tt+pe*cn,Zn=v*(C-1-Qn)+x*(E-1-Cr)+k*Ie;for(let dr=0;dr<R;++dr){let Tr=b[zn+be*dr],pr=y[Zn+dr];Ct+=Tr*pr}}}let Bn=ee*Ce+re*Ne+se*Ge+ne*Ie;g[Bn]=Ct}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var fK={kernelName:ba,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u}=r;we([s,a],"conv3d");let l=N.computeConv3DInfo(s.shape,a.shape,o,u,i),{filterDepth:c,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=l,b=g.front,y=g.left,v=g.top,x=new Kt(l.outShape,s.dtype),k=n.data.get(s.dataId).values,T=n.data.get(a.dataId).values,C=x.values,E=w.computeStrides(s.shape),F=w.computeStrides(a.shape);for(let O=0;O<l.batchSize;++O){let D=O*E[0],R=O*x.strides[0];for(let _=0;_<l.outDepth;++_){let L=R+_*x.strides[1],U=_*l.strideDepth-b;for(let j=0;j<c;++j){let K=U+j*h;if(K<0||K>=l.inDepth)continue;let q=j*F[0],Q=D+K*E[1];for(let ee=0;ee<l.outHeight;++ee){let re=L+ee*x.strides[2],se=ee*l.strideHeight-v;for(let ne=0;ne<d;++ne){let ie=se+ne*f;if(ie<0||ie>=l.inHeight)continue;let te=q+ne*F[1],pe=Q+ie*E[2];for(let be=0;be<l.outWidth;++be){let Ce=re+be*l.outChannels,Ie=be*l.strideWidth-y;for(let Ne=0;Ne<p;++Ne){let Le=Ie+Ne*m;if(Le<0||Le>=l.inWidth)continue;let Je=te+Ne*F[2],qe=pe+Le*l.inChannels,Ge=Je;for(let lt=0;lt<l.inChannels;++lt){let et=k[qe+lt];for(let pt=0;pt<l.outChannels;++pt)C[Ce+pt]+=et*T[Ge+pt];Ge+=l.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var gK={kernelName:Yl,backendName:"cpu",kernelFunc:mK};function bK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:u}=r;we([s,a],"conv3dBackpropFilterV2");let l=w.computeStrides(s.shape),c=w.computeStrides(a.shape),d=N.computeConv3DInfo(s.shape,u,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Kt(d.filterShape,"float32"),v=y.values,[x,k,T,C]=y.strides,E=n.data.get(a.dataId).values,[F,O,D,R]=c,_=n.data.get(s.dataId).values,[L,U,j,K]=l,q=d.padInfo.front,Q=d.padInfo.left,ee=d.padInfo.top;for(let re=0;re<m;++re){let se=Math.max(0,Math.ceil((q-re)/p)),ne=Math.min(d.outDepth,(d.inDepth+q-re)/p),ie=re*x;for(let te=0;te<g;++te){let pe=Math.max(0,Math.ceil((ee-te)/h)),be=Math.min(d.outHeight,(d.inHeight+ee-te)/h),Ce=te*k+ie;for(let Ie=0;Ie<b;++Ie){let Ne=Math.max(0,Math.ceil((Q-Ie)/f)),Le=Math.min(d.outWidth,(d.inWidth+Q-Ie)/f),Je=Ie*T+Ce;for(let qe=0;qe<d.inChannels;++qe){let Ge=qe*C+Je;for(let lt=0;lt<d.outChannels;++lt){let et=0;for(let pt=0;pt<d.batchSize;++pt){let Ct=pt*L,Bn=pt*F;for(let tt=se;tt<ne;++tt){let cn=(re+tt*p-q)*U+Ct,Cr=tt*O+Bn;for(let zn=pe;zn<be;++zn){let dr=(te+zn*h-ee)*j+cn,Tr=zn*D+Cr;for(let pr=Ne;pr<Le;++pr){let Js=(Ie+pr*f-Q)*K+dr,bn=pr*R+Tr;et+=_[Js+qe]*E[bn+lt]}}}}v[Ge+lt]=et}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var yK={kernelName:xh,backendName:"cpu",kernelFunc:bK};function vK(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:u}=r;we([s],"conv3dBackpropInputV2");let l=w.computeStrides(s.shape),c=w.computeStrides(a.shape),d=N.computeConv3DInfo(u,a.shape,i,1,o),p=new Kt(d.inShape,"float32"),h=p.values,[f,m,g,b]=p.strides,y=n.data.get(s.dataId).values,[v,x,k,T]=l,C=n.data.get(a.dataId).values,[E,F,O,D]=c,{batchSize:R,filterDepth:_,filterHeight:L,filterWidth:U,inChannels:j,inDepth:K,inHeight:q,inWidth:Q,outChannels:ee,outDepth:re,outHeight:se,outWidth:ne,strideDepth:ie,strideHeight:te,strideWidth:pe}=d,be=_-1-d.padInfo.front,Ce=L-1-d.padInfo.top,Ie=U-1-d.padInfo.left;for(let Ne=0;Ne<R;++Ne)for(let Le=0;Le<j;++Le)for(let Je=0;Je<K;++Je){let qe=Je-be,Ge=Math.max(0,Math.ceil(qe/ie)),lt=Math.min(re,(_+qe)/ie);for(let et=0;et<q;++et){let pt=et-Ce,Ct=Math.max(0,Math.ceil(pt/te)),Bn=Math.min(se,(L+pt)/te);for(let tt=0;tt<Q;++tt){let Qn=tt-Ie,cn=Math.max(0,Math.ceil(Qn/pe)),Cr=Math.min(ne,(U+Qn)/pe),zn=0;for(let Zn=Ge;Zn<lt;++Zn){let dr=Zn*ie-qe;for(let Tr=Ct;Tr<Bn;++Tr){let pr=Tr*te-pt;for(let Wn=cn;Wn<Cr;++Wn){let Js=Wn*pe-Qn,bn=v*Ne+x*Zn+k*Tr+T*Wn,ea=E*(_-1-dr)+F*(L-1-pr)+O*(U-1-Js)+D*Le;for(let hr=0;hr<ee;++hr){let Al=y[bn+hr],$l=C[ea+hr];zn+=Al*$l}}}}h[f*Ne+m*Je+g*et+b*tt+Le]=zn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var xK={kernelName:wh,backendName:"cpu",kernelFunc:vK},wK=ct(ya,e=>Math.cos(e)),kK={kernelName:ya,backendName:"cpu",kernelFunc:wK},IK=ct(va,e=>Math.cosh(e)),SK={kernelName:va,backendName:"cpu",kernelFunc:IK};function CK(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:u,extrapolationValue:l}=r,[c,d,p,h]=s.shape,f=a.shape[0],[m,g]=i,b=$e([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(o.dataId).values,x=n.data.get(s.dataId).values,k=w.computeStrides(s.shape),T=w.computeStrides(b.shape);for(let C=0;C<f;C++){let E=C*4,F=y[E],O=y[E+1],D=y[E+2],R=y[E+3],_=v[C];if(_>=c)continue;let L=m>1?(D-F)*(d-1)/(m-1):0,U=g>1?(R-O)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let K=m>1?F*(d-1)+j*L:.5*(F+D)*(d-1);if(K<0||K>d-1){for(let q=0;q<g;q++)for(let Q=0;Q<h;Q++){let ee=Q+q*T[2]+j*T[1]+C*T[0];b.values[ee]=l}continue}if(u==="bilinear"){let q=Math.floor(K),Q=Math.ceil(K),ee=K-q;for(let re=0;re<g;re++){let se=g>1?O*(p-1)+re*U:.5*(O+R)*(p-1);if(se<0||se>p-1){for(let pe=0;pe<h;pe++){let be=pe+re*T[2]+j*T[1]+C*T[0];b.values[be]=l}continue}let ne=Math.floor(se),ie=Math.ceil(se),te=se-ne;for(let pe=0;pe<h;pe++){let be=pe+ne*k[2]+q*k[1]+_*k[0],Ce=x[be];be=pe+ie*k[2]+q*k[1]+_*k[0];let Ie=x[be];be=pe+ne*k[2]+Q*k[1]+_*k[0];let Ne=x[be];be=pe+ie*k[2]+Q*k[1]+_*k[0];let Le=x[be],Je=Ce+(Ie-Ce)*te,qe=Ne+(Le-Ne)*te;be=pe+re*T[2]+j*T[1]+C*T[0],b.values[be]=Je+(qe-Je)*ee}}}else for(let q=0;q<g;++q){let Q=g>1?O*(p-1)+q*U:.5*(O+R)*(p-1);if(Q<0||Q>p-1){for(let se=0;se<h;se++){let ne=se+q*T[2]+j*T[1]+C*T[0];b.values[ne]=l}continue}let ee=Math.round(Q),re=Math.round(K);for(let se=0;se<h;se++){let ne=se+ee*k[2]+re*k[1]+_*k[0],ie=se+q*T[2]+j*T[1]+C*T[0];b.values[ie]=x[ne]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var TK={kernelName:jo,backendName:"cpu",kernelFunc:CK};function NK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r;we(s,"cumsum");let u=N.getAxesPermutation([a],s.shape.length),l=s;u!=null&&(l=xr({inputs:{x:s},backend:n,attrs:{perm:u}}));let c=N.getInnerMostAxes(1,s.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let d=In(l.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(l.shape),d),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=i?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)p[v]=o?0:h[v];else{let x=m(b,y-1);p[v]=o?h[x]+p[x]:h[v]+p[x]}}let g=n.makeTensorInfo(l.shape,d,p);if(u!=null){let b=N.getUndoAxesPermutation(u),y=xr({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var _K={kernelName:Ho,backendName:"cpu",kernelFunc:NK};function EK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let u=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,c=Dw(u,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(s.shape.length===2){let u=n.bufferSync(s),l=n.bufferSync(a),c=lT(u,l,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var AK={kernelName:kh,backendName:"cpu",kernelFunc:EK};function $K(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=s.shape[0],u=s.shape[1],l=s.shape[2],c=s.shape[3],d=u*a,p=l*a,h=c/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let b=0;b<i;++b)for(let y=0;y<d;++y){let v=Math.floor(y/a),x=y%a;for(let k=0;k<p;++k){let T=Math.floor(k/a),C=k%a,E=(x*a+C)*h;for(let F=0;F<h;++F){let D=F+E+c*(T+l*(v+u*b));m[g++]=f[D]}}}return n.makeTensorInfo([i,d,p,h],s.dtype,m)}var FK={kernelName:qo,backendName:"cpu",kernelFunc:$K};function tN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u,dimRoundingMode:l}=r;we([s,a],"depthwiseConv2DNative");let c=w.computeStrides(s.shape),d=w.computeStrides(a.shape),p=u;p==null&&(p=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=N.computeConv2DInfo(s.shape,a.shape,o,p,i,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,k=h.outChannels/h.inChannels,T=new Kt(h.outShape,s.dtype),C=n.data.get(s.dataId).values,E=n.data.get(a.dataId).values,F=T.values;for(let O=0;O<h.batchSize;++O){let D=O*c[0],R=O*T.strides[0];for(let _=0;_<h.outHeight;++_){let L=R+_*T.strides[1],U=_*h.strideHeight-x;for(let j=0;j<f;++j){let K=U+j*g;if(K<0||K>=h.inHeight)continue;let q=j*d[0],Q=D+K*c[1];for(let ee=0;ee<h.outWidth;++ee){let re=L+ee*T.strides[2],se=ee*h.strideWidth-v;for(let ne=0;ne<m;++ne){let ie=se+ne*b;if(ie<0||ie>=h.inWidth)continue;let te=q+ne*d[1],pe=Q+ie*h.inChannels,be=re,Ce=te;for(let Ie=0;Ie<h.inChannels;++Ie){let Ne=C[pe+Ie];for(let Le=0;Le<k;++Le)F[be+Le]+=Ne*E[Ce+Le];be+=k,Ce+=k}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var DK={kernelName:xa,backendName:"cpu",kernelFunc:tN};function RK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:u,dimRoundingMode:l,filterShape:c}=r;we([s,a],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(s.shape,c,o,i,u,l,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Kt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,v=d.outChannels/d.inChannels,x=n.data.get(s.dataId).values,k=new Kt(s.shape,s.dtype,x),T=n.data.get(a.dataId).values,C=new Kt(a.shape,a.dtype,T);for(let E=0;E<f;++E){let F=Math.max(0,Math.ceil((y-E)/p)),O=Math.min(d.outHeight,(d.inHeight+y-E)/p);for(let D=0;D<m;++D){let R=Math.max(0,Math.ceil((b-D)/h)),_=Math.min(d.outWidth,(d.inWidth+b-D)/h);for(let L=0;L<d.outChannels;++L){let U=Math.trunc(L/v),j=L%v,K=0;for(let q=0;q<d.batchSize;++q)for(let Q=F;Q<O;++Q){let ee=E+Q*p-y;for(let re=R;re<_;++re){let se=D+re*h-b;K+=k.get(q,ee,se,U)*C.get(q,Q,re,L)}}g.set(K,E,D,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var PK={kernelName:Ih,backendName:"cpu",kernelFunc:RK};function OK(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:u,dimRoundingMode:l,inputShape:c}=r;we([s,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(s.shape),p=w.computeStrides(a.shape),h=N.computeConv2DInfo(c,a.shape,o,i,u,l,!0),f=new Kt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(s.dataId).values,[x,k,T]=d,C=n.data.get(a.dataId).values,[E,F,O]=p,{batchSize:D,filterHeight:R,filterWidth:_,inChannels:L,inHeight:U,inWidth:j,outChannels:K,outHeight:q,outWidth:Q,strideHeight:ee,strideWidth:re}=h,se=R-1-h.padInfo.top,ne=_-1-h.padInfo.left,ie=K/L;for(let te=0;te<D;++te)for(let pe=0;pe<L;++pe)for(let be=0;be<U;++be){let Ce=be-se,Ie=Math.max(0,Math.ceil(Ce/ee)),Ne=Math.min(q,(R+Ce)/ee);for(let Le=0;Le<j;++Le){let Je=Le-ne,qe=Math.max(0,Math.ceil(Je/re)),Ge=Math.min(Q,(_+Je)/re),lt=0;for(let et=Ie;et<Ne;++et){let pt=et*ee-Ce;for(let Ct=qe;Ct<Ge;++Ct){let Bn=Ct*re-Je,tt=x*te+k*et+T*Ct,Qn=E*(R-1-pt)+F*(_-1-Bn)+O*pe;for(let cn=0;cn<ie;++cn){let Cr=pe*ie+cn,zn=v[tt+Cr],Zn=C[Qn+cn];lt+=zn*Zn}}}m[g*te+b*be+y*Le+pe]=lt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var MK={kernelName:Sh,backendName:"cpu",kernelFunc:OK};function LK(e){let{inputs:t,backend:n}=e,{x:r}=t,s=w.sizeFromShape(r.shape),a=n.data.get(r.dataId).values,o=$e([s,s],r.dtype),i=o.values;for(let l=0;l<a.length;l++)i[l*s+l]=a[l];let u=[...r.shape,...r.shape];return n.makeTensorInfo(u,o.dtype,o.values)}var BK={kernelName:Ch,backendName:"cpu",kernelFunc:LK},zK={kernelName:Ql,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,u=t,l=u.data.get(r.dataId).values,c=r.shape.length,d=u.data.get(s.dataId).values,p=s.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:k,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:F,outShape:O}=N.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),D=w.sizeFromShape(O),R=O.length,_=w.getArrayFromDType(r.dtype,D);for(let U=0;U<h;++U)for(let j=0;j<b;++j){let K=j*x-v.top;for(let q=0;q<y;++q){let Q=q*k-v.left;for(let ee=0;ee<g;++ee){let re=Number.MIN_SAFE_INTEGER;for(let ne=0;ne<T;++ne){let ie=K+ne*E;if(ie>=0&&ie<f)for(let te=0;te<C;++te){let pe=Q+te*F;if(pe>=0&&pe<m){let be=w.locToIndex([U,ie,pe,ee],c,w.computeStrides(r.shape)),Ce=w.locToIndex([ne,te,ee],p,w.computeStrides(s.shape)),Ie=l[be]+d[Ce];Ie>re&&(re=Ie)}}}let se=w.locToIndex([U,j,q,ee],R,w.computeStrides(O));_[se]=re}}}return{dataId:u.write(w.toTypedArray(_,r.dtype),O,r.dtype),shape:O,dtype:r.dtype}}},WK={kernelName:Nh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:u}=n,l=t,c=w.toNestedArray(r.shape,l.data.get(r.dataId).values),d=w.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",u);w.assert(a.rank===F.length,()=>`Error in ${Nh}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let O=w.toNestedArray(F,l.data.get(a.dataId).values),D=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let _=0;_<p;++_)for(let L=0;L<g;++L){let U=L*v-y.top;for(let j=0;j<b;++j){let K=j*x-y.left;for(let q=0;q<m;++q){let Q=Number.MIN_SAFE_INTEGER,ee=0,re=0;for(let se=0;se<k;++se){let ne=U+se*C;if(ne>=0&&ne<h)for(let ie=0;ie<T;++ie){let te=K+ie*E;if(te>=0&&te<f){let pe=c[_][ne][te][q]+d[se][ie][q];pe>Q&&(Q=pe,ee=se,re=ie)}}}D[ee][re][q]+=O[_][L][j][q]}}}return{dataId:l.write(w.toTypedArray(D,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},VK={kernelName:Th,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:u}=n,l=t,c=w.toNestedArray(r.shape,l.data.get(r.dataId).values),d=w.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",u);w.assert(a.rank===F.length,()=>`Error in ${Th}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let O=w.toNestedArray(F,l.data.get(a.dataId).values),D=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let _=0;_<p;++_)for(let L=0;L<g;++L){let U=L*v-y.top;for(let j=0;j<b;++j){let K=j*x-y.left;for(let q=0;q<m;++q){let Q=Number.MIN_SAFE_INTEGER,ee=U<0?0:U,re=K<0?0:K;for(let se=0;se<k;++se){let ne=U+se*C;if(ne>=0&&ne<h)for(let ie=0;ie<T;++ie){let te=K+ie*E;if(te>=0&&te<f){let pe=c[_][ne][te][q]+d[se][ie][q];pe>Q&&(Q=pe,ee=ne,re=te)}}}D[_][ee][re][q]+=O[_][L][j][q]}}}return{dataId:l.write(w.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function tp(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"sum");let i;s.dtype==="bool"?i=So({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=bs({inputs:{x:s},backend:n});let u=i.shape.length,l=w.parseAxisParam(a,i.shape),c=N.getAxesPermutation(l,u),d=l,p=i;c!=null&&(p=xr({inputs:{x:i},backend:n,attrs:{perm:c}}),d=N.getInnerMostAxes(d.length,u)),N.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=N.computeOutAndReduceShapes(p.shape,d),m=N.upcastType(p.dtype,"int32"),g=mm(n,h,m),b=w.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(p.dataId).values;for(let x=0;x<y.length;++x){let k=x*b,T=0;for(let C=0;C<b;++C)T+=v[k+C];y[x]=T}if(o){let x=N.expandShapeToKeepDim(g.shape,l),k=g;g=Et({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(p),g}var UK={kernelName:Ka,backendName:"cpu",kernelFunc:tp};function GK(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:u}=N.decodeEinsumEquation(s,a.length);N.checkEinsumDimSizes(o.length,u,a);let{path:l,steps:c}=N.getEinsumComputePath(i,u),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,u[g]),v;N.isIdentityPermutation(b)?v=a[g]:(v=xr({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=Et({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=gm({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(l[m]>=0&&(p=tp({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var HK={kernelName:Zl,backendName:"cpu",kernelFunc:GK};function jK(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;we([r,s],"eluGrad");let a=new Float32Array(w.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let u=0;u<o.length;++u){let l=o[u];l>=1?a[u]=i[u]:a[u]=i[u]*(l+1)}return n.makeTensorInfo(s.shape,"float32",a)}var qK={kernelName:_h,backendName:"cpu",kernelFunc:jK},KK=N.ERF_P,XK=N.ERF_A1,YK=N.ERF_A2,QK=N.ERF_A3,ZK=N.ERF_A4,JK=N.ERF_A5,e8=ct(Zu,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+KK*n);return t*(1-((((JK*r+ZK)*r+QK)*r+YK)*r+XK)*r*Math.exp(-n*n))}),t8={kernelName:Zu,backendName:"cpu",kernelFunc:e8};function ym(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),u=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),u=o+a+1),i.splice(u,0,1),Et({inputs:{x:s},backend:n,attrs:{shape:i}})}var n8={kernelName:Xo,backendName:"cpu",kernelFunc:ym},r8=Ht((e,t)=>e/t),Vw=an(wa,r8),Uw={kernelName:wa,backendName:"cpu",kernelFunc:Vw};function nN(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,u=o.complexTensorInfos.imag,l=[s,a],c=w.sizeFromShape(l),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c);for(let g=0;g<s;g++){let b=eu({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=eu({inputs:{x:u},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=ur({inputs:{real:b,imag:y},backend:n}),{real:x,imag:k}=s8(v,t,n),T=N.mergeRealAndImagArrays(x,k);for(let C=0;C<a;C++){let E=N.getComplexWithIndex(T,C);d[g*a+C]=E.real,p[g*a+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(l,"float32",d),f=n.makeTensorInfo(l,"float32",p),m=ur({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function s8(e,t,n){let r=w.sizeFromShape(e.shape),s=n.data.get(e.dataId),a=n.data.get(s.complexTensorInfos.real.dataId).values,o=n.data.get(s.complexTensorInfos.imag.dataId).values;if(a8(r)){let i=Gw(a,o,r,t,n),u=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(u,"float32",i.real),c=n.makeTensorInfo(u,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(r,"float32")),p=bs({inputs:{x:d},backend:n}),h=Uw.kernelFunc({inputs:{a:l,b:d},backend:n}),f=Uw.kernelFunc({inputs:{a:c,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(a,o),u=o8(i,r,t);return N.splitRealAndImagArrays(u)}}function a8(e){return(e&e-1)==0}function Gw(e,t,n,r,s){if(n===1)return{real:e,imag:t};let a=N.mergeRealAndImagArrays(e,t),o=n/2,i=N.complexWithEvenIndex(a),u=i.real,l=i.imag,c=[u.length],d=s.makeTensorInfo(c,"float32",u),p=s.makeTensorInfo(c,"float32",l),h=ur({inputs:{real:d,imag:p},backend:s}),f=N.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=s.makeTensorInfo(b,"float32",m),v=s.makeTensorInfo(b,"float32",g),x=ur({inputs:{real:y,imag:v},backend:s}),k=Gw(u,l,o,r,s),T=k.real,C=k.imag,E=[T.length],F=s.makeTensorInfo(E,"float32",T),O=s.makeTensorInfo(E,"float32",C),D=ur({inputs:{real:F,imag:O},backend:s}),R=Gw(m,g,o,r,s),_=R.real,L=R.imag,U=[_.length],j=s.makeTensorInfo(U,"float32",_),K=s.makeTensorInfo(U,"float32",L),q=ur({inputs:{real:j,imag:K},backend:s}),Q=N.exponents(n,r),ee=[Q.real.length],re=s.makeTensorInfo(ee,"float32",Q.real),se=s.makeTensorInfo(ee,"float32",Q.imag),ne=ur({inputs:{real:re,imag:se},backend:s}),ie=gm({inputs:{a:ne,b:q},backend:s}),te=Jd({inputs:{a:D,b:ie},backend:s}),pe=Bw({inputs:{a:D,b:ie},backend:s}),be=Ji({inputs:{input:te},backend:s}),Ce=Ji({inputs:{input:pe},backend:s}),Ie=Wc({inputs:{input:te},backend:s}),Ne=Wc({inputs:{input:pe},backend:s}),Le=Vc({inputs:[be,Ce],backend:s,attrs:{axis:0}}),Je=Vc({inputs:[Ie,Ne],backend:s,attrs:{axis:0}}),qe=s.data.get(Le.dataId).values,Ge=s.data.get(Je.dataId).values;return s.disposeIntermediateTensorInfo(d),s.disposeIntermediateTensorInfo(p),s.disposeIntermediateTensorInfo(h),s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(v),s.disposeIntermediateTensorInfo(x),s.disposeIntermediateTensorInfo(F),s.disposeIntermediateTensorInfo(O),s.disposeIntermediateTensorInfo(D),s.disposeIntermediateTensorInfo(j),s.disposeIntermediateTensorInfo(K),s.disposeIntermediateTensorInfo(q),s.disposeIntermediateTensorInfo(re),s.disposeIntermediateTensorInfo(se),s.disposeIntermediateTensorInfo(ne),s.disposeIntermediateTensorInfo(ie),s.disposeIntermediateTensorInfo(te),s.disposeIntermediateTensorInfo(pe),s.disposeIntermediateTensorInfo(be),s.disposeIntermediateTensorInfo(Ie),s.disposeIntermediateTensorInfo(Ce),s.disposeIntermediateTensorInfo(Ne),s.disposeIntermediateTensorInfo(Le),s.disposeIntermediateTensorInfo(Je),{real:qe,imag:Ge}}function o8(e,t,n){let r=new Float32Array(t*2);for(let s=0;s<t;s++){let a=0,o=0;for(let i=0;i<t;i++){let u=N.exponent(s*i,t,n),l=N.getComplexWithIndex(e,i);a+=l.real*u.real-l.imag*u.imag,o+=l.real*u.imag+l.imag*u.real}n&&(a/=t,o/=t),N.assignToTypedArray(r,a,o,s)}return r}function i8(e){let{inputs:t,backend:n}=e,{input:r}=t,s=w.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=Et({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),u=nN(i,!1,n),l=Et({inputs:{x:u},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var u8={kernelName:Eh,backendName:"cpu",kernelFunc:i8};function Hw(e){let{backend:t,attrs:n}=e,{shape:r,value:s,dtype:a}=n,o=a||w.inferDtype(s),i=w.getArrayFromDType(o,w.sizeFromShape(r));return l8(i,s,o),t.makeTensorInfo(r,o,i)}var c8={kernelName:Ju,backendName:"cpu",kernelFunc:Hw};function l8(e,t,n){e.fill(t)}var d8={kernelName:Qo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,s=n,a=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[o,i,u,l]=r.shape,c=s.data.get(r.dataId).values;for(let p=0;p<o;p++){let h=p*u*i*l;for(let f=0;f<i;f++){let m=f*(u*l);for(let g=0;g<u;g++){let b=g*l;for(let y=0;y<l;y++){let v=Math.round(u-g-1),x=h+m+b+y,k=c[x];if(v>=0&&v<u){let T=v*l,C=h+m+T+y;k=c[C]}a[x]=k}}}}return{dataId:s.write(a,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},p8=Ht((e,t)=>Math.floor(e/t)),h8=an(Ca,p8,null,"int32"),f8={kernelName:Ca,backendName:"cpu",kernelFunc:h8};function m8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=eN({inputs:{x:s,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Jd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=zw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var g8={kernelName:no,backendName:"cpu",kernelFunc:m8};function b8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=tN({inputs:{x:s,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Jd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=zw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var y8={kernelName:ro,backendName:"cpu",kernelFunc:b8};function v8(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=w.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[u,l,c,d]=N.prepareAndValidate(r,s);if(l===0)return n.makeTensorInfo(u,r.dtype,[]);let p=n.data.get(s.dataId).values,h=n.bufferSync(r),f=yT(p,h,r.dtype,l,i,c,d,r.shape,a);return n.makeTensorInfo(u,r.dtype,f.values)}var x8={kernelName:Jo,backendName:"cpu",kernelFunc:v8};function w8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;we([s,a],"gatherV2");let u=w.parseAxisParam(o,s.shape)[0],l=n.data.get(a.dataId).values,c=s.shape[u];for(let x=0;x<l.length;++x){let k=l[x];w.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=N.segment_util.collectGatherOpShapeInfo(s,a,u,d),f=Et({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Et({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],b=n.bufferSync(m),y=n.bufferSync(f),v=vT(y,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,v.dtype,v.values)}var k8={kernelName:Zo,backendName:"cpu",kernelFunc:w8};function I8(e){let{inputs:t,backend:n}=e,{input:r}=t,s=w.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=Et({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),u=nN(i,!0,n),l=Et({inputs:{x:u},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var S8={kernelName:Ah,backendName:"cpu",kernelFunc:I8},C8=ct(ec,e=>Number.isFinite(e)?1:0,"bool"),T8={kernelName:ec,backendName:"cpu",kernelFunc:C8},N8=ct(tc,e=>Math.abs(e)===1/0?1:0,"bool"),_8={kernelName:tc,backendName:"cpu",kernelFunc:N8},E8=ct(nc,e=>Number.isNaN(e)?1:0,"bool"),A8={kernelName:nc,backendName:"cpu",kernelFunc:E8};function $8(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=ST(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var F8={kernelName:$h,backendName:"cpu",kernelFunc:$8},D8=ct(rc,e=>Math.log1p(e)),R8={kernelName:rc,backendName:"cpu",kernelFunc:D8},P8=Ht((e,t)=>e&&t),O8=an(si,P8,null,"bool"),M8={kernelName:si,backendName:"cpu",kernelFunc:O8},L8=ct(sc,e=>e?0:1,"bool"),B8={kernelName:sc,backendName:"cpu",kernelFunc:L8},z8=Ht((e,t)=>e||t),W8=an(ed,z8,null,"bool"),V8={kernelName:ed,backendName:"cpu",kernelFunc:W8};function U8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:u}=r;we(s,"LRN");let l=s.shape[3],c=l-1,d=n.data.get(s.dataId).values,p=w.sizeFromShape(s.shape),h=new Float32Array(p);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),v=0;for(;b<=y;b++){let x=d[b];v+=x*x}return v}for(let m=0;m<p;m++){let g=f(m),b=d[m]*Math.pow(o+i*g,-u);h[m]=b}return n.makeTensorInfo(s.shape,s.dtype,h)}var G8={kernelName:td,backendName:"cpu",kernelFunc:U8};function H8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:u,alpha:l,beta:c}=r;we(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(s.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let v=y%p,x=y-v+Math.max(0,v-i),k=y-v+Math.min(p,v+i+1),T=0;for(let C=x;C<k;C++)T+=Math.pow(f[C],2);T=l*T+u;for(let C=x;C<k;C++){let E=-2*l*c*f[C]*m[y]/T;y===C&&(E+=Math.pow(T,-c)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(o.shape,s.dtype,g)}var j8={kernelName:Fh,backendName:"cpu",kernelFunc:H8};function rN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=n,u=s.shape,l=u.length,c=w.parseAxisParam(a,u),d=c,p=N.getAxesPermutation(d,l),h=i.data.get(s.dataId).values;if(p!=null){let x=new Array(l);for(let k=0;k<x.length;k++)x[k]=u[p[k]];h=Ow(h,u,s.dtype,p,x),d=N.getInnerMostAxes(d.length,l),u=x}we(s,"max"),N.assertAxesAreInnerMostDims("max",d,l);let[f,m]=N.computeOutAndReduceShapes(u,d),g=w.sizeFromShape(m),b=TT(h,g,f,s.dtype),y=i.write(b,f,s.dtype),v=f;return o&&(v=N.expandShapeToKeepDim(f,c)),{dataId:y,shape:v,dtype:s.dtype}}var q8={kernelName:Aa,backendName:"cpu",kernelFunc:rN};function K8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;we(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1;w.assert(N.eitherStridesOrDilationsAreOne(o,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let c=N.computePool2DInfo(s.shape,a,o,l,i,u),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=bs({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Ww(p,s.shape,s.dtype,h,c,"max");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var X8={kernelName:Fa,backendName:"cpu",kernelFunc:K8};function Y8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u,dataFormat:l}=r;we(s,"maxPool3d");let c=N.computePool3DInfo(s.shape,a,o,1,i,u,l),d=n.data.get(s.dataId).values,p=JT(d,s.shape,s.dtype,w.computeStrides(s.shape),c,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Q8={kernelName:nd,backendName:"cpu",kernelFunc:Y8};function Z8(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:u,dimRoundingMode:l}=r;we([s,a],"maxPool3DGrad");let c=N.computePool3DInfo(a.shape,o,i,1,u,l),d=n.bufferSync(a),p=Wq(d,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,b=c.dilationHeight,y=c.dilationWidth,v=c.effectiveFilterDepth,x=c.effectiveFilterHeight,k=c.effectiveFilterWidth,T=v-1-c.padInfo.front,C=k-1-c.padInfo.left,E=x-1-c.padInfo.top,F=$e(a.shape,"float32"),O=n.bufferSync(s);for(let D=0;D<c.batchSize;++D)for(let R=0;R<c.inChannels;++R)for(let _=0;_<c.inDepth;++_)for(let L=0;L<c.inHeight;++L)for(let U=0;U<c.inWidth;++U){let j=_-T,K=L-E,q=U-C,Q=0;for(let ee=0;ee<v;ee+=g){let re=(j+ee)/h;if(!(re<0||re>=c.outDepth||Math.floor(re)!==re))for(let se=0;se<x;se+=b){let ne=(K+se)/f;if(!(ne<0||ne>=c.outHeight||Math.floor(ne)!==ne))for(let ie=0;ie<k;ie+=y){let te=(q+ie)/m;if(te<0||te>=c.outWidth||Math.floor(te)!==te)continue;let pe=v*x*k-1-p.get(D,re,ne,te,R),be=ee*x*k+se*k+ie,Ce=pe===be?1:0;if(Ce===0)continue;Q+=O.get(D,re,ne,te,R)*Ce}}}F.set(Q,D,_,L,U,R)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var J8={kernelName:Rh,backendName:"cpu",kernelFunc:Z8};function eX(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;we([a,o],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:d}=r,p=N.computePool2DInfo(i.shape,u,l,1,c,d),h=n.data.get(i.dataId).values,f=$e(p.outShape,i.dtype,ZT(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,b=p.dilationHeight,y=p.dilationWidth,v=p.effectiveFilterHeight,x=p.effectiveFilterWidth,k=x-1-p.padInfo.left,T=v-1-p.padInfo.top,C=$e(i.shape,"float32"),E=n.data.get(s.dataId).values,F=$e(s.shape,"float32",E);for(let O=0;O<p.batchSize;++O)for(let D=0;D<p.inChannels;++D)for(let R=0;R<p.inHeight;++R)for(let _=0;_<p.inWidth;++_){let L=R-T,U=_-k,j=0;for(let K=0;K<v;K+=b){let q=(L+K)/m;if(!(q<0||q>=p.outHeight||Math.floor(q)!==q))for(let Q=0;Q<x;Q+=y){let ee=(U+Q)/g;if(ee<0||ee>=p.outWidth||Math.floor(ee)!==ee)continue;let re=v*x-1-f.get(O,q,ee,D),se=K*x+Q,ne=re===se?1:0;if(ne===0)continue;j+=F.get(O,q,ee,D)*ne}}C.set(j,O,R,_,D)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var tX={kernelName:Dh,backendName:"cpu",kernelFunc:eX};function nX(e,t,n,r,s){let a=w.computeStrides(t),o=Ww(e,t,n,a,s,"max"),i=ZT(e,t,n,s,!0,r);return[o.values,i.values]}var rX={kernelName:Ph,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,u=n;we(r,"MaxPoolWithArgmax");let l=u.data.get(r.dataId).values,c=N.computePool2DInfo(r.shape,s,a,[1,1],o),[d,p]=nX(l,r.shape,r.dtype,i,c),h=u.write(d,c.outShape,r.dtype),f=u.write(p,c.outShape,r.dtype);return[{dataId:h,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function sX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=w.parseAxisParam(a,s.shape),l=N.computeOutAndReduceShapes(s.shape,i)[1],c=w.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(p);let h=So({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Vw({inputs:{a:h,b:p},backend:n});d.push(f);let m=tp({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var aX={kernelName:Da,backendName:"cpu",kernelFunc:sX};function oX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;we(s,"min");let i=w.parseAxisParam(a,s.shape),u=i,l=N.getAxesPermutation(u,s.shape.length),c=s;l!=null&&(c=xr({inputs:{x:s},backend:n,attrs:{perm:l}}),u=N.getInnerMostAxes(u.length,s.shape.length)),N.assertAxesAreInnerMostDims("min",u,c.shape.length);let[d,p]=N.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];(Number.isNaN(k)||k<v)&&(v=k)}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let b=N.expandShapeToKeepDim(d,i),y=Et({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var iX={kernelName:Ra,backendName:"cpu",kernelFunc:oX};function uX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,mode:o}=r;we(s,"mirrorPad");let i=a.map((v,x)=>v[0]+s.shape[x]+v[1]),u=a.map(v=>v[0]),l=a.map((v,x)=>v[0]+s.shape[x]),c=o==="reflect"?0:1,d=n.data.get(s.dataId).values,p=s.shape.length,h=w.computeStrides(s.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),b=w.getTypedArrayFromDType(s.dtype,f);for(let v=0;v<f;v++){let x=w.indexToLoc(v,m,g);for(let T=0;T<m;T++)x[T]<u[T]?x[T]=u[T]*2-x[T]-c:x[T]>=l[T]&&(x[T]=(l[T]-1)*2-x[T]+c);x=x.map((T,C)=>T-u[C]);let k=w.locToIndex(x,p,h);b[v]=d[k]}return{dataId:n.write(b,i,s.dtype),shape:i,dtype:s.dtype}}var cX={kernelName:Oa,backendName:"cpu",kernelFunc:uX},lX=Ht((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),dX=an(ac,lX),pX={kernelName:ac,backendName:"cpu",kernelFunc:dX},hX=Bo(ch());function sN(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let u=w.parseAxisParam([i],s.shape),l=rN({inputs:{x:s},backend:n,attrs:{reductionIndices:u,keepDims:!1}}),c=N.expandShapeToKeepDim(l.shape,u),d=Et({inputs:{x:l},backend:n,attrs:{shape:c}}),p=Bw({inputs:{a:s,b:d},backend:n}),h=mT({inputs:{x:p},backend:n}),f=tp({inputs:{x:h},backend:n,attrs:{axis:u,keepDims:!1}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Vw({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var fX={kernelName:Xa,backendName:"cpu",kernelFunc:sN};function mX(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;we(s,"multinomial");let u=i?s:sN({inputs:{logits:s},backend:n,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],d=n.data.get(u.dataId).values,p=[l,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<l;++f){let m=f*c,g=new Float32Array(c-1);g[0]=d[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+d[m+v];let b=hX.alea(o.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let k=0;k<g.length;k++)if(x<g[k]){h[y+v]=k;break}}}return i||n.disposeIntermediateTensorInfo(u),n.makeTensorInfo(p,"int32",h)}var gX={kernelName:Oh,backendName:"cpu",kernelFunc:mX},bX=Dr.nonMaxSuppressionV3Impl;function yX(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u}=r;we(s,"NonMaxSuppression");let l=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=bX(l,c,o,i,u);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var vX={kernelName:ii,backendName:"cpu",kernelFunc:yX},xX=Dr.nonMaxSuppressionV4Impl;function wX(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u,padToMaxOutputSize:l}=r;we(s,"NonMaxSuppressionPadded");let c=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=xX(c,d,o,i,u,l);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var kX={kernelName:oc,backendName:"cpu",kernelFunc:wX},IX=Dr.nonMaxSuppressionV5Impl;function SX(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u,softNmsSigma:l}=r;we(s,"NonMaxSuppressionWithScore");let c=n.data.get(s.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=u,m=l,{selectedIndices:g,selectedScores:b}=IX(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var CX={kernelName:ui,backendName:"cpu",kernelFunc:SX};function TX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r;we(s,"oneHot");let u=w.sizeFromShape(s.shape),l=new Float32Array(u*a);l.fill(i);let c=n.data.get(s.dataId).values;for(let d=0;d<u;++d)c[d]>=0&&c[d]<a&&(l[d*a+c[d]]=o);return n.makeTensorInfo([...s.shape,a],"int32",l)}var NX={kernelName:li,backendName:"cpu",kernelFunc:TX};function vm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let s=Ji({inputs:{input:r},backend:n}),a=vm({inputs:{x:s},backend:n}),o=Wc({inputs:{input:r},backend:n}),i=vm({inputs:{x:o},backend:n}),u=ur({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),u}else return Hw({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var _X={kernelName:Ni,backendName:"cpu",kernelFunc:vm};function aN(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let s=Ji({inputs:{input:r},backend:n}),a=aN({inputs:{x:s},backend:n}),o=Wc({inputs:{input:r},backend:n}),i=vm({inputs:{x:o},backend:n}),u=ur({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),u}else return Hw({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var EX={kernelName:ci,backendName:"cpu",kernelFunc:aN};function oN(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return ym({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],u=t.map(c=>{let d=ym({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),l=Vc({inputs:u,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var AX={kernelName:di,backendName:"cpu",kernelFunc:oN};function $X(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;we(s,"pad");let i=a.map((y,v)=>y[0]+s.shape[v]+y[1]),u=a.map(y=>y[0]),l=n.data.get(s.dataId).values,c=w.sizeFromShape(s.shape),d=s.shape.length,p=w.computeStrides(s.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(s.dtype,h);o!==0&&g.fill(o);for(let y=0;y<c;y++){let x=w.indexToLoc(y,d,p).map((T,C)=>T+u[C]),k=w.locToIndex(x,f,m);g[k]=l[y]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var iN={kernelName:La,backendName:"cpu",kernelFunc:$X},FX=Ht((e,t)=>Math.pow(e,t)),DX=an(Ba,FX),RX={kernelName:Ba,backendName:"cpu",kernelFunc:DX};function PX(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=Mw(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var OX={kernelName:ic,backendName:"cpu",kernelFunc:PX},MX=ct(uc,e=>1/e),LX={kernelName:uc,backendName:"cpu",kernelFunc:MX};function BX(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;we(s,"resizeBilinear");let u=w.computeStrides(s.shape),[l,c]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(w.sizeFromShape([d,l,c,f])),b=[a&&l>1?p-1:p,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=0,x=b[0]/y[0],k=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<l;C++){let E;o?E=x*(C+.5)-.5:E=x*C;let F=Math.max(0,Math.floor(E)),O=E-F,D=Math.min(p-1,Math.ceil(E)),R=T*u[0]+F*u[1],_=T*u[0]+D*u[1];for(let L=0;L<c;L++){let U;o?U=k*(L+.5)-.5:U=k*L;let j=Math.max(0,Math.floor(U)),K=U-j,q=Math.min(h-1,Math.ceil(U)),Q=R+j*u[2],ee=_+j*u[2],re=R+q*u[2],se=_+q*u[2];for(let ne=0;ne<f;ne++){let ie=m[Q+ne],te=m[ee+ne],pe=m[re+ne],be=m[se+ne],Ce=ie+(pe-ie)*K,Ie=te+(be-te)*K,Ne=Ce+(Ie-Ce)*O;g[v++]=Ne}}}return n.makeTensorInfo([d,l,c,f],"float32",g)}var zX={kernelName:Va,backendName:"cpu",kernelFunc:BX};function WX(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;we([a,s],"resizeBilinearGrad");let i=w.computeStrides(s.shape),[u,l,c,d]=s.shape,[,p,h]=a.shape,f=new Float32Array(u*l*c*d),m=[o&&p>1?l-1:l,o&&h>1?c-1:c],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let k=0;k<u;k++){let T=k*i[0];for(let C=0;C<p;C++){let E=C*b,F=Math.floor(E),O=Math.min(Math.ceil(E),l-1),D=T+F*i[1],R=T+O*i[1],_=E-F,L=1-_;for(let U=0;U<h;U++){let j=U*y,K=Math.floor(j),q=Math.min(Math.ceil(j),c-1),Q=j-K,ee=1-Q,re=D+K*i[2],se=D+q*i[2],ne=R+K*i[2],ie=R+q*i[2],te=L*ee,pe=L*Q,be=_*ee,Ce=_*Q;for(let Ie=0;Ie<d;Ie++){let Ne=v[x++];f[re+Ie]+=Ne*te,f[se+Ie]+=Ne*pe,f[ne+Ie]+=Ne*be,f[ie+Ie]+=Ne*Ce}}}}return n.makeTensorInfo([u,c,l,d],"float32",f)}var VX={kernelName:Lh,backendName:"cpu",kernelFunc:WX};function UX(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;we(s,"resizeNearestNeighbor");let u=w.computeStrides(s.shape),[l,c]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(d*l*c*f),b=[a&&l>1?p-1:p,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=b[0]/y[0],x=b[1]/y[1],k=0;for(let T=0;T<d;T++){let C=T*u[0];for(let E=0;E<l;E++){let F=o?v*(E+.5):v*E,O=Math.min(p-1,a?Math.round(F):Math.floor(F));o&&(O=Math.max(0,O));let D=C+O*u[1];for(let R=0;R<c;R++){let _=o?x*(R+.5):x*R,L=Math.min(h-1,a?Math.round(_):Math.floor(_));o&&(L=Math.max(0,L));let U=D+L*u[2];for(let j=0;j<f;j++){let K=m[U+j];g[k++]=K}}}}return n.makeTensorInfo([d,l,c,f],s.dtype,g)}var GX={kernelName:cc,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r;we([a,s],"resizeNearestNeighborGrad");let i=w.computeStrides(s.shape),u=w.computeStrides(a.shape),[l,c,d,p]=s.shape,[,h,f]=a.shape,m=new Float32Array(l*c*d*p),g=n.data.get(a.dataId).values,b=[o&&h>1?c-1:c,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],k=1/v,T=1/x,C=Math.ceil(k)*2+2,E=Math.ceil(T)*2+2;for(let F=0;F<l;F++){let O=F*i[0];for(let D=0;D<c;D++){let R=O+D*i[1],_=Math.floor(D*k),L=Math.floor(_-C/2);for(let U=0;U<d;U++){let j=R+U*i[2],K=Math.floor(U*T),q=Math.floor(K-E/2);for(let Q=0;Q<p;Q++){let ee=0;for(let re=0;re<C;re++){let se=re+L;if(se<0||se>=h)continue;let ne=O+se*u[1],ie=se*v,te=Math.min(c-1,o?Math.round(ie):Math.floor(ie));if(D===te)for(let pe=0;pe<E;pe++){let be=pe+q;if(be<0||be>=f)continue;let Ce=ne+be*u[2],Ie=be*x,Ne=Math.min(d-1,o?Math.round(Ie):Math.floor(Ie));U===Ne&&(ee+=g[Ce+Q])}}m[j+Q]=ee}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var jX={kernelName:Mh,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;we(s,"reverse");let o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return bs({inputs:{x:s},backend:n});let u=new Kt(s.shape,s.dtype),l=n.bufferSync(s);for(let c=0;c<u.size;c++){let d=u.indexToLoc(c),p=d.slice();i.forEach(h=>p[h]=s.shape[h]-1-p[h]),u.set(l.get(...p),...d)}return n.makeTensorInfo(u.shape,u.dtype,u.values)}var KX={kernelName:fi,backendName:"cpu",kernelFunc:qX},XX={kernelName:_i,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,u=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[l,c,d,p]=r.shape,[h,f]=N.getImageCenter(o,c,d),m=255,g=Math.sin(s),b=Math.cos(s),y=i.data.get(r.dataId).values;for(let x=0;x<l;x++){let k=x*d*c*p;for(let T=0;T<c;T++){let C=T*(d*p);for(let E=0;E<d;E++){let F=E*p;for(let O=0;O<p;O++){let D=[l,T,E,O],R=D[2],_=D[1],L=(R-h)*b-(_-f)*g,U=(R-h)*g+(_-f)*b;L=Math.round(L+h),U=Math.round(U+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),L>=0&&L<d&&U>=0&&U<c){let q=U*(d*p),Q=L*p,ee=k+q+Q+O;j=y[ee]}let K=k+C+F+O;u[K]=j}}}}return{dataId:i.write(u,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},YX=ct(mi,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),QX={kernelName:mi,backendName:"cpu",kernelFunc:YX};function uN(e,t,n,r,s,a,o,i,u,l){let c=[r/s,s],d=e.values,p=t.values;if(r===0)return $e(n,t.dtype);let h=$e(c,t.dtype);h.values.fill(u);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<o;b++){let y=d[f*o+b];m.push(y),g+=y*i[b]}if(g<0||g>=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<s;b++)l?h.values[g*s+b]+=p[f*s+b]:h.values[g*s+b]=t.rank===0?p[0]:p[f*s+b]}return h}function ZX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:u,sliceSize:l,strides:c,outputSize:d}=N.calculateShapes(a,s,o),p=!0,h=n.bufferSync(s),f=n.bufferSync(a),m=uN(h,f,o,d,l,u,i,c,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var JX={kernelName:gi,backendName:"cpu",kernelFunc:ZX};function e7(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t;we([r,s,a],"select");let o=r.shape.length,i=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,c=In(s.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(s.shape),c),p=0,h=o===0||o>1||s.shape.length===1?1:w.sizeFromShape(s.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=u[f]:d[p++]=l[f];return n.makeTensorInfo(s.shape,c,d)}var t7={kernelName:bi,backendName:"cpu",kernelFunc:e7},n7=N.SELU_SCALEALPHA,r7=N.SELU_SCALE,s7=ct(lc,e=>e>=0?r7*e:n7*(Math.exp(e)-1)),a7={kernelName:lc,backendName:"cpu",kernelFunc:s7},o7=ct(dc,e=>e<0?-1:e>0?1:0),i7={kernelName:dc,backendName:"cpu",kernelFunc:o7},u7=ct(Ha,e=>Math.sin(e)),c7={kernelName:Ha,backendName:"cpu",kernelFunc:u7},l7=ct(vi,e=>Math.sinh(e)),d7={kernelName:vi,backendName:"cpu",kernelFunc:l7},p7=11920928955078125e-23,cN=Math.log(p7)+2,h7=ct(pc,e=>{let t=e>-cN,n=e<cN,r=Math.exp(e),s;return n?s=r:t?s=e:s=Math.log(1+r),s}),f7={kernelName:pc,backendName:"cpu",kernelFunc:h7};function m7(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;we([s],"spaceToBatchND");let i=w.sizeFromShape(a),u=[[0,0]];u.push(...o);for(let T=1+a.length;T<s.shape.length;++T)u.push([0,0]);let l=iN.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:u,constantValue:0}}),c=N.getReshaped(l.shape,a,i,!1),d=N.getPermuted(c.length,a.length,!1),p=N.getReshapedPermuted(l.shape,a,i,!1),m=Et({inputs:{x:l},backend:n,attrs:{shape:c}}),y=xr({inputs:{x:m},backend:n,attrs:{perm:d}}),k=Et({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),k}var g7={kernelName:xi,backendName:"cpu",kernelFunc:m7};function b7(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,p,h,f,m]=RT(i,r.shape,r.dtype,u,s.dtype,l,c);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var y7={kernelName:sd,backendName:"cpu",kernelFunc:b7};function v7(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,u=Array.from(n.data.get(a.dataId).values),[l,c,d]=PT(i,r.shape,r.dtype,o,u);return[n.makeTensorInfo(c,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var x7={kernelName:hc,backendName:"cpu",kernelFunc:v7};function w7(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(s.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,[l,c]=Lw(o,r.shape,r.dtype,i,u,!0);return n.makeTensorInfo(c,r.dtype,l)}var k7={kernelName:ad,backendName:"cpu",kernelFunc:w7};function I7(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(s.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,[l,c]=Lw(o,r.shape,r.dtype,i,u);return n.makeTensorInfo(c,r.dtype,l)}var S7={kernelName:od,backendName:"cpu",kernelFunc:I7};function C7(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:u,numUpdates:l,sliceSize:c,strides:d,outputSize:p}=N.calculateShapes(a,s,i),h=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],b=uN(f,m,i,p,c,l,u,d,g,h);return n.makeTensorInfo(i,b.dtype,b.values)}var T7={kernelName:id,backendName:"cpu",kernelFunc:C7};function N7(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],u=N.prepareSplitSize(s,a,i),l=new Array(s.shape.length).fill(0),c=s.shape.slice();return u.map(d=>{let p=[...c];p[i]=d;let h=eu({inputs:{x:s},backend:n,attrs:{begin:l,size:p}});return l[i]+=d,h})}var _7={kernelName:wi,backendName:"cpu",kernelFunc:N7},E7={kernelName:fc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;we(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i<s.length;++i){let u=s[i];a[i]=u*u}return{dataId:r.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},A7=ct(eo,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),$7={kernelName:eo,backendName:"cpu",kernelFunc:A7};function F7(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=r;we(s,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=$t.sliceInfo(s.shape,a,o,i,u,l,c,d,p),k;if(m)k=Et({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let T=$t.computeOutShape(y,v,x),C=eu({inputs:{x:s},backend:n,attrs:{begin:y,size:T}});k=Et({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(s),C=MT(h,T,x,y);k=n.makeTensorInfo(f,C.dtype,C.values)}return k}var D7={kernelName:ki,backendName:"cpu",kernelFunc:F7};function R7(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:u,preserveShortSequences:l}=r,{data:c,dataSplits:d}=t,p=n.data.get(c.dataId).values,h=n.data.get(d.dataId).values,[f,m]=LT(p,h,s,a,o,i,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var P7={kernelName:ud,backendName:"cpu",kernelFunc:R7};function O7(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[l,c,d]=BT(i,u,s),p=c.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var M7={kernelName:Bh,backendName:"cpu",kernelFunc:O7};function L7(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=zT(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var B7={kernelName:zh,backendName:"cpu",kernelFunc:L7},z7=ct(Ii,e=>Math.tan(e)),W7={kernelName:Ii,backendName:"cpu",kernelFunc:z7},V7=ct(Za,e=>Math.tanh(e)),U7={kernelName:Za,backendName:"cpu",kernelFunc:V7};function G7(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;we(s,"tile");let o=VT(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var H7={kernelName:As,backendName:"cpu",kernelFunc:G7};function j7(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;we(s,"topk");let i=n.data.get(s.dataId).values,[u,l]=GT(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var q7={kernelName:Si,backendName:"cpu",kernelFunc:j7};function K7(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:u,outputShape:l}=n,[c,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[c,f,m,h],b=w.computeStrides(s.shape),y=b[0],v=b[1],x=b[2],k=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(g));k.fill(u);let T=r.data.get(s.dataId).values,C=r.data.get(a.dataId).values;for(let F=0;F<c;++F){let O=a.shape[0]===1?C:C.subarray(F*8,F*8+8);for(let D=0;D<f;++D)for(let R=0;R<m;++R)for(let _=0;_<h;++_){let L,U=O[6]*R+O[7]*D+1;if(U===0)continue;let j=(O[0]*R+O[1]*D+O[2])/U,K=(O[3]*R+O[4]*D+O[5])/U,q=lN(j,p,i),Q=lN(K,d,i);switch(o){case"nearest":L=eY(T,d,p,y,v,x,F,Q,q,_,u);break;case"bilinear":L=tY(T,d,p,y,v,x,F,Q,q,_,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ee=F*y+D*v+R*x+_;k[ee]=L}return r.makeTensorInfo(g,s.dtype,k)}return{dataId:r.write(k,g,s.dtype),shape:s.shape,dtype:s.dtype}}var X7={kernelName:Ci,backendName:"cpu",kernelFunc:K7};function lN(e,t,n){switch(n){case"reflect":return Y7(e,t);case"wrap":return Q7(e,t);case"nearest":return J7(e,t);case"constant":default:return Z7(e,t)}}function Y7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=2*t;n<r&&(n=r*Math.trunc(-n/r)+n),n=n<-t?n+r:-n-1}else if(n>t-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return w.clamp(0,n,t-1)}function Q7(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return w.clamp(0,n,t-1)}function Z7(e,t){return e}function J7(e,t){return w.clamp(0,e,t-1)}function np(e,t,n,r,s,a,o,i,u,l,c){let d=o*r+i*s+u*a+l;return 0<=i&&i<t&&0<=u&&u<n?e[d]:c}function eY(e,t,n,r,s,a,o,i,u,l,c){let d=Math.round(i),p=Math.round(u);return np(e,t,n,r,s,a,o,d,p,l,c)}function tY(e,t,n,r,s,a,o,i,u,l,c){let d=Math.floor(i),p=Math.floor(u),h=d+1,f=p+1,m=(f-u)*np(e,t,n,r,s,a,o,d,p,l,c)+(u-p)*np(e,t,n,r,s,a,o,d,f,l,c),g=(f-u)*np(e,t,n,r,s,a,o,h,p,l,c)+(u-p)*np(e,t,n,r,s,a,o,h,f,l,c);return(h-i)*m+(i-d)*g}function nY(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;we(a,"unique");let o=r.data.get(a.dataId).values,{outputValues:i,outputShape:u,indices:l}=HT(o,s,a.shape,a.dtype);return[r.makeTensorInfo(u,a.dtype,i),r.makeTensorInfo([l.length],"int32",l)]}var rY={kernelName:Wh,backendName:"cpu",kernelFunc:nY};function sY(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape.length,i=s.shape[a],u=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==a&&(u[l++]=s.shape[h]);let c=new Array(o).fill(0),d=s.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){c[a]=h;let f=eu({inputs:{x:s},backend:n,attrs:{begin:c,size:d}});p[h]=Et({inputs:{x:f},backend:n,attrs:{shape:u}}),n.disposeIntermediateTensorInfo(f)}return p}var aY={kernelName:Ti,backendName:"cpu",kernelFunc:sY};function oY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r;we(s,"unsortedSegmentSum");let i=s.shape.length,u=a.shape.length,l=[],c=[],d=i-u,p=a;for(let f=0;f<d;++f){let m=ym({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,c.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=hT({inputs:{a:g,b:p},backend:n}),y=So({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=gm({inputs:{a:y,b:s},backend:n}),x=tp({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});l.push(x),c.push(g),c.push(b),c.push(y),c.push(v),c.push(x)}let h=oN({inputs:l,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var iY={kernelName:cd,backendName:"cpu",kernelFunc:oY},uY=[mq,ij,bq,vq,hj,wq,Iq,Cq,Nq,Eq,$q,Dq,Pq,Lq,zq,Uq,Hq,qq,Xq,hq,Qq,Jq,tK,rK,dj,mj,aK,uj,iK,cK,pK,fK,lK,yK,xK,gK,kK,SK,TK,_K,AK,FK,DK,PK,MK,BK,zK,VK,WK,Uw,HK,oq,qK,gj,t8,bj,n8,vj,u8,c8,d8,wj,f8,g8,y8,x8,k8,Ij,Cj,cj,S8,uK,T8,_8,A8,iq,Nj,Ej,F8,$j,R8,M8,B8,V8,G8,j8,Dj,X8,Q8,J8,tX,rX,q8,aX,iX,Pj,cX,pX,gX,Mj,Bj,vX,kX,CX,Wj,NX,EX,AX,iN,RX,cq,Gj,OX,lj,LX,lq,dq,pq,zX,VX,GX,jX,KX,XX,QX,jj,JX,t7,a7,Kj,i7,c7,d7,Xj,fX,f7,g7,y7,x7,k7,S7,T7,_7,Zj,E7,eq,$7,D7,P7,M7,B7,sq,UK,W7,U7,H7,q7,Vj,X7,rY,aY,iY,_X];for(let e of uY)gc(e);var dN={};Ee(dN,{assertNotComplex:()=>Gc,bindCanvasToFramebuffer:()=>xY,bindColorTextureToFramebuffer:()=>km,bindTextureToProgramUniformSampler:()=>NN,bindTextureUnit:()=>SN,bindVertexBufferToProgramAttribute:()=>Kw,callAndCheck:()=>ge,canBeRepresented:()=>hN,createFragmentShader:()=>gN,createFramebuffer:()=>IN,createProgram:()=>bN,createStaticIndexBuffer:()=>xN,createStaticVertexBuffer:()=>vN,createTexture:()=>wN,createVertexShader:()=>mN,getBatchDim:()=>nu,getExtensionOrThrow:()=>ap,getFramebufferErrorMessage:()=>_N,getMaxTexturesInShader:()=>FN,getNumChannels:()=>yY,getProgramUniformLocation:()=>TN,getProgramUniformLocationOrThrow:()=>CN,getRowsCols:()=>ru,getShapeAs3D:()=>Im,getTextureShapeFromLogicalShape:()=>AN,getWebGLDisjointQueryTimerVersion:()=>DN,getWebGLErrorMessage:()=>fN,getWebGLMaxTextureSize:()=>$N,hasExtension:()=>kr,isCapableOfRenderingToFloatTexture:()=>RN,isDownloadFloatTextureEnabled:()=>PN,isReshapeFree:()=>ip,isWebGLFenceEnabled:()=>ON,isWebGLVersionEnabled:()=>Yw,linkProgram:()=>yN,resetMaxTextureSize:()=>wY,resetMaxTexturesInShader:()=>kY,unbindColorTextureFromFramebuffer:()=>Xw,unbindTextureUnit:()=>vY,validateFramebuffer:()=>op,validateProgram:()=>wm,validateTextureSize:()=>kN});var tu={},jw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function pN(e,t){tu[e]=t}function ys(e){if(!(e in tu)){let n=lY(e);if(n!==null)tu[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=tu[e];return t==null||t.isContextLost()?(delete tu[e],ys(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),tu[e])}function cY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function lY(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=cY(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete tu[e]},!1),e===1?t.getContext("webgl",jw)||t.getContext("experimental-webgl",jw):t.getContext("webgl2",jw)}var rp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(rp||(rp={}));var wr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(wr||(wr={}));var pn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(pn||(pn={}));function sp(e,t){return[t,e]}function dY(e,t){return e*t}function xm(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function Uc(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function pY(e,t){let[n,r]=Uc(e,t);return n*r*4}function qw(e,t){let n=e,r,s,a,o,i,u,l,c,d,p;return X().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,l=4,c=1,d=n.HALF_FLOAT,p=n.FLOAT,u=n.RGBA8):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,l=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT,u=e.RGBA),{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:p}}function ge(e,t){let n=t();return X().getBool("DEBUG")&&hY(e),n}function hY(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+fN(e,t))}var fY=596e-10,mY=65504;function hN(e){return!!(X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||fY<Math.abs(e)&&Math.abs(e)<mY)}function fN(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function ap(e,t){return Vs(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function mN(e,t){let n=Vs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function gN(e,t){let n=Vs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw bY(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var gY=/ERROR: [0-9]+:([0-9]+):/g;function bY(e,t){let n=gY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(`
