138 lines
5.6 KiB
TypeScript
138 lines
5.6 KiB
TypeScript
import * as tf from '../../dist/tfjs.esm';
|
|
|
|
import {
|
|
ConvParams, disposeUnusedWeightTensors, extractWeightEntryFactory, ParamMapping,
|
|
} from '../common/index';
|
|
import { isTensor3D } from '../utils/index';
|
|
import {
|
|
BoxPredictionParams, MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams,
|
|
} from './types';
|
|
|
|
function extractorsFactory(weightMap: any, paramMappings: ParamMapping[]) {
|
|
const extractWeightEntry = extractWeightEntryFactory(weightMap, paramMappings);
|
|
|
|
function extractPointwiseConvParams(prefix: string, idx: number, mappedPrefix: string): PointwiseConvParams {
|
|
const filters = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/weights`, 4, `${mappedPrefix}/filters`);
|
|
const batch_norm_offset = extractWeightEntry(`${prefix}/Conv2d_${idx}_pointwise/convolution_bn_offset`, 1, `${mappedPrefix}/batch_norm_offset`);
|
|
|
|
return { filters, batch_norm_offset };
|
|
}
|
|
|
|
function extractConvPairParams(idx: number): MobileNetV1.ConvPairParams {
|
|
const mappedPrefix = `mobilenetv1/conv_${idx}`;
|
|
const prefixDepthwiseConv = `MobilenetV1/Conv2d_${idx}_depthwise`;
|
|
const mappedPrefixDepthwiseConv = `${mappedPrefix}/depthwise_conv`;
|
|
const mappedPrefixPointwiseConv = `${mappedPrefix}/pointwise_conv`;
|
|
|
|
const filters = extractWeightEntry(`${prefixDepthwiseConv}/depthwise_weights`, 4, `${mappedPrefixDepthwiseConv}/filters`);
|
|
const batch_norm_scale = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/gamma`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_scale`);
|
|
const batch_norm_offset = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/beta`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_offset`);
|
|
const batch_norm_mean = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_mean`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_mean`);
|
|
const batch_norm_variance = extractWeightEntry(`${prefixDepthwiseConv}/BatchNorm/moving_variance`, 1, `${mappedPrefixDepthwiseConv}/batch_norm_variance`);
|
|
|
|
return {
|
|
depthwise_conv: {
|
|
filters,
|
|
batch_norm_scale,
|
|
batch_norm_offset,
|
|
batch_norm_mean,
|
|
batch_norm_variance,
|
|
},
|
|
pointwise_conv: extractPointwiseConvParams('MobilenetV1', idx, mappedPrefixPointwiseConv),
|
|
};
|
|
}
|
|
|
|
function extractMobilenetV1Params(): MobileNetV1.Params {
|
|
return {
|
|
conv_0: extractPointwiseConvParams('MobilenetV1', 0, 'mobilenetv1/conv_0'),
|
|
conv_1: extractConvPairParams(1),
|
|
conv_2: extractConvPairParams(2),
|
|
conv_3: extractConvPairParams(3),
|
|
conv_4: extractConvPairParams(4),
|
|
conv_5: extractConvPairParams(5),
|
|
conv_6: extractConvPairParams(6),
|
|
conv_7: extractConvPairParams(7),
|
|
conv_8: extractConvPairParams(8),
|
|
conv_9: extractConvPairParams(9),
|
|
conv_10: extractConvPairParams(10),
|
|
conv_11: extractConvPairParams(11),
|
|
conv_12: extractConvPairParams(12),
|
|
conv_13: extractConvPairParams(13),
|
|
};
|
|
}
|
|
|
|
function extractConvParams(prefix: string, mappedPrefix: string): ConvParams {
|
|
const filters = extractWeightEntry(`${prefix}/weights`, 4, `${mappedPrefix}/filters`);
|
|
const bias = extractWeightEntry(`${prefix}/biases`, 1, `${mappedPrefix}/bias`);
|
|
|
|
return { filters, bias };
|
|
}
|
|
|
|
function extractBoxPredictorParams(idx: number): BoxPredictionParams {
|
|
const box_encoding_predictor = extractConvParams(
|
|
`Prediction/BoxPredictor_${idx}/BoxEncodingPredictor`,
|
|
`prediction_layer/box_predictor_${idx}/box_encoding_predictor`,
|
|
);
|
|
const class_predictor = extractConvParams(
|
|
`Prediction/BoxPredictor_${idx}/ClassPredictor`,
|
|
`prediction_layer/box_predictor_${idx}/class_predictor`,
|
|
);
|
|
|
|
return { box_encoding_predictor, class_predictor };
|
|
}
|
|
|
|
function extractPredictionLayerParams(): PredictionLayerParams {
|
|
return {
|
|
conv_0: extractPointwiseConvParams('Prediction', 0, 'prediction_layer/conv_0'),
|
|
conv_1: extractPointwiseConvParams('Prediction', 1, 'prediction_layer/conv_1'),
|
|
conv_2: extractPointwiseConvParams('Prediction', 2, 'prediction_layer/conv_2'),
|
|
conv_3: extractPointwiseConvParams('Prediction', 3, 'prediction_layer/conv_3'),
|
|
conv_4: extractPointwiseConvParams('Prediction', 4, 'prediction_layer/conv_4'),
|
|
conv_5: extractPointwiseConvParams('Prediction', 5, 'prediction_layer/conv_5'),
|
|
conv_6: extractPointwiseConvParams('Prediction', 6, 'prediction_layer/conv_6'),
|
|
conv_7: extractPointwiseConvParams('Prediction', 7, 'prediction_layer/conv_7'),
|
|
box_predictor_0: extractBoxPredictorParams(0),
|
|
box_predictor_1: extractBoxPredictorParams(1),
|
|
box_predictor_2: extractBoxPredictorParams(2),
|
|
box_predictor_3: extractBoxPredictorParams(3),
|
|
box_predictor_4: extractBoxPredictorParams(4),
|
|
box_predictor_5: extractBoxPredictorParams(5),
|
|
};
|
|
}
|
|
|
|
return {
|
|
extractMobilenetV1Params,
|
|
extractPredictionLayerParams,
|
|
};
|
|
}
|
|
|
|
export function extractParamsFromWeightMap(
|
|
weightMap: tf.NamedTensorMap,
|
|
): { params: NetParams, paramMappings: ParamMapping[] } {
|
|
const paramMappings: ParamMapping[] = [];
|
|
|
|
const {
|
|
extractMobilenetV1Params,
|
|
extractPredictionLayerParams,
|
|
} = extractorsFactory(weightMap, paramMappings);
|
|
|
|
const extra_dim = weightMap['Output/extra_dim'];
|
|
paramMappings.push({ originalPath: 'Output/extra_dim', paramPath: 'output_layer/extra_dim' });
|
|
|
|
if (!isTensor3D(extra_dim)) {
|
|
throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${extra_dim}`);
|
|
}
|
|
|
|
const params = {
|
|
mobilenetv1: extractMobilenetV1Params(),
|
|
prediction_layer: extractPredictionLayerParams(),
|
|
output_layer: {
|
|
extra_dim,
|
|
},
|
|
};
|
|
|
|
disposeUnusedWeightTensors(weightMap, paramMappings);
|
|
|
|
return { params, paramMappings };
|
|
}
|