35 lines
1.5 KiB
TypeScript
35 lines
1.5 KiB
TypeScript
import * as tf from '@tensorflow/tfjs-core';
|
|
import { Dimensions } from '../classes/Dimensions';
|
|
import { TResolvedNetInput } from './types';
|
|
export declare class NetInput {
|
|
private _imageTensors;
|
|
private _canvases;
|
|
private _batchSize;
|
|
private _treatAsBatchInput;
|
|
private _inputDimensions;
|
|
private _inputSize;
|
|
constructor(inputs: Array<TResolvedNetInput>, treatAsBatchInput?: boolean);
|
|
get imageTensors(): Array<tf.Tensor3D | tf.Tensor4D>;
|
|
get canvases(): HTMLCanvasElement[];
|
|
get isBatchInput(): boolean;
|
|
get batchSize(): number;
|
|
get inputDimensions(): number[][];
|
|
get inputSize(): number | undefined;
|
|
get reshapedInputDimensions(): Dimensions[];
|
|
getInput(batchIdx: number): tf.Tensor3D | tf.Tensor4D | HTMLCanvasElement;
|
|
getInputDimensions(batchIdx: number): number[];
|
|
getInputHeight(batchIdx: number): number;
|
|
getInputWidth(batchIdx: number): number;
|
|
getReshapedInputDimensions(batchIdx: number): Dimensions;
|
|
/**
|
|
* Create a batch tensor from all input canvases and tensors
|
|
* with size [batchSize, inputSize, inputSize, 3].
|
|
*
|
|
* @param inputSize Height and width of the tensor.
|
|
* @param isCenterImage (optional, default: false) If true, add an equal amount of padding on
|
|
* both sides of the minor dimension oof the image.
|
|
* @returns The batch tensor.
|
|
*/
|
|
toBatchTensor(inputSize: number, isCenterInputs?: boolean): tf.Tensor4D;
|
|
}
|
|
//# sourceMappingURL=NetInput.d.ts.map
|