`),a=s.length.toString().length+2,o=s.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let u=o.slice(0,r-1),l=o.slice(r-1,r),c=o.slice(r);console.log(u.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${w.rightPad(l[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function bN(e){return Vs(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function yN(e,t){if(ge(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function wm(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function vN(e,t){let n=Vs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function xN(e,t){let n=Vs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function yY(){return X().getNumber("WEBGL_VERSION")===2?1:4}function wN(e){return Vs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function kN(e,t){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function IN(e){return Vs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Kw(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ge(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),ge(e,()=>e.enableVertexAttribArray(i)),!0)}function SN(e,t,n){EN(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function vY(e,t){EN(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function CN(e,t,n){return Vs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function TN(e,t,n){return e.getUniformLocation(t,n)}function NN(e,t,n,r){ge(e,()=>SN(e,t,r)),ge(e,()=>e.uniform1i(n,r))}function xY(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function km(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Xw(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function op(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+_N(e,t))}function _N(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Vs(e,t,n){let r=ge(e,()=>t());if(r==null)throw new Error(n);return r}function EN(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function nu(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function ru(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Im(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[nu(e),...ru(e)]),t}function AN(e,t=!1){let n=X().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let r=w.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=nu(e),a=2,o=2;return e.length&&([a,o]=ru(e)),r=s*(a/2)*(o/2),w.sizeToSquarishShape(r).map(i=>i*2)}return w.sizeToSquarishShape(r)}function Sm(e){return e%2==0}function ip(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Sm(n)&&Sm(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Sm(e[0])&&Sm(t[0])}var Cm,Tm;function $N(e){if(Cm==null){let t=ys(e);Cm=t.getParameter(t.MAX_TEXTURE_SIZE)}return Cm}function wY(){Cm=null}function kY(){Tm=null}function FN(e){if(Tm==null){let t=ys(e);Tm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Tm)}function DN(e){if(e===0)return 0;let t,n=ys(e);return kr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:kr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function kr(e,t){return e.getExtension(t)!=null}function Yw(e){try{if(ys(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function RN(e){if(e===0)return!1;let t=ys(e);if(e===1){if(!kr(t,"OES_texture_float"))return!1}else if(!kr(t,"EXT_color_buffer_float"))return!1;return Qw(t)}function PN(e){if(e===0)return!1;let t=ys(e);if(e===1){if(!kr(t,"OES_texture_float")||!kr(t,"WEBGL_color_buffer_float"))return!1}else{if(kr(t,"EXT_color_buffer_float"))return Qw(t);let r="EXT_color_buffer_half_float";if(kr(t,r)){let s=t.getExtension(r);return IY(t,s)}return!1}return Qw(t)}function Qw(e){let t=qw(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function IY(e,t){let n=qw(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function ON(e){return e!==2?!1:ys(e).fenceSync!=null}function Gc(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Te=X();Te.registerFlag("HAS_WEBGL",()=>Te.getNumber("WEBGL_VERSION")>0);Te.registerFlag("WEBGL_VERSION",()=>Yw(2)?2:Yw(1)?1:0);Te.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Te.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Te.get("WEBGL_VERSION")===2);Te.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Te.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Te.registerFlag("WEBGL_PACK",()=>Te.getBool("HAS_WEBGL"));Te.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_CLIP",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_PACK_REDUCE",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_LAZILY_UNPACK",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_CONV_IM2COL",()=>Te.getBool("WEBGL_PACK"));Te.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>$N(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>FN(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Te.getNumber("WEBGL_VERSION");return e===0?0:DN(e)});Te.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Te.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!yc.isMobile());Te.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>RN(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Te.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Te.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Te.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>PN(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_FENCE_API_ENABLED",()=>ON(Te.getNumber("WEBGL_VERSION")));Te.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Te.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Te.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Te.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>yc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Te.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Te.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Te.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Te.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function $n(){let e,t,n,r,s,a,o,i,u,l;return X().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,u="",l=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",s="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,u=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,l=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:u,defineRound:l}}function su(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function Nm(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function SY(e,t){let n=e.length,r=e.map(a=>`${t}[${a}]`),s=new Array(n-1);s[n-2]=r[n-1];for(let a=n-3;a>=0;--a)s[a]=`(${s[a+1]} * ${r[a+1]})`;return s}function CY(e,t,n="index"){let r=e.map((a,o)=>o),s=SY(r,t);return s.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${s[o]}`,u=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${s[o]}`:`index -= ${e[o]} * ${s[o]}`;return`${i}; ${u};`}).join("")}function Zw(e){let t=w.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function Jw(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var MN=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:LN}=N;function TY(e,t,n){let r=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=ek(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:r.push(`uniform int ${h.name}Shape;`);break;case 2:r.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:r.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:r.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}r.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:r.push("uniform int outShape;");break;case 2:r.push("uniform ivec2 outShape;"),r.push("uniform int outShapeStrides;");break;case 3:r.push("uniform ivec3 outShape;"),r.push("uniform ivec2 outShapeStrides;");break;case 4:r.push("uniform ivec4 outShape;"),r.push("uniform ivec3 outShapeStrides;");break;default:break}r.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{r.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let s=r.join(`
`),a=e.map(h=>NY(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=$n(),u=AY(i),l,c,d=DY(i);return t.isPacked?(l=_Y(t.logicalShape,o,n.enableShapeUniforms),c=FY(i)):(l=EY(t.logicalShape,o,n.enableShapeUniforms),c=$Y(i)),n.packedInputs&&(d+=MY),[d,u,c,s,l,a,n.userCode].join(`
`)}function Hc(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return XY(e,t);case 1:return QY(e,t);case 2:return JY(e,t);case 3:return t9(e,t);case 4:return r9(e,t);case 5:return s9(e);case 6:return a9(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function BN(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return KY(e);case 1:return YY(e,t);case 2:return ZY(e,t);case 3:return e9(e,t);default:return n9(e,t)}}function NY(e,t,n=!1,r){let s="";n?s+=BN(e,r):s+=Hc(e,r);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?s+=o9(e,t):s+=i9(e,t)),s}function _Y(e,t,n){switch(e.length){case 0:return zN();case 1:return LY(e,t,n);case 2:return jY(e,t,n);case 3:return zY(e,t,n);default:return VY(e,t,n)}}function EY(e,t,n){switch(e.length){case 0:return zN();case 1:return BY(e,t,n);case 2:return qY(e,t,n);case 3:return WY(e,t,n);case 4:return UY(e,t,n);case 5:return GY(e,t);case 6:return HY(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function AY(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function $Y(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function FY(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function DY(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${RY}
${PY}
${OY}
`}var RY=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,PY=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,OY=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,MY=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function zN(){return`
int getOutputCoords() {
return 0;
}
`}function LY(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return r[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${r[1]}.0);
}
`:r[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${r[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
return 2 * (resTexRC.x * ${r[1]} + resTexRC.y);
}
`}function BY(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function zY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),a=s*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec3(b, r, c);
}
`}function WY(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Nm(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let r=su(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
return ivec3(r, c, d);
}
`}function VY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),a=s*Math.ceil(e[e.length-2]/2),o=a,i="",u="b, r, c";for(let l=2;l<e.length-1;l++)o*=e[e.length-l-1],i=`
int b${l} = index / ${o};
index -= b${l} * ${o};
`+i,u=`b${l}, `+u;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec${e.length}(${u});
}
`}function UY(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Nm(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let r=su(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${r}
return ivec4(r, c, d, d2);
}
`}function GY(e,t){let n=su(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function HY(e,t){let n=su(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function jY(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${r[0]}, ${r[1]}));
}
`;let s=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${r[0]}, ${r[1]}));
int index = resTexRC.x * ${r[1]} + resTexRC.y;
int r = 2 * (index / ${s});
int c = imod(index, ${s}) * 2;
return ivec2(r, c);
}
`}function qY(e,t,n){return w.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function au(e){return`offset${e}`}function KY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=$n();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function XY(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${r}() {return ${n};}`;let[s,a]=e.shapeInfo.texShape;if(s===1&&a===1)return`
float ${r}() {
return sampleTexture(${n}, halfCR);
}
`;let o=au(n);if(t)return`
float ${r}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,u]=e.shapeInfo.texShape;return`
float ${r}() {
vec2 uv = uvFromFlat(${i}, ${u}, ${o});
return sampleTexture(${n}, uv);
}
`}function YY(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e.shapeInfo.texShape,a=$n();if(t)return`
vec4 ${r}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];return`
vec4 ${r}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function QY(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${r}(int index) {
${jc(e)}
}
`;let s=e.shapeInfo.texShape,a=s[0],o=s[1];if(o===1&&a===1)return`
float ${r}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=au(n);return o===1?t?`
float ${r}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${r}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${r}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function ZY(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],u=$n();if(a!=null&&w.arraysEqual(n,a))return t?`
vec4 ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return ${u.texture2D}(${r}, uv);
}
`:`
vec4 ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${u.texture2D}(${r}, uv);
}
`;if(t)return`
vec4 ${s}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${r}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${u.texture2D}(${r}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
vec4 ${s}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${u.texture2D}(${r}, uv);
}
`}function JY(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
float ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`;let p=a[0],h=a[1];return`
float ${s}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),u=o;if(u.length<n.length){let p=qc(e,u),h=["row","col"];return`
${Hc(p,t)}
float ${s}(int row, int col) {
return ${s}(${Kc(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${jc(e)}
}
`;let l=a[0],c=a[1],d=au(r);return c===1?t?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${r}TexShape[0]));
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${r}, uv);
}
`:l===1?t?`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${r}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${r}TexShape[1]), 0.5);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${r}, uv);
}
`:t?`
float ${s}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${r}, uv);
}
`}function e9(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=qc(e,p),m=["b","row","col"];return`
${BN(f,t)}
vec4 ${s}(int b, int row, int col) {
return ${s}(${Kc(m,h)});
}
`}let i=$n();if(t)return`
vec4 ${s}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${r}TexShape[0]) / 2.0), ceil(float(${r}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${r}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${r}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${r}, uv);
}
`;let u=o[0],l=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
vec4 ${s}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${u}, ${l}, ${d}, ${c}, b, row, col);
return ${i.texture2D}(${r}, uv);
}
`}function t9(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:u}=w.squeezeShape(n),l=i;if(l.length<n.length){let m=qc(e,l),g=["row","col","depth"];return`
${Hc(m,t)}
float ${s}(int row, int col, int depth) {
return ${s}(${Kc(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${jc(e)}
}
`;let c=e.shapeInfo.texShape,d=c[0],p=c[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
float ${s}(int row, int col, int depth) {
int stride1 = ${r}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${r}, uv);
}
`;if(p===o&&h==null)return t?`
float ${s}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${r}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
return sampleTexture(${r}, uv);
}
`;let f=au(r);return t?`
float ${s}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${r}Shape[1] * ${r}Shape[2];
int stride1 = ${r}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${r}, uv);
}
`}function n9(e,t){let n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=$n();if(t)return`
vec4 ${r}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${s.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,u=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],l=u[0],c=u[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
vec4 ${r}(${h}) {
int index = ${f};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
return ${s.texture2D}(${n}, uv);
}
`}function r9(e,t){let n=e.shapeInfo.logicalShape,r=e.name,s="get"+r.charAt(0).toUpperCase()+r.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:u,keptDims:l}=w.squeezeShape(n);if(u.length<n.length){let y=qc(e,u),v=["row","col","depth","depth2"];return`
${Hc(y,t)}
float ${s}(int row, int col, int depth, int depth2) {
return ${s}(${Kc(v,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${jc(e)}
}
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${r}Shape[3];`,m=`int stride1 = ${r}Shape[2] * stride2;`,g=`int stride0 = ${r}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
float ${s}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;if(h===a&&c==null)return t?`
float ${s}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${r}Shape[1] * ${r}Shape[2], ${r}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}TexShape[1], ${r}TexShape[0]);
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${r}, uv);
}
`;let b=au(r);return t?`
float ${s}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${r}TexShape[0], ${r}TexShape[1], index + ${b});
return sampleTexture(${r}, uv);
}
`:`
float ${s}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${p}, ${h}, index + ${b});
return sampleTexture(${r}, uv);
}
`}function s9(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),s=t[4],a=t[3]*s,o=t[2]*a,i=t[1]*o,{newShape:u,keptDims:l}=w.squeezeShape(t);if(u.length<t.length){let m=qc(e,u),g=["row","col","depth","depth2","depth3"];return`
${Hc(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${Kc(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${s})) +
depth3;
${jc(e)}
}
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&c==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let f=au(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${s} + depth3 + ${f};
vec2 uv = uvFromFlat(${p}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function a9(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:s,keptDims:a}=w.squeezeShape(t);if(s.length<t.length){let g=qc(e,s),b=["row","col","depth","depth2","depth3","depth4"];return`
${Hc(g)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${Kc(b,a)});
}
`}let o=t[5],i=t[4]*o,u=t[3]*i,l=t[2]*u,c=t[1]*l;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${l}, ${u}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${jc(e)}
}
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===c&&d==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${l}, ${u}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&d==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=au(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${l} + depth * ${u} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function jc(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function o9(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=LN(e.shapeInfo.logicalShape,t.logicalShape),u=gt(o),l=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+l]} = 0;`).join(`
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,v)=>`coords.${d[v+l]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!b)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let y=a-2,v=a-1;i.indexOf(y)>-1&&i.indexOf(v)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${s}() {
${u} coords = getOutputCoords();
${c}
vec4 outputValue = get${r}(${p});
${h}
}
`}function i9(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===u&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
float ${s}() {
return sampleTexture(${n}, resultUV);
}
`;let l=gt(u),c=LN(e.shapeInfo.logicalShape,t.logicalShape),d=u-i,p,h=["x","y","z","w","u","v"];i===0?p="":u<2&&c.length>=1?p="coords = 0;":p=c.map(m=>`coords.${h[m+d]} = 0;`).join(`
`);let f="";return u<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
float ${s}() {
${l} coords = getOutputCoords();
${p}
return get${r}(${f});
}
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ek(e,t,n){let{newShape:r,keptDims:s}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):r,u=!e&&a>1&&!w.arraysEqual(t,n)&&r.length<a||o;return{useSqueezeShape:u,uniformShape:u?i:t,keptDims:s}}function qc(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Kc(e,t){return t.map(n=>e[n]).join(", ")}function u9(e,t,n,r){let s=n.map((x,k)=>{let T={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(T.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[k],shapeInfo:T}}),a=s.map(x=>x.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},i=TY(s,o,t),u=gN(e.gl,i),l=e.createProgram(u),c=null,d=e.getUniformLocation(l,"NAN",!1);X().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let p=!1,h={},f={},m={};for(let x=0;x<t.variableNames.length;x++){let k=t.variableNames[x];h[k]=e.getUniformLocation(l,k,p),h[`offset${k}`]=e.getUniformLocation(l,`offset${k}`,p),t.enableShapeUniforms&&(f[`${k}Shape`]=e.getUniformLocation(l,`${k}Shape`,p),m[`${k}TexShape`]=e.getUniformLocation(l,`${k}TexShape`,p))}let g,b,y;t.enableShapeUniforms&&(g=e.getUniformLocation(l,"outShape",p),y=e.getUniformLocation(l,"outShapeStrides",p),b=e.getUniformLocation(l,"outTexShape",p));let v=[];return t.customUniforms&&t.customUniforms.forEach((x,k)=>{v[k]=e.getUniformLocation(l,x.name,p)}),{program:t,fragmentShader:u,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:v,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:d,inShapesLocations:f,inTexShapesLocations:m,outShapeLocation:g,outShapeStridesLocation:y,outTexShapeLocation:b}}function WN(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let s=n.logicalShape,a=t[r],o=a.shape;if(!w.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,u=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${u} must match`)})}function c9(e,t,n,r,s){t.program.enableShapeUniforms||(WN(t.inShapeInfos,n),WN([t.outShapeInfo],[r]));let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),X().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((u,l)=>{let c=t.program.variableNames[l],d=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=ek(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,u.texData.texShape[0],u.texData.texShape[1]),d!=null){if(u.isUniform){if(w.sizeFromShape(u.shape)<2)e.gl.uniform1f(d,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}u.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture,d,l)}});let i=t.outShapeLocation;if(i)switch(r.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(r.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(r.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(r.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(r.shape));break;default:break}if(t.outShapeStridesLocation){let u=w.computeStrides(r.shape);switch(r.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,r.texData.texShape[0],r.texData.texShape[1]),t.program.customUniforms&&s&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],d=s[l];if(u.type==="float")e.gl.uniform1fv(c,d);else if(u.type==="vec2")e.gl.uniform2fv(c,d);else if(u.type==="vec3")e.gl.uniform3fv(c,d);else if(u.type==="vec4")e.gl.uniform4fv(c,d);else if(u.type==="int")e.gl.uniform1iv(c,d);else if(u.type==="ivec2")e.gl.uniform2iv(c,d);else if(u.type==="ivec3")e.gl.uniform3iv(c,d);else if(u.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${u.type} is not supported yet.`)}),e.executeProgram()}function l9(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let u=o.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:d}=ek(e.packedInputs,o.shape,u),p="",h="",f="";if(c.length===1&&e.packedInputs){let k=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];p=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let k=w.computeStrides(c);f=`${k[0]===u[1]}_${k[k.length-1]===u[1]}`}let m=o.shape.length,g=c.length===2&&w.arraysEqual(o.shape,u),b=w.sizeFromShape(o.shape)===1,y=N.getBroadcastDims(o.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(u,n.texData.texShape),x=e.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;r+=`${m}_${v}_${l?d:""}_${c.length}_${b}_${y}_${g}_${p}_${h}_${f}_${x}_${i}`}else{let u=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${u}_${i}`}});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s+`${X().getNumber("WEBGL_VERSION")}`,a}function qn(e){return X().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var d9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=rp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Nm(["r","c","d"],e):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},p9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=rp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Nm(["r","c","d"],e):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},h9=class{constructor(e){this.variableNames=["A"],this.outTexUsage=wr.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
${MN}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},f9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=wr.DOWNLOAD;let t=$n();this.outputShape=e,this.userCode=`
${MN}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},m9=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?Jw():Zw(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${r}, 0., 0., 0.);
}
`}},g9=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=$n();this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let r="",s="result";t&&(s="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;r+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?Jw():Zw(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${r}
${n.output} = ${s};
}
`}},VN={};Ee(VN,{bindVertexProgramAttributeStreams:()=>QN,createBufferFromOutputTexture:()=>e_,createFloat16MatrixTexture:()=>qN,createFloat16PackedMatrixTexture:()=>YN,createFloat32MatrixTexture:()=>jN,createIndexBuffer:()=>HN,createPackedMatrixTexture:()=>XN,createUnsignedBytesMatrixTexture:()=>KN,createVertexBuffer:()=>GN,createVertexShader:()=>UN,downloadByteEncodedFloatMatrixFromOutputTexture:()=>n_,downloadFloat32MatrixFromBuffer:()=>t_,downloadMatrixFromPackedOutputTexture:()=>s_,downloadPackedMatrixFromBuffer:()=>r_,getInternalFormatForFloat16MatrixTexture:()=>nk,getInternalFormatForFloat16PackedMatrixTexture:()=>ak,getInternalFormatForFloat32MatrixTexture:()=>tk,getInternalFormatForPackedMatrixTexture:()=>sk,getInternalFormatForUnsignedBytesMatrixTexture:()=>rk,uploadDenseMatrixToTexture:()=>ZN,uploadPixelDataToTexture:()=>JN});function UN(e){let t=$n(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return mN(e,n)}function GN(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return vN(e,t)}function HN(e){let t=new Uint16Array([0,1,2,2,1,3]);return xN(e,t)}function up(e,t,n,r,s,a){kN(t,n);let o=wN(e),i=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(i,o)),ge(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),X().getNumber("WEBGL_VERSION")===1?ge(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)):ge(e,()=>e.texStorage2D(i,1,r,t,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function tk(e){return e.internalFormatFloat}function jN(e,t,n,r){let[s,a]=sp(t,n);return up(e,s,a,tk(r),r.textureFormatFloat,e.FLOAT)}function nk(e){return e.internalFormatHalfFloat}function qN(e,t,n,r){let[s,a]=sp(t,n);return up(e,s,a,nk(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function rk(e){return e.downloadTextureFormat}function KN(e,t,n,r){let[s,a]=sp(t,n);return up(e,s,a,rk(r),e.RGBA,e.UNSIGNED_BYTE)}function sk(e){return e.internalFormatPackedFloat}function XN(e,t,n,r){let[s,a]=Uc(t,n);return up(e,s,a,sk(r),e.RGBA,e.FLOAT)}function ak(e){return e.internalFormatPackedHalfFloat}function YN(e,t,n,r){let[s,a]=Uc(t,n);return up(e,s,a,ak(r),e.RGBA,r.textureTypeHalfFloat)}function QN(e,t,n){let r=0,s=3*4,a=3*4+2*4;return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Kw(e,t,"clipSpacePos",n,3,a,r)&&Kw(e,t,"uv",n,2,a,s)}function ZN(e,t,n,r,s,a){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,u;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,u=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,u=a.internalFormatPackedFloat),o.set(s),X().getNumber("WEBGL_VERSION")===2?ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,r,e.RGBA,i,o)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,u,n,r,0,e.RGBA,i,o)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function JN(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?X().getNumber("WEBGL_VERSION")===2?(ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)),e.flush()):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):X().getNumber("WEBGL_VERSION")===2?(ge(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)),e.flush()):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function e_(e,t,n,r){let s=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function t_(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function n_(e,t,n,r){let[s,a]=sp(t,n),o=4,i=new Uint8Array(dY(t*n,o));return ge(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function r_(e,t,n,r,s,a,o,i){let u=e,l=new Float32Array(pY(a,o));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function s_(e,t,n){let r=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var a_=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=X().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,pN(t,e)):this.gl=ys(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(X().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=ap(this.gl,s),kr(this.gl,a))this.textureHalfFloatExtension=ap(this.gl,a);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),kr(this.gl,r))this.colorBufferHalfFloatExtension=ap(this.gl,r);else if(X().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",kr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(kr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=GN(this.gl),this.indexBuffer=HN(this.gl),this.framebuffer=IN(this.gl),this.textureConfig=qw(this.gl,this.textureHalfFloatExtension)}get debug(){return X().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),jN(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),qN(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),KN(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),JN(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),ZN(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),YN(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),XN(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Xw(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>n_(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return r_(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return t_(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=e_(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(X().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>s_(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=UN(t));let n=bN(t);return ge(t,()=>t.attachShader(n,this.vertexShader)),ge(t,()=>t.attachShader(n,e)),yN(t,n),this.debug&&wm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=QN(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&wm(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?CN(this.gl,e,t):TN(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),NN(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=Uc(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&wm(this.gl,this.program),op(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=ap(this.gl,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=b9(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),km(this.gl,e,this.framebuffer),this.debug&&op(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(km(this.gl,this.outputTexture,this.framebuffer),this.debug&&op(this.gl)):Xw(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;km(r,e,this.framebuffer),this.debug&&op(r),this.outputTexture=e,ge(r,()=>r.viewport(0,0,t,n)),ge(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function b9(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:y9,bincountImpl:o_,bincountReduceImpl:v9,ceilImpl:x9,concatImpl:w9,equalImpl:k9,expImpl:I9,expm1Impl:S9,floorImpl:C9,gatherNdImpl:T9,gatherV2Impl:N9,greaterImpl:_9,greaterEqualImpl:E9,lessImpl:A9,lessEqualImpl:$9,linSpaceImpl:F9,logImpl:D9,maxImpl:R9,maximumImpl:P9,minimumImpl:O9,multiplyImpl:M9,negImpl:L9,notEqualImpl:B9,prodImpl:z9,rangeImpl:W9,rsqrtImpl:V9,sigmoidImpl:U9,simpleAbsImpl:i_,sliceImpl:G9,sparseFillEmptyRowsImpl:H9,sparseReshapeImpl:j9,sparseSegmentReductionImpl:u_,sqrtImpl:q9,stridedSliceImpl:K9,stringNGramsImpl:X9,stringSplitImpl:Y9,stringToHashBucketFastImpl:Q9,subImpl:Z9,tileImpl:J9,topKImpl:eQ,transposeImpl:ok,uniqueImpl:tQ}=fm;function c_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Fn(e,t){return t===1?[e]:c_(e,t)}function nQ(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var rQ=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=qn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Fn("rc",this.rank),n=gt(this.rank),r=this.getOutOfBoundsCondition(t),s=this.getSetup(t),a=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${a}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let r=0;r<=1;r++){let s=`${n===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],r=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${r};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc),
rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},l_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2==1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${sQ(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?Jw():Zw(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function sQ(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?CY(["r","c","d"],"inputShape"):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var aQ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=p_(t,n),s=h_(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=d_(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===pn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===pn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===pn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===pn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===pn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=p_(n,r),a=h_(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=d_(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=X().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let u=this.usedTextures[a],l=u.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function oQ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function d_(e,t,n,r,s){let a=iQ(t,r),o;if(s){let[u,l]=Uc(e[0],e[1]);o=u*l}else{let[u,l]=sp(e[0],e[1]);o=u*l}let i=oQ(n,a);return o*i}function iQ(e,t){switch(e){case pn.PACKED_2X2_FLOAT32:return sk(t);case pn.PACKED_2X2_FLOAT16:return ak(t);case pn.UNPACKED_FLOAT32:return tk(t);case pn.UNPACKED_FLOAT16:return nk(t);case pn.PACKED_4X1_UNSIGNED_BYTE:return rk(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function uQ(e){return X().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?pn.PACKED_2X2_FLOAT32:pn.UNPACKED_FLOAT32:e?pn.PACKED_2X2_FLOAT16:pn.UNPACKED_FLOAT16}function p_(e,t){if(e===wr.UPLOAD)return pn.PACKED_2X2_FLOAT32;if(e===wr.RENDER||e==null)return uQ(t);if(e===wr.DOWNLOAD||e===wr.PIXELS)return pn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function h_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var To=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},ts="if (isnan(x)) return x;",cQ="return x;",f_="return abs(x);",lQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",dQ=ts+`
return (x < 0.0) ? 0.0 : x;
`,pQ=ts+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,_m="return x;",hQ="return 1.0 / (1.0 + exp(-1.0 * x));",fQ="return x;",mQ=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,gQ=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,bQ=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,yQ="return 1.0 / (1.0 + exp(-1.0 * x));",Xc=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},vQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let t=e.length,n=Fn("rc",t),r=gt(t),s=nQ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${o}));
}
`}},xQ=Dr.whereImpl,wQ=1e-7,kQ=1e-4,Em={};function IQ(e){return e in Em||(Em[e]={}),Em[e]}var SQ=X().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),CQ=600;function TQ(){return X().global.screen==null?1024:X().global.screen.height*X().global.screen.width*window.devicePixelRatio*CQ/1024/1024}var m_=class extends Mu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!X().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ys(X().getNumber("WEBGL_VERSION"));this.binaryCache=IQ(X().getNumber("WEBGL_VERSION")),this.gpgpu=new a_(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new aQ(this.gpgpu),this.numMBBeforeWarning=TQ(),this.texData=new Gl(this,is())}nextDataId(){return m_.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((X().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||X().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:wr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(X().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:wr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Xc(o,_m):d=new To(o,_m);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let u=this.activeTimers!=null,l;u&&(l=w.now());let c;if(r==="complex64"){let d=this.readSync(s.real.dataId),p=this.readSync(s.imag.dataId);c=N.mergeRealAndImagArrays(d,p)}else c=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=w.now()-l),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let h;i?h=new Xc(r,_m):h=new To(r,_m);let f=this.runWebGLProgram(h,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(X().getBool("DEBUG")&&!X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&X().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,l;if(a!=="complex64"&&X().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);u=this.gpgpu.createBufferFromTexture(h.texture,...xm(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=N.mergeRealAndImagArrays(f,m)}else if(u==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(u,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),u!=null){let h=this.gpgpu.gl;ge(h,()=>h.deleteBuffer(u))}let d=this.convertAndCacheOnCPU(e,c),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&is().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return $e(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!hN(n))throw X().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),s=w.sizeFromShape(t);if(X().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...xm(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(d),h}let a=X().getBool("WEBGL_PACK")&&r===!0,o=a?Im(t):t,i=a?new f9(o):new h9(o),u=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),l=this.texData.get(u.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture,l.texShape[0],l.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),c}timerAvailable(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(X().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,u=this.dataRefCount.get(i);u>1?this.dataRefCount.set(i,u-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=SQ){return X().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return xQ(e.shape,t)}packedUnaryOp(e,t,n){let r=new Xc(e.shape,t),s=this.compileAndRun(r,[e],n);return is().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=i_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(X().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,f_,e.dtype);let t=new To(e.shape,f_),n=this.compileAndRun(t,[e]);return is().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return is().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new vQ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new rQ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[nu(e.shape),...ru(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[nu(t),...ru(t)],a=new l_(s,n),o=!0,i=[n],u=this.runWebGLProgram(a,[r],e.dtype,i,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=t,a=Im(r),o,i=xm(a);n?o=new p9(a):o=new d9(a);let u=!0,l=[i],c=this.runWebGLProgram(o,[{shape:a,dtype:s,dataId:e}],s,l,u);return{dtype:s,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,r,s=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===rp.DENSE){let m=xm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],u=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=X().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}if(this.uploadToGPU(m.dataId),!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!ip(g.shape,m.shape)){let b=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),b.shape=y}return{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let l={shape:a.shape,texData:o,isUniform:!1},c=l9(e,u,l),d=this.getAndSaveBinary(c,()=>u9(this.gpgpu,e,u,l)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),c9(this.gpgpu,d,u,l,r),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=X().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!X().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&s===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(X().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=M(()=>{if(!X().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=X().getBool("DEBUG");X().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(X().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?wQ:kQ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let u=this.activeTimers!=null,l;u&&(l=w.now());let c=t.texShape;if(c==null&&(c=AN(n,i),t.texShape=c),s!=null){let d=Im(n),p,h=c[1],f=c[0],m=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(i||!m)&&([h,f]=Uc(c[0],c[1])),i?p=new g9(d,m):p=new m9(d,m);let g=m?[f,h]:c,b=this.makeTensorInfo(g,r),y=this.texData.get(b.dataId);m?y.usage=wr.PIXELS:y.usage=wr.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,f,s);let v=[[f,h]],x=!0,k=this.runWebGLProgram(p,[b],r,v,x),T=this.texData.get(k.dataId);t.texture=T.texture,t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,this.disposeIntermediateTensorInfo(b),this.texData.delete(k.dataId),t.values=null,u&&(this.uploadWaitMs+=w.now()-l)}else{let d=this.acquireTexture(c,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=NQ(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}},ik=m_;ik.nextDataId=0;function NQ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var _Q="0.0.0";function g_(){X().set("WEBGL_FORCE_F16_TEXTURES",!0)}yc.isBrowser()&&kd("webgl",()=>new ik,2);var EQ={forceHalfFloat:g_},b_=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Yc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=qn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},Am=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,cp=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length;this.enableShapeUniforms=qn(s);let a="";if(r)if(s===0||w.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${gt(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Fn("coords",s);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${i[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${i[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function cr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var AQ={kernelName:_a,backendName:"webgl",kernelFunc:cr};function No(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=cr({inputs:{x:r},backend:n}),u=cr({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:u},a}var $Q={kernelName:Kl,backendName:"webgl",kernelFunc:No},y_="return (a < 0.) ? b * a : a;",v_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function FQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(v_,s.shape,o.shape):new Yc(y_,s.shape,o.shape),u=n.runWebGLProgram(i,[s,o],"float32");return n.disposeIntermediateTensorInfo(o),u}var DQ={kernelName:ti,backendName:"webgl",kernelFunc:FQ},x_="return (a < 0.) ? b * a : a;",w_=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function RQ(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(w_,r.shape,s.shape):new Yc(x_,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],"float32")}var PQ={kernelName:za,backendName:"webgl",kernelFunc:RQ},k_="if (isnan(x)) return x;",OQ=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,MQ=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,u=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,u);return i.makeTensorInfo(o.shape,u,p)}let l=X().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new Xc(o.shape,t):c=new To(o.shape,e),i.runWebGLProgram(c,[o],u)}}function hn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:u,b:l}=o,c=i;if(r&&u.dtype==="complex64"){let f=c.texData.get(u.dataId),m=c.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,k]=v,T={dataId:x.dataId,dtype:x.dtype,shape:u.shape},C={dataId:k.dataId,dtype:k.dtype,shape:l.shape},E=new Yc(e,u.shape,l.shape);return c.runWebGLProgram(E,[T,C],In(x.dtype,k.dtype))}),y=No({inputs:{real:g,imag:b},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(b),y}let d=a||In(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&s!=null){let f=c.texData.get(u.dataId).values,m=c.texData.get(l.dataId).values,g=u.dtype==="string"?N.fromUint8ToStringArray(f):f,b=u.dtype==="string"?N.fromUint8ToStringArray(m):m,[y,v]=s(u.shape,l.shape,g,b,d),x=c.makeTensorInfo(v,d),k=c.texData.get(x.dataId);return k.values=y,x}let p=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new cp(t,u.shape,l.shape,n):h=new Yc(e,u.shape,l.shape),c.runWebGLProgram(h,[u,l],d)}}function $m(e,t=!1){if(e==="linear")return t?fQ:cQ;if(e==="relu")return t?gQ:dQ;if(e==="elu")return t?mQ:lQ;if(e==="relu6")return t?bQ:pQ;if(e==="prelu")return t?w_:x_;if(e==="leakyrelu")return t?v_:y_;if(e==="sigmoid")return t?yQ:hQ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var I_=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=qn(this.outputShape.length);let l=r?e[1]:e[2],c=Math.ceil(l/2),d=r?"i * 2, rc.y":"rc.y, i * 2",p=s?"rc.z, i * 2":"i * 2, rc.z",h=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:u?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${y};
int batchB = ${v};
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${p});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},S_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},C_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},T_="return a * b;";function uk(e){let{inputs:t,backend:n}=e,{a:r,b:s}=t,a=N.upcastType(r.dtype,s.dtype);if(r.dtype==="complex64"){let i=n.texData.get(r.dataId),u=n.texData.get(s.dataId),l=new C_(S_.REAL,r.shape,s.shape),c=new C_(S_.IMAG,r.shape,s.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:r.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:s.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:s.shape}],p=n.runWebGLProgram(l,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=No({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([r,s])){let i=n.texData.get(r.dataId),u=n.texData.get(s.dataId),[l,c]=M9(r.shape,s.shape,i.values,u.values,a),d=n.makeTensorInfo(c,a),p=n.texData.get(d.dataId);return p.values=l,d}let o;return X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new cp(T_,r.shape,s.shape):o=new Yc(T_,r.shape,s.shape),n.runWebGLProgram(o,[r,s],a)}var LQ={kernelName:Ma,backendName:"webgl",kernelFunc:uk};function BQ(e,t,n){let r=[nu(e.shape),...ru(e.shape)],s={dtype:e.dtype,shape:r,dataId:e.dataId},a=[nu(t),...ru(t)],o=new l_(a,r),i=!0,u=[r],l=n.runWebGLProgram(o,[s],e.dtype,u,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function fe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=n,i=w.sizeFromShape(s.shape),u=w.inferFromImplicitShape(a,i),l=w.sizeFromShape(u);w.assert(i===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(s.dataId);return c.isPacked&&!ip(s.shape,u)&&!(c.texture!==null&&ip(c.shape,u))?BQ(s,u,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:u,dtype:s.dtype})}var zQ={kernelName:hi,backendName:"webgl",kernelFunc:fe},N_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,u="sumValue += dot(values, ones);";if(t!=null){let c=1/t;u=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let l="";s%n>0&&(l=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${l}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}},WQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let l=Math.floor(n/4)*4,c=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,p="vec4";t==="all"?(o="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,p="bvec4"):t==="any"&&(o="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,p="bvec4");let h="";s%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${l}; i += 4) {
int inIdx = inOffset + i;
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${l};
if (${c===1}) {
${p} values = ${p}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${c===2}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${c===3}) {
${p} values = ${p}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${u});
}
`}};function VQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function ou(e,t,n,r){let s=VQ(e.shape),a=e;for(let o=0;o<s.length;o++){let{inSize:i,windowSize:u,outSize:l}=s[o],c,d;n==="mean"?c=o===0?new N_({windowSize:u,inSize:i,batchSize:e.shape[0],outSize:l},i):new N_({windowSize:u,inSize:i,batchSize:e.shape[0],outSize:l}):c=new WQ({windowSize:u,inSize:i,batchSize:e.shape[0],outSize:l},n),d=a,a=r.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(d)}return a}var UQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let r=gt(this.rank),s=GQ(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function GQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s<e.length;s++)r[e[s]]=n[s];return r.join()}var HQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=gt(this.rank),s=c_("rc",this.rank),a=new Array(this.rank);for(let l=0;l<t.length;l++)a[t[l]]=s[l];let o=`vec2(${a.slice(-2).join()})`,i=`++${s[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${i}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${u};
if(${i}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function Fm(e,t,n){let r=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new HQ(e.shape,t):new UQ(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function jQ(e,t,n,r){let s=t,a=e.shape.length,o=w.parseAxisParam(s,e.shape),i=o,u=N.getAxesPermutation(i,a),l=u!=null,c=e;l&&(c=Fm(e,u,r),i=N.getInnerMostAxes(i.length,a)),N.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=N.computeOutAndReduceShapes(c.shape,i),h=d;n&&(h=N.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,b=fe({inputs:{x:c},attrs:{shape:[g,f]},backend:r}),y=yd(e.dtype),v=ou(b,y,"sum",r),x=fe({inputs:{x:v},attrs:{shape:h},backend:r});return r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(v),l&&r.disposeIntermediateTensorInfo(c),x}function Dm(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return jQ(s,a,o,n)}var qQ={kernelName:Ka,backendName:"webgl",kernelFunc:Dm};function Dn(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{perm:a}=r,o=n,i=s.shape.length,u=new Array(i);for(let c=0;c<u.length;c++)u[c]=s.shape[a[c]];let l;if(o.shouldExecuteOnCPU([s])){let d=o.texData.get(s.dataId).values,p=ok(d,s.shape,s.dtype,a,u);l=o.makeTensorInfo(u,s.dtype);let h=o.texData.get(l.dataId);h.values=p}else l=Fm(s,a,o);return l}var KQ={kernelName:Ja,backendName:"webgl",kernelFunc:Dn},__=1e3;function Rm({a:e,b:t,transposeA:n,transposeB:r,backend:s,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,d=n?e.shape[l-2]:e.shape[l-1],p=r?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Ri.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let k=n?[b,d,h]:[b,h,d],T=r?[y,f,p]:[y,p,f],C=fe({inputs:{x:e},backend:s,attrs:{shape:k}}),E=fe({inputs:{x:t},backend:s,attrs:{shape:T}}),F=[C,E],O=Math.max(b,y),D=n?C.shape[1]:C.shape[2],R=a!=null,_=o!=null,L=u==="leakyrelu",U=u!=null?$m(u,!0):null,j=R||_||L||U!=null,K;if((h===1||f===1)&&D>__&&j===!1){let Q=C,ee=E;n&&(Q=Dn({inputs:{x:C},backend:s,attrs:{perm:[0,2,1]}}),F.push(Q)),r&&(ee=Dn({inputs:{x:E},backend:s,attrs:{perm:[0,2,1]}}),F.push(ee));let re=f!==1,se=f===1,ne=Q;re&&(ne=fe({inputs:{x:Q},backend:s,attrs:{shape:[O,D,1]}}),F.push(ne));let ie=f===1?2:1,te=ee;se&&(te=fe({inputs:{x:ee},backend:s,attrs:{shape:[O,1,D]}}),F.push(te));let pe=uk({inputs:{a:ne,b:te},backend:s});K=Dm({inputs:{x:pe},backend:s,attrs:{axis:ie,keepDims:!0}}),F.push(pe)}else{let Q=In(e.dtype,t.dtype),ee=new I_(k,T,[O,h,f],n,r,R,U,_,L),re=[C,E];if(a!=null&&re.push(a),_&&re.push(o),L){let se=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));re.push(se),F.push(se)}K=s.runWebGLProgram(ee,re,Q)}let q=fe({inputs:{x:K},backend:s,attrs:{shape:x}});F.push(K);for(let Q of F)s.disposeIntermediateTensorInfo(Q);return q}function XQ(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:d}=r;return Rm({a:s,b:a,transposeA:u,transposeB:l,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var YQ={kernelName:to,backendName:"webgl",kernelFunc:XQ},E_="return abs(x);";function QQ(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=i_(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new Xc(r.shape,E_):s=new To(r.shape,E_),n.runWebGLProgram(s,[r],r.dtype)}var ZQ={kernelName:Vo,backendName:"webgl",kernelFunc:QQ},JQ=ts+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,eZ=Ze({opSnippet:JQ}),tZ={kernelName:Vu,backendName:"webgl",kernelFunc:eZ},nZ=ts+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,rZ=Ze({opSnippet:nZ}),sZ={kernelName:Uu,backendName:"webgl",kernelFunc:rZ},A_="return a + b;",aZ=hn({opSnippet:A_,packedOpSnippet:A_,supportsComplex:!0,cpuKernelImpl:y9}),oZ={kernelName:_s,backendName:"webgl",kernelFunc:aZ},iZ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},uZ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function Pm(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return cr({inputs:{x:r[0]},backend:n});if(r.length>X().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),l=Pm({inputs:r.slice(0,u),backend:n}),c=Pm({inputs:r.slice(u),backend:n});return Pm({inputs:[l,c],backend:n})}let s=r.map(u=>u.dtype).reduce((u,l)=>In(u,l)),a=r.map(u=>u.shape),i=X().getBool("WEBGL_PACK")?new uZ(r[0].shape,a):new iZ(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var cZ={kernelName:la,backendName:"webgl",kernelFunc:Pm};function lZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=N.getAxesPermutation(l,i),d=s;c!=null&&(d=Dn({inputs:{x:s},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,i)),N.assertAxesAreInnerMostDims("all",l,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,l),f=w.sizeFromShape(h),m=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ou(m,m.dtype,"all",n),b;if(o){let y=N.expandShapeToKeepDim(p,u);b=fe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=fe({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),b}var dZ={kernelName:Gu,backendName:"webgl",kernelFunc:lZ};function pZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=N.getAxesPermutation(l,i),d=s;c!=null&&(d=Dn({inputs:{x:s},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,i)),N.assertAxesAreInnerMostDims("any",l,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,l),f=w.sizeFromShape(h),m=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ou(m,m.dtype,"any",n),b;if(o){let y=N.expandShapeToKeepDim(p,u);b=fe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=fe({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),b}var hZ={kernelName:Hu,backendName:"webgl",kernelFunc:pZ},fZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},mZ=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,u=gt(i),l=Fn("coords",i),c,d;if(a===1){d=i+1;let C=gt(d);c=`
${C} sourceLocR = ${C}(${l.join()}, 0);
++${l[i-1]};
${C} sourceLocG = ${C}(${l.join()}, 0);
++${l[i-2]};
${C} sourceLocA = ${C}(${l.join()}, 0);
--${l[i-1]};
${C} sourceLocB = ${C}(${l.join()}, 0);
--${l[i-2]};`}else d=i,c=`
${u} sourceLocR = coords;
++${l[i-1]};
${u} sourceLocG = coords;
++${l[i-2]};
${u} sourceLocA = coords;
--${l[i-1]};
${u} sourceLocB = coords;
--${l[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(C=>"int "+C),m=Fn("sourceLocR",d-1).concat("inIdx.r"),g=Fn("sourceLocG",d-1).concat("inIdx.g"),b=Fn("sourceLocB",d-1).concat("inIdx.b"),y=Fn("sourceLocA",d-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${p.join()}),
vec2(${p.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${p.join()}),
vec2(${p.slice(-2).join()}));
}
${T}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${l[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${l[i-2]} < ${o[i-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${k};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${x}
vec4 candidate = ${k};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function $_(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=N.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},u=new fZ(i,n,r==null),l=[t];r!=null&&l.push(r);let c=e.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let d=$_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function F_(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=N.computeOptimalWindowSize(a),i=new mZ(s,o,n,r==null),u=r==null?[t]:[t,r],l=e.runWebGLProgram(i,u,"int32");if(l.shape.length===t.shape.length){let c=F_(e,t,n,l);return e.disposeIntermediateTensorInfo(l),c}return l}function D_(e,t,n,r){let s=[n];if(N.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!X().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,u=t;i&&(u=e.unpackTensor(t),a.push(u));let[l,c]=N.computeOutAndReduceShapes(u.shape,s),d=w.sizeFromShape(c),p=fe({inputs:{x:u},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=$_(e,p,r);a.push(h);let f=fe({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return F_(e,t,r)}function gZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=Dn({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],u.shape.length);let c=D_(n,u,o[0],"max");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var bZ={kernelName:da,backendName:"webgl",kernelFunc:gZ};function yZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=Dn({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],u.shape.length);let c=D_(n,u,o[0],"min");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var vZ={kernelName:ju,backendName:"webgl",kernelFunc:yZ},xZ=ts+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,wZ=Ze({opSnippet:xZ}),kZ={kernelName:qu,backendName:"webgl",kernelFunc:wZ},IZ=ts+"return log(x + sqrt(x * x + 1.0));",SZ=Ze({opSnippet:IZ}),CZ={kernelName:Ku,backendName:"webgl",kernelFunc:SZ},TZ=ts+`
return atan(x);
`,NZ=Ze({opSnippet:TZ}),_Z={kernelName:Xu,backendName:"webgl",kernelFunc:NZ},EZ=OQ+`
return atan(a, b);
`,AZ=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+MQ+`
return result;
`,$Z=hn({opSnippet:EZ,packedOpSnippet:AZ}),FZ={kernelName:Qu,backendName:"webgl",kernelFunc:$Z},DZ=ts+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,RZ=Ze({opSnippet:DZ}),PZ={kernelName:Yu,backendName:"webgl",kernelFunc:RZ},lp=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${l}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?s?m:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,T=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${p}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${l};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${l}, d),
getValue(batch, xR, xC + 2 * ${l}, d),
getValue(batch, xR, xC + 3 * ${l}, d)
);
${T}
}
int xC = xCCorner + ${x};
if (${k===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${k===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${l}, d),
initializationValue,
initializationValue
);
${T}
} else if (${k===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${l}, d),
getValue(batch, xR, xC + 2 * ${l}, d),
initializationValue
);
${T}
}
}
setOutput(${v});
}
`}},ck=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,u=e.strideWidth,l=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${u});
const ivec3 pads = ivec3(${m}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let T=Math.floor(a/4)*4,C=a%4,E=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${u});
const ivec3 pads = ivec3(${m}, ${g}, ${b});
const float initializationValue = ${v};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${v});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
setOutput(${k});
}
}
`}};function OZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Gc(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1;w.assert(N.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let c=N.computePool2DInfo(s.shape,a,o,l,i,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return cr({inputs:{x:s},backend:n});let d=new lp(c,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var MZ={kernelName:pa,backendName:"webgl",kernelFunc:OZ};function LZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u,dataFormat:l}=r,c=[1,1,1],d=N.computePool3DInfo(s.shape,a,o,c,i,u,l),p=new ck(d,"avg",!1);return n.runWebGLProgram(p,[s],"float32")}var BZ={kernelName:ql,backendName:"webgl",kernelFunc:LZ},zZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=i-1-e.padInfo.top,c=u-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${l}, ${c});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},WZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${p};
wC += ${l}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function VZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:u,pad:l,dimRoundingMode:c}=r,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,u,d,l,c),h=new WZ(p);return n.runWebGLProgram(h,[s],o.dtype)}var UZ={kernelName:gh,backendName:"webgl",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Gc([s,a],"avgPoolGrad");let{filterSize:i,strides:u,pad:l}=r,c=N.computePool2DInfo(o.shape,i,u,1,l),d=new zZ(c);return n.runWebGLProgram(d,[s],o.dtype)}var HZ={kernelName:mh,backendName:"webgl",kernelFunc:GZ};function jZ(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return Rm({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var qZ={kernelName:ha,backendName:"webgl",kernelFunc:jZ},KZ=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},XZ=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},YZ=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;w.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=n;u==null&&(u=.001);let l=[r,s,a],c=null;o!=null&&(c=o.shape,l.push(o));let d=null;i!=null&&(d=i.shape,l.push(i));let p=X().getBool("WEBGL_PACK_NORMALIZATION")?new XZ(r.shape,s.shape,a.shape,c,d,u):new KZ(r.shape,s.shape,a.shape,c,d,u);return t.runWebGLProgram(p,l,l[0].dtype)},QZ={kernelName:Ta,backendName:"webgl",kernelFunc:YZ},ZZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=JZ(this.rank),r,s=e.map((a,o)=>`sourceLoc.${lk[o]} = start[${o}] + coords.${lk[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${r}
setOutput(getSource(${n}));
}
`}},lk=["x","y","z","w","u","v"];function JZ(e){if(e===1)return"sourceLoc";if(e<=6)return lk.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var eJ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=Fn("coords",this.rank),r=Fn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${a};
--${r[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((l,c)=>`start[${c}]`).join()});`:e.map((l,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function tJ(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=$t.computeFlatOffset(t,w.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let u=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,u+1),a}function Qc(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,u]=$t.parseSliceParams(s,a,o);if($t.assertParamsValid(s,i,u),w.sizeFromShape(u)===0)return n.makeTensorInfo(u,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),p=G9(d.values,i,u,s.shape,s.dtype);return n.makeTensorInfo(u,s.dtype,p)}let{isPacked:l}=n.texData.get(s.dataId),c=$t.isSliceContinous(s.shape,i,u);if(l||!c){let d=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eJ(u):new ZZ(u),p=[i];return n.runWebGLProgram(d,[s],s.dtype,p)}return n.uploadToGPU(s.dataId),tJ(s,i,u,n)}var nJ={kernelName:yi,backendName:"webgl",kernelFunc:Qc},rJ=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;w.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,v)=>y*v),u=N.getReshaped(s.shape,a,i),l=N.getPermuted(u.length,a.length),c=N.getReshapedPermuted(s.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(c,o,a.length),h=[],f=fe({inputs:{x:s},backend:n,attrs:{shape:u}}),m=Dn({inputs:{x:f},backend:n,attrs:{perm:l}}),g=fe({inputs:{x:m},backend:n,attrs:{shape:c}}),b=Qc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},sJ={kernelName:Uo,backendName:"webgl",kernelFunc:rJ};function aJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),u=n.readSync(a.dataId),l=o_(i,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var oJ={kernelName:bh,backendName:"webgl",kernelFunc:aJ};function iJ(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.readSync(r.dataId),o=n.readSync(s.dataId),i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var uJ={kernelName:yh,backendName:"webgl",kernelFunc:iJ},cJ="return float(a != b);",R_=hn({opSnippet:cJ,cpuKernelImpl:B9,dtype:"bool"}),lJ={kernelName:oi,backendName:"webgl",kernelFunc:R_};function dp(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return cr({inputs:{x:s.complexTensorInfos.real},backend:n})}var dJ={kernelName:rd,backendName:"webgl",kernelFunc:dp},pJ="return float(int(x));";function hJ(e,t){let n=new To(e.shape,pJ),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function dk(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return cr({inputs:{x:s},backend:n});let o=kt(s.shape),i=dk({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),u=No({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),u}if(s.dtype==="complex64"){let o=dp({inputs:{input:s},backend:n}),i=dk({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=cr({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return hJ(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=R_({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),u}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var fJ={kernelName:fa,backendName:"webgl",kernelFunc:dk},P_="return ceil(x);",mJ=Ze({opSnippet:P_,packedOpSnippet:P_,cpuKernelImpl:x9}),gJ={kernelName:ma,backendName:"webgl",kernelFunc:mJ},bJ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},yJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function vJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;X().getBool("WEBGL_PACK_CLIP")?i=new yJ(s.shape):i=new bJ(s.shape);let u=[[a],[o]];return n.runWebGLProgram(i,[s],s.dtype,u)}var xJ={kernelName:Es,backendName:"webgl",kernelFunc:vJ},wJ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function O_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function kJ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=n.texData.get(r.dataId),a=new wJ(r.shape),o=[O_(r,s.complexTensorInfos.real),O_(r,s.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var IJ={kernelName:Xl,backendName:"webgl",kernelFunc:kJ},SJ=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let r=t.length,s=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},CJ=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,r=n.length,s=gt(r),a=Fn("coords",r),o=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let u=o[t],l=o.slice(-2),c=o.join(),d=`if (${u} < ${i[0]}) {
return getChannel(
getT0(${c}), vec2(${l.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
if (${u} < ${i[f]} && ${u} >= ${i[f-1]}) {
return getChannel(
getT${f}(${Om(o,u,m)}),
vec2(${Om(l,u,m)}));
}`}let p=i.length,h=i[i.length-1];d+=`
return getChannel(
getT${p}(${Om(o,u,h)}),
vec2(${Om(l,u,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${d}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[r-1]} = ${a[r-1]} + 1;
if (${a[r-1]} < ${n[r-1]}) {
result.g = getValue(${a});
}
${a[r-2]} = ${a[r-2]} + 1;
if (${a[r-2]} < ${n[r-2]}) {
result.a = getValue(${a});
}
${a[r-1]} = ${a[r-1]} - 1;
if (${a[r-2]} < ${n[r-2]} &&
${a[r-1]} < ${n[r-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Om(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function Mm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return cr({inputs:{x:s.complexTensorInfos.imag},backend:n})}var TJ={kernelName:Jl,backendName:"webgl",kernelFunc:Mm};function Zc(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(m=>dp({inputs:{input:m},backend:n})),d=e.map(m=>Mm({inputs:{input:m},backend:n})),p=Zc(c,t,n),h=Zc(d,t,n),f=No({inputs:{real:p,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let c=e.map(b=>{let y=w.sizeFromShape(b.shape.slice(t));return fe({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),p=N.computeOutShape(c.map(b=>b.shape),1),h=c[0].shape[0]===1,f=w9(d,p,r,h),m=N.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,r,f);return c.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>X().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=Zc(e.slice(0,c),t,n),p=Zc(e.slice(c),t,n),h=Zc([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new CJ(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:o}=NJ(e,t,n),i=new SJ(a.map(c=>c.shape)),u=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=fe({inputs:{x:u},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(u),l}function NJ(e,t,n){let r=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>fe({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function M_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=N.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(l=>w.sizeFromShape(l.shape)>0);if(i.length===1)return cr({inputs:{x:i[0]},backend:n});let u=i.map(l=>l.shape);return N.assertParamsConsistent(u,a),Zc(i,a,n)}var _J={kernelName:Go,backendName:"webgl",kernelFunc:M_},L_=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,u=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(r?v=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?v=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:v=`
float activation(float x) {
${n}
}
`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${v}
const ivec2 strides = ivec2(${i}, ${u});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${k}
${x}
setOutput(result);
}
`}},EJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p}; wC++) {
int xC = xCCorner + wC * ${l};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},AJ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=qn(this.outputShape.length);let{dataFormat:n}=t,r=$n(),s=n==="channelsLast",a=s?0:1,o=s?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,u="";for(let l=0;l<=1;l++)for(let c=0;c<=1;c++)u+=`
blockIndex = rc.y + ${c};
pos = rc.x + ${l};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${l*2+c}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${l*2+c}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${u}
${r.output} = result;
}
`}};function B_({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let u=e.shape,l=r.texData.get(e.dataId),c=n.inChannels,d=u[0]*u[1]*u[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(!((d===1||p===1)&&c>__)&&l.isPacked&&h&&l.texture!=null&&u[2]%2!=0&&w.arraysEqual(l.shape.slice(-3),u.slice(-3))){let x=u[0]*u[1]*(u[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},T=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,w.assert(ip(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let C=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(C);let E=Rm({a:k,b:C,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),F=r.texData.get(E.dataId);w.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=T,F.shape=n.outShape,g=cr({inputs:{x:E},backend:r}),g.shape=n.outShape,b.push(E)}else{let x=h?u[0]*u[1]*u[2]:u[0]*u[2]*u[3],k=fe({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),T=fe({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=Rm({a:k,b:T,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=fe({inputs:{x:C},backend:r,attrs:{shape:n.outShape}}),b.push(k),b.push(T),b.push(C)}for(let x of b)r.disposeIntermediateTensorInfo(x);return g}function z_({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=u*l*c,g=p*d,b=[m,g],y=!0,v=!1,x=[],k=fe({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),T=fe({inputs:{x:t},backend:r,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k),x.push(T);let C=new AJ(b,n),E=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],F=r.runWebGLProgram(C,[k],"float32",E),O=fe({inputs:{x:F},backend:r,attrs:{shape:[1,b[0],b[1]]}});x.push(F),x.push(O);let D=s!=null,R=a!=null,_=i==="leakyrelu",L=i?$m(i,!0):null,U=new I_(O.shape,T.shape,[1,g,n.outChannels],y,v,D,L,R,_),j=[O,T];if(s&&j.push(s),R&&j.push(a),_){let ee=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(ee),x.push(ee)}let K=r.runWebGLProgram(U,j,"float32"),q=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],Q=fe({inputs:{x:K},backend:r,attrs:{shape:q}});x.push(K);for(let ee of x)r.disposeIntermediateTensorInfo(ee);return Q}function $J(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:u,dilations:l,dimRoundingMode:c}=r,d=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(s.shape,a.shape,o,l,i,c,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=B_({x:s,filter:a,convInfo:p,backend:n});else if(X().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)h=z_({x:s,filter:a,convInfo:p,backend:n});else{let m=new L_(p);h=n.runWebGLProgram(m,[s,a],"float32")}let f=fe({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var FJ={kernelName:ga,backendName:"webgl",kernelFunc:$J},DJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},RJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,u=a?1:2,l=a?2:3,c=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${l}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},PJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},OJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,u=n-1-e.padInfo.top,l=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${u}, ${l});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function MJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:u,dimRoundingMode:l,filterShape:c}=r,d=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(s.shape,c,o,1,i,l,!1,d),h=new DJ(p);return n.runWebGLProgram(h,[s,a],"float32")}var LJ={kernelName:vh,backendName:"webgl",kernelFunc:MJ};function BJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:u,dataFormat:l,dimRoundingMode:c}=r,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(o,a.shape,i,1,u,c,!1,d),h=new RJ(p);return n.runWebGLProgram(h,[s,a],"float32")}var zJ={kernelName:ba,backendName:"webgl",kernelFunc:BJ};function WJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u}=r,l=N.computeConv3DInfo(s.shape,a.shape,o,u,i),c=new EJ(l);return n.runWebGLProgram(c,[s,a],"float32")}var VJ={kernelName:Yl,backendName:"webgl",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:u}=r,l=N.computeConv3DInfo(s.shape,u,o,1,i),c=new PJ(l);return n.runWebGLProgram(c,[s,a],"float32")}var GJ={kernelName:xh,backendName:"webgl",kernelFunc:UJ};function HJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:u}=r,l=N.computeConv3DInfo(u,a.shape,i,1,o),c=new OJ(l);return n.runWebGLProgram(c,[s,a],"float32")}var jJ={kernelName:wh,backendName:"webgl",kernelFunc:HJ},qJ=k_+`
return cos(x);
`,KJ=Ze({opSnippet:qJ}),XJ={kernelName:ya,backendName:"webgl",kernelFunc:KJ},YJ=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,QJ=Ze({opSnippet:YJ}),ZJ={kernelName:va,backendName:"webgl",kernelFunc:QJ},JJ=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,u]=e,[l]=t,[c,d]=n;this.outputShape=[l,c,d,u];let p=r==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,b]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${v};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${s}));
return;
}
float in_x = ${x};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${p} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},eee=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:u,extrapolationValue:l}=r,c=new JJ(s.shape,a.shape,i,u,l);return n.runWebGLProgram(c,[s,a,o],"float32")},tee={kernelName:jo,backendName:"webgl",kernelFunc:eee},W_=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${V_(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${gt(r)} coords = getOutputCoords();
int end = ${U_(r,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${o}) {
int idx = ${i};
${U_(r,"coords")} = idx;
val += getX(${V_(r,"coords")});
}
setOutput(val);
}
`}};function V_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function U_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function nee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,u=s.shape.length,l=N.getAxesPermutation([a],u),c=s;l!=null&&(c=Dn({inputs:{x:s},backend:n,attrs:{perm:l}}));let d=N.getInnerMostAxes(1,u)[0];if(d!==u-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let p=c.shape[d],h=cr({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new W_(c.shape,!1,i),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(o){let f=new W_(c.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(l!=null){let f=N.getUndoAxesPermutation(l),m=Dn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var ree={kernelName:Ho,backendName:"webgl",kernelFunc:nee};function see(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let u=n.readSync(s.dataId),l=n.readSync(a.dataId),c=o_(u,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(s.shape.length===2){let u=n.bufferSync(s),l=n.bufferSync(a),c=v9(u,l,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var aee={kernelName:kh,backendName:"webgl",kernelFunc:see},oee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function iee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r,i=s.shape[0],u=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=u*a,p=l*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new oee(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var uee={kernelName:qo,backendName:"webgl",kernelFunc:iee},G_=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=qn(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,u="",l="";n&&(r?u=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?u=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:u=`
float activation(float x) {
${n}
}
`,l="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${u}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${c}
${l}
setOutput(result);
}
`}},H_=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=qn(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,u=e.dilationWidth,l=e.filterHeight,c=e.filterWidth,d=c,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)p+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;p+=`
for (int r = 0; r < ${l}; r++) {
`;for(let g=0;g<c;g++)p+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(p+=`
xC = xCCorner + ${b*u};
`,i===1){if(b<c&&(o%2==1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,u===1&&b>0?p+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<c)){let y=o%2==0?w.nearestLargerEven(u):u;u%2==0&&o%2==1||u%2!=0&&o%2!=1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,u>1&&(p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
xTexelC${b}Ready = 1;
}
`),p+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):y===1?p+=`
xC${b+1} = xTexelC${b};
`:p+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<c&&(o%2==1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<c&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<c&&(p+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<c&&(p+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<c&&(p+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}p+=`
}
`,p+=`
}
`;let h="",f="";n&&(r?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function cee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u,dimRoundingMode:l}=r,c=u;c==null&&(c=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=N.computeConv2DInfo(s.shape,a.shape,o,c,i,l,!0),p;X().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new H_(d):p=new G_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[s,a],"float32",h)}var lee={kernelName:xa,backendName:"webgl",kernelFunc:cee},dee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},pee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function hee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:u,dimRoundingMode:l,filterShape:c}=r,d=N.computeConv2DInfo(s.shape,c,o,i,u,l,!0),p=new dee(d);return n.runWebGLProgram(p,[s,a],"float32")}var fee={kernelName:Ih,backendName:"webgl",kernelFunc:hee};function mee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:u,dimRoundingMode:l,inputShape:c}=r,d=N.computeConv2DInfo(c,a.shape,o,i,u,l,!0),p=new pee(d);return n.runWebGLProgram(p,[s,a],"float32")}var gee={kernelName:Sh,backendName:"webgl",kernelFunc:mee},bee=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function yee(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=w.sizeFromShape(r.shape),o=fe({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new bee(a),u=n.runWebGLProgram(i,[o],o.dtype),l=fe({inputs:{x:u},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var vee={kernelName:Ch,backendName:"webgl",kernelFunc:yee},xee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:u,dilationWidth:l}=e,{top:c,left:d}=r;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${c}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${l};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function wee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u}=r,l=N.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",u),c,d=new xee(l);c=n.runWebGLProgram(d,[s,a],"float32");let p=fe({inputs:{x:c},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(c),p}var kee={kernelName:Ql,backendName:"webgl",kernelFunc:wee};function Iee(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:u}=N.decodeEinsumEquation(s,a.length);N.checkEinsumDimSizes(o.length,u,a);let{path:l,steps:c}=N.getEinsumComputePath(i,u),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,u[g]),v;N.isIdentityPermutation(b)?v=a[g]:(v=Dn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=fe({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=uk({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(l[m]>=0&&(p=Dm({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var See={kernelName:Zl,backendName:"webgl",kernelFunc:Iee},Cee="return (x >= 0.0) ? x : (exp(x) - 1.0);",Tee=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Nee=Ze({opSnippet:Cee,packedOpSnippet:Tee}),_ee={kernelName:ka,backendName:"webgl",kernelFunc:Nee},Eee="return (b >= 1.0) ? a : a * (b + 1.0);",Aee=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,$ee=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=X().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new cp(Aee,r.shape,s.shape):new Yc(Eee,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},Fee={kernelName:_h,backendName:"webgl",kernelFunc:$ee},Dee=`
return vec4(equal(a, b));
`,Ree="return float(a == b);",Pee=hn({opSnippet:Ree,packedOpSnippet:Dee,dtype:"bool",cpuKernelImpl:k9}),Oee={kernelName:Ko,backendName:"webgl",kernelFunc:Pee},Mee=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Lee=Ze({opSnippet:Mee}),Bee={kernelName:Zu,backendName:"webgl",kernelFunc:Lee},j_="return exp(x);",q_=Ze({opSnippet:j_,packedOpSnippet:j_,cpuKernelImpl:I9,dtype:"float32"}),zee={kernelName:Ia,backendName:"webgl",kernelFunc:q_};function pk(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),u=s;return s<0&&(w.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),u=o+s+1),i.splice(u,0,1),fe({inputs:{x:a},backend:r,attrs:{shape:i}})}var Wee={kernelName:Xo,backendName:"webgl",kernelFunc:pk},K_="return exp(x) - 1.0;",Vee=Ze({opSnippet:K_,packedOpSnippet:K_,cpuKernelImpl:S9}),Uee={kernelName:Yo,backendName:"webgl",kernelFunc:Vee},X_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function Y_(e,t,n){let r=n.texData.get(e.dataId),s=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=fe({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),u=i.shape,l=new X_("real",u,t),c=new X_("imag",u,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:u},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:u}],p=n.runWebGLProgram(l,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=No({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=fe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Gee(e){let{inputs:t,backend:n}=e,{input:r}=t;return Y_(r,!1,n)}var Hee={kernelName:Eh,backendName:"webgl",kernelFunc:Gee},jee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function pp(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||w.inferDtype(s),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new jee(r,s),i=[[s]];return t.runWebGLProgram(o,[],a,i)}}var qee={kernelName:Ju,backendName:"webgl",kernelFunc:pp},Kee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Xee={kernelName:Qo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new Kee(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},Q_="return floor(x);",Yee=Ze({opSnippet:Q_,packedOpSnippet:Q_,cpuKernelImpl:C9}),Qee={kernelName:Sa,backendName:"webgl",kernelFunc:Yee},Zee=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Jee=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,ete=hn({opSnippet:Zee,packedOpSnippet:Jee,dtype:"int32"}),tte={kernelName:Ca,backendName:"webgl",kernelFunc:ete},nte=class{constructor(e){this.variableNames=["A"];let t=$n(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},rte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=$n(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},ste={kernelName:ld,backendName:"webgl",kernelFunc:ate},Jc;function ate(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[u,l]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],c=[l,u],d=[l,u,a];(i||o)&&(Jc==null&&(Jc=document.createElement("canvas").getContext("2d")),Jc.canvas.width=u,Jc.canvas.height=l,Jc.drawImage(s,0,0,u,l),s=Jc.canvas);let p=n.makeTensorInfo(c,"int32");n.texData.get(p.dataId).usage=wr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),s);let h=X().getBool("WEBGL_PACK")?new rte(d):new nte(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function ote(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(s.shape,a.shape,u,d,l,p,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=B_({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(X().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)b=z_({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let x=o!=null,k=i!=null,T=h==="leakyrelu",C=h?$m(h,!1):null,E=new L_(g,x,C,k,T),F=[s,a];if(o&&F.push(o),i&&F.push(i),T){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));F.push(O),y.push(O)}b=n.runWebGLProgram(E,F,"float32")}let v=fe({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var ite={kernelName:no,backendName:"webgl",kernelFunc:ote};function ute(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=r,f=[],m=c;m==null&&(m=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(u,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${m}'`);let g=N.computeConv2DInfo(s.shape,a.shape,u,m,l,d,!0),b=X().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?$m(p,b):null,v=[s,a],x=o!=null,k=i!=null,T=p==="leakyrelu";if(x&&v.push(o),k&&v.push(i),T){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));v.push(O),f.push(O)}let C;b?C=new H_(g,x,y,k,T):C=new G_(g,x,y,k,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(C,v,"float32",E);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),F}var cte={kernelName:ro,backendName:"webgl",kernelFunc:ute},lte=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(t.length),s=gt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function dte(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=w.sizeFromShape(r.shape),[u,l,c,d]=N.prepareAndValidate(r,s),p=fe({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),h=fe({inputs:{x:r},backend:n,attrs:{shape:[w.sizeFromShape(r.shape)/c,c]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.readSync(s.dataId),y=n.bufferSync(r),v=T9(b,y,r.dtype,l,o,c,d,r.shape,i);return n.makeTensorInfo(u,r.dtype,v.values)}let f=new lte(o,d,[l,c]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=fe({inputs:{x:m},backend:n,attrs:{shape:u}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var pte={kernelName:Jo,backendName:"webgl",kernelFunc:dte},hte=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),r=fte(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function fte(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s<e.length;s++)s===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[s]}`);return r.join()}function Z_(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r,u=w.parseAxisParam(o,s.shape)[0],l=n.readSync(a.dataId),c=s.shape[u];for(let x=0;x<l.length;++x){let k=l[x];w.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(s,a,u,i),p=w.sizeFromShape(a.shape),h=[],f=fe({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=fe({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([s,a])||s.dtype==="string"){let x=n.bufferSync(m),k=n.bufferSync(f),T=N9(k,x,g);return h.forEach(C=>n.disposeIntermediateTensorInfo(C)),n.makeTensorInfo(d.outputShape,T.dtype,T.values)}let b=new hte(f.shape,g),y=n.runWebGLProgram(b,[f,m],f.dtype);h.push(y);let v=fe({inputs:{x:y},backend:n,attrs:{shape:d.outputShape}});return h.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var mte={kernelName:Zo,backendName:"webgl",kernelFunc:Z_},gte="return float(a > b);",bte=`
return vec4(greaterThan(a, b));
`,yte=hn({opSnippet:gte,packedOpSnippet:bte,cpuKernelImpl:_9,dtype:"bool"}),vte={kernelName:ei,backendName:"webgl",kernelFunc:yte},xte="return float(a >= b);",wte=`
return vec4(greaterThanEqual(a, b));
`,kte=hn({opSnippet:xte,packedOpSnippet:wte,dtype:"bool",cpuKernelImpl:E9}),Ite={kernelName:Na,backendName:"webgl",kernelFunc:kte};function Ste(e){let{inputs:t,backend:n}=e,{input:r}=t;return Y_(r,!0,n)}var Cte={kernelName:Ah,backendName:"webgl",kernelFunc:Ste},Tte="return float(!isnan(x) && !isinf(x));",Nte=Ze({opSnippet:Tte,dtype:"bool"}),_te={kernelName:ec,backendName:"webgl",kernelFunc:Nte},Ete="return float(isinf(x));",Ate=Ze({opSnippet:Ete,dtype:"bool"}),$te={kernelName:tc,backendName:"webgl",kernelFunc:Ate},Fte="return float(isnan(x));",Dte=Ze({opSnippet:Fte,dtype:"bool"}),Rte={kernelName:nc,backendName:"webgl",kernelFunc:Dte},Pte="return float(a < b);",Ote=`
return vec4(lessThan(a, b));
`,Mte=hn({opSnippet:Pte,packedOpSnippet:Ote,cpuKernelImpl:A9,dtype:"bool"}),Lte={kernelName:ni,backendName:"webgl",kernelFunc:Mte},Bte="return float(a <= b);",zte=`
return vec4(lessThanEqual(a, b));
`,Wte=hn({opSnippet:Bte,packedOpSnippet:zte,cpuKernelImpl:$9,dtype:"bool"}),Vte={kernelName:ri,backendName:"webgl",kernelFunc:Wte};function Ute(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=F9(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var Gte={kernelName:$h,backendName:"webgl",kernelFunc:Ute},Hte=`if (x < 0.0) return NAN;
return log(x);`,jte=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,qte=Ze({opSnippet:Hte,packedOpSnippet:jte,cpuKernelImpl:D9}),Kte={kernelName:Ea,backendName:"webgl",kernelFunc:qte},Xte="return log(1.0 + x);",Yte=Ze({opSnippet:Xte}),Qte={kernelName:rc,backendName:"webgl",kernelFunc:Yte},Zte="return float(a >= 1.0 && b >= 1.0);",Jte=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,ene=hn({opSnippet:Zte,packedOpSnippet:Jte,dtype:"bool"}),tne={kernelName:si,backendName:"webgl",kernelFunc:ene},nne="return float(!(x >= 1.0));",rne=Ze({opSnippet:nne}),sne={kernelName:sc,backendName:"webgl",kernelFunc:rne},ane="return float(a >= 1.0 || b >= 1.0);",one=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,ine=hn({opSnippet:ane,packedOpSnippet:one,dtype:"bool"}),une={kernelName:ed,backendName:"webgl",kernelFunc:ine},cne=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,u=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${u})`:s===1?i=`1.0/(${u})`:i=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},lne=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,u=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${u})`:s===1?i=`1.0/(${u})`:i=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},dne=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:u}=r,l=X().getBool("WEBGL_PACK_NORMALIZATION")?new lne(s.shape,a,o,i,u):new cne(s.shape,a,o,i,u);return n.runWebGLProgram(l,[s],s.dtype)},pne={kernelName:td,backendName:"webgl",kernelFunc:dne},hne=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},fne=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:u,alpha:l,beta:c}=r,d=new hne(s.shape,i,u,l,c);return n.runWebGLProgram(d,[s,a,o],s.dtype)},mne={kernelName:Fh,backendName:"webgl",kernelFunc:fne};function gne(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=fe({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),u=ou(i,e.dtype,"max",r),l=fe({inputs:{x:u},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(u),l}function J_(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=N.getAxesPermutation(l,i),d=c!=null,p=n.shouldExecuteOnCPU([s]),h=s;if(d){if(p){let v=n.texData.get(h.dataId).values,x=new Array(i);for(let C=0;C<x.length;C++)x[C]=s.shape[c[C]];let k=ok(v,s.shape,s.dtype,c,x);h=n.makeTensorInfo(x,s.dtype);let T=n.texData.get(h.dataId);T.values=k}else h=Fm(s,c,n);l=N.getInnerMostAxes(l.length,i)}N.assertAxesAreInnerMostDims("max",l,i);let[f,m]=N.computeOutAndReduceShapes(h.shape,l),g=f;o&&(g=N.expandShapeToKeepDim(f,u));let b;if(p){let v=n.texData.get(h.dataId).values,x=R9(v,w.sizeFromShape(m),g,s.dtype);b=n.makeTensorInfo(g,s.dtype);let k=n.texData.get(b.dataId);k.values=x}else b=gne(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var bne={kernelName:Aa,backendName:"webgl",kernelFunc:J_},yne=b_+`
return max(a, b);
`,vne=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Am+`
return result;
`,xne=hn({opSnippet:yne,packedOpSnippet:vne,cpuKernelImpl:P9}),wne={kernelName:$a,backendName:"webgl",kernelFunc:xne};function kne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Gc(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1;w.assert(N.eitherStridesOrDilationsAreOne(o,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let c=N.computePool2DInfo(s.shape,a,o,l,i,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return cr({inputs:{x:s},backend:n});let d=new lp(c,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var Ine={kernelName:Fa,backendName:"webgl",kernelFunc:kne};function Sne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:u,dimRoundingMode:l}=r,c=[1,1,1],d=N.computePool3DInfo(s.shape,a,o,c,i,l,u),p=new ck(d,"max",!1);return n.runWebGLProgram(p,[s],s.dtype)}var Cne={kernelName:nd,backendName:"webgl",kernelFunc:Sne},Tne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Nne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,u=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=u-1-e.padInfo.top,p=l-1-e.padInfo.left,h=i*u*l-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${d}, ${p});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${l} +
wR * ${l} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function _ne(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:u,pad:l,dimRoundingMode:c}=r,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,u,d,l,c),h=new ck(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Nne(p),g=n.runWebGLProgram(m,[s,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Ene={kernelName:Rh,backendName:"webgl",kernelFunc:_ne};function Ane(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Gc([a,o],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:d}=r,p=N.computePool2DInfo(i.shape,u,l,1,c,d),h=!0,f=new lp(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Tne(p),b=n.runWebGLProgram(g,[s,m],i.dtype);return n.disposeIntermediateTensorInfo(m),b}var $ne={kernelName:Dh,backendName:"webgl",kernelFunc:Ane};function Fne(e,t,n,r){let s=new lp(n,"max",!1),a=r.runWebGLProgram(s,[e],"float32");s=new lp(n,"max",!0,!0,t);let o=r.runWebGLProgram(s,[e],"float32");return[a,o]}var Dne={kernelName:Ph,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,u=n;w.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let l=[1,1];w.assert(N.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let c=N.computePool2DInfo(r.shape,s,a,l,o),[d,p]=Fne(r,i,c,u);return[d,p]}};function Rne(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=fe({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),u=ou(i,"float32","mean",r),l=fe({inputs:{x:u},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(u),l}var Pne={kernelName:Da,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=N.getAxesPermutation(l,i),d=c!=null,p=o.shouldExecuteOnCPU([r]),h=[],f=r;if(d){if(p){let x=o.texData.get(f.dataId).values,k=new Array(i);for(let E=0;E<k.length;E++)k[E]=r.shape[c[E]];let T=ok(x,r.shape,r.dtype,c,k);f=o.makeTensorInfo(k,r.dtype);let C=o.texData.get(f.dataId);C.values=T}else f=Fm(r,c,o);h.push(f),l=N.getInnerMostAxes(l.length,i)}N.assertAxesAreInnerMostDims("sum",l,i);let[m,g]=N.computeOutAndReduceShapes(f.shape,l),b=m;s&&(b=N.expandShapeToKeepDim(m,u));let y=Rne(f,g,b,o);for(let v of h)o.disposeIntermediateTensorInfo(v);return y}};function One(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=N.getAxesPermutation(l,i),d=s;c!=null&&(d=Dn({inputs:{x:s},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,s.shape.length)),N.assertAxesAreInnerMostDims("min",l,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,l),f=w.sizeFromShape(h),m=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ou(m,m.dtype,"min",n),b;if(o){let y=N.expandShapeToKeepDim(p,u);b=fe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=fe({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),b}var Mne={kernelName:Ra,backendName:"webgl",kernelFunc:One},Lne=b_+`
return min(a, b);
`,Bne=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Am+`
return result;
`,zne=hn({opSnippet:Lne,packedOpSnippet:Bne,cpuKernelImpl:O9}),Wne={kernelName:Pa,backendName:"webgl",kernelFunc:zne},Vne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,s=gt(r),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),u=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${o});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${i}));
}
`}},Une=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let r=e.length,s=gt(r),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Fn("rc",r),u=Fn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${u.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(r===1){let h=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;p=`
${s} rc = outputLoc;
${h}
result[0] = getChannel(getX(${u.join()}), ${c});
${i[r-1]} += 1;
if(${l}) {
${h}
result[1] = getChannel(getX(${u.join()}), ${c});
}
`}else{let h=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;p=`
${s} rc = outputLoc;
${h}
result[0] = getChannel(getX(${u.join()}), ${c});
${i[r-1]} += 1;
if(${l}) {
${h}
result[1] = getChannel(getX(${u.join()}), ${c});
}
rc = outputLoc;
${i[r-2]} += 1;
if(${i[r-2]} < ${this.outputShape[r-2]}) {
${h}
result[2] = getChannel(getX(${u.join()}), ${c});
${i[r-1]} += 1;
if(${l}) {
${h}
result[3] = getChannel(getX(${u.join()}), ${c});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${o});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},Gne=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Une(r.shape,s,a):new Vne(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},Hne={kernelName:Oa,backendName:"webgl",kernelFunc:Gne},jne=`if (b == 0.0) return NAN;
return mod(a, b);`,qne=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+Am+`
return result;
`,Kne=hn({opSnippet:jne,packedOpSnippet:qne}),Xne={kernelName:ac,backendName:"webgl",kernelFunc:Kne},Yne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Qne=`
if (a == b) {
return 1.0;
};
return a / b;`,Zne=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,eE=hn({opSnippet:Qne,packedOpSnippet:Zne,checkOutOfBounds:!0}),Jne={kernelName:wa,backendName:"webgl",kernelFunc:eE},tE="return a - b;",nE=hn({opSnippet:tE,packedOpSnippet:tE,supportsComplex:!0,cpuKernelImpl:Z9}),ere={kernelName:Qa,backendName:"webgl",kernelFunc:nE};function rE(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=w.parseAxisParam([a],s.shape),i=J_({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),u=N.expandShapeToKeepDim(i.shape,o),l=fe({inputs:{x:i},backend:n,attrs:{shape:u}}),c=nE({inputs:{a:s,b:l},backend:n}),d=q_({inputs:{x:c},backend:n}),p=Dm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=fe({inputs:{x:p},backend:n,attrs:{shape:u}}),f=eE({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var tre={kernelName:Xa,backendName:"webgl",kernelFunc:rE};function nre(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,u=i?s:rE({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),l=u.shape[0],c=u.shape[1],d=new Yne(l,c,a),p=[[o]],h=n.runWebGLProgram(d,[u],"int32",p);return i||n.disposeIntermediateTensorInfo(u),h}var rre={kernelName:Oh,backendName:"webgl",kernelFunc:nre},sE="return -x;";function sre(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=L9(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return X().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new Xc(r.shape,sE):s=new To(r.shape,sE),n.runWebGLProgram(s,[r],r.dtype)}var are={kernelName:ai,backendName:"webgl",kernelFunc:sre},ore=Dr.nonMaxSuppressionV3Impl;function ire(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u}=r,l=n.readSync(s.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=ore(l,c,o,i,u);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var ure={kernelName:ii,backendName:"webgl",kernelFunc:ire},cre=Dr.nonMaxSuppressionV4Impl;function lre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u,padToMaxOutputSize:l}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=cre(c,d,o,i,u,l);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var dre={kernelName:oc,backendName:"webgl",kernelFunc:lre},pre=Dr.nonMaxSuppressionV5Impl;function hre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u,softNmsSigma:l}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),p=o,h=i,f=u,m=l,{selectedIndices:g,selectedScores:b}=pre(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var fre={kernelName:ui,backendName:"webgl",kernelFunc:hre},mre=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},gre=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,u=w.sizeFromShape(s.shape),l=new mre(u,a,o,i),c=fe({inputs:{x:s},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(l,[c],s.dtype);n.disposeIntermediateTensorInfo(c);let p=[...s.shape,a],h=fe({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},bre={kernelName:li,backendName:"webgl",kernelFunc:gre};function Lm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=dp({inputs:{input:r},backend:n}),a=Lm({inputs:{x:s},backend:n}),o=Mm({inputs:{input:r},backend:n}),i=Lm({inputs:{x:o},backend:n}),u=No({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),u}else return pp({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var yre={kernelName:Ni,backendName:"webgl",kernelFunc:Lm};function aE(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=dp({inputs:{input:r},backend:n}),a=aE({inputs:{x:s},backend:n}),o=Mm({inputs:{input:r},backend:n}),i=Lm({inputs:{x:o},backend:n}),u=No({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),u}else return pp({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var vre={kernelName:ci,backendName:"webgl",kernelFunc:aE};function xre(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return pk({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],u=t.map(c=>{let d=pk({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),l=M_({inputs:u,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var wre={kernelName:di,backendName:"webgl",kernelFunc:xre},kre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let r=e.length,s=gt(r),a=t.map(u=>u[0]).join(","),o=t.map((u,l)=>u[0]+e[l]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${o});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},Ire=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=gt(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Fn("rc",r),u=Fn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${u.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1;
if(${l}) {
`,r===1?"":`}
rc = outputLoc;
${i[r-2]} += 1;
if(${i[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${i[r-1]} += 1;
if(${l}) {`],p=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=r===1?2:4;f<m;f++)h+=`
${d[f]}
if (${p}) {
result[${f}] = float(value);
} else {
${s} source = rc - start;
result[${f}] = getChannel(getX(${u.join()}), ${c});
}
`;h+=r===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${o});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},oE=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;if(w.sizeFromShape(s.shape)===0){let l=a.map((c,d)=>c[0]+s.shape[d]+c[1]);return pp({backend:n,attrs:{shape:l,value:o,dtype:s.dtype}})}let i=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ire(s.shape,a,o):new kre(s.shape,a,o),u=[[o]];return n.runWebGLProgram(i,[s],s.dtype,u)},Sre={kernelName:La,backendName:"webgl",kernelFunc:oE},Cre=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Tre=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+Am+`
return result;
`,Nre=hn({opSnippet:Cre,packedOpSnippet:Tre}),_re={kernelName:Ba,backendName:"webgl",kernelFunc:Nre};function Ere(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,u=[],l=w.parseAxisParam(a,s.shape),c=l,d=N.getAxesPermutation(c,i),p=s;d!=null&&(p=Dn({inputs:{x:s},backend:n,attrs:{perm:d}}),c=N.getInnerMostAxes(c.length,i),u.push(p)),N.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:b}=z9(p.shape,p.dtype,f,c);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,c),g=w.sizeFromShape(m),b=fe({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=yd(s.dtype),v=ou(b,y,"prod",n);h=fe({inputs:{x:v},backend:n,attrs:{shape:f}}),u.push(b),u.push(v)}if(o){u.push(h);let f=N.expandShapeToKeepDim(h.shape,l);h=fe({inputs:{x:h},backend:n,attrs:{shape:f}})}return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Are={kernelName:pi,backendName:"webgl",kernelFunc:Ere},iE=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=W9(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},$re={kernelName:ic,backendName:"webgl",kernelFunc:iE},Fre="return 1.0 / x;",Dre=Ze({opSnippet:Fre}),Rre={kernelName:uc,backendName:"webgl",kernelFunc:Dre},Pre=ts+`
return (x < 0.0) ? 0.0 : x;
`,Ore=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Mre=Ze({opSnippet:Pre,packedOpSnippet:Ore}),Lre={kernelName:Wa,backendName:"webgl",kernelFunc:Mre},Bre=ts+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,zre=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Wre=Ze({opSnippet:Bre,packedOpSnippet:zre}),Vre={kernelName:Ua,backendName:"webgl",kernelFunc:Wre},Ure=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,u]=e;this.outputShape=[a,t,n,u];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${l[0]/c[0]},
${l[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Gre=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,u]=e;this.outputShape=[a,t,n,u];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${l[0]/c[0]},
${l[1]/c[1]},
${l[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Hre(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[u,l]=i,c=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Gre(s.shape,u,l,a,o):new Ure(s.shape,u,l,a,o);return n.runWebGLProgram(c,[s],"float32")}var jre={kernelName:Va,backendName:"webgl",kernelFunc:Hre},qre=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],u=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/u[0],c=i[1]/u[1],d=1/l,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${l});
const float widthScale = float(${c});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Kre(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new qre(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Xre={kernelName:Lh,backendName:"webgl",kernelFunc:Kre},Yre=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,u]=e;this.outputShape=[a,t,n,u];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${l[0]/c[0]},
${l[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Qre=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,u]=e;this.outputShape=[a,t,n,u];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${l[0]/c[0]},
${l[1]/c[1]},
${l[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Zre(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[u,l]=i,c=X().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Qre(s.shape,u,l,a,o):new Yre(s.shape,u,l,a,o);return n.runWebGLProgram(c,[s],s.dtype)}var Jre={kernelName:cc,backendName:"webgl",kernelFunc:Zre},ese=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],u=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/u[0],c=i[1]/u[1],d=1/l,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${l});
const float widthScale = float(${c});
const float invHeightScale = float(${d});
const float invWidthScale = float(${p});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function tse(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new ese(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var nse={kernelName:Mh,backendName:"webgl",kernelFunc:tse},rse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=gt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}},sse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=Fn("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=gt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(r.slice())};
if(${s}){
result.g = ${u(r.slice())};
}
if(${a}) {
result.b = ${l(r.slice())};
if(${s}) {
result.a = ${c(r.slice())};
}
}
setOutput(result);
}
`;function i(h){return d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((b,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function ase(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return cr({inputs:{x:s},backend:n});let u=X().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sse(s.shape,i):new rse(s.shape,i);return n.runWebGLProgram(u,[s],s.dtype)}var ose={kernelName:fi,backendName:"webgl",kernelFunc:ase},ise=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},use={kernelName:_i,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,u=new ise(r.shape,a),[l,c]=N.getImageCenter(o,r.shape[1],r.shape[2]),d=[[l,c,Math.sin(s),Math.cos(s)]];return i.runWebGLProgram(u,[r],r.dtype,d)}},cse=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,lse=Ze({opSnippet:cse}),dse={kernelName:mi,backendName:"webgl",kernelFunc:lse},pse="return inversesqrt(x);",hse=Ze({opSnippet:pse,cpuKernelImpl:V9}),fse={kernelName:Ga,backendName:"webgl",kernelFunc:hse},uE=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=gt(s.length),u=gt(a.length),l="";n===1?l="i":n===2&&(l="i, j");let c=`getIndices(${l})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${p};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function mse(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:u,sliceSize:l,strides:c,outputSize:d}=N.calculateShapes(a,s,o),p=[d/l,l];if(d===0)return n.makeTensorInfo(o,s.dtype);let h=fe({inputs:{x:s},backend:n,attrs:{shape:[u,i]}}),f=fe({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new uE(u,i,h.shape.length,f.shape.length,c,p),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=fe({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var gse={kernelName:gi,backendName:"webgl",kernelFunc:mse},bse=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],u=[];for(let l=0;l<t.length;l++)u.push(`${o[l]}`),l<e&&i.push(`${o[l]}`);r=i.join(),s=u.join()}let a=gt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function yse(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=new bse(r.shape.length,s.shape,s.shape.length);return n.runWebGLProgram(o,[r,s,a],In(s.dtype,a.dtype))}var vse={kernelName:bi,backendName:"webgl",kernelFunc:yse},xse=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,wse=Ze({opSnippet:xse}),kse={kernelName:lc,backendName:"webgl",kernelFunc:wse},cE="return 1.0 / (1.0 + exp(-1.0 * x));",Ise=Ze({opSnippet:cE,packedOpSnippet:cE,cpuKernelImpl:U9}),Sse={kernelName:ja,backendName:"webgl",kernelFunc:Ise},Cse=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Tse=Ze({opSnippet:Cse}),Nse={kernelName:dc,backendName:"webgl",kernelFunc:Tse},_se=k_+`
return sin(x);
`,Ese=Ze({opSnippet:_se}),Ase={kernelName:Ha,backendName:"webgl",kernelFunc:Ese},$se=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Fse=Ze({opSnippet:$se}),Dse={kernelName:vi,backendName:"webgl",kernelFunc:Fse},Rse=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Pse=Ze({opSnippet:Rse}),Ose={kernelName:pc,backendName:"webgl",kernelFunc:Pse},Mse=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;w.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...o);for(let b=1+a.length;b<s.shape.length;++b)u.push([0,0]);let l=[],c=oE({inputs:{x:s},backend:n,attrs:{paddings:u,constantValue:0}}),d=N.getReshaped(c.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(c.shape,a,i,!1),f=fe({inputs:{x:c},backend:n,attrs:{shape:d}}),m=Dn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=fe({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Lse={kernelName:xi,backendName:"webgl",kernelFunc:Mse};function Bse(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw:
${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(r.dataId),u=n.readSync(s.dataId),l=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,p,h,f,m]=H9(i,r.shape,r.dtype,u,s.dtype,l,c);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var zse={kernelName:sd,backendName:"webgl",kernelFunc:Bse};function Wse(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),u=Array.from(n.readSync(a.dataId)),[l,c,d]=j9(i,r.shape,r.dtype,o,u);return[n.makeTensorInfo(c,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Vse={kernelName:hc,backendName:"webgl",kernelFunc:Wse};function Use(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),u=n.readSync(a.dataId),[l,c]=u_(o,r.shape,r.dtype,i,u,!0);return n.makeTensorInfo(c,r.dtype,l)}var Gse={kernelName:ad,backendName:"webgl",kernelFunc:Use};function Hse(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),u=n.readSync(a.dataId),[l,c]=u_(o,r.shape,r.dtype,i,u);return n.makeTensorInfo(c,r.dtype,l)}var jse={kernelName:od,backendName:"webgl",kernelFunc:Hse};function qse(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:u,numUpdates:l,strides:c,outputSize:d}=N.calculateShapes(a,s,i),p=!1,h=new uE(l,u,s.shape.length,a.shape.length,c,[d,1],p),f=n.runWebGLProgram(h,[a,s,o],a.dtype),m=fe({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Kse={kernelName:id,backendName:"webgl",kernelFunc:qse};function Xse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],u=N.prepareSplitSize(s,a,i),l=s.shape.length,c=new Array(l).fill(0),d=s.shape.slice();return u.map(p=>{let h=[...d];h[i]=p;let f=Qc({inputs:{x:s},backend:n,attrs:{begin:c,size:h}});return c[i]+=p,f})}var Yse={kernelName:wi,backendName:"webgl",kernelFunc:Xse},lE="return sqrt(x);",Qse=Ze({opSnippet:lE,packedOpSnippet:lE,cpuKernelImpl:q9}),Zse={kernelName:qa,backendName:"webgl",kernelFunc:Qse},Jse="return x * x;",eae=Ze({opSnippet:Jse}),tae={kernelName:fc,backendName:"webgl",kernelFunc:eae},dE="return (a - b) * (a - b);",nae=hn({opSnippet:dE,packedOpSnippet:dE}),rae={kernelName:Ya,backendName:"webgl",kernelFunc:nae};function sae({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=ts+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new To(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var aae={kernelName:eo,backendName:"webgl",kernelFunc:sae},oae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=gt(n.length),a=gt(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((u,l)=>(i++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${i-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function iae(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=$t.sliceInfo(s.shape,a,o,i,u,l,c,d,p),k;if(m)k=fe({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let C=$t.computeOutShape(y,v,x),E=Qc({inputs:{x:s},backend:n,attrs:{begin:y,size:C}});k=fe({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([s])){let E=n.readSync(s.dataId),F=$e(s.shape,s.dtype,E),O=K9(h,F,x,y);k=n.makeTensorInfo(f,s.dtype,O.values)}else{let E=new oae(y,x,h);k=n.runWebGLProgram(E,[s],s.dtype)}let T=fe({inputs:{x:k},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(k),T}var uae={kernelName:ki,backendName:"webgl",kernelFunc:iae};function cae(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:u,preserveShortSequences:l}=r,{data:c,dataSplits:d}=t,p=n.readSync(c.dataId),h=n.readSync(d.dataId),[f,m]=X9(p,h,s,a,o,i,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var lae={kernelName:ud,backendName:"webgl",kernelFunc:cae};function dae(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[l,c,d]=Y9(i,u,s),p=c.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var pae={kernelName:Bh,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Q9(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var fae={kernelName:zh,backendName:"webgl",kernelFunc:hae},mae="return tan(x);",gae=Ze({opSnippet:mae}),bae={kernelName:Ii,backendName:"webgl",kernelFunc:gae},yae=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,vae=Ze({opSnippet:yae}),xae={kernelName:Za,backendName:"webgl",kernelFunc:vae},wae=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let r=gt(this.rank),s=kae(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function kae(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s<e.length;s++)r.push(`imod(${n[s]}, ${e[s]})`);return r.join()}function pE(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;if(s.dtype==="string"||s.shape.length>5){let u=n.readSync(s.dataId),l=s.dtype==="string"?u.map(p=>w.decodeString(p)):u,c=$e(s.shape,s.dtype,l),d=J9(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new wae(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var Iae={kernelName:As,backendName:"webgl",kernelFunc:pE},Sae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Cae=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function iu(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function hE(e){let t=1;for(;t<e;)t*=2;return t}function Tae(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r,i=X().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=X().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=s.shape,c=l[l.length-1];if(n.shouldExecuteOnCPU([s])||c<i||a>u){let O=n.readSync(s.dataId),[D,R]=eQ(O,l,s.dtype,a,o);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,s.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(c===1)return[s,pp({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let d=n.texData.get(s.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(s):s,m=w.sizeFromShape(l)/c,g=fe({inputs:{x:h},attrs:{shape:[m,c]},backend:n});p&&iu(n,h);let b=hE(a),y=hE(c),v=null,x=()=>v===null?[g,g]:[g,v],k=(O,D,R)=>{let _=x(),L=new Sae(R),j=[[c],[v===null?1:0],[Number.NEGATIVE_INFINITY],[O],[D]],K=v;v=n.runWebGLProgram(L,_,"int32",j),iu(n,K)};for(let O=1;O<b;O*=2){let D=O*2;for(let R=O;R>=1;R/=2)k(D,R,[m,y])}for(let O=y;O>b;O/=2){let D=x(),R=new Cae([m,O/2]),L=[[c],[v===null?1:0],[b]],U=v;v=n.runWebGLProgram(R,D,"int32",L),iu(n,U);let j=b/2,K=j*2;for(let q=j;q>=1;q/=2)k(K,q,v.shape)}let T=v;v=Qc({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),iu(n,T);let C=Z_({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});iu(n,g);let E=l.slice(0,-1);E.push(a),T=v,v=fe({inputs:{x:v},attrs:{shape:E},backend:n}),iu(n,T);let F=C;return C=fe({inputs:{x:C},attrs:{shape:E},backend:n}),iu(n,F),[C,v]}var Nae={kernelName:Si,backendName:"webgl",kernelFunc:Tae},_ae=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Eae(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:u,outputShape:l}=r,[c,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[c,f,m,h],b=new _ae(d,p,o,i,u,g);return n.runWebGLProgram(b,[s,a],"float32")}var Aae={kernelName:Ci,backendName:"webgl",kernelFunc:Eae};function $ae(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;Gc(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:u,indices:l}=tQ(o,s,a.shape,a.dtype);return[r.makeTensorInfo(u,a.dtype,i),r.makeTensorInfo([l.length],"int32",l)]}var Fae={kernelName:Wh,backendName:"webgl",kernelFunc:$ae};function Dae(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,u=s.shape[a],l=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(l[c++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){p[a]=m;let g=Qc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),b=fe({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Rae={kernelName:Ti,backendName:"webgl",kernelFunc:Dae},Pae=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",u="sumValue",l=Math.floor(n/4)*4,c=n%4,d=`
sumValue += dot(values, segFilter);
`,p="";s%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let h="";s%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${l}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${l};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${u});
}
`}};function Oae(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r,i=s.shape.length,u=[],l=0,c=N.getAxesPermutation([l],i),d=s;c!=null&&(d=Dn({inputs:{x:s},backend:n,attrs:{perm:c}}),u.push(d),l=N.getInnerMostAxes(1,i)[0]);let p=N.segment_util.computeOutShape(d.shape,l,o),h=w.sizeFromShape([d.shape[l]]),f=fe({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});u.push(f);let m=yd(s.dtype),g=(x,k,T,C,E)=>{let F=x.shape[0],O=x.shape[1],D=N.segment_util.segOpComputeOptimalWindowSize(O,E),R={windowSize:D,inSize:O,batchSize:F,numSegments:E},_=new Pae(R,k),L=n.compileAndRun(_,[x,T],C);if(u.push(L),L.shape[1]===E)return L;let U=iE({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),j=pE({inputs:{x:U},backend:n,attrs:{reps:[O/D]}});return u.push(U),u.push(j),g(L,k,j,C,E)},b=g(f,"unsortedSegmentSum",a,m,o),y=fe({inputs:{x:b},backend:n,attrs:{shape:p}}),v=y;if(c!=null){u.push(y);let x=N.getUndoAxesPermutation(c);v=Dn({inputs:{x:v},backend:n,attrs:{perm:x}})}return u.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Mae={kernelName:cd,backendName:"webgl",kernelFunc:Oae},Lae=[pne,mne,YQ,ZQ,tZ,sZ,oZ,cZ,dZ,hZ,bZ,vZ,kZ,CZ,FZ,_Z,PZ,BZ,MZ,UZ,HZ,qZ,QZ,sJ,oJ,uJ,fJ,gJ,xJ,IJ,$Q,_J,LJ,zJ,FJ,GJ,jJ,VJ,XJ,ZJ,tee,ree,aee,uee,fee,gee,lee,vee,kee,See,_ee,Fee,Oee,Bee,zee,Wee,Uee,Hee,qee,Xee,Qee,tte,ste,ite,cte,pte,mte,vte,Ite,AQ,Cte,TJ,_te,$te,Rte,DQ,Lte,Vte,Gte,Qte,Kte,tne,sne,une,bne,Cne,Ine,Ene,$ne,Dne,wne,Pne,Mne,Wne,Hne,Xne,rre,LQ,are,ure,dre,fre,lJ,bre,vre,wre,Sre,_re,PQ,Are,$re,dJ,Jne,Rre,Vre,Lre,zQ,jre,Xre,Jre,nse,ose,use,dse,fse,gse,vse,kse,Sse,Nse,Ase,Dse,nJ,tre,Ose,Lse,zse,Vse,Gse,jse,Kse,Yse,Zse,tae,rae,aae,uae,lae,pae,fae,ere,qQ,bae,xae,Iae,Nae,Aae,KQ,Fae,Rae,Mae,yre];for(let e of Lae)gc(e);var vs=X();vs.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);vs.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);vs.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);vs.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);vs.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);vs.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);vs.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);vs.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);vs.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);vs.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Bae(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,r=e.map(a=>`${t}[${a}]`),s=new Array(n-1);s[n-2]=r[n-1];for(let a=n-3;a>=0;--a)s[a]=`(${s[a+1]} * ${r[a+1]})`;return s}function on(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function Bm(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function zm(){return`
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
`}function hk(){return`
${zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>,
[[builtin(num_workgroups)]] numWorkgroups: vec3<u32>)
`}function el(){return`
${zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(global_invocation_id)]] globalId : vec3<u32>)
`}function Ue(){return`
${hk()} {
let index = getGlobalIndex(globalId, localId, numWorkgroups);
`}function zae(e,t,n,r=!1){let s=`
let workGroupSizeX = ${n.workGroupSize[0]}u;
let workGroupSizeY = ${n.workGroupSize[1]}u;
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(r===!0){let h=gE(t.shape),f=`
[[block]] struct Matrix0 {
numbers: array<${Bm(t.dtype,n.isVec4)}>;
};
[[block]] struct Uniform {
size : i32;
numChannels : i32;
outShapeStrides : vec2<i32>;
dispatchSize : vec3<u32>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
`;return[fE,f,s,mE,h,n.getUserCode()].join(`
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${on(e[f].shape.length)}; `}),o+=`outShape : ${on(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
outShapeStrides: ${on(i)}; `,n.size&&(o+="size : i32; "),n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
[[block]] struct Matrix0 {
numbers: array<atomic<i32>>;
};
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
`):a.push(`
[[block]] struct Matrix0 {
numbers: array<${Bm(t.dtype,n.isVec4)}>;
};
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
`),n.variableNames.forEach((h,f)=>{a.push(`
[[block]] struct Matrix${1+f} {
numbers: array<${Bm(e[f].dtype,n.isVec4)}>;
};
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
`)}),o!==""&&a.push(`
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
`),a.push(s);let[u,l]=jae(t.shape,n.dispatchLayout),c=gE(t.shape),d=[fE,a.join(`
`),mE,c,u,Wae(t.shape.length)];if(n.atomic||d.push(Vae(t.shape,t.dtype,n.isVec4)),l===t.shape.length){let h=e.map(f=>Uae(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
`)}var fE=`
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
fn isNanCustom(val : f32) -> bool {
if (val > 0.0) {
return false;
}
if (val < 0.0) {
return false;
}
if (val == 0.0) {
return false;
}
return true;
}
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
var res = vec4<f32> (0.0);
for (var i = 0u; i < 4u; i = i + 1u) {
if (isNanCustom(val[i])) {
res[i] = 1.0;
} else {
res[i] = 0.0;
}
}
return res;
}
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) &&
all(coord < shape);
}
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) &&
all(coord < shape);
}
`,mE=`
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> i32 {
if (numWorkgroups.y == 1u && numWorkgroups.z == 1u) {
return i32(globalId.x);
}
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
}
`;function Wae(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputFlatIndex(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;default:w.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Vae(e,t,n){let r=e.length,s=Bm(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
result.numbers[flatIndex] = ${s}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
result.numbers[flatIndex] = ${s}(value);
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
result.numbers[flatIndex] = ${s}(value);
}
fn setOutputFlatI32(flatIndex : i32, value : i32) {
result.numbers[flatIndex] = ${s}(value);
}`,r>=2){let o=["d0","d1","d2","d3"].slice(0,r),i=on(r);n?a+=`
fn setOutput(${o.map(u=>`${u} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex / 4, value);
}
fn setOutputI32(${o.map(u=>`${u} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex / 4, value);
}
`:a+=`
fn setOutput(${o.map(u=>`${u} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlat(flatIndex, value);
}
fn setOutputI32(${o.map(u=>`${u} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
setOutputFlatI32(flatIndex, value);
}
`}return a}function Uae(e,t,n,r){let s=Gae(e,n);return e.shape.length<=t.length&&(s+=Hae(e,t,n,r)),s}function Gae(e,t){let n=e.name,r=e.shape.length,s=on(r),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,r),i=o.map(c=>`${c} : i32`).join(", ");if(r<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}.numbers[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}.numbers[0]);
}
`;let u=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,l=`${r}D`;return r===0&&(l="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}.numbers[getFlatIndex${l}(${s}(${o.join(",")}),
${u}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}.numbers[getFlatIndex${l}(${s}(${o.join(",")}),
${u})]);
}
`}function Hae(e,t,n,r){let s=e.name,a=s.charAt(0).toUpperCase()+s.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,u=t.length,l=on(u);if(w.arraysEqual(e.shape,t)&&r)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${s}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${l}) -> vec4<f32> {
return vec4<f32>(${s}.numbers[${u>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
return f32(${s}.numbers[globalIndex]);
}
fn ${o}ByCoords(coords : ${l}) -> f32 {
return f32(${s}.numbers[${u>1?"getOutputFlatIndex(coords)":"coords"}]);
}
`;let c=N.getBroadcastDims(e.shape,t),d=u-i,p="";if(i===0)return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}ByCoords(coords : ${l}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}ByCoords(coords : ${l}) -> f32{
return get${a}();
}
`;u<2&&c.length>=1?p="coords = 0;":p=c.map(g=>`coords[${g+d}] = 0;`).join(`
`);let h="";if(u<2&&i>0)h="coords";else if(u>1){let g=on(i),b=e.shape.map((y,v)=>`coords[${v+d}]`).join(", ");h=`${g}(${b})`}else h="coords";let f=`uniforms.${s.charAt(0).toLowerCase()+s.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}ByGlobalIndex(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return ${s}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
fn ${o}ByCoords(coordsIn : ${l}) -> vec4<f32> {
var coords = coordsIn;
${p}
return ${s}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}ByGlobalIndex(globalIndex : i32) -> f32 {
var coords = getCoordsFromFlatIndex(globalIndex);
${p}
return f32(${s}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
fn ${o}ByCoords(coordsIn : ${l}) -> f32 {
var coords = coordsIn;
${p}
return f32(${s}.numbers[getFlatIndex${m}(${h}, ${f})]);
}
`}function jae(e,t){let{x:n,y:r=[],z:s=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoordsWithFlatDispatchLayout(globalId : vec3<u32>, localId : vec3<u32>, numWorkgroups: vec3<u32>) -> ${on(a)}{
let globalIndex = getGlobalIndex(globalId, localId, numWorkgroups);
return getCoordsFromFlatIndex(globalIndex);
}
`,a];let o="",i=[n,r,s],u=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(u+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=Bae(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let l=[];for(let p=0;p<u;p++)l.push(`d${p}`);let c=on(u),d=`fn getOutputCoordsWithNonFlatDispatchLayout(globalId : vec3<u32>) -> ${c} {
${o}
`;return l.length===0?d+=`return ${c}(0); }`:d+=`return ${c}(${l.join(",")}); }`,[d,u]}function gE(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=w.computeStrides(e),r=on(t),s=[];for(let o=0;o<t;o++)s.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a="var index2 = index;"+n.map((o,i)=>{let u=`let ${s[i]} = index2 / uniforms.outShapeStrides[${i}]`,l=i===n.length-1?`let ${s[i+1]} = index2 - ${s[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${s[i]} * uniforms.outShapeStrides[${i}]`;return`${u}; ${l};`}).join("");return`
fn getCoordsFromFlatIndex(index : i32) -> ${r} {
${a}
return ${r}(${s.join(",")});
}
`}var bE={};Ee(bE,{ArrayBufferToTypedArray:()=>yE,GPUBytesPerElement:()=>bk,computeDispatch:()=>_e,computeWorkGroupSizeForConv2d:()=>fk,computeWorkGroupSizeForMatMul:()=>mk,computeWorkPerThreadForConv2d:()=>gk,flatDispatchLayout:()=>ze,isWebGPUSupported:()=>yk,tilesFitEvenlyIntoShape:()=>Us});var tl=65535,uu=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function Us(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,r)=>n%e[r]==0)}function _e(e,t,n=[1,1,1],r=[1,1,1]){let[s,a,o]=[Math.ceil(uu(e.x.map(u=>t[u]))/(n[0]*r[0])),e.y?Math.ceil(uu(e.y.map(u=>t[u]))/(n[1]*r[1])):1,e.z?Math.ceil(uu(e.z.map(u=>t[u]))/(n[2]*r[2])):1];if(s<=tl&&a<=tl&&o<=tl)return[s,a,o];w.assert(s>tl&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(s));return i>tl?(i=Math.ceil(Math.cbrt(s)),w.assert(i<=tl,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function fk(e,t){let n=uu(e.x.map(s=>t[s])),r=uu(e.y.map(s=>t[s]));return n<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function mk(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function gk(e,t){let n=uu(e.x.map(s=>t[s])),r=uu(e.y.map(s=>t[s]));return n<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function ze(e){return{x:e.map((t,n)=>n)}}function bk(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function yE(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),r=new ArrayBuffer(n.length),s=new Uint8Array(r);for(let a=0;a<n.length;a++)s[a]=n[a];return s}else throw new Error(`Unknown dtype ${t}`)}function yk(){return!!navigator.gpu}var Mt;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Mt||(Mt={}));var qae="return a + b;",Kae="return areal * breal - aimag * bimag;",Xae="return areal * bimag + aimag * breal;",Yae="return a / b;",Qae="return a * b;",Zae="return (a - b) * (a - b);",Jae="return a - b;",eoe="return f32(a == b);",toe="return vec4<f32>(a == b);",noe="return f32(a > b);",roe="return vec4<f32>(a > b);",soe="return f32(a >= b);",aoe="return vec4<f32>(a >= b);",ooe="return f32(a < b);",ioe="return vec4<f32>(a < b);",uoe="return f32(a <= b);",coe="return vec4<f32>(a <= b);",loe="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",doe=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,poe=`
if (isNanCustom(a)) { return a; }
if (isNanCustom(b)) { return b; }
`,vE=`
if (isNaN.r > 0.) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g > 0.) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b > 0.) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a > 0.) {
resultTemp.a = uniforms.NAN;
}
`,hoe=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,foe=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,moe="return f32(a != b);",goe="return vec4<f32>(a != b);",boe=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,yoe=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
${vE}
return resultTemp;
`,voe="if (a < 0.0) { return b * a; } return a;",xoe=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function xE(e,t){let n=t?vE:poe;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function hp(e,t){switch(e){case 0:return Qae;case 1:return qae;case 2:return Jae;case 3:return Yae;case 4:return t?toe:eoe;case 5:return t?roe:noe;case 6:return t?aoe:soe;case 7:return t?ioe:ooe;case 8:return t?coe:uoe;case 9:return t?doe:loe;case 10:return t?goe:moe;case 11:return Zae;case 12:return t?foe:hoe;case 14:return t?xoe:voe;case 15:return xE("max",t);case 16:return xE("min",t);case 13:return t?yoe:boe;case 17:return Kae;case 18:return Xae;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var bt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(bt||(bt={}));var woe="return abs(a);",koe="return ceil(a);",Ioe="return cos(a);",Soe=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,Coe="return exp(a) - 1.0;",Toe="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Noe=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,_oe="return exp(a);",Eoe="return floor(a);",Aoe="return a;",$oe=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,Foe="return f32(!(a >= 1.0));",Doe="return -a;",Roe="return (a < 0.0) ? b * a : a;",Poe="return max(a, 0.0);",Ooe="return clamp(a, 0.0, 6.0);",Moe="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Loe=`
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
let isNaN = isNan(a);
if (isNaN.r) {
resFloat.r = a.r;
}
if (isNaN.g) {
resFloat.g = a.g;
}
if (isNaN.b) {
resFloat.b = a.b;
}
if (isNaN.a) {
resFloat.a = a.a;
}
return resFloat;
`,Boe="return 1.0/sqrt(a);",zoe="return 1.0 / (1.0 + exp(-1.0 * a));",Woe="return sin(a);",Voe=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,Uoe="return sqrt(a);",Goe="return a * a;",Hoe=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,joe="return f32(i32((a)));";function nl(e,t){switch(e){case 0:return woe;case 2:return Ioe;case 3:return Soe;case 1:return koe;case 4:return t?Noe:Toe;case 5:return _oe;case 6:return Coe;case 7:return Eoe;case 8:return Aoe;case 9:return $oe;case 10:return Foe;case 11:return Doe;case 12:return Roe;case 13:return t?Loe:Poe;case 14:return t?Moe:Ooe;case 15:return Boe;case 18:return zoe;case 16:return Woe;case 17:return Voe;case 19:return Uoe;case 20:return Goe;case 21:return Hoe;case 22:return joe;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Gs(e,t=!1){if(e===null)return null;if(e==="linear")return nl(bt.LINEAR);if(e==="relu")return nl(bt.RELU,t);if(e==="elu")return nl(bt.ELU,t);if(e==="relu6")return nl(bt.RELU6,t);if(e==="prelu")return hp(Mt.PRELU,t);if(e==="sigmoid")return nl(bt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function wE(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
let RowPerThread = ${n.RowPerThread};
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
let TileAOuter = ${n.TileAOuter};
let TileBOuter = ${n.TileBOuter};
let TileInner = ${n.TileInner};
${el()} {
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x);
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, ${n.RowPerThread}>;
var ACached : vec4<f32>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
var globalColA = tileCol;
let RowPerThreadB = TileInner / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
}
globalColA = globalColA + TileInner / ColPerThread;
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
for (var i = 0; i < RowPerThread; i = i + 1) {
ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
acc[i] = BCached[3] * ACached.w + acc[i];
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(globalRow + innerRow,
globalCol,
acc[innerRow], globalId);
}
}`}function qoe(e){return`
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
let tileSize = ${e[0]*4};
${el()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
// Without this initialization strange values show up in acc.
var acc = vec4<f32>(0.0);
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * tileSize / 4 + tileCol;
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < tileSize / 4; k = k + 1) {
let rowB = t * tileSize + k * 4;
let BCached0 = mm_readB(rowB, globalCol, globalId);
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
let ACached = mm_Asub[k];
acc = acc + BCached0 * ACached.x;
acc = acc + BCached1 * ACached.y;
acc = acc + BCached2 * ACached.z;
acc = acc + BCached3 * ACached.w;
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var Koe=class{constructor(e,t,n,r=null,s=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=mk(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=r!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=s,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],r=this.workGroupSize[1]*this.workPerThread,s=this.workGroupSize[0]*this.vecSize,a=s,o=[r,a],i=[a,s];return[Us(o,this.aShape.slice(1)),Us(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
}
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0)`,n="",r="";if(this.activation){let o=Gs(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
${o}
}`,r="value = activation(value, outCoord);"}let s=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${e};
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
let batch = i32(globalId.z);
${t};
}
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
{
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col * 4);
${s}
${r}
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
}
}
${this.outputShape[1]>1?wE([this.vecSize,this.workPerThread,1],this.workGroupSize):qoe(this.workGroupSize)}
`}};function vk(e,t){let n=t[1]*e[1],r=t[0]*e[0],s=n>r?n:r;return`
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${r}>, ${s}>;
${el()} {
let tileRow = i32(localId.y) * ${e[1]};
let tileCol = i32(localId.x) * ${e[0]};
let globalRow = i32(globalId.y) * ${e[1]};
let globalCol = i32(globalId.x) * ${e[0]};
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
var ACached : f32;
var BCached : array<f32, ${e[0]}>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let ColPerThreadA = ${s} / ${t[0]};
let tileColA = i32(localId.x) * ColPerThreadA;
let RowPerThreadB = ${s} / ${t[1]};
let tileRowB = i32(localId.y) * RowPerThreadB;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(
globalRow + innerRow,
t * ${s} + inputCol, globalId);
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(
t * ${s} + inputRow,
globalCol + innerCol, globalId);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < ${s}; k = k + 1) {
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
if ((globalCol + innerCol) < uniforms.dimBOuter &&
(globalRow + innerRow) < uniforms.dimAOuter) {
mm_write(globalRow + innerRow,
globalCol + innerCol,
acc[innerRow][innerCol], globalId);
}
}
}
}
`}function Xoe(e){return`
let TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${el()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
mm_readA(globalRow, colA + 1, globalId),
mm_readA(globalRow, colA + 2, globalId),
mm_readA(globalRow, colA + 3, globalId));
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
mm_readB(rowB + 1, globalCol, globalId),
mm_readB(rowB + 2, globalCol, globalId),
mm_readB(rowB + 3, globalCol, globalId));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
mm_write(globalRow, globalCol, acc, globalId);
}
}
`}var kE=class{constructor(e,t,n,r=!1,s=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=r?e[1]:e[2];this.workGroupSize=mk(t[1],u,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),w.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let l=a!=null,c=i!=null;l&&this.variableNames.push("bias"),c&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=r,this.transposeB=s,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=c;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,u]:[this.outputShape[0],u,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${r}_${s}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,r=t>n?t:n;this.outputShape[1]===1&&(r*=4),w.assert(r%this.workGroupSize[0]==0&&r%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[t,r],a=[r,n];return[Us(s,this.aShape.slice(1)),Us(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
}
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
}
return 0.0;`;let n="",r="";if(this.activation){let o=Gs(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,r="value = activation(value, outCoord);"}let s=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
var value = valueIn;
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
${s}
${r}
setOutput(batch, row, col, value);
}
${this.outputShape[1]>1?vk([this.workPerThread,this.workPerThread,1],this.workGroupSize):Xoe(this.workGroupSize)}
`}};function Yoe(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${el()} {
let coords = getOutputCoordsWithNonFlatDispatchLayout(globalId);
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var Qoe=class{constructor(e,t=!1,n=!1,r=null,s=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize);let o=r!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.transposeA=t,this.transposeB=n,this.addBias=o,this.activation=s,this.hasPreluActivationWeights=i,this.shaderKey=`matMulReduce_${this.activation}_${t}_${n}`}getUserCode(){let e;this.transposeA===!1?e="return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":e="return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];";let t;this.transposeB===!1?t="return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];";let n="",r="";if(this.activation){let o=Gs(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}
`,r="value = activation(value, outCoord);"}let s=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(batch: i32, row : i32, col : i32) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${e}
}
fn mm_readB(batch: i32, row : i32, col : i32) -> f32 {
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
var value = valueIn;
let outCoord = vec3<i32>(batch, row, col);
${s}
${r}
setOutput(batch, row, col, value);
}
${Yoe()}
`}};function Zoe(e){let t=e[1]/2,n=e[0],r=t>n?t:n;return`
var<workgroup> mm_Asub1 : array<array<f32, ${r}>, ${t}>;
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${r}>;
var<workgroup> mm_Asub2 : array<array<f32, ${r}>, ${t}>;
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${r}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Introduces two shared memory buffers, some logical threads could handle
// arithmetic operations and others handle IO operations between barrier api,
// makes ALUs and load/store units work simultaneously, could improves
// the performance.
${el()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = tileRow;
for (var t = 0; t < numTiles; t = t + 1) {
if (t == 0) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${r};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${r};
}
} else {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub1[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${r};
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${r};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${r}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
}
}
}
workgroupBarrier();
if (t != 0) {
t = t + 1;
}
if (t < numTiles) {
if (tileRow < ${t}) {
// Load one tile of A and B into local memory.
// globalRow is always greater than or equal tileRow.
mm_Asub2[tileRow][tileCol] =
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
globalColA = globalColA + ${r};
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
globalRowB = globalRowB + ${r};
} else {
// Compute acc values for a single thread.
for (var k = 0; k < ${r}; k = k + 1) {
let subRow = tileRow - ${t};
if (subRow < 0) {
continue;
}
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
}
}
}
workgroupBarrier();
}
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
if (tileRow >= ${t} && writeCol >= 0) {
mm_write(writeCol, globalCol, acc, globalId);
}
}
`}var Joe=class{constructor(e,t,n,r=null,s=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],w.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=r!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=s,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
}
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
}
return 0.0;`,n="",r="";if(this.activation){let o=Gs(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${o}
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
${o}
}`,r="value = activation(value, outCoord);"}let s=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${n}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
let batch = i32(globalId.z);
${e}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let batch = i32(globalId.z);
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
${t}
}
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
let batch = i32(globalId.z);
let outCoord = vec3<i32>(batch, row, col);
var value = valueIn;
${s}
${r}
setOutput(batch, row, col, value);
}
}
${Zoe(this.workGroupSize)}
`}};function We(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:s}=n,a=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,a),i=w.sizeFromShape(o);return w.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${r.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var eie={kernelName:hi,backendName:"webgpu",kernelFunc:We};function xk({a:e,b:t,transposeA:n,transposeB:r,backend:s,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,d=n?e.shape[l-2]:e.shape[l-1],p=r?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Ri.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let k=n?[b,d,h]:[b,h,d],T=r?[y,f,p]:[y,p,f],C=We({inputs:{x:e},backend:s,attrs:{shape:k}}),E=We({inputs:{x:t},backend:s,attrs:{shape:T}}),F=[C,E],O=Math.max(b,y),D=d%4==0&&f%4==0&&!n&&!r&&f>=32,R;h*f<=32?R=new Qoe([O,h,f],n,r,a,u,o):!n&&!r&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?R=new Joe(k,T,[O,h,f],a,u,o):D?R=new Koe(k,[O,h,f],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,u,o):R=new kE(k,[O,h,f],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,r,a,u,o);let _=[C,E];a&&_.push(a),o&&_.push(o);let L=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],U=s.runWebGPUProgram(R,_,e.dtype,L),j=We({inputs:{x:U},backend:s,attrs:{shape:x}});F.push(U);for(let K of F)s.disposeData(K.dataId);return j}function tie(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:d}=r;return xk({a:s,b:a,transposeA:u,transposeB:l,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var nie={kernelName:to,backendName:"webgpu",kernelFunc:tie},IE=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${hp(this.op,!1)}
}
${Ue()}
if(index < uniforms.size) {
let areal = getARealAtOutCoordsByGlobalIndex(index);
let aimag = getAImagAtOutCoordsByGlobalIndex(index);
let breal = getBRealAtOutCoordsByGlobalIndex(index);
let bimag = getBImagAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},rie=class{constructor(e,t,n,r){this.variableNames=["A","B"],this.size=!0;let s=256;this.workGroupSize=[s,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ze(this.outputShape),this.lastDimensionSize=r?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=r,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
let b = getBAtOutCoordsByCoords(coords);`;return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${hp(this.op,!1)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${Ue()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${t}
setOutputFlat(flatIndex, binaryOperation(a, b));
}
}
}
`}},sie=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
${hp(this.op,this.isVec4)}
}
${Ue()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}},SE=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
fn binaryOperation(a : f32, b : f32) -> f32 {
${hp(this.op,!1)}
}
${Ue()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
let b = getBAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, binaryOperation(a, b));
}
}
`}};function CE(e,t,n){if(w.arraysEqual(t,n)&&w.sizeFromShape(t)%4==0)return new sie(e,t,n);let s=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return s||a?new rie(e,t,n,a):new SE(e,t,n)}function Lr(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var aie={kernelName:_a,backendName:"webgpu",kernelFunc:Lr};function rl(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Lr({inputs:{x:r},backend:n}),u=Lr({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:u},a}var oie={kernelName:Kl,backendName:"webgpu",kernelFunc:rl},Wm=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${nl(this.op,!1)}
}
${Ue()}
if (index < uniforms.size) {
let a = getAAtOutCoordsByGlobalIndex(index);
setOutputFlat(index, unaryOperation(a));
}
}
`}};function fn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:r,backend:s})=>{let{x:a}=r,o=s,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let l=o.tensorMap.get(a.dataId),c=t(l.values,i);return o.makeTensorInfo(a.shape,i,c)}let u=new Wm(a.shape,e);return o.runWebGPUProgram(u,[a],i)}}function Rn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:r}){return({inputs:s,backend:a})=>{let{a:o,b:i}=s,u=a;if(n&&o.dtype==="complex64"){let d=u.tensorMap.get(o.dataId),p=u.tensorMap.get(i.dataId),h,f;if(e!==Mt.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[b,y]=g,v={dataId:b.dataId,dtype:b.dtype,shape:o.shape},x={dataId:y.dataId,dtype:y.dtype,shape:i.shape},k=CE(e,o.shape,i.shape);return u.runWebGPUProgram(k,[v,x],In(b.dtype,y.dtype))});else{let g=new IE(Mt.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),b=new IE(Mt.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),y=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=u.runWebGPUProgram(g,y,"float32"),f=u.runWebGPUProgram(b,y,"float32")}let m=rl({inputs:{real:h,imag:f},backend:u});return u.disposeData(h.dataId),u.disposeData(f.dataId),m}let l=r||In(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||u.shouldExecuteOnCPU([o,i]))&&t!=null){let d=u.tensorMap.get(o.dataId).values,p=u.tensorMap.get(i.dataId).values,h=o.dtype==="string"?N.fromUint8ToStringArray(d):d,f=o.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,l);return u.makeTensorInfo(g,l,m)}let c=CE(e,o.shape,i.shape);return u.runWebGPUProgram(c,[o,i],l)}}var{addImpl:iie,ceilImpl:uie,concatImpl:cie,equalImpl:lie,expImpl:die,expm1Impl:pie,floorImpl:hie,gatherNdImpl:fie,gatherV2Impl:mie,greaterEqualImpl:gie,greaterImpl:bie,lessEqualImpl:yie,lessImpl:vie,logImpl:xie,maxImpl:wie,maximumImpl:kie,minimumImpl:Iie,multiplyImpl:Sie,negImpl:Cie,notEqualImpl:Tie,prodImpl:Nie,rangeImpl:_ie,rsqrtImpl:Eie,simpleAbsImpl:Aie,sliceImpl:$ie,stridedSliceImpl:Fie,stringNGramsImpl:Die,subImpl:Rie,tileImpl:Pie,topKImpl:Oie,transposeImpl:Mie,uniqueImpl:ibe}=fm,Lie=fn({opType:bt.ABS,cpuKernelImpl:Aie}),Bie={kernelName:Vo,backendName:"webgpu",kernelFunc:Lie},zie=Rn({opSnippet:Mt.ADD,cpuKernelImpl:iie,supportsComplex:!0}),Wie={kernelName:_s,backendName:"webgpu",kernelFunc:zie},Vie=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(r=>{e.push(`let v${r} = get${r}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(r=>`v${r}`).join(" + ");return`
${Ue()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
${e.join(`
`)}
setOutputFlat(flatIndex, ${t});
}
}
}
`}};function Uie(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Lr({inputs:{x:r[0]},backend:n});let s=r.map(i=>i.dtype).reduce((i,u)=>In(i,u)),a=r.map(i=>i.shape),o=new Vie(a);return n.runWebGPUProgram(o,r,s)}var Gie={kernelName:la,backendName:"webgpu",kernelFunc:Uie},TE=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="axis : i32; infinityValue : f32;",this.size=!0;let r=[t];N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),r,e.length),this.op=n==="min"?"<":">";let[s]=N.computeOutAndReduceShapes(e,r);this.outputShape=s.length===0?[1]:s,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,t=(s,a)=>this.outputShape.length===1?s:`${s}[${a}]`,n=s=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${s}]`;return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${e}
// In order to get a flattened index into the input tensor, we need to
// add back the index along the reduced dimension to |outputCoords|.
// This function outputs the offset to the first value along
// |axis| and the stride to get the next value of the input along |axis|.
fn getInputCoordInfo(outputIndex : i32) -> vec2<i32>{
let outputCoords = getCoordsFromFlatIndex(outputIndex);
var i = ${this.outputShape.length-1};
var stride = 1;
var inputStride = 1;
var offset = 0;
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
let length = ${n(`${this.inputShape.length} - r`)};
if (${this.inputShape.length} - r == uniforms.axis) {
inputStride = stride;
} else {
offset = offset + ${t("outputCoords","i")} * stride;
i = i - 1;
}
stride = stride * length;
}
return vec2<i32>(offset, inputStride);
}
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
return coordInfo[0] + coordInfo[1] * index;
}
${Ue()}
let outputIndex = index / i32(workGroupSizeX);
let coordInfo = getInputCoordInfo(outputIndex);
let Length = ${n("uniforms.axis")};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x.numbers[getInputIndex(coordInfo, k)]);
if (!isNanCustom(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputFlatI32(outputIndex, xBestIndices[localId.x]);
}
}
`}},Hie=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
let TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${zm()}
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>,
[[builtin(workgroup_id)]] workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] =
A.numbers[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputFlat((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},jie=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];this.outputShape=n,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=on(this.outputShape.length),t=qie(this.newDim);return`
${Ue()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromFlatIndex(flatIndex);
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function qie(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let r=0;r<e.length;r++)n[e[r]]=`resRC[${r}]`;return n.join()}function cu(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{perm:a}=r,o=n,i=s.shape.length,u=new Array(i);for(let c=0;c<u.length;c++)u[c]=s.shape[a[c]];if(n.shouldExecuteOnCPU([s])){let d=o.tensorMap.get(s.dataId).values,p=Mie(d,s.shape,s.dtype,a,u);return n.makeTensorInfo(u,s.dtype,p)}if(s.shape.length===2&&w.arraysEqual(a,[1,0])){let c=new Hie(s.shape,a);return o.runWebGPUProgram(c,[s],s.dtype)}let l=new jie(s.shape,a);return o.runWebGPUProgram(l,[s],s.dtype)}var Kie={kernelName:Ja,backendName:"webgpu",kernelFunc:cu};function Xie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=cu({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],u.shape.length);let c=new TE(u.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.NEGATIVE_INFINITY]}],p=n.runWebGPUProgram(c,[u],"int32",d);return l.forEach(h=>n.disposeData(h.dataId)),p}var Yie={kernelName:da,backendName:"webgpu",kernelFunc:Xie};function Qie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=N.getAxesPermutation(o,s.shape.length),u=s,l=[];i!=null&&(u=cu({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(u),o=N.getInnerMostAxes(o.length,u.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],u.shape.length);let c=new TE(u.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]},{type:"float32",data:[Number.POSITIVE_INFINITY]}],p=n.runWebGPUProgram(c,[u],"int32",d);return l.forEach(h=>n.disposeData(h.dataId)),p}var Zie={kernelName:ju,backendName:"webgpu",kernelFunc:Qie},NE=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputFlat(index, ${t});
}
}
`}},_E=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputFlat(index, value);
}
}
`}};function Jie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1,c=N.computePool2DInfo(s.shape,a,o,l,i,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Lr({inputs:{x:s},backend:n});let d,p=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?d=new _E(c):(d=new NE(c,"avg"),p.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(d,[s],s.dtype,p)}var eue={kernelName:pa,backendName:"webgpu",kernelFunc:Jie};function tue(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return xk({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var nue={kernelName:ha,backendName:"webgpu",kernelFunc:tue},rue=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${on(e.length)}; `,this.shaderKey="slice"}getUserCode(){let e=on(this.rank),t=sue(this.rank),n;return this.start.length===1?n=this.outputShape.map((s,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((s,a)=>`sourceLoc.${wk[a]} = uniforms.start[${a}] + coords.${wk[a]};`),`
${Ue()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromFlatIndex(index);
${n.join(`
`)}
setOutputFlat(index, getSource(${t}));
}
}
`}},wk=["x","y","z","w","u","v"];function sue(e){if(e===1)return"sourceLoc";if(e<=6)return wk.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function sl(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,u]=$t.parseSliceParams(s,a,o);if($t.assertParamsValid(s,i,u),n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.tensorMap.get(s.dataId),p=$ie(d.values,i,u,s.shape,s.dtype);return n.makeTensorInfo(u,s.dtype,p)}if(w.sizeFromShape(u)===0)return n.makeTensorInfo(u,s.dtype,[]);let l=new rue(i,u),c=[{type:"int32",data:i}];return n.runWebGPUProgram(l,[s],s.dtype,c)}var aue={kernelName:yi,backendName:"webgpu",kernelFunc:sl},oue=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;w.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,v)=>y*v),u=N.getReshaped(s.shape,a,i),l=N.getPermuted(u.length,a.length),c=N.getReshapedPermuted(s.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(c,o,a.length),h=[],f=We({inputs:{x:s},backend:n,attrs:{shape:u}}),m=cu({inputs:{x:f},backend:n,attrs:{perm:l}}),g=We({inputs:{x:m},backend:n,attrs:{shape:c}}),b=sl({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeData(y.dataId)),b},iue={kernelName:Uo,backendName:"webgpu",kernelFunc:oue},EE=Rn({opSnippet:Mt.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Tie}),uue={kernelName:oi,backendName:"webgpu",kernelFunc:EE};function fp(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.tensorMap.get(r.dataId);return Lr({inputs:{x:s.complexTensorInfos.real},backend:n})}var cue={kernelName:rd,backendName:"webgpu",kernelFunc:fp};function lue(e,t){let n=new Wm(e.shape,bt.TO_INT),r=t.runWebGPUProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function kk(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return Lr({inputs:{x:s},backend:n});let o=kt(s.shape),i=kk({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),u=rl({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),u}if(s.dtype==="complex64"){let o=fp({inputs:{input:s},backend:n}),i=kk({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=Lr({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return lue(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=EE({inputs:{a:s,b:o},backend:n});return n.disposeData(o.dataId),u}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var due={kernelName:fa,backendName:"webgpu",kernelFunc:kk},pue=fn({opType:bt.CEIL,cpuKernelImpl:uie}),hue={kernelName:ma,backendName:"webgpu",kernelFunc:pue},fue=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${Ue()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isNanCustom(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputFlat(index, clampedValue);
}
}
`}},mue=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${Ue()}
if(index < uniforms.size) {
let value = getAAtOutCoordsByGlobalIndex(index);
if (isNanCustom(value)) {
setOutputFlat(index, value);
return;
}
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function gue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i,u=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return w.sizeFromShape(s.shape)%4==0?i=new fue(s.shape):i=new mue(s.shape),n.runWebGPUProgram(i,[s],s.dtype,u)}var bue={kernelName:Es,backendName:"webgpu",kernelFunc:gue},yue=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32;`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutput(coords.x, coords.y, getT0(yR, yC)); }");for(let s=1;s<this.offsetLength;s++)e.push(`elseif (yC < uniforms.offset${[s]}){ setOutput(coords.x, coords.y, getT${s}(yR, yC - uniforms.offset${s-1})); }`);let n=this.offsetLength,r=this.offsetLength-1;e.push(`else { setOutput(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${r})); }`)}else e.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
${Ue()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function Vm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.tensorMap.get(r.dataId);return Lr({inputs:{x:s.complexTensorInfos.imag},backend:n})}var vue={kernelName:Jl,backendName:"webgpu",kernelFunc:Vm};function Ik(e,t,n){let r=e[0].dtype;if(r==="complex64"){let h=e.map(y=>fp({inputs:{input:y},backend:n})),f=e.map(y=>Vm({inputs:{input:y},backend:n})),m=Ik(h,t,n),g=Ik(f,t,n),b=rl({inputs:{real:m,imag:g},backend:n});return h.forEach(y=>n.disposeData(y.dataId)),f.forEach(y=>n.disposeData(y.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),b}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let h=e.map(x=>{let k=w.sizeFromShape(x.shape.slice(t));return We({inputs:{x},backend:n,attrs:{shape:[-1,k]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),m=N.computeOutShape(h.map(x=>x.shape),1),g=h[0].shape[0]===1,b=cie(f,m,r,g),y=N.computeOutShape(e.map(x=>x.shape),t),v=n.makeTensorInfo(y,r,b);return h.forEach(x=>n.disposeData(x.dataId)),v}let{tensors2D:a,outShape:o}=xue(e,t,n),i=a.map(h=>h.shape),u=new yue(i),l=[],c=new Array(i.length-1);if(c.length>0){c[0]=i[0][1],l.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+i[h][1],l.push({type:"int32",data:[c[h]]})}let d=n.runWebGPUProgram(u,a,a[0].dtype,l);a.forEach(h=>n.disposeData(h.dataId));let p=We({inputs:{x:d},backend:n,attrs:{shape:o}});return n.disposeData(d.dataId),p}function xue(e,t,n){let r=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>We({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape.slice(0,t)),w.sizeFromShape(a.shape.slice(t))]}})),outShape:r}}function AE(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=N.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(l=>w.sizeFromShape(l.shape)>0);if(i.length===1)return Lr({inputs:{x:i[0]},backend:n});let u=i.map(l=>l.shape);return N.assertParamsConsistent(u,a),Ik(i,a,n)}var wue={kernelName:Go,backendName:"webgpu",kernelFunc:AE},kue=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
${Ue()}
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
let rc = getCoordsFromFlatIndex(flatIndex);
if(flatIndex < uniforms.size) {
let blockIndex = rc[0];
let pos = rc[1];
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
var value = 0.0;
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
uniforms.pad[0];
let d1 = offsetX + uniforms.dilation[0] * ((pos %
uniforms.itemsPerBlockRow) / uniforms.inChannels);
let ch = pos % uniforms.inChannels;
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
value = getA(d0, d1, ch);
}
}
setOutputFlat(flatIndex, value);
}
}
}
`}};function $E({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let u=e.shape,l=n.dataFormat==="channelsLast",c=!1,d=!1,p=l?u[0]*u[1]*u[2]:u[0]*u[2]*u[3],h=We({inputs:{x:e},backend:r,attrs:{shape:[1,p,n.inChannels]}}),f=We({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=xk({a:h,b:f,transposeA:c,transposeB:d,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=We({inputs:{x:m},backend:r,attrs:{shape:n.outShape}});return r.disposeData(h.dataId),r.disposeData(f.dataId),r.disposeData(m.dataId),g}function Iue({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:u,filterHeight:l,inChannels:c,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:b,dataFormat:y}=n,v=y==="channelsLast",x=u*l*c,k=m*f,T=[k,x],C=!1,E=!1,F=[],O=We({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),D=We({inputs:{x:t},backend:r,attrs:{shape:[1,x,-1]}});F.push(O),F.push(D);let R=new kue(T,v),_=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,b]},{type:"int32",data:[f]},{type:"int32",data:[c*u]},{type:"int32",data:[c]}],L=r.runWebGPUProgram(R,[O],O.dtype,_),U=We({inputs:{x:L},backend:r,attrs:{shape:[1,T[0],T[1]]}});F.push(L),F.push(U);let j=[1,T[0],T[1]],K=new kE(j,[1,k,n.outChannels],X().get("WEBGPU_MATMUL_WORK_PER_THREAD"),C,E),q=j[1],Q=j[2],ee=n.outChannels,re=[{type:"int32",data:[q]},{type:"int32",data:[ee]},{type:"int32",data:[Q]}],se=r.runWebGPUProgram(K,[U,D],U.dtype,re),ne=v?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],ie=We({inputs:{x:se},backend:r,attrs:{shape:ne}});F.push(se);for(let te of F)r.disposeData(te.dataId);return ie}var FE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=r,this.hasLeakyreluAlpha=s,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],r=n,s=[t,r],a=[r,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],u=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Us(s,[o,u]),Us(a,[u,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
let divBy4Remainder${e} = flatIndex${e} % 4;
let divBy4Index${e} = flatIndex${e} / 4;
let curData${e} = x.numbers[divBy4Index${e}];
if (divBy4Remainder${e} == 0) {
temp = curData${e};
} else {
// TODO: This could end up being a redundant load with another one in
// the same shader invocation. Perhaps there's an opportunity for
// optimization
let nextData${e} = x.numbers[divBy4Index${e} + 1];
if (divBy4Remainder${e} == 1) {
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
} elseif (divBy4Remainder${e} == 2) {
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
} elseif (divBy4Remainder${e} == 3) {
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
}
}
`}getUserCode(){let t=wE([4,4,1],this.workGroupSize),s=`let outRow = r / uniforms.outShape[2];
let outCol = r % uniforms.outShape[2];
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
let inChCoord = c % uniforms.xShape[3];
var coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
inChCoord);
var resData = vec4<f32>(0.0);
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (coordsInBounds4D(coord, uniforms.xShape)) {
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
} else {
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
${this.getSampleAWithRemainder(1)}
resData = temp;
if (WCol == (uniforms.filterDims[1] - 1)) {
coord = vec4<i32>(
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
${this.getSampleAWithRemainder(2)}
if (inChCoord == 0) {
resData = vec4<f32>(resData.xyz, temp.x);
} elseif (inChCoord == 1) {
resData = vec4<f32>(resData.xy, temp.xy);
} else {
resData = vec4<f32>(resData.x, temp.xyz);
}
}
`}
return resData;`,a=this.fitA?`${s}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
${s}
}
return vec4<f32>(0.0);
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter / 4 + col];
}
return vec4<f32>(0.0);
`,i="",u="";if(this.activation){let d=Gs(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${d}
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
let b = getLeakyreluAlphaAtOutCoords();
${d}
}`,new Error("Leakyrelu is not supported.");i=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${d}
}`}u="value = activation(value, outCoord);"}let l=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${i}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
let r = row;
let c = col * 4;
var batch = i32(globalId.z);
${a}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
${o}
}
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
{
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col * 4);
${l}
${u}
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
value);
}
}
${t}
`}},DE=class{constructor(e,t=!1,n=null,r=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=fk(this.dispatchLayout,this.outputShape),this.elementsPerThread=gk(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=r,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;w.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[e,n],s=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[Us(r,[a,i]),Us(s,[i,o])]}getUserCode(){let e=vk(this.elementsPerThread,this.workGroupSize),t=`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
let coord = vec4<i32>(
batch,
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
col % uniforms.xShape[3]);
// The bounds checking is always needed since we use it to pad zero for the
// 'same' padding type.
if(coordsInBounds4D(coord, uniforms.xShape)) {
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${t}
}
return 0.0;
`,r=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
return W.numbers[row * uniforms.dimBOuter + col];
}
return 0.0;
`,s="",a="";if(this.activation){let u=Gs(this.activation,!1);this.hasPreluActivationWeights?s=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${u}
}`:s=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${u}
}
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${s}
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
${n}
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
${r}
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
${o}
${a}
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${e}
`}},RE=class{constructor(e,t=!1,n=null,r=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=r,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let s=Gs(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${s}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
${s}
}
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
${e}
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
let coord = vec4<i32>(batch, row, col, chan);
if(coordsInBounds4D(coord, uniforms.xShape)) {
return getX(batch, row, col, chan);
}
return 0.0;
}
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
let coord = vec4<i32>(row, col, xChannel, outChannel);
if(coordsInBounds4D(coord, uniforms.wShape)) {
return getW(row, col, xChannel, outChannel);
}
return 0.0;
}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
${n}
${t}
setOutput(batch, row, col, chan, value);
}
}
${hk()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId, localId, numWorkgroups);
let batch = coords[0];
let outChannel = coords[3];
var acc = 0.0;
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
let v = readInp(batch, coordRow, coordCol, xChannel);
let f = readFilt(row, col, xChannel, outChannel);
acc = acc + v * f;
}
}
}
writeResult(batch, coords[1], coords[2], outChannel, acc);
}
`}};function Sue(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:u,dilations:l,dimRoundingMode:c}=n,d=N.convertConv2DDataFormat(u),p=N.computeConv2DInfo(s.shape,a.shape,o,l,i,c,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return $E({x:s,filter:a,convInfo:p,backend:r});if(X().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&s.shape[0]===1)return Iue({x:s,filter:a,convInfo:p,backend:r});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=X().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new RE(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new FE(p):h=new DE(p),!g){let b=p.outShape[1]*p.outShape[2],y=p.outShape[3],v=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[b]},{type:"int32",data:[y]},{type:"int32",data:[v]})}return r.runWebGPUProgram(h,[s,a],s.dtype,m)}var Cue={kernelName:ga,backendName:"webgpu",kernelFunc:Sue},Tue=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=fk(this.dispatchLayout,this.outputShape),this.elementsPerThread=gk(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
var batch = i32(globalId.z);
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return 0.0;
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return 0.0;
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
}
return 0.0;
}
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let coord = vec4<i32>(coordX, coordY, col,
row % uniforms.outBackprop[3]);
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
}
return 0.0;
}
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
var batch = i32(globalId.z);
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
}
${vk(this.elementsPerThread,this.workGroupSize)}
`}},Nue=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${Ue()} {
if(index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputFlat(index, dotProd);
}
}
`}};function _ue(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:u,dataFormat:l,dimRoundingMode:c}=r,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(o,a.shape,i,1,u,c,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(X().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Nue(p);else{f=new Tue(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],b=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[b]})}return n.runWebGPUProgram(f,[s,a],"float32",h)}var Eue={kernelName:ba,backendName:"webgpu",kernelFunc:_ue},Aue=fn({opType:bt.COS}),$ue={kernelName:ya,backendName:"webgpu",kernelFunc:Aue},Fue=fn({opType:bt.COSH}),Due={kernelName:va,backendName:"webgpu",kernelFunc:Fue},Rue=class{constructor(e,t,n,r){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1],this.size=!0;let[s]=t;this.outputShape=[s,n[0],n[1],e],this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=r==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,r,s]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${r};
let width_scale = ${o};
let in_y = ${s};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputFlat(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputFlat(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputFlat(index, newValue);
}
}
}
`}},Pue=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:u,extrapolationValue:l}=r,c=new Rue(s.shape[3],a.shape,i,u),d=[{type:"float32",data:[l]}];return n.runWebGPUProgram(c,[s,a,o],"float32",d)},Oue={kernelName:jo,backendName:"webgpu",kernelFunc:Pue},Mue=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputFlat(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Lue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r,i=s.shape[0],u=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=u*a,p=l*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new Mue(f,o);return n.runWebGPUProgram(g,[s],s.dtype,m)}var Bue={kernelName:qo,backendName:"webgpu",kernelFunc:Lue},PE=class{constructor(e,t=!1,n=null,r=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=r,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let s=Gs(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${s}
}`:e=`
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
${s}
}
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
${e}
${zm()}
fn main([[builtin(global_invocation_id)]] globalId: vec3<u32>) {
let batch = 0;
let r = i32(globalId.x);
let c = i32(globalId.y) * 4;
let d2 = i32(globalId.z) * 4;
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
let d1 = d2;
let q = 0;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var wVals : array<vec4<f32>, 9>;
wVals[0] = getW(0, 0, d1, q);
wVals[1] = getW(0, 1, d1, q);
wVals[2] = getW(0, 2, d1, q);
wVals[3] = getW(1, 0, d1, q);
wVals[4] = getW(1, 1, d1, q);
wVals[5] = getW(1, 2, d1, q);
wVals[6] = getW(2, 0, d1, q);
wVals[7] = getW(2, 1, d1, q);
wVals[8] = getW(2, 2, d1, q);
var xVals : array<array<vec4<f32>, 6>, 3>;
for (var wR = 0; wR < 3; wR = wR + 1) {
let xR = xRCorner + wR * uniforms.dilation[0];
for (var wC = 0; wC < 6; wC = wC + 1) {
let xC = xCCorner + wC * uniforms.dilation[1];
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
xVals[wR][wC] = vec4<f32>(0.0);
} else {
xVals[wR][wC] = getX(batch, xR, xC, d1);
}
}
}
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
for (var wR = 0; wR < 3; wR = wR + 1) {
for (var wC = 0; wC < 3; wC = wC + 1) {
let indexW = wR * 3 + wC;
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d2);
if (coordsInBounds4D(coords, uniforms.outShape)) {
${n}
${t}
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
}
}
}
`}},OE=class{constructor(e,t=!1,n=null,r=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
inDims : vec2<i32>; filterHeight : i32; filterWidth : i32;
channelMul : i32;`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=r,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let s=Gs(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
${s}
}`:e=`
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
${s}
}
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByCoords(coords);":"";return`
${e}
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
value : f32) {
let coord = vec4<i32>(batch, row, col, chan);
if (coordsInBounds4D(coord, uniforms.outShape)) {
setOutput(batch, row, col, chan, value);
}
}
${hk()} {
let coords = getOutputCoordsWithFlatDispatchLayout(globalId,
localId, numWorkgroups);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let d2 = coords[3];
let d1 = d2 / uniforms.channelMul;
let q = d2 - d1 * uniforms.channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
// Here using a constant value |this.convInfo.filterHeight| instead
// of uniform value is in order to loop unrolling.
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = getX(batch, xR, xC, d1);
let wVal = getW(wR, wC, d1, q);
dotProd = dotProd + xVal * wVal;
}
}
}
${n}
${t}
writeResult(batch, coords[1], coords[2], d2, dotProd);
}
`}};function zue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:u,dimRoundingMode:l}=r,c=u;c==null&&(c=[1,1]);let d=N.computeConv2DInfo(s.shape,a.shape,o,c,i,l,!0),p=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}],h;return d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?h=new PE(d):(h=new OE(d),p.push({type:"int32",data:[d.filterHeight]},{type:"int32",data:[d.filterWidth]},{type:"int32",data:[d.outChannels/d.inChannels]})),n.runWebGPUProgram(h,[s,a],s.dtype,p)}var Wue={kernelName:xa,backendName:"webgpu",kernelFunc:zue},ME=Rn({opSnippet:Mt.MUL,cpuKernelImpl:Sie,supportsComplex:!0}),Vue={kernelName:Ma,backendName:"webgpu",kernelFunc:ME},Uue=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isNanCustom(candidate)) {
bestValue = uniforms.NAN;
} elseif (!isNanCustom(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputFlat(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromFlatIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ue()}
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x.numbers[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};function mp(e,t,n,r,s){let a=e.shape.length,o=[],i=w.parseAxisParam(t,e.shape),u=i,l=N.getAxesPermutation(u,a),c=e;l!=null&&(c=cu({inputs:{x:e},attrs:{perm:l},backend:s}),u=N.getInnerMostAxes(u.length,a),o.push(c)),N.assertAxesAreInnerMostDims(r,u,a);let[d,p]=N.computeOutAndReduceShapes(c.shape,u),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let f;if((r==="max"||r==="prod")&&s.shouldExecuteOnCPU([c])){let m=s.tensorMap.get(c.dataId).values;switch(r){case"max":let g=wie(m,w.sizeFromShape(p),h,e.dtype);f=s.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:b,outShape:y,outDtype:v}=Nie(c.shape,c.dtype,m,u);f=s.makeTensorInfo(y,v,b);break;default:throw new Error(`${r} CPU implementation is not yet supported.`)}}else{let m=w.sizeFromShape(p),b=w.sizeFromShape(c.shape)/m,y={windowSize:m,inSize:m,batchSize:b,outSize:1},v=r==="mean"?"float32":yd(e.dtype),x=[{type:"int32",data:[m]}],k=new Uue(y,r),T=s.runWebGPUProgram(k,[c],v,x);o.push(T),f=We({inputs:{x:T},attrs:{shape:h},backend:s})}return o.forEach(m=>s.disposeData(m.dataId)),f}function Sk(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return mp(s,a,o,"sum",n)}var Gue={kernelName:Ka,backendName:"webgpu",kernelFunc:Sk};function Hue(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:u}=N.decodeEinsumEquation(s,a.length);N.checkEinsumDimSizes(o.length,u,a);let{path:l,steps:c}=N.getEinsumComputePath(i,u),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,u[g]),v;N.isIdentityPermutation(b)?v=a[g]:(v=cu({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=We({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),p===null?p=v:(p=ME({inputs:{a:v,b:p},backend:n}),f.push(p))}m<d-1&&(l[m]>=0&&(p=Sk({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var jue={kernelName:Zl,backendName:"webgpu",kernelFunc:Hue},que=fn({opType:bt.ELU}),Kue={kernelName:ka,backendName:"webgpu",kernelFunc:que},Xue=Rn({opSnippet:Mt.EQUAL,dtype:"bool",cpuKernelImpl:lie}),Yue={kernelName:Ko,backendName:"webgpu",kernelFunc:Xue},LE=fn({opType:bt.EXP,cpuKernelImpl:die,dtype:"float32"}),Que={kernelName:Ia,backendName:"webgpu",kernelFunc:LE};function Ck(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),u=s;return s<0&&(w.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),u=o+s+1),i.splice(u,0,1),We({inputs:{x:a},backend:r,attrs:{shape:i}})}var Zue={kernelName:Xo,backendName:"webgpu",kernelFunc:Ck},Jue=fn({opType:bt.EXPM1,cpuKernelImpl:pie}),ece={kernelName:Yo,backendName:"webgpu",kernelFunc:Jue},tce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
setOutputFlat(index, uniforms.value);
}
}
`}};function al(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||w.inferDtype(s),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new tce(r),i=[{type:"float32",data:[s]}];return t.runWebGPUProgram(o,[],a,i)}}var nce={kernelName:Ju,backendName:"webgpu",kernelFunc:al},rce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputFlat(index, outputValue);
}
}
`}},sce={kernelName:Qo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new rce(n.shape);return r.runWebGPUProgram(s,[n],n.dtype)}},ace=fn({opType:bt.FLOOR,cpuKernelImpl:hie}),oce={kernelName:Sa,backendName:"webgpu",kernelFunc:ace},ice=Rn({opSnippet:Mt.INT_DIV,dtype:"int32"}),uce={kernelName:Ca,backendName:"webgpu",kernelFunc:ice},cce=(e,t,n,r,s)=>{let a=[r,...n];return s&&a.push(s),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},BE=(e,t,n,r,s,a=!1)=>{let o={dtype:s.dtype,shape:s.shape},i=zae(r,o,t,a),u=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:u,entryPoint:"main"}})};function zE(e,t,n,r="",s=""){return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+r+s}function WE(e){let{externalImage:t,backend:n,attrs:r,outShape:s,useImport:a}=e,{numChannels:o}=r,i=w.sizeFromShape(s),u=w.computeStrides(s),l=n.makeTensorInfo(s,"int32"),c=n.getFromPixelsProgram(a?"import":"copyExternal");c.updateOutputShape(s);let d=[l.shape],p=[l.dtype,a?"import":"copyExternal"],h=zE(c,d,p),f=c.getLayout(n.device),m=n.getAndSavePipeline(h,()=>BE(n.device,c,f.pipelineLayout,[],l,!0));c.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:c.makeInputTexture(n.device,s[1],s[0])},[s[1],s[0]]);let g=n.tensorMap.get(l.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let b=[i,o,...u,...c.dispatch];c.setUniform(n.device,b);let y;if(a){let v={source:t};y=n.device.importExternalTexture(v)}else y=c.inputTexture.createView();return n.runFromPixelsProgram(c,g.bufferInfo.buffer,f,y,l.dataId),l}var lce={kernelName:ld,backendName:"webgpu",kernelFunc:dce},ol;function dce(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r;if(s==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,u=typeof HTMLCanvasElement!="undefined"&&s instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&s instanceof OffscreenCanvas,l=typeof ImageBitmap!="undefined"&&s instanceof ImageBitmap,[c,d]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],p=[d,c,a];if(X().getBool("WEBGPU_USE_IMPORT")&&o)return WE({externalImage:s,backend:n,attrs:r,outShape:p,useImport:!0});if((o||i)&&(ol==null&&(ol=document.createElement("canvas").getContext("2d")),ol.canvas.width=c,ol.canvas.height=d,ol.drawImage(s,0,0,c,d),s=ol.canvas),l||u||o||i)return WE({externalImage:s,backend:n,attrs:r,outShape:p,useImport:!1});let h=s.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(s.width*s.height*a);let b=h.length,y=0;for(let v=0;v<b;v++)v%4<a&&(f[y++]=h[v])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var pce=class{constructor(e,t,n,r,s){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset")),s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale")),this.offsetShape=r,this.scaleShape=s,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalIndex(index)"),`
${Ue()}
if (index < uniforms.size)
{
let xValue = getXAtOutCoordsByGlobalIndex(index);
let meanValue = getMeanAtOutCoordsByGlobalIndex(index);
let varianValue = getVarianceAtOutCoordsByGlobalIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputFlat(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},hce={kernelName:Ta,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r,scale:s,offset:a,mean:o,variance:i}=e,{varianceEpsilon:u}=t,l=n,c=[r,o,i],d=null;a!=null&&(d=a.shape,c.push(a));let p=null;s!=null&&(p=s.shape,c.push(s));let h=new pce(r.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[u]}];return l.runWebGPUProgram(h,c,r.dtype,f)}};function fce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(s.shape,a.shape,u,d,l,p,!1,m),b=o!=null,y=i!=null,v;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return $E({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let x=X().getBool("WEBGPU_USE_NAIVE_CONV2D"),k=g.inChannels%4==0&&g.outChannels%4==0,T=[g.padInfo.top,g.padInfo.left],C=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...T]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(x)v=new RE(g,b,h,y);else{k?v=new FE(g,b,h,y):v=new DE(g,b,h,y);let F=g.outShape[1]*g.outShape[2],O=g.outShape[3],D=g.filterHeight*g.filterWidth*g.inShape[3];C.push({type:"int32",data:[F]},{type:"int32",data:[O]},{type:"int32",data:[D]})}let E=[s,a];return b&&E.push(o),y&&E.push(i),n.runWebGPUProgram(v,E,s.dtype,C)}var mce={kernelName:no,backendName:"webgpu",kernelFunc:fce};function gce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:d,activation:p}=r,h=c;h==null&&(h=[1,1]),w.assert(N.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let f=N.computeConv2DInfo(s.shape,a.shape,u,h,l,d,!0),m=[s,a],g=o!=null,b=i!=null;g&&m.push(o),b&&m.push(i);let y=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}],v;return f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?v=new PE(f,g,p,b):(v=new OE(f,g,p,b),y.push({type:"int32",data:[f.filterHeight]},{type:"int32",data:[f.filterWidth]},{type:"int32",data:[f.outChannels/f.inChannels]})),n.runWebGPUProgram(v,m,"float32",y)}var bce={kernelName:ro,backendName:"webgpu",kernelFunc:gce},yce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${on(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputFlat(index, getA(flattenIndex, coords[1]));
}
}
`}};function vce(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=w.sizeFromShape(r.shape),[u,l,c,d]=N.prepareAndValidate(r,s),p=We({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),h=We({inputs:{x:r},backend:n,attrs:{shape:[w.sizeFromShape(r.shape)/c,c]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.readSync(s.dataId),v=n.bufferSync(r),x=fie(y,v,r.dtype,l,o,c,d,r.shape,i);return n.makeTensorInfo(u,r.dtype,x.values)}let f=new yce(o,[l,c]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),b=We({inputs:{x:g},backend:n,attrs:{shape:u}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),b}var xce={kernelName:Jo,backendName:"webgpu",kernelFunc:vce},wce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=kce(this.aShape,"i32");return`
${Ue()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function kce(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s<e.length;s++)s===2?r.push(`${t}(getIndices(resRC.x, resRC.z))`):r.push(`${n[s]}`);return r.join()}function VE(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r,u=w.parseAxisParam(o,s.shape)[0],l=N.segment_util.collectGatherOpShapeInfo(s,a,u,i),c=w.sizeFromShape(a.shape),d=[],p=We({inputs:{x:s},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=We({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});d.push(p),d.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([s,a])){let v=n.tensorMap.get(h.dataId).values,x=$e(h.shape,h.dtype,v),T=n.tensorMap.get(p.dataId).values,C=$e(p.shape,p.dtype,T),E=mie(C,x,f);return d.forEach(F=>n.disposeData(F.dataId)),n.makeTensorInfo(l.outputShape,E.dtype,E.values)}let m=new wce(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let b=We({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return d.forEach(y=>n.disposeData(y.dataId)),b}var Ice={kernelName:Zo,backendName:"webgpu",kernelFunc:VE},Sce=Rn({opSnippet:Mt.GREATER,cpuKernelImpl:bie,dtype:"bool"}),Cce={kernelName:ei,backendName:"webgpu",kernelFunc:Sce},Tce=Rn({opSnippet:Mt.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:gie}),Nce={kernelName:Na,backendName:"webgpu",kernelFunc:Tce},_ce=Rn({opSnippet:Mt.LESS,dtype:"bool",cpuKernelImpl:vie}),Ece={kernelName:ni,backendName:"webgpu",kernelFunc:_ce},Ace=Rn({opSnippet:Mt.LESS_EQUAL,dtype:"bool",cpuKernelImpl:yie}),$ce={kernelName:ri,backendName:"webgpu",kernelFunc:Ace},Fce=fn({opType:bt.LOG,cpuKernelImpl:xie}),Dce={kernelName:Ea,backendName:"webgpu",kernelFunc:Fce},Rce=Rn({opSnippet:Mt.LOGICAL_AND,dtype:"bool"}),Pce={kernelName:si,backendName:"webgpu",kernelFunc:Rce},Oce=fn({opType:bt.LOGICAL_NOT}),Mce={kernelName:sc,backendName:"webgpu",kernelFunc:Oce};function UE(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r;return mp(s,a,o,"max",n)}var Lce={kernelName:Aa,backendName:"webgpu",kernelFunc:UE},Bce=Rn({opSnippet:Mt.MAX,cpuKernelImpl:kie}),zce={kernelName:$a,backendName:"webgpu",kernelFunc:Bce};function Wce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:u}=r,l=1,c=N.computePool2DInfo(s.shape,a,o,l,i,u),d,p=[];if(c.filterHeight===1&&c.filterWidth===1){if(w.arraysEqual(c.inShape,c.outShape))return Lr({inputs:{x:s},backend:n});d=new _E(c),p.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else d=new NE(c,"max"),p.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(d,[s],s.dtype,p)}var Vce={kernelName:Fa,backendName:"webgpu",kernelFunc:Wce};function Uce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{keepDims:a,axis:o}=r;return mp(s,o,a,"mean",n)}var Gce={kernelName:Da,backendName:"webgpu",kernelFunc:Uce};function Hce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return mp(s,a,o,"min",n)}var jce={kernelName:Ra,backendName:"webgpu",kernelFunc:Hce},qce=Rn({opSnippet:Mt.MIN,cpuKernelImpl:Iie}),Kce={kernelName:Pa,backendName:"webgpu",kernelFunc:qce},Xce=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((r,s)=>r[0]+e[s]+r[1]),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((r,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((u,l)=>`uniforms.pad${l}[0]`).join(","),n=this.xShape.map((u,l)=>`uniforms.pad${l}[0] + uniforms.xShape${e>1?`[${l}]`:""}`).join(","),r=e===1?"start":"start[i]",s=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=on(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ue()}
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromFlatIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${r}) {
${a} = ${r} * 2 - ${a} - ${this.offset};
} elseif(${a} >= ${s}) {
${a} = (${s} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputFlat(index, getX(${i}));
}
}
`}},Yce={kernelName:Oa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{paddings:s,mode:a}=t,o=n,i=s.map(c=>({type:"int32",data:[c[0],c[1]]})),u=new Xce(r.shape,s,a);return o.runWebGPUProgram(u,[r],r.dtype,i)}};function Qce(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.tensorMap.get(r.dataId),[o,i]=Cie(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s=new Wm(r.shape,bt.NEG);return n.runWebGPUProgram(s,[r],r.dtype)}var Zce={kernelName:ai,backendName:"webgpu",kernelFunc:Qce};function Jce(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u}=r,l=n.readSync(s.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=Dr.nonMaxSuppressionV3Impl(l,c,o,i,u);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var ele={kernelName:ii,backendName:"webgpu",kernelFunc:Jce};function tle(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:u,softNmsSigma:l}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),p=o,h=i,f=u,m=l,{selectedIndices:g,selectedScores:b}=Dr.nonMaxSuppressionV5Impl(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var nle={kernelName:ui,backendName:"webgpu",kernelFunc:tle};function Um(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=fp({inputs:{input:r},backend:n}),a=Um({inputs:{x:s},backend:n}),o=Vm({inputs:{input:r},backend:n}),i=Um({inputs:{x:o},backend:n}),u=rl({inputs:{real:a,imag:i},backend:n});return n.disposeData(s.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),u}else return al({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var rle={kernelName:Ni,backendName:"webgpu",kernelFunc:Um};function GE(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=fp({inputs:{input:r},backend:n}),a=GE({inputs:{x:s},backend:n}),o=Vm({inputs:{input:r},backend:n}),i=Um({inputs:{x:o},backend:n}),u=rl({inputs:{real:a,imag:i},backend:n});return n.disposeData(s.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),u}else return al({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var sle={kernelName:ci,backendName:"webgpu",kernelFunc:GE};function ale(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return Ck({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],u=t.map(c=>{let d=Ck({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),l=AE({inputs:u,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeData(c.dataId)),l}var ole={kernelName:di,backendName:"webgpu",kernelFunc:ale},ile=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,r)=>n[0]+e[r]+n[1]),this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=on(e),n=this.xShape.map((c,d)=>`uniforms.pad${d}[0]`).join(","),r=this.xShape.map((c,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),s=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${r})`:`${r}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",u=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ue()}
if (index < uniforms.size) {
let start = ${s};
let end = ${a};
let outC = getCoordsFromFlatIndex(index);
if (${o} || ${i}) {
setOutputFlat(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputFlat(index, getX(${u}));
}
}
}
`}},HE=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;if(a.every(l=>w.arraysEqual(l,[0,0])))return Lr({inputs:{x:s},backend:n});if(w.sizeFromShape(s.shape)===0){let l=a.map((c,d)=>c[0]+s.shape[d]+c[1]);return al({backend:n,attrs:{shape:l,value:o,dtype:s.dtype}})}let i=[{type:"float32",data:[o]}];a.map(l=>i.push({type:"int32",data:[l[0],l[1]]}));let u=new ile(s.shape,a);return n.runWebGPUProgram(u,[s],s.dtype,i)},ule={kernelName:La,backendName:"webgpu",kernelFunc:HE},cle=Rn({opSnippet:Mt.POW}),lle={kernelName:Ba,backendName:"webgpu",kernelFunc:cle};function dle(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=new SE(Mt.PRELU,r.shape,s.shape);return n.runWebGPUProgram(a,[r,s],"float32")}var ple={kernelName:za,backendName:"webgpu",kernelFunc:dle};function hle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return mp(s,a,o,"prod",n)}var fle={kernelName:pi,backendName:"webgpu",kernelFunc:hle},mle=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=_ie(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},gle={kernelName:ic,backendName:"webgpu",kernelFunc:mle},jE=Rn({opSnippet:Mt.DIV}),ble={kernelName:wa,backendName:"webgpu",kernelFunc:jE},yle=fn({opType:bt.RELU}),vle={kernelName:Wa,backendName:"webgpu",kernelFunc:yle},xle=fn({opType:bt.RELU6}),wle={kernelName:Ua,backendName:"webgpu",kernelFunc:xle},kle=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>; halfPixelCenters : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputFlat(index, newValue);
}
}
`}};function Ile(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,size:o,halfPixelCenters:i}=r,[u,l]=o,c=a&&u>1?1:0,d=a&&l>1?1:0,h=[{type:"float32",data:[c,d]},{type:"float32",data:[i?.5:0]}],f=new kle(s.shape,u,l);return n.runWebGPUProgram(f,[s],"float32",h)}var Sle={kernelName:Va,backendName:"webgpu",kernelFunc:Ile},Cle=class{constructor(e,t,n,r){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>; roundBase : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${r}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputFlat(index, newValue);
}
}
`}};function Tle(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[u,l]=i,c=a&&u>1?1:0,d=a&&l>1?1:0,h=[{type:"float32",data:[c,d]},{type:"float32",data:[a?.5:0]}],f=new Cle(s.shape,u,l,o);return n.runWebGPUProgram(f,[s],s.dtype,h)}var Nle={kernelName:cc,backendName:"webgpu",kernelFunc:Tle},_le=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
cosRadians : f32;`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputFlat(index, outputValue);
}
}
`}},Ele={kernelName:_i,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,u=new _le(r.shape,a),[l,c]=N.getImageCenter(o,r.shape[1],r.shape[2]),d=[{type:"float32",data:[l]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(s)]},{type:"float32",data:[Math.cos(s)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(u,[r],r.dtype,d)}},Ale=fn({opType:bt.RSQRT,cpuKernelImpl:Eie}),$le={kernelName:Ga,backendName:"webgpu",kernelFunc:Ale},Fle=class{constructor(e,t,n,r,s,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=ze(e),this.dispatch=_e(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${r}_${this.sliceDimGreaterThanOne}_${o}`;let i=on(s.length);this.uniforms=`sliceDim : i32; strides: ${i}; size: i32;`,this.updatesRank=r,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",r="",s="",a="";this.updatesRank===1?(r="coords[0]",s="flattenedIndex",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.updatesRank===2&&(r="coords[0], coords[1]",s="vec2<i32>(flattenedIndex, coords[1])",a=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.updatesShape[1];
let d1 = index - d0 * uniforms.updatesShape[1];
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${r})`,i=this.type==="int32"?"atomicAdd(&(result.numbers[flatIndex]), i32(updateValue));":`
var assumed = atomicLoad(&(result.numbers[flatIndex]));
var success = 0;
for (; success == 0;) {
let new = bitcast<f32>(assumed) + updateValue;
let newI32 = bitcast<i32>(new);
let resValue = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32);
assumed = resValue[0];
success = resValue[1];
}
`;return`
${a}
${Ue()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue = ${o};
let flatIndex = getOutputFlatIndex(${s});
${i}
}
}`}};function Dle(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:u,sliceSize:l,strides:c,outputSize:d}=N.calculateShapes(a,s,o),p=[d/l,l];if(d===0)return n.makeTensorInfo(o,s.dtype);let h=We({inputs:{x:s},backend:n,attrs:{shape:[u,i]}}),f=We({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=f.dtype,g=al({backend:n,attrs:{shape:p,value:0,dtype:m}}),b=w.sizeFromShape(f.shape),y=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[b]}],v=new Fle(f.shape,i,h.shape.length,f.shape.length,c,p,m),x=n.runWebGPUProgram(v,[f,h],m,y,g),k=We({inputs:{x},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(x.dataId),k}var Rle={kernelName:gi,backendName:"webgpu",kernelFunc:Dle},Ple=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let r=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${r[o]}`),o<this.cRank&&s.push(`${r[o]}`);e=s.join(),t=a.join()}return`
${Ue()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputFlat(index, getA(${t}));
} else {
setOutputFlat(index, getB(${t}));
}
}
}
`}};function Ole(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=new Ple(r.shape.length,s.shape,s.shape.length);return n.runWebGPUProgram(o,[r,s,a],In(s.dtype,a.dtype))}var Mle={kernelName:bi,backendName:"webgpu",kernelFunc:Ole},Lle=fn({opType:bt.SIGMOID}),Ble={kernelName:ja,backendName:"webgpu",kernelFunc:Lle},zle=fn({opType:bt.SIN}),Wle={kernelName:Ha,backendName:"webgpu",kernelFunc:zle},Vle=fn({opType:bt.SINH}),Ule={kernelName:vi,backendName:"webgpu",kernelFunc:Vle},qE=Rn({opSnippet:Mt.SUB,cpuKernelImpl:Rie,supportsComplex:!0}),Gle={kernelName:Qa,backendName:"webgpu",kernelFunc:qE};function Hle(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=w.parseAxisParam([a],s.shape),i=UE({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),u=N.expandShapeToKeepDim(i.shape,o),l=We({inputs:{x:i},backend:n,attrs:{shape:u}}),c=qE({inputs:{a:s,b:l},backend:n}),d=LE({inputs:{x:c},backend:n}),p=Sk({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=We({inputs:{x:p},backend:n,attrs:{shape:u}}),f=jE({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(l.dataId),n.disposeData(c.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var jle={kernelName:Xa,backendName:"webgpu",kernelFunc:Hle},qle=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;w.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...o);for(let b=1+a.length;b<s.shape.length;++b)u.push([0,0]);let l=[],c=HE({inputs:{x:s},backend:n,attrs:{paddings:u,constantValue:0}}),d=N.getReshaped(c.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(c.shape,a,i,!1),f=We({inputs:{x:c},backend:n,attrs:{shape:d}}),m=cu({inputs:{x:f},backend:n,attrs:{perm:p}}),g=We({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeData(b.dataId)),g},Kle={kernelName:xi,backendName:"webgpu",kernelFunc:qle},Xle=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${r}_${i}`;let u=on(s.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${u};`;let l="";n===1?l="i":n===2&&(l="i, j"),this.indicesSnippet=`getIndices(${l})`;let c="";r===1?c="i":r===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
${Ue()}
let globalIndex = index * ${this.workPerThread};
if (globalIndex < uniforms.size) {
var sum = vec4<f32>(0.0);
var found = vec4<bool>(false);
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${this.indicesSnippet}));
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
let coords = getCoordsFromFlatIndex(curIndex);
if (flattenedIndex == coords[0]) {
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
found[innerIndex] = true;
}
}
}
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
let curIndex = globalIndex + innerIndex;
if (curIndex < uniforms.size)
{
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
}
}
}
}`}};function Yle(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:u,numUpdates:l,strides:c,outputSize:d}=N.calculateShapes(a,s,i),p=!1,h=[{type:"int32",data:[l]},{type:"int32",data:[u]},{type:"int32",data:c}],f=new Xle(l,u,s.shape.length,a.shape.length,c,[d,1],p),m=n.runWebGPUProgram(f,[a,s,o],a.dtype,h),g=We({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var Qle={kernelName:id,backendName:"webgpu",kernelFunc:Yle};function Zle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],u=N.prepareSplitSize(s,a,i),l=s.shape.length,c=new Array(l).fill(0),d=s.shape.slice();return u.map(p=>{let h=[...d];h[i]=p;let f=sl({inputs:{x:s},backend:n,attrs:{begin:c,size:h}});return c[i]+=p,f})}var Jle={kernelName:wi,backendName:"webgpu",kernelFunc:Zle},ede=fn({opType:bt.SQRT}),tde={kernelName:qa,backendName:"webgpu",kernelFunc:ede},nde={kernelName:fc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t,s=new Wm(n.shape,bt.SQUARE);return r.runWebGPUProgram(s,[n],n.dtype)}},rde=Rn({opSnippet:Mt.SQUARED_DIFFERENCE}),sde={kernelName:Ya,backendName:"webgpu",kernelFunc:rde},ade=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=on(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let r=0;t=this.outputShape.map((s,a)=>(r++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${r-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
setOutputFlat(index, getX(${t}));
}
}
`}};function ode(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=$t.sliceInfo(s.shape,a,o,i,u,l,c,d,p),k;if(m)k=We({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let T=$t.computeOutShape(y,v,x),C=sl({inputs:{x:s},backend:n,attrs:{begin:y,size:T}});k=We({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeData(C.dataId)}else if(n.shouldExecuteOnCPU([s])){let C=n.readSync(s.dataId),E=$e(s.shape,s.dtype,C),F=Fie(h,E,x,y);k=n.makeTensorInfo(f,s.dtype,F.values)}else{let C=new ade(h),E=[{type:"int32",data:y},{type:"int32",data:x}],F=n.runWebGPUProgram(C,[s],s.dtype,E);k=We({inputs:{x:F},backend:n,attrs:{shape:f}}),n.disposeData(F.dataId)}return k}var ide={kernelName:ki,backendName:"webgpu",kernelFunc:ode};function ude(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:u,preserveShortSequences:l}=r,{data:c,dataSplits:d}=t,p=n.readSync(c.dataId),h=n.readSync(d.dataId),[f,m]=Die(p,h,s,a,o,i,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var cde={kernelName:ud,backendName:"webgpu",kernelFunc:ude},lde=fn({opType:bt.TANH}),dde={kernelName:Za,backendName:"webgpu",kernelFunc:lde},pde=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[r]*t[r];this.outputShape=n,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=hde(this.rank,"uniforms.");return`
${Ue()}
if (index < uniforms.size) {
let resRC = getCoordsFromFlatIndex(index);
setOutputFlat(index, getA(${e}));
}
}
`}};function hde(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s<e;s++)r.push(`(${n[s]} % ${t}aShape[${s}])`);return r.join()}function fde(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;if(n.shouldExecuteOnCPU([s])||s.dtype==="string"||s.shape.length>=5){let u=n.readSync(s.dataId),l=s.dtype==="string"?u.map(p=>w.decodeString(p)):u,c=$e(s.shape,s.dtype,l),d=Pie(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new pde(s.shape,a);return n.runWebGPUProgram(o,[s],s.dtype)}var mde={kernelName:As,backendName:"webgpu",kernelFunc:fde},gde=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
dir : i32; inc : i32;`,this.shaderKey="swap"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}},bde=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge"}getUserCode(){return`
${Ue()}
if (index < uniforms.size) {
let outC = getCoordsFromFlatIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputFlat(index, f32(i0));
} else {
setOutputFlat(index, f32(i1));
}
}
}
`}};function il(e,t){t!==null&&e.disposeData(t.dataId)}function KE(e){let t=1;for(;t<e;)t*=2;return t}function yde(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r,i=s.shape,u=i[i.length-1];if(n.shouldExecuteOnCPU([s])){let k=n.readSync(s.dataId),[T,C]=Oie(k,i,s.dtype,a,o);return[n.makeTensorInfo(T.shape,T.dtype,T.values),n.makeTensorInfo(C.shape,C.dtype,C.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,s.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(u===1)return[s,al({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=w.sizeFromShape(i)/u,d=We({inputs:{x:s},attrs:{shape:[c,u]},backend:n}),p=KE(a),h=KE(u),f=null,m=()=>f===null?[d,d]:[d,f],g=(k,T,C)=>{let E=m(),F=new gde(C),D=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[k]},{type:"int32",data:[T]}],R=f;f=n.runWebGPUProgram(F,E,"int32",D),il(n,R)};for(let k=1;k<p;k*=2){let T=k*2;for(let C=k;C>=1;C/=2)g(T,C,[c,h])}for(let k=h;k>p;k/=2){let T=m(),C=new bde([c,k/2]),F=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],O=f;f=n.runWebGPUProgram(C,T,"int32",F),il(n,O);let D=p/2,R=D*2;for(let _=D;_>=1;_/=2)g(R,_,f.shape)}let b=f;f=sl({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),il(n,b);let y=VE({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});il(n,d);let v=i.slice(0,-1);v.push(a),b=f,f=We({inputs:{x:f},attrs:{shape:v},backend:n}),il(n,b);let x=y;return y=We({inputs:{x:y},attrs:{shape:v},backend:n}),il(n,x),[y,f]}var vde={kernelName:Si,backendName:"webgpu",kernelFunc:yde},xde=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} elseif (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} elseif (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${Ue()}
if (index < uniforms.size) {
let coords = getCoordsFromFlatIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputFlat(index, outputValue);
}
}
`}};function wde(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:u,outputShape:l}=r,[c,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[c,f,m,h],b=new xde(g),y=o==="nearest"?1:2,v;switch(i){case"constant":v=1;break;case"reflect":v=2;break;case"wrap":v=3;break;case"nearest":v=4;break;default:v=1;break}let x=[{type:"int32",data:[y]},{type:"int32",data:[v]},{type:"float32",data:[u]}];return n.runWebGPUProgram(b,[s,a],"float32",x)}var kde={kernelName:Ci,backendName:"webgpu",kernelFunc:wde};function Ide(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,u=s.shape[a],l=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(l[c++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){p[a]=m;let g=sl({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),b=We({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var Sde={kernelName:Ti,backendName:"webgpu",kernelFunc:Ide},Cde=[nie,Bie,Wie,Gie,Yie,Zie,eue,nue,iue,due,hue,bue,oie,wue,Cue,Eue,$ue,Due,Oue,Bue,Wue,jue,Kue,Yue,Zue,Que,ece,nce,sce,lce,oce,uce,hce,mce,bce,xce,Ice,Cce,Nce,aie,vue,Ece,$ce,Dce,Pce,Mce,Lce,zce,Vce,Gce,jce,Kce,Yce,Vue,Zce,ele,nle,uue,sle,ole,ule,ple,fle,lle,gle,cue,ble,vle,wle,eie,Sle,Nle,Ele,$le,Rle,Mle,Ble,Wle,Ule,aue,ide,cde,jle,Kle,Jle,Qle,tde,nde,sde,Gle,Gue,dde,mde,vde,kde,Kie,Sde,rle];for(let e of Cde)gc(e);var Tde=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=XE(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let s=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(s),s}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let r=XE(t,n);this.freeBuffers.has(r)||this.freeBuffers.set(r,[]),this.freeBuffers.get(r).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let s=this.usedBuffers.get(r),a=s.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");s.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function XE(e,t){return`${e}_${t}`}var YE=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){w.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=ze(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
${Ue()}
let flatIndexBase = index * uniforms.numChannels;
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
let flatIndex = flatIndexBase + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromFlatIndex(flatIndexBase);
let values = ${e};
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
}
}
}
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,r)=>n===this.lastUniformData[r])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),r=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:r}}},Nde=class extends YE{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),r=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:r}}},_de=X().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),QE=class extends Mu{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!yk())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Tde(this.device),this.tensorMap=new Gl(this,is()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),X().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return QE.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:r}=this.tensorMap.get(e);r!=null&&(this.disposeData(r.real.dataId,!0),this.disposeData(r.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()},s=w.sizeFromShape(t)*bk(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(r,{dtype:n,values:e,bufferInfo:{byteSize:s,usage:this.defaultGpuBufferUsage()},refCount:1}),r}move(e,t,n,r,s){if(r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=w.sizeFromShape(n)*bk(r);this.tensorMap.set(e,{dtype:r,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:s})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new YE),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Nde),this.fromPixelImportProgram;default:w.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),X().getBool("WEBGPU_USE_PROFILE_TOOL")&&(w.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let r;if(t.dtype==="complex64"){let s=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=s[0],o=s[1];r=N.mergeRealAndImagArrays(a,o)}else{let s=await this.getBufferData(t);r=yE(s,t.dtype)}return this.convertAndCacheOnCPU(e,r),r}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return $e(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=w.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),a=w.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(s);return o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,r=new DataView(new ArrayBuffer(t*n)),s=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{r.setInt32(s*n,i,!0),s++}):a.type==="uint32"?o.forEach(i=>{r.setUint32(s*n,i,!0),s++}):o.forEach(i=>{r.setFloat32(s*n,i,!0),s++})}),r}computePadding(e){let t=0,n=0,r=0,s=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:w.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let u=0;u<n;++u)s.push({type:a.type,data:[0]}),r++;s.push({type:a.type,data:a.data}),r=r+a.data.length,t+=a.data.length+n}),this.arrayToDataView(s,r)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let s=0;s<e;s++)t.push({binding:s+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),r=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:r}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,r,s){if(!s){if(s=this.makeTensorInfo(e.outputShape,n),w.sizeFromShape(s.shape)===0){let E=this.tensorMap.get(s.dataId);return E.values=w.getTypedArrayFromDType(s.dtype,0),s}this.uploadToGPU(s.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(s).map(E=>E.shape),i="int32";o.map(E=>{a.push({type:i,data:E})});let u=w.computeStrides(s.shape);if(a.push({type:i,data:u}),e.size){let E=w.sizeFromShape(e.outputShape);a.push({type:i,data:[e.isVec4?E/4:E]})}r&&(a=[...a,...r]);let l=null,c=this.computePadding(a),d=c.byteLength;l=this.makeUniformsDataView(c);let p=t.map((E,F)=>{if(E.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(E.dataId),{dtype:this.tensorMap.get(E.dataId).dtype,shape:E.shape,name:e.variableNames[F]}}),h=p.map(E=>E.dtype).concat(s.dtype),f=p.map(E=>N.getBroadcastDims(E.shape,s.shape)),m=p.map(E=>w.arraysEqual(E.shape,s.shape)).join("_"),g=f.map(E=>E.join("_")).join(";"),b=zE(e,o,h,g,m),{bindGroupLayout:y,pipelineLayout:v}=this.getCachedOrCreateLayout(e.variableNames.length),x=this.getAndSavePipeline(b,()=>BE(this.device,e,v,p,s)),k=this.activeTimers!=null,T=cce(this.device,y,t.map(E=>this.tensorToBinding(E)),this.tensorToBinding(s),l);this.ensureCommandEncoderReady();let C=this.getComputePass();if(k&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,0),C.setPipeline(x),C.setBindGroup(0,T),C.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),k&&this.supportTimeQuery&&C.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(E=>{this.commandQueueOwnedIds.add(E.dataId)}),this.commandQueueOwnedIds.add(s.dataId),l){let E={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:l.buffer};this.uniformDisposalQueue.push(E)}return X().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),k&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),s}runFromPixelsProgram(e,t,n,r,s){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:r},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(s),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let r=new BigUint64Array(n.getMappedRange()),s=Number(r[1]-r[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),s/1e6}shouldExecuteOnCPU(e,t=_de){return X().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&w.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},Tk=QE;Tk.nextDataId=0;var ZE={};Ee(ZE,{WebGPUBackend:()=>Tk,webgpu_util:()=>bE});yc.isBrowser()&&yk()&&kd("webgpu",async()=>{X().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:X().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},r=t.features.has("timestamp-query");r?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let s=await t.requestDevice(n);return new Tk(s,r)},3);var Lt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Lt||(Lt={}));var gp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(gp||(gp={}));var JE;function Ede(e){JE=e.wasm.cwrap(to,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ade(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:d}=r,p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=gp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let b=u?s.shape[2]:s.shape[1],y=l?a.shape[1]:a.shape[2],v=Ri.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)),x=n.makeOutput([...v,b,y],s.dtype),k=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(s.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return JE(p,T,s.shape.length,h,C,a.shape.length,u,l,g,f,m,d||0,k),x}var $de={kernelName:to,backendName:"wasm",setupFunc:Ede,kernelFunc:Ade};function mn(e,t){let n;function r(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function s(a){let{backend:o,inputs:{x:i}}=a,u=o.dataIdMap.get(i.dataId).id,l=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||n(u,Lt[i.dtype],c),l}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Fde=mn(Vo);function Pn(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:u}=o,{a:l,b:c}=u,d=i.dataIdMap.get(l.dataId).id,p=i.dataIdMap.get(c.dataId).id,h=n!=null?n:l.dtype,f=N.assertAndGetBroadcastShape(l.shape,c.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id;return(()=>r(d,g,l.shape.length,p,b,c.shape.length,Lt[l.dtype],y))(),m}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var Dde=!0,Rde=Pn(_s,Dde),eA;function Pde(e){eA=e.wasm.cwrap(la,null,["array","number","number","number"])}function Ode(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return eA(a,s.length,Lt[r.dtype],o),r}var Mde={kernelName:la,backendName:"wasm",setupFunc:Pde,kernelFunc:Ode};function Gm(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var Lde={kernelName:_a,backendName:"wasm",kernelFunc:Gm},tA;function Bde(e){tA=e.wasm.cwrap(Ja,null,["number","array","number","number","number","array","number"])}function ul(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=Wde(t.x.shape,r.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=zde(t.x.shape,r.perm),u={dataId:t.x.dataId,shape:s,dtype:t.x.dtype};if(o){let f=Gm({inputs:t,backend:n});return f.shape=i,f}let l=n.makeOutput(i,u.dtype),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(l.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(u.shape).buffer);return tA(c,h,u.shape.length,Lt[u.dtype],d,p,a.length),l}function zde(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function Wde(e,t){let n=[],r=[];for(let s=0;s<e.length;++s)e[s]!==1&&n.push(e[s]),e[t[s]]!==1&&r.push(t[s]);for(let s=0;s<r.length;++s){let a=-1;for(let o=0;o<r.length;++o)r[o]>=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var Vde={kernelName:Ja,backendName:"wasm",kernelFunc:ul,setupFunc:Bde};function _o(e,t,n){let r=e.shape,s=e.shape.length,a=w.parseAxisParam(t,r),o=a,i=N.getAxesPermutation(o,s),u=null,l=!1;if(i!=null){let c=new Array(s);for(let h=0;h<c.length;h++)c[h]=r[i[h]];o=N.getInnerMostAxes(o.length,s),u=ul({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(u.dataId).id!==d&&(l=!0)}return{transposed:u,originalAxes:a,axes:o,inputWasTransposed:l}}var nA;function Ude(e){nA=e.wasm.cwrap(Gu,null,["number, number, number"])}function Gde(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,u=t.dataIdMap.get(o.dataId).id,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;N.assertAxesAreInnerMostDims("all",d,f);let[m,g]=N.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;nA(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Hde={kernelName:Gu,backendName:"wasm",setupFunc:Ude,kernelFunc:Gde},rA;function jde(e){rA=e.wasm.cwrap(Hu,null,["number, number, number"])}function qde(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,u=t.dataIdMap.get(o.dataId).id,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;N.assertAxesAreInnerMostDims("any",d,f);let[m,g]=N.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;rA(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Kde={kernelName:Hu,backendName:"wasm",setupFunc:jde,kernelFunc:qde},sA;function Xde(e){sA=e.wasm.cwrap(da,null,["number","number","number","number","number"])}function Yde(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,u=a,{transposed:l,axes:c,inputWasTransposed:d}=_o(a,s,t);if(d){let b=t.dataIdMap.get(l.dataId).id;b!==o&&(u=l,i=b)}let p=u.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=u.shape[c[0]];return sA(i,Lt[u.dtype],m,g,f),d&&t.disposeData(l.dataId),h}var Qde={kernelName:da,backendName:"wasm",kernelFunc:Yde,setupFunc:Xde},aA;function Zde(e){aA=e.wasm.cwrap(pa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jde(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:u,dimRoundingMode:l}=n,c=N.computePool2DInfo(s.shape,o,i,1,u,l),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.strideHeight,y=c.strideWidth,v=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let x=r.makeOutput(c.outShape,"float32"),k=r.dataIdMap.get(x.dataId).id;return aA(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,k),x}var epe={kernelName:pa,backendName:"wasm",setupFunc:Zde,kernelFunc:Jde};function Kn(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:s}=n,a=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(s,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var tpe={kernelName:hi,backendName:"wasm",kernelFunc:Kn},oA;function npe(e){oA=e.wasm.cwrap(ha,null,["number","array","number","number","array","number","number","number","number"])}function rpe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=s.shape.length,l=a.shape.length,c=o?s.shape[u-2]:s.shape[u-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-1]:s.shape[u-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Ri.assertAndGetBroadcastShape(s.shape.slice(0,-2),a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let x=o?[g,c,p]:[g,p,c],k=i?[b,h,d]:[b,d,h],T=Kn({inputs:{x:s},backend:n,attrs:{shape:x}}),C=Kn({inputs:{x:a},backend:n,attrs:{shape:k}}),E=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=o?T.shape[2]:T.shape[1],D=i?C.shape[1]:C.shape[2],R=Math.max(g,b),_=n.makeOutput([R,O,D],T.dtype),L=n.dataIdMap.get(_.dataId).id,U=new Uint8Array(new Int32Array(T.shape).buffer),j=new Uint8Array(new Int32Array(C.shape).buffer);return oA(E,U,T.shape.length,F,j,C.shape.length,o,i,L),n.disposeData(T.dataId),n.disposeData(C.dataId),_.shape=v,_}var spe={kernelName:ha,backendName:"wasm",setupFunc:npe,kernelFunc:rpe};function lu(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=$t.parseSliceParams(t,n,r),i=$t.isSliceContinous(t.shape,a,o),u=s.readSync(t.dataId),l=s.makeOutput(o,t.dtype),c=w.computeStrides(t.shape),d=s.dataIdMap.get(l.dataId);if(i){let f=$t.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=u.slice(f,f+w.sizeFromShape(o)):s.typedArrayFromHeap(l).set(u.subarray(f,f+w.sizeFromShape(o))),l}if(t.dtype==="string"){let f=bm(u,a,o,t.shape,t.dtype);return d.stringBytes=f,l}let p=s.typedArrayFromHeap(l),h=t.shape.length;if(h===2)ape(u,c[0],p,a,o);else if(h===3)ope(u,c[0],c[1],p,a,o);else if(h===4)ipe(u,c[0],c[1],c[2],p,a,o);else{let f=bm(u,a,o,t.shape,t.dtype);p.set(f)}return l}function ape(e,t,n,r,s){let a=0,o=r[0],i=r[1],u=o+s[0];for(let l=o;l<u;l++){let c=l*t+i;n.set(e.subarray(c,c+s[1]),a),a+=s[1]}}function ope(e,t,n,r,s,a){let o=0,i=s[0],u=s[1],l=s[2],c=i+a[0],d=u+a[1];for(let p=i;p<c;p++)for(let h=u;h<d;h++){let f=p*t+h*n+l;r.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function ipe(e,t,n,r,s,a,o){let i=0,u=a[0],l=a[1],c=a[2],d=u+o[0],p=l+o[1],h=c+o[2],f=a[3];for(let m=u;m<d;m++)for(let g=l;g<p;g++)for(let b=c;b<h;b++){let y=m*t+g*n+b*r+f;s.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var upe={kernelName:yi,backendName:"wasm",kernelFunc:lu};function cpe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r,i=a.reduce((b,y)=>b*y),u=N.getReshaped(s.shape,a,i),l=N.getPermuted(u.length,a.length),c=N.getReshapedPermuted(s.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(c,o,a.length),h=Kn({inputs:{x:s},backend:n,attrs:{shape:u}}),f=ul({inputs:{x:h},backend:n,attrs:{perm:l}}),m=Kn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=lu({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var lpe={kernelName:Uo,backendName:"wasm",kernelFunc:cpe};function bp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var dpe={kernelName:fa,backendName:"wasm",kernelFunc:bp},ppe=mn(ma),iA;function hpe(e){iA=e.wasm.cwrap(Es,null,["number","number","number","number"])}function fpe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(u.dataId).id;return iA(i,a,o,l),u}var mpe={kernelName:Es,backendName:"wasm",setupFunc:hpe,kernelFunc:fpe};function uA(e){let{inputs:t,backend:n}=e,r=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=N.computeOutShape(t.map(h=>h.shape),r),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return Gm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(w.sizeFromShape(s)===0)return o;let i=a.map(h=>h.shape);if(N.assertParamsConsistent(i,r),a[0].dtype==="string"){let h=a.map(v=>{let x=w.sizeFromShape(v.shape.slice(r));return Kn({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));s=N.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=Rw(f,s,t[0].dtype,m),b=N.computeOutShape(a.map(v=>v.shape),r);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),o}let u=w.sizeFromShape(a[0].shape.slice(0,r)),l=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(r));return l+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<u;h++){let f=h*l;for(let m=0;m<d.length;m++){let g=c[m],b=h*g,y=d[m].subarray(b,b+g);p.set(y,f),f+=g}}return o}var gpe={kernelName:Go,backendName:"wasm",kernelFunc:uA},cA;function bpe(e){cA=e.wasm.cwrap(ga,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ype(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:d,dataFormat:p}=n,h=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(s.shape,a.shape,u,l,c,d,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,k=f.dilationHeight,T=f.dilationWidth,C=f.strideHeight,E=f.strideWidth,F=f.inChannels,O=f.outChannels,D=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=r.makeOutput(f.outShape,"float32"),_=r.dataIdMap.get(R.dataId).id;return cA(o,s.shape[0],s.shape[1],s.shape[2],i,m,g,b,y,v,x,D,k,T,C,E,F,O,_),R}var vpe={kernelName:ga,backendName:"wasm",setupFunc:bpe,kernelFunc:ype},lA;function xpe(e){lA=e.wasm.cwrap(ba,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wpe(e){let{backend:t,inputs:n,attrs:r}=e,{dy:s,filter:a}=n,{strides:o,pad:i,dataFormat:u,dimRoundingMode:l,inputShape:c}=r,d=1,p=N.convertConv2DDataFormat(u),h=N.computeConv2DInfo(c,a.shape,o,d,i,l,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:k,outWidth:T,strideHeight:C,strideWidth:E}=h,F=m-1-h.padInfo.top,O=g-1-h.padInfo.left,D=h.dataFormat==="channelsLast",R=w.computeStrides(h.inShape),_=w.computeStrides(s.shape),[L,U,j]=w.computeStrides(a.shape),K=R[0],q=D?R[1]:R[2],Q=D?R[2]:1,ee=D?1:R[1],re=_[0],se=D?_[1]:_[2],ne=D?_[2]:1,ie=D?1:_[1],te=t.makeOutput(h.inShape,"float32"),pe=t.dataIdMap.get(te.dataId).id,be=t.dataIdMap.get(s.dataId).id,Ce=t.dataIdMap.get(a.dataId).id;return lA(be,Ce,f,m,g,y,v,b,k,T,x,C,E,F,O,L,U,j,K,q,Q,ee,re,se,ne,ie,pe),te}var kpe={kernelName:ba,backendName:"wasm",setupFunc:xpe,kernelFunc:wpe},Ipe=mn(ya),Spe=mn(va),Nk;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Nk||(Nk={}));var dA;function Cpe(e){dA=e.wasm.cwrap(jo,null,["number","number","number","number","array","number","number","number","number","number"])}function Tpe(e){let{backend:t,inputs:n,attrs:r}=e,{method:s,extrapolationValue:a,cropSize:o}=r,{image:i,boxes:u,boxInd:l}=n,c=u.shape[0],[d,p]=o,h=[c,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=bp({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(l.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return dA(g,b,y,c,k,d,p,Nk[s],a,x),m!=null&&t.disposeData(m.dataId),v}var Npe={kernelName:jo,backendName:"wasm",setupFunc:Cpe,kernelFunc:Tpe},pA;function _pe(e){pA=e.wasm.cwrap(Ho,null,["number","number","number","number","number","number"])}function Epe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,u=s.shape.length;w.assert(s.dtype==="float32"||s.dtype==="int32",()=>`cumsum does not support ${s.dtype} tensors in the WASM backend`);let l=N.getAxesPermutation([a],u),c=s;l!==null&&(c=ul({inputs:{x:s},attrs:{perm:l},backend:n}));let d=N.getInnerMostAxes(1,u)[0];N.assertAxesAreInnerMostDims("cumsum",[d],u);let p=n.makeOutput(c.shape,c.dtype),h=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(p.dataId).id;pA(f,o?1:0,i?1:0,h,m,Lt[s.dtype]);let g=p;if(l!==null){let b=N.getUndoAxesPermutation(l);g=ul({inputs:{x:p},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(p.dataId)}return g}var Ape={kernelName:Ho,backendName:"wasm",setupFunc:_pe,kernelFunc:Epe},hA;function $pe(e){hA=e.wasm.cwrap(qo,null,["number","number","number","array","number","array","array","number","number"])}function Fpe(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r,i=s.shape[0],u=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=u*a,p=l*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(s.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return hA(b,a,o==="NHWC"?1:0,y,s.shape.length-1,v,x,f.length,k),m}var Dpe={kernelName:qo,backendName:"wasm",setupFunc:$pe,kernelFunc:Fpe},fA;function Rpe(e){fA=e.wasm.cwrap(xa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ppe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:d}=n,p=l==null?[1,1]:l,h=N.computeConv2DInfo(s.shape,a.shape,u,p,c,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(h.outShape,"float32"),R=r.dataIdMap.get(D.dataId).id;return fA(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,b,y,v,O,x,k,T,C,E,F,R),D}var Ope={kernelName:xa,backendName:"wasm",setupFunc:Rpe,kernelFunc:Ppe},Mpe=mn(ka),Lpe=!1,Bpe=Pn(Ko,Lpe,"bool"),zpe=mn(Ia,"float32");function _k(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),u=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),u=o+a+1),i.splice(u,0,1),Kn({inputs:{x:s},backend:r,attrs:{shape:i}})}var Wpe={kernelName:Xo,backendName:"wasm",kernelFunc:_k};function mA(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var Vpe={kernelName:Ju,backendName:"wasm",kernelFunc:mA},gA;function Upe(e){gA=e.wasm.cwrap(Qo,null,["number","number","number","number","number","number"])}function Gpe(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,u,l,c]=r.shape;return gA(a,i,u,l,c,o),s}var Hpe={kernelName:Qo,backendName:"wasm",kernelFunc:Gpe,setupFunc:Upe},jpe=mn(Sa),qpe=!1,Kpe=Pn(Ca,qpe),bA;function Xpe(e){bA=e.wasm.cwrap(Ta,null,["number","number","number","number","number","number","number"])}function Ype(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:u,scale:l}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=u!=null?t.dataIdMap.get(u.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return bA(c,d,p,h,f,s,g),m}var Qpe={kernelName:Ta,backendName:"wasm",setupFunc:Xpe,kernelFunc:Ype},yA;function Zpe(e){yA=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jpe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(s.shape,a.shape,u,c,l,p),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,T=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,F=m.padInfo.bottom,O=m.padInfo.left,D=m.dilationHeight,R=m.dilationWidth,_=m.strideHeight,L=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ee=r.makeOutput(m.outShape,"float32"),re=r.dataIdMap.get(ee.dataId).id,se=i==null?0:r.dataIdMap.get(i.dataId).id;return yA(b,K,q,Q,y,k,T,x,C,E,F,O,j,D,R,_,L,U,v,g,se,f||0,re),ee}var ehe={kernelName:no,backendName:"wasm",setupFunc:Zpe,kernelFunc:Jpe},vA;function the(e){vA=e.wasm.cwrap(ro,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nhe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:u,pad:l,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(s.shape,a.shape,u,c,l,p,!0),g=gp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,y=r.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${v})`);x=ne.id}let k=m.filterHeight,T=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,F=m.padInfo.bottom,O=m.padInfo.left,D=m.dilationHeight,R=m.dilationWidth,_=m.strideHeight,L=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Q=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ee=r.makeOutput(m.outShape,"float32"),re=r.dataIdMap.get(ee.dataId).id,se=i==null?0:r.dataIdMap.get(i.dataId).id;return vA(b,K,q,Q,y,k,T,x,C,E,F,O,j,D,R,_,L,U,v,g,se,f||0,re),ee}var rhe={kernelName:ro,backendName:"wasm",setupFunc:the,kernelFunc:nhe},xA;function she(e){xA=e.wasm.cwrap(Jo,null,["number","number","number","number","number","number","array","number"])}function ahe(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,u]=Ey.prepareAndValidate(r,s),l=t.makeOutput(a,r.dtype);if(o===0)return l;let c=s.shape,d=c[c.length-1],h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),b=t.dataIdMap.get(l.dataId).id;return xA(h,Lt[r.dtype],m,o,d,i,g,b),l}var ohe={kernelName:Jo,backendName:"wasm",setupFunc:she,kernelFunc:ahe},wA;function ihe(e){wA=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function uhe(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,u=w.parseAxisParam(o,s.shape)[0],l=t.readSync(a.dataId),c=s.shape[u];for(let F=0;F<l.length;++F){let O=l[F];w.assert(O<=c-1&&O>=0,()=>`GatherV2: the index value ${O} is not in [0, ${c-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(s,a,u,i),p=Kn({inputs:{x:s},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=Kn({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,s.dtype);if(w.sizeFromShape(s.shape)===0)return g;let b=p.shape.length-1,v=t.dataIdMap.get(p.dataId).id,k=t.dataIdMap.get(f.dataId).id,T=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),E=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return wA(v,Lt[s.dtype],C,b,k,d.batchSize,E,T),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var che={kernelName:Zo,backendName:"wasm",setupFunc:ihe,kernelFunc:uhe},lhe=!1,dhe=Pn(ei,lhe,"bool"),phe=!1,hhe=Pn(Na,phe,"bool"),kA;function fhe(e){kA=e.wasm.cwrap(ti,null,["number","number","number","number"])}function mhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;kA(s,Lt[t.dtype],n,o)}return a}var ghe={kernelName:ti,backendName:"wasm",setupFunc:fhe,kernelFunc:mhe},bhe=!1,yhe=Pn(ni,bhe,"bool"),vhe=!1,xhe=Pn(ri,vhe,"bool"),whe=mn(Ea),khe=!1,Ihe=Pn(si,khe,"bool"),IA;function She(e){IA=e.wasm.cwrap(Aa,null,["number","number","number","number"])}function Che(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,u=t.dataIdMap.get(o.dataId).id,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;N.assertAxesAreInnerMostDims("max",d,f);let[m,g]=N.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;IA(u,Lt[o.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var The={kernelName:Aa,backendName:"wasm",setupFunc:She,kernelFunc:Che},Nhe=!1,_he=Pn($a,Nhe),SA;function Ehe(e){SA=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ahe(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id;w.assert(s.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${s.dtype}.`);let{filterSize:o,strides:i,pad:u,dimRoundingMode:l}=n,c=N.computePool2DInfo(s.shape,o,i,1,u,l),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.dilationHeight,y=c.dilationWidth,v=c.strideHeight,x=c.strideWidth,k=c.inChannels,T=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let C=r.makeOutput(c.outShape,"float32"),E=r.dataIdMap.get(C.dataId).id;return SA(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,y,v,x,k,T,E),C}var $he={kernelName:Fa,backendName:"wasm",setupFunc:Ehe,kernelFunc:Ahe},CA;function Fhe(e){CA=e.wasm.cwrap(Da,null,["number, number, number"])}function Dhe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,u=i,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t),f=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(l=c,u=x,f=N.getInnerMostAxes(f.length,l.shape.length))}N.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=N.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=l;l.dtype!=="float32"&&(y=bp({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(w.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;CA(u,b,x)}if(h&&t.disposeData(c.dataId),a){let x=N.expandShapeToKeepDim(v.shape,p);v.shape=x}return l.dtype!=="float32"&&t.disposeData(y.dataId),v}var Rhe={kernelName:Da,backendName:"wasm",setupFunc:Fhe,kernelFunc:Dhe},TA;function Phe(e){TA=e.wasm.cwrap(Ra,null,["number","number","number","number"])}function Ohe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,u=i,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t);if(h){let v=t.dataIdMap.get(c.dataId).id;v!==i&&(l=c,u=v)}let f=l.shape.length;N.assertAxesAreInnerMostDims("min",d,f);let[m,g]=N.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;TA(u,Lt[o.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Mhe={kernelName:Ra,backendName:"wasm",setupFunc:Phe,kernelFunc:Ohe},Lhe=!1,Bhe=Pn(Pa,Lhe),Ek;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Ek||(Ek={}));var NA;function zhe(e){NA=e.wasm.cwrap(Oa,null,["number","array","number","number","array","array","number","number"])}function Whe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),d=r.map(f=>f[1]),p=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(d).buffer);return NA(o,l,t.shape.length,Lt[t.dtype],p,h,Ek[s],u),i}var Vhe={kernelName:Oa,backendName:"wasm",kernelFunc:Whe,setupFunc:zhe},Uhe=!0,Ghe=Pn(Ma,Uhe),Hhe=mn(ai);function Ak(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var _A;function jhe(e){_A=e.wasm.cwrap(ii,"number",["number","number","number","number","number"])}function qhe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:u}=n,l=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(u.dataId).id,d=_A(l,c,a,s,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Ak(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Khe={kernelName:ii,backendName:"wasm",setupFunc:jhe,kernelFunc:qhe},EA;function Xhe(e){EA=e.wasm.cwrap(oc,"number",["number","number","number","number","number","bool"])}function Yhe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=EA(c,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Ak(t,p);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var Qhe={kernelName:oc,backendName:"wasm",setupFunc:Xhe,kernelFunc:Yhe},AA;function Zhe(e){AA=e.wasm.cwrap(ui,"number",["number","number","number","number","number","number"])}function Jhe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=AA(c,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Ak(t,p);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var efe={kernelName:ui,backendName:"wasm",setupFunc:Zhe,kernelFunc:Jhe},tfe=!1,nfe=Pn(oi,tfe,"bool"),$A;function rfe(e){$A=e.wasm.cwrap(li,null,["number","number","number","number","number"])}function sfe(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,u=n.makeOutput([...s.shape,a],"int32"),l=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(s.dataId).id;return $A(d,a,o,i,l),u}var afe={kernelName:li,backendName:"wasm",setupFunc:rfe,kernelFunc:sfe};function ofe(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var ife={kernelName:ci,backendName:"wasm",kernelFunc:ofe};function ufe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return _k({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],u=t.map(c=>{let d=_k({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),l=uA({inputs:u,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeData(c.dataId)),l}var cfe={kernelName:di,backendName:"wasm",kernelFunc:ufe},FA;function lfe(e){FA=e.wasm.cwrap(La,null,["number","array","number","number","array","array","number","number"])}function dfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return mA({backend:n,attrs:{shape:a,value:s,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),d=r.map(m=>m[0]),p=r.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return FA(o,c,t.shape.length,Lt[t.dtype],h,f,s,l),i}var DA={kernelName:La,backendName:"wasm",kernelFunc:dfe,setupFunc:lfe},pfe=!1,hfe=Pn(Ba,pfe),RA;function ffe(e){RA=e.wasm.cwrap(za,null,["number","number","number"])}function mfe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=a,u=r,l=u;u.dtype!=="float32"&&(l=bp({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(l.dataId).id);let c=n.makeOutput(r.shape,"float32"),d=n.dataIdMap.get(c.dataId).id;return RA(i,o,d),u.dtype!=="float32"&&n.disposeData(l.dataId),c}var gfe={kernelName:za,backendName:"wasm",setupFunc:ffe,kernelFunc:mfe},PA;function bfe(e){PA=e.wasm.cwrap(pi,null,["number","number","number","number"])}function yfe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,u=i,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t),f=d;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==i&&(l=c,u=v,f=N.getInnerMostAxes(f.length,l.shape.length))}N.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=N.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;PA(u,b,Lt[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var vfe={kernelName:pi,backendName:"wasm",setupFunc:bfe,kernelFunc:yfe},xfe=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=Mw(r,s,a,o),u=t.makeOutput([i.length],o);return t.typedArrayFromHeap(u).set(i),u},wfe={kernelName:ic,backendName:"wasm",kernelFunc:xfe},kfe=!0,Ife=Pn(wa,kfe),Sfe=mn(Wa),Cfe=mn(Ua),OA;function Tfe(e){OA=e.wasm.cwrap(Va,null,["number","number","number","number","number","number","number","number","number","number"])}function Nfe(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[u,l]=i,[c,d,p,h]=s.shape,f=[c,u,l,h],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=bp({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(s.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return OA(b,c,d,p,h,u,l,a?1:0,o?1:0,v),g!=null&&t.disposeData(g.dataId),y}var _fe={kernelName:Va,backendName:"wasm",setupFunc:Tfe,kernelFunc:Nfe},MA;function Efe(e){MA=e.wasm.cwrap(fi,null,["number","array","number","array","number","number"])}function Afe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=w.parseAxisParam(a,s.shape);if(s.shape.length===0)return Gm({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);MA(u,c,o.length,d,s.shape.length,l);let p=Kn({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),p}var $fe={kernelName:fi,backendName:"wasm",kernelFunc:Afe,setupFunc:Efe},LA;function Ffe(e){LA=e.wasm.cwrap(_i,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Dfe(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,u=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(u.dataId).id,[d,p,h,f]=s.shape,[m,g]=N.getImageCenter(i,p,h),b=o===0,y=255,v=typeof o=="number"?[o,o,o,b?0:y]:[...o,y],x=new Uint8Array(new Int32Array(v).buffer);return LA(l,d,p,h,f,a,m,g,x,v.length,c),u}var Rfe={kernelName:_i,backendName:"wasm",kernelFunc:Dfe,setupFunc:Ffe},Pfe=mn(mi),Ofe=mn(Ga),BA;function Mfe(e){BA=e.wasm.cwrap(gi,null,["number","number","number","number","number","number","array","number","number"])}function Lfe(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:d,outputSize:p}=Ay.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return BA(f,g,Lt[a.dtype],u,l,c,b,p,y),i}var Bfe={kernelName:gi,backendName:"wasm",setupFunc:Mfe,kernelFunc:Lfe},zA;function zfe(e){zA=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Wfe(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(l.dataId).id,d=r.shape.length,p=s.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(s.shape.slice(1));return zA(o,i,u,h,c),l}var Vfe={kernelName:bi,backendName:"wasm",kernelFunc:Wfe,setupFunc:zfe},WA;function Ufe(e){WA=e.wasm.cwrap(ja,null,["number","number"])}function Gfe(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return w.sizeFromShape(s.shape)===0||WA(r,a),s}var Hfe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},jfe=mn(Ha),VA;function qfe(e){VA=e.wasm.cwrap(Xa,null,["number","number","number","number"])}function Kfe(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,s=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[r],u=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||VA(s,o,i,u),a}var Xfe={kernelName:Xa,backendName:"wasm",setupFunc:qfe,kernelFunc:Kfe};function Yfe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r,i=w.sizeFromShape(a),u=[[0,0]];u.push(...o);for(let T=1+a.length;T<s.shape.length;++T)u.push([0,0]);let l=DA.kernelFunc({inputs:{x:s},backend:n,attrs:{paddings:u,constantValue:0}}),c=N.getReshaped(l.shape,a,i,!1),d=N.getPermuted(c.length,a.length,!1),p=N.getReshapedPermuted(l.shape,a,i,!1),m=Kn({inputs:{x:l},backend:n,attrs:{shape:c}}),y=ul({inputs:{x:m},backend:n,attrs:{perm:d}}),k=Kn({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(l.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),k}var Qfe={kernelName:xi,backendName:"wasm",kernelFunc:Yfe},UA;function Zfe(e){UA=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Jfe(e){let{backend:t,inputs:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=n,i=r.shape[0],u=r.shape[1],l=t.readSync(a.dataId)[0],c=[i+l,u],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,r.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),s.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([l],"bool"),v=t.dataIdMap.get(y.dataId).id,x=t.makeOutput([i],r.dtype),k=t.dataIdMap.get(x.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=UA(d,p,Lt[s.dtype],i,l,u,h,m,b,v,k,C),F=t.readSync(T.dataId),O;switch(F[0]){case 1:{O=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{O=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:O=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:O=""}if(t.disposeData(T.dataId),O)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(x.dataId),new Error(O);let D=f,R=g;return E!==c[0]&&(D=lu({inputs:{x:f},attrs:{begin:0,size:[E,u]},backend:t}),R=lu({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[D,R,y,x]}var eme={kernelName:sd,backendName:"wasm",setupFunc:Zfe,kernelFunc:Jfe},GA;function tme(e){GA=e.wasm.cwrap(hc,null,["number","number","number","number","number","number","number"])}function nme(e){let{backend:t,inputs:n}=e,{inputIndices:r,inputShape:s,newShape:a}=n;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(r.dataId).id,i=t.dataIdMap.get(s.dataId).id,u=t.dataIdMap.get(a.dataId).id,l=r.shape[0],c=w.sizeFromShape(a.shape),d=t.makeOutput([l,c],r.dtype),p=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;GA(o,i,u,l,p,f,g);let b=t.readSync(m.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let v=Array.from(t.readSync(s.dataId)),x=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(v,x);break}case 4:{let v=Array.from(t.readSync(s.dataId)),x=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(v,x);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var rme={kernelName:hc,backendName:"wasm",setupFunc:tme,kernelFunc:nme},HA;function jA(e){HA=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function qA(e,t){let{backend:n,inputs:r}=e,{data:s,indices:a,segmentIds:o}=r,i=a.shape[0],u=n.readSync(o.dataId,i-1,i)[0],c=i>0?u+1:0;if(c<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=s.shape.slice();d[0]=c;let p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(d,s.dtype),g=n.dataIdMap.get(m.dataId).id,b=n.makeOutput([4],"int32"),y=n.dataIdMap.get(b.dataId).id;HA(p,Lt[s.dtype],s.shape[0],h,f,g,y,t,0);let v=n.readSync(b.dataId),x;switch(v[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(v[1],v[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v[1],v[2],v[3]);break;default:x=""}if(n.disposeData(b.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function sme(e){return qA(e,!0)}var ame={kernelName:ad,backendName:"wasm",setupFunc:jA,kernelFunc:sme};function ome(e){return qA(e,!1)}var ime={kernelName:od,backendName:"wasm",setupFunc:jA,kernelFunc:ome};function ume(e){let{inputs:t,attrs:n,backend:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,s.shape)[0],u=N.prepareSplitSize(s,a,i),l=new Array(s.shape.length).fill(0),c=s.shape.slice();return u.map(d=>{let p=[...c];p[i]=d;let h=lu({inputs:{x:s},attrs:{begin:l,size:p},backend:r});return l[i]+=d,h})}var cme={kernelName:wi,backendName:"wasm",kernelFunc:ume},lme=mn(qa),dme=mn(fc),pme=!0,hme=Pn(Ya,pme),KA;function fme(e){KA=e.wasm.cwrap(eo,null,["number","number","number","number"])}function mme(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),u=t.dataIdMap.get(i.dataId).id;return KA(o,s,Lt[a.dtype],u),i}var gme={kernelName:eo,backendName:"wasm",setupFunc:fme,kernelFunc:mme},XA;function bme(e){XA=e.wasm.cwrap(ki,null,["number","array","number","array","array","array","array","array","number","number"])}function yme(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=$t.sliceInfo(s.shape,a,o,i,u,l,c,d,p),k;if(m)k=Kn({inputs:{x:s},backend:t,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let T=$t.computeOutShape(y,v,x),C=lu({inputs:{x:s},backend:t,attrs:{begin:y,size:T}});k=Kn({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(s.dataId).id,E=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),O=new Uint8Array(new Int32Array(v).buffer),D=new Uint8Array(new Int32Array(x).buffer),R=new Uint8Array(new Int32Array(h).buffer),_=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),L=t.dataIdMap.get(T.dataId).id;XA(C,E,s.shape.length,F,O,D,R,_,h.length,L),k=Kn({inputs:{x:T},backend:t,attrs:{shape:f}}),t.disposeData(T.dataId)}return k}var vme={kernelName:ki,backendName:"wasm",setupFunc:bme,kernelFunc:yme},xme=!0,wme=Pn(Qa,xme),YA;function kme(e){YA=e.wasm.cwrap(Ka,null,["number","number","number","number"])}function Ime(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,u=i,l=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=_o(o,s,t),f=d;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==i&&(l=c,u=v,f=N.getInnerMostAxes(f.length,l.shape.length))}N.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=N.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;YA(u,b,Lt[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=N.expandShapeToKeepDim(y.shape,p);y.shape=v}return y}var Sme={kernelName:Ka,backendName:"wasm",setupFunc:kme,kernelFunc:Ime},Cme=mn(Ii),Tme=mn(Za),QA;function Nme(e){QA=e.wasm.cwrap(As,null,["number","array","number","array","number","number"])}function _me(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let p=0;p<i.length;p++)i[p]=s.shape[p]*o[p];let u=new Uint8Array(new Int32Array(s.shape).buffer),l=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,s.dtype),d=n.dataIdMap.get(c.dataId).id;return QA(a,u,s.shape.length,l,i.length,Lt[c.dtype],d),c}var Eme={kernelName:As,backendName:"wasm",setupFunc:Nme,kernelFunc:_me},ZA;function Ame(e){ZA=e.wasm.cwrap(Si,null,["number","array","number","number","number","bool","number","number"])}var $me=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),u=r.shape.slice();u[u.length-1]=s;let l=t.makeOutput(u,r.dtype),c=t.dataIdMap.get(l.dataId).id,d=t.makeOutput(u,"int32"),p=t.dataIdMap.get(d.dataId).id;return ZA(o,i,r.shape.length,Lt[r.dtype],s,a,c,p),[l,d]},Fme={kernelName:Si,backendName:"wasm",setupFunc:Ame,kernelFunc:$me},JA;function Dme(e){JA=e.wasm.cwrap(Ci,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Rme(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:u,outputShape:l}=r,[c,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[c,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),y=t.makeOutput(g,s.dtype),v=t.dataIdMap.get(y.dataId).id,k=t.dataIdMap.get(s.dataId).id,C=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,F;switch(i){case"constant":F=1;break;case"reflect":F=2;break;case"wrap":F=3;break;case"nearest":F=4;break;default:F=1;break}return JA(k,C,a.shape[0]>1,c,f,m,h,p,d,b,s.shape.length-1,E,F,u,v),y}var Pme={kernelName:Ci,backendName:"wasm",setupFunc:Dme,kernelFunc:Rme};function Ome(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,u=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==a&&(u[l++]=s.shape[h]);let c=new Array(o),d=new Array(i).fill(0),p=s.shape.slice();p[a]=1;for(let h=0;h<c.length;h++)d[a]=h,c[h]=lu({inputs:{x:s},attrs:{begin:d,size:p},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:u}))}var Mme={kernelName:Ti,backendName:"wasm",kernelFunc:Ome};function Lme(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var Bme={kernelName:Ni,backendName:"wasm",kernelFunc:Lme},zme=[Fde,Rde,Mde,Hde,Kde,Qde,epe,spe,lpe,dpe,ppe,mpe,gpe,vpe,kpe,Ipe,Spe,Npe,Ape,Dpe,Ope,Mpe,Bpe,zpe,Wpe,Vpe,Hpe,jpe,Kpe,$de,Qpe,ehe,rhe,ohe,che,dhe,hhe,Lde,ghe,yhe,xhe,whe,Ihe,The,_he,$he,Rhe,Mhe,Bhe,Vhe,Ghe,Hhe,Khe,Qhe,efe,nfe,afe,ife,cfe,DA,hfe,gfe,vfe,wfe,Ife,Sfe,Cfe,tpe,_fe,$fe,Rfe,Ofe,Pfe,Bfe,Vfe,Hfe,jfe,upe,Xfe,Qfe,eme,rme,ame,ime,cme,lme,dme,hme,gme,vme,wme,Sme,Cme,Tme,Eme,Fme,Pme,Vde,Mme,Bme];for(let e of zme)gc(e);var $k=X();$k.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));$k.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if($k.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var e$=Bo(dD()),Wme='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Vme=Bo(pD()),t$=class extends Mu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(r$),Dk=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Gl(this,is())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(r),u=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),u)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:r,dtype:s,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(s==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||w.sizeFromShape(a);let i=w.bytesPerElement(s),u=this.wasm.HEAPU8.slice(r+t*i,r+n*i);return Hme(u.buffer,s)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Ume(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function n$(e,t,n){if(Hm!=null)return Hm;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),vp!=null&&vp[r]!=null?vp[r]:n+r}async function Gme(){let[e,t]=await Promise.all([X().getAsync("WASM_HAS_SIMD_SUPPORT"),X().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,u)=>{if(i.endsWith(".worker.js")){let l=Wme,c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?n$(e,t,yp!=null?yp:u):u+i},Fk&&(s.instantiateWasm=Ume(n$(e,t,yp!=null?yp:"")));let a=!1;s.onAbort=()=>{if(a||xp)return;xp=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Hm==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+e$.default.toString()],{type:"text/javascript"}),o=(0,e$.default)(s)):o=(0,Vme.default)(s),o.then(i=>{a=!0,xp=!1;let u=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",u,["number"]),dispose:i.cwrap("dispose",u,[])},n({wasm:i})})})}function Hme(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var jme=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Hm=null,yp=null,vp={},xp=!1,Fk=!1;function qme(e,t=!1){if(My("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Hm=e,Fk=t}function Kme(e,t=!1){if(xp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yp=e;else{vp=e;let n=jme.filter(r=>vp[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Fk=t}var r$=-1,Dk=-1;function Xme(e){r$=e}function Yme(){if(Dk===-1)throw new Error("WASM backend not initialized.");return Dk}var Qme="0.0.0",Zme=2;kd("wasm",async()=>{let{wasm:e}=await Gme();return new t$(e)},Zme);var Eo="3.11.0-20211201",Jme={tfjs:Eo,"tfjs-core":Eo,"tfjs-data":Eo,"tfjs-layers":Eo,"tfjs-converter":Eo,"tfjs-backend-cpu":Eo,"tfjs-backend-webgl":Eo,"tfjs-backend-wasm":Eo};var oI={};ih(oI,{AnchorPosition:()=>ks,DrawBox:()=>Xm,DrawBoxOptions:()=>Xk,DrawFaceLandmarks:()=>aI,DrawFaceLandmarksOptions:()=>sI,DrawTextField:()=>$o,DrawTextFieldOptions:()=>Sp,drawContour:()=>Hs,drawDetections:()=>uge,drawFaceExpressions:()=>hge,drawFaceLandmarks:()=>mge});function Hs(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:r,y:s},a)=>{let o=t[a];e.moveTo(o.x,o.y),e.lineTo(r,s)}),n){let r=t[t.length-1],s=t[0];if(!r||!s)return;e.moveTo(r.x,r.y),e.lineTo(s.x,s.y)}e.stroke()}var Lk={};ih(Lk,{computeReshapedDimensions:()=>Mk,getCenterPoint:()=>hu,isDimensions:()=>qm,isEven:()=>jm,isFloat:()=>Ok,isTensor:()=>du,isTensor1D:()=>ege,isTensor2D:()=>Pk,isTensor3D:()=>js,isTensor4D:()=>Ir,isValidNumber:()=>ns,isValidProbablitiy:()=>cl,range:()=>xs,round:()=>pu});var On=class{constructor(t,n){if(!ns(t)||!ns(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new On(1/this.width,1/this.height)}};function du(e,t){return e instanceof Ae&&e.shape.length===t}function ege(e){return du(e,1)}function Pk(e){return du(e,2)}function js(e){return du(e,3)}function Ir(e){return du(e,4)}function Ok(e){return e%1!=0}function jm(e){return e%2==0}function pu(e,t=2){let n=10**t;return Math.floor(e*n)/n}function qm(e){return e&&e.width&&e.height}function Mk({width:e,height:t},n){let r=n/Math.max(t,e);return new On(Math.round(e*r),Math.round(t*r))}function hu(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function xs(e,t,n){return Array(e).fill(0).map((r,s)=>t+s*n)}function ns(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function cl(e){return ns(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var dt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(ns)}static assertIsValidBox(t,n,r=!1){if(!dt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let r=t||{},s=[r.left,r.top,r.right,r.bottom].every(ns),a=[r.x,r.y,r.width,r.height].every(ns);if(!a&&!s)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[o,i,u,l]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];dt.assertIsValidBox({x:o,y:i,width:u,height:l},"Box.constructor",n),this._x=o,this._y=i,this._width=u,this._height=l}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new dt({x:t,y:n,width:r,height:s})}floor(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new dt({x:t,y:n,width:r,height:s})}toSquare(){let{x:t,y:n,width:r,height:s}=this,a=Math.abs(r-s);return r<s&&(t-=a/2,r+=a),s<r&&(n-=a/2,s+=a),new dt({x:t,y:n,width:r,height:s})}rescale(t){let n=qm(t)?t.width:t,r=qm(t)?t.height:t;return new dt({x:this.x*n,y:this.y*r,width:this.width*n,height:this.height*r})}pad(t,n){let[r,s,a,o]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new dt({x:r,y:s,width:a,height:o})}clipAtImageBorders(t,n){let{x:r,y:s,right:a,bottom:o}=this,i=Math.max(r,0),u=Math.max(s,0),l=a-i,c=o-u,d=Math.min(l,t-i),p=Math.min(c,n-u);return new dt({x:i,y:u,width:d,height:p}).floor()}shift(t,n){let{width:r,height:s}=this,a=this.x+t,o=this.y+n;return new dt({x:a,y:o,width:r,height:s})}padAtBorders(t,n){let r=this.width+1,s=this.height+1,a=1,o=1,i=r,u=s,l=this.left,c=this.top,d=this.right,p=this.bottom;return d>n&&(i=-d+n+r,d=n),p>t&&(u=-p+t+s,p=t),l<1&&(u=2-l,l=1),c<1&&(u=2-c,c=1),{dy:o,edy:u,dx:a,edx:i,y:c,ey:p,x:l,ex:d,w:r,h:s}}calibrate(t){return new dt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ll=class extends dt{constructor(t,n,r,s,a=!1){super({left:t,top:n,right:r,bottom:s},a)}};var Ao=class{constructor(t,n,r,s,a){this._imageDims=new On(a.width,a.height),this._score=t,this._classScore=n,this._className=r,this._box=new dt(s).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new dt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ao(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var St=class extends Ao{constructor(t,n,r){super(t,t,"",n,r)}forSize(t,n){let{score:r,relativeBox:s,imageDims:a}=super.forSize(t,n);return new St(r,s,a)}};function Bk(e,t,n=!0){let r=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),s=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),a=r*s;return n?a/(e.area+t.area-a):a/Math.min(e.area,t.area)}function zk(e){let t=e.map(i=>i.x),n=e.map(i=>i.y),r=t.reduce((i,u)=>u<i?u:i,1/0),s=n.reduce((i,u)=>u<i?u:i,1/0),a=t.reduce((i,u)=>i<u?u:i,0),o=n.reduce((i,u)=>i<u?u:i,0);return new ll(r,s,a,o)}function Wk(e,t,n,r=!0){let s=t.map((o,i)=>({score:o,boxIndex:i})).sort((o,i)=>o.score-i.score).map(o=>o.boxIndex),a=[];for(;s.length>0;){let o=s.pop();a.push(o);let i=s,u=[];for(let l=0;l<i.length;l++){let c=i[l],d=e[o],p=e[c];u.push(Bk(d,p,r))}s=s.filter((l,c)=>u[c]<=n)}return a}function rs(e,t){return M(()=>{let[n,r,s]=t,a=_n([...e.shape.slice(0,3),1],n,"float32"),o=_n([...e.shape.slice(0,3),1],r,"float32"),i=_n([...e.shape.slice(0,3),1],s,"float32"),u=ot([a,o,i],3);return he(e,u)})}function Vk(e,t=!1){return M(()=>{let[n,r]=e.shape.slice(1);if(n===r)return e;let s=Math.abs(n-r),a=Math.round(s*(t?.5:1)),o=n>r?2:1,i=p=>{let h=e.shape.slice();return h[o]=p,_n(h,0,"float32")},u=i(a),l=s-u.shape[o],d=[t&&l?i(l):null,e,u].filter(p=>!!p).map(p=>ue(p,"float32"));return ot(d,o)})}function tge(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let r=Math.floor(Math.random()*(n+1)),s=t[n];t[n]=t[r],t[r]=s}return t}function wp(e){return 1/(1+Math.exp(-e))}function nge(e){return Math.log(e/(1-e))}var dl=class extends dt{constructor(t,n,r,s,a=!1){super({x:t,y:n,width:r,height:s},a)}};var rge=.5,sge=.43,age=.45,Sr=class{constructor(t,n,r=new Pe(0,0)){let{width:s,height:a}=n;this._imgDims=new On(s,a),this._shift=r,this._positions=t.map(o=>o.mul(new Pe(s,a)).add(r))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let a=t instanceof St?t.box.floor():new dt(t);return this.shiftBy(a.x,a.y).align(null,n)}let{useDlibAlignment:r,minBoxPadding:s}={useDlibAlignment:!1,minBoxPadding:.2,...n};return r?this.alignDlib():this.alignMinBbox(s)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,r,s]=t,a=d=>s.sub(d).magnitude(),o=(a(n)+a(r))/2,i=Math.floor(o/age),u=hu(t),l=Math.floor(Math.max(0,u.x-rge*i)),c=Math.floor(Math.max(0,u.y-sge*i));return new dl(l,c,Math.min(i,this.imageWidth+l),Math.min(i,this.imageHeight+c))}alignMinBbox(t){let n=zk(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var s$=class extends Sr{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],hu([t[3],t[4]])]}};var pl=class extends Sr{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(hu)}};var kp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${pu(this.distance)})`:""}`}};var Ip=class extends dt{static assertIsValidLabeledBox(t,n){if(dt.assertIsValidBox(t,n),!ns(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var qs=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(r=>new Float32Array(r));return new qs(t.label,n)}};var a$=class extends Ip{static assertIsValidPredictedBox(t,n){if(Ip.assertIsValidLabeledBox(t,n),!cl(t.score)||!cl(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,r,s){super(t,n);this._score=r,this._classScore=s}get score(){return this._score}get classScore(){return this._classScore}};function ws(e){return e.detection instanceof St}function fu(e,t){return{...e,...{detection:t}}}function Uk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Km(e){let t="";if(!e)try{e=Xb("fs")}catch(r){t=r.toString()}return{readFile:e?r=>new Promise((s,a)=>{e.readFile(r,(o,i)=>o?a(o):s(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Gk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,r=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},s=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},o=global.fetch,i=Km();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:s,createVideoElement:a,fetch:o,...i}}function Hk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}function jk(){return typeof global=="object"&&typeof Xb=="function"&&typeof module!="undefined"&&typeof process!="undefined"&&!!process.version}var un;function oge(){if(!un)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return un}function qk(e){un=e}function Kk(){return Hk()?qk(Uk()):jk()?qk(Gk()):null}function ige(e){if(un||Kk(),!un)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=un.Canvas,Image:n=un.Image}=e;un.Canvas=t,un.Image=n,un.createCanvasElement=e.createCanvasElement||(()=>new t),un.createImageElement=e.createImageElement||(()=>new n),un.ImageData=e.ImageData||un.ImageData,un.Video=e.Video||un.Video,un.fetch=e.fetch||un.fetch,un.readFile=e.readFile||un.readFile}var rt={getEnv:oge,setEnv:qk,initialize:Kk,createBrowserEnv:Uk,createFileSystem:Km,createNodejsEnv:Gk,monkeyPatch:ige,isBrowser:Hk,isNodejs:jk};Kk();function mu(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Xn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let r=mu(e);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let s=r.getContext("2d");if(!s)throw new Error("resolveContext2d - canvas 2d context is null");return s}var ks;(function(s){s.TOP_LEFT="TOP_LEFT",s.TOP_RIGHT="TOP_RIGHT",s.BOTTOM_LEFT="BOTTOM_LEFT",s.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ks||(ks={}));var Sp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:r,fontColor:s,fontSize:a,fontStyle:o,padding:i}=t;this.anchorPosition=n||ks.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=s||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=o||"Georgia",this.padding=i||4}},$o=class{constructor(t,n,r={}){this.text=typeof t=="string"?[t]:t instanceof $o?t.text:t,this.anchor=n,this.options=new Sp(r)}measureWidth(t){let{padding:n}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,s)=>r<s?s:r,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:r}=this.options,s=r===ks.BOTTOM_RIGHT||r===ks.TOP_RIGHT,a=r===ks.BOTTOM_LEFT||r===ks.BOTTOM_RIGHT,o=this.measureWidth(t),i=this.measureHeight(),u=s?this.anchor.x-o:this.anchor.x,l=a?this.anchor.y-i:this.anchor.y;if(n){let{width:c,height:d}=n,p=Math.max(Math.min(u,c-o),0),h=Math.max(Math.min(l,d-i),0);return{x:p,y:h}}return{x:u,y:l}}draw(t){let n=mu(t),r=Xn(n),{backgroundColor:s,fontColor:a,fontSize:o,fontStyle:i,padding:u}=this.options;r.font=`${o}px ${i}`;let l=this.measureWidth(r),c=this.measureHeight();r.fillStyle=s;let d=this.getUpperLeft(r,n);r.fillRect(d.x,d.y,l,c),r.fillStyle=a,this.text.forEach((p,h)=>{let f=u+d.x,m=u+d.y+(h+1)*o;r.fillText(p,f,m)})}};var Xk=class{constructor(t={}){let{boxColor:n,lineWidth:r,label:s,drawLabelOptions:a}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=s;let o={anchorPosition:ks.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Sp({...o,...a})}},Xm=class{constructor(t,n={}){this.box=new dt(t),this.options=new Xk(n)}draw(t){let n=Xn(t),{boxColor:r,lineWidth:s}=this.options,{x:a,y:o,width:i,height:u}=this.box;n.strokeStyle=r,n.lineWidth=s,n.strokeRect(a,o,i,u);let{label:l}=this.options;l&&new $o([l],{x:a-s/2,y:o},this.options.drawLabelOptions).draw(t)}};function uge(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof St?r.score:ws(r)?r.detection.score:void 0,a=r instanceof St?r.box:ws(r)?r.detection.box:new dt(r),o=s?`${pu(s)}`:void 0;new Xm(a,{label:o}).draw(e)})}function Cp(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Yk(e){return new Promise((t,n)=>{(e instanceof rt.getEnv().Canvas||Cp(e))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),n(a))}function s(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),t(a))}e.addEventListener("load",s),e.addEventListener("error",r)})}function Qk(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let s=rt.getEnv().createImageElement();s.onload=()=>t(s),s.onerror=n,s.src=r.result},r.onerror=n,r.readAsDataURL(e)})}function gu(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new On(e.naturalWidth,e.naturalHeight):e instanceof n?new On(e.videoWidth,e.videoHeight):new On(e.width,e.height)}function bu({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),r=n();return r.width=e,r.height=t,r}function Tp(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!Cp(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:s}=t||gu(e),a=bu({width:r,height:s});return e instanceof n?Xn(a).putImageData(e,0,0):Xn(a).drawImage(e,0,0,r,s),a}async function Zk(e,t){let n=t||rt.getEnv().createCanvasElement(),[r,s,a]=e.shape.slice(Ir(e)?1:0),o=M(()=>e.as3D(r,s,a).toInt());return await Pi.toPixels(o,n),o.dispose(),n}function Ym(e){let{Image:t,Canvas:n,Video:r}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof r}function Jk(e,t,n=!1){let{Image:r,Canvas:s}=rt.getEnv();if(!(e instanceof r||e instanceof s))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return bu({width:1,height:1});let a=gu(e),o=t/Math.max(a.height,a.width),i=o*a.width,u=o*a.height,l=bu({width:t,height:t}),c=e instanceof s?e:Tp(e),d=Math.abs(i-u)/2,p=n&&i<u?d:0,h=n&&u<i?d:0;return c.width>0&&c.height>0&&Xn(l).drawImage(c,p,h,i,u),l}var Ks=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((r,s)=>{if(js(r)){this._imageTensors[s]=r,this._inputDimensions[s]=r.shape;return}if(Ir(r)){let o=r.shape[0];if(o!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${o} passed, but not supported in input array`);this._imageTensors[s]=r,this._inputDimensions[s]=r.shape.slice(1);return}let a=r instanceof rt.getEnv().Canvas?r:Tp(r);this._canvases[s]=a,this._inputDimensions[s]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return xs(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),r=this.getInputHeight(t);return Mk({width:n,height:r},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,M(()=>{let r=xs(this.batchSize,0,1).map(a=>{let o=this.getInput(a);if(o instanceof Ae){let i=Ir(o)?o:Nn(o);return i=Vk(i,n),(i.shape[1]!==t||i.shape[2]!==t)&&(i=ar.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(o instanceof rt.getEnv().Canvas)return Pi.fromPixels(Jk(o,t,n));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${o}`)});return Ut(r.map(a=>ue(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function xt(e){if(e instanceof Ks)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=s=>Array.isArray(e)?` at input index ${s}:`:"",r=t.map(mu);return r.forEach((s,a)=>{if(!Ym(s)&&!js(s)&&!Ir(s))throw typeof t[a]=="string"?new Error(`toNetInput -${n(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${n(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(Ir(s)){let o=s.shape[0];if(o!==1)throw new Error(`toNetInput -${n(a)} tf.Tensor4D with batchSize ${o} passed, but not supported in input array`)}}),await Promise.all(r.map(s=>Ym(s)&&Yk(s))),new Ks(r,Array.isArray(e))}async function hl(e,t){let{Canvas:n}=rt.getEnv(),r=e;if(!(e instanceof n)){let o=await xt(e);if(o.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=o.getInput(0);r=i instanceof n?i:await Zk(i)}let s=Xn(r);return t.map(o=>o instanceof St?o.forSize(r.width,r.height).box.floor():o).map(o=>o.clipAtImageBorders(r.width,r.height)).map(({x:o,y:i,width:u,height:l})=>{let c=bu({width:u,height:l});return u>0&&l>0&&Xn(c).putImageData(s.getImageData(o,i,u,l),0,0),c})}async function fl(e,t){if(!js(e)&&!Ir(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(Ir(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return M(()=>{let[n,r,s]=e.shape.slice(Ir(e)?1:0);return t.map(i=>i instanceof St?i.forSize(r,n).box:i).map(i=>i.clipAtImageBorders(r,n)).map(({x:i,y:u,width:l,height:c})=>Ac(e.as3D(n,r,s),[u,i,0],[c,l,s]))})}async function Xs(e,t){let{fetch:n}=rt.getEnv(),r=await n(e,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function cge(e){let t=await Xs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return Qk(n)}async function eI(e){return(await Xs(e)).json()}async function lge(e){return new Float32Array(await(await Xs(e)).arrayBuffer())}function o$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=rt.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=n,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(e),r.play()})}async function dge(e){let t=await Xs(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return o$(n)}function Qm(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let r=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(r,"");let s=e.split("/").filter(i=>i),a=e.endsWith(".json")?s[s.length-1]:n,o=r+(e.endsWith(".json")?s.slice(0,s.length-1):s).join("/");return o=e.startsWith("/")?`/${o}`:o,{modelBaseUri:o,manifestUri:o==="/"?`/${a}`:`${o}/${a}`}}async function tI(e,t){let{manifestUri:n,modelBaseUri:r}=Qm(e,t),s=await eI(n);return tn.loadWeights(s,r)}function pge(e,t,n=!1){let{width:r,height:s}=n?gu(t):t;return e.width=r,e.height=s,{width:r,height:s}}var gn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:r}=this.traversePropertyPath(t);return n[r]}reassignParamFromPath(t,n){let{obj:r,objProp:s}=this.traversePropertyPath(t);r[s].dispose(),r[s]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof oo)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof oo))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let r=er(n.dataSync());n.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await tI(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:r,modelBaseUri:s}=Qm(t,this.getDefaultModelName()),a=l=>Promise.all(l.map(c=>n(c).then(d=>d.buffer))),o=tn.weightsLoaderFactory(a),i=JSON.parse((await n(r)).toString()),u=await o(i,s);this.loadFromWeightMap(u)}loadFromWeightMap(t){let{paramMappings:n,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=r}extractWeights(t){let{paramMappings:n,params:r}=this.extractParams(t);this._paramMappings=n,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((a,o)=>{if(!a.nextObj.hasOwnProperty(o))throw new Error(`traversePropertyPath - object does not have property ${o}, for path ${t}`);return{obj:a.nextObj,objProp:o,nextObj:a.nextObj[o]}},{nextObj:this.params}),{obj:r,objProp:s}=n;if(!r||!s||!(r[s]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:s}}};function Yn(e,t,n){return M(()=>{let r=Ec(e,t.depthwise_filter,t.pointwise_filter,n,"same");return r=Z(r,t.bias),r})}function Zm(e,t,n=!1){return M(()=>{let r=Qe(n?Z(Wt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Yn(e,t.conv0,[2,2])),s=Yn(r,t.conv1,[1,1]),a=Qe(Z(r,s)),o=Yn(a,t.conv2,[1,1]);return Qe(Z(r,Z(s,o)))})}function Np(e,t,n=!1,r=!0){return M(()=>{let s=Qe(n?Z(Wt(e,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):Yn(e,t.conv0,r?[2,2]:[1,1])),a=Yn(s,t.conv1,[1,1]),o=Qe(Z(s,a)),i=Yn(o,t.conv2,[1,1]),u=Qe(Z(s,Z(a,i))),l=Yn(u,t.conv3,[1,1]);return Qe(Z(s,Z(a,Z(i,l))))})}function yu(e,t,n="same",r=!1){return M(()=>{let s=Z(Wt(e,t.filters,[1,1],n),t.bias);return r?Qe(s):s})}function Mn(e,t){Object.keys(e).forEach(n=>{t.some(r=>r.originalPath===n)||e[n].dispose()})}function ml(e,t){return(n,r,s,a)=>{let o=qr(e(n*r*s*s),[s,s,n,r]),i=je(e(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:o,bias:i}}}function Jm(e,t){return(n,r,s)=>{let a=jr(e(n*r),[n,r]),o=je(e(r));return t.push({paramPath:`${s}/weights`},{paramPath:`${s}/bias`}),{weights:a,bias:o}}}var eg=class{constructor(t,n,r){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=r}};function gl(e,t){return(n,r,s)=>{let a=qr(e(3*3*n),[3,3,n,1]),o=qr(e(n*r),[1,1,n,r]),i=je(e(r));return t.push({paramPath:`${s}/depthwise_filter`},{paramPath:`${s}/pointwise_filter`},{paramPath:`${s}/bias`}),new eg(a,o,i)}}function bl(e){return t=>{let n=e(`${t}/depthwise_filter`,4),r=e(`${t}/pointwise_filter`,4),s=e(`${t}/bias`,1);return new eg(n,r,s)}}function lr(e,t){return(n,r,s)=>{let a=e[n];if(!du(a,r))throw new Error(`expected weightMap[${n}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:n,paramPath:s||n}),a}}function Ln(e){let t=e;function n(s){let a=t.slice(0,s);return t=t.slice(s),a}function r(){return t}return{extractWeights:n,getRemainingWeights:r}}function tg(e,t){let n=ml(e,t),r=gl(e,t);function s(o,i,u,l=!1){let c=l?n(o,i,3,`${u}/conv0`):r(o,i,`${u}/conv0`),d=r(i,i,`${u}/conv1`),p=r(i,i,`${u}/conv2`);return{conv0:c,conv1:d,conv2:p}}function a(o,i,u,l=!1){let{conv0:c,conv1:d,conv2:p}=s(o,i,u,l),h=r(i,i,`${u}/conv3`);return{conv0:c,conv1:d,conv2:p,conv3:h}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function i$(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Ln(e),{extractDenseBlock4Params:s}=tg(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2"),u=s(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i,dense3:u}}}function ng(e){return t=>{let n=e(`${t}/filters`,4),r=e(`${t}/bias`,1);return{filters:n,bias:r}}}function rg(e,t){let n=lr(e,t),r=ng(n),s=bl(n);function a(i,u=!1){let l=u?r(`${i}/conv0`):s(`${i}/conv0`),c=s(`${i}/conv1`),d=s(`${i}/conv2`);return{conv0:l,conv1:c,conv2:d}}function o(i,u=!1){let l=u?r(`${i}/conv0`):s(`${i}/conv0`),c=s(`${i}/conv1`),d=s(`${i}/conv2`),p=s(`${i}/conv3`);return{conv0:l,conv1:c,conv2:d,conv3:p}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:o}}function u$(e){let t=[],{extractDenseBlock4Params:n}=rg(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return Mn(e,t),{params:r,paramMappings:t}}var _p=class extends gn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(112,!0),"float32"),a=rs(r,[122.782,117.001,104.298]).div(255),o=Np(a,n.dense0,!0);return o=Np(o,n.dense1),o=Np(o,n.dense2),o=Np(o,n.dense3),o=Ar(o,[7,7],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await xt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return u$(t)}extractParams(t){return i$(t)}};function Ep(e,t){return M(()=>Z(Re(e,t.weights),t.bias))}function c$(e,t,n){let r=[],{extractWeights:s,getRemainingWeights:a}=Ln(e),i=Jm(s,r)(t,n,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function l$(e){let t=[],n=lr(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:r("fc")};return Mn(e,t),{params:s,paramMappings:t}}function sg(e){let t={},n={};return Object.keys(e).forEach(r=>{let s=r.startsWith("fc")?n:t;s[r]=e[r]}),{featureExtractorMap:t,classifierMap:n}}var Ap=class extends gn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ks?this.faceFeatureExtractor.forwardInput(t):t;return Ep(r.as2D(r.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return c$(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=sg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),l$(r)}extractParams(t){let n=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*n+r,a=t.slice(0,t.length-s),o=t.slice(t.length-s);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(o)}};var nI=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Fo=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);nI.forEach((n,r)=>{this[n]=t[r]})}asSortedArray(){return nI.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var ag=class extends Ap{constructor(t=new _p){super("FaceExpressionNet",t)}forwardInput(t){return M(()=>ls(this.runNet(t)))}async forward(t){return this.forwardInput(await xt(t))}async predictExpressions(t){let n=await xt(t),r=await this.forwardInput(n),s=await Promise.all(vt(r).map(async o=>{let i=o.dataSync();return o.dispose(),i}));r.dispose();let a=s.map(o=>new Fo(o));return n.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function rI(e){return e.expressions instanceof Fo}function og(e,t){return{...e,...{expressions:t}}}function hge(e,t,n=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let o=a instanceof Fo?a:rI(a)?a.expressions:void 0;if(!o)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let u=o.asSortedArray().filter(d=>d.probability>n),l=ws(a)?a.detection.box.bottomLeft:r||new Pe(0,0);new $o(u.map(d=>`${d.expression} (${pu(d.probability)})`),l).draw(e)})}function vu(e){return ws(e)&&e.landmarks instanceof Sr&&e.unshiftedLandmarks instanceof Sr&&e.alignedRect instanceof St}function fge(e){let t=(i,u,l,c)=>Math.atan2(c-u,l-i)%Math.PI,n=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return r;let s=e._positions;r.roll=-t(s[36]._x,s[36]._y,s[45]._x,s[45]._y),r.pitch=t(0,Math.abs(s[0]._x-s[30]._x)/s[30]._x,Math.PI,Math.abs(s[16]._x-s[30]._x)/s[30]._x);let a=s.reduce((i,u)=>i<u._y?i:u._y,1/0),o=s.reduce((i,u)=>i>u._y?i:u._y,-1/0);return r.yaw=Math.PI*(e._imgDims._height/(o-a)/1.4-1),r}function yl(e,t){let{box:n}=e.detection,r=t.shiftBy(n.x,n.y),s=r.align(),{imageDims:a}=e.detection,o=new St(e.detection.score,s.rescale(a.reverse()),a),i=fge(t);return{...e,...{landmarks:r,unshiftedLandmarks:t,alignedRect:o,angle:i}}}var sI=class{constructor(t={}){let{drawLines:n=!0,drawPoints:r=!0,lineWidth:s,lineColor:a,pointSize:o,pointColor:i}=t;this.drawLines=n,this.drawPoints=r,this.lineWidth=s||1,this.pointSize=o||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},aI=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new sI(n)}draw(t){let n=Xn(t),{drawLines:r,drawPoints:s,lineWidth:a,lineColor:o,pointSize:i,pointColor:u}=this.options;if(r&&this.faceLandmarks instanceof pl&&(n.strokeStyle=o,n.lineWidth=a,Hs(n,this.faceLandmarks.getJawOutline()),Hs(n,this.faceLandmarks.getLeftEyeBrow()),Hs(n,this.faceLandmarks.getRightEyeBrow()),Hs(n,this.faceLandmarks.getNose()),Hs(n,this.faceLandmarks.getLeftEye(),!0),Hs(n,this.faceLandmarks.getRightEye(),!0),Hs(n,this.faceLandmarks.getMouth(),!0)),s){n.strokeStyle=u,n.fillStyle=u;let l=c=>{n.beginPath(),n.arc(c.x,c.y,i,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(l)}}};function mge(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof Sr?r:vu(r)?r.landmarks:void 0;if(!s)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new aI(s).draw(e)})}var d$="1.6.0";function bge(e,t){let n=ml(e,t),r=gl(e,t);function s(o,i,u){let l=r(o,i,`${u}/separable_conv0`),c=r(i,i,`${u}/separable_conv1`),d=n(o,i,1,`${u}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:d}}function a(o,i){let u=r(o,o,`${i}/separable_conv0`),l=r(o,o,`${i}/separable_conv1`),c=r(o,o,`${i}/separable_conv2`);return{separable_conv0:u,separable_conv1:l,separable_conv2:c}}return{extractConvParams:n,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:a}}function p$(e,t){let n=[],{extractWeights:r,getRemainingWeights:s}=Ln(e),{extractConvParams:a,extractSeparableConvParams:o,extractReductionBlockParams:i,extractMainBlockParams:u}=bge(r,n),l=a(3,32,3,"entry_flow/conv_in"),c=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),p={conv_in:l,reduction_block_0:c,reduction_block_1:d},h={};xs(t,0,1).forEach(b=>{h[`main_block_${b}`]=u(128,`middle_flow/main_block_${b}`)});let f=i(128,256,"exit_flow/reduction_block"),m=o(256,512,"exit_flow/separable_conv"),g={reduction_block:f,separable_conv:m};if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:n,params:{entry_flow:p,middle_flow:h,exit_flow:g}}}function yge(e,t){let n=lr(e,t),r=ng(n),s=bl(n);function a(i){let u=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),c=r(`${i}/expansion_conv`);return{separable_conv0:u,separable_conv1:l,expansion_conv:c}}function o(i){let u=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),c=s(`${i}/separable_conv2`);return{separable_conv0:u,separable_conv1:l,separable_conv2:c}}return{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}}function h$(e,t){let n=[],{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}=yge(e,n),i=r("entry_flow/conv_in"),u=a("entry_flow/reduction_block_0"),l=a("entry_flow/reduction_block_1"),c={conv_in:i,reduction_block_0:u,reduction_block_1:l},d={};xs(t,0,1).forEach(m=>{d[`main_block_${m}`]=o(`middle_flow/main_block_${m}`)});let p=a("exit_flow/reduction_block"),h=s("exit_flow/separable_conv"),f={reduction_block:p,separable_conv:h};return Mn(e,n),{params:{entry_flow:c,middle_flow:d,exit_flow:f},paramMappings:n}}function f$(e,t,n){return Z(Wt(e,t.filters,n,"same"),t.bias)}function iI(e,t,n=!0){let r=n?Qe(e):e;return r=Yn(r,t.separable_conv0,[1,1]),r=Yn(Qe(r),t.separable_conv1,[1,1]),r=Vt(r,[3,3],[2,2],"same"),r=Z(r,f$(e,t.expansion_conv,[2,2])),r}function vge(e,t){let n=Yn(Qe(e),t.separable_conv0,[1,1]);return n=Yn(Qe(n),t.separable_conv1,[1,1]),n=Yn(Qe(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var uI=class extends gn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(112,!0),"float32"),a=rs(r,[122.782,117.001,104.298]).div(255),o=Qe(f$(a,n.entry_flow.conv_in,[2,2]));return o=iI(o,n.entry_flow.reduction_block_0,!1),o=iI(o,n.entry_flow.reduction_block_1),xs(this._numMainBlocks,0,1).forEach(i=>{o=vge(o,n.middle_flow[`main_block_${i}`])}),o=iI(o,n.exit_flow.reduction_block),o=Qe(Yn(o,n.exit_flow.separable_conv,[1,1])),o})}async forward(t){return this.forwardInput(await xt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return h$(t,this._numMainBlocks)}extractParams(t){return p$(t,this._numMainBlocks)}};function m$(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Ln(e),s=Jm(n,t),a=s(512,1,"fc/age"),o=s(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:o}}}}function g$(e){let t=[],n=lr(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:{age:r("fc/age"),gender:r("fc/gender")}};return Mn(e,t),{params:s,paramMappings:t}}var Ys;(function(n){n.FEMALE="female",n.MALE="male"})(Ys||(Ys={}));var ig=class extends gn{constructor(t=new uI(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ks?this.faceFeatureExtractor.forwardInput(t):t,s=Ar(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Ep(s,n.fc.age).as1D(),o=Ep(s,n.fc.gender);return{age:a,gender:o}})}forwardInput(t){return M(()=>{let{age:n,gender:r}=this.runNet(t);return{age:n,gender:ls(r)}})}async forward(t){return this.forwardInput(await xt(t))}async predictAgeAndGender(t){let n=await xt(t),r=await this.forwardInput(n),s=vt(r.age),a=vt(r.gender),o=s.map((u,l)=>({ageTensor:u,genderTensor:a[l]})),i=await Promise.all(o.map(async({ageTensor:u,genderTensor:l})=>{let c=u.dataSync()[0],d=l.dataSync()[0],p=d>.5,h=p?Ys.MALE:Ys.FEMALE,f=p?d:1-d;return u.dispose(),l.dispose(),{age:c,gender:h,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),n.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return m$(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=sg(t);return this.faceFeatureExtractor.loadFromWeightMap(n),g$(r)}extractParams(t){let n=512*1+1+(512*2+2),r=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var $p=class extends Ap{postProcess(t,n,r){let s=r.map(({width:o,height:i})=>{let u=n/Math.max(i,o);return{width:o*u,height:i*u}}),a=s.length;return M(()=>{let o=(d,p)=>Ut([_n([68],d,"float32"),_n([68],p,"float32")],1).as2D(1,136).as1D(),i=(d,p)=>{let{width:h,height:f}=s[d];return p(h,f)?Math.abs(h-f)/2:0},u=d=>i(d,(p,h)=>p<h),l=d=>i(d,(p,h)=>h<p);return t.mul(_n([a,136],n,"float32")).sub(Ut(Array.from(Array(a),(d,p)=>o(u(p),l(p))))).div(Ut(Array.from(Array(a),(d,p)=>o(s[p].width,s[p].height))))})}forwardInput(t){return M(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([r,s])=>({height:r,width:s})))})}async forward(t){return this.forwardInput(await xt(t))}async detectLandmarks(t){let n=await xt(t),r=M(()=>vt(this.forwardInput(n))),s=await Promise.all(r.map(async(a,o)=>{let i=Array.from(a.dataSync()),u=i.filter((c,d)=>jm(d)),l=i.filter((c,d)=>!jm(d));return new pl(Array(68).fill(0).map((c,d)=>new Pe(u[d],l[d])),{height:n.getInputHeight(o),width:n.getInputWidth(o)})}));return r.forEach(a=>a.dispose()),n.isBatchInput?s:s[0]}getClassifierChannelsOut(){return 136}};var vl=class extends $p{constructor(t=new _p){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function b$(e){let t=[],{extractDenseBlock3Params:n}=rg(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return Mn(e,t),{params:r,paramMappings:t}}function y$(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Ln(e),{extractDenseBlock3Params:s}=tg(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i}}}var cI=class extends gn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(112,!0),"float32"),a=rs(r,[122.782,117.001,104.298]).div(255),o=Zm(a,n.dense0,!0);return o=Zm(o,n.dense1),o=Zm(o,n.dense2),o=Ar(o,[14,14],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await xt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return b$(t)}extractParams(t){return y$(t)}};var ug=class extends $p{constructor(t=new cI){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var v$=class extends vl{};function x$(e,t){return Z(V(e,t.weights),t.biases)}function lI(e,t,n,r,s="same"){let{filters:a,bias:o}=t.conv,i=Wt(e,a,n,s);return i=Z(i,o),i=x$(i,t.scale),r?Qe(i):i}function w$(e,t){return lI(e,t,[1,1],!0)}function dI(e,t){return lI(e,t,[1,1],!1)}function cg(e,t){return lI(e,t,[2,2],!0,"valid")}function xge(e,t){function n(i,u,l){let c=e(i),d=c.length/(u*l*l);if(Ok(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${c.length}, numFilters: ${u}, filterSize: ${l}`);return M(()=>Oe(qr(c,[u,d,l,l]),[2,3,1,0]))}function r(i,u,l,c){let d=n(i,u,l),p=je(e(u));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/bias`}),{filters:d,bias:p}}function s(i,u){let l=je(e(i)),c=je(e(i));return t.push({paramPath:`${u}/weights`},{paramPath:`${u}/biases`}),{weights:l,biases:c}}function a(i,u,l,c){let d=r(i,u,l,`${c}/conv`),p=s(u,`${c}/scale`);return{conv:d,scale:p}}function o(i,u,l,c,d=!1){let p=a((d?.5:1)*i,u,l,`${c}/conv1`),h=a(i,u,l,`${c}/conv2`);return{conv1:p,conv2:h}}return{extractConvLayerParams:a,extractResidualLayerParams:o}}function k$(e){let{extractWeights:t,getRemainingWeights:n}=Ln(e),r=[],{extractConvLayerParams:s,extractResidualLayerParams:a}=xge(t,r),o=s(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),u=a(9216,32,3,"conv32_2"),l=a(9216,32,3,"conv32_3"),c=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),p=a(36864,64,3,"conv64_2"),h=a(36864,64,3,"conv64_3"),f=a(147456,128,3,"conv128_down",!0),m=a(147456,128,3,"conv128_1"),g=a(147456,128,3,"conv128_2"),b=a(589824,256,3,"conv256_down",!0),y=a(589824,256,3,"conv256_1"),v=a(589824,256,3,"conv256_2"),x=a(589824,256,3,"conv256_down_out"),k=M(()=>Oe(jr(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:o,conv32_1:i,conv32_2:u,conv32_3:l,conv64_down:c,conv64_1:d,conv64_2:p,conv64_3:h,conv128_down:f,conv128_1:m,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:v,conv256_down_out:x,fc:k},paramMappings:r}}function wge(e,t){let n=lr(e,t);function r(o){let i=n(`${o}/scale/weights`,1),u=n(`${o}/scale/biases`,1);return{weights:i,biases:u}}function s(o){let i=n(`${o}/conv/filters`,4),u=n(`${o}/conv/bias`,1),l=r(o);return{conv:{filters:i,bias:u},scale:l}}function a(o){return{conv1:s(`${o}/conv1`),conv2:s(`${o}/conv2`)}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function I$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:r}=wge(e,t),s=n("conv32_down"),a=r("conv32_1"),o=r("conv32_2"),i=r("conv32_3"),u=r("conv64_down"),l=r("conv64_1"),c=r("conv64_2"),d=r("conv64_3"),p=r("conv128_down"),h=r("conv128_1"),f=r("conv128_2"),m=r("conv256_down"),g=r("conv256_1"),b=r("conv256_2"),y=r("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Pk(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:s,conv32_1:a,conv32_2:o,conv32_3:i,conv64_down:u,conv64_1:l,conv64_2:c,conv64_3:d,conv128_down:p,conv128_1:h,conv128_2:f,conv256_down:m,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:v};return Mn(e,t),{params:x,paramMappings:t}}function ss(e,t){let n=w$(e,t.conv1);return n=dI(n,t.conv2),n=Z(n,e),n=Qe(n),n}function Fp(e,t){let n=cg(e,t.conv1);n=dI(n,t.conv2);let r=Ar(e,2,2,"valid"),s=kt(r.shape),a=r.shape[3]!==n.shape[3];if(r.shape[1]!==n.shape[1]||r.shape[2]!==n.shape[2]){let i=[...n.shape];i[1]=1;let u=kt(i);n=ot([n,u],1);let l=[...n.shape];l[2]=1;let c=kt(l);n=ot([n,c],2)}return r=a?ot([r,s],3):r,n=Z(r,n),n=Qe(n),n}var xl=class extends gn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(150,!0),"float32"),a=rs(r,[122.782,117.001,104.298]).div(255),o=cg(a,n.conv32_down);o=Vt(o,3,2,"valid"),o=ss(o,n.conv32_1),o=ss(o,n.conv32_2),o=ss(o,n.conv32_3),o=Fp(o,n.conv64_down),o=ss(o,n.conv64_1),o=ss(o,n.conv64_2),o=ss(o,n.conv64_3),o=Fp(o,n.conv128_down),o=ss(o,n.conv128_1),o=ss(o,n.conv128_2),o=Fp(o,n.conv256_down),o=ss(o,n.conv256_1),o=ss(o,n.conv256_2),o=Fp(o,n.conv256_down_out);let i=o.mean([1,2]);return Re(i,n.fc)})}async forward(t){return this.forwardInput(await xt(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(o=>o<=0))return new Float32Array(128);let n=await xt(t),r=M(()=>vt(this.forwardInput(n))),s=await Promise.all(r.map(o=>o.data()));return r.forEach(o=>o.dispose()),n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return I$(t)}extractParams(t){return k$(t)}};function kge(e){let t=new xl;return t.extractWeights(e),t}function lg(e,t){return{...e,...{descriptor:t}}}function Ige(e){return typeof e.age=="number"}function dg(e,t){return{...e,...{age:t}}}function Sge(e){return(e.gender===Ys.MALE||e.gender===Ys.FEMALE)&&cl(e.genderProbability)}function pg(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Cge(e,t){function n(u,l){let c=qr(e(3*3*u),[3,3,u,1]),d=je(e(u)),p=je(e(u)),h=je(e(u)),f=je(e(u));return t.push({paramPath:`${l}/filters`},{paramPath:`${l}/batch_norm_scale`},{paramPath:`${l}/batch_norm_offset`},{paramPath:`${l}/batch_norm_mean`},{paramPath:`${l}/batch_norm_variance`}),{filters:c,batch_norm_scale:d,batch_norm_offset:p,batch_norm_mean:h,batch_norm_variance:f}}function r(u,l,c,d,p){let h=qr(e(u*l*c*c),[c,c,u,l]),f=je(e(l));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${p?"batch_norm_offset":"bias"}`}),{filters:h,bias:f}}function s(u,l,c,d){let{filters:p,bias:h}=r(u,l,c,d,!0);return{filters:p,batch_norm_offset:h}}function a(u,l,c){let d=n(u,`${c}/depthwise_conv`),p=s(u,l,1,`${c}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:p}}function o(){let u=s(3,32,3,"mobilenetv1/conv_0"),l=a(32,64,"mobilenetv1/conv_1"),c=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),p=a(128,256,"mobilenetv1/conv_4"),h=a(256,256,"mobilenetv1/conv_5"),f=a(256,512,"mobilenetv1/conv_6"),m=a(512,512,"mobilenetv1/conv_7"),g=a(512,512,"mobilenetv1/conv_8"),b=a(512,512,"mobilenetv1/conv_9"),y=a(512,512,"mobilenetv1/conv_10"),v=a(512,512,"mobilenetv1/conv_11"),x=a(512,1024,"mobilenetv1/conv_12"),k=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:u,conv_1:l,conv_2:c,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,conv_8:g,conv_9:b,conv_10:y,conv_11:v,conv_12:x,conv_13:k}}function i(){let u=s(1024,256,1,"prediction_layer/conv_0"),l=s(256,512,3,"prediction_layer/conv_1"),c=s(512,128,1,"prediction_layer/conv_2"),d=s(128,256,3,"prediction_layer/conv_3"),p=s(256,128,1,"prediction_layer/conv_4"),h=s(128,256,3,"prediction_layer/conv_5"),f=s(256,64,1,"prediction_layer/conv_6"),m=s(64,128,3,"prediction_layer/conv_7"),g=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),D=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:u,conv_1:l,conv_2:c,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:k},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:D}}}return{extractMobilenetV1Params:o,extractPredictionLayerParams:i}}function S$(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Ln(e),{extractMobilenetV1Params:s,extractPredictionLayerParams:a}=Cge(n,t),o=s(),i=a(),l={extra_dim:Qh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:o,prediction_layer:i,output_layer:l},paramMappings:t}}function Tge(e,t){let n=lr(e,t);function r(l,c,d){let p=n(`${l}/Conv2d_${c}_pointwise/weights`,4,`${d}/filters`),h=n(`${l}/Conv2d_${c}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:p,batch_norm_offset:h}}function s(l){let c=`mobilenetv1/conv_${l}`,d=`MobilenetV1/Conv2d_${l}_depthwise`,p=`${c}/depthwise_conv`,h=`${c}/pointwise_conv`,f=n(`${d}/depthwise_weights`,4,`${p}/filters`),m=n(`${d}/BatchNorm/gamma`,1,`${p}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${p}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${p}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${p}/batch_norm_variance`);return{depthwise_conv:{filters:f,batch_norm_scale:m,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:r("MobilenetV1",l,h)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:s(1),conv_2:s(2),conv_3:s(3),conv_4:s(4),conv_5:s(5),conv_6:s(6),conv_7:s(7),conv_8:s(8),conv_9:s(9),conv_10:s(10),conv_11:s(11),conv_12:s(12),conv_13:s(13)}}function o(l,c){let d=n(`${l}/weights`,4,`${c}/filters`),p=n(`${l}/biases`,1,`${c}/bias`);return{filters:d,bias:p}}function i(l){let c=o(`Prediction/BoxPredictor_${l}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${l}/box_encoding_predictor`),d=o(`Prediction/BoxPredictor_${l}/ClassPredictor`,`prediction_layer/box_predictor_${l}/class_predictor`);return{box_encoding_predictor:c,class_predictor:d}}function u(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:u}}function C$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:r}=Tge(e,t),s=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!js(s))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${s}`);let a={mobilenetv1:n(),prediction_layer:r(),output_layer:{extra_dim:s}};return Mn(e,t),{params:a,paramMappings:t}}function Br(e,t,n){return M(()=>{let r=Wt(e,t.filters,n,"same");return r=Z(r,t.batch_norm_offset),dn(r,0,6)})}var Nge=.0010000000474974513;function _ge(e,t,n){return M(()=>{let r=Bi(e,t.filters,n,"same");return r=ho(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Nge),dn(r,0,6)})}function Ege(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function T$(e,t){return M(()=>{let n,r=Br(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,o)=>{let i=o+1,u=Ege(i);r=_ge(r,a.depthwise_conv,u),r=Br(r,a.pointwise_conv,[1,1]),i===11&&(n=r)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:n}})}function Age(e,t,n){let r=e.arraySync(),s=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),o=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),u=Math.min(r[n][0],r[n][2]),l=Math.min(r[n][1],r[n][3]),c=Math.max(r[n][0],r[n][2]),d=Math.max(r[n][1],r[n][3]),p=(o-s)*(i-a),h=(c-u)*(d-l);if(p<=0||h<=0)return 0;let f=Math.max(s,u),m=Math.max(a,l),g=Math.min(o,c),b=Math.min(i,d),y=Math.max(g-f,0)*Math.max(b-m,0);return y/(p+h-y)}function N$(e,t,n,r,s){let a=e.shape[0],o=Math.min(n,a),i=t.map((c,d)=>({score:c,boxIndex:d})).filter(c=>c.score>s).sort((c,d)=>d.score-c.score),u=c=>c<=r?1:0,l=[];return i.forEach(c=>{if(l.length>=o)return;let d=c.score;for(let p=l.length-1;p>=0;--p){let h=Age(e,c.boxIndex,l[p]);if(h!==0&&(c.score*=u(h),c.score<=s))break}d===c.score&&l.push(c.boxIndex)}),l}function $ge(e){let t=vt(Oe(e,[1,0])),n=[he(t[2],t[0]),he(t[3],t[1])],r=[Z(t[0],me(n[0],2)),Z(t[1],me(n[1],2))];return{sizes:n,centers:r}}function Fge(e,t){let{sizes:n,centers:r}=$ge(e),s=vt(Oe(t,[1,0])),a=me(V(Tn(me(s[2],5)),n[0]),2),o=Z(V(me(s[0],10),n[0]),r[0]),i=me(V(Tn(me(s[3],5)),n[1]),2),u=Z(V(me(s[1],10),n[1]),r[1]);return Oe(Ut([he(o,a),he(u,i),Z(o,a),Z(u,i)]),[1,0])}function _$(e,t,n){return M(()=>{let r=e.shape[0],s=Fge(G(tr(n.extra_dim,[r,1,1]),[-1,4]),G(e,[-1,4]));s=G(s,[r,s.shape[0]/r,4]);let a=$r(Ve(t,[0,0,1],[-1,-1,-1])),o=Ve(a,[0,0,0],[-1,-1,1]);o=G(o,[r,o.shape[1]]);let i=vt(s),u=vt(o);return{boxes:i,scores:u}})}function xu(e,t){return M(()=>{let n=e.shape[0],r=G(yu(e,t.box_encoding_predictor),[n,-1,1,4]),s=G(yu(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:r,classPrediction:s}})}function E$(e,t,n){return M(()=>{let r=Br(e,n.conv_0,[1,1]),s=Br(r,n.conv_1,[2,2]),a=Br(s,n.conv_2,[1,1]),o=Br(a,n.conv_3,[2,2]),i=Br(o,n.conv_4,[1,1]),u=Br(i,n.conv_5,[2,2]),l=Br(u,n.conv_6,[1,1]),c=Br(l,n.conv_7,[2,2]),d=xu(t,n.box_predictor_0),p=xu(e,n.box_predictor_1),h=xu(s,n.box_predictor_2),f=xu(o,n.box_predictor_3),m=xu(u,n.box_predictor_4),g=xu(c,n.box_predictor_5),b=ot([d.boxPredictionEncoding,p.boxPredictionEncoding,h.boxPredictionEncoding,f.boxPredictionEncoding,m.boxPredictionEncoding,g.boxPredictionEncoding],1),y=ot([d.classPrediction,p.classPrediction,h.classPrediction,f.classPrediction,m.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var zr=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var wu=class extends gn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return M(()=>{let r=ue(t.toBatchTensor(512,!1),"float32"),s=he(me(r,127.5),1),a=T$(s,n.mobilenetv1),{boxPredictions:o,classPredictions:i}=E$(a.out,a.conv11,n.prediction_layer);return _$(o,i,n.output_layer)})}async forward(t){return this.forwardInput(await xt(t))}async locateFaces(t,n={}){let{maxResults:r,minConfidence:s}=new zr(n),a=await xt(t),{boxes:o,scores:i}=this.forwardInput(a),u=o[0],l=i[0];for(let v=1;v<o.length;v++)o[v].dispose(),i[v].dispose();let c=Array.from(l.dataSync()),p=N$(u,c,r,.5,s),h=a.getReshapedInputDimensions(0),f=a.inputSize,m=f/h.width,g=f/h.height,b=u.arraySync(),y=p.map(v=>{let[x,k]=[Math.max(0,b[v][0]),Math.min(1,b[v][2])].map(E=>E*g),[T,C]=[Math.max(0,b[v][1]),Math.min(1,b[v][3])].map(E=>E*m);return new St(c[v],new dl(T,x,C-T,k-x),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return u.dispose(),l.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return C$(t)}extractParams(t){return S$(t)}};function A$(e){let t=new wu;return t.extractWeights(e),t}function Dge(e){return A$(e)}var $$=class extends wu{};var F$=.4,D$=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],R$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],P$=[117.001,114.697,97.404],O$="tiny_yolov2_model",M$="tiny_yolov2_separable_conv_model";var hg=e=>typeof e=="number";function pI(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!hg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>hg(t.x)&&hg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(hg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function wl(e){return M(()=>{let t=V(e,ke(.10000000149011612));return Z(Qe(he(e,t)),t)})}function Qs(e,t){return M(()=>{let n=Fr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Wt(n,t.conv.filters,[1,1],"valid"),n=he(n,t.bn.sub),n=V(n,t.bn.truediv),n=Z(n,t.conv.bias),wl(n)})}function Zs(e,t){return M(()=>{let n=Fr(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ec(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),wl(n)})}function Rge(e,t){let n=ml(e,t);function r(o,i){let u=je(e(o)),l=je(e(o));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:u,truediv:l}}function s(o,i,u){let l=n(o,i,3,`${u}/conv`),c=r(i,`${u}/bn`);return{conv:l,bn:c}}let a=gl(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function L$(e,t,n,r){let{extractWeights:s,getRemainingWeights:a}=Ln(e),o=[],{extractConvParams:i,extractConvWithBatchNormParams:u,extractSeparableConvParams:l}=Rge(s,o),c;if(t.withSeparableConvs){let[d,p,h,f,m,g,b,y,v]=r,x=t.isFirstLayerConv2d?i(d,p,3,"conv0"):l(d,p,"conv0"),k=l(p,h,"conv1"),T=l(h,f,"conv2"),C=l(f,m,"conv3"),E=l(m,g,"conv4"),F=l(g,b,"conv5"),O=y?l(b,y,"conv6"):void 0,D=v?l(y,v,"conv7"):void 0,R=i(v||y||b,5*n,1,"conv8");c={conv0:x,conv1:k,conv2:T,conv3:C,conv4:E,conv5:F,conv6:O,conv7:D,conv8:R}}else{let[d,p,h,f,m,g,b,y,v]=r,x=u(d,p,"conv0"),k=u(p,h,"conv1"),T=u(h,f,"conv2"),C=u(f,m,"conv3"),E=u(m,g,"conv4"),F=u(g,b,"conv5"),O=u(b,y,"conv6"),D=u(y,v,"conv7"),R=i(v,5*n,1,"conv8");c={conv0:x,conv1:k,conv2:T,conv3:C,conv4:E,conv5:F,conv6:O,conv7:D,conv8:R}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:c,paramMappings:o}}function Pge(e,t){let n=lr(e,t);function r(i){let u=n(`${i}/sub`,1),l=n(`${i}/truediv`,1);return{sub:u,truediv:l}}function s(i){let u=n(`${i}/filters`,4),l=n(`${i}/bias`,1);return{filters:u,bias:l}}function a(i){let u=s(`${i}/conv`),l=r(`${i}/bn`);return{conv:u,bn:l}}let o=bl(n);return{extractConvParams:s,extractConvWithBatchNormParams:a,extractSeparableConvParams:o}}function B$(e,t){let n=[],{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}=Pge(e,n),o;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;o={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else o={conv0:s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:s("conv6"),conv7:s("conv7"),conv8:r("conv8")};return Mn(e,n),{params:o,paramMappings:n}}var Is=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var hI=class extends gn{constructor(t){super("TinyYolov2");pI(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let r=Qs(t,n.conv0);return r=Vt(r,[2,2],[2,2],"same"),r=Qs(r,n.conv1),r=Vt(r,[2,2],[2,2],"same"),r=Qs(r,n.conv2),r=Vt(r,[2,2],[2,2],"same"),r=Qs(r,n.conv3),r=Vt(r,[2,2],[2,2],"same"),r=Qs(r,n.conv4),r=Vt(r,[2,2],[2,2],"same"),r=Qs(r,n.conv5),r=Vt(r,[2,2],[1,1],"same"),r=Qs(r,n.conv6),r=Qs(r,n.conv7),yu(r,n.conv8,"valid",!1)}runMobilenet(t,n){let r=this.config.isFirstLayerConv2d?wl(yu(t,n.conv0,"valid",!1)):Zs(t,n.conv0);return r=Vt(r,[2,2],[2,2],"same"),r=Zs(r,n.conv1),r=Vt(r,[2,2],[2,2],"same"),r=Zs(r,n.conv2),r=Vt(r,[2,2],[2,2],"same"),r=Zs(r,n.conv3),r=Vt(r,[2,2],[2,2],"same"),r=Zs(r,n.conv4),r=Vt(r,[2,2],[2,2],"same"),r=Zs(r,n.conv5),r=Vt(r,[2,2],[1,1],"same"),r=n.conv6?Zs(r,n.conv6):r,r=n.conv7?Zs(r,n.conv7):r,yu(r,n.conv8,"valid",!1)}forwardInput(t,n){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return M(()=>{let s=ue(t.toBatchTensor(n,!1),"float32");return s=this.config.meanRgb?rs(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(t,n){return this.forwardInput(await xt(t),n)}async detect(t,n={}){let{inputSize:r,scoreThreshold:s}=new Is(n),a=await xt(t),o=await this.forwardInput(a,r),i=M(()=>vt(o)[0].expandDims()),u={width:a.getInputWidth(0),height:a.getInputHeight(0)},l=await this.extractBoxes(i,a.getReshapedInputDimensions(0),s);o.dispose(),i.dispose();let c=l.map(g=>g.box),d=l.map(g=>g.score),p=l.map(g=>g.classScore),h=l.map(g=>this.config.classes[g.label]);return Wk(c.map(g=>g.rescale(r)),d,this.config.iouThreshold,!0).map(g=>new Ao(d[g],p[g],h[g],c[g],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return B$(t,this.config)}extractParams(t){let n=this.config.filterSizes||hI.DEFAULT_FILTER_SIZES,r=n?n.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return L$(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,r){let{width:s,height:a}=n,o=Math.max(s,a),i=o/s,u=o/a,l=t.shape[1],c=this.config.anchors.length,[d,p,h]=M(()=>{let b=t.reshape([l,l,c,this.boxEncodingSize]),y=b.slice([0,0,0,0],[l,l,c,4]),v=b.slice([0,0,0,4],[l,l,c,1]),x=this.withClassScores?ls(b.slice([0,0,0,5],[l,l,c,this.config.classes.length]),3):ke(0);return[y,v,x]}),f=[],m=await p.array(),g=await d.array();for(let b=0;b<l;b++)for(let y=0;y<l;y++)for(let v=0;v<c;v++){let x=wp(m[b][y][v][0]);if(!r||x>r){let k=(y+wp(g[b][y][v][0]))/l*i,T=(b+wp(g[b][y][v][1]))/l*u,C=Math.exp(g[b][y][v][2])*this.config.anchors[v].x/l*i,E=Math.exp(g[b][y][v][3])*this.config.anchors[v].y/l*u,F=k-C/2,O=T-E/2,D={row:b,col:y,anchor:v},{classScore:R,label:_}=this.withClassScores?await this.extractPredictedClass(h,D):{classScore:1,label:0};f.push({box:new ll(F,O,F+C,O+E),score:x,classScore:x*R,label:_,...D})}}return d.dispose(),p.dispose(),h.dispose(),f}async extractPredictedClass(t,n){let{row:r,col:s,anchor:a}=n,o=await t.array();return Array(this.config.classes.length).fill(0).map((i,u)=>o[r][s][a][u]).map((i,u)=>({classScore:i,label:u})).reduce((i,u)=>i.classScore>u.classScore?i:u)}},kl=hI;kl.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Il=class extends kl{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:F$,classes:["face"],...t?{anchors:R$,meanRgb:P$}:{anchors:D$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new St(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?M$:O$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Oge(e,t=!0){let n=new Il(t);return n.extractWeights(e),n}var fg=class extends Is{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Wr=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ku(e,t,n,r,s=({alignedRect:a})=>a){let a=e.map(u=>vu(u)?s(u):u.detection),o=r||(t instanceof Ae?await fl(t,a):await hl(t,a)),i=await n(o);return o.forEach(u=>u instanceof Ae&&u.dispose()),i}async function Sl(e,t,n,r,s){return ku([e],t,async a=>n(a[0]),r,s)}var z$=.4,W$=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],V$=[117.001,114.697,97.404];var Cl=class extends kl{constructor(){let t={withSeparableConvs:!0,iouThreshold:z$,classes:["face"],anchors:W$,meanRgb:V$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new St(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var st={ssdMobilenetv1:new wu,tinyFaceDetector:new Cl,tinyYolov2:new Il,faceLandmark68Net:new vl,faceLandmark68TinyNet:new ug,faceRecognitionNet:new xl,faceExpressionNet:new ag,ageGenderNet:new ig},U$=(e,t)=>st.ssdMobilenetv1.locateFaces(e,t),Mge=(e,t)=>st.tinyFaceDetector.locateFaces(e,t),Lge=(e,t)=>st.tinyYolov2.locateFaces(e,t),G$=e=>st.faceLandmark68Net.detectLandmarks(e),Bge=e=>st.faceLandmark68TinyNet.detectLandmarks(e),zge=e=>st.faceRecognitionNet.computeFaceDescriptor(e),Wge=e=>st.faceExpressionNet.predictExpressions(e),Vge=e=>st.ageGenderNet.predictAgeAndGender(e),H$=e=>st.ssdMobilenetv1.load(e),Uge=e=>st.tinyFaceDetector.load(e),Gge=e=>st.tinyYolov2.load(e),Hge=e=>st.faceLandmark68Net.load(e),jge=e=>st.faceLandmark68TinyNet.load(e),qge=e=>st.faceRecognitionNet.load(e),Kge=e=>st.faceExpressionNet.load(e),Xge=e=>st.ageGenderNet.load(e),Yge=H$,Qge=U$,Zge=G$;var fI=class extends Wr{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},Tl=class extends fI{async run(){let t=await this.parentTask,n=await ku(t,this.input,async r=>Promise.all(r.map(s=>st.faceExpressionNet.predictExpressions(s))),this.extractedFaces);return t.map((r,s)=>og(r,n[s]))}withAgeAndGender(){return new _l(this,this.input)}},Nl=class extends fI{async run(){let t=await this.parentTask;if(!t)return;let n=await Sl(t,this.input,r=>st.faceExpressionNet.predictExpressions(r),this.extractedFaces);return og(t,n)}withAgeAndGender(){return new El(this,this.input)}},Iu=class extends Tl{withAgeAndGender(){return new Cu(this,this.input)}withFaceDescriptors(){return new Do(this,this.input)}},Su=class extends Nl{withAgeAndGender(){return new Tu(this,this.input)}withFaceDescriptor(){return new Ro(this,this.input)}};var mI=class extends Wr{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},_l=class extends mI{async run(){let t=await this.parentTask,n=await ku(t,this.input,async r=>Promise.all(r.map(s=>st.ageGenderNet.predictAgeAndGender(s))),this.extractedFaces);return t.map((r,s)=>{let{age:a,gender:o,genderProbability:i}=n[s];return dg(pg(r,o,i),a)})}withFaceExpressions(){return new Tl(this,this.input)}},El=class extends mI{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:r,genderProbability:s}=await Sl(t,this.input,a=>st.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return dg(pg(t,r,s),n)}withFaceExpressions(){return new Nl(this,this.input)}},Cu=class extends _l{withFaceExpressions(){return new Iu(this,this.input)}withFaceDescriptors(){return new Do(this,this.input)}},Tu=class extends El{withFaceExpressions(){return new Su(this,this.input)}withFaceDescriptor(){return new Ro(this,this.input)}};var mg=class extends Wr{constructor(t,n){super();this.parentTask=t;this.input=n}},Do=class extends mg{async run(){let t=await this.parentTask;return(await ku(t,this.input,r=>Promise.all(r.map(s=>st.faceRecognitionNet.computeFaceDescriptor(s))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,s)=>lg(t[s],r))}withFaceExpressions(){return new Iu(this,this.input)}withAgeAndGender(){return new Cu(this,this.input)}},Ro=class extends mg{async run(){let t=await this.parentTask;if(!t)return;let n=await Sl(t,this.input,r=>st.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return lg(t,n)}withFaceExpressions(){return new Su(this,this.input)}withAgeAndGender(){return new Tu(this,this.input)}};var gg=class extends Wr{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?st.faceLandmark68TinyNet:st.faceLandmark68Net}},bg=class extends gg{async run(){let t=await this.parentTask,n=t.map(a=>a.detection),r=this.input instanceof Ae?await fl(this.input,n):await hl(this.input,n),s=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Ae&&a.dispose()),t.map((a,o)=>yl(a,s[o]))}withFaceExpressions(){return new Iu(this,this.input)}withAgeAndGender(){return new Cu(this,this.input)}withFaceDescriptors(){return new Do(this,this.input)}},yg=class extends gg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,r=this.input instanceof Ae?await fl(this.input,[n]):await hl(this.input,[n]),s=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Ae&&a.dispose()),yl(t,s)}withFaceExpressions(){return new Su(this,this.input)}withAgeAndGender(){return new Tu(this,this.input)}withFaceDescriptor(){return new Ro(this,this.input)}};var vg=class extends Wr{constructor(t,n=new zr){super();this.input=t;this.options=n}},Dp=class extends vg{async run(){let{input:t,options:n}=this,r;if(n instanceof fg)r=st.tinyFaceDetector.locateFaces(t,n);else if(n instanceof zr)r=st.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof Is)r=st.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(r=>t(r.map(s=>fu({},s)))).catch(r=>n(r))})}withFaceLandmarks(t=!1){return new bg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Tl(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new _l(this.runAndExtendWithFaceDetections(),this.input)}},xg=class extends vg{async run(){let t=await new Dp(this.input,this.options),n=t[0];return t.forEach(r=>{r.score>n.score&&(n=r)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?fu({},n):void 0)})}withFaceLandmarks(t=!1){return new yg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Nl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new El(this.runAndExtendWithFaceDetection(),this.input)}};function Jge(e,t=new zr){return new xg(e,t)}function wg(e,t=new zr){return new Dp(e,t)}async function j$(e,t){return wg(e,new zr(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function ebe(e,t={}){return wg(e,new Is(t)).withFaceLandmarks().withFaceDescriptors()}var tbe=j$;function gI(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),r=Array.from(t);return Math.sqrt(n.map((s,a)=>s-r[a]).reduce((s,a)=>s+a**2,0))}var kg=class{constructor(t,n=.6){this._distanceThreshold=n;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let s=1,a=()=>`person ${s++}`;this._labeledDescriptors=r.map(o=>{if(o instanceof qs)return o;if(o instanceof Float32Array)return new qs(a(),[o]);if(o.descriptor&&o.descriptor instanceof Float32Array)return new qs(a(),[o.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(r=>gI(r,t)).reduce((r,s)=>r+s,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:r})=>new kp(r,this.computeMeanDistance(t,n))).reduce((n,r)=>n.distance<r.distance?n:r)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new kp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(r=>qs.fromJSON(r));return new kg(n,t.distanceThreshold)}};function nbe(e){let t=new Cl;return t.extractWeights(e),t}function q$(e,t){let{width:n,height:r}=new On(t.width,t.height);if(n<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:r})}`);if(Array.isArray(e))return e.map(s=>q$(s,{width:n,height:r}));if(vu(e)){let s=e.detection.forSize(n,r),a=e.unshiftedLandmarks.forSize(s.box.width,s.box.height);return yl(fu(e,s),a)}return ws(e)?fu(e,e.detection.forSize(n,r)):e instanceof Sr||e instanceof St?e.forSize(n,r):e}var rbe=typeof process!="undefined",K$=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",sbe={faceapi:d$,node:rbe,browser:K$};K$&&(Wu.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Wu.set("WEBGL_CPU_FORWARD",!0),Wu.set("WEBGL_USE_SHAPES_UNIFORMS",!0));return abe;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use backend file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */