face-api/dist/tfjs.esm.js

4998 lines
1.2 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
var KH=Object.create;var YS=Object.defineProperty;var jH=Object.getOwnPropertyDescriptor;var XH=Object.getOwnPropertyNames;var YH=Object.getPrototypeOf,ZH=Object.prototype.hasOwnProperty;var wr=(r,t)=>()=>(t||r((t={exports:{}}).exports,t),t.exports),Kt=(r,t)=>{for(var e in t)YS(r,e,{get:t[e],enumerable:!0})},JH=(r,t,e,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let o of XH(t))!ZH.call(r,o)&&o!==e&&YS(r,o,{get:()=>t[o],enumerable:!(n=jH(t,o))||n.enumerable});return r};var Kl=(r,t,e)=>(e=r!=null?KH(YH(r)):{},JH(t||!r||!r.__esModule?YS(e,"default",{value:r,enumerable:!0}):e,r));var C_=wr((jpt,I_)=>{I_.exports=Ue;var yo=null;try{yo=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(r){}function Ue(r,t,e){this.low=r|0,this.high=t|0,this.unsigned=!!e}Ue.prototype.__isLong__;Object.defineProperty(Ue.prototype,"__isLong__",{value:!0});function zn(r){return(r&&r.__isLong__)===!0}Ue.isLong=zn;var m_={},f_={};function ac(r,t){var e,n,o;return t?(r>>>=0,(o=0<=r&&r<256)&&(n=f_[r],n)?n:(e=He(r,(r|0)<0?-1:0,!0),o&&(f_[r]=e),e)):(r|=0,(o=-128<=r&&r<128)&&(n=m_[r],n)?n:(e=He(r,r<0?-1:0,!1),o&&(m_[r]=e),e))}Ue.fromInt=ac;function bo(r,t){if(isNaN(r))return t?ic:wo;if(t){if(r<0)return ic;if(r>=x_)return w_}else{if(r<=-h_)return Ln;if(r+1>=h_)return b_}return r<0?bo(-r,t).neg():He(r%Zp|0,r/Zp|0,t)}Ue.fromNumber=bo;function He(r,t,e){return new Ue(r,t,e)}Ue.fromBits=He;var jg=Math.pow;function l0(r,t,e){if(r.length===0)throw Error("empty string");if(r==="NaN"||r==="Infinity"||r==="+Infinity"||r==="-Infinity")return wo;if(typeof t=="number"?(e=t,t=!1):t=!!t,e=e||10,e<2||36<e)throw RangeError("radix");var n;if((n=r.indexOf("-"))>0)throw Error("interior hyphen");if(n===0)return l0(r.substring(1),t,e).neg();for(var o=bo(jg(e,8)),s=wo,i=0;i<r.length;i+=8){var a=Math.min(8,r.length-i),u=parseInt(r.substring(i,i+a),e);if(a<8){var l=bo(jg(e,a));s=s.mul(l).add(bo(u))}else s=s.mul(o),s=s.add(bo(u))}return s.unsigned=t,s}Ue.fromString=l0;function ni(r,t){return typeof r=="number"?bo(r,t):typeof r=="string"?l0(r,t):He(r.low,r.high,typeof t=="boolean"?t:r.unsigned)}Ue.fromValue=ni;var d_=1<<16,Iq=1<<24,Zp=d_*d_,x_=Zp*Zp,h_=x_/2,g_=ac(Iq),wo=ac(0);Ue.ZERO=wo;var ic=ac(0,!0);Ue.UZERO=ic;var Yp=ac(1);Ue.ONE=Yp;var y_=ac(1,!0);Ue.UONE=y_;var a0=ac(-1);Ue.NEG_ONE=a0;var b_=He(-1,2147483647,!1);Ue.MAX_VALUE=b_;var w_=He(-1,-1,!0);Ue.MAX_UNSIGNED_VALUE=w_;var Ln=He(0,-2147483648,!1);Ue.MIN_VALUE=Ln;var xt=Ue.prototype;xt.toInt=function(){return this.unsigned?this.low>>>0:this.low};xt.toNumber=function(){return this.unsigned?(this.high>>>0)*Zp+(this.low>>>0):this.high*Zp+(this.low>>>0)};xt.toString=function(t){if(t=t||10,t<2||36<t)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(Ln)){var e=bo(t),n=this.div(e),o=n.mul(e).sub(this);return n.toString(t)+o.toInt().toString(t)}else return"-"+this.neg().toString(t);for(var s=bo(jg(t,6),this.unsigned),i=this,a="";;){var u=i.div(s),l=i.sub(u.mul(s)).toInt()>>>0,c=l.toString(t);if(i=u,i.isZero())return c+a;for(;c.length<6;)c="0"+c;a=""+c+a}};xt.getHighBits=function(){return this.high};xt.getHighBitsUnsigned=function(){return this.high>>>0};xt.getLowBits=function(){return this.low};xt.getLowBitsUnsigned=function(){return this.low>>>0};xt.getNumBitsAbs=function(){if(this.isNegative())return this.eq(Ln)?64:this.neg().getNumBitsAbs();for(var t=this.high!=0?this.high:this.low,e=31;e>0&&!(t&1<<e);e--);return this.high!=0?e+33:e+1};xt.isZero=function(){return this.high===0&&this.low===0};xt.eqz=xt.isZero;xt.isNegative=function(){return!this.unsigned&&this.high<0};xt.isPositive=function(){return this.unsigned||this.high>=0};xt.isOdd=function(){return(this.low&1)===1};xt.isEven=function(){return(this.low&1)===0};xt.equals=function(t){return zn(t)||(t=ni(t)),this.unsigned!==t.unsigned&&this.high>>>31===1&&t.high>>>31===1?!1:this.high===t.high&&this.low===t.low};xt.eq=xt.equals;xt.notEquals=function(t){return!this.eq(t)};xt.neq=xt.notEquals;xt.ne=xt.notEquals;xt.lessThan=function(t){return this.comp(t)<0};xt.lt=xt.lessThan;xt.lessThanOrEqual=function(t){return this.comp(t)<=0};xt.lte=xt.lessThanOrEqual;xt.le=xt.lessThanOrEqual;xt.greaterThan=function(t){return this.comp(t)>0};xt.gt=xt.greaterThan;xt.greaterThanOrEqual=function(t){return this.comp(t)>=0};xt.gte=xt.greaterThanOrEqual;xt.ge=xt.greaterThanOrEqual;xt.compare=function(t){if(zn(t)||(t=ni(t)),this.eq(t))return 0;var e=this.isNegative(),n=t.isNegative();return e&&!n?-1:!e&&n?1:this.unsigned?t.high>>>0>this.high>>>0||t.high===this.high&&t.low>>>0>this.low>>>0?-1:1:this.sub(t).isNegative()?-1:1};xt.comp=xt.compare;xt.negate=function(){return!this.unsigned&&this.eq(Ln)?Ln:this.not().add(Yp)};xt.neg=xt.negate;xt.add=function(t){zn(t)||(t=ni(t));var e=this.high>>>16,n=this.high&65535,o=this.low>>>16,s=this.low&65535,i=t.high>>>16,a=t.high&65535,u=t.low>>>16,l=t.low&65535,c=0,p=0,m=0,f=0;return f+=s+l,m+=f>>>16,f&=65535,m+=o+u,p+=m>>>16,m&=65535,p+=n+a,c+=p>>>16,p&=65535,c+=e+i,c&=65535,He(m<<16|f,c<<16|p,this.unsigned)};xt.subtract=function(t){return zn(t)||(t=ni(t)),this.add(t.neg())};xt.sub=xt.subtract;xt.multiply=function(t){if(this.isZero())return wo;if(zn(t)||(t=ni(t)),yo){var e=yo.mul(this.low,this.high,t.low,t.high);return He(e,yo.get_high(),this.unsigned)}if(t.isZero())return wo;if(this.eq(Ln))return t.isOdd()?Ln:wo;if(t.eq(Ln))return this.isOdd()?Ln:wo;if(this.isNegative())return t.isNegative()?this.neg().mul(t.neg()):this.neg().mul(t).neg();if(t.isNegative())return this.mul(t.neg()).neg();if(this.lt(g_)&&t.lt(g_))return bo(this.toNumber()*t.toNumber(),this.unsigned);var n=this.high>>>16,o=this.high&65535,s=this.low>>>16,i=this.low&65535,a=t.high>>>16,u=t.high&65535,l=t.low>>>16,c=t.low&65535,p=0,m=0,f=0,d=0;return d+=i*c,f+=d>>>16,d&=65535,f+=s*c,m+=f>>>16,f&=65535,f+=i*l,m+=f>>>16,f&=65535,m+=o*c,p+=m>>>16,m&=65535,m+=s*l,p+=m>>>16,m&=65535,m+=i*u,p+=m>>>16,m&=65535,p+=n*c+o*l+s*u+i*a,p&=65535,He(f<<16|d,p<<16|m,this.unsigned)};xt.mul=xt.multiply;xt.divide=function(t){if(zn(t)||(t=ni(t)),t.isZero())throw Error("division by zero");if(yo){if(!this.unsigned&&this.high===-2147483648&&t.low===-1&&t.high===-1)return this;var e=(this.unsigned?yo.div_u:yo.div_s)(this.low,this.high,t.low,t.high);return He(e,yo.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?ic:wo;var n,o,s;if(this.unsigned){if(t.unsigned||(t=t.toUnsigned()),t.gt(this))return ic;if(t.gt(this.shru(1)))return y_;s=ic}else{if(this.eq(Ln)){if(t.eq(Yp)||t.eq(a0))return Ln;if(t.eq(Ln))return Yp;var i=this.shr(1);return n=i.div(t).shl(1),n.eq(wo)?t.isNegative()?Yp:a0:(o=this.sub(t.mul(n)),s=n.add(o.div(t)),s)}else if(t.eq(Ln))return this.unsigned?ic:wo;if(this.isNegative())return t.isNegative()?this.neg().div(t.neg()):this.neg().div(t).neg();if(t.isNegative())return this.div(t.neg()).neg();s=wo}for(o=this;o.gte(t);){n=Math.max(1,Math.floor(o.toNumber()/t.toNumber()));for(var a=Math.ceil(Math.log(n)/Math.LN2),u=a<=48?1:jg(2,a-48),l=bo(n),c=l.mul(t);c.isNegative()||c.gt(o);)n-=u,l=bo(n,this.unsigned),c=l.mul(t);l.isZero()&&(l=Yp),s=s.add(l),o=o.sub(c)}return s};xt.div=xt.divide;xt.modulo=function(t){if(zn(t)||(t=ni(t)),yo){var e=(this.unsigned?yo.rem_u:yo.rem_s)(this.low,this.high,t.low,t.high);return He(e,yo.get_high(),this.unsigned)}return this.sub(this.div(t).mul(t))};xt.mod=xt.modulo;xt.rem=xt.modulo;xt.not=function(){return He(~this.low,~this.high,this.unsigned)};xt.and=function(t){return zn(t)||(t=ni(t)),He(this.low&t.low,this.high&t.high,this.unsigned)};xt.or=function(t){return zn(t)||(t=ni(t)),He(this.low|t.low,this.high|t.high,this.unsigned)};xt.xor=function(t){return zn(t)||(t=ni(t)),He(this.low^t.low,this.high^t.high,this.unsigned)};xt.shiftLeft=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low<<t,this.high<<t|this.low>>>32-t,this.unsigned):He(0,this.low<<t-32,this.unsigned)};xt.shl=xt.shiftLeft;xt.shiftRight=function(t){return zn(t)&&(t=t.toInt()),(t&=63)===0?this:t<32?He(this.low>>>t|this.high<<32-t,this.high>>t,this.unsigned):He(this.high>>t-32,this.high>=0?0:-1,this.unsigned)};xt.shr=xt.shiftRight;xt.shiftRightUnsigned=function(t){if(zn(t)&&(t=t.toInt()),t&=63,t===0)return this;var e=this.high;if(t<32){var n=this.low;return He(n>>>t|e<<32-t,e>>>t,this.unsigned)}else return t===32?He(e,0,this.unsigned):He(e>>>t-32,0,this.unsigned)};xt.shru=xt.shiftRightUnsigned;xt.shr_u=xt.shiftRightUnsigned;xt.toSigned=function(){return this.unsigned?He(this.low,this.high,!1):this};xt.toUnsigned=function(){return this.unsigned?this:He(this.low,this.high,!0)};xt.toBytes=function(t){return t?this.toBytesLE():this.toBytesBE()};xt.toBytesLE=function(){var t=this.high,e=this.low;return[e&255,e>>>8&255,e>>>16&255,e>>>24,t&255,t>>>8&255,t>>>16&255,t>>>24]};xt.toBytesBE=function(){var t=this.high,e=this.low;return[t>>>24,t>>>16&255,t>>>8&255,t&255,e>>>24,e>>>16&255,e>>>8&255,e&255]};Ue.fromBytes=function(t,e,n){return n?Ue.fromBytesLE(t,e):Ue.fromBytesBE(t,e)};Ue.fromBytesLE=function(t,e){return new Ue(t[0]|t[1]<<8|t[2]<<16|t[3]<<24,t[4]|t[5]<<8|t[6]<<16|t[7]<<24,e)};Ue.fromBytesBE=function(t,e){return new Ue(t[4]<<24|t[5]<<16|t[6]<<8|t[7],t[0]<<24|t[1]<<16|t[2]<<8|t[3],e)}});var rE=wr(()=>{});var nE=wr(()=>{});var $E=wr((DE,V0)=>{(function(r,t,e){function n(a){var u=this,l=i();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=l(" "),u.s1=l(" "),u.s2=l(" "),u.s0-=l(a),u.s0<0&&(u.s0+=1),u.s1-=l(a),u.s1<0&&(u.s1+=1),u.s2-=l(a),u.s2<0&&(u.s2+=1),l=null}function o(a,u){return u.c=a.c,u.s0=a.s0,u.s1=a.s1,u.s2=a.s2,u}function s(a,u){var l=new n(a),c=u&&u.state,p=l.next;return p.int32=function(){return l.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&o(c,l),p.state=function(){return o(l,{})}),p}function i(){var a=4022871197,u=function(l){l=String(l);for(var c=0;c<l.length;c++){a+=l.charCodeAt(c);var p=.02519603282416938*a;a=p>>>0,p-=a,p*=a,a=p>>>0,p-=a,a+=p*4294967296}return(a>>>0)*23283064365386963e-26};return u}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.alea=s})(DE,typeof V0=="object"&&V0,typeof define=="function"&&define)});var FE=wr((RE,G0)=>{(function(r,t,e){function n(i){var a=this,u="";a.x=0,a.y=0,a.z=0,a.w=0,a.next=function(){var c=a.x^a.x<<11;return a.x=a.y,a.y=a.z,a.z=a.w,a.w^=a.w>>>19^c^c>>>8},i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor128=s})(RE,typeof G0=="object"&&G0,typeof define=="function"&&define)});var PE=wr((OE,W0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.x^a.x>>>2;return a.x=a.y,a.y=a.z,a.z=a.w,a.w=a.v,(a.d=a.d+362437|0)+(a.v=a.v^a.v<<4^(c^c<<1))|0},a.x=0,a.y=0,a.z=0,a.w=0,a.v=0,i===(i|0)?a.x=i:u+=i;for(var l=0;l<u.length+64;l++)a.x^=u.charCodeAt(l)|0,l==u.length&&(a.d=a.x<<10^a.x>>>4),a.next()}function o(i,a){return a.x=i.x,a.y=i.y,a.z=i.z,a.w=i.w,a.v=i.v,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorwow=s})(OE,typeof W0=="object"&&W0,typeof define=="function"&&define)});var LE=wr((ME,U0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.x,c=a.i,p,m,f;return p=l[c],p^=p>>>7,m=p^p<<24,p=l[c+1&7],m^=p^p>>>10,p=l[c+3&7],m^=p^p>>>3,p=l[c+4&7],m^=p^p<<7,p=l[c+7&7],p=p^p<<13,m^=p^p<<9,l[c]=m,a.i=c+1&7,m};function u(l,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],l.x=f,l.i=0,p=256;p>0;--p)l.next()}u(a,i)}function o(i,a){return a.x=i.x.slice(),a.i=i.i,a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.x&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xorshift7=s})(ME,typeof U0=="object"&&U0,typeof define=="function"&&define)});var BE=wr((zE,H0)=>{(function(r,t,e){function n(i){var a=this;a.next=function(){var l=a.w,c=a.X,p=a.i,m,f;return a.w=l=l+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,a.i=p,f+(l^l>>>16)|0};function u(l,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;l.w=h,l.X=g,l.i=f}u(a,i)}function o(i,a){return a.i=i.i,a.w=i.w,a.X=i.X.slice(),a}function s(i,a){i==null&&(i=+new Date);var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(l.X&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.xor4096=s})(zE,typeof H0=="object"&&H0,typeof define=="function"&&define)});var GE=wr((VE,q0)=>{(function(r,t,e){function n(i){var a=this,u="";a.next=function(){var c=a.b,p=a.c,m=a.d,f=a.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,a.b=c=c<<20^c>>>12^p,a.c=p=p-m|0,a.d=m<<16^p>>>16^f,a.a=f-c|0},a.a=0,a.b=0,a.c=-1640531527,a.d=1367130551,i===Math.floor(i)?(a.a=i/4294967296|0,a.b=i|0):u+=i;for(var l=0;l<u.length+20;l++)a.b^=u.charCodeAt(l)|0,a.next()}function o(i,a){return a.a=i.a,a.b=i.b,a.c=i.c,a.d=i.d,a}function s(i,a){var u=new n(i),l=a&&a.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var p=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,l&&(typeof l=="object"&&o(l,u),c.state=function(){return o(u,{})}),c}t&&t.exports?t.exports=s:e&&e.amd?e(function(){return s}):this.tychei=s})(VE,typeof q0=="object"&&q0,typeof define=="function"&&define)});var WE=wr(()=>{});var HE=wr((UE,Zx)=>{(function(r,t,e){var n=256,o=6,s=52,i="random",a=e.pow(n,o),u=e.pow(2,s),l=u*2,c=n-1,p;function m(w,I,N){var E=[];I=I==!0?{entropy:!0}:I||{};var A=g(h(I.entropy?[w,b(t)]:w==null?x():w,3),E),D=new f(E),F=function(){for(var P=D.g(o),V=a,G=0;P<u;)P=(P+G)*n,V*=n,G=D.g(1);for(;P>=l;)P/=2,V/=2,G>>>=1;return(P+G)/V};return F.int32=function(){return D.g(4)|0},F.quick=function(){return D.g(4)/4294967296},F.double=F,g(b(D.S),t),(I.pass||N||function(P,V,G,W){return W&&(W.S&&d(W,D),P.state=function(){return d(D,{})}),G?(e[i]=P,V):P})(F,A,"global"in I?I.global:this==e,I.state)}function f(w){var I,N=w.length,E=this,A=0,D=E.i=E.j=0,F=E.S=[];for(N||(w=[N++]);A<n;)F[A]=A++;for(A=0;A<n;A++)F[A]=F[D=c&D+w[A%N]+(I=F[A])],F[D]=I;(E.g=function(P){for(var V,G=0,W=E.i,q=E.j,H=E.S;P--;)V=H[W=c&W+1],G=G*n+H[c&(H[W]=H[q=c&q+V])+(H[q]=V)];return E.i=W,E.j=q,G})(n)}function d(w,I){return I.i=w.i,I.j=w.j,I.S=w.S.slice(),I}function h(w,I){var N=[],E=typeof w,A;if(I&&E=="object")for(A in w)try{N.push(h(w[A],I-1))}catch(D){}return N.length?N:E=="string"?w:w+"\0"}function g(w,I){for(var N=w+"",E,A=0;A<N.length;)I[c&A]=c&(E^=I[c&A]*19)+N.charCodeAt(A++);return b(I)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(n):(w=new Uint8Array(n),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(E){var I=r.navigator,N=I&&I.plugins;return[+new Date,r,N,r.screen,b(t)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),t),typeof Zx=="object"&&Zx.exports){Zx.exports=m;try{p=WE()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):e["seed"+i]=m})(typeof self!="undefined"?self:UE,[],Math)});var xh=wr((STt,qE)=>{var W6=$E(),U6=FE(),H6=PE(),q6=LE(),K6=BE(),j6=GE(),yc=HE();yc.alea=W6;yc.xor128=U6;yc.xorwow=H6;yc.xorshift7=q6;yc.xor4096=K6;yc.tychei=j6;qE.exports=yc});var fk=wr(()=>{});var sw=wr(()=>{});var F1=wr(()=>{});var eH=wr(()=>{});var rH=wr(()=>{});var nH=wr(()=>{});var oH=wr((vC,P1)=>{var O1=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};function e(){return it.buffer!=ee&&je(it.buffer),xe}function n(){return it.buffer!=ee&&je(it.buffer),fe}function o(){return it.buffer!=ee&&je(it.buffer),Ae}function s(){return it.buffer!=ee&&je(it.buffer),Fn}function i(){return it.buffer!=ee&&je(it.buffer),ar}function a(){return it.buffer!=ee&&je(it.buffer),Yn}function u(){return it.buffer!=ee&&je(it.buffer),Br}var l=typeof t!="undefined"?t:{},c,p;l.ready=new Promise(function(M,U){c=M,p=U});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var f=Object.assign({},l),d=[],h="./this.program",g=(M,U)=>{throw U},x=typeof window=="object",b=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",I=l.ENVIRONMENT_IS_PTHREAD||!1,N="";function E(M){return l.locateFile?l.locateFile(M,N):N+M}var A,D,F,P;function V(M){if(M instanceof Qu)return;X("exiting due to exception: "+M)}if(w){var G=sw(),W=F1();b?N=W.dirname(N)+"/":N=__dirname+"/",A=(U,dt)=>(U=Sp(U)?new URL(U):W.normalize(U),G.readFileSync(U,dt?void 0:"utf8")),F=U=>{var dt=A(U,!0);return dt.buffer||(dt=new Uint8Array(dt)),dt},D=(U,dt,Lt)=>{U=Sp(U)?new URL(U):W.normalize(U),G.readFile(U,function(Zt,Yt){Zt?Lt(Zt):dt(Yt.buffer)})},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(U){if(!(U instanceof Qu))throw U}),process.on("unhandledRejection",function(U){throw U}),g=(U,dt)=>{if(Vo())throw process.exitCode=U,dt;V(dt),process.exit(U)},l.inspect=function(){return"[Emscripten Module object]"};let M;try{M=eH()}catch(U){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),U}global.Worker=M.Worker}else(x||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.replace(/[?#].*/,"").lastIndexOf("/")+1):N="",w||(A=M=>{var U=new XMLHttpRequest;return U.open("GET",M,!1),U.send(null),U.responseText},b&&(F=M=>{var U=new XMLHttpRequest;return U.open("GET",M,!1),U.responseType="arraybuffer",U.send(null),new Uint8Array(U.response)}),D=(M,U,dt)=>{var Lt=new XMLHttpRequest;Lt.open("GET",M,!0),Lt.responseType="arraybuffer",Lt.onload=()=>{if(Lt.status==200||Lt.status==0&&Lt.response){U(Lt.response);return}dt()},Lt.onerror=dt,Lt.send(null)}),P=M=>document.title=M);w&&typeof performance=="undefined"&&(global.performance=rH().performance);var q=console.log.bind(console),H=console.warn.bind(console);w&&(q=M=>G.writeSync(1,M+`
`),H=M=>G.writeSync(2,M+`
`));var K=l.print||q,X=l.printErr||H;Object.assign(l,f),f=null,l.arguments&&(d=l.arguments),l.thisProgram&&(h=l.thisProgram),l.quit&&(g=l.quit);var Z=4,et=Atomics.load,nt=Atomics.store,st=Atomics.compareExchange,at;l.wasmBinary&&(at=l.wasmBinary);var ot=l.noExitRuntime||!0;typeof WebAssembly!="object"&&Ju("no native wasm support detected");var it,mt,gt=!1,It;function Rt(M,U){M||Ju(U)}var Dt=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Ht(M,U,dt){for(var Lt=U+dt,Zt=U;M[Zt]&&!(Zt>=Lt);)++Zt;if(Zt-U>16&&M.buffer&&Dt)return Dt.decode(M.buffer instanceof SharedArrayBuffer?M.slice(U,Zt):M.subarray(U,Zt));for(var Yt="";U<Zt;){var yt=M[U++];if(!(yt&128)){Yt+=String.fromCharCode(yt);continue}var $t=M[U++]&63;if((yt&224)==192){Yt+=String.fromCharCode((yt&31)<<6|$t);continue}var nr=M[U++]&63;if((yt&240)==224?yt=(yt&15)<<12|$t<<6|nr:yt=(yt&7)<<18|$t<<12|nr<<6|M[U++]&63,yt<65536)Yt+=String.fromCharCode(yt);else{var to=yt-65536;Yt+=String.fromCharCode(55296|to>>10,56320|to&1023)}}return Yt}function qt(M,U){return M?Ht(n(),M,U):""}function ce(M,U,dt,Lt){if(!(Lt>0))return 0;for(var Zt=dt,Yt=dt+Lt-1,yt=0;yt<M.length;++yt){var $t=M.charCodeAt(yt);if($t>=55296&&$t<=57343){var nr=M.charCodeAt(++yt);$t=65536+(($t&1023)<<10)|nr&1023}if($t<=127){if(dt>=Yt)break;U[dt++]=$t}else if($t<=2047){if(dt+1>=Yt)break;U[dt++]=192|$t>>6,U[dt++]=128|$t&63}else if($t<=65535){if(dt+2>=Yt)break;U[dt++]=224|$t>>12,U[dt++]=128|$t>>6&63,U[dt++]=128|$t&63}else{if(dt+3>=Yt)break;U[dt++]=240|$t>>18,U[dt++]=128|$t>>12&63,U[dt++]=128|$t>>6&63,U[dt++]=128|$t&63}}return U[dt]=0,dt-Zt}function ge(M,U,dt){return ce(M,n(),U,dt)}var ee,xe,fe,Ae,De,Fn,ar,Yn,Br;I&&(ee=l.buffer);function je(M){ee=M,l.HEAP8=xe=new Int8Array(M),l.HEAP16=Ae=new Int16Array(M),l.HEAP32=Fn=new Int32Array(M),l.HEAPU8=fe=new Uint8Array(M),l.HEAPU16=De=new Uint16Array(M),l.HEAPU32=ar=new Uint32Array(M),l.HEAPF32=Yn=new Float32Array(M),l.HEAPF64=Br=new Float64Array(M)}var Vr=l.INITIAL_MEMORY||16777216;if(I)it=l.wasmMemory,ee=l.buffer;else if(l.wasmMemory)it=l.wasmMemory;else if(it=new WebAssembly.Memory({initial:Vr/65536,maximum:32768,shared:!0}),!(it.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&X("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");it&&(ee=it.buffer),Vr=ee.byteLength,je(ee);var Gr,Zn=[],Jn=[],Jr=[],Ca=!1;function Vo(){return ot}function Si(){if(l.preRun)for(typeof l.preRun=="function"&&(l.preRun=[l.preRun]);l.preRun.length;)Ud(l.preRun.shift());Kd(Zn)}function Er(){Ca=!0,!I&&Kd(Jn)}function va(){if(!I){if(l.postRun)for(typeof l.postRun=="function"&&(l.postRun=[l.postRun]);l.postRun.length;)W1(l.postRun.shift());Kd(Jr)}}function Ud(M){Zn.unshift(M)}function Hd(M){Jn.unshift(M)}function W1(M){Jr.unshift(M)}var Ul=0,vp=null,Sa=null;function kC(M){Ul++,l.monitorRunDependencies&&l.monitorRunDependencies(Ul)}function yg(M){if(Ul--,l.monitorRunDependencies&&l.monitorRunDependencies(Ul),Ul==0&&(vp!==null&&(clearInterval(vp),vp=null),Sa)){var U=Sa;Sa=null,U()}}function Ju(M){l.onAbort&&l.onAbort(M),M="Aborted("+M+")",X(M),gt=!0,It=1,M+=". Build with -sASSERTIONS for more info.";var U=new WebAssembly.RuntimeError(M);throw p(U),U}var TC="data:application/octet-stream;base64,";function bg(M){return M.startsWith(TC)}function Sp(M){return M.startsWith("file://")}var Qr;Qr="tfjs-backend-wasm-threaded-simd.wasm",bg(Qr)||(Qr=E(Qr));function wg(M){try{if(M==Qr&&at)return new Uint8Array(at);if(F)return F(M);throw"both async and sync fetching of the wasm failed"}catch(U){Ju(U)}}function _C(){if(!at&&(x||b)){if(typeof fetch=="function"&&!Sp(Qr))return fetch(Qr,{credentials:"same-origin"}).then(function(M){if(!M.ok)throw"failed to load wasm binary file at '"+Qr+"'";return M.arrayBuffer()}).catch(function(){return wg(Qr)});if(D)return new Promise(function(M,U){D(Qr,function(dt){M(new Uint8Array(dt))},U)})}return Promise.resolve().then(function(){return wg(Qr)})}function EC(){var M={env:Rg,wasi_snapshot_preview1:Rg};function U(yt,$t){var nr=yt.exports;if(l.asm=nr,LC(l.asm._emscripten_tls_init),Gr=l.asm.__indirect_function_table,Hd(l.asm.__wasm_call_ctors),mt=$t,!I){var to=Xt.unusedWorkers.length;Xt.unusedWorkers.forEach(function(ka){Xt.loadWasmModuleToWorker(ka,function(){--to||yg("wasm-instantiate")})})}}I||kC("wasm-instantiate");function dt(yt){U(yt.instance,yt.module)}function Lt(yt){return _C().then(function($t){return WebAssembly.instantiate($t,M)}).then(function($t){return $t}).then(yt,function($t){X("failed to asynchronously prepare wasm: "+$t),Ju($t)})}function Zt(){return!at&&typeof WebAssembly.instantiateStreaming=="function"&&!bg(Qr)&&!Sp(Qr)&&!w&&typeof fetch=="function"?fetch(Qr,{credentials:"same-origin"}).then(function(yt){var $t=WebAssembly.instantiateStreaming(yt,M);return $t.then(dt,function(nr){return X("wasm streaming compile failed: "+nr),X("falling back to ArrayBuffer instantiation"),Lt(dt)})}):Lt(dt)}if(l.instantiateWasm)try{var Yt=l.instantiateWasm(M,U);return Yt}catch(yt){X("Module.instantiateWasm callback failed with error: "+yt),p(yt)}return Zt().catch(p),{}}var U1,H1,Ig={};function Qu(M){this.name="ExitStatus",this.message="Program terminated with exit("+M+")",this.status=M}function AC(M){var U=Xt.pthreads[M];delete Xt.pthreads[M],U.terminate(),KS(M),Xt.runningWorkers.splice(Xt.runningWorkers.indexOf(U),1),U.pthread_ptr=0}function DC(M){var U=Xt.pthreads[M];U.postMessage({cmd:"cancel"})}function qd(M){var U=Xt.pthreads[M];Rt(U),Xt.returnWorkerToPool(U)}function $C(M){var U=Xt.getNewWorker();if(!U)return 6;Xt.runningWorkers.push(U),Xt.pthreads[M.pthread_ptr]=U,U.pthread_ptr=M.pthread_ptr;var dt={cmd:"run",start_routine:M.startRoutine,arg:M.arg,pthread_ptr:M.pthread_ptr};return U.runPthread=()=>{w&&U.ref(),U.postMessage(dt,M.transferList),delete U.runPthread},U.loaded&&U.runPthread(),0}var Cg={varargs:void 0,get:function(){Cg.varargs+=4;var M=s()[Cg.varargs-4>>2];return M},getStr:function(M){var U=qt(M);return U}};function vg(M){if(I)return Hl(1,1,M);It=M,Vo()||(Xt.terminateAllThreads(),l.onExit&&l.onExit(M),gt=!0),g(M,new Qu(M))}function RC(M,U){if(It=M,!U&&I)throw Ng(M),"unwind";vg(M)}var Sg=RC;function FC(M){if(M instanceof Qu||M=="unwind")return It;g(1,M)}var Xt={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){I?Xt.initWorker():Xt.initMainThread()},initMainThread:function(){for(var M=8;M--;)Xt.allocateUnusedWorker()},initWorker:function(){ot=!1},setExitStatus:function(M){It=M},terminateAllThreads:function(){for(var M of Object.values(Xt.pthreads))Xt.returnWorkerToPool(M);for(var M of Xt.unusedWorkers)M.terminate();Xt.unusedWorkers=[]},returnWorkerToPool:function(M){var U=M.pthread_ptr;delete Xt.pthreads[U],Xt.unusedWorkers.push(M),Xt.runningWorkers.splice(Xt.runningWorkers.indexOf(M),1),M.pthread_ptr=0,w&&M.unref(),KS(U)},receiveObjectTransfer:function(M){},threadInitTLS:function(){Xt.tlsInitFunctions.forEach(M=>M())},loadWasmModuleToWorker:function(M,U){M.onmessage=Yt=>{var yt=Yt.data,$t=yt.cmd;if(M.pthread_ptr&&(Xt.currentProxiedOperationCallerThread=M.pthread_ptr),yt.targetThread&&yt.targetThread!=zg()){var nr=Xt.pthreads[yt.targetThread];nr?nr.postMessage(yt,yt.transferList):X('Internal error! Worker sent a message "'+$t+'" to target pthread '+yt.targetThread+", but that thread no longer exists!"),Xt.currentProxiedOperationCallerThread=void 0;return}$t==="processProxyingQueue"?jd(yt.queue):$t==="spawnThread"?$C(yt):$t==="cleanupThread"?qd(yt.thread):$t==="killThread"?AC(yt.thread):$t==="cancelThread"?DC(yt.thread):$t==="loaded"?(M.loaded=!0,w&&M.unref(),U&&U(M),M.runPthread&&M.runPthread()):$t==="print"?K("Thread "+yt.threadId+": "+yt.text):$t==="printErr"?X("Thread "+yt.threadId+": "+yt.text):$t==="alert"?alert("Thread "+yt.threadId+": "+yt.text):yt.target==="setimmediate"?M.postMessage(yt):$t==="callHandler"?l[yt.handler](...yt.args):$t&&X("worker sent an unknown command "+$t),Xt.currentProxiedOperationCallerThread=void 0},M.onerror=Yt=>{var yt="worker sent an error!";throw X(yt+" "+Yt.filename+":"+Yt.lineno+": "+Yt.message),Yt},w&&(M.on("message",function(Yt){M.onmessage({data:Yt})}),M.on("error",function(Yt){M.onerror(Yt)}),M.on("detachedExit",function(){}));var dt=[],Lt=["onExit","onAbort","print","printErr"];for(var Zt of Lt)l.hasOwnProperty(Zt)&&dt.push(Zt);M.postMessage({cmd:"load",handlers:dt,urlOrBlob:l.mainScriptUrlOrBlob||r,wasmMemory:it,wasmModule:mt})},allocateUnusedWorker:function(){var M,U=E("tfjs-backend-wasm-threaded-simd.worker.js");M=new Worker(U),Xt.unusedWorkers.push(M)},getNewWorker:function(){return Xt.unusedWorkers.length==0&&(Xt.allocateUnusedWorker(),Xt.loadWasmModuleToWorker(Xt.unusedWorkers[0])),Xt.unusedWorkers.pop()}};l.PThread=Xt;function Kd(M){for(;M.length>0;)M.shift()(l)}function OC(){var M=zg(),U=s()[M+52>>2],dt=s()[M+56>>2],Lt=U-dt;Z1(U,Lt),Bg(U)}l.establishStackSpace=OC;function Ng(M){if(I)return Hl(2,0,M);try{Sg(M)}catch(U){FC(U)}}var Np=[];function PC(M){var U=Np[M];return U||(M>=Np.length&&(Np.length=M+1),Np[M]=U=Gr.get(M)),U}function MC(M,U){var dt=PC(M)(U);Vo()?Xt.setExitStatus(dt):Y1(dt)}l.invokeEntryPoint=MC;function LC(M){Xt.tlsInitFunctions.push(M)}function zC(M){K1(M,!b,1,!x),Xt.threadInitTLS()}function BC(M){I?postMessage({cmd:"cleanupThread",thread:M}):qd(M)}function kg(M,U,dt,Lt){return I?Hl(3,1,M,U,dt,Lt):Tg(M,U,dt,Lt)}function Tg(M,U,dt,Lt){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Zt=[],Yt=0;if(I&&(Zt.length===0||Yt))return kg(M,U,dt,Lt);if(Yt)return Yt;var yt={startRoutine:dt,pthread_ptr:M,arg:Lt,transferList:Zt};return I?(yt.cmd="spawnThread",postMessage(yt,Zt),0):$C(yt)}function VC(){return 65536}var GC=!0;function WC(){return GC}function jd(M){Atomics.store(s(),M>>2,1),zg()&&X1(M),Atomics.compareExchange(s(),M>>2,1,0)}l.executeNotifiedProxyingQueue=jd;function UC(M,U,dt,Lt){if(M==U)setTimeout(()=>jd(Lt));else if(I)postMessage({targetThread:M,cmd:"processProxyingQueue",queue:Lt});else{var Zt=Xt.pthreads[M];if(!Zt)return;Zt.postMessage({cmd:"processProxyingQueue",queue:Lt})}return 1}function HC(M,U,dt){return-1}function qC(){Ju("")}function tc(M){tc.shown||(tc.shown={}),tc.shown[M]||(tc.shown[M]=1,w&&(M="warning: "+M),X(M))}function KC(){w||b||tc("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function jC(){return Date.now()}function _g(){return 2147483648}function XC(){return _g()}var Xd;w?Xd=()=>{var M=process.hrtime();return M[0]*1e3+M[1]/1e6}:Xd=()=>performance.timeOrigin+performance.now();function YC(M,U,dt){n().copyWithin(M,U,U+dt)}function ZC(){return w?nH().cpus().length:navigator.hardwareConcurrency}function JC(M){var U=jS(),dt=M();return Bg(U),dt}function Hl(M,U){var dt=arguments.length-2,Lt=arguments;return JC(()=>{for(var Zt=dt,Yt=Vg(Zt*8),yt=Yt>>3,$t=0;$t<dt;$t++){var nr=Lt[2+$t];u()[yt+$t]=nr}return j1(M,Zt,Yt,U)})}var Yd=[];function QC(M,U,dt){Yd.length=U;for(var Lt=dt>>3,Zt=0;Zt<U;Zt++)Yd[Zt]=u()[Lt+Zt];var Yt=M<0,yt=Yt?Ig[-M-1]:lv[M];return yt.apply(null,Yd)}function tv(M){try{return it.grow(M-ee.byteLength+65535>>>16),je(it.buffer),1}catch(U){}}function ev(M){var U=n().length;if(M=M>>>0,M<=U)return!1;var dt=_g();if(M>dt)return!1;let Lt=(nr,to)=>nr+(to-nr%to)%to;for(var Zt=1;Zt<=4;Zt*=2){var Yt=U*(1+.2/Zt);Yt=Math.min(Yt,M+100663296);var yt=Math.min(dt,Lt(Math.max(M,Yt),65536)),$t=tv(yt);if($t)return!0}return!1}function rv(){throw"unwind"}function Eg(M){return I?Hl(4,1,M):52}function Ag(M,U,dt,Lt,Zt){return I?Hl(5,1,M,U,dt,Lt,Zt):70}var nv=[null,[],[]];function ov(M,U){var dt=nv[M];U===0||U===10?((M===1?K:X)(Ht(dt,0)),dt.length=0):dt.push(U)}function Dg(M,U,dt,Lt){if(I)return Hl(6,1,M,U,dt,Lt);for(var Zt=0,Yt=0;Yt<dt;Yt++){var yt=i()[U>>2],$t=i()[U+4>>2];U+=8;for(var nr=0;nr<$t;nr++)ov(M,n()[yt+nr]);Zt+=$t}return i()[Lt>>2]=Zt,0}function $g(M){var U=l["_"+M];return U}function sv(M,U){e().set(M,U)}function iv(M,U,dt,Lt,Zt){var Yt={string:On=>{var Ep=0;if(On!=null&&On!==0){var t_=(On.length<<2)+1;Ep=Vg(t_),ge(On,Ep,t_)}return Ep},array:On=>{var Ep=Vg(On.length);return sv(On,Ep),Ep}};function yt(On){return U==="string"?qt(On):U==="boolean"?!!On:On}var $t=$g(M),nr=[],to=0;if(Lt)for(var ka=0;ka<Lt.length;ka++){var Q1=Yt[dt[ka]];Q1?(to===0&&(to=jS()),nr[ka]=Q1(Lt[ka])):nr[ka]=Lt[ka]}var XS=$t.apply(null,nr);function qH(On){return to!==0&&Bg(to),yt(On)}return XS=qH(XS),XS}function av(M,U,dt,Lt){dt=dt||[];var Zt=dt.every(yt=>yt==="number"||yt==="boolean"),Yt=U!=="string";return Yt&&Zt&&!Lt?$g(M):function(){return iv(M,U,dt,arguments,Lt)}}Xt.init();var lv=[null,vg,Ng,kg,Eg,Ag,Dg],Rg={__emscripten_init_main_thread_js:zC,__emscripten_thread_cleanup:BC,__pthread_create_js:Tg,_emscripten_default_pthread_stack_size:VC,_emscripten_get_now_is_monotonic:WC,_emscripten_notify_task_queue:UC,_emscripten_set_offscreencanvas_size:HC,abort:qC,emscripten_check_blocking_allowed:KC,emscripten_date_now:jC,emscripten_get_heap_max:XC,emscripten_get_now:Xd,emscripten_memcpy_big:YC,emscripten_num_logical_cores:ZC,emscripten_receive_on_main_thread_js:QC,emscripten_resize_heap:ev,emscripten_unwind_to_js_event_loop:rv,exit:Sg,fd_close:Eg,fd_seek:Ag,fd_write:Dg,memory:it||l.wasmMemory},q1=EC(),uv=l.___wasm_call_ctors=function(){return(uv=l.___wasm_call_ctors=l.asm.__wasm_call_ctors).apply(null,arguments)},cv=l._init=function(){return(cv=l._init=l.asm.init).apply(null,arguments)},pv=l._init_with_threads_count=function(){return(pv=l._init_with_threads_count=l.asm.init_with_threads_count).apply(null,arguments)},mv=l._get_threads_count=function(){return(mv=l._get_threads_count=l.asm.get_threads_count).apply(null,arguments)},fv=l._register_tensor=function(){return(fv=l._register_tensor=l.asm.register_tensor).apply(null,arguments)},dv=l._dispose_data=function(){return(dv=l._dispose_data=l.asm.dispose_data).apply(null,arguments)},hv=l._dispose=function(){return(hv=l._dispose=l.asm.dispose).apply(null,arguments)},gv=l._Abs=function(){return(gv=l._Abs=l.asm.Abs).apply(null,arguments)},xv=l._Acos=function(){return(xv=l._Acos=l.asm.Acos).apply(null,arguments)},yv=l._Acosh=function(){return(yv=l._Acosh=l.asm.Acosh).apply(null,arguments)},bv=l._Add=function(){return(bv=l._Add=l.asm.Add).apply(null,arguments)},wv=l._AddN=function(){return(wv=l._AddN=l.asm.AddN).apply(null,arguments)},Iv=l._All=function(){return(Iv=l._All=l.asm.All).apply(null,arguments)},Cv=l._Any=function(){return(Cv=l._Any=l.asm.Any).apply(null,arguments)},vv=l._ArgMax=function(){return(vv=l._ArgMax=l.asm.ArgMax).apply(null,arguments)},Sv=l._ArgMin=function(){return(Sv=l._ArgMin=l.asm.ArgMin).apply(null,arguments)},Nv=l._Asin=function(){return(Nv=l._Asin=l.asm.Asin).apply(null,arguments)},kv=l._Asinh=function(){return(kv=l._Asinh=l.asm.Asinh).apply(null,arguments)},Tv=l._Atan=function(){return(Tv=l._Atan=l.asm.Atan).apply(null,arguments)},_v=l._Atan2=function(){return(_v=l._Atan2=l.asm.Atan2).apply(null,arguments)},Ev=l._Atanh=function(){return(Ev=l._Atanh=l.asm.Atanh).apply(null,arguments)},Av=l._AvgPool=function(){return(Av=l._AvgPool=l.asm.AvgPool).apply(null,arguments)},Dv=l._AvgPool3D=function(){return(Dv=l._AvgPool3D=l.asm.AvgPool3D).apply(null,arguments)},$v=l._AvgPool3DGrad=function(){return($v=l._AvgPool3DGrad=l.asm.AvgPool3DGrad).apply(null,arguments)},Rv=l._BatchMatMul=function(){return(Rv=l._BatchMatMul=l.asm.BatchMatMul).apply(null,arguments)},Fv=l._Bincount=function(){return(Fv=l._Bincount=l.asm.Bincount).apply(null,arguments)},Ov=l._Ceil=function(){return(Ov=l._Ceil=l.asm.Ceil).apply(null,arguments)},Pv=l._ClipByValue=function(){return(Pv=l._ClipByValue=l.asm.ClipByValue).apply(null,arguments)},Mv=l._Conv2D=function(){return(Mv=l._Conv2D=l.asm.Conv2D).apply(null,arguments)},Lv=l._Conv2DBackpropInput=function(){return(Lv=l._Conv2DBackpropInput=l.asm.Conv2DBackpropInput).apply(null,arguments)},zv=l._Conv3D=function(){return(zv=l._Conv3D=l.asm.Conv3D).apply(null,arguments)},Bv=l._Conv3DBackpropFilterV2=function(){return(Bv=l._Conv3DBackpropFilterV2=l.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Vv=l._Conv3DBackpropInputV2=function(){return(Vv=l._Conv3DBackpropInputV2=l.asm.Conv3DBackpropInputV2).apply(null,arguments)},Gv=l._Cos=function(){return(Gv=l._Cos=l.asm.Cos).apply(null,arguments)},Wv=l._Cosh=function(){return(Wv=l._Cosh=l.asm.Cosh).apply(null,arguments)},Uv=l._CropAndResize=function(){return(Uv=l._CropAndResize=l.asm.CropAndResize).apply(null,arguments)},Hv=l._Cumprod=function(){return(Hv=l._Cumprod=l.asm.Cumprod).apply(null,arguments)},qv=l._Cumsum=function(){return(qv=l._Cumsum=l.asm.Cumsum).apply(null,arguments)},Kv=l._DenseBincount=function(){return(Kv=l._DenseBincount=l.asm.DenseBincount).apply(null,arguments)},jv=l._DepthToSpace=function(){return(jv=l._DepthToSpace=l.asm.DepthToSpace).apply(null,arguments)},Xv=l._DepthwiseConv2dNative=function(){return(Xv=l._DepthwiseConv2dNative=l.asm.DepthwiseConv2dNative).apply(null,arguments)},Yv=l._Diag=function(){return(Yv=l._Diag=l.asm.Diag).apply(null,arguments)},Zv=l._Dilation2D=function(){return(Zv=l._Dilation2D=l.asm.Dilation2D).apply(null,arguments)},Jv=l._Dilation2DBackpropFilter=function(){return(Jv=l._Dilation2DBackpropFilter=l.asm.Dilation2DBackpropFilter).apply(null,arguments)},Qv=l._Dilation2DBackpropInput=function(){return(Qv=l._Dilation2DBackpropInput=l.asm.Dilation2DBackpropInput).apply(null,arguments)},tS=l._Elu=function(){return(tS=l._Elu=l.asm.Elu).apply(null,arguments)},eS=l._EluGrad=function(){return(eS=l._EluGrad=l.asm.EluGrad).apply(null,arguments)},rS=l._Equal=function(){return(rS=l._Equal=l.asm.Equal).apply(null,arguments)},nS=l._Exp=function(){return(nS=l._Exp=l.asm.Exp).apply(null,arguments)},oS=l._Expm1=function(){return(oS=l._Expm1=l.asm.Expm1).apply(null,arguments)},sS=l._FlipLeftRight=function(){return(sS=l._FlipLeftRight=l.asm.FlipLeftRight).apply(null,arguments)},iS=l._Floor=function(){return(iS=l._Floor=l.asm.Floor).apply(null,arguments)},aS=l._FloorDiv=function(){return(aS=l._FloorDiv=l.asm.FloorDiv).apply(null,arguments)},lS=l._FusedBatchNorm=function(){return(lS=l._FusedBatchNorm=l.asm.FusedBatchNorm).apply(null,arguments)},uS=l._FusedConv2D=function(){return(uS=l._FusedConv2D=l.asm.FusedConv2D).apply(null,arguments)},cS=l._FusedDepthwiseConv2D=function(){return(cS=l._FusedDepthwiseConv2D=l.asm.FusedDepthwiseConv2D).apply(null,arguments)},pS=l._Gather=function(){return(pS=l._Gather=l.asm.Gather).apply(null,arguments)},mS=l._GatherNd=function(){return(mS=l._GatherNd=l.asm.GatherNd).apply(null,arguments)},fS=l._Greater=function(){return(fS=l._Greater=l.asm.Greater).apply(null,arguments)},dS=l._GreaterEqual=function(){return(dS=l._GreaterEqual=l.asm.GreaterEqual).apply(null,arguments)},hS=l._IsFinite=function(){return(hS=l._IsFinite=l.asm.IsFinite).apply(null,arguments)},gS=l._IsInf=function(){return(gS=l._IsInf=l.asm.IsInf).apply(null,arguments)},xS=l._IsNan=function(){return(xS=l._IsNan=l.asm.IsNan).apply(null,arguments)},yS=l._LRN=function(){return(yS=l._LRN=l.asm.LRN).apply(null,arguments)},bS=l._LRNGrad=function(){return(bS=l._LRNGrad=l.asm.LRNGrad).apply(null,arguments)},wS=l._LeakyRelu=function(){return(wS=l._LeakyRelu=l.asm.LeakyRelu).apply(null,arguments)},IS=l._Less=function(){return(IS=l._Less=l.asm.Less).apply(null,arguments)},CS=l._LessEqual=function(){return(CS=l._LessEqual=l.asm.LessEqual).apply(null,arguments)},vS=l._LinSpace=function(){return(vS=l._LinSpace=l.asm.LinSpace).apply(null,arguments)},SS=l._Log=function(){return(SS=l._Log=l.asm.Log).apply(null,arguments)},NS=l._Log1p=function(){return(NS=l._Log1p=l.asm.Log1p).apply(null,arguments)},kS=l._LogicalAnd=function(){return(kS=l._LogicalAnd=l.asm.LogicalAnd).apply(null,arguments)},TS=l._LogicalNot=function(){return(TS=l._LogicalNot=l.asm.LogicalNot).apply(null,arguments)},_S=l._LogicalOr=function(){return(_S=l._LogicalOr=l.asm.LogicalOr).apply(null,arguments)},ES=l._LogicalXor=function(){return(ES=l._LogicalXor=l.asm.LogicalXor).apply(null,arguments)},AS=l._Max=function(){return(AS=l._Max=l.asm.Max).apply(null,arguments)},DS=l._MaxPool=function(){return(DS=l._MaxPool=l.asm.MaxPool).apply(null,arguments)},$S=l._MaxPool3D=function(){return($S=l._MaxPool3D=l.asm.MaxPool3D).apply(null,arguments)},RS=l._MaxPool3DGrad=function(){return(RS=l._MaxPool3DGrad=l.asm.MaxPool3DGrad).apply(null,arguments)},FS=l._Maximum=function(){return(FS=l._Maximum=l.asm.Maximum).apply(null,arguments)},OS=l._Mean=function(){return(OS=l._Mean=l.asm.Mean).apply(null,arguments)},PS=l._Min=function(){return(PS=l._Min=l.asm.Min).apply(null,arguments)},MS=l._Minimum=function(){return(MS=l._Minimum=l.asm.Minimum).apply(null,arguments)},LS=l._MirrorPad=function(){return(LS=l._MirrorPad=l.asm.MirrorPad).apply(null,arguments)},zS=l._Multinomial=function(){return(zS=l._Multinomial=l.asm.Multinomial).apply(null,arguments)},BS=l._Multiply=function(){return(BS=l._Multiply=l.asm.Multiply).apply(null,arguments)},VS=l._Neg=function(){return(VS=l._Neg=l.asm.Neg).apply(null,arguments)},GS=l._NonMaxSuppressionV3=function(){return(GS=l._NonMaxSuppressionV3=l.asm.NonMaxSuppressionV3).apply(null,arguments)},Fg=l._NonMaxSuppressionV4=function(){return(Fg=l._NonMaxSuppressionV4=l.asm.NonMaxSuppressionV4).apply(null,arguments)},Og=l._NonMaxSuppressionV5=function(){return(Og=l._NonMaxSuppressionV5=l.asm.NonMaxSuppressionV5).apply(null,arguments)},Zd=l._NotEqual=function(){return(Zd=l._NotEqual=l.asm.NotEqual).apply(null,arguments)},WS=l._OneHot=function(){return(WS=l._OneHot=l.asm.OneHot).apply(null,arguments)},US=l._PadV2=function(){return(US=l._PadV2=l.asm.PadV2).apply(null,arguments)},kp=l._Pow=function(){return(kp=l._Pow=l.asm.Pow).apply(null,arguments)},Pg=l._Prelu=function(){return(Pg=l._Prelu=l.asm.Prelu).apply(null,arguments)},Tp=l._Prod=function(){return(Tp=l._Prod=l.asm.Prod).apply(null,arguments)},_p=l._RealDiv=function(){return(_p=l._RealDiv=l.asm.RealDiv).apply(null,arguments)},HS=l._Reciprocal=function(){return(HS=l._Reciprocal=l.asm.Reciprocal).apply(null,arguments)},j=l._Relu=function(){return(j=l._Relu=l.asm.Relu).apply(null,arguments)},ct=l._Relu6=function(){return(ct=l._Relu6=l.asm.Relu6).apply(null,arguments)},Ft=l._ResizeBilinear=function(){return(Ft=l._ResizeBilinear=l.asm.ResizeBilinear).apply(null,arguments)},pe=l._ResizeBilinearGrad=function(){return(pe=l._ResizeBilinearGrad=l.asm.ResizeBilinearGrad).apply(null,arguments)},Xe=l._ResizeNearestNeighbor=function(){return(Xe=l._ResizeNearestNeighbor=l.asm.ResizeNearestNeighbor).apply(null,arguments)},Ye=l._ResizeNearestNeighborGrad=function(){return(Ye=l._ResizeNearestNeighborGrad=l.asm.ResizeNearestNeighborGrad).apply(null,arguments)},ne=l._Reverse=function(){return(ne=l._Reverse=l.asm.Reverse).apply(null,arguments)},re=l._RotateWithOffset=function(){return(re=l._RotateWithOffset=l.asm.RotateWithOffset).apply(null,arguments)},br=l._Round=function(){return(br=l._Round=l.asm.Round).apply(null,arguments)},Qn=l._Rsqrt=function(){return(Qn=l._Rsqrt=l.asm.Rsqrt).apply(null,arguments)},Na=l._ScatterNd=function(){return(Na=l._ScatterNd=l.asm.ScatterNd).apply(null,arguments)},Mg=l._SearchSorted=function(){return(Mg=l._SearchSorted=l.asm.SearchSorted).apply(null,arguments)},Jd=l._SelectV2=function(){return(Jd=l._SelectV2=l.asm.SelectV2).apply(null,arguments)},qS=l._Selu=function(){return(qS=l._Selu=l.asm.Selu).apply(null,arguments)},on=l._Sigmoid=function(){return(on=l._Sigmoid=l.asm.Sigmoid).apply(null,arguments)},ql=l._Sign=function(){return(ql=l._Sign=l.asm.Sign).apply(null,arguments)},Lg=l._Sin=function(){return(Lg=l._Sin=l.asm.Sin).apply(null,arguments)},dH=l._Softmax=function(){return(dH=l._Softmax=l.asm.Softmax).apply(null,arguments)},hH=l._Softplus=function(){return(hH=l._Softplus=l.asm.Softplus).apply(null,arguments)},gH=l._SparseFillEmptyRows=function(){return(gH=l._SparseFillEmptyRows=l.asm.SparseFillEmptyRows).apply(null,arguments)},xH=l._SparseReshape=function(){return(xH=l._SparseReshape=l.asm.SparseReshape).apply(null,arguments)},yH=l._SparseSegmentReduction=function(){return(yH=l._SparseSegmentReduction=l.asm.SparseSegmentReduction).apply(null,arguments)},bH=l._SparseToDense=function(){return(bH=l._SparseToDense=l.asm.SparseToDense).apply(null,arguments)},wH=l._Sqrt=function(){return(wH=l._Sqrt=l.asm.Sqrt).apply(null,arguments)},IH=l._Square=function(){return(IH=l._Square=l.asm.Square).apply(null,arguments)},CH=l._SquaredDifference=function(){return(CH=l._SquaredDifference=l.asm.SquaredDifference).apply(null,arguments)},vH=l._Step=function(){return(vH=l._Step=l.asm.Step).apply(null,arguments)},SH=l._StridedSlice=function(){return(SH=l._StridedSlice=l.asm.StridedSlice).apply(null,arguments)},NH=l._Sub=function(){return(NH=l._Sub=l.asm.Sub).apply(null,arguments)},kH=l._Sum=function(){return(kH=l._Sum=l.asm.Sum).apply(null,arguments)},TH=l._Tan=function(){return(TH=l._Tan=l.asm.Tan).apply(null,arguments)},_H=l._Tanh=function(){return(_H=l._Tanh=l.asm.Tanh).apply(null,arguments)},EH=l._TensorScatterUpdate=function(){return(EH=l._TensorScatterUpdate=l.asm.TensorScatterUpdate).apply(null,arguments)},AH=l._Tile=function(){return(AH=l._Tile=l.asm.Tile).apply(null,arguments)},DH=l._TopK=function(){return(DH=l._TopK=l.asm.TopK).apply(null,arguments)},$H=l._Transform=function(){return($H=l._Transform=l.asm.Transform).apply(null,arguments)},RH=l._Transpose=function(){return(RH=l._Transpose=l.asm.Transpose).apply(null,arguments)},FH=l.__FusedMatMul=function(){return(FH=l.__FusedMatMul=l.asm._FusedMatMul).apply(null,arguments)},OH=l._malloc=function(){return(OH=l._malloc=l.asm.malloc).apply(null,arguments)},PH=l._free=function(){return(PH=l._free=l.asm.free).apply(null,arguments)},MH=l.__emscripten_tls_init=function(){return(MH=l.__emscripten_tls_init=l.asm._emscripten_tls_init).apply(null,arguments)},zg=l._pthread_self=function(){return(zg=l._pthread_self=l.asm.pthread_self).apply(null,arguments)},LH=l.___errno_location=function(){return(LH=l.___errno_location=l.asm.__errno_location).apply(null,arguments)},K1=l.__emscripten_thread_init=function(){return(K1=l.__emscripten_thread_init=l.asm._emscripten_thread_init).apply(null,arguments)},zH=l.__emscripten_thread_crashed=function(){return(zH=l.__emscripten_thread_crashed=l.asm._emscripten_thread_crashed).apply(null,arguments)},BH=l._emscripten_main_thread_process_queued_calls=function(){return(BH=l._emscripten_main_thread_process_queued_calls=l.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},VH=l._emscripten_main_browser_thread_id=function(){return(VH=l._emscripten_main_browser_thread_id=l.asm.emscripten_main_browser_thread_id).apply(null,arguments)},j1=l._emscripten_run_in_main_runtime_thread_js=function(){return(j1=l._emscripten_run_in_main_runtime_thread_js=l.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},GH=l._emscripten_dispatch_to_thread_=function(){return(GH=l._emscripten_dispatch_to_thread_=l.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},X1=l.__emscripten_proxy_execute_task_queue=function(){return(X1=l.__emscripten_proxy_execute_task_queue=l.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},KS=l.__emscripten_thread_free_data=function(){return(KS=l.__emscripten_thread_free_data=l.asm._emscripten_thread_free_data).apply(null,arguments)},Y1=l.__emscripten_thread_exit=function(){return(Y1=l.__emscripten_thread_exit=l.asm._emscripten_thread_exit).apply(null,arguments)},Z1=l._emscripten_stack_set_limits=function(){return(Z1=l._emscripten_stack_set_limits=l.asm.emscripten_stack_set_limits).apply(null,arguments)},jS=l.stackSave=function(){return(jS=l.stackSave=l.asm.stackSave).apply(null,arguments)},Bg=l.stackRestore=function(){return(Bg=l.stackRestore=l.asm.stackRestore).apply(null,arguments)},Vg=l.stackAlloc=function(){return(Vg=l.stackAlloc=l.asm.stackAlloc).apply(null,arguments)},WH=l.dynCall_iijjiiii=function(){return(WH=l.dynCall_iijjiiii=l.asm.dynCall_iijjiiii).apply(null,arguments)},UH=l.dynCall_jiji=function(){return(UH=l.dynCall_jiji=l.asm.dynCall_jiji).apply(null,arguments)};l.keepRuntimeAlive=Vo,l.wasmMemory=it,l.cwrap=av,l.ExitStatus=Qu,l.PThread=Xt;var Gg;Sa=function M(){Gg||J1(),Gg||(Sa=M)};function J1(M){if(M=M||d,Ul>0)return;if(I){c(l),Er(),startWorker(l);return}if(Si(),Ul>0)return;function U(){Gg||(Gg=!0,l.calledRun=!0,!gt&&(Er(),c(l),l.onRuntimeInitialized&&l.onRuntimeInitialized(),va()))}l.setStatus?(l.setStatus("Running..."),setTimeout(function(){setTimeout(function(){l.setStatus("")},1),U()},1)):U()}if(l.preInit)for(typeof l.preInit=="function"&&(l.preInit=[l.preInit]);l.preInit.length>0;)l.preInit.pop()();J1();var Wg;m&&(Wg={uncaughtException:process.listeners("uncaughtException").filter(function(M){return!m.uncaughtException.indexOf(M)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(M){return!m.unhandledRejection.indexOf(M)>-1})});var Ug;if(typeof WasmBackendModule!="undefined")Ug=WasmBackendModule;else if(typeof t!="undefined")Ug=t;else throw new Error("Could not find wasm module in post.js");if(Wg){var HH=Ug._dispose;Ug._dispose=function(){HH(),Wg.uncaughtException.forEach(function(M){process.removeListener("uncaughtException",M)}),Wg.unhandledRejection.forEach(function(M){process.removeListener("unhandledRejection",M)})}}return t.ready}})();typeof vC=="object"&&typeof P1=="object"?P1.exports=O1:typeof define=="function"&&define.amd?define([],function(){return O1}):typeof vC=="object"&&(vC.WasmBackendModuleThreadedSimd=O1)});var iH=wr((ctr,sH)=>{sH.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`});var aH=wr((SC,L1)=>{var M1=(()=>{var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(t){t=t||{};var e=typeof t!="undefined"?t:{},n,o;e.ready=new Promise(function(j,ct){n=j,o=ct});var s;typeof process!="undefined"&&process.listeners&&(s={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var i=Object.assign({},e),a=[],u="./this.program",l=(j,ct)=>{throw ct},c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f="";function d(j){return e.locateFile?e.locateFile(j,f):f+j}var h,g,x,b;function w(j){if(j instanceof vp)return;A("exiting due to exception: "+j)}if(m){var I=sw(),N=F1();p?f=N.dirname(f)+"/":f=__dirname+"/",h=(j,ct)=>(j=Si(j)?new URL(j):N.normalize(j),I.readFileSync(j,ct?void 0:"utf8")),x=j=>{var ct=h(j,!0);return ct.buffer||(ct=new Uint8Array(ct)),ct},g=(j,ct,Ft)=>{j=Si(j)?new URL(j):N.normalize(j),I.readFile(j,function(pe,Xe){pe?Ft(pe):ct(Xe.buffer)})},process.argv.length>1&&(u=process.argv[1].replace(/\\/g,"/")),a=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof vp))throw j}),process.on("unhandledRejection",function(j){throw j}),l=(j,ct)=>{if(fe())throw process.exitCode=j,ct;w(ct),process.exit(j)},e.inspect=function(){return"[Emscripten Module object]"}}else(c||p)&&(p?f=self.location.href:typeof document!="undefined"&&document.currentScript&&(f=document.currentScript.src),r&&(f=r),f.indexOf("blob:")!==0?f=f.substr(0,f.replace(/[?#].*/,"").lastIndexOf("/")+1):f="",h=j=>{var ct=new XMLHttpRequest;return ct.open("GET",j,!1),ct.send(null),ct.responseText},p&&(x=j=>{var ct=new XMLHttpRequest;return ct.open("GET",j,!1),ct.responseType="arraybuffer",ct.send(null),new Uint8Array(ct.response)}),g=(j,ct,Ft)=>{var pe=new XMLHttpRequest;pe.open("GET",j,!0),pe.responseType="arraybuffer",pe.onload=()=>{if(pe.status==200||pe.status==0&&pe.response){ct(pe.response);return}Ft()},pe.onerror=Ft,pe.send(null)},b=j=>document.title=j);var E=e.print||console.log.bind(console),A=e.printErr||console.warn.bind(console);Object.assign(e,i),i=null,e.arguments&&(a=e.arguments),e.thisProgram&&(u=e.thisProgram),e.quit&&(l=e.quit);var D=4,F;e.wasmBinary&&(F=e.wasmBinary);var P=e.noExitRuntime||!0;typeof WebAssembly!="object"&&Jr("no native wasm support detected");var V,G=!1,W;function q(j,ct){j||Jr(ct)}var H=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function K(j,ct,Ft){for(var pe=ct+Ft,Xe=ct;j[Xe]&&!(Xe>=pe);)++Xe;if(Xe-ct>16&&j.buffer&&H)return H.decode(j.subarray(ct,Xe));for(var Ye="";ct<Xe;){var ne=j[ct++];if(!(ne&128)){Ye+=String.fromCharCode(ne);continue}var re=j[ct++]&63;if((ne&224)==192){Ye+=String.fromCharCode((ne&31)<<6|re);continue}var br=j[ct++]&63;if((ne&240)==224?ne=(ne&15)<<12|re<<6|br:ne=(ne&7)<<18|re<<12|br<<6|j[ct++]&63,ne<65536)Ye+=String.fromCharCode(ne);else{var Qn=ne-65536;Ye+=String.fromCharCode(55296|Qn>>10,56320|Qn&1023)}}return Ye}function X(j,ct){return j?K(at,j,ct):""}function Z(j,ct,Ft,pe){if(!(pe>0))return 0;for(var Xe=Ft,Ye=Ft+pe-1,ne=0;ne<j.length;++ne){var re=j.charCodeAt(ne);if(re>=55296&&re<=57343){var br=j.charCodeAt(++ne);re=65536+((re&1023)<<10)|br&1023}if(re<=127){if(Ft>=Ye)break;ct[Ft++]=re}else if(re<=2047){if(Ft+1>=Ye)break;ct[Ft++]=192|re>>6,ct[Ft++]=128|re&63}else if(re<=65535){if(Ft+2>=Ye)break;ct[Ft++]=224|re>>12,ct[Ft++]=128|re>>6&63,ct[Ft++]=128|re&63}else{if(Ft+3>=Ye)break;ct[Ft++]=240|re>>18,ct[Ft++]=128|re>>12&63,ct[Ft++]=128|re>>6&63,ct[Ft++]=128|re&63}}return ct[Ft]=0,Ft-Xe}function et(j,ct,Ft){return Z(j,at,ct,Ft)}var nt,st,at,ot,it,mt,gt,It,Rt;function Dt(j){nt=j,e.HEAP8=st=new Int8Array(j),e.HEAP16=ot=new Int16Array(j),e.HEAP32=mt=new Int32Array(j),e.HEAPU8=at=new Uint8Array(j),e.HEAPU16=it=new Uint16Array(j),e.HEAPU32=gt=new Uint32Array(j),e.HEAPF32=It=new Float32Array(j),e.HEAPF64=Rt=new Float64Array(j)}var Ht=e.INITIAL_MEMORY||16777216,qt,ce=[],ge=[],ee=[],xe=!1;function fe(){return P}function Ae(){if(e.preRun)for(typeof e.preRun=="function"&&(e.preRun=[e.preRun]);e.preRun.length;)ar(e.preRun.shift());Sa(ce)}function De(){xe=!0,Sa(ge)}function Fn(){if(e.postRun)for(typeof e.postRun=="function"&&(e.postRun=[e.postRun]);e.postRun.length;)Br(e.postRun.shift());Sa(ee)}function ar(j){ce.unshift(j)}function Yn(j){ge.unshift(j)}function Br(j){ee.unshift(j)}var je=0,Vr=null,Gr=null;function Zn(j){je++,e.monitorRunDependencies&&e.monitorRunDependencies(je)}function Jn(j){if(je--,e.monitorRunDependencies&&e.monitorRunDependencies(je),je==0&&(Vr!==null&&(clearInterval(Vr),Vr=null),Gr)){var ct=Gr;Gr=null,ct()}}function Jr(j){e.onAbort&&e.onAbort(j),j="Aborted("+j+")",A(j),G=!0,W=1,j+=". Build with -sASSERTIONS for more info.";var ct=new WebAssembly.RuntimeError(j);throw o(ct),ct}var Ca="data:application/octet-stream;base64,";function Vo(j){return j.startsWith(Ca)}function Si(j){return j.startsWith("file://")}var Er;Er="tfjs-backend-wasm.wasm",Vo(Er)||(Er=d(Er));function va(j){try{if(j==Er&&F)return new Uint8Array(F);if(x)return x(j);throw"both async and sync fetching of the wasm failed"}catch(ct){Jr(ct)}}function Ud(){if(!F&&(c||p)){if(typeof fetch=="function"&&!Si(Er))return fetch(Er,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+Er+"'";return j.arrayBuffer()}).catch(function(){return va(Er)});if(g)return new Promise(function(j,ct){g(Er,function(Ft){j(new Uint8Array(Ft))},ct)})}return Promise.resolve().then(function(){return va(Er)})}function Hd(){var j={env:qd,wasi_snapshot_preview1:qd};function ct(ne,re){var br=ne.exports;e.asm=br,V=e.asm.memory,Dt(V.buffer),qt=e.asm.__indirect_function_table,Yn(e.asm.__wasm_call_ctors),Jn("wasm-instantiate")}Zn("wasm-instantiate");function Ft(ne){ct(ne.instance)}function pe(ne){return Ud().then(function(re){return WebAssembly.instantiate(re,j)}).then(function(re){return re}).then(ne,function(re){A("failed to asynchronously prepare wasm: "+re),Jr(re)})}function Xe(){return!F&&typeof WebAssembly.instantiateStreaming=="function"&&!Vo(Er)&&!Si(Er)&&!m&&typeof fetch=="function"?fetch(Er,{credentials:"same-origin"}).then(function(ne){var re=WebAssembly.instantiateStreaming(ne,j);return re.then(Ft,function(br){return A("wasm streaming compile failed: "+br),A("falling back to ArrayBuffer instantiation"),pe(Ft)})}):pe(Ft)}if(e.instantiateWasm)try{var Ye=e.instantiateWasm(j,ct);return Ye}catch(ne){A("Module.instantiateWasm callback failed with error: "+ne),o(ne)}return Xe().catch(o),{}}var W1,Ul;function vp(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}function Sa(j){for(;j.length>0;)j.shift()(e)}function kC(){Jr("")}function yg(){return 2147483648}function Ju(){return yg()}function TC(j,ct,Ft){at.copyWithin(j,ct,ct+Ft)}function bg(j){try{return V.grow(j-nt.byteLength+65535>>>16),Dt(V.buffer),1}catch(ct){}}function Sp(j){var ct=at.length;j=j>>>0;var Ft=yg();if(j>Ft)return!1;let pe=(br,Qn)=>br+(Qn-br%Qn)%Qn;for(var Xe=1;Xe<=4;Xe*=2){var Ye=ct*(1+.2/Xe);Ye=Math.min(Ye,j+100663296);var ne=Math.min(Ft,pe(Math.max(j,Ye),65536)),re=bg(ne);if(re)return!0}return!1}var Qr={varargs:void 0,get:function(){Qr.varargs+=4;var j=mt[Qr.varargs-4>>2];return j},getStr:function(j){var ct=X(j);return ct}};function wg(j){return 52}function _C(j,ct,Ft,pe,Xe){return 70}var EC=[null,[],[]];function U1(j,ct){var Ft=EC[j];ct===0||ct===10?((j===1?E:A)(K(Ft,0)),Ft.length=0):Ft.push(ct)}function H1(j,ct,Ft,pe){for(var Xe=0,Ye=0;Ye<Ft;Ye++){var ne=gt[ct>>2],re=gt[ct+4>>2];ct+=8;for(var br=0;br<re;br++)U1(j,at[ne+br]);Xe+=re}return gt[pe>>2]=Xe,0}function Ig(j){var ct=e["_"+j];return ct}function Qu(j,ct){st.set(j,ct)}function AC(j,ct,Ft,pe,Xe){var Ye={string:on=>{var ql=0;if(on!=null&&on!==0){var Lg=(on.length<<2)+1;ql=Zd(Lg),et(on,ql,Lg)}return ql},array:on=>{var ql=Zd(on.length);return Qu(on,ql),ql}};function ne(on){return ct==="string"?X(on):ct==="boolean"?!!on:on}var re=Ig(j),br=[],Qn=0;if(pe)for(var Na=0;Na<pe.length;Na++){var Mg=Ye[Ft[Na]];Mg?(Qn===0&&(Qn=Fg()),br[Na]=Mg(pe[Na])):br[Na]=pe[Na]}var Jd=re.apply(null,br);function qS(on){return Qn!==0&&Og(Qn),ne(on)}return Jd=qS(Jd),Jd}function DC(j,ct,Ft,pe){Ft=Ft||[];var Xe=Ft.every(ne=>ne==="number"||ne==="boolean"),Ye=ct!=="string";return Ye&&Xe&&!pe?Ig(j):function(){return AC(j,ct,Ft,arguments,pe)}}var qd={abort:kC,emscripten_get_heap_max:Ju,emscripten_memcpy_big:TC,emscripten_resize_heap:Sp,fd_close:wg,fd_seek:_C,fd_write:H1},$C=Hd(),Cg=e.___wasm_call_ctors=function(){return(Cg=e.___wasm_call_ctors=e.asm.__wasm_call_ctors).apply(null,arguments)},vg=e._init=function(){return(vg=e._init=e.asm.init).apply(null,arguments)},RC=e._init_with_threads_count=function(){return(RC=e._init_with_threads_count=e.asm.init_with_threads_count).apply(null,arguments)},Sg=e._get_threads_count=function(){return(Sg=e._get_threads_count=e.asm.get_threads_count).apply(null,arguments)},FC=e._register_tensor=function(){return(FC=e._register_tensor=e.asm.register_tensor).apply(null,arguments)},Xt=e._dispose_data=function(){return(Xt=e._dispose_data=e.asm.dispose_data).apply(null,arguments)},Kd=e._dispose=function(){return(Kd=e._dispose=e.asm.dispose).apply(null,arguments)},OC=e._Abs=function(){return(OC=e._Abs=e.asm.Abs).apply(null,arguments)},Ng=e._Acos=function(){return(Ng=e._Acos=e.asm.Acos).apply(null,arguments)},Np=e._Acosh=function(){return(Np=e._Acosh=e.asm.Acosh).apply(null,arguments)},PC=e._Add=function(){return(PC=e._Add=e.asm.Add).apply(null,arguments)},MC=e._AddN=function(){return(MC=e._AddN=e.asm.AddN).apply(null,arguments)},LC=e._All=function(){return(LC=e._All=e.asm.All).apply(null,arguments)},zC=e._Any=function(){return(zC=e._Any=e.asm.Any).apply(null,arguments)},BC=e._ArgMax=function(){return(BC=e._ArgMax=e.asm.ArgMax).apply(null,arguments)},kg=e._ArgMin=function(){return(kg=e._ArgMin=e.asm.ArgMin).apply(null,arguments)},Tg=e._Asin=function(){return(Tg=e._Asin=e.asm.Asin).apply(null,arguments)},VC=e._Asinh=function(){return(VC=e._Asinh=e.asm.Asinh).apply(null,arguments)},GC=e._Atan=function(){return(GC=e._Atan=e.asm.Atan).apply(null,arguments)},WC=e._Atan2=function(){return(WC=e._Atan2=e.asm.Atan2).apply(null,arguments)},jd=e._Atanh=function(){return(jd=e._Atanh=e.asm.Atanh).apply(null,arguments)},UC=e._AvgPool=function(){return(UC=e._AvgPool=e.asm.AvgPool).apply(null,arguments)},HC=e._AvgPool3D=function(){return(HC=e._AvgPool3D=e.asm.AvgPool3D).apply(null,arguments)},qC=e._AvgPool3DGrad=function(){return(qC=e._AvgPool3DGrad=e.asm.AvgPool3DGrad).apply(null,arguments)},tc=e._BatchMatMul=function(){return(tc=e._BatchMatMul=e.asm.BatchMatMul).apply(null,arguments)},KC=e._Bincount=function(){return(KC=e._Bincount=e.asm.Bincount).apply(null,arguments)},jC=e._Ceil=function(){return(jC=e._Ceil=e.asm.Ceil).apply(null,arguments)},_g=e._ClipByValue=function(){return(_g=e._ClipByValue=e.asm.ClipByValue).apply(null,arguments)},XC=e._Conv2D=function(){return(XC=e._Conv2D=e.asm.Conv2D).apply(null,arguments)},Xd=e._Conv2DBackpropInput=function(){return(Xd=e._Conv2DBackpropInput=e.asm.Conv2DBackpropInput).apply(null,arguments)},YC=e._Conv3D=function(){return(YC=e._Conv3D=e.asm.Conv3D).apply(null,arguments)},ZC=e._Conv3DBackpropFilterV2=function(){return(ZC=e._Conv3DBackpropFilterV2=e.asm.Conv3DBackpropFilterV2).apply(null,arguments)},JC=e._Conv3DBackpropInputV2=function(){return(JC=e._Conv3DBackpropInputV2=e.asm.Conv3DBackpropInputV2).apply(null,arguments)},Hl=e._Cos=function(){return(Hl=e._Cos=e.asm.Cos).apply(null,arguments)},Yd=e._Cosh=function(){return(Yd=e._Cosh=e.asm.Cosh).apply(null,arguments)},QC=e._CropAndResize=function(){return(QC=e._CropAndResize=e.asm.CropAndResize).apply(null,arguments)},tv=e._Cumprod=function(){return(tv=e._Cumprod=e.asm.Cumprod).apply(null,arguments)},ev=e._Cumsum=function(){return(ev=e._Cumsum=e.asm.Cumsum).apply(null,arguments)},rv=e._DenseBincount=function(){return(rv=e._DenseBincount=e.asm.DenseBincount).apply(null,arguments)},Eg=e._DepthToSpace=function(){return(Eg=e._DepthToSpace=e.asm.DepthToSpace).apply(null,arguments)},Ag=e._DepthwiseConv2dNative=function(){return(Ag=e._DepthwiseConv2dNative=e.asm.DepthwiseConv2dNative).apply(null,arguments)},nv=e._Diag=function(){return(nv=e._Diag=e.asm.Diag).apply(null,arguments)},ov=e._Dilation2D=function(){return(ov=e._Dilation2D=e.asm.Dilation2D).apply(null,arguments)},Dg=e._Dilation2DBackpropFilter=function(){return(Dg=e._Dilation2DBackpropFilter=e.asm.Dilation2DBackpropFilter).apply(null,arguments)},$g=e._Dilation2DBackpropInput=function(){return($g=e._Dilation2DBackpropInput=e.asm.Dilation2DBackpropInput).apply(null,arguments)},sv=e._Elu=function(){return(sv=e._Elu=e.asm.Elu).apply(null,arguments)},iv=e._EluGrad=function(){return(iv=e._EluGrad=e.asm.EluGrad).apply(null,arguments)},av=e._Equal=function(){return(av=e._Equal=e.asm.Equal).apply(null,arguments)},lv=e._Exp=function(){return(lv=e._Exp=e.asm.Exp).apply(null,arguments)},Rg=e._Expm1=function(){return(Rg=e._Expm1=e.asm.Expm1).apply(null,arguments)},q1=e._FlipLeftRight=function(){return(q1=e._FlipLeftRight=e.asm.FlipLeftRight).apply(null,arguments)},uv=e._Floor=function(){return(uv=e._Floor=e.asm.Floor).apply(null,arguments)},cv=e._FloorDiv=function(){return(cv=e._FloorDiv=e.asm.FloorDiv).apply(null,arguments)},pv=e._FusedBatchNorm=function(){return(pv=e._FusedBatchNorm=e.asm.FusedBatchNorm).apply(null,arguments)},mv=e._FusedConv2D=function(){return(mv=e._FusedConv2D=e.asm.FusedConv2D).apply(null,arguments)},fv=e._FusedDepthwiseConv2D=function(){return(fv=e._FusedDepthwiseConv2D=e.asm.FusedDepthwiseConv2D).apply(null,arguments)},dv=e._Gather=function(){return(dv=e._Gather=e.asm.Gather).apply(null,arguments)},hv=e._GatherNd=function(){return(hv=e._GatherNd=e.asm.GatherNd).apply(null,arguments)},gv=e._Greater=function(){return(gv=e._Greater=e.asm.Greater).apply(null,arguments)},xv=e._GreaterEqual=function(){return(xv=e._GreaterEqual=e.asm.GreaterEqual).apply(null,arguments)},yv=e._IsFinite=function(){return(yv=e._IsFinite=e.asm.IsFinite).apply(null,arguments)},bv=e._IsInf=function(){return(bv=e._IsInf=e.asm.IsInf).apply(null,arguments)},wv=e._IsNan=function(){return(wv=e._IsNan=e.asm.IsNan).apply(null,arguments)},Iv=e._LRN=function(){return(Iv=e._LRN=e.asm.LRN).apply(null,arguments)},Cv=e._LRNGrad=function(){return(Cv=e._LRNGrad=e.asm.LRNGrad).apply(null,arguments)},vv=e._LeakyRelu=function(){return(vv=e._LeakyRelu=e.asm.LeakyRelu).apply(null,arguments)},Sv=e._Less=function(){return(Sv=e._Less=e.asm.Less).apply(null,arguments)},Nv=e._LessEqual=function(){return(Nv=e._LessEqual=e.asm.LessEqual).apply(null,arguments)},kv=e._LinSpace=function(){return(kv=e._LinSpace=e.asm.LinSpace).apply(null,arguments)},Tv=e._Log=function(){return(Tv=e._Log=e.asm.Log).apply(null,arguments)},_v=e._Log1p=function(){return(_v=e._Log1p=e.asm.Log1p).apply(null,arguments)},Ev=e._LogicalAnd=function(){return(Ev=e._LogicalAnd=e.asm.LogicalAnd).apply(null,arguments)},Av=e._LogicalNot=function(){return(Av=e._LogicalNot=e.asm.LogicalNot).apply(null,arguments)},Dv=e._LogicalOr=function(){return(Dv=e._LogicalOr=e.asm.LogicalOr).apply(null,arguments)},$v=e._LogicalXor=function(){return($v=e._LogicalXor=e.asm.LogicalXor).apply(null,arguments)},Rv=e._Max=function(){return(Rv=e._Max=e.asm.Max).apply(null,arguments)},Fv=e._MaxPool=function(){return(Fv=e._MaxPool=e.asm.MaxPool).apply(null,arguments)},Ov=e._MaxPool3D=function(){return(Ov=e._MaxPool3D=e.asm.MaxPool3D).apply(null,arguments)},Pv=e._MaxPool3DGrad=function(){return(Pv=e._MaxPool3DGrad=e.asm.MaxPool3DGrad).apply(null,arguments)},Mv=e._Maximum=function(){return(Mv=e._Maximum=e.asm.Maximum).apply(null,arguments)},Lv=e._Mean=function(){return(Lv=e._Mean=e.asm.Mean).apply(null,arguments)},zv=e._Min=function(){return(zv=e._Min=e.asm.Min).apply(null,arguments)},Bv=e._Minimum=function(){return(Bv=e._Minimum=e.asm.Minimum).apply(null,arguments)},Vv=e._MirrorPad=function(){return(Vv=e._MirrorPad=e.asm.MirrorPad).apply(null,arguments)},Gv=e._Multinomial=function(){return(Gv=e._Multinomial=e.asm.Multinomial).apply(null,arguments)},Wv=e._Multiply=function(){return(Wv=e._Multiply=e.asm.Multiply).apply(null,arguments)},Uv=e._Neg=function(){return(Uv=e._Neg=e.asm.Neg).apply(null,arguments)},Hv=e._NonMaxSuppressionV3=function(){return(Hv=e._NonMaxSuppressionV3=e.asm.NonMaxSuppressionV3).apply(null,arguments)},qv=e._NonMaxSuppressionV4=function(){return(qv=e._NonMaxSuppressionV4=e.asm.NonMaxSuppressionV4).apply(null,arguments)},Kv=e._NonMaxSuppressionV5=function(){return(Kv=e._NonMaxSuppressionV5=e.asm.NonMaxSuppressionV5).apply(null,arguments)},jv=e._NotEqual=function(){return(jv=e._NotEqual=e.asm.NotEqual).apply(null,arguments)},Xv=e._OneHot=function(){return(Xv=e._OneHot=e.asm.OneHot).apply(null,arguments)},Yv=e._PadV2=function(){return(Yv=e._PadV2=e.asm.PadV2).apply(null,arguments)},Zv=e._Pow=function(){return(Zv=e._Pow=e.asm.Pow).apply(null,arguments)},Jv=e._Prelu=function(){return(Jv=e._Prelu=e.asm.Prelu).apply(null,arguments)},Qv=e._Prod=function(){return(Qv=e._Prod=e.asm.Prod).apply(null,arguments)},tS=e._RealDiv=function(){return(tS=e._RealDiv=e.asm.RealDiv).apply(null,arguments)},eS=e._Reciprocal=function(){return(eS=e._Reciprocal=e.asm.Reciprocal).apply(null,arguments)},rS=e._Relu=function(){return(rS=e._Relu=e.asm.Relu).apply(null,arguments)},nS=e._Relu6=function(){return(nS=e._Relu6=e.asm.Relu6).apply(null,arguments)},oS=e._ResizeBilinear=function(){return(oS=e._ResizeBilinear=e.asm.ResizeBilinear).apply(null,arguments)},sS=e._ResizeBilinearGrad=function(){return(sS=e._ResizeBilinearGrad=e.asm.ResizeBilinearGrad).apply(null,arguments)},iS=e._ResizeNearestNeighbor=function(){return(iS=e._ResizeNearestNeighbor=e.asm.ResizeNearestNeighbor).apply(null,arguments)},aS=e._ResizeNearestNeighborGrad=function(){return(aS=e._ResizeNearestNeighborGrad=e.asm.ResizeNearestNeighborGrad).apply(null,arguments)},lS=e._Reverse=function(){return(lS=e._Reverse=e.asm.Reverse).apply(null,arguments)},uS=e._RotateWithOffset=function(){return(uS=e._RotateWithOffset=e.asm.RotateWithOffset).apply(null,arguments)},cS=e._Round=function(){return(cS=e._Round=e.asm.Round).apply(null,arguments)},pS=e._Rsqrt=function(){return(pS=e._Rsqrt=e.asm.Rsqrt).apply(null,arguments)},mS=e._ScatterNd=function(){return(mS=e._ScatterNd=e.asm.ScatterNd).apply(null,arguments)},fS=e._SearchSorted=function(){return(fS=e._SearchSorted=e.asm.SearchSorted).apply(null,arguments)},dS=e._SelectV2=function(){return(dS=e._SelectV2=e.asm.SelectV2).apply(null,arguments)},hS=e._Selu=function(){return(hS=e._Selu=e.asm.Selu).apply(null,arguments)},gS=e._Sigmoid=function(){return(gS=e._Sigmoid=e.asm.Sigmoid).apply(null,arguments)},xS=e._Sign=function(){return(xS=e._Sign=e.asm.Sign).apply(null,arguments)},yS=e._Sin=function(){return(yS=e._Sin=e.asm.Sin).apply(null,arguments)},bS=e._Softmax=function(){return(bS=e._Softmax=e.asm.Softmax).apply(null,arguments)},wS=e._Softplus=function(){return(wS=e._Softplus=e.asm.Softplus).apply(null,arguments)},IS=e._SparseFillEmptyRows=function(){return(IS=e._SparseFillEmptyRows=e.asm.SparseFillEmptyRows).apply(null,arguments)},CS=e._SparseReshape=function(){return(CS=e._SparseReshape=e.asm.SparseReshape).apply(null,arguments)},vS=e._SparseSegmentReduction=function(){return(vS=e._SparseSegmentReduction=e.asm.SparseSegmentReduction).apply(null,arguments)},SS=e._SparseToDense=function(){return(SS=e._SparseToDense=e.asm.SparseToDense).apply(null,arguments)},NS=e._Sqrt=function(){return(NS=e._Sqrt=e.asm.Sqrt).apply(null,arguments)},kS=e._Square=function(){return(kS=e._Square=e.asm.Square).apply(null,arguments)},TS=e._SquaredDifference=function(){return(TS=e._SquaredDifference=e.asm.SquaredDifference).apply(null,arguments)},_S=e._Step=function(){return(_S=e._Step=e.asm.Step).apply(null,arguments)},ES=e._StridedSlice=function(){return(ES=e._StridedSlice=e.asm.StridedSlice).apply(null,arguments)},AS=e._Sub=function(){return(AS=e._Sub=e.asm.Sub).apply(null,arguments)},DS=e._Sum=function(){return(DS=e._Sum=e.asm.Sum).apply(null,arguments)},$S=e._Tan=function(){return($S=e._Tan=e.asm.Tan).apply(null,arguments)},RS=e._Tanh=function(){return(RS=e._Tanh=e.asm.Tanh).apply(null,arguments)},FS=e._TensorScatterUpdate=function(){return(FS=e._TensorScatterUpdate=e.asm.TensorScatterUpdate).apply(null,arguments)},OS=e._Tile=function(){return(OS=e._Tile=e.asm.Tile).apply(null,arguments)},PS=e._TopK=function(){return(PS=e._TopK=e.asm.TopK).apply(null,arguments)},MS=e._Transform=function(){return(MS=e._Transform=e.asm.Transform).apply(null,arguments)},LS=e._Transpose=function(){return(LS=e._Transpose=e.asm.Transpose).apply(null,arguments)},zS=e.__FusedMatMul=function(){return(zS=e.__FusedMatMul=e.asm._FusedMatMul).apply(null,arguments)},BS=e._malloc=function(){return(BS=e._malloc=e.asm.malloc).apply(null,arguments)},VS=e._free=function(){return(VS=e._free=e.asm.free).apply(null,arguments)},GS=e.___errno_location=function(){return(GS=e.___errno_location=e.asm.__errno_location).apply(null,arguments)},Fg=e.stackSave=function(){return(Fg=e.stackSave=e.asm.stackSave).apply(null,arguments)},Og=e.stackRestore=function(){return(Og=e.stackRestore=e.asm.stackRestore).apply(null,arguments)},Zd=e.stackAlloc=function(){return(Zd=e.stackAlloc=e.asm.stackAlloc).apply(null,arguments)},WS=e.dynCall_iijjiiii=function(){return(WS=e.dynCall_iijjiiii=e.asm.dynCall_iijjiiii).apply(null,arguments)},US=e.dynCall_jiji=function(){return(US=e.dynCall_jiji=e.asm.dynCall_jiji).apply(null,arguments)};e.cwrap=DC;var kp;Gr=function j(){kp||Pg(),kp||(Gr=j)};function Pg(j){if(j=j||a,je>0||(Ae(),je>0))return;function ct(){kp||(kp=!0,e.calledRun=!0,!G&&(De(),n(e),e.onRuntimeInitialized&&e.onRuntimeInitialized(),Fn()))}e.setStatus?(e.setStatus("Running..."),setTimeout(function(){setTimeout(function(){e.setStatus("")},1),ct()},1)):ct()}if(e.preInit)for(typeof e.preInit=="function"&&(e.preInit=[e.preInit]);e.preInit.length>0;)e.preInit.pop()();Pg();var Tp;s&&(Tp={uncaughtException:process.listeners("uncaughtException").filter(function(j){return!s.uncaughtException.indexOf(j)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(j){return!s.unhandledRejection.indexOf(j)>-1})});var _p;if(typeof t!="undefined")_p=t;else if(typeof WasmBackendModuleThreadedSimd!="undefined")_p=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Tp){var HS=_p._dispose;_p._dispose=function(){HS(),Tp.uncaughtException.forEach(function(j){process.removeListener("uncaughtException",j)}),Tp.unhandledRejection.forEach(function(j){process.removeListener("unhandledRejection",j)})}}return t.ready}})();typeof SC=="object"&&typeof L1=="object"?L1.exports=M1:typeof define=="function"&&define.amd?define([],function(){return M1}):typeof SC=="object"&&(SC.WasmBackendModule=M1)});var Ta=class{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}},Go=class{refCount(t){return Pn("refCount")}incRef(t){return Pn("incRef")}timerAvailable(){return!0}time(t){return Pn("time")}read(t){return Pn("read")}readSync(t){return Pn("readSync")}readToGPU(t,e){return Pn("readToGPU")}numDataIds(){return Pn("numDataIds")}disposeData(t,e){return Pn("disposeData")}write(t,e,n){return Pn("write")}move(t,e,n,o,s){return Pn("move")}createTensorFromGPUData(t,e,n){return Pn("createTensorFromGPUData")}memory(){return Pn("memory")}floatPrecision(){return Pn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Pn("dispose")}};function Pn(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function e_(r){let t=r.length,e=0;for(;t>0;)e=Math.random()*t|0,t--,Hg(r,t,e)}function QH(r,t){if(r.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${t.length}`);let e=r.length,n=0;for(;e>0;)n=Math.random()*e|0,e--,Hg(r,e,n),Hg(t,e,n)}function Ap(r,t,e){return Math.max(r,Math.min(t,e))}function tq(r){return r%2===0?r:r+1}function Hg(r,t,e){let n=r[t];r[t]=r[e],r[e]=n}function eq(r){let t=0;for(let e=0;e<r.length;e++)t+=r[e];return t}function rq(r,t){let e=Math.random();return t*e+(1-e)*r}function nq(r,t){let e=0;for(let n=0;n<r.length;n++){let o=Number(r[n])-Number(t[n]);e+=o*o}return e}function _(r,t){if(!r)throw new Error(typeof t=="string"?t:t())}function Re(r,t,e=""){_(Mn(r,t),()=>e+` Shapes ${r} and ${t} must match`)}function eo(r){_(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Qt(r){if(r.length===0)return 1;let t=r[0];for(let e=1;e<r.length;e++)t*=r[e];return t}function oq(r){return r.length===0}function Mn(r,t){if(r===t)return!0;if(r==null||t==null||r.length!==t.length)return!1;for(let e=0;e<r.length;e++)if(r[e]!==t[e])return!1;return!0}function _a(r){return r%1===0}function sq(r){if(Math.tanh!=null)return Math.tanh(r);if(r===1/0)return 1;if(r===-1/0)return-1;{let t=Math.exp(2*r);return(t-1)/(t+1)}}function iq(r){let t=Math.ceil(Math.sqrt(r));return[t,Math.ceil(r/t)]}function aq(r){let t=new Uint32Array(r);for(let e=0;e<r;++e)t[e]=e;return e_(t),t}function rc(r,t){return t<=r.length?r:r+" ".repeat(t-r.length)}function lq(r,t=o=>0,e,n){return new Promise((o,s)=>{let i=0,a=()=>{if(r()){o();return}i++;let u=t(i);if(e!=null&&i>=e){s();return}n!=null?n(a,u):setTimeout(a,u)};a()})}function uq(r,t){let e=1,n=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)e*=r[s];else if(r[s]===-1){if(n!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${n} and dim ${s}`);n=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(n===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${r}`);return r}if(e===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=r.slice();return o[n]=t/e,o}function mr(r,t){let e=t.length;return r=r==null?t.map((n,o)=>o):[].concat(r),_(r.every(n=>n>=-e&&n<e),()=>`All values in axis param must be in range [-${e}, ${e}) but got axis ${r}`),_(r.every(n=>_a(n)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(n=>n<0?e+n:n)}function ZS(r,t){let e=[],n=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:mr(t,r).sort(),i=0;for(let a=0;a<r.length;++a){if(s!=null){if(s[i]===a&&r[a]!==1)throw new Error(`Can't squeeze axis ${a} since its dim '${r[a]}' is not 1`);(s[i]==null||s[i]>a)&&r[a]===1&&(e.push(r[a]),n.push(a)),s[i]<=a&&i++}r[a]!==1&&(e.push(r[a]),n.push(a))}return{newShape:e,keptDims:n}}function JS(r,t){return qg(r,t)}function qg(r,t){let e=null;if(r==null||r==="float32")e=new Float32Array(t);else if(r==="int32")e=new Int32Array(t);else if(r==="bool")e=new Uint8Array(t);else if(r==="string")e=new Array(t);else throw new Error(`Unknown data type ${r}`);return e}function QS(r,t){for(let e=0;e<r.length;e++){let n=r[e];if(isNaN(n)||!isFinite(n))throw Error(`A tensor of type ${t} being uploaded contains ${n}.`)}}function t0(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function cq(r,t){return!(t==="complex64"||t==="float32"&&r!=="complex64"||t==="int32"&&r!=="float32"&&r!=="complex64"||t==="bool"&&r==="bool")}function Dp(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function e0(r){if(r==null)return 0;let t=0;return r.forEach(e=>t+=e.length),t}function Wo(r){return typeof r=="string"||r instanceof String}function r_(r){return typeof r=="boolean"}function n_(r){return typeof r=="number"}function jl(r){return Array.isArray(r)?jl(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array||r instanceof Uint8ClampedArray?"int32":n_(r)?"float32":Wo(r)?"string":r_(r)?"bool":"float32"}function Ni(r){return!!(r&&r.constructor&&r.call&&r.apply)}function $p(r,t){for(let e=t;e<r;++e)if(r%e===0)return e;return r}function ki(r){let t=r.length;if(t<2)return[];let e=new Array(t-1);e[t-2]=r[t-1];for(let n=t-3;n>=0;--n)e[n]=e[n+1]*r[n+1];return e}function o_(r,t,e,n=!1){let o=new Array;if(t.length===1){let s=t[0]*(n?2:1);for(let i=0;i<s;i++)o[i]=e[r+i]}else{let s=t[0],i=t.slice(1),a=i.reduce((u,l)=>u*l)*(n?2:1);for(let u=0;u<s;u++)o[u]=o_(r+u*a,i,e,n)}return o}function ec(r,t,e=!1){if(r.length===0)return t[0];let n=r.reduce((o,s)=>o*s)*(e?2:1);if(n===0)return[];if(n!==t.length)throw new Error(`[${r}] does not match the input size ${t.length}${e?" for a complex tensor":""}.`);return o_(0,r,t,e)}function pq(r,t){if(Array.isArray(r))return r;if(t==="float32")return r instanceof Float32Array?r:new Float32Array(r);if(t==="int32")return r instanceof Int32Array?r:new Int32Array(r);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(r));throw new Error(`Unknown dtype ${t}`)}function Qd(r,t){let e=Rp(r,t);for(let n=0;n<e.length;n++)e[n]=1;return e}function Rp(r,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${t}`)}function mq(r,t){let e=r.reduce((n,o)=>n*o,1);if(t==null||t==="float32")return ec(r,new Float32Array(e));if(t==="int32")return ec(r,new Int32Array(e));if(t==="bool")return ec(r,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function Me(r){r.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function fq(r,t,e){if(t===0)return 0;if(t===1)return r[0];let n=r[r.length-1];for(let o=0;o<r.length-1;++o)n+=e[o]*r[o];return n}function dq(r,t,e){if(t===0)return[];if(t===1)return[r];let n=new Array(t);for(let o=0;o<n.length-1;++o)n[o]=Math.floor(r/e[o]),r-=n[o]*e[o];return n[n.length-1]=r,n}function nc(r){return r&&r.then&&typeof r.then=="function"}var s_="tfjsflags",th=class{constructor(t){this.global=t,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=gq,this.populateURLFlags()}setPlatform(t,e){this.platform!=null&&(L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`)),this.platformName=t,this.platform=e}registerFlag(t,e,n){if(this.flagRegistry[t]={evaluationFn:e,setHook:n},this.urlFlags[t]!=null){let o=this.urlFlags[t];L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(`Setting feature override from URL ${t}: ${o}.`),this.set(t,o)}}async getAsync(t){return t in this.flags?this.flags[t]:(this.flags[t]=await this.evaluateFlag(t),this.flags[t])}get(t){if(t in this.flags)return this.flags[t];let e=this.evaluateFlag(t);if(nc(e))throw new Error(`Flag ${t} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[t]=e,this.flags[t]}getNumber(t){return this.get(t)}getBool(t){return this.get(t)}getFlags(){return this.flags}get features(){return this.flags}set(t,e){if(this.flagRegistry[t]==null)throw new Error(`Cannot set flag ${t} as it has not been registered.`);this.flags[t]=e,this.flagRegistry[t].setHook!=null&&this.flagRegistry[t].setHook(e)}evaluateFlag(t){if(this.flagRegistry[t]==null)throw new Error(`Cannot evaluate flag '${t}': no evaluation function found.`);return this.flagRegistry[t].evaluationFn()}setFlags(t){this.flags=Object.assign({},t)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let t=this.getQueryParams(this.global.location.search);s_ in t&&t[s_].split(",").forEach(n=>{let[o,s]=n.split(":");this.urlFlags[o]=yq(o,s)})}};function gq(r){let t={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...n)=>(xq(t,n[0],n[1]),n.join("="))),t}function xq(r,t,e){r[decodeURIComponent(t)]=decodeURIComponent(e||"")}function yq(r,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${r}.`)}function L(){return r0}var r0=null;function i_(r){r0=r}var n0;function o0(){if(n0==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");n0=r}return n0}function bq(){let r=o0();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function eh(r,t){let e=bq();if(e.has(r))return e.get(r);{let n=t();return e.set(r,n),e.get(r)}}var Ti="Abs",Uo="Acos",Ho="Acosh",ro="Add",qo="AddN",Ea="All",Aa="Any",_i="ArgMax",Ei="ArgMin",Ko="Asin",jo="Asinh",Xo="Atan",Yo="Atanh",Zo="Atan2",Jo="AvgPool",Fp="AvgPoolGrad",Ai="AvgPool3D",Xl="AvgPool3DGrad",Qo="BatchMatMul",Di="BatchToSpaceND",Da="Bincount",a_="BroadcastTo",Yl="BroadcastArgs",fo="Cast",ts="Ceil",ho="ClipByValue",Op="Complex",Zl="ComplexAbs",$i="Concat",es="Conv2D",Pp="Conv2DBackpropFilter",rs="Conv2DBackpropInput",ns="Conv3D",$a="Conv3DBackpropFilterV2",Ra="Conv3DBackpropInputV2",os="Cos",ss="Cosh",Fa="Cumprod",is="Cumsum",Oa="CropAndResize",Jl="DenseBincount",Pa="DepthToSpace",as="DepthwiseConv2dNative",Mp="DepthwiseConv2dNativeBackpropFilter",Lp="DepthwiseConv2dNativeBackpropInput",Ql="Diag",ls="Dilation2D",tu="Dilation2DBackpropInput",eu="Dilation2DBackpropFilter",us="RealDiv",zp="Einsum",cs="Elu",Ma="EluGrad",La="Erf",za="Equal",ps="Exp",Ri="ExpandDims",ms="Expm1",Bp="FFT",ru="Fill",Ba="FlipLeftRight",fs="Floor",ds="FloorDiv",hs="FusedBatchNorm",Fi="GatherV2",Va="GatherNd",Ga="Greater",gs="GreaterEqual",go="Identity",Vp="IFFT",Gp="Imag",xs="IsFinite",ys="IsInf",bs="IsNan",ws="LeakyRelu",Wa="Less",Ua="LessEqual",Ha="LinSpace",Is="Log",Cs="Log1p",qa="LogicalAnd",Ka="LogicalNot",ja="LogicalOr",l_="LogicalXor",u_="LogSoftmax",Ppt="LowerBound",vs="LRN",Xa="LRNGrad",Mpt="MatrixBandPart",Ss="Max",Ns="Maximum",ks="MaxPool",Wp="MaxPoolGrad",Oi="MaxPool3D",nu="MaxPool3DGrad",Up="MaxPoolWithArgmax",Ts="Mean",_s="Min",Es="Minimum",As="MirrorPad",Ya="Mod",Za="Multinomial",Ds="Multiply",Pi="Neg",Ja="NotEqual",Qa="NonMaxSuppressionV3",tl="NonMaxSuppressionV4",el="NonMaxSuppressionV5",Mi="OnesLike",$s="OneHot",Li="Pack",Rs="PadV2",Lpt="Pool",Fs="Pow",Os="Prelu",Ps="Prod",Hp="RaggedGather",qp="RaggedRange",Kp="RaggedTensorToTensor",ou="Range",jp="Real",Ms="Reciprocal",Ls="Relu",zi="Reshape",zs="ResizeNearestNeighbor",rl="ResizeNearestNeighborGrad",Bs="ResizeBilinear",nl="ResizeBilinearGrad",Vs="Relu6",Gs="Reverse",Ws="Round",Us="Rsqrt",ol="ScatterNd",sl="TensorScatterUpdate",il="SearchSorted",Bi="Select",Hs="Selu",Vi="Slice",qs="Sin",al="Sinh",Ks="Sign",js="Sigmoid",Xs="Softplus",Ys="Sqrt",Zs="Sum",Gi="SpaceToBatchND",Wi="SplitV",Js="Softmax",su="SparseFillEmptyRows",ll="SparseReshape",iu="SparseSegmentMean",au="SparseSegmentSum",ul="SparseToDense",Qs="SquaredDifference",lu="Square",oc="StaticRegexReplace",cl="StridedSlice",uu="StringNGrams",cu="StringSplit",pu="StringToHashBucketFast",ti="Sub",ei="Tan",ri="Tanh",no="Tile",pl="TopK",ml="Transform",oo="Transpose",mu="Unique",Ui="Unpack",fu="UnsortedSegmentSum",zpt="UpperBound",Hi="ZerosLike",xo="Step",rh="FromPixels",fl="RotateWithOffset",qi="_FusedMatMul",Ki="FusedConv2D",ji="FusedDepthwiseConv2D";function Xi(...r){L().getBool("IS_TEST")||L().getBool("PROD")||console.warn(...r)}function wq(...r){L().getBool("IS_TEST")||L().getBool("PROD")||console.log(...r)}var Xp=eh("kernelRegistry",()=>new Map),nh=eh("gradRegistry",()=>new Map);function oh(r,t){let e=i0(r,t);return Xp.get(e)}function s0(r){return nh.get(r)}function Kg(r){let t=Xp.entries(),e=[];for(;;){let{done:n,value:o}=t.next();if(n)break;let[s,i]=o,[a]=s.split("_");a===r&&e.push(i)}return e}function sc(r){let{kernelName:t,backendName:e}=r,n=i0(t,e);Xp.has(n)&&Xi(`The kernel '${t}' for backend '${e}' is already registered`),Xp.set(n,r)}function p_(r){let{kernelName:t}=r;nh.has(t)&&L().getBool("DEBUG")&&Xi(`Overriding the gradient for '${t}'`),nh.set(t,r)}function Upt(r,t){let e=i0(r,t);if(!Xp.has(e))throw new Error(`The kernel '${r}' for backend '${t}' is not registered`);Xp.delete(e)}function Hpt(r){if(!nh.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);nh.delete(r)}function qpt(r,t){Kg(r).forEach(n=>{let o=Object.assign({},n,{backendName:t});sc(o)})}function i0(r,t){return`${t}_${r}`}var y={};Kt(y,{arraysEqual:()=>Mn,assert:()=>_,assertNonNegativeIntegerDimensions:()=>Me,assertNonNull:()=>eo,assertShapesMatch:()=>Re,bytesFromStringArray:()=>e0,bytesPerElement:()=>Dp,checkConversionForErrors:()=>QS,clamp:()=>Ap,computeStrides:()=>ki,convertBackendValuesAndArrayBuffer:()=>pq,createScalarValue:()=>Tq,createShuffledIndices:()=>aq,decodeString:()=>Qp,distSquared:()=>nq,encodeString:()=>hu,fetch:()=>Eq,fingerPrint64:()=>kq,flatten:()=>oi,getArrayFromDType:()=>qg,getTypedArrayFromDType:()=>JS,hasEncodingLoss:()=>cq,hexToLong:()=>sh,indexToLoc:()=>dq,inferDtype:()=>jl,inferFromImplicitShape:()=>uq,isBoolean:()=>r_,isFunction:()=>Ni,isInt:()=>_a,isNumber:()=>n_,isPromise:()=>nc,isScalarShape:()=>oq,isString:()=>Wo,isTypedArray:()=>fr,isValidDtype:()=>t0,locToIndex:()=>fq,makeOnesTypedArray:()=>Qd,makeZerosNestedTypedArray:()=>mq,makeZerosTypedArray:()=>Rp,nearestDivisor:()=>$p,nearestLargerEven:()=>tq,now:()=>cc,parseAxisParam:()=>mr,randUniform:()=>rq,repeatedTry:()=>lq,rightPad:()=>rc,shuffle:()=>e_,shuffleCombo:()=>QH,sizeFromShape:()=>Qt,sizeToSquarishShape:()=>iq,squeezeShape:()=>ZS,sum:()=>eq,swap:()=>Hg,tanh:()=>sq,toNestedArray:()=>ec,toTypedArray:()=>Jp});var c0=Kl(C_());var uc=c0.default||c0;function sh(r){return uc.fromString(r,!0,16)}var S_=sh("c3a5c85c97cb3127"),lc=sh("b492b66fbe98f273"),sn=sh("9ae16a3b2f90404f");function u0(r){return r.xor(r.shru(47))}function N_(r,t,e){let n=r.slice(t,t+e);return uc.fromBytes(Array.from(n),!0,!0)}function Le(r,t){return N_(r,t,8)}function v_(r,t){return N_(r,t,4)}function Ar(r,t){return t===0?r:r.shru(t).or(r.shl(64-t))}function du(r,t,e=sh("9ddfea08eb382d69")){let n=r.xor(t).mul(e);n=n.xor(n.shru(47));let o=t.xor(n).mul(e);return o=o.xor(o.shru(47)),o=o.mul(e),o}function Cq(r,t,e,n,o,s){o=o.add(r),s=Ar(s.add(o).add(n),21);let i=o;return o=o.add(t),o=o.add(e),s=s.add(Ar(o,44)),[o.add(n),s.add(i)]}function Xg(r,t,e,n){return Cq(Le(r,t),Le(r,t+8),Le(r,t+16),Le(r,t+24),e,n)}function vq(r,t=r.length){if(t>=8){let e=sn.add(t*2),n=Le(r,0).add(sn),o=Le(r,t-8),s=Ar(o,37).mul(e).add(n),i=Ar(n,25).add(o).mul(e);return du(s,i,e)}if(t>=4){let e=sn.add(t*2),n=v_(r,0);return du(n.shl(3).add(t),v_(r,t-4),e)}if(t>0){let e=r[0],n=r[t>>1],o=r[t-1],s=e+(n<<8),i=t+(o<<2);return u0(sn.mul(s).xor(S_.mul(i))).mul(sn)}return sn}function Sq(r,t=r.length){let e=sn.add(t*2),n=Le(r,0).mul(lc),o=Le(r,8),s=Le(r,t-8).mul(e),i=Le(r,t-16).mul(sn);return du(Ar(n.add(o),43).add(Ar(s,30)).add(i),n.add(Ar(o.add(sn),18)).add(s),e)}function Nq(r,t=r.length){let e=sn.add(t*2),n=Le(r,0).mul(sn),o=Le(r,8),s=Le(r,t-8).mul(e),i=Le(r,t-16).mul(sn),a=Ar(n.add(o),43).add(Ar(s,30)).add(i),u=du(a,n.add(Ar(o.add(sn),18)).add(s),e),l=Le(r,16).mul(e),c=Le(r,24),p=a.add(Le(r,t-32)).mul(e),m=u.add(Le(r,t-24)).mul(e);return du(Ar(l.add(c),43).add(Ar(p,30)).add(m),l.add(Ar(c.add(n),18)).add(p),e)}function kq(r,t=r.length){let e=uc.fromNumber(81,!0);if(t<=32)return t<=16?vq(r,t):Sq(r,t);if(t<=64)return Nq(r,t);let n=e,o=e.mul(lc).add(113),s=u0(o.mul(sn).add(113)).mul(sn),i=[uc.UZERO,uc.UZERO],a=[uc.UZERO,uc.UZERO];n=n.mul(sn).add(Le(r,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do n=Ar(n.add(o).add(i[0]).add(Le(r,u+8)),37).mul(lc),o=Ar(o.add(i[1]).add(Le(r,u+48)),42).mul(lc),n=n.xor(a[1]),o=o.add(i[0]).add(Le(r,u+40)),s=Ar(s.add(a[0]),33).mul(lc),i=Xg(r,u,i[1].mul(lc),n.add(a[0])),a=Xg(r,u+32,s.add(a[1]),o.add(Le(r,u+16))),[s,n]=[n,s],u+=64;while(u!==l);let p=lc.add(s.and(255).shl(1));return u=c,a[0]=a[0].add(t-1&63),i[0]=i[0].add(a[0]),a[0]=a[0].add(i[0]),n=Ar(n.add(o).add(i[0]).add(Le(r,u+8)),37).mul(p),o=Ar(o.add(i[1]).add(Le(r,u+48)),42).mul(p),n=n.xor(a[1].mul(9)),o=o.add(i[0].mul(9).add(Le(r,u+40))),s=Ar(s.add(a[0]),33).mul(p),i=Xg(r,u,i[1].mul(p),n.add(a[0])),a=Xg(r,u+32,s.add(a[1]),o.add(Le(r,u+16))),[s,n]=[n,s],du(du(i[0],a[0],p).add(u0(o).mul(S_)).add(s),du(i[1],a[1],p).add(n),p)}function Tq(r,t){return t==="string"?hu(r):Jp([r],t)}function _q(r,t){return r instanceof Float32Array&&t==="float32"||r instanceof Int32Array&&t==="int32"||r instanceof Uint8Array&&t==="bool"}function Jp(r,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=oi(r)),L().getBool("DEBUG")&&QS(r,t),_q(r,t))return r;if(t==null||t==="float32"||t==="complex64")return new Float32Array(r);if(t==="int32")return new Int32Array(r);if(t==="bool"){let e=new Uint8Array(r.length);for(let n=0;n<e.length;++n)Math.round(r[n])!==0&&(e[n]=1);return e}else throw new Error(`Unknown data type ${t}`)}function cc(){return L().platform.now()}function Eq(r,t){return L().platform.fetch(r,t)}function hu(r,t="utf-8"){return t=t||"utf-8",L().platform.encode(r,t)}function Qp(r,t="utf-8"){return t=t||"utf-8",L().platform.decode(r,t)}function fr(r){return L().platform.isTypedArray(r)}function oi(r,t=[],e=!1){if(t==null&&(t=[]),typeof r=="boolean"||typeof r=="number"||typeof r=="string"||nc(r)||r==null||fr(r)&&e)t.push(r);else if(Array.isArray(r)||fr(r))for(let n=0;n<r.length;++n)oi(r[n],t,e);else{let n=-1;for(let o of Object.keys(r))/^([1-9]+[0-9]*|0)$/.test(o)&&(n=Math.max(n,Number(o)));for(let o=0;o<=n;o++)oi(r[o],t,e)}return t}var Yg=class{constructor(t,e){this.backendTimer=t,this.logger=e,e==null&&(this.logger=new p0)}profileKernel(t,e,n){let o,s=()=>{o=n()},i,a=cc();if(this.backendTimer.timerAvailable())i=this.backendTimer.time(s);else{s();for(let l of o)l.dataSync();i=Promise.resolve({kernelMs:cc()-a})}if(L().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<o.length;l++){let c=o[l];c.data().then(p=>{Aq(p,c.dtype,t)})}return{kernelName:t,outputs:o,inputs:e,timeMs:i.then(l=>l.kernelMs),extraInfo:i.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(t){let{kernelName:e,outputs:n,timeMs:o,inputs:s,extraInfo:i}=t;n.forEach(a=>{Promise.all([a.data(),o,i]).then(u=>{this.logger.logKernelProfile(e,a,u[0],u[1],s,u[2])})})}};function Aq(r,t,e){if(t!=="float32")return!1;for(let n=0;n<r.length;n++){let o=r[n];if(isNaN(o)||!isFinite(o))return console.warn(`Found ${o} in the result of '${e}'`),!0}return!1}var p0=class{logKernelProfile(t,e,n,o,s,i){let a=typeof o=="number"?rc(`${o}ms`,9):o.error,u=rc(t,25),l=e.rank,c=e.size,p=rc(e.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||e.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${u} %c${a} %c${l}D ${p} %c${c} %c${m} %c${i}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function k_(r,t,e){let n={},o={};for(let u=0;u<t.length;u++)n[t[u].id]=!0;for(let u=0;u<r.length;u++){let l=r[u],c=l.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<t.length;d++)if(n[m.id]){l.outputs.forEach(h=>n[h.id]=!0),f=!0,o[l.id]=!0;break}if(f)break}}let s={};s[e.id]=!0;let i={};for(let u=r.length-1;u>=0;u--){let l=r[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let m in c)s[c[m].id]=!0,i[l.id]=!0;break}}let a=[];for(let u=0;u<r.length;u++){let l=r[u];if(o[l.id]&&i[l.id]){let c={};for(let m in l.inputs){let f=l.inputs[m];n[f.id]&&(c[m]=f)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,a.push(p)}}return a}function T_(r,t,e,n){for(let o=t.length-1;o>=0;o--){let s=t[o],i=[];if(s.outputs.forEach(u=>{let l=r[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let a=s.gradient(i);for(let u in s.inputs){if(!(u in a))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(a)}.`);let l=e(()=>a[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=s.inputs[u];if(!Mn(l.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=l;else{let p=r[c.id];r[c.id]=n(p,l),p.dispose()}}}}var __=20,ih=3,m0=7;function E_(r,t,e,n){let o=ki(t),s=Dq(r,t,e,o),i=t.length,a=Zg(r,t,e,o,s),u=["Tensor"];return n&&(u.push(` dtype: ${e}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(a.map(l=>" "+l).join(`
`)),u.join(`
`)}function Dq(r,t,e,n){let o=Qt(t),s=n[n.length-1],i=new Array(s).fill(0),a=t.length,u=e==="complex64"?lh(r):r;if(a>1)for(let l=0;l<o/s;l++){let c=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],ah(u[c+p],0,e).length)}return i}function ah(r,t,e){let n;return Array.isArray(r)?n=`${parseFloat(r[0].toFixed(m0))} + ${parseFloat(r[1].toFixed(m0))}j`:Wo(r)?n=`'${r}'`:e==="bool"?n=A_(r):n=parseFloat(r.toFixed(m0)).toString(),rc(n,t)}function A_(r){return r===0?"false":"true"}function Zg(r,t,e,n,o,s=!0){let i=e==="complex64"?2:1,a=t[0],u=t.length;if(u===0){if(e==="complex64"){let h=lh(r);return[ah(h[0],0,e)]}return e==="bool"?[A_(r[0])]:[r[0].toString()]}if(u===1){if(a>__){let g=ih*i,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((a-ih)*i,a*i));return e==="complex64"&&(x=lh(x),b=lh(b)),["["+x.map((w,I)=>ah(w,o[I],e)).join(", ")+", ..., "+b.map((w,I)=>ah(w,o[a-ih+I],e)).join(", ")+"]"]}return["["+(e==="complex64"?lh(r):Array.from(r)).map((g,x)=>ah(g,o[x],e)).join(", ")+"]"]}let l=t.slice(1),c=n.slice(1),p=n[0]*i,m=[];if(a>__){for(let h=0;h<ih;h++){let g=h*p,x=g+p;m.push(...Zg(r.slice(g,x),l,e,c,o,!1))}m.push("...");for(let h=a-ih;h<a;h++){let g=h*p,x=g+p;m.push(...Zg(r.slice(g,x),l,e,c,o,h===a-1))}}else for(let h=0;h<a;h++){let g=h*p,x=g+p;m.push(...Zg(r.slice(g,x),l,e,c,o,h===a-1))}let f=u===2?",":"";m[0]="["+(a>0?m[0]+f:"");for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<u;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function lh(r){let t=[];for(let e=0;e<r.length;e+=2)t.push([r[e],r[e+1]]);return t}var le=class{constructor(t,e,n){if(this.dtype=e,this.shape=t.slice(),this.size=Qt(t),n!=null){let o=n.length;_(o===this.size,()=>`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||qg(e,this.size),this.strides=ki(t)}set(t,...e){e.length===0&&(e=[0]),_(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let n=this.locToIndex(e);this.values[n]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let n=t[t.length-1];for(let o=0;o<t.length-1;++o)n+=this.strides[o]*t[o];return this.values[n]}locToIndex(t){if(this.rank===0)return 0;if(this.rank===1)return t[0];let e=t[t.length-1];for(let n=0;n<t.length-1;++n)e+=this.strides[n]*t[n];return e}indexToLoc(t){if(this.rank===0)return[];if(this.rank===1)return[t];let e=new Array(this.shape.length);for(let n=0;n<e.length-1;++n)e[n]=Math.floor(t/this.strides[n]),t-=e[n]*this.strides[n];return e[e.length-1]=t,e}get rank(){return this.shape.length}toTensor(){return si().makeTensor(this.values,this.shape,this.dtype)}},si=null,tm=null,$q=null;function D_(r){si=r}function $_(r){tm=r}function R_(r){$q=r}var Pt=class{constructor(t,e,n,o){this.kept=!1,this.isDisposedInternal=!1,this.shape=t.slice(),this.dtype=e||"float32",this.size=Qt(t),this.strides=ki(t),this.dataId=n,this.id=o,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let t=await this.data();return tm.buffer(this.shape,this.dtype,t)}bufferSync(){return tm.buffer(this.shape,this.dtype,this.dataSync())}async array(){let t=await this.data();return ec(this.shape,t,this.dtype==="complex64")}arraySync(){return ec(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let t=si().read(this.dataId);if(this.dtype==="string"){let e=await t;try{return e.map(n=>Qp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataToGPU(t){return this.throwIfDisposed(),si().readToGPU(this.dataId,t)}dataSync(){this.throwIfDisposed();let t=si().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>Qp(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await si().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){this.isDisposed||(si().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return tm.print(this,t)}clone(){return this.throwIfDisposed(),tm.clone(this)}toString(t=!1){let e=this.dataSync();return E_(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),tm.cast(this,t)}variable(t=!0,e,n){return this.throwIfDisposed(),si().makeVariable(this,t,e,n)}};Object.defineProperty(Pt,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function O(){return eh("Tensor",()=>Pt)}O();var dl=class extends Pt{constructor(t,e,n,o){super(t.shape,t.dtype,t.dataId,o),this.trainable=e,this.name=n}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!Mn(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);si().disposeTensor(this),this.dataId=t.dataId,si().incRef(this,null)}dispose(){si().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(dl,Symbol.hasInstance,{value:r=>r instanceof Pt&&r.assign!=null&&r.assign instanceof Function});var Io={};Kt(Io,{assertTypesMatch:()=>y0,getTensorsInContainer:()=>uh,isTensorInList:()=>Fq,makeTypesMatch:()=>jt});var f0;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(f0||(f0={}));var d0;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(d0||(d0={}));var h0;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(h0||(h0={}));var g0;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(g0||(g0={}));var x0;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(x0||(x0={}));var Rq={float32:g0,int32:d0,bool:h0,complex64:x0};function lr(r,t){if(r==="string"||t==="string"){if(r==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${r} with ${t}`)}return Rq[r][t]}function pc(r){return lr(r,"int32")}function Jg(r){return r!=null&&typeof r=="object"&&"texture"in r&&r.texture instanceof WebGLTexture}function Qg(r){return typeof GPUBuffer!="undefined"&&r!=null&&typeof r=="object"&&"buffer"in r&&r.buffer instanceof GPUBuffer}function jt(r,t){if(r.dtype===t.dtype)return[r,t];let e=lr(r.dtype,t.dtype);return[r.cast(e),t.cast(e)]}function y0(r,t){_(r.dtype===t.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${t.dtype}) input must match`)}function Fq(r,t){return t.some(e=>e.id===r.id)}function uh(r){let t=[];return F_(r,t,new Set),t}function F_(r,t,e){if(r==null)return;if(r instanceof Pt){t.push(r);return}if(!Oq(r))return;let n=r;for(let o in n){let s=n[o];e.has(s)||(e.add(s),F_(s,t,e))}}function Oq(r){return Array.isArray(r)||typeof r=="object"}function b0(r){return r.kernelName!=null}var tx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(t=>t.name)))}}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}},gu=class{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new tx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:t,asyncInit:e}=this.initializeBackendsAndReturnBest();if(e)throw new Error(`The highest priority backend '${t}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(t)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(t){if(!(t in this.registry))if(t in this.registryFactory){let{asyncInit:e}=this.initializeBackend(t);if(e)return null}else return null;return this.registry[t]}findBackendFactory(t){return t in this.registryFactory?this.registryFactory[t].factory:null}registerBackend(t,e,n=1){return t in this.registryFactory?(Xi(`${t} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[t]={factory:e,priority:n},!0)}async setBackend(t){if(this.registryFactory[t]==null)throw new Error(`Backend name '${t}' not found in registry`);if(this.backendName=t,this.registry[t]==null){this.backendInstance=null;let{success:e,asyncInit:n}=this.initializeBackend(t);if(!(n?await e:e))return!1}return this.backendInstance=this.registry[t],this.setupRegisteredKernels(),this.profiler=new Yg(this.backendInstance),!0}setupRegisteredKernels(){Kg(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){Kg(t).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let n=e.factory();if(n&&!(n instanceof Go)&&typeof n.then=="function"){let o=++this.pendingBackendInitId,s=n.then(i=>o<this.pendingBackendInitId?!1:(this.registry[t]=i,this.pendingBackendInit=null,!0)).catch(i=>(o<this.pendingBackendInitId||(this.pendingBackendInit=null,Xi(`Initialization of backend ${t} failed`),Xi(i.stack||i.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[t]=n,{success:!0,asyncInit:!1}}catch(n){return Xi(`Initialization of backend ${t} failed`),Xi(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(t){if(!(t in this.registryFactory))throw new Error(`${t} backend not found in registry`);this.backendName===t&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,t in this.registry&&(this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t]),delete this.registryFactory[t],this.backendName===t&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((t,e)=>this.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;e<t.length;e++){let n=t[e],{success:o,asyncInit:s}=this.initializeBackend(n);if(s||o)return{name:n,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(t,e){let n=this.state.tensorInfo.get(e),o=n.backend,s=this.readSync(e),i=o.refCount(e);o.disposeData(e,!0),n.backend=t,t.move(e,s,n.shape,n.dtype,i),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(t,e){let n=null;if(e==null){if(typeof t!="function")throw new Error("Please provide a function to tidy()");e=t}else{if(typeof t!="string"&&!(t instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof e!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=t}let o;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,n){t();try{let o=n();return e(),o}catch(o){throw e(),o}}nextTensorId(){return gu.nextTensorId++}nextVariableId(){return gu.nextVariableId++}clone(t){let e=T.runKernel(go,{x:t}),n={x:t},o=i=>({x:()=>{let a="float32",u={x:i},l={dtype:a};return T.runKernel(fo,u,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[e],o,s,{}),e}runKernel(t,e,n){if(this.backendName==null&&this.backend,!(oh(t,this.backendName)!=null))throw new Error(`Kernel '${t}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:t,inputs:e,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,n){let o=this.backend.numDataIds(),s=0;n.forEach(u=>{s+=u.dtype==="complex64"?3:1});let i=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],a=o-e-s-i;if(a>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${a} data ids) after running '${t}'`)}runKernelFunc(t){let e,n=[],o=this.isTapeOn(),s=this.state.numBytes,i=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let a;this.backendName==null&&this.backend;let u,l=b0(t)?t.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(b0(t)){let{kernelName:d,inputs:h,attrs:g}=t;this.backendName==null&&this.backend;let x=oh(d,this.backendName);_(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),a=()=>{let b=this.backend.numDataIds();u=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(u)?u:[u];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let I=w.map(N=>N.rank!=null?N:this.makeTensorFromTensorInfo(N));if(o){let N=this.getTensorsForGradient(d,h,I);n=this.saveTensorsForBackwardMode(N)}return I}}else{let{forwardFunc:d}=t,h=g=>{o&&(n=g.map(x=>this.keep(this.clone(x))))};a=()=>{let g=this.backend.numDataIds();u=this.tidy(()=>d(this.backend,h));let x=Array.isArray(u)?u:[u];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,g,x),x}}let{inputs:c,attrs:p}=t,m=b0(t)?null:t.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?e=a():(f=this.profiler.profileKernel(l,c,()=>a()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),e=f.outputs)}),o&&this.addTapeNode(l,c,e,m,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-i,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:e.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(u)?e:e[0]}saveTensorsForBackwardMode(t){return t.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(t,e,n){let o=s0(t);if(o!=null){let s=o.inputsToSave||[],i=o.outputsToSave||[],a;o.saveAllInputs?(_(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),a=Object.keys(e).map(l=>e[l])):a=s.map(l=>e[l]);let u=n.filter((l,c)=>i[c]);return a.concat(u)}return[]}makeTensor(t,e,n,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",o=o||this.backend;let s=t;n==="string"&&Wo(t[0])&&(s=t.map(u=>hu(u)));let i=o.write(s,e,n),a=new Pt(e,n,i,this.nextTensorId());if(this.trackTensor(a,o),n==="string"){let u=this.state.tensorInfo.get(i),l=e0(s);this.state.numBytes+=l-u.bytes,u.bytes=l}return a}makeTensorFromDataId(t,e,n,o){n=n||"float32";let s={dataId:t,shape:e,dtype:n};return this.makeTensorFromTensorInfo(s,o)}makeTensorFromTensorInfo(t,e){let{dataId:n,shape:o,dtype:s}=t,i=new Pt(o,s,n,this.nextTensorId());return this.trackTensor(i,e),i}makeVariable(t,e=!0,n,o){n=n||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new dl(t,e,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(t,e){this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++;let n=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(n=t.size*Dp(t.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(t.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:n})),t instanceof dl||this.track(t)}incRef(t,e){this.trackTensor(t,e),this.backend.incRef(t.dataId)}removeDataId(t,e){this.state.tensorInfo.has(t)&&this.state.tensorInfo.get(t).backend===e&&(this.state.tensorInfo.delete(t),this.state.numDataBuffers--)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;let e=this.state.tensorInfo.get(t.dataId);if(this.state.numTensors--,t.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=e.bytes),t.dtype!=="complex64"&&t.dtype!=="string"){let n=t.size*Dp(t.dtype);this.state.numBytes-=n}e.backend.disposeData(t.dataId)&&this.removeDataId(t.dataId,e.backend)}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,n,o,s,i){let a={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:n,saved:s},u=s0(t);u!=null&&(o=u.gradFunc),o!=null&&(a.gradient=l=>(l=l.map((c,p)=>{if(c==null){let m=n[p],f=Rp(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),o(l.length>1?l:l[0],s,i))),this.state.activeTape.push(a)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=uh(t),n=new Set(e.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let i=this.state.activeScope.track[s];!i.kept&&!n.has(i.id)&&i.dispose()}let o=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],e.forEach(s=>{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,n,o=!1){if(_(e.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));_(s instanceof Pt,()=>"The result y returned by f() must be a tensor.");let i=k_(this.state.activeTape,e,s);if(!o&&i.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let a={};a[s.id]=n==null?Pq(s.shape):n,T_(a,i,l=>this.tidy(l),Mq);let u=e.map(l=>a[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:u}})}customGrad(t){return _(Ni(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{_(e.every(a=>a instanceof Pt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,o={};e.forEach((a,u)=>{o[u]=a});let s=(a,u)=>(n=t(...e,u),_(n.value instanceof Pt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),_(Ni(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),i=(a,u)=>{let l=n.gradFunc(a,u),c=Array.isArray(l)?l:[l];_(c.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),_(c.every(m=>m instanceof Pt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:i,inputs:o})}}readSync(t){return this.state.tensorInfo.get(t).backend.readSync(t)}read(t){return this.state.tensorInfo.get(t).backend.read(t)}readToGPU(t,e){return this.state.tensorInfo.get(t).backend.readToGPU(t,e)}async time(t){let e=cc(),n=await this.backend.time(t);return n.wallMs=cc()-e,n}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new tx;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};gu.nextTensorId=0;gu.nextVariableId=0;function Pq(r){let t=Qd(Qt(r),"float32");return T.makeTensor(t,r,"float32")}function w0(){let r=o0();if(r._tfengine==null){let t=new th(r);r._tfengine=new gu(t)}return i_(r._tfengine.ENV),D_(()=>r._tfengine),r._tfengine}var T=w0();function Mq(r,t){let e={a:r,b:t};return T.runKernel(ro,e)}var xu={};Kt(xu,{isBrowser:()=>C0,isMobile:()=>Bq,mockIsMobile:()=>zq});function Lq(){return typeof navigator!="undefined"&&navigator!=null}var I0;function zq(r){I0=r}function Bq(r){if(I0!==void 0)return I0;if(r||Lq()){if(r||(r=navigator),r.product==="ReactNative")return!0;let t=r.userAgent||r.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let e=r;return e.userAgentData&&e.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function C0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Cn=L();Cn.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Cn.registerFlag("IS_BROWSER",()=>C0());Cn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Cn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Cn.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));Cn.registerFlag("PROD",()=>!1);Cn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Cn.getBool("DEBUG"));Cn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Cn.registerFlag("IS_TEST",()=>!1);Cn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>Cn.getBool("DEBUG"));Cn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Cn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Cn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function Wr(r,t){let e=r;if(fr(r))return t==="string"?[]:[r.length];if(Jg(r)){let o=r.channels||"RGBA";return[r.height,r.width*o.length]}else if(Qg(r))return[r.buffer.size/(t==null?4:Dp(t))];if(!Array.isArray(r))return[];let n=[];for(;Array.isArray(e)||fr(e)&&t!=="string";)n.push(e.length),e=e[0];return Array.isArray(r)&&L().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&P_(r,n,[]),n}function P_(r,t,e){if(e=e||[],!Array.isArray(r)&&!fr(r)){_(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${r.length} elements`),_(r.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${r.length} elements`);let n=t.slice(1);for(let o=0;o<r.length;++o)P_(r[o],n,e.concat(o))}function O_(r,t,e,n){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==t||r==="numeric"&&t==="string")throw new Error(`Argument '${e}' passed to '${n}' must be ${r} tensor, but got ${t} tensor`)}}function v(r,t,e,n="numeric"){if(r instanceof Pt)return O_(n,r.dtype,t,e),r;let o=jl(r);if(o!=="string"&&["bool","int32","float32"].indexOf(n)>=0&&(o=n),O_(n,o,t,e),r==null||!fr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let u=r==null?"null":r.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${u}'`)}let s=Wr(r,o);!fr(r)&&!Array.isArray(r)&&(r=[r]);let a=o!=="string"?Jp(r,o):oi(r,[],!0);return T.makeTensor(a,s,o)}function hl(r,t,e,n="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,i)=>v(s,`${t}[${i}]`,e,n))}var v0="__op";function k(r){let t=Object.keys(r);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],n=r[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+v0;let o=(...s)=>{T.startScope(e);try{let i=n(...s);return nc(i)&&console.error("Cannot return a Promise inside of tidy."),T.endScope(i),i}catch(i){throw T.endScope(null),i}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function Vq(r,t){let e=v(r,"real","complex"),n=v(t,"imag","complex");Re(e.shape,n.shape,`real and imag shapes, ${e.shape} and ${n.shape}, must match in call to tf.complex().`);let o={real:e,imag:n};return T.runKernel(Op,o)}var vn=k({complex_:Vq});function an(r,t,e,n){if(n==null)n=jl(r);else if(n==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(Qg(r)||Jg(r)){if(n!=="float32"&&n!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${n}.`);return T.backend.createTensorFromGPUData(r,t||e,n)}if(!fr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Me(t);let o=Qt(t),s=Qt(e);_(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let i=0;i<e.length;++i){let a=e[i],u=i===e.length-1?a!==Qt(t.slice(i)):!0;_(e[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!fr(r)&&!Array.isArray(r)&&(r=[r]),t=t||e,r=n!=="string"?Jp(r,n):oi(r,[],!0),T.makeTensor(r,t,n)}function or(r,t,e){let n=Wr(r,e);return an(r,t,n,e)}var ch={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var ex=4;async function L_(r,t){let e=[],n=[],o=Array.isArray(r)?r.map(i=>i.name):Object.keys(r);for(let i=0;i<o.length;++i){let a=o[i],u=Array.isArray(r)?r[i].tensor:r[a];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${a}': ${u.dtype}`);let l={name:a,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let m=await u.bytes(),f=m.reduce((g,x)=>g+x.length,0)+ex*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=ex,d.set(x,h),h+=x.length}p(d)});n.push(c)}else n.push(u.data());t!=null&&(l.group=t),e.push(l)}let s=await Promise.all(n);return{data:Gq(s),specs:e}}function rx(r,t){let e={},n,o=0;for(let s of t){let i=s.name,a=s.dtype,u=s.shape,l=Qt(u),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(a!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${a}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=ch[p.dtype],f=r.slice(o,o+l*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(a==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")n===void 0&&(n=qq()),c=n(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(a==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*m}else if(a==="string"){let p=Qt(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(o,o+ex))[0];o+=ex;let d=new Uint8Array(r.slice(o,o+f));c.push(d),o+=f}}else{let p=ch[a],m=r.slice(o,o+l*p);if(a==="float32")c=new Float32Array(m);else if(a==="int32")c=new Int32Array(m);else if(a==="bool")c=new Uint8Array(m);else if(a==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=or(f,u,"float32"),g=or(d,u,"float32");e[i]=vn(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${a}`);o+=l*p}a!=="complex64"&&(e[i]=or(c,u,a))}return e}function Gq(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let t=0,e=[];r.forEach(s=>{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let n=new Uint8Array(t),o=0;return e.forEach(s=>{n.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),n.buffer}var S0=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function M_(r){return S0?Buffer.byteLength(r):new Blob([r]).size}function z_(r){if(S0)return Buffer.from(r).toString("base64");let t=new Uint8Array(r),e="";for(let n=0,o=t.length;n<o;n++)e+=String.fromCharCode(t[n]);return btoa(e)}function B_(r){if(S0){let n=Buffer.from(r,"base64");return n.buffer.slice(n.byteOffset,n.byteOffset+n.byteLength)}let t=atob(r),e=new Uint8Array(t.length);for(let n=0;n<t.length;++n)e.set([t.charCodeAt(n)],n);return e.buffer}function em(r){if(r.length===1)return r[0];let t=0;r.forEach(o=>{t+=o.byteLength});let e=new Uint8Array(t),n=0;return r.forEach(o=>{e.set(new Uint8Array(o),n),n+=o.byteLength}),e.buffer}function N0(r){let t="/";for(r=r.trim();r.endsWith(t);)r=r.slice(0,r.length-1);let e=r.split(t);return e[e.length-1]}function nx(r,t){let e={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy,weightsManifest:t};return r.signature!=null&&(e.signature=r.signature),r.userDefinedMetadata!=null&&(e.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(e.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(e.initializerSignature=r.initializerSignature),r.trainingConfig!=null&&(e.trainingConfig=r.trainingConfig),e}function k0(r,t,e){let n={modelTopology:r.modelTopology,format:r.format,generatedBy:r.generatedBy,convertedBy:r.convertedBy};if(r.trainingConfig!=null&&(n.trainingConfig=r.trainingConfig),r.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!e)throw new Error("modelJSON has weightsManifest but weightData is null");n.weightSpecs=t,n.weightData=e}return r.signature!=null&&(n.signature=r.signature),r.userDefinedMetadata!=null&&(n.userDefinedMetadata=r.userDefinedMetadata),r.modelInitializer!=null&&(n.modelInitializer=r.modelInitializer),r.initializerSignature!=null&&(n.initializerSignature=r.initializerSignature),n}async function rm(r,t){let e,n;return r.weightsManifest!=null&&([e,n]=await t(r.weightsManifest)),k0(r,e,n)}function Yi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:M_(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:M_(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function ox(r){let t=[];for(let e of r)t.push(...e.weights);return t}function Wq(){let r=e=>{let n=e<<13,o=0;for(;!(n&8388608);)o-=8388608,n<<=1;return n&=-8388609,o+=947912704,n|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=r(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function Uq(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let t=1;t<31;t++)r[t]=t<<23;for(let t=33;t<63;t++)r[t]=2147483648+(t-32<<23);return r}function Hq(){let r=new Uint32Array(64);for(let t=0;t<64;t++)r[t]=1024;return r[0]=r[32]=0,r}function qq(){let r=Wq(),t=Uq(),e=Hq();return n=>{let o=new ArrayBuffer(4*n.length),s=new Uint32Array(o);for(let i=0;i<n.length;i++){let a=n[i],u=r[e[a>>10]+(a&1023)]+t[a>>10];s[i]=u}return new Float32Array(o)}}var ve=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return ve.instance==null&&(ve.instance=new ve),ve.instance}static registerSaveRouter(t){ve.getInstance().saveRouters.push(t)}static registerLoadRouter(t){ve.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return ve.getHandlers(t,"save")}static getLoadHandlers(t,e){return ve.getHandlers(t,"load",e)}static getHandlers(t,e,n){let o=[];return(e==="load"?ve.getInstance().loadRouters:ve.getInstance().saveRouters).forEach(i=>{let a=i(t,n);a!==null&&o.push(a)}),o}},V_=r=>ve.registerSaveRouter(r),G_=r=>ve.registerLoadRouter(r),W_=r=>ve.getSaveHandlers(r),U_=(r,t)=>ve.getLoadHandlers(r,t);var T0="tensorflowjs",_0=1,mc="models_store",yu="model_info_store";function H_(){if(!L().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,t=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function E0(r){let t=r.result;t.createObjectStore(mc,{keyPath:"modelPath"}),t.createObjectStore(yu,{keyPath:"modelPath"})}var Zi=class{constructor(t){if(this.indexedDB=H_(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((n,o)=>{let s=this.indexedDB.open(T0,_0);s.onupgradeneeded=()=>E0(s),s.onsuccess=()=>{let i=s.result;if(e==null){let a=i.transaction(mc,"readonly"),l=a.objectStore(mc).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return i.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(i.close(),o(l.error)),a.oncomplete=()=>i.close()}else{let a=Yi(e),u=i.transaction(yu,"readwrite"),l=u.objectStore(yu),c;try{c=l.put({modelPath:this.modelPath,modelArtifactsInfo:a})}catch(m){return o(m)}let p;c.onsuccess=()=>{p=i.transaction(mc,"readwrite");let m=p.objectStore(mc),f;try{f=m.put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:a})}catch(d){return o(d)}f.onsuccess=()=>n({modelArtifactsInfo:a}),f.onerror=d=>{l=u.objectStore(yu);let h=l.delete(this.modelPath);h.onsuccess=()=>(i.close(),o(f.error)),h.onerror=g=>(i.close(),o(f.error))}},c.onerror=m=>(i.close(),o(c.error)),u.oncomplete=()=>{p==null?i.close():p.oncomplete=()=>i.close()}}},s.onerror=i=>o(s.error)})}};Zi.URL_SCHEME="indexeddb://";var q_=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Zi.URL_SCHEME)?Kq(r.slice(Zi.URL_SCHEME.length)):null;ve.registerSaveRouter(q_);ve.registerLoadRouter(q_);function Kq(r){return new Zi(r)}function jq(r){return r.startsWith(Zi.URL_SCHEME)?r.slice(Zi.URL_SCHEME.length):r}var sx=class{constructor(){this.indexedDB=H_()}async listModels(){return new Promise((t,e)=>{let n=this.indexedDB.open(T0,_0);n.onupgradeneeded=()=>E0(n),n.onsuccess=()=>{let o=n.result,s=o.transaction(yu,"readonly"),a=s.objectStore(yu).getAll();a.onsuccess=()=>{let u={};for(let l of a.result)u[l.modelPath]=l.modelArtifactsInfo;t(u)},a.onerror=u=>(o.close(),e(a.error)),s.oncomplete=()=>o.close()},n.onerror=o=>e(n.error)})}async removeModel(t){return t=jq(t),new Promise((e,n)=>{let o=this.indexedDB.open(T0,_0);o.onupgradeneeded=()=>E0(o),o.onsuccess=()=>{let s=o.result,i=s.transaction(yu,"readwrite"),a=i.objectStore(yu),u=a.get(t),l;u.onsuccess=()=>{if(u.result==null)return s.close(),n(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let c=a.delete(t),p=()=>{l=s.transaction(mc,"readwrite");let f=l.objectStore(mc).delete(t);f.onsuccess=()=>e(u.result.modelArtifactsInfo),f.onerror=d=>n(u.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),n(u.error))}},u.onerror=c=>(s.close(),n(u.error)),i.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},o.onerror=s=>n(o.error)})}};var gl="/",nm="tensorflowjs_models",K_="info",Xq="model_topology",Yq="weight_specs",Zq="weight_data",Jq="model_metadata";function j_(r){return{info:[nm,r,K_].join(gl),topology:[nm,r,Xq].join(gl),weightSpecs:[nm,r,Yq].join(gl),weightData:[nm,r,Zq].join(gl),modelMetadata:[nm,r,Jq].join(gl)}}function X_(r){for(let t of Object.values(r))window.localStorage.removeItem(t)}function Qq(r){let t=r.split(gl);if(t.length<3)throw new Error(`Invalid key format: ${r}`);return t.slice(1,t.length-1).join(gl)}function tK(r){return r.startsWith(Ji.URL_SCHEME)?r.slice(Ji.URL_SCHEME.length):r}var Ji=class{constructor(t){if(!L().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=j_(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),n=JSON.stringify(t.weightSpecs),o=Yi(t);try{this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,z_(t.weightData));let s={format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,signature:t.signature!=null?t.signature:void 0,userDefinedMetadata:t.userDefinedMetadata!=null?t.userDefinedMetadata:void 0,modelInitializer:t.modelInitializer!=null?t.modelInitializer:void 0,initializerSignature:t.initializerSignature!=null?t.initializerSignature:void 0,trainingConfig:t.trainingConfig!=null?t.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:o}}catch(s){throw X_(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=n;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let a=JSON.parse(s);e.format=a.format,e.generatedBy=a.generatedBy,e.convertedBy=a.convertedBy,a.signature!=null&&(e.signature=a.signature),a.userDefinedMetadata!=null&&(e.userDefinedMetadata=a.userDefinedMetadata),a.modelInitializer!=null&&(e.modelInitializer=a.modelInitializer),a.initializerSignature!=null&&(e.initializerSignature=a.initializerSignature),a.trainingConfig!=null&&(e.trainingConfig=a.trainingConfig)}let i=this.LS.getItem(this.keys.weightData);if(i==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=B_(i),e}};Ji.URL_SCHEME="localstorage://";var Y_=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(Ji.URL_SCHEME)?eK(r.slice(Ji.URL_SCHEME.length)):null;ve.registerSaveRouter(Y_);ve.registerLoadRouter(Y_);function eK(r){return new Ji(r)}var ix=class{constructor(){_(L().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),_(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=nm+gl,n=gl+K_;for(let o=0;o<this.LS.length;++o){let s=this.LS.key(o);if(s.startsWith(e)&&s.endsWith(n)){let i=Qq(s);t[i]=JSON.parse(this.LS.getItem(s))}}return t}async removeModel(t){t=tK(t);let e=j_(t);if(this.LS.getItem(e.info)==null)throw new Error(`Cannot find model at path '${t}'`);let n=JSON.parse(this.LS.getItem(e.info));return X_(e),n}};var om="://",Dr=class{constructor(){this.managers={}}static getInstance(){return Dr.instance==null&&(Dr.instance=new Dr),Dr.instance}static registerManager(t,e){_(t!=null,()=>"scheme must not be undefined or null."),t.endsWith(om)&&(t=t.slice(0,t.indexOf(om))),_(t.length>0,()=>"scheme must not be an empty string.");let n=Dr.getInstance();_(n.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),n.managers[t]=e}static getManager(t){let e=Dr.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(Dr.getInstance().managers)}};function ax(r){if(r.indexOf(om)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Dr.getSchemes().join(",")}`);return{scheme:r.split(om)[0],path:r.split(om)[1]}}async function Z_(r,t,e=!1){_(r!==t,()=>`Old path and new path are the same: '${r}'`);let n=ve.getLoadHandlers(r);_(n.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),_(n.length<2,()=>`Copying failed because more than one (${n.length}) load handlers for source URL ${r}.`);let o=n[0],s=ve.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${n.length}) save handlers for destination URL ${t}.`);let i=s[0],a=ax(r).scheme,u=ax(r).path,l=a===ax(r).scheme,c=await o.load();e&&l&&await Dr.getManager(a).removeModel(u);let p=await i.save(c);return e&&!l&&await Dr.getManager(a).removeModel(u),p.modelArtifactsInfo}async function J_(){let r=Dr.getSchemes(),t={};for(let e of r){let n=await Dr.getManager(e).listModels();for(let o in n){let s=e+om+o;t[s]=n[o]}}return t}async function Q_(r){let t=ax(r);return Dr.getManager(t.scheme).removeModel(t.path)}async function tE(r,t){return Z_(r,t,!1)}async function eE(r,t){return Z_(r,t,!0)}var A0=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}setTimeoutCustom(t,e){if(typeof window=="undefined"||!L().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(t,e);return}this.functionRefs.push(t),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},e),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let o=this.functionRefs[n.data.index];o(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(t){return t instanceof Float32Array||t instanceof Int32Array||t instanceof Uint8Array||t instanceof Uint8ClampedArray}};if(L().get("IS_BROWSER")){L().setPlatform("browser",new A0);try{Dr.registerManager(Ji.URL_SCHEME,new ix)}catch(r){}try{Dr.registerManager(Zi.URL_SCHEME,new sx)}catch(r){}}var rK={importFetch:()=>rE()},D0;var $0=class{constructor(){this.util=nE(),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return L().global.fetch!=null?L().global.fetch(t,e):(D0==null&&(D0=rK.importFetch()),D0(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}isTypedArray(t){return this.util.types.isFloat32Array(t)||this.util.types.isInt32Array(t)||this.util.types.isUint8Array(t)||this.util.types.isUint8ClampedArray(t)}};L().get("IS_NODE")&&!L().get("IS_BROWSER")&&L().setPlatform("node",new $0);function bt(r,t="float32",e){return t=t||"float32",Me(r),new le(r,t,e)}function nK(r,t){let e=v(r,"x","cast");if(!t0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let n={x:e},o={dtype:t};return T.runKernel(fo,n,o)}var J=k({cast_:nK});function oK(r){let e={x:v(r,"x","clone","string_or_numeric")};return T.runKernel(go,e)}var ln=k({clone_:oK});function lx(r,t=!1){console.log(r.toString(t))}w0();var sK={buffer:bt,cast:J,clone:ln,print:lx};$_(sK);function Jft(){L().set("PROD",!0)}function Qft(){L().set("DEBUG",!0)}function tdt(){L().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function R0(r){L().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}R_(R0);function edt(){T.disposeVariables()}function Bn(){return T}function ph(){return T.memory()}function rdt(r){return T.profile(r)}function B(r,t){return T.tidy(r,t)}function Tt(r){uh(r).forEach(e=>e.dispose())}function $e(r){return T.keep(r)}function ndt(r){return T.time(r)}function iK(r){return T.setBackend(r)}function odt(){return T.ready()}function sdt(){return T.backendName}function idt(r){T.removeBackend(r)}function adt(r){return T.findBackend(r)}function ldt(r){return T.findBackendFactory(r)}function sm(r,t,e=1){return T.registerBackend(r,t,e)}function oE(){return T.backend}function udt(r,t){L().setPlatform(r,t)}function aK(r,t){let e=v(r,"a","add"),n=v(t,"b","add");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(ro,o)}var Y=k({add_:aK});function lK(r,t){let e=v(r,"a","floorDiv"),n=v(t,"b","floorDiv");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(ds,o)}var im=k({floorDiv_:lK});function uK(r,t){let e=v(r,"a","div"),n=v(t,"b","div");if([e,n]=jt(e,n),e.dtype==="int32"&&n.dtype==="int32")return im(e,n);let o={a:e,b:n},s={};return T.runKernel(us,o,s)}var ut=k({div_:uK});function cK(r,t){let e=v(r,"a","mul"),n=v(t,"b","mul");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Ds,o)}var $=k({mul_:cK});function pK(r){let t=v(r,"x","abs");if(t.dtype==="complex64"){let e={x:t};return T.runKernel(Zl,e)}else{let e={x:t};return T.runKernel(Ti,e)}}var Ee=k({abs_:pK});function mK(r){let e={x:v(r,"x","acos")};return T.runKernel(Uo,e)}var ux=k({acos_:mK});function fK(r){let e={x:v(r,"x","acosh")};return T.runKernel(Ho,e)}var cx=k({acosh_:fK});function dK(r){_(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),_(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let t=r.map((o,s)=>v(o,`tensors${s}`,"addN")),e=t[0];t.forEach(o=>{if(o.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(o=>{if(!Mn(o.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let n=t;return T.runKernel(qo,n)}var sE=k({addN_:dK});function hK(r,t=null,e=!1){let o={x:v(r,"x","all","bool")},s={axis:t,keepDims:e};return T.runKernel(Ea,o,s)}var am=k({all_:hK});function gK(r,t=null,e=!1){let o={x:v(r,"x","any","bool")},s={axis:t,keepDims:e};return T.runKernel(Aa,o,s)}var fc=k({any_:gK});function xK(r,t=0){let n={x:v(r,"x","argMax")},o={axis:t};return T.runKernel(_i,n,o)}var Qi=k({argMax_:xK});function yK(r,t=0){let n={x:v(r,"x","argMin")},o={axis:t};return T.runKernel(Ei,n,o)}var px=k({argMin_:yK});function bK(r){let e={x:v(r,"x","asin")};return T.runKernel(Ko,e)}var mx=k({asin_:bK});function wK(r){let e={x:v(r,"x","asinh")};return T.runKernel(jo,e)}var fx=k({asinh_:wK});function IK(r){let e={x:v(r,"x","atan")};return T.runKernel(Xo,e)}var dx=k({atan_:IK});function CK(r,t){let e=v(r,"a","atan2"),n=v(t,"b","atan2");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Zo,o)}var hx=k({atan2_:CK});function vK(r){let e={x:v(r,"x","atanh")};return T.runKernel(Yo,e)}var gx=k({atanh_:vK});function SK(r,t,e,n,o="NHWC",s){let i=r[3],a=[...t,i],u=aE(o);return dc(r,a,e,s,n,null,null,u)}function O0(r,t,e,n,o,s,i="channelsLast"){let[a,u]=mh(t),l;if(i==="channelsLast")l=[a,u,r[3],r[3]];else if(i==="channelsFirst")l=[a,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return dc(r,l,e,n,o,s,!1,i)}function NK(r,t,e,n,o,s,i="NDHWC"){let[a,u,l]=F0(t),c,p;if(i==="NDHWC")p="channelsLast",c=[a,u,l,r[4],r[4]];else if(i==="NCDHW")p="channelsFirst",c=[a,u,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${i}`);return iE(r,c,e,n,o,!1,p,s)}function dc(r,t,e,n,o,s,i=!1,a="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(a==="channelsLast")[u,l,c,p]=r;else if(a==="channelsFirst")[u,p,l,c]=r;else throw new Error(`Unknown dataFormat ${a}`);let[m,f,,d]=t,[h,g]=mh(e),[x,b]=mh(n),w=lm(m,x),I=lm(f,b),{padInfo:N,outHeight:E,outWidth:A}=_K(o,l,c,h,g,w,I,s,a),D=i?d*p:d,F;return a==="channelsFirst"?F=[u,D,E,A]:a==="channelsLast"&&(F=[u,E,A,D]),{batchSize:u,dataFormat:a,inHeight:l,inWidth:c,inChannels:p,outHeight:E,outWidth:A,outChannels:D,padInfo:N,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:I,dilationHeight:x,dilationWidth:b,inShape:r,outShape:F,filterShape:t}}function iE(r,t,e,n,o,s=!1,i="channelsLast",a){let[u,l,c,p,m]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,m]=r;else if(i==="channelsFirst")[u,m,l,c,p]=r;else throw new Error(`Unknown dataFormat ${i}`);let[f,d,h,,g]=t,[x,b,w]=F0(e),[I,N,E]=F0(n),A=lm(f,I),D=lm(d,N),F=lm(h,E),{padInfo:P,outDepth:V,outHeight:G,outWidth:W}=EK(o,l,c,p,x,b,w,A,D,F,a),q=s?g*m:g,H;return i==="channelsFirst"?H=[u,q,V,G,W]:i==="channelsLast"&&(H=[u,V,G,W,q]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:m,outDepth:V,outHeight:G,outWidth:W,outChannels:q,padInfo:P,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:I,dilationHeight:N,dilationWidth:E,inShape:r,outShape:H,filterShape:t}}function kK(r,t,e,n,o){n==null&&(n=P0(r,t,e));let s=r[0],i=r[1],a=fh((s-t+2*n)/e+1,o),u=fh((i-t+2*n)/e+1,o);return[a,u]}function TK(r,t,e,n,o,s){o==null&&(o=P0(r,t[0],n[0]));let i=[0,0,0,e];for(let a=0;a<3;a++)r[a]+2*o>=t[a]&&(i[a]=fh((r[a]-t[a]+2*o)/n[a]+1,s));return i}function P0(r,t,e,n=1){let o=lm(t,n);return Math.floor((r[0]*(e-1)-e+o)/2)}function mh(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function F0(r){return typeof r=="number"?[r,r,r]:r}function lm(r,t){return t<=1?r:r+(r-1)*(t-1)}function _K(r,t,e,n,o,s,i,a,u){let l,c,p;if(typeof r=="number"){l={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=kK([t,e],s,n,r,a);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(t/n),p=Math.ceil(e/o);let m=Math.max(0,(c-1)*n+s-t),f=Math.max(0,(p-1)*o+i-e),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;l={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/n),p=Math.ceil((e-i+1)/o);else if(typeof r=="object"){let m=u==="channelsLast"?r[1][0]:r[2][0],f=u==="channelsLast"?r[1][1]:r[2][1],d=u==="channelsLast"?r[2][0]:r[3][0],h=u==="channelsLast"?r[2][1]:r[3][1];l={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=fh((t-s+m+f)/n+1,a),p=fh((e-i+d+h)/o+1,a)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:l,outHeight:c,outWidth:p}}function EK(r,t,e,n,o,s,i,a,u,l,c){let p,m,f,d;if(r==="valid"&&(r=0),typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=TK([t,e,n,1],[a,u,l],1,[o,s,i],r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(t/o),f=Math.ceil(e/s),d=Math.ceil(n/i);let h=(m-1)*o+a-t,g=(f-1)*s+u-e,x=(d-1)*i+l-n,b=Math.floor(h/2),w=h-b,I=Math.floor(g/2),N=g-I,E=Math.floor(x/2),A=x-E;p={top:I,bottom:N,left:E,right:A,front:b,back:w,type:"SAME"}}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function fh(r,t){if(!t)return Math.trunc(r);switch(t){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${t}`)}}function so(r){let[t,e,n]=mh(r);return t===1&&e===1&&n===1}function $r(r,t){return so(r)||so(t)}function ta(r){return mh(r).every(t=>t>0)}function aE(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function Se(r,t,e){if(e!=null){if(typeof t=="string")throw Error(`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);if(typeof t=="number")_(_a(t),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${t}.`);else if(typeof t=="object")t.forEach(n=>{n.forEach(o=>{_(_a(o),()=>`Error in ${r}: pad must be an integer when using dimRoundingMode ${e} but got pad ${o}.`)})});else throw Error(`Error in ${r}: Unknown padding parameter: ${t}`)}}function AK(r,t){let n={x:v(r,"x","reshape","string_or_numeric")},o={shape:t};return T.runKernel(zi,n,o)}var R=k({reshape_:AK});function DK(r,t,e,n,o){let s=v(r,"x","avgPool","float32"),i=1;_($r(e,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`);let a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${a.rank}.`),Se("avgPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(Jo,l,c);return p=J(p,s.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bu=k({avgPool_:DK});function $K(r,t,e,n,o,s="NDHWC"){let i=v(r,"x","avgPool3d","float32"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(typeof e=="number"&&e>0||Array.isArray(e)&&e[0]>0&&e[1]>0&&e[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${e}'`),Se("avgPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Ai,l,c);return p=J(p,a.dtype),u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xx=k({avgPool3d_:$K});function RK(r,t=0){_(r.length>=1,()=>"Pass at least one tensor to concat");let e=hl(r,"tensors","concat","string_or_numeric");if(e[0].dtype==="complex64"&&e.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),e.length===1)return ln(e[0]);let n=e,o={axis:t};return T.runKernel($i,n,o)}var oe=k({concat_:RK});function FK(r,t,e=!1,n=!1){let o=v(r,"a","matMul"),s=v(t,"b","matMul");[o,s]=jt(o,s);let i={a:o,b:s},a={transposeA:e,transposeB:n};return T.runKernel(Qo,i,a)}var Bt=k({matMul_:FK});function OK(r){let e={x:v(r,"x","sigmoid","float32")};return T.runKernel(js,e)}var tn=k({sigmoid_:OK});function PK(r,t,e){let n=v(r,"x","slice","string_or_numeric");if(n.rank===0)throw new Error("Slicing scalar is not possible");let o={x:n},s={begin:t,size:e};return T.runKernel(Vi,o,s)}var Ot=k({slice_:PK});function MK(r){let e={x:v(r,"x","tanh","float32")};return T.runKernel(ri,e)}var ea=k({tanh_:MK});function LK(r,t,e,n,o,s){let i=v(r,"forgetBias","basicLSTMCell"),a=v(t,"lstmKernel","basicLSTMCell"),u=v(e,"lstmBias","basicLSTMCell"),l=v(n,"data","basicLSTMCell"),c=v(o,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=oe([l,p],1),f=Bt(m,a),d=Y(f,u),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Ot(d,[0,0],x),w=Ot(d,[0,g],x),I=Ot(d,[0,g*2],x),N=Ot(d,[0,g*3],x),E=Y($(tn(b),ea(w)),$(c,tn(Y(i,I)))),A=$(ea(E),tn(N));return[E,A]}var lE=k({basicLSTMCell_:LK});function zK(r,t,e){let n=v(r,"x","batchToSpaceND"),o=t.reduce((a,u)=>a*u);_(n.rank>=1+t.length,()=>`input rank is ${n.rank} but should be > than blockShape.length ${t.length}`),_(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),_(n.shape[0]%o===0,()=>`input tensor batch is ${n.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s={x:n},i={blockShape:t,crops:e};return T.runKernel(Di,s,i)}var wu=k({batchToSpaceND_:zK});function uE(r){let t;return r.rank===0||r.rank===1?t=R(r,[1,1,1,r.size]):r.rank===2?t=R(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?t=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]):t=r,t}function BK(r,t,e,n,o,s){s==null&&(s=.001);let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;n!=null&&(c=v(n,"offset","batchNorm")),_(a.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(c==null||a.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(l==null||a.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:uE(i),scale:l,offset:c,mean:a,variance:u},f={varianceEpsilon:s},d=T.runKernel(hs,m,f);return R(d,i.shape)}var ra=k({batchNorm_:BK});function VK(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),_(a.rank===2||a.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${a.rank}.`),_(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),ra(i,a,u,c,l,s)}var yx=k({batchNorm2d_:VK});function GK(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),_(a.rank===3||a.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${a.rank}.`),_(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),ra(i,a,u,c,l,s)}var bx=k({batchNorm3d_:GK});function WK(r,t,e,n,o,s){let i=v(r,"x","batchNorm"),a=v(t,"mean","batchNorm"),u=v(e,"variance","batchNorm"),l;o!=null&&(l=v(o,"scale","batchNorm"));let c;return n!=null&&(c=v(n,"offset","batchNorm")),_(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),_(a.rank===4||a.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${a.rank}.`),_(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&_(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),ra(i,a,u,c,l,s)}var wx=k({batchNorm4d_:WK});function UK(r,t,e){let n=v(r,"x","bincount"),o=v(t,"weights","bincount");_(n.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${n.dtype}`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(o.size===n.size||o.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${n.shape}, weights shape: ${o.shape}.`);let s={x:n,weights:o},i={size:e};return T.runKernel(Da,s,i)}var Ix=k({bincount_:UK});function HK(r,t){let e=v(r,"s0","broadcastArgs","int32"),n=v(t,"s1","broadcastArgs","int32");if(e.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${e.rank}`);if(n.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${n.rank}`);let o={s0:e,s1:n};return T.runKernel(Yl,o)}var cE=k({broadcastArgs_:HK});function qK(r,t){let e=v(r,"broadcastTo","x"),n=e.shape;if(Me(t),t.length<e.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${e.rank}.`);if(t.length>e.rank){let l=e.shape.slice();for(;l.length<t.length;)l.unshift(1);e=R(e,l)}let o=e.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(o[l]===t[l])s[l]=1;else if(e.shape[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return ln(e);let a={x:e},u={reps:s};return T.runKernel(no,a,u)}var na=k({broadcastTo_:qK});function KK(r){let e={x:v(r,"x","ceil","float32")};return T.runKernel(ts,e)}var Cx=k({ceil_:KK});function Co(r,t,e){Me(r),e=e||jl(t);let n={shape:r,value:t,dtype:e};return T.runKernel(ru,{},n)}function jK(r,t,e){let n=v(r,"x","clipByValue");if(_(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`),t===e)return Co(n.shape,t,n.dtype);let o={x:n},s={clipValueMin:t,clipValueMax:e};return T.runKernel(ho,o,s)}var vr=k({clipByValue_:jK});function XK(r){return oe(r,0)}var vx=k({concat1d_:XK});function YK(r,t){return oe(r,t)}var Sx=k({concat2d_:YK});function ZK(r,t){return oe(r,t)}var Nx=k({concat3d_:ZK});function JK(r,t){return oe(r,t)}var kx=k({concat4d_:JK});function QK(r,t,e,n,o="NHWC",s=[1,1],i){let a=v(r,"x","conv2d","float32"),u=v(t,"filter","conv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),Se("conv2d",n,i);let p=o==="NHWC"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),_($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(ta(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),_(ta(e),()=>"Error in conv2D: Strides should be larger than 0.");let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(es,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Sn=k({conv2d_:QK});function tj(r,t,e,n,o="NWC",s=1,i){let a=v(r,"x","conv1d"),u=v(t,"filter","conv1d"),l=a,c=!1;a.rank===2&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1]])),_(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),_(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),Se("conv1d",n,i),_(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),_($r(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),_(ta(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),_(ta(e),()=>"Error in conv1D: Stride should be larger than 0."),_(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let p=R(u,[1,u.shape[0],u.shape[1],u.shape[2]]),m=R(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Sn(m,p,[1,e],n,"NHWC",[1,s],i);return c?R(g,[g.shape[2],g.shape[3]]):R(g,[g.shape[0],g.shape[2],g.shape[3]])}var um=k({conv1d_:tj});function ej(r,t,e,n,o,s="NHWC",i){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let a=r,u=t,l=!1;t.rank===3&&(l=!0,u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]),a=[1,r[0],r[1],r[2]]),_(a.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${a.length}.`),_(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),_(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let c=s==="NHWC"?a[3]:a[1],p=s==="NHWC"?u.shape[3]:u.shape[1];_(c===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${e.shape[2]}.`),_(p===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${e.shape[3]}.`),Se("conv2dDerInput",o,i);let m={dy:u,filter:e},f={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,inputShape:a},d=T.runKernel(rs,m,f);return l?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var cm=k({conv2DBackpropInput_:ej});function rj(r,t,e,n,o,s){let i=v(r,"x","conv2dTranspose"),a=v(t,"filter","conv2dTranspose");return cm(e,i,a,n,o,"NHWC",s)}var pm=k({conv2dTranspose_:rj});function nj(r,t,e,n,o="NDHWC",s=[1,1,1]){let i=v(r,"x","conv3d"),a=v(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),_(a.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${a.rank}.`),_(u.shape[4]===a.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${a.shape[3]}.`),_($r(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`),_(ta(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),_(ta(e),()=>"Error in conv3D: Strides should be larger than 0.");let c={x:u,filter:a},p={strides:e,pad:n,dataFormat:o,dilations:s},m=T.runKernel(ns,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Tx=k({conv3d_:nj});function oj(r,t,e,n,o){_(r.length===t.rank,()=>`Length of inShape (${r.length}) and rank of dy (${t.rank}) must match`);let s=r,i=t,a=!1;t.rank===4&&(a=!0,i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let u=s[4],l=i.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),_(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),_(u===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${e.shape[3]}.`),_(l===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${e.shape[4]}.`);let c={dy:i,filter:e},p={pad:o,strides:n,inputShape:s},m=T.runKernel(Ra,c,p);return a?R(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var _x=k({conv3DBackpropInput_:oj});function sj(r,t,e,n,o){let s=v(r,"x","conv3dTranspose"),i=v(t,"filter","conv3dTranspose");return _x(e,s,i,n,o)}var Ex=k({conv3dTranspose_:sj});function ij(r){let e={x:v(r,"x","cos","float32")};return T.runKernel(os,e)}var Iu=k({cos_:ij});function aj(r){let e={x:v(r,"x","cosh","float32")};return T.runKernel(ss,e)}var mm=k({cosh_:aj});function lj(r,t=0,e=!1,n=!1){let s={x:v(r,"x","cumprod")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(Fa,s,i)}var hc=k({cumprod_:lj});function uj(r,t=0,e=!1,n=!1){let s={x:v(r,"x","cumsum")},i={axis:t,exclusive:e,reverse:n};return T.runKernel(is,s,i)}var fm=k({cumsum_:uj});function cj(r,t,e,n=!1){let o=v(r,"x","denseBincount"),s=v(t,"weights","denseBincount");_(o.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${o.dtype}`),_(o.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${o.rank}.`),_(e>=0,()=>`size must be non-negative, but got ${e}.`),_(s.size===o.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${o.shape}, weights shape: ${s.shape}.`);let i={x:o,weights:s},a={size:e,binaryOutput:n};return T.runKernel(Jl,i,a)}var dh=k({denseBincount_:cj});function pj(r,t,e="NHWC"){let n=v(r,"x","depthToSpace","float32"),o=e==="NHWC"?n.shape[1]:n.shape[2],s=e==="NHWC"?n.shape[2]:n.shape[3],i=e==="NHWC"?n.shape[3]:n.shape[1];_(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),_(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${o} and ${t} for depthToSpace with input shape
${n.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${n.shape}`),_(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${n.shape}`);let a={x:n},u={blockSize:t,dataFormat:e};return T.runKernel(Pa,a,u)}var Ax=k({depthToSpace_:pj});function mj(r,t,e,n,o="NHWC",s=[1,1],i){let a=v(r,"x","depthwiseConv2d","float32"),u=v(t,"filter","depthwiseConv2d","float32"),l=a,c=!1;a.rank===3&&(c=!0,l=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),_(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`);let p=o==="NHWC"?l.shape[3]:l.shape[1];_(p===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${u.shape[2]}.`),Se("depthwiseConv2d",n,i);let m={x:l,filter:u},f={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i},d=T.runKernel(as,m,f);return c?R(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var oa=k({depthwiseConv2d_:mj});function fj(r){let e={x:v(r,"x","diag")};return T.runKernel(Ql,e)}var pE=k({diag_:fj});function dj(r,t,e,n,o=[1,1],s="NHWC"){let i=v(r,"x","dilation2d"),a=v(t,"filter","dilation2d");_(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),_(a.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${a.rank}.`),_(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0),_(u.shape[3]===a.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${u.shape[3]} vs ${a.shape[2]}`);let c={x:u,filter:a},p={strides:e,pad:n,dilations:o},m=T.runKernel(ls,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Dx=k({dilation2d_:dj});var Ur={};Kt(Ur,{assertAndGetBroadcastShape:()=>Mt,getBroadcastDims:()=>mE,getReductionAxes:()=>ye});function mE(r,t){let e=r.length,n=[];for(let o=0;o<e;o++){let s=e-1-o,i=r[s]||1;(t[t.length-1-o]||1)>1&&i===1&&n.unshift(s)}return n}function ye(r,t){let e=[];for(let n=0;n<t.length;n++){let o=r[r.length-n-1],s=t.length-n-1,i=t[s];(o==null||o===1&&i>1)&&e.unshift(s)}return e}function Mt(r,t){let e=Math.max(r.length,t.length),n=new Array(e);for(let o=0;o<e;o++){let s=r[r.length-o-1];s==null&&(s=1);let i=t[t.length-o-1];if(i==null&&(i=1),s===1)n[e-o-1]=i;else if(i===1)n[e-o-1]=s;else if(s!==i){let a=`Operands could not be broadcast together with shapes ${r} and ${t}.`;throw Error(a)}else n[e-o-1]=s}return n}function hj(r,t){let e=v(r,"a","equal","string_or_numeric"),n=v(t,"b","equal","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(za,o)}var Rr=k({equal_:hj});function gj(r,t,e){let n=v(t,"a","where"),o=v(e,"b","where"),s=v(r,"condition","where","bool"),i=Mt(Mt(s.shape,n.shape),o.shape),a=na(s,i),u=na(n,i),l=na(o,i),c={condition:a,t:u,e:l};return T.runKernel(Bi,c)}var be=k({where_:gj});function xj(r){let e={x:v(r,"x","zerosLike")};return T.runKernel(Hi,e)}var vt=k({zerosLike_:xj});function yj(r,t){let e=v(r,"a","div"),n=v(t,"b","div");[e,n]=jt(e,n);let o=ut(e,n),s=vt(o),i=Rr(n,s);return be(i,s,o)}var $x=k({divNoNan_:yj});function bj(r,t){let e=v(r,"t1","dot"),n=v(t,"t2","dot");_((e.rank===1||e.rank===2)&&(n.rank===1||n.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${n.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=n.rank===1?n.size:n.shape[0];if(_(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&n.rank===1){let i=R(e,[1,-1]),a=R(n,[-1,1]),u=Bt(i,a);return R(u,[])}else if(e.rank===1&&n.rank===2){let i=R(e,[1,-1]),a=R(n,[n.shape[0],n.shape[1]]),u=Bt(i,a);return R(u,[u.size])}else if(e.rank===2&&n.rank===1){let i=R(n,[-1,1]),a=Bt(e,i);return R(a,[a.size])}else{let i=R(n,[n.shape[0],n.shape[1]]);return Bt(e,i)}}var Rx=k({dot_:bj});function wj(r,...t){let e=t.map((o,s)=>v(o,`tensors${s}`,"einsum")),n={equation:r};return T.runKernel(zp,e,n)}var fE=k({einsum_:wj});function Ij(r){let e={x:v(r,"x","elu","float32")};return T.runKernel(cs,e)}var sa=k({elu_:Ij});function Cj(r){let t=v(r,"x","erf");_(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=J(t,"float32"));let e={x:t};return T.runKernel(La,e)}var Fx=k({erf_:Cj});function M0(r,t){for(let e=0;e<r.length;++e)if(r[r.length-e-1]!==t-1-e)return!1;return!0}function dE(r,t,e){let n=r.length+t.length,o=[],s=0,i=0;for(let a=0;a<n;a++)e.indexOf(a)===-1?o.push(r[s++]):o.push(t[i++]);return o}function L0(r,t){let e=[],n=r.length;for(let s=0;s<n;s++)t.indexOf(s)===-1&&e.push(r[s]);let o=t.map(s=>r[s]);return[e,o]}function vo(r,t){let e=t.map(n=>1);return dE(r,e,t)}function vj(r,t,e){_(M0(t,e),()=>`${r} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function z0(r,t){if(M0(r,t))return null;let e=[];for(let n=0;n<t;++n)r.indexOf(n)===-1&&e.push(n);return r.forEach(n=>e.push(n)),e}function hh(r){return r.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function Sj(r,t){let e=[];for(let n=t-r;n<t;++n)e.push(n);return e}function Nj(r,t=null,e=!1){let o={x:v(r,"x","max")},s={reductionIndices:t,keepDims:e};return T.runKernel(Ss,o,s)}var Sr=k({max_:Nj});function kj(r,t=null,e=!1){let o={x:v(r,"x","min")},s={axis:t,keepDims:e};return T.runKernel(_s,o,s)}var xl=k({min_:kj});function Tj(r,t){let e=v(r,"base","pow"),n=v(t,"exp","pow");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Fs,o)}var un=k({pow_:Tj});function ft(r,t){if((fr(r)&&t!=="string"||Array.isArray(r))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&fr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return an(r,[],[],t)}function _j(r){let e={x:v(r,"x","sqrt","float32")};return T.runKernel(Ys,e)}var Ne=k({sqrt_:_j});function Ej(r){let t=v(r,"x","square"),e={};return T.runKernel("Square",{x:t},e)}var Gt=k({square_:Ej});function Aj(r,t=null,e=!1){let n=v(r,"x","sum");n.dtype==="bool"&&(n=J(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Zs,o,s)}var pt=k({sum_:Aj});function Dj(r,t="euclidean",e=null,n=!1){r=v(r,"x","norm");let o=hE(r,t,e),s=o.shape;if(n){let i=mr(e,r.shape);s=vo(o.shape,i)}return R(o,s)}function hE(r,t,e=null){if(r.rank===0)return Ee(r);if(r.rank!==1&&e===null)return hE(R(r,[-1]),t,e);if(r.rank===1||typeof e=="number"||Array.isArray(e)&&e.length===1){if(t===1)return pt(Ee(r),e);if(t===1/0)return Sr(Ee(r),e);if(t===-1/0)return xl(Ee(r),e);if(t==="euclidean"||t===2)return Ne(pt(un(Ee(r),ft(2,"int32")),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(e)&&e.length===2){if(t===1)return Sr(pt(Ee(r),e[0]),e[1]-1);if(t===1/0)return Sr(pt(Ee(r),e[1]),e[0]);if(t===-1/0)return xl(pt(Ee(r),e[1]),e[0]);if(t==="fro"||t==="euclidean")return Ne(pt(Gt(r),e));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${e}`)}var yl=k({norm_:Dj});function $j(r,t=null,e=!1){return yl(r,"euclidean",t,e)}var Ox=k({euclideanNorm_:$j});function Rj(r){let e={x:v(r,"x","exp")};return T.runKernel(ps,e)}var sr=k({exp_:Rj});function Fj(r,t=0){let e=v(r,"x","expandDims","string_or_numeric");_(t<=e.rank,()=>"Axis must be <= rank of the tensor");let n={input:e},o={dim:t};return T.runKernel(Ri,n,o)}var ir=k({expandDims_:Fj});function Oj(r){let e={x:v(r,"x","expm1")};return T.runKernel(ms,e)}var Px=k({expm1_:Oj});function Pj(r,t){let e=v(r,"x","tile","string_or_numeric");_(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of reps ${t}.`);let n={x:e},o={reps:t};return T.runKernel(no,n,o)}var Fr=k({tile_:Pj});function Mj(r,t,e,n="float32"){t==null&&(t=r);let o=bt([r,t],n),s=r<=t?r:t;for(let a=0;a<s;++a)o.set(1,a,a);let i=R(o.toTensor(),[r,t]);if(e==null)return i;if(e.length===1)return Fr(ir(i,0),[e[0],1,1]);if(e.length===2)return Fr(ir(ir(i,0),0),[e[0],e[1],1,1]);if(e.length===3)return Fr(ir(ir(ir(i,0),0),0),[e[0],e[1],e[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${e.length}D.`)}var gc=k({eye_:Mj});function Lj(r){let e={x:v(r,"x","floor","float32")};return T.runKernel(fs,e)}var ia=k({floor_:Lj});function zj(r,t,e=0,n=0){let o=v(r,"x","gather"),s=v(t,"indices","gather","int32"),i={x:o,indices:s},a={axis:e,batchDims:n};return T.runKernel(Fi,i,a)}var aa=k({gather_:zj});function Bj(r,t){let e=v(r,"a","greater","string_or_numeric"),n=v(t,"b","greater","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ga,o)}var Fe=k({greater_:Bj});function Vj(r,t){let e=v(r,"a","greaterEqual","string_or_numeric"),n=v(t,"b","greaterEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(gs,o)}var cn=k({greaterEqual_:Vj});function Gj(r){let e={input:v(r,"input","imag")};return T.runKernel(Gp,e)}var Cu=k({imag_:Gj});function Wj(r){let e={x:v(r,"x","isFinite")};return T.runKernel(xs,e)}var Mx=k({isFinite_:Wj});function Uj(r){let e={x:v(r,"x","isInf")};return T.runKernel(ys,e)}var Lx=k({isInf_:Uj});function Hj(r){let e={x:v(r,"x","isNaN")};return T.runKernel(bs,e)}var zx=k({isNaN_:Hj});function qj(r,t=.2){let n={x:v(r,"x","leakyRelu")},o={alpha:t};return T.runKernel(ws,n,o)}var vu=k({leakyRelu_:qj});function Kj(r,t){let e=v(r,"a","less","string_or_numeric"),n=v(t,"b","less","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Wa,o)}var bl=k({less_:Kj});function jj(r,t){let e=v(r,"a","lessEqual","string_or_numeric"),n=v(t,"b","lessEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ua,o)}var Vn=k({lessEqual_:jj});function gE(r,t,e){if(e<=0)throw new Error("The number of values should be positive.");let n={start:r,stop:t,num:e};return T.runKernel(Ha,{},n)}function Xj(r,t=5,e=1,n=1,o=.5){let s=v(r,"x","localResponseNormalization");_(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),_(_a(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,a=!1;s.rank===3&&(a=!0,i=R(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:e,alpha:n,beta:o},c=T.runKernel(vs,u,l);return a?R(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Bx=k({localResponseNormalization_:Xj});function Yj(r){let e={x:v(r,"x","log","float32")};return T.runKernel(Is,e)}var Nr=k({log_:Yj});function Zj(r){let e={x:v(r,"x","log1p")};return T.runKernel(Cs,e)}var Su=k({log1p_:Zj});function Jj(r){return _(Ni(r),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let n=v(t,"x","tf.grad","string_or_numeric"),o=e!=null?v(e,"dy","tf.grad"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(n),[n],o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Gx(i),i[0]})}}function Qj(r){return _(Ni(r),()=>"The f passed in grads(f) must be a function"),(t,e)=>{_(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let n=hl(t,"args","tf.grads","string_or_numeric"),o=e!=null?v(e,"dy","tf.grads"):null;return T.tidy(()=>{let{value:s,grads:i}=T.gradients(()=>r(...n),n,o);return o!=null&&Re(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Gx(i),i})}}function t6(r){return _(Ni(r),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{_(t instanceof Pt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),_(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:n,value:o}=T.gradients(()=>r(t),[t],e);return Gx(n),{grad:n[0],value:o}}}function e6(r){return _(Ni(r),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{_(Array.isArray(t)&&t.every(o=>o instanceof Pt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),_(e==null||e instanceof Pt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let n=T.gradients(()=>r(...t),t,e);return e!=null&&Re(n.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Gx(n.grads),n}}function Vx(r,t){_(Ni(r),()=>"The f passed in variableGrads(f) must be a function"),_(t==null||Array.isArray(t)&&t.every(l=>l instanceof dl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let l in T.registeredVariables)t.push(T.registeredVariables[l])}let n=e?t.filter(l=>!l.trainable):null,o=t.length;t=t.filter(l=>l.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:i,grads:a}=T.gradients(r,t,null,s);_(a.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),_(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{a[c]!=null&&(u[l.name]=a[c])}),n!=null&&n.forEach(l=>u[l.name]=null),{value:i,grads:u}}function pn(r){return T.customGrad(r)}function Gx(r){if(r.filter(e=>e==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function r6(r){let e={x:v(r,"x","neg")};return T.runKernel(Pi,e)}var Ut=k({neg_:r6});function n6(r){let e={x:v(r,"x","softplus")};return T.runKernel(Xs,e)}var ii=k({softplus_:n6});function o6(r){let t=v(r,"x","logSigmoid");return pn(n=>({value:Ut(ii(Ut(n))),gradFunc:i=>$(i,tn(Ut(n)))}))(t)}var Wx=k({logSigmoid_:o6});function s6(r,t){let e=v(r,"a","sub"),n=v(t,"b","sub");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(ti,o)}var lt=k({sub_:s6});function i6(r,t=-1){let e=v(r,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);return pn((o,s)=>{let a=Sr(o,t,!0),u=lt(o,a),l=lt(J(u,"float32"),Nr(pt(sr(u),t,!0)));return s([l]),{value:l,gradFunc:(p,m)=>{let[f]=m,d=!0,h=sr(f);return lt(p,$(pt(p,t,d),h))}}})(e)}var dm=k({logSoftmax_:i6});function a6(r,t=null,e=!1){let n=v(r,"x","logSumExp"),o=mr(t,n.shape),s=Sr(n,o,!0),i=lt(n,s),a=sr(i),u=pt(a,o),l=Nr(u),c=Y(R(s,l.shape),l);if(e){let p=vo(c.shape,o);return R(c,p)}return c}var hm=k({logSumExp_:a6});function l6(r,t){let e=v(r,"a","logicalAnd","bool"),n=v(t,"b","logicalAnd","bool");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(qa,o)}var Or=k({logicalAnd_:l6});function u6(r){let e={x:v(r,"x","logicalNot","bool")};return T.runKernel(Ka,e)}var Nu=k({logicalNot_:u6});function c6(r,t){let e=v(r,"a","logicalOr","bool"),n=v(t,"b","logicalOr","bool");Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(ja,o)}var gm=k({logicalOr_:c6});function p6(r,t){let e=v(r,"a","logicalXor","bool"),n=v(t,"b","logicalXor","bool");return Mt(e.shape,n.shape),Or(gm(r,t),Nu(Or(r,t)))}var Ux=k({logicalXor_:p6});var Hx=2147483648;function m6(r,t,e="left"){let n=v(r,"sortedSequence","searchSorted"),o=v(t,"values","searchSorted"),s=n.shape[n.shape.length-1],i=o.shape[o.shape.length-1],a=R(n,[-1,s]),u=R(o,[-1,i]);if(a.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(a.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Qt(u.shape)>=Hx)throw new Error(`values tensor size must less than ${Hx}`);if(a.shape[1]>=Hx)throw new Error(`trailing dim_size must less than ${Hx} for int32 output type, was ${a.shape[1]}`);let l={sortedSequence:a,values:u},c={side:e};return T.runKernel(il,l,c)}var gh=k({searchSorted_:m6});function xE(r,t){return gh(r,t,"left")}function f6(r,t,e,n,o){let s=v(r,"x","maxPool"),i=1,a=s,u=!1;s.rank===3&&(u=!0,a=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(a.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.rank}.`),_($r(e,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${i}'`),Se("maxPool",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o},p=T.runKernel(ks,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ku=k({maxPool_:f6});function d6(r,t=[1,1,1],e,n,o,s="NDHWC"){let i=v(r,"x","maxPool3d"),a=i,u=!1;i.rank===4&&(u=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),_(a.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${a.rank}.`),_(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Se("maxPool3d",n,o);let l={x:a},c={filterSize:t,strides:e,pad:n,dimRoundingMode:o,dataFormat:s},p=T.runKernel(Oi,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var qx=k({maxPool3d_:d6});function h6(r,t,e,n,o=!1){let i={x:v(r,"x","maxPoolWithArgmax")},a={filterSize:t,strides:e,pad:n,includeBatchInIndex:o},u=T.runKernel(Up,i,a);return{result:u[0],indexes:u[1]}}var yE=k({maxPoolWithArgmax_:h6});function g6(r,t){let e=v(r,"a","maximum"),n=v(t,"b","maximum");[e,n]=jt(e,n),e.dtype==="bool"&&(e=J(e,"int32"),n=J(n,"int32")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ns,o)}var Nn=k({maximum_:g6});function x6(r,t=null,e=!1){let o={x:v(r,"x","mean")},s={axis:t,keepDims:e};return T.runKernel(Ts,o,s)}var ke=k({mean_:x6});function Te(r,t="float32"){if(Me(r),t==="complex64"){let n=Te(r,"float32"),o=Te(r,"float32");return vn(n,o)}let e=Rp(Qt(r),t);return T.makeTensor(e,r,t)}function dr(r,t="float32"){if(Me(r),t==="complex64"){let n=dr(r,"float32"),o=Te(r,"float32");return vn(n,o)}let e=Qd(Qt(r),t);return T.makeTensor(e,r,t)}function bE(r,t,{indexing:e="xy"}={}){if(e!=="xy"&&e!=="ij")throw new TypeError(`${e} is not a valid third argument to meshgrid`);if(r===void 0)return[];let n=v(r,"x","meshgrid",r instanceof Pt?r.dtype:"float32");if(t===void 0)return[n];let o=v(t,"y","meshgrid",t instanceof Pt?t.dtype:"float32"),s=Qt(n.shape),i=Qt(o.shape);return e==="xy"?(n=R(n,[1,-1]),o=R(o,[-1,1]),[Bt(dr([i,1],n.dtype),n),Bt(o,dr([1,s],o.dtype))]):(n=R(n,[-1,1]),o=R(o,[1,-1]),[Bt(n,dr([1,i],n.dtype)),Bt(dr([s,1],o.dtype),o)])}function y6(r,t){let e=v(r,"a","minimum"),n=v(t,"b","minimum");[e,n]=jt(e,n),e.dtype==="bool"&&(e=J(e,"int32"),n=J(n,"int32")),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Es,o)}var ao=k({minimum_:y6});function b6(r,t,e){_(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let n=v(r,"x","mirrorPad");if(n.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");_(t.length===n.rank,()=>`Padding doesn't match input. Must be ${n.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let a=0;a<n.rank;a++)_(t[a].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),_(t[a][0]>=0&&t[a][0]<=n.shape[a]-o&&t[a][1]>=0&&t[a][1]<=n.shape[a]-o,()=>`Padding in dimension ${a} cannot be greater than or equal to ${n.shape[a]-o} or less than 0 for input of shape ${n.shape}`);let s={paddings:t,mode:e},i={x:n};return T.runKernel(As,i,s)}var Kx=k({mirrorPad_:b6});function w6(r,t){let e=v(r,"a","mod"),n=v(t,"b","mod");[e,n]=jt(e,n);let o={a:e,b:n};return T.runKernel(Ya,o)}var jx=k({mod_:w6});function I6(r,t=null,e=!1){r=v(r,"x","moments");let n=mr(t,r.shape),o=ke(r,n,e),s=o.shape;e||(s=vo(o.shape,n));let i=Gt(lt(J(r,"float32"),R(o,s))),a=ke(i,n,e);return{mean:o,variance:a}}var xc=k({moments_:I6});function C6(r,t,e,n){let o=v(t,"data","multiRNNCell"),s=hl(e,"c","multiRNNCell"),i=hl(n,"h","multiRNNCell"),a=o,u=[];for(let p=0;p<r.length;p++){let m=r[p](a,s[p],i[p]);u.push(m[0]),u.push(m[1]),a=m[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var wE=k({multiRNNCell_:C6});function v6(r,t,e,n=!1){let o=v(r,"logits","multinomial"),s=o.size,i=o.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);e=e||Math.random();let u={logits:i===1?R(o,[1,-1]):o},l={numSamples:t,seed:e,normalized:n},c=T.runKernel(Za,u,l);return i===1?R(c,[c.size]):c}var IE=k({multinomial_:v6});function S6(r,t){let e=v(r,"a","notEqual","string_or_numeric"),n=v(t,"b","notEqual","string_or_numeric");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n};return T.runKernel(Ja,o)}var ai=k({notEqual_:S6});function N6(r,t,e=1,n=0,o="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let i={indices:v(r,"indices","oneHot","int32")},a={dtype:o,depth:t,onValue:e,offValue:n};return T.runKernel($s,i,a)}var la=k({oneHot_:N6});function k6(r){let e={x:v(r,"x","onesLike")};return T.runKernel(Mi,e)}var Ir=k({onesLike_:k6});function T6(r,t){let e=v(r,"v1","outerProduct"),n=v(t,"v2","outerProduct");_(e.rank===1&&n.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${n.rank}.`);let o=R(e,[-1,1]),s=R(n,[1,-1]);return Bt(o,s)}var CE=k({outerProduct_:T6});function _6(r,t,e=0){let n=v(r,"x","pad");if(n.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o={paddings:t,constantValue:e},s={x:n};return T.runKernel(Rs,s,o)}var mn=k({pad_:_6});function E6(r,t,e=0){return _(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),mn(r,[t],e)}var vE=k({pad1d_:E6});function A6(r,t,e=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),mn(r,t,e)}var SE=k({pad2d_:A6});function D6(r,t,e=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),mn(r,t,e)}var NE=k({pad3d_:D6});function $6(r,t,e=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),mn(r,t,e)}var kE=k({pad4d_:$6});function R6(r,t,e){let n=v(r,"x","spaceToBatchND");_(n.rank>=1+t.length,()=>`input rank ${n.rank} should be > than [blockShape] ${t.length}`),_(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),_(n.shape.reduce((i,a,u)=>u>0&&u<=t.length?i&&(a+e[u-1][0]+e[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${n.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o={x:n},s={blockShape:t,paddings:e};return T.runKernel(Gi,o,s)}var Tu=k({spaceToBatchND_:R6});function F6(r,t,e,n,o,s,i){o==null&&(o=[1,1]),s==null&&(s=1),n===0&&(n="valid");let a=v(r,"x","maxPool"),u=a,l=!1;a.rank===3&&(l=!0,u=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),_($r(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let c=O0(u.shape,t,s,o,n),p=[c.dilationHeight,c.dilationWidth],m;n==="same"?m=P6([c.filterHeight,c.filterWidth],p):m=[[0,0],[0,0]];let f=p[0]===1&&p[1]===1,[d,h]=O6([c.inHeight,c.inWidth],p,m),g=f?n:"valid",x=f?u:Tu(u,p,d),w=(e==="avg"?()=>bu(x,t,s,g,i):()=>ku(x,t,s,g,i))(),I=f?w:wu(w,p,h);return l?R(I,[I.shape[1],I.shape[2],I.shape[3]]):I}function O6(r,t,e){let n=e.map(c=>c[0]),o=e.map(c=>c[1]),s=r.concat(n,o),i=t.map((c,p)=>(c-s[p]%c)%c),a=o.map((c,p)=>c+i[p]),u=t.map((c,p)=>[n[p],a[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function P6(r,t){let n=r.map((i,a)=>i+(i-1)*(t[a]-1)).map(i=>i-1),o=n.map(i=>Math.floor(i/2)),s=n.map((i,a)=>i-o[a]);return n.map((i,a)=>[o[a],s[a]])}var Xx=k({pool_:F6});function M6(r,t){let e=v(r,"x","prelu"),n=v(t,"alpha","prelu"),o={x:e,alpha:n};return T.runKernel(Os,o)}var _u=k({prelu_:M6});function L6(r,t=null,e=!1){let n=v(r,"x","prod");n.dtype==="bool"&&(n=J(n,"int32"));let o={x:n},s={axis:t,keepDims:e};return T.runKernel(Ps,o,s)}var Yx=k({prod_:L6});function z6(r,t,e,n){let o=r.map((c,p)=>v(c,`tensors${p}`,"raggedGather","int32")),s=v(t,"paramsDenseValues","raggedGather"),i=v(e,"indices","raggedGather","int32"),a={paramsNestedSplits:o,paramsDenseValues:s,indices:i},u={outputRaggedRank:n},l=T.runKernel(Hp,a,u);return{outputNestedSplits:l.slice(0,l.length-1),outputDenseValues:l[l.length-1]}}var TE=k({raggedGather_:z6});function B6(r,t,e){let n=v(r,"starts","raggedRange"),o=v(t,"limits","raggedRange",n.dtype),s=v(e,"deltas","raggedRange",n.dtype),i={starts:n,limits:o,deltas:s},a=T.runKernel(qp,i);return{rtNestedSplits:a[0],rtDenseValues:a[1]}}var _E=k({raggedRange_:B6});function V6(r,t,e,n,o){let s=v(r,"shape","raggedTensorToTensor","int32"),i=v(t,"values","raggedTensorToTensor"),a=v(e,"defaultValue","raggedTensorToTensor",i.dtype),u=n.map((p,m)=>v(p,`tensors${m}`,"raggedTensorToTensor","int32")),l={shape:s,values:i,defaultValue:a,rowPartitionTensors:u},c={rowPartitionTypes:o};return T.runKernel(Kp,l,c)}var EE=k({raggedTensorToTensor_:V6});function G6(r,t,e){Me(r);let n=Qt(r),o=null;if(e==null||e==="float32")o=new Float32Array(n);else if(e==="int32")o=new Int32Array(n);else if(e==="bool")o=new Uint8Array(n);else throw new Error(`Unknown data type ${e}`);for(let s=0;s<n;s++)o[s]=t();return T.makeTensor(o,r,e)}var AE=k({rand_:G6});var ey=Kl(xh());var YE={};Kt(YE,{TEST_EPSILON_FLOAT16:()=>KE,createVideoElement:()=>eX,encodeStrings:()=>XE,expectArrayBuffersEqual:()=>tX,expectArraysClose:()=>Y6,expectArraysEqual:()=>J6,expectNumbersClose:()=>jE,expectPromiseToFail:()=>Z6,expectValuesInRange:()=>Q6,play:()=>rX,testEpsilon:()=>Jx});var X6=.001,KE=.1;function Y6(r,t,e){return e==null&&(e=Jx()),K0(r,t,(n,o)=>j0(n,o,e))}function Jx(){return T.backend.floatPrecision()===32?X6:KE}function K0(r,t,e){let n=!0;if((fr(r)||fr(t))&&(n=!1),fr(r)&&fr(t)&&(n=!0),n){let i=r.constructor.name,a=t.constructor.name;if(i!==a)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${a}`)}if(Array.isArray(r)&&Array.isArray(t)){let i=Wr(r),a=Wr(t);if(!Mn(i,a))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${a}]`)}let o=fr(r)?r:oi(r),s=fr(t)?t:oi(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}.
Actual: ${o}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let a=o[i],u=s[i];if(!e(a,u))throw new Error(`Arrays differ: actual[${i}] = ${a}, expected[${i}] = ${u}.
Actual: ${o}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function Z6(r,t){r().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function J6(r,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Wo(r)||Wo(r[0])||Wo(t)||Wo(t[0])?K0(r,e,(n,o)=>n==o):K0(r,t,(n,o)=>j0(n,o,0))}function jE(r,t,e){if(e==null&&(e=Jx()),!j0(r,t,e))throw new Error(`Numbers differ: actual === ${r}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function j0(r,t,e){return!isFinite(r)&&!isFinite(t)?!0:!(isNaN(r)||isNaN(t)||Math.abs(r-t)>e)}function Q6(r,t,e){for(let n=0;n<r.length;n++)if(r[n]<t||r[n]>e)throw new Error(`Value out of range:${r[n]} low: ${t}, high: ${e}`)}function tX(r,t){let e=new Float32Array(r),n=new Float32Array(t);if(e.length!==n.length)throw new Error(`Expected ArrayBuffer to be of length ${n.length}, but it was ${e.length}`);for(let o=0;o<n.length;o++)if(e[o]!==n[o])throw new Error(`Expected ArrayBuffer value at ${o} to be ${n[o]} but got ${e[o]} instead`)}function XE(r){for(let t=0;t<r.length;t++){let e=r[t];Array.isArray(e)?XE(e):r[t]=hu(e)}return r}function eX(r){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(r),new Promise(e=>{t.addEventListener("loadeddata",n=>e(t)),t.load()})}async function rX(r){await r.play(),"requestVideoFrameCallback"in r&&await new Promise(t=>{r.requestVideoFrameCallback(t)})}var bc=class{constructor(t,e,n,o,s){this.mean=t,this.stdDev=e,this.dtype=n,this.nextVal=NaN,this.truncated=o,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let i=s||Math.random();this.random=ey.alea(i.toString())}nextValue(){if(!isNaN(this.nextVal)){let o=this.nextVal;return this.nextVal=NaN,o}let t,e,n=!1;for(;!n;){let o,s,i;do o=2*this.random()-1,s=2*this.random()-1,i=o*o+s*s;while(i>=1||i===0);let a=Math.sqrt(-2*Math.log(i)/i);t=this.mean+this.stdDev*o*a,e=this.mean+this.stdDev*s*a,(!this.truncated||this.isValidTruncated(t))&&(n=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}},Qx=class{constructor(t,e,n,o){this.alpha=t,this.beta=1/e,this.dtype=n;let s=o||Math.random();this.randu=ey.alea(s.toString()),this.randn=new bc(0,1,n,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,n,o,s,i;for(;;){do o=this.randn.nextValue(),i=1+this.c*o;while(i<=0);if(i*=i*i,t=o*o,e=1-.331*t*t,n=.5*t+this.d*(1-i+Math.log(i)),s=this.randu(),s<e||Math.log(s)<n)break}return i=1/this.beta*this.d*i,this.alpha<1&&(i*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(i)}convertValue(t){return this.dtype==="float32"?t:Math.round(t)}},ty=class{constructor(t=0,e=1,n,o){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=n,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=ey.alea(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function nX(r,t,e=1,n="float32",o){if(Me(r),e==null&&(e=1),n==null&&(n="float32"),n!=="float32"&&n!=="int32")throw new Error(`Unsupported data type ${n}`);let s=new Qx(t,e,n,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var ZE=k({randomGamma_:nX});function oX(r,t=0,e=1,n,o){if(Me(r),n!=null&&n==="bool")throw new Error(`Unsupported data type ${n}`);let s=new bc(t,e,n,!1,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var wc=k({randomNormal_:oX});function sX(r,t,e){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return wc(r,0,1,t,e)}var JE=k({randomStandardNormal_:sX});function iX(r,t=0,e=1,n="float32",o){Me(r);let s=bt(r,n),i=new ty(t,e,null,o);for(let a=0;a<s.values.length;a++)s.values[a]=i.nextValue();return s.toTensor()}var ua=k({randomUniform_:iX});function ca(r,t,e=1,n="float32"){if(e===0)throw new Error("Cannot have a step of zero");let o={start:r,stop:t,step:e,dtype:n};return T.runKernel(ou,{},o)}function aX(r){let e={input:v(r,"input","real")};return T.runKernel(jp,e)}var wl=k({real_:aX});function lX(r){let e={x:v(r,"x","reciprocal")};return T.runKernel(Ms,e)}var ry=k({reciprocal_:lX});function uX(r){let e={x:v(r,"x","relu")};return T.runKernel(Ls,e)}var Pr=k({relu_:uX});function cX(r){let e={x:v(r,"x","relu6")};return T.runKernel(Vs,e)}var xm=k({relu6_:cX});function pX(r,t){let n={x:v(r,"x","reverse")},o={dims:t};return T.runKernel(Gs,n,o)}var hr=k({reverse_:pX});function mX(r){let t=v(r,"x","reverse");return _(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),hr(t,0)}var QE=k({reverse1d_:mX});function fX(r,t){let e=v(r,"x","reverse");return _(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),hr(e,t)}var tA=k({reverse2d_:fX});function dX(r,t){let e=v(r,"x","reverse");return _(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),hr(e,t)}var eA=k({reverse3d_:dX});function hX(r,t){let e=v(r,"x","reverse");return _(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),hr(e,t)}var rA=k({reverse4d_:hX});function gX(r){let e={x:v(r,"x","round")};return T.runKernel(Ws,e)}var ym=k({round_:gX});function xX(r){let e={x:v(r,"x","rsqrt","float32")};return T.runKernel(Us,e)}var bm=k({rsqrt_:xX});function yX(r){let e={x:v(r,"x","selu")};return T.runKernel(Hs,e)}var wm=k({selu_:yX});function bX(r,t,e,n,o,s=[1,1],i="NHWC"){let a=v(r,"x","separableConv2d"),u=v(t,"depthwiseFilter","separableConv2d"),l=v(e,"pointwiseFilter","separableConv2d"),c=a,p=!1;if(a.rank===3&&(p=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");_(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),_(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),_(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),_(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let m=u.shape[2],f=u.shape[3];_(l.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${l.shape[2]}.`);let d=oa(c,u,n,o,i,s),g=Sn(d,l,1,"valid",i);return p?R(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Im=k({separableConv2d_:bX});async function wX(r,t){let e=v(r,"x","setdiff1d"),n=v(t,"y","setdiff1d");_(e.dtype===n.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${n.dtype}).`),_(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),_(n.rank===1,()=>`y should be 1D tensor, but got y (${n.shape}).`);let o=await e.data(),s=await n.data(),i=new Set(s),a=0;for(let c=0;c<o.length;c++)i.has(o[c])||a++;let u=new le([a],e.dtype),l=new le([a],"int32");for(let c=0,p=0;c<o.length;c++)i.has(o[c])||(u.values[p]=o[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var nA=wX;function IX(r){let e={x:v(r,"x","sign")};return T.runKernel(Ks,e)}var ny=k({sign_:IX});function CX(r){let e={x:v(r,"x","sin","float32")};return T.runKernel(qs,e)}var Cm=k({sin_:CX});function vX(r){let e={x:v(r,"x","sinh")};return T.runKernel(al,e)}var vm=k({sinh_:vX});function SX(r,t,e){let n=v(r,"x","slice1d");return _(n.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${n.rank} tensor`),Ot(n,[t],[e])}var Sm=k({slice1d_:SX});function NX(r,t,e){let n=v(r,"x","slice2d");return _(n.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var yh=k({slice2d_:NX});function kX(r,t,e){let n=v(r,"x","slice3d");return _(n.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var Nm=k({slice3d_:kX});function TX(r,t,e){let n=v(r,"x","slice4d");return _(n.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${n.rank} tensor`),Ot(n,t,e)}var Ic=k({slice4d_:TX});function _X(r,t=-1){let e=v(r,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let n={logits:e},o={dim:t};return T.runKernel(Js,n,o)}var Eu=k({softmax_:_X});function EX(r){_(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Bp,t)}var Au=k({fft_:EX});function AX(r){_(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let t={input:r};return T.runKernel(Vp,t)}var Il=k({ifft_:AX});function DX(r){let t=r.shape[r.shape.length-1],e=r.size/t,n;if(t<=2){let o=R(r,[e,t]);n=Il(o)}else{let o=[e,2*(t-1)],s=R(wl(r),[e,t]),i=R(Cu(r),[e,t]),a=hr(Ot(s,[0,1],[e,t-2]),1),u=$(hr(Ot(i,[0,1],[e,t-2]),1),ft(-1)),l=oe([s,a],1),c=oe([i,u],1),p=R(vn(l,c),[o[0],o[1]]);n=Il(p)}if(n=wl(n),r.rank===3&&r.shape[0]!==0){let o=n,s=r.shape[0];n=R(n,[s,n.shape[0]/s,n.shape[1]]),o.dispose()}return n}var km=k({irfft_:DX});function $X(r,t,e=0){let o={x:v(r,"x","split")},s={numOrSizeSplits:t,axis:e};return T.runKernel(Wi,o,s)}var gr=k({split_:$X});function RX(r,t){_(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let e=r.shape[r.shape.length-1],n=r.size/e,o;if(t!=null&&t<e){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=t,o=Ot(r,d,h),e=t}else if(t!=null&&t>e){let d=r.shape.map(h=>h);d[r.shape.length-1]=t-e,o=oe([r,Te(d)],r.shape.length-1),e=t}else o=r;let s=vt(o),i=R(vn(o,s),[n,e]),a=Au(i),u=Math.floor(e/2)+1,l=wl(a),c=Cu(a),p=gr(l,[u,e-u],l.shape.length-1),m=gr(c,[u,e-u],c.shape.length-1),f=o.shape.slice();return f[o.shape.length-1]=u,R(vn(p[0],m[0]),f)}var Du=k({rfft_:RX});function FX(r,t){let e=v(r,"a","squaredDifference"),n=v(t,"b","squaredDifference");[e,n]=jt(e,n),Mt(e.shape,n.shape);let o={a:e,b:n},s={};return T.runKernel(Qs,o,s)}var Tm=k({squaredDifference_:FX});function OX(r,t){let e=v(r,"x","squeeze","string_or_numeric");return R(e,ZS(e.shape,t).newShape)}var Gn=k({squeeze_:OX});function PX(r,t=0){let e=hl(r,"tensors","stack","string_or_numeric");_(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length>0&&_(t<=e[0].rank,()=>"Axis must be <= rank of the tensor");let n=e,o={axis:t};return T.runKernel(Li,n,o)}var qe=k({stack_:PX});function MX(r,t=0){let n={x:v(r,"x","step")},o={alpha:t};return T.runKernel(xo,n,o)}var So=k({step_:MX});function LX(r,t,e,n,o=0,s=0,i=0,a=0,u=0){let c={x:v(r,"x","stridedSlice","string_or_numeric")},p={begin:t,end:e,strides:n,beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};return T.runKernel(cl,c,p)}var oy=k({stridedSlice_:LX});function zX(r){let e={x:v(r,"x","tan","float32")};return T.runKernel(ei,e)}var sy=k({tan_:zX});function Ke(r,t){eo(r);let e=Wr(r,t);if(e.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return an(r,null,e,t)}function li(r,t,e){if(eo(r),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let n=Wr(r,e);if(n.length!==2&&n.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return an(r,t,n,e)}function iy(r,t,e){if(eo(r),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let n=Wr(r,e);if(n.length!==3&&n.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return an(r,t,n,e)}function oA(r,t,e){if(eo(r),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let n=Wr(r,e);if(n.length!==4&&n.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return an(r,t,n,e)}function sA(r,t,e){if(eo(r),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let n=Wr(r,e);if(n.length!==5&&n.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return an(r,t,n,e)}function iA(r,t,e){if(eo(r),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let n=Wr(r,e);if(n.length!==6&&n.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(n.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||n,an(r,t,n,e)}var $u={};Kt($u,{calculateShapes:()=>aA,validateInput:()=>_m,validateUpdateShape:()=>X0});function X0(r,t,e){let n=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${r}, sliceDim: ${n}, and batchDim: ${o}.`;if(e.rank<o)throw new Error(s+` update.rank < ${o}. `);if(r.length<n+(e.rank-o))throw new Error(s+` Output shape length < ${n+(e.rank-o)}`);if(e.rank!==o+r.length-n)throw new Error(s+` update.rank != ${o+r.length-n}`);for(let i=0;i<o;++i)if(e.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${e.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<e.rank-o;++i)if(e.shape[i+o]!==r[i+n])throw new Error(s+` updates.shape[${i+o}] (${e.shape[i+o]}) != shape[${i+o}] (${r[i+o]})`)}function _m(r,t,e){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(e.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${e}`);if(e.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}X0(e,t,r)}function aA(r,t,e){let n=t.shape.length,o=n>1?t.shape[n-1]:1,s=e.length,i=1;for(let p=o;p<s;++p)i*=e[p];let a=o<1?1:o,u=Qt(t.shape)/a,l=[...ki(e.slice(0,o)),1],c=Qt(e);return{sliceRank:o,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}function BX(r,t,e){let n=v(r,"tensor","tensorScatterupdate"),o=v(t,"indices","tensorScatterupdate","int32"),s=v(e,"updates","tensorScatterupdate");if(_m(s,o,n.shape),n.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${n.dtype} and ${s.dtype}.`);let i={tensor:n,indices:o,updates:s},a={};return T.runKernel(sl,i,a)}var lA=k({tensorScatterUpdate_:BX});function VX(r,t=1,e=!0){let n=v(r,"x","topk");if(n.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=n.shape[n.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:n},i={k:t,sorted:e},[a,u]=T.runKernel(pl,s,i);return{values:a,indices:u}}var ay=k({topk_:VX});function GX(r,t=0,e=1,n,o){if(Me(r),n!=null&&n==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new bc(t,e,n,!0,o),i=bt(r,n);for(let a=0;a<i.values.length;a++)i.values[a]=s.nextValue();return i.toTensor()}var Em=k({truncatedNormal_:GX});function WX(r,t=0){let e=v(r,"x","unique","string_or_numeric");_(e.rank>0,()=>"The input tensor must be at least 1D");let n={x:e},o={axis:t},[s,i]=T.runKernel(mu,n,o);return{values:s,indices:i}}var ly=k({unique_:WX});function UX(r,t,e){let n=v(r,"x","unsortedSegmentSum"),o=v(t,"segmentIds","unsortedSegmentSum","int32");_(_a(e),()=>"numSegments must be of dtype int");let s={x:n,segmentIds:o},i={numSegments:e};return T.runKernel(fu,s,i)}var Am=k({unsortedSegmentSum_:UX});function HX(r,t=0){let e=v(r,"x","unstack","string_or_numeric");_(t>=-e.shape.length&&t<e.shape.length,()=>`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`);let n={value:e},o={axis:t};return T.runKernel(Ui,n,o)}var xr=k({unstack_:HX});function uA(r,t){return gh(r,t,"right")}function uy(r,t=!0,e,n){return T.makeVariable(r,t,e,n)}function cy(r,t){let e=[];for(let s=0;s<t.length;s++)t[s]&&e.push(s);let n=bt(r,"int32"),o=bt([e.length,r.length],"int32");for(let s=0;s<e.length;s++){let i=n.indexToLoc(e[s]),a=s*r.length;o.values.set(i,a)}return o.toTensor()}async function qX(r){let t=v(r,"condition","whereAsync","bool"),e=await t.data(),n=cy(t.shape,e);return r!==t&&t.dispose(),n}var py=qX;async function KX(r,t,e){let n=v(r,"tensor","boolMask"),o=v(t,"mask","boolMask","bool"),s=e==null?0:e,i=o.rank,a=n.shape;_(i>0,()=>"mask cannot be scalar"),Re(a.slice(s,s+i),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let h=s;h<s+i;h++)u*=a[h];let l=a.slice(0,s).concat([u],a.slice(s+i)),c=R(n,l),p=R(o,[-1]),m=await py(p),f=Gn(m,[1]),d=aa(c,f,s);return r!==n&&n.dispose(),t!==o&&o.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var jX=KX;function XX(r,t,e){let n=v(r,"x","transpose");if(t==null&&(t=n.shape.map((i,a)=>a).reverse()),_(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(i=>{_(i>=0&&i<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let o={x:n},s={perm:t};return n.dtype==="complex64"?B(()=>{let i=wl(n),a=Cu(n);return i=T.runKernel(oo,{x:i},s),a=T.runKernel(oo,{x:a},s),e&&(a=Ut(a)),vn(i,a)}):T.runKernel(oo,o,s)}var Vt=k({transpose_:XX});function YX(r,t,e,n,o=!0){let s=v(r,"v","movingAverage"),i=v(t,"x","movingAverage"),a=v(e,"decay","movingAverage");y0(s,i),_(Mn(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=ft(1),l=lt(u,a),c=$(lt(i,s),l);if(o){_(n!=null,()=>"When using zeroDebias: true, step is required.");let p=v(n,"step","movingAverage");c=ut(c,lt(u,un(a,p)))}return Y(s,c)}var ZX=k({movingAverage_:YX});function JX(r,t,e){Me(e);let n=v(r,"indices","scatterND","int32"),o=v(t,"updates","scatterND");_m(o,n,e);let s={indices:n,updates:o},i={shape:e};return T.runKernel(ol,s,i)}var QX=k({scatterND_:JX});function cA(r,t,e,n){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let o=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==n.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function e5(r,t,e,n=0){Me(e);let o=v(r,"sparseIndices","sparseToDense","int32"),s=v(t,"sparseValues","sparseToDense","string_or_numeric"),i=v(n,"defaultValue","sparseToDense",s.dtype);cA(o,s,e,i);let a={sparseIndices:o,sparseValues:s,defaultValue:i},u={outputShape:e};return T.runKernel(ul,a,u)}var r5=k({sparseToDense_:e5});function n5(r,t){let e=v(t,"indices","gatherND","int32"),o={params:v(r,"x","gatherND","string_or_numeric"),indices:e};return T.runKernel(Va,o)}var o5=k({gatherND_:n5});function pA(r,t){if(t==null)return r.shape.slice();if(Mn(r.shape,t))return t;if(r.shape.length===t.length){let e=[];for(let n=0;n<r.shape.length;n++)t[n]==null&&r.shape[n]!=null?e.push(r.shape[n]):e.push(t[n]);return e}return t}function s5(r,t,e,n){let o=v(r,"x","dropout");if(_(o.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return r instanceof Pt?o.clone():o;let s=pA(o,e),i=1-t,a=ut(ia(Y(ua(s,0,1,"float32",n),i)),i);return $(o,a)}var Y0=k({dropout_:s5});function Z0(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function bh(r,t,e){let n=1-r%2,o=new Float32Array(r);for(let s=0;s<r;++s){let i=2*Math.PI*s/(r+n-1);o[s]=t-e*Math.cos(i)}return Ke(o,"float32")}async function i5(r,t,e=1){let n=v(r,"predictions","inTopK"),o=v(t,"targets","inTopK");_(n.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${n.rank}`),_(n.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${n.rank} and targets rank ${o.rank}`),Re(n.shape.slice(0,n.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=n.shape[n.shape.length-1];_(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let i=await n.data(),a=await o.data(),[u,l]=[i.length/s,s],c=JS("bool",u);for(let p=0;p<u;p++){let m=p*l,f=i.subarray(m,m+l),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<e;h++)if(d[h].index===a[p]){c[p]=1;break}}return r!==n&&n.dispose(),t!==o&&o.dispose(),or(c,o.shape,"bool")}var a5=i5;var Ru={};Kt(Ru,{conv2d:()=>mA,depthwiseConv2d:()=>fA,matMul:()=>dA});function l5(r,t,e,n,o,s="NHWC",i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]])),_(a.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${a.shape}.`),_(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),_(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let l=s==="NHWC"?a.shape[3]:a.shape[1],c=s==="NHWC"?u.shape[3]:u.shape[1];_(l===e[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${e[2]}.`),_(c===e[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${e[3]}).`),Se("conv2dDerFilter",o,i);let p={x:a,dy:u},m={strides:n,pad:o,dataFormat:s,dimRoundingMode:i,filterShape:e};return T.runKernel(Pp,p,m)}var Dm=k({conv2DBackpropFilter_:l5});function Cc(r,t,e){if(e==null||e==="linear")return r;if(e==="relu")return $(r,So(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function vc(r,t){let e=t,n=ye(r.shape,t.shape);return n.length>0&&(e=pt(e,n)),R(e,r.shape)}function Sc(r,t,e,n){if(t==="linear")return r;if(t==="relu")return Pr(r);if(t==="elu")return sa(r);if(t==="relu6")return xm(r);if(t==="prelu")return _u(r,e);if(t==="leakyrelu")return vu(r,n);if(t==="sigmoid")return tn(r);throw new Error(`Unknown fused activation ${t}.`)}var Nc=(r,t)=>!(r>0)||t==="linear";function u5({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",Nc(T.state.gradientDepth,u)===!1){_(o==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${o} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let E=Sn(r,t,e,n,o,s,i);return a!=null&&(E=Y(E,a)),Sc(E,u,l,c)}let p=v(r,"x","conv2d","float32"),m=v(t,"filter","conv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),Se("fused conv2d",n,i);let h=o==="NHWC"?f.shape[3]:f.shape[1];_(m.shape[2]===h,()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${m.shape[2]}.`),_($r(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let g=dc(f.shape,m.shape,e,s,n,i),x;a!=null&&(x=v(a,"bias","fused conv2d"),[x]=jt(x,p),o==="NHWC"?Mt(g.outShape,x.shape):(_(x.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${x.shape.length}.`),_(x.shape.length===0||x.shape[0]===g.outChannels||x.shape[0]===1,()=>`Error in fused conv2d: bias shape (${x.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(l!=null){let E=l.shape;if(_(E.length<=1||E.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${E.length}.`),E.length===1)_(E[0]===1||E[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the number of output channels (${g.outChannels}).`);else if(E.length===3)try{Mt(E,g.outShape)}catch(A){let D=`Error in fused conv2d: PReLU activation weights (${E}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(D)}b=v(l,"prelu weights","fused conv2d")}let w=(E,A)=>{_(o==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${o} but only NHWC is currently supported.`);let[D,F,P,V]=A,G=Cc(E,P,u);_(so(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=cm(F.shape,G,D,e,n),q=Dm(F,G,D.shape,e,n),H=[W,q];if(V!=null){let K=vc(V,G);H.push(K)}return H},I={x:f,filter:m,bias:x,preluActivationWeights:b},N={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((A,D,F)=>{let P=T.runKernel(Ki,I,N);return F([D,A,P]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:w}})(f,m):pn((A,D,F,P)=>{let V=T.runKernel(Ki,I,N);return P([D,A,V,F]),d&&(V=R(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:w}})(f,m,x)}var mA=k({fusedConv2d_:u5});function c5(r,t,e,n,o,s=[1,1],i){let a=r;r.rank===3&&(a=R(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let u=t;u.rank===3&&(u=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:a,dy:u},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,filterShape:e};return T.runKernel(Mp,l,c)}var my=k({depthwiseConv2dNativeBackpropFilter_:c5});function p5(r,t,e,n,o,s=[1,1],i){let a=t,u=!1;t.rank===3&&(u=!0,a=R(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:a,filter:e},c={strides:n,pad:o,dimRoundingMode:i,dilations:s,inputShape:r},p=T.runKernel(Lp,l,c);return u?R(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fy=k({depthwiseConv2dNativeBackpropInput_:p5});function m5({x:r,filter:t,strides:e,pad:n,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:a,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(Nc(T.state.gradientDepth,u)===!1){let N=oa(r,t,e,n,o,s,i);return a!=null&&(N=Y(N,a)),Sc(N,u,l,c)}let p=v(r,"x","depthwiseConv2d","float32"),m=v(t,"filter","depthwiseConv2d","float32"),f=p,d=!1;p.rank===3&&(d=!0,f=R(p,[1,p.shape[0],p.shape[1],p.shape[2]])),_(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),_(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),_(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),_($r(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),Se("fused depthwiseConv2d",n,i);let h=dc(f.shape,m.shape,e,s,n,i,!0),g;a!=null&&(g=v(a,"bias","fused conv2d"),[g]=jt(g,p),Mt(h.outShape,g.shape));let x;l!=null&&(x=v(l,"prelu weights","fused depthwiseConv2d"));let b=(N,E)=>{_(so(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,D,F,P]=E,V=Cc(N,F,u),G=fy(D.shape,V,A,e,n,s,i),W=my(D,V,A.shape,e,n,s,i);if(P!=null){let q=vc(g,V);return[G,W,q]}return[G,W]},w={x:f,filter:m,bias:g,preluActivationWeights:x},I={strides:e,pad:n,dataFormat:o,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return a==null?pn((E,A,D)=>{let F=T.runKernel(ji,w,I);return D([A,E,F]),d&&(F=R(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(f,m):pn((E,A,D,F)=>{let P=T.runKernel(ji,w,I);return F([A,E,P,D]),d&&(P=R(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:b}})(f,m,g)}var fA=k({fusedDepthwiseConv2d_:m5});function f5({a:r,b:t,transposeA:e=!1,transposeB:n=!1,bias:o,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:a=.2}){if(Nc(T.state.gradientDepth,s)===!1){let V=Bt(r,t,e,n);return o!=null&&(V=Y(V,o)),Sc(V,s,i,a)}let u=v(r,"a","fused matMul"),l=v(t,"b","fused matMul");[u,l]=jt(u,l);let c=e?u.shape[u.rank-2]:u.shape[u.rank-1],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],m=e?u.shape[u.rank-1]:u.shape[u.rank-2],f=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=u.shape.slice(0,-2),h=l.shape.slice(0,-2),g=Qt(d),x=Qt(h);_(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${e} and transposeB=${n} must match.`);let w=Mt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([m,f]),I=e?R(u,[g,c,m]):R(u,[g,m,c]),N=n?R(l,[x,f,p]):R(l,[x,p,f]),E;o!=null&&(E=v(o,"bias","fused matMul"),[E]=jt(E,u),Mt(w,E.shape));let A;i!=null&&(A=v(i,"prelu weights","fused matMul"));let D=(V,G)=>{let[W,q,H,K]=G,X=Cc(R(V,H.shape),H,s),Z,et;if(!e&&!n?(Z=Bt(X,q,!1,!0),et=Bt(W,X,!0,!1)):!e&&n?(Z=Bt(X,q,!1,!1),et=Bt(X,W,!0,!1)):e&&!n?(Z=Bt(q,X,!1,!0),et=Bt(W,X,!1,!1)):(Z=Bt(q,X,!0,!0),et=Bt(X,W,!0,!0)),o!=null){let nt=vc(K,X);return[Z,et,nt]}else return[Z,et]},F={a:I,b:N,bias:E,preluActivationWeights:A},P={transposeA:e,transposeB:n,activation:s,leakyreluAlpha:a};return o==null?pn((G,W,q)=>{let H=T.runKernel(qi,F,P);return q([G,W,H]),{value:R(H,w),gradFunc:D}})(I,N):pn((G,W,q,H)=>{let K=T.runKernel(qi,F,P);return H([G,W,K,q]),{value:R(K,w),gradFunc:D}})(I,N,E)}var dA=k({fusedMatMul_:f5});function d5(r){return bh(r,.54,.46)}var hA=k({hammingWindow_:d5});function h5(r){return bh(r,.5,.5)}var dy=k({hannWindow_:h5});function g5(r,t,e,n=!1,o=0){let s=0,i=[];for(;s+t<=r.size;)i.push(Ot(r,s,t)),s+=e;if(n)for(;s<r.size;){let a=s+t-r.size,u=oe([Ot(r,s,t-a),Co([a],o)]);i.push(u),s+=e}return i.length===0?li([],[0,t]):R(oe(i),[i.length,t])}var hy=k({frame_:g5});function x5(r,t,e,n,o=dy){n==null&&(n=Z0(t));let s=hy(r,t,e),i=$(s,o(t));return Du(i,n)}var gA=k({stft_:x5});function y5(r,t,e,n,o="bilinear",s=0){let i=v(r,"image","cropAndResize"),a=v(t,"boxes","cropAndResize","float32"),u=v(e,"boxInd","cropAndResize","int32"),l=a.shape[0];_(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&a.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${a.shape}.`),_(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${a.shape}.`),_(n.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${n.length}.`),_(n[0]>=1&&n[1]>=1,()=>`cropSize must be atleast [1,1], but was ${n}`),_(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let c={image:i,boxes:a,boxInd:u},p={method:o,extrapolationValue:s,cropSize:n};return T.runKernel(Oa,c,p)}var xA=k({cropAndResize_:y5});function b5(r){let t=v(r,"image","flipLeftRight","float32");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t};return T.runKernel(Ba,e,{})}var yA=k({flipLeftRight_:b5});function w5(r){let t=v(r,"image","grayscaleToRGB"),e=t.rank-1,n=t.shape[e];_(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),_(n===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${n}.`);let o=new Array(t.rank);return o.fill(1,0,e),o[e]=3,Fr(t,o)}var bA=k({grayscaleToRGB_:w5});function I5(r,t,e=0,n=.5){let o=v(r,"image","rotateWithOffset","float32");_(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},i={radians:t,fillValue:e,center:n};return T.runKernel(fl,s,i)}var wA=k({rotateWithOffset_:I5});function No(r,t,e,n,o,s){n==null&&(n=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=r.shape[0];return e=Math.min(e,i),_(0<=n&&n<=1,()=>`iouThreshold must be in [0, 1], but was '${n}'`),_(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),_(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),_(t.rank===1,()=>"scores must be a 1D tensor"),_(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s}}function C5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression","float32"),i=v(t,"scores","nonMaxSuppression","float32"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u={maxOutputSize:e,iouThreshold:n,scoreThreshold:o};return T.runKernel(Qa,{boxes:s,scores:i},u)}var IA=k({nonMaxSuppression_:C5});function CA(r,t,e){let n=v5(r,t,e),o=n<0?-(n+1):n;r.splice(o,0,t)}function v5(r,t,e){return N5(r,t,e||S5)}function S5(r,t){return r>t?1:r<t?-1:0}function N5(r,t,e){let n=0,o=r.length,s=0,i=!1;for(;n<o;){s=n+(o-n>>>1);let a=e(t,r[s]);a>0?n=s+1:(o=s,i=!a)}return i?n:-n-1}function gy(r,t,e,n,o){return J0(r,t,e,n,o,0)}function xy(r,t,e,n,o,s){return J0(r,t,e,n,o,0,!1,s,!0)}function yy(r,t,e,n,o,s){return J0(r,t,e,n,o,s,!0)}function J0(r,t,e,n,o,s,i=!1,a=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>o&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(vA);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<e&&l.length>0;){let g=l.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<o)break;let I=!1;for(let N=p.length-1;N>=w;--N){let E=k5(r,b,p[N]);if(E>=n){I=!0;break}if(g.score=g.score*T5(n,c,E),g.score<=o)break}g.suppressBeginIndex=p.length,I||(g.score===x?(p.push(b),m.push(g.score)):g.score>o&&CA(l,g,vA))}let f=p.length,d=e-f;a&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return i&&(h.selectedScores=m),u&&(h.validOutputs=f),h}function k5(r,t,e){let n=r.subarray(t*4,t*4+4),o=r.subarray(e*4,e*4+4),s=Math.min(n[0],n[2]),i=Math.min(n[1],n[3]),a=Math.max(n[0],n[2]),u=Math.max(n[1],n[3]),l=Math.min(o[0],o[2]),c=Math.min(o[1],o[3]),p=Math.max(o[0],o[2]),m=Math.max(o[1],o[3]),f=(a-s)*(u-i),d=(p-l)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,l),g=Math.max(i,c),x=Math.min(a,p),b=Math.min(u,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function T5(r,t,e){let n=Math.exp(t*e*e);return e<=r?n:0}function vA(r,t){return r.score-t.score||r.score===t.score&&t.boxIndex-r.boxIndex}async function _5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),i=v(t,"scores","nonMaxSuppressionAsync"),a=No(s,i,e,n,o);e=a.maxOutputSize,n=a.iouThreshold,o=a.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=gy(l,c,e,n,o);return s!==r&&s.dispose(),i!==t&&i.dispose(),Ke(p,"int32")}var SA=_5;function E5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=v(r,"boxes","nonMaxSuppression"),a=v(t,"scores","nonMaxSuppression"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:a},c={maxOutputSize:e,iouThreshold:n,scoreThreshold:o,softNmsSigma:s},p=T.runKernel(el,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var NA=k({nonMaxSuppressionWithScore_:E5});async function A5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=0){let i=v(r,"boxes","nonMaxSuppressionAsync"),a=v(t,"scores","nonMaxSuppressionAsync"),u=No(i,a,e,n,o,s);e=u.maxOutputSize,n=u.iouThreshold,o=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),a.data()]),c=l[0],p=l[1],{selectedIndices:m,selectedScores:f}=yy(c,p,e,n,o,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ke(m,"int32"),selectedScores:Ke(f)}}var kA=A5;function D5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=v(r,"boxes","nonMaxSuppression"),a=v(t,"scores","nonMaxSuppression"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,m={boxes:i,scores:a},f={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=T.runKernel(tl,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var TA=k({nonMaxSuppressionPadded_:D5});async function $5(r,t,e,n=.5,o=Number.NEGATIVE_INFINITY,s=!1){let i=v(r,"boxes","nonMaxSuppressionAsync"),a=v(t,"scores","nonMaxSuppressionAsync"),u=No(i,a,e,n,o,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[m,f]=await Promise.all([i.data(),a.data()]),{selectedIndices:d,validOutputs:h}=xy(m,f,l,c,p,s);return i!==r&&i.dispose(),a!==t&&a.dispose(),{selectedIndices:Ke(d,"int32"),validOutputs:ft(h,"int32")}}var _A=$5;function R5(r,t,e=!1,n=!1){let o=v(r,"images","resizeBilinear");_(o.rank===3||o.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),_(n===!1||e===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(Bs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var by=k({resizeBilinear_:R5});function F5(r,t,e=!1,n=!1){let o=v(r,"images","resizeNearestNeighbor");_(o.rank===3||o.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${o.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(o.dtype==="float32"||o.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),_(n===!1||e===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=o,i=!1;o.rank===3&&(i=!0,s=R(o,[1,o.shape[0],o.shape[1],o.shape[2]]));let[]=t,a={images:s},u={alignCorners:e,halfPixelCenters:n,size:t},l=T.runKernel(zs,a,u);return i?R(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var wy=k({resizeNearestNeighbor_:F5});function O5(r,t="binary",e=!1,n=.5){let o=v(r,"image","threshold"),s=.2989,i=.587,a=.114,u=o.shape[0]*o.shape[1],l=$(Ke([n]),255),c,p,m,f;if(_(o.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${o.rank}.`),_(o.shape[2]===3||o.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${o.shape[2]}.`),_(o.dtype==="int32"||o.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${o.dtype}.`),_(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),o.shape[2]===3){[c,p,m]=gr(o,[1,1,1],-1);let g=$(c,s),x=$(p,i),b=$(m,a);f=Y(Y(g,x),b)}else f=r;if(t==="otsu"){let g=Ix(J(ym(f),"int32"),or([]),256);l=P5(g,u)}let d=e?Vn(f,l):Fe(f,l);return J($(d,255),"int32")}function P5(r,t){let e=Ke([-1]),n=Ke([0]),o=Ke([0]),s,i,a,u,l,c;for(let p=0;p<r.size-1;p++){s=Ot(r,0,p+1),i=Ot(r,p+1),l=ut(pt(s),t),c=ut(pt(i),t);let m=pt($(s,ca(0,s.size)));a=ut(m,pt(s));let f=Co(i.shape,s.size),d=Y(ca(0,i.size),f),h=$(i,d);u=ut(pt(h),pt(i));let g=lt(a,u),x=lt(a,u),b=$(l,c);o=$($(b,g),x);let w=Fe(o,n);n=be(w,o,n),e=be(w,Ke([p]),e)}return e}var EA=k({threshold_:O5});function M5(r,t,e="nearest",n="constant",o=0,s){let i=v(r,"image","transform","float32"),a=v(t,"transforms","transform","float32");_(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),_(a.rank===2&&(a.shape[0]===i.shape[0]||a.shape[0]===1)&&a.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),_(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:a},l={interpolation:e,fillMode:n,fillValue:o,outputShape:s};return T.runKernel(ml,u,l)}var AA=k({transform_:M5});function L5(r,t,e){let n=v(r,"a","bandPart");_(n.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${n.rank}.`);let o=n.shape,[s,i]=n.shape.slice(-2),a,u;typeof t=="number"?(_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),a=v(t<0?s:t,"numLower","bandPart")):(_(t.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),a=be(bl(t,0),s,ao(t,s))),typeof e=="number"?(_(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`),_(e<=i,()=>`bandPart(): numUpper (${e}) must not be greater than the number of columns (${i}).`),u=v(e<0?i:e,"numUpper","bandPart")):(_(e.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),u=be(bl(e,0),i,ao(e,i)));let l=R(ca(0,s,1,"int32"),[-1,1]),c=ca(0,i,1,"int32"),p=lt(l,c),m=Or(Vn(p,a),cn(p,Ut(u))),f=Te([s,i],n.dtype);return R(qe(xr(R(n,[-1,s,i])).map(d=>be(m,d,f))),o)}var DA=k({bandPart_:L5});function z5(r){let t;if(Array.isArray(r)){t=!1,_(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=r[0].shape[0];for(let s=1;s<r.length;++s)_(r[s].shape[0]===o,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${o})`)}else t=!0,r=gr(r,r.shape[0],0).map(o=>Gn(o,[0]));_(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let e=[],n=r;for(let o=0;o<r.length;++o)e.push(T.tidy(()=>{let s=n[o];if(o>0)for(let i=0;i<o;++i){let a=$(pt($(e[i],s)),e[i]);s=lt(s,a)}return ut(s,yl(s,"euclidean"))}));return t?qe(e,0):e}var $A=k({gramSchmidt_:z5});function B5(r,t=!1){if(_(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return RA(r,t);{let e=r.shape.slice(0,r.shape.length-2).reduce((u,l)=>u*l),n=xr(R(r,[e,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),o=[],s=[];n.forEach(u=>{let[l,c]=RA(u,t);o.push(l),s.push(c)});let i=R(qe(o,0),r.shape),a=R(qe(s,0),r.shape);return[i,a]}}function RA(r,t=!1){return T.tidy(()=>{_(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let e=r.shape[0],n=r.shape[1],o=gc(e),s=ln(r),i=li([[1]],[1,1]),a=ln(i),u=e>=n?n:e;for(let l=0;l<u;++l){let c=s,p=a,m=o;[a,s,o]=T.tidy(()=>{let f=Ot(s,[l,l],[e-l,1]),d=yl(f),h=Ot(s,[l,l],[1,1]),g=be(Fe(h,0),li([[-1]]),li([[1]])),x=lt(h,$(g,d)),b=ut(f,x);b.shape[0]===1?a=ln(i):a=oe([i,Ot(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=Ut(ut(Bt(g,x),d)),I=Ot(s,[l,0],[e-l,n]),N=$(w,a),E=Vt(a);if(l===0)s=lt(I,Bt(N,Bt(E,I)));else{let F=lt(I,Bt(N,Bt(E,I)));s=oe([Ot(s,[0,0],[l,n]),F],0)}let A=Vt(N),D=Ot(o,[0,l],[e,o.shape[1]-l]);if(l===0)o=lt(D,Bt(Bt(D,a),A));else{let F=lt(D,Bt(Bt(D,a),A));o=oe([Ot(o,[0,0],[e,l]),F],1)}return[a,s,o]}),Tt([c,p,m])}return!t&&e>n&&(o=Ot(o,[0,0],[e,n]),s=Ot(s,[0,0],[n,n])),[o,s]})}var FA=k({qr_:B5});var Ze;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Ze||(Ze={}));function V5(r,t,e=Ze.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"losses","computeWeightedLoss"),o=null;t!=null&&(o=v(t,"weights","computeWeightedLoss"));let s=o==null?n:$(n,o);if(e===Ze.NONE)return s;if(e===Ze.SUM)return pt(s);if(e===Ze.MEAN){if(o==null)return ke(s);{let i=n.size/o.size,a=ut(pt(s),pt(o));return i>1?ut(a,ft(i)):a}}if(e===Ze.SUM_BY_NONZERO_WEIGHTS){if(o==null)return ut(pt(s),ft(n.size));{let i=$(o,dr(n.shape)),a=J(pt(ai(i,ft(0))),"float32");return ut(pt(s),a)}}throw Error(`Unknown reduction: ${e}`)}var Hr=k({computeWeightedLoss_:V5});function G5(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","absoluteDifference"),s=v(t,"predictions","absoluteDifference"),i=null;e!=null&&(i=v(e,"weights","absoluteDifference")),Re(o.shape,s.shape,"Error in absoluteDifference: ");let a=Ee(lt(o,s));return Hr(a,i,n)}var OA=k({absoluteDifference_:G5});function W5(r,t,e,n,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),i=v(t,"predictions","cosineDistance"),a=null;n!=null&&(a=v(n,"weights","cosineDistance")),Re(s.shape,i.shape,"Error in cosineDistance: ");let u=ft(1),l=lt(u,pt($(s,i),e,!0));return Hr(l,a,o)}var PA=k({cosineDistance_:W5});function U5(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","hingeLoss"),s=v(t,"predictions","hingeLoss"),i=null;e!=null&&(i=v(e,"weights","hingeLoss")),Re(o.shape,s.shape,"Error in hingeLoss: ");let a=ft(1);o=lt($(ft(2),o),a);let u=Pr(lt(a,$(o,s)));return Hr(u,i,n)}var MA=k({hingeLoss_:U5});function H5(r,t,e,n=1,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),i=v(t,"predictions","huberLoss"),a=null;e!=null&&(a=v(e,"weights","huberLoss")),Re(s.shape,i.shape,"Error in huberLoss: ");let u=ft(n),l=Ee(lt(i,s)),c=ao(l,u),p=lt(l,c),m=Y($(ft(.5),Gt(c)),$(u,p));return Hr(m,a,o)}var LA=k({huberLoss_:H5});function q5(r,t,e,n=1e-7,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),i=v(t,"predictions","logLoss"),a=null;e!=null&&(a=v(e,"weights","logLoss")),Re(s.shape,i.shape,"Error in logLoss: ");let u=ft(1),l=ft(n),c=Ut($(s,Nr(Y(i,l)))),p=$(lt(u,s),Nr(Y(lt(u,i),l))),m=lt(c,p);return Hr(m,a,o)}var zA=k({logLoss_:q5});function K5(r,t,e,n=Ze.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"labels","meanSquaredError"),s=v(t,"predictions","meanSquaredError"),i=null;e!=null&&(i=v(e,"weights","meanSquaredError")),Re(o.shape,s.shape,"Error in meanSquaredError: ");let a=Tm(o,s);return Hr(a,i,n)}var BA=k({meanSquaredError_:K5});function j5(r,t){let e=v(r,"labels","sigmoidCrossEntropyWithLogits"),n=v(t,"logits","sigmoidCrossEntropyWithLogits");Re(e.shape,n.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Pr(n),s=$(n,e),i=Su(sr(Ut(Ee(n))));return Y(lt(o,s),i)}function X5(r,t,e,n=0,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),i=v(t,"logits","sigmoidCrossEntropy"),a=null;if(e!=null&&(a=v(e,"weights","sigmoidCrossEntropy")),Re(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),n>0){let l=ft(n),c=ft(1),p=ft(.5);s=Y($(s,lt(c,l)),$(p,l))}let u=j5(s,i);return Hr(u,a,o)}var VA=k({sigmoidCrossEntropy_:X5});function Y5(r,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);return pn((o,s,i)=>{let u=hm(s,[e],!0),l=lt(J(s,"float32"),u);i([o,l]);let c=Ut($(l,o));return{value:pt(c,[e]),gradFunc:(f,d)=>{let[h,g]=d,x=vo(f.shape,[e]);return[$(R(f,x),lt(J(h,"float32"),sr(g))),$(R(f,x),lt(sr(g),J(h,"float32")))]}}})(r,t)}function Z5(r,t,e,n=0,o=Ze.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),i=v(t,"logits","softmaxCrossEntropy"),a=null;if(e!=null&&(a=v(e,"weights","softmaxCrossEntropy")),Re(s.shape,i.shape,"Error in softmaxCrossEntropy: "),n>0){let l=ft(n),c=ft(1),p=ft(s.shape[1]);s=Y($(s,lt(c,l)),ut(l,p))}let u=Y5(s,i);return Hr(u,a,o)}var GA=k({softmaxCrossEntropy_:Z5});function J5(r,t,e,n){let o=v(r,"indices","sparseFillEmptyRows","int32"),s=v(t,"values","sparseFillEmptyRows"),i=v(e,"denseShape","sparseFillEmptyRows","int32"),a=v(n,"defaultValue","sparseFillEmptyRows",s.dtype);if(o.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(a.rank!==0)throw new Error(`Default value should be a scalar but received shape ${a.shape}`);let u={indices:o,values:s,denseShape:i,defaultValue:a},l=T.runKernel(su,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var WA=k({sparseFillEmptyRows_:J5});function Q5(r,t,e){let n=v(r,"inputIndices","sparseReshape","int32"),o=v(t,"inputShape","sparseReshape","int32"),s=v(e,"newShape","sparseReshape","int32");if(n.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${n.shape}`);if(o.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${o.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:n,inputShape:o,newShape:s},a=T.runKernel(ll,i);return{outputIndices:a[0],outputShape:a[1]}}var UA=k({sparseReshape_:Q5});function t8(r,t,e){let n=v(r,"data","sparseSegmentMean"),o=v(t,"indices","sparseSegmentMean","int32"),s=v(e,"segmentIds","sparseSegmentMean","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(iu,i)}var HA=k({sparseSegmentMean_:t8});function e8(r,t,e){let n=v(r,"data","sparseSegmentSum"),o=v(t,"indices","sparseSegmentSum","int32"),s=v(e,"segmentIds","sparseSegmentSum","int32");if(n.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${o.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:n,indices:o,segmentIds:s};return T.runKernel(au,i)}var qA=k({sparseSegmentSum_:e8});function r8(r,t,e,n,o,s,i,a){let u=v(r,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=v(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:e,nGramWidths:n,leftPad:o,rightPad:s,padWidth:i,preserveShortSequences:a},p={data:u,dataSplits:l},m=T.runKernel(uu,p,c);return{nGrams:m[0],nGramsSplits:m[1]}}var KA=k({stringNGrams_:r8});function n8(r,t,e=!0){let n=v(r,"input","stringSplit","string"),o=v(t,"delimiter","stringSplit","string");if(n.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${n.shape}`);if(o.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${o.shape}`);let s={skipEmpty:e},i={input:n,delimiter:o},a=T.runKernel(cu,i,s);return{indices:a[0],values:a[1],shape:a[2]}}var jA=k({stringSplit_:n8});function o8(r,t){let e=v(r,"input","stringToHashBucketFast","string"),n={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let o={input:e};return T.runKernel(pu,o,n)}var XA=k({stringToHashBucketFast_:o8});function s8(r,t,e,n=!0){let o=v(r,"input","staticRegexReplace","string"),s={pattern:t,rewrite:e,replaceGlobal:n};return T.runKernel(oc,{x:o},s)}var YA=k({staticRegexReplace_:s8});var i8={fft:Au,ifft:Il,rfft:Du,irfft:km},a8={hammingWindow:hA,hannWindow:dy,frame:hy,stft:gA},lo={flipLeftRight:yA,grayscaleToRGB:bA,resizeNearestNeighbor:wy,resizeBilinear:by,rotateWithOffset:wA,cropAndResize:xA,nonMaxSuppression:IA,nonMaxSuppressionAsync:SA,nonMaxSuppressionWithScore:NA,nonMaxSuppressionWithScoreAsync:kA,nonMaxSuppressionPadded:TA,nonMaxSuppressionPaddedAsync:_A,threshold:EA,transform:AA},Q0={bandPart:DA,gramSchmidt:$A,qr:FA},l8={absoluteDifference:OA,computeWeightedLoss:Hr,cosineDistance:PA,hingeLoss:MA,huberLoss:LA,logLoss:zA,meanSquaredError:BA,sigmoidCrossEntropy:VA,softmaxCrossEntropy:GA},u8={sparseFillEmptyRows:WA,sparseReshape:UA,sparseSegmentMean:HA,sparseSegmentSum:qA},c8={stringNGrams:KA,stringSplit:jA,stringToHashBucketFast:XA,staticRegexReplace:YA};var Q={};Kt(Q,{Serializable:()=>wh,SerializationMap:()=>pa,registerClass:()=>tN});var wh=class{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}},pa=class{constructor(){this.classNameMap={}}static getMap(){return pa.instance==null&&(pa.instance=new pa),pa.instance}static register(t){pa.getMap().classNameMap[t.className]=[t,t.fromConfig]}};function tN(r){_(r.className!=null,()=>"Class being registered does not have the static className property defined."),_(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),_(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),pa.register(r)}var qr=class extends wh{minimize(t,e=!1,n){let{value:o,grads:s}=this.computeGradients(t,n);if(n!=null){let i=n.map(a=>({name:a.name,tensor:s[a.name]}));this.applyGradients(i)}else this.applyGradients(s);return Tt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Vx(t,e)}dispose(){this.iterations_!=null&&Tt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ft(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}};Object.defineProperty(qr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var kc=class extends qr{static get className(){return"Adadelta"}constructor(t,e,n=null){super(),this.learningRate=t,this.rho=e,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accum_grad`,variable:B(()=>vt(s).variable(i))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${n}/accum_var`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedGrads[o].variable,l=this.accumulatedUpdates[o].variable;B(()=>{let c=Y($(u,this.rho),$(Gt(a),1-this.rho)),p=$(ut(Ne(Y(l,this.epsilon)),Ne(Y(u,this.epsilon))),a),m=Y($(l,this.rho),$(Gt(p),1-this.rho));u.assign(c),l.assign(m);let f=Y($(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Tt(this.accumulatedGrads.map(t=>t.variable)),Tt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,n=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}};var Tc=class extends qr{static get className(){return"Adagrad"}constructor(t,e=.1){super(),this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${n}/accumulator`,variable:B(()=>Co(s.shape,this.initialAccumulatorValue).variable(!1))});let i=Array.isArray(t)?t[o].tensor:t[n];if(i==null)return;let a=this.accumulatedGrads[o].variable;B(()=>{let u=Y(a,Gt(i));a.assign(u);let l=Y($(ut(i,Ne(Y(u,T.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Tt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}};var _c=class extends qr{static get className(){return"Adam"}constructor(t,e,n,o=null){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=ft(e).variable(),this.accBeta2=ft(n).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=lt(1,this.accBeta1),o=lt(1,this.accBeta2);e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:B(()=>vt(a).variable(u))}),this.accumulatedSecondMoment[i]==null&&(this.accumulatedSecondMoment[i]={originalName:`${s}/v`,variable:B(()=>vt(a).variable(u))});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedSecondMoment[i].variable,m=Y($(c,this.beta1),$(l,1-this.beta1)),f=Y($(p,this.beta2),$(Gt(l),1-this.beta2)),d=ut(m,n),h=ut(f,o);c.assign(m),p.assign(f);let g=Y($(ut(d,Y(Ne(h),this.epsilon)),-this.learningRate),a);a.assign(g)}),this.accBeta1.assign($(this.accBeta1,this.beta1)),this.accBeta2.assign($(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&Tt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),B(()=>{this.accBeta1.assign(un(this.beta1,this.iterations_+1)),this.accBeta2.assign(un(this.beta2,this.iterations_+1))});let e=t.length/2,n=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}};var Ec=class extends qr{static get className(){return"Adamax"}constructor(t,e,n,o=null,s=0){super(),this.learningRate=t,this.beta1=e,this.beta2=n,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=ft(0).variable(),this.accBeta1=ft(e).variable()}),o==null&&(this.epsilon=T.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(n=>n.name):Object.keys(t);B(()=>{let n=lt(1,this.accBeta1),o=ut(-this.learningRate,Y($(this.iteration,this.decay),1));e.forEach((s,i)=>{let a=T.registeredVariables[s],u=!1;this.accumulatedFirstMoment[i]==null&&(this.accumulatedFirstMoment[i]={originalName:`${s}/m`,variable:vt(a).variable(u)}),this.accumulatedWeightedInfNorm[i]==null&&(this.accumulatedWeightedInfNorm[i]={originalName:`${s}/v`,variable:vt(a).variable(u)});let l=Array.isArray(t)?t[i].tensor:t[s];if(l==null)return;let c=this.accumulatedFirstMoment[i].variable,p=this.accumulatedWeightedInfNorm[i].variable,m=Y($(c,this.beta1),$(l,1-this.beta1)),f=$(p,this.beta2),d=Ee(l),h=Nn(f,d);c.assign(m),p.assign(h);let g=Y($(ut(o,n),ut(m,Y(h,this.epsilon))),a);a.assign(g)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign($(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Tt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&Tt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}};var Cl=class extends qr{static get className(){return"SGD"}constructor(t){super(),this.learningRate=t,this.setLearningRate(t)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=Array.isArray(t)?t[o].tensor:t[n];if(s==null)return;let i=T.registeredVariables[n];B(()=>{let a=Y($(this.c,s),i);i.assign(a)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=$e(ft(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}};var Ac=class extends Cl{static get className(){return"Momentum"}constructor(t,e,n=!1){super(t),this.learningRate=t,this.momentum=e,this.useNesterov=n,this.accumulations=[],this.m=ft(this.momentum)}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n];this.accumulations[o]==null&&(this.accumulations[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(!1))});let i=this.accumulations[o].variable,a=Array.isArray(t)?t[o].tensor:t[n];a!=null&&B(()=>{let u,l=Y($(this.m,i),a);this.useNesterov?u=Y($(this.c,Y(a,$(l,this.m))),s):u=Y($(this.c,l),s),i.assign(l),s.assign(u)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Tt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(n=>({originalName:n.name,variable:n.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}};var Dc=class extends qr{static get className(){return"RMSProp"}constructor(t,e=.9,n=0,o=null,s=!1){if(super(),this.learningRate=t,this.decay=e,this.momentum=n,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=T.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){(Array.isArray(t)?t.map(n=>n.name):Object.keys(t)).forEach((n,o)=>{let s=T.registeredVariables[n],i=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${n}/rms`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${n}/momentum`,variable:B(()=>vt(s).variable(i))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${n}/mg`,variable:B(()=>vt(s).variable(i))});let a=Array.isArray(t)?t[o].tensor:t[n];if(a==null)return;let u=this.accumulatedMeanSquares[o].variable,l=this.accumulatedMoments[o].variable;B(()=>{let c=Y($(u,this.decay),$(Gt(a),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[o].variable,m=Y($(p,this.decay),$(a,1-this.decay)),f=ut($(a,this.learningRate),Ne(lt(c,Y(Gt(m),this.epsilon)))),d=Y($(l,this.momentum),f);u.assign(c),p.assign(m),l.assign(d);let h=lt(s,d);s.assign(h)}else{let p=Y($(u,this.decay),$(Gt(a),1-this.decay)),m=Y($(l,this.momentum),ut($(a,this.learningRate),Ne(Y(p,this.epsilon))));u.assign(p),l.assign(m);let f=lt(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Tt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Tt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&Tt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,n=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}};var p8=[kc,Tc,_c,Ec,Ac,Dc,Cl];function ZA(){for(let r of p8)tN(r)}var Mr={};Kt(Mr,{browserFiles:()=>QA,browserHTTPRequest:()=>r2,concatenateArrayBuffers:()=>em,copyModel:()=>tE,decodeWeights:()=>rx,encodeWeights:()=>L_,fromMemory:()=>n2,fromMemorySync:()=>iN,getLoadHandlers:()=>U_,getModelArtifactsForJSON:()=>rm,getModelArtifactsForJSONSync:()=>k0,getModelArtifactsInfoForJSON:()=>Yi,getSaveHandlers:()=>W_,getWeightSpecs:()=>ox,http:()=>Cy,isHTTPScheme:()=>Iy,listModels:()=>J_,loadWeights:()=>t2,moveModel:()=>eE,registerLoadRouter:()=>G_,registerSaveRouter:()=>V_,removeModel:()=>Q_,weightsLoaderFactory:()=>oN,withSaveHandler:()=>o2,withSaveHandlerSync:()=>s2});var m8="model",f8=".json",d8=".weights.bin";function JA(r){return new Promise(t=>setTimeout(t)).then(r)}var vl=class{constructor(t){if(!L().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(vl.URL_SCHEME)&&(t=t.slice(vl.URL_SCHEME.length)),(t==null||t.length===0)&&(t=m8),this.modelJsonFileName=t+f8,this.weightDataFileName=t+d8}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o=nx(t,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),i=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(i.download=this.modelJsonFileName,i.href=s,await JA(()=>i.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let a=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;a.download=this.weightDataFileName,a.href=e,await JA(()=>a.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Yi(t)}}}};vl.URL_SCHEME="downloads://";var eN=class{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.jsonFile=t[0],this.weightsFiles=t.slice(1)}async load(){return new Promise((t,e)=>{let n=new FileReader;n.onload=o=>{let s=JSON.parse(o.target.result),i=s.modelTopology;if(i==null){e(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){e(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){t({modelTopology:i});return}let u=rm(s,l=>this.loadWeights(l));t(u)},n.onerror=o=>e(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(t){let e=[],n=[];for(let i of t)e.push(...i.weights),n.push(...i.paths);let o=this.checkManifestAndWeightFiles(t),s=n.map(i=>this.loadWeightsFile(i,o[i]));return Promise.all(s).then(i=>[e,em(i)])}loadWeightsFile(t,e){return new Promise((n,o)=>{let s=new FileReader;s.onload=i=>{let a=i.target.result;n(a)},s.onerror=i=>o(`Failed to weights data from file of path '${t}'.`),s.readAsArrayBuffer(e)})}checkManifestAndWeightFiles(t){let e=[],n=this.weightsFiles.map(s=>N0(s.name)),o={};for(let s of t)s.paths.forEach(i=>{let a=N0(i);if(e.indexOf(a)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${a}'`);if(e.push(a),n.indexOf(a)===-1)throw new Error(`Weight file with basename '${a}' is not provided.`);o[i]=this.weightsFiles[n.indexOf(a)]});if(e.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${e.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return o}},h8=r=>L().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(vl.URL_SCHEME)?g8(r.slice(vl.URL_SCHEME.length)):null;ve.registerSaveRouter(h8);function g8(r="model"){return new vl(r)}function QA(r){return new eN(r)}function rN(r,t,e,n){i(r),e=e==null?0:e,n=n==null?1:n,a(e,n);let o=0,s=u=>(u.then(l=>{let c=e+ ++o/r.length*(n-e);return t(c),l}),u);function i(u){_(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function a(u,l){_(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),_(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),_(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(r.map(s))}async function nN(r,t){t==null&&(t={});let e=t.fetchFunc==null?L().platform.fetch:t.fetchFunc,n=r.map(p=>e(p,t.requestInit,{isBinary:!0})),o=0,s=.5,a=(t.onProgress==null?await Promise.all(n):await rN(n,t.onProgress,o,s)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(a):await rN(a,t.onProgress,u,l)}async function t2(r,t="",e,n){return oN(i=>nN(i,{requestInit:n}))(r,t,e)}function oN(r){return async(t,e="",n)=>{let o=t.map(()=>!1),s={},i=n!=null?n.map(()=>!1):[],a=[];if(t.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=ch[x]*Qt(g.shape),w=()=>{o[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};n!=null?n.forEach((I,N)=>{I===g.name&&(w(),i[N]=!0)}):w(),a.push(g.name),h+=b})}),!i.every(f=>f)){let f=n.filter((d,h)=>!i[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${a.join(", ")}.`)}let u=o.reduce((f,d,h)=>(d&&f.push(h),f),[]),l=[];u.forEach(f=>{t[f].paths.forEach(d=>{let h=e+(e.endsWith("/")?"":"/")+d;l.push(h)})});let c=await r(l),p={},m=0;return u.forEach(f=>{let d=t[f].paths.length,h=0;for(let I=0;I<d;I++)h+=c[m+I].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let I=0;I<d;I++){let N=new Uint8Array(c[m+I]);x.set(N,b),b+=N.byteLength}s[f].forEach(I=>{let N=g.slice(I.groupOffset,I.groupOffset+I.sizeBytes),E=rx(N,[I.manifestEntry]);for(let A in E)p[A]=E[A]}),m+=d}),p}}var x8="application/octet-stream",y8="application/json",Ih=class{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(_(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=L().platform.fetch,_(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&_(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o=nx(t,n);e.body.append("model.json",new Blob([JSON.stringify(o)],{type:y8}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:x8}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:Yi(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(s){let i=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?i+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":i+=" Please make sure the server is serving valid JSON for this request.",new Error(i)}let n=e.modelTopology,o=e.weightsManifest;if(n==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return rm(e,s=>this.loadWeights(s))}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[n,o]=b8(e),s=this.weightPathPrefix||n,i=ox(t),a=[],u=[];for(let c of t)for(let p of c.paths)this.weightUrlConverter!=null?u.push(this.weightUrlConverter(p)):a.push(s+p+o);this.weightUrlConverter&&a.push(...await Promise.all(u));let l=await nN(a,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[i,em(l)]}};Ih.URL_SCHEME_REGEX=/^https?:\/\//;function b8(r){let t=r.lastIndexOf("/"),e=r.lastIndexOf("?"),n=r.substring(0,t),o=e>t?r.substring(e):"";return[n+"/",o]}function Iy(r){return r.match(Ih.URL_SCHEME_REGEX)!=null}var e2=(r,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(r)?e=r.every(n=>Iy(n)):e=Iy(r),e)return Cy(r,t)}return null};ve.registerSaveRouter(e2);ve.registerLoadRouter(e2);function Cy(r,t){return new Ih(r,t)}function r2(r,t){return Cy(r,t)}var Ch=class{constructor(t){this.modelArtifacts=t}load(){return this.modelArtifacts}},vy=class{constructor(t){this.saveHandler=t}save(t){return this.saveHandler(t)}},sN=class{constructor(t){t.load&&(this.load=()=>Promise.resolve(t.load())),t.save&&(this.save=e=>Promise.resolve(t.save(e)))}};function n2(r,t,e,n){let o=arguments;return new sN(iN(...o))}function iN(r,t,e,n){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new Ch(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ch({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ch({modelTopology:r,weightSpecs:t,weightData:e,trainingConfig:n}))}function o2(r){return new vy(r)}function s2(r){return new vy(r)}var a2={};Kt(a2,{confusionMatrix:()=>i2});function w8(r,t,e){let n=v(r,"labels","confusionMatrix"),o=v(t,"predictions","confusionMatrix");_(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),_(n.rank===1,()=>`Expected the rank of labels to be 1, but got ${n.rank}`),_(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),_(n.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${n.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),_(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=la(J(n,"int32"),e),i=la(J(o,"int32"),e),a=Vt(s),u=Bt(a,i);return J(u,"int32")}var i2=k({confusionMatrix_:w8});var Sy={};Kt(Sy,{fromPixels:()=>T8,fromPixelsAsync:()=>N8,toPixels:()=>k8});var $c;function l2(r,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,n=!1,o=!1,s=!1,i=!1,a=!1;if(r.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)n=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)a=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(oh(rh,T.backendName)!=null){let d={pixels:r},h={numChannels:t};return T.runKernel(rh,d,h)}let[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;if(i)p=r.getContext("2d").getImageData(0,0,l,c).data;else if(n||e)p=r.data;else if(s||o||a){if($c==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")$c=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else $c=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});$c.canvas.width=l,$c.canvas.height=c,$c.drawImage(r,0,0,l,c),p=$c.getImageData(0,0,l,c).data}let m;if(t===4)m=new Int32Array(p);else{let d=l*c;m=new Int32Array(d*t);for(let h=0;h<d;h++)for(let g=0;g<t;++g)m[h*t+g]=p[h*4+g]}return iy(m,[c,l,t],"int32")}function I8(r){return r!=null&&r.data instanceof Uint8Array}function C8(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function v8(r){return r!=null&&r.width!==0&&r.height!==0}function S8(r){return C8()&&!(r instanceof ImageBitmap)&&v8(r)&&!I8(r)}async function N8(r,t=3){let e=null;if(L().getBool("WRAP_TO_IMAGEBITMAP")&&S8(r)){let n;try{n=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(o){n=null}n!=null&&n.width===r.width&&n.height===r.height?e=n:e=r}else e=r;return l2(e,t)}async function k8(r,t){let e=v(r,"img","toPixels");if(!(r instanceof Pt)){let l=e;e=J(l,"int32"),l.dispose()}if(e.rank!==2&&e.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${e.rank}.`);let[n,o]=e.shape.slice(0,2),s=e.rank===2?1:e.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let i=await e.data(),a=e.dtype==="float32"?255:1,u=new Uint8ClampedArray(o*n*4);for(let l=0;l<n*o;++l){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=i[l*s+m];if(e.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(e.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*a,c[1]=f*a,c[2]=f*a):c[m]=f*a}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=o,t.height=n;let l=t.getContext("2d"),c=new ImageData(u,o,n);l.putImageData(c,0,0)}return e!==r&&e.dispose(),u}var T8=k({fromPixels_:l2});var Ny={};Kt(Ny,{prepareAndValidate:()=>u2});function u2(r,t){let e=r.shape.length,n=t.shape.length;if(e<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${e}.`);if(n<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${n}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[n-1]>e)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[n-1]} vs. ${e}`);if(Qt(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let o=t.shape,s=o[o.length-1],i=1;for(let p=0;p<o.length-1;++p)i*=o[p];let a=r.shape,u=o.slice();u.pop();let l=1;for(let p=s;p<e;++p)l*=a[p],u.push(a[p]);let c=[...ki(r.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,c]}var ze={};Kt(ze,{assertParamsValid:()=>E8,computeFlatOffset:()=>F8,computeOutShape:()=>D8,getNormalizedAxes:()=>$8,isSliceContinous:()=>R8,maskToAxes:()=>A8,parseSliceParams:()=>lN,sliceInfo:()=>O8,startForAxis:()=>x2,startIndicesWithElidedDims:()=>d2,stopForAxis:()=>y2,stopIndicesWithElidedDims:()=>h2,stridesForAxis:()=>g2,stridesWithElidedDims:()=>p2});var aN=-2,_8=-1;function E8(r,t,e){let n=r.shape.length;_(n===t.length,()=>`Error in slice${n}D: Length of begin ${t} must match the rank of the array (${n}).`),_(n===e.length,()=>`Error in slice${n}D: Length of size ${e} must match the rank of the array (${n}).`);for(let o=0;o<n;++o)_(t[o]+e[o]<=r.shape[o],()=>`Error in slice${n}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${r.shape[o]})`)}function A8(r){let t=[],e=0;for(;r>0;)r&1&&t.push(e),r/=2,e++;return t}function D8(r,t,e){let n=[];for(let o=0;o<r.length;o++)n[o]=Math.ceil((t[o]-r[o])/e[o]);return n}function p2(r,t,e,n){let o=[...r];for(let s=o.length;s<n.length;s++)o.push(1);for(let s=0;s<e;s++)s===0?o[t]=1:(o.splice(t,0,1),o.pop());return o}function m2(r,t,e){return e<=r?e:e-(t-1)}function f2(r,t){let e=[];for(let n=0;n<r;n++)e.push(t+n);return e}function $8(r,t,e,n,o,s,i,a,u){let l=r.length,c=new Array(l),p=new Array(l),m=new Array(l);if(t.length&&e>0){let f=t[0],d=e+1;c=d2(i,f,d,n,r),p=h2(a,f,d,o,r),m=p2(s,f,d,r)}else for(let f=0;f<l;f++)c[f]=x2(i,n,s,r,f,u),p[f]=y2(a,o,s,r,f,u),m[f]=g2(s,f,u);return{begin:c,end:p,strides:m}}function d2(r,t,e,n,o){let s=[...o],i=f2(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=0;else{let u=m2(t,e,a),l=n[u];r&1<<u&&(l=0),s[a]=l}return s}function h2(r,t,e,n,o){let s=[...o],i=f2(e,t);for(let a=0;a<s.length;a++)if(i.indexOf(a)>-1)s[a]=Number.MAX_SAFE_INTEGER;else{let u=m2(t,e,a),l=n[u];r&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[a]=l}for(let a=0;a<s.length;a++){let u=o[a];s[a]<0&&(s[a]+=u),s[a]=Ap(0,s[a],o[a])}return s}function g2(r,t,e){let n=r[t];return(e&1<<t||n==null)&&(n=1),n}function x2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),i=Ap(0,i,u-1),i}function y2(r,t,e,n,o,s){let i=t[o],a=e[o]||1;(r&1<<o||s&1<<o||i==null)&&(a>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=n[o];return i<0&&(i+=u),a>0?i=Ap(0,i,u):i=Ap(-1,i,u-1),i}function R8(r,t,e){let n=e.length;for(let o=0;o<e.length;o++)if(e[o]>1){n=o;break}for(let o=n+1;o<e.length;o++)if(t[o]>0||e[o]!==r[o])return!1;return!0}function F8(r,t){let e=r.length>0?r[r.length-1]:1;for(let n=0;n<r.length-1;n++)e+=r[n]*t[n];return e}function lN(r,t,e){let n,o=r.shape.length;typeof t=="number"?n=[t,...new Array(o-1).fill(0)]:t.length<o?n=t.concat(new Array(o-t.length).fill(0)):n=t.slice(),n.forEach(i=>{_(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.length<o?s=e.concat(new Array(o-e.length).fill(-1)):s=e,s=s.map((i,a)=>i>=0?i:(_(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${a}.`),r.shape[a]-n[a])),[n,s]}function O8(r,t,e,n,o,s,i,a,u){let l;if(n==null?(l=new Array(t.length),l.fill(1)):l=n,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:e.slice(),strides:l.slice(),beginMask:o,endMask:s,ellipsisMask:i,newAxisMask:a,shrinkAxisMask:u};for(let w=0;w<p.dims;w++)c&&1<<w&a&&p.numAddAxisAfterEllipsis++,1<<w&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let m={dims:r.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};P8(p,m);let f=!0,d=!0,h=!0,g=[],x=[];for(let w=0;w<r.length;++w){if(m.strides[w]===0)throw Error(`strides[${w}] must be non-zero`);let I=!!(m.shrinkAxisMask&1<<w),N=r[w];if(N===-1){g.push(I?1:-1);continue}let E=[m.beginMask&1<<w,m.endMask&1<<w],A=[m.strides[w]>0?0:-1,m.strides[w]>0?N:N-1];if(I&&m.strides[w]<=0)throw Error("only stride 1 allowed on non-range indexing.");h=h&&m.strides[w]===1;let D=!!(m.beginMask&1<<w&&m.endMask&1<<w);if(m.beginValid&&m.endValid){if(I){let G=m.begin[w]<0?N+m.begin[w]:m.begin[w];if(m.begin[w]=G,m.end[w]=m.begin[w]+1,G<0||G>=N)throw Error(`slice index ${m.begin[w]} of dimension ${w} out of bounds.`)}else m.begin[w]=c2(m.begin[w],0,m.strides[w],N,E,A),m.end[w]=c2(m.end[w],1,m.strides[w],N,E,A);let V=m.strides[w]===1&&m.begin[w]===0&&m.end[w]===N;f=f&&V,d=d&&(w===0&&m.strides[w]===1||V)}else f=f&&m.strides[w]===1&&D,d=d&&(w===0&&m.strides[w]===1||D);let F,P=!1;if(m.beginValid&&m.endValid?(F=m.end[w]-m.begin[w],P=!0):I?(F=1,P=!0):D&&N>=0&&(m.strides[w]<0?F=-N:F=N,P=!0),P){let V;F===0||F<0!=m.strides[w]<0?V=0:V=Math.trunc(F/m.strides[w])+(F%m.strides[w]!==0?1:0),g.push(V)}else g.push(-1)}for(let w=0;w<m.finalShapeGatherIndices.length;++w){let I=m.finalShapeGatherIndices[w];I>=0?x.push(g[I]):I===aN&&x.push(1)}return{finalShapeSparse:x.filter((w,I)=>m.finalShapeGatherIndices[I]!==aN),finalShape:x,isIdentity:f,sliceDim0:d,isSimpleSlice:h,begin:m.begin,end:m.end,strides:m.strides}}function P8(r,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let e=0;t.beginValid=r.begin!=null,t.endValid=r.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let n=0;n<r.dims;n++)if(1<<n&r.ellipsisMask){let o=Math.min(t.dims-(r.dims-n)+1+r.numAddAxisAfterEllipsis,t.dims);for(;e<o;e++)t.begin[e]=0,t.end[e]=0,t.strides[e]=1,t.beginMask|=1<<e,t.endMask|=1<<e,t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[e]=n}else if(1<<n&r.newAxisMask)t.finalShapeGatherIndices.push(aN),t.finalShapeGatherIndicesSparse.push(-1);else{if(e===t.begin.length)throw Error(`Index out of range using input dim ${e}; input has only ${t.dims} dims, ${t.begin.length}.`);r.begin!=null&&(t.begin[e]=r.begin[n]),r.end!=null&&(t.end[e]=r.end[n]),t.strides[e]=r.strides[n],r.beginMask&1<<n&&(t.beginMask|=1<<e),r.endMask&1<<n&&(t.endMask|=1<<e),r.shrinkAxisMask&1<<n?(t.finalShapeGatherIndices.push(_8),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<e):(t.finalShapeGatherIndices.push(e),t.finalShapeGatherIndicesSparse.push(n)),t.inputShapeGatherIndicesSparse[e]=n,e++}}function c2(r,t,e,n,o,s){if(o[t])return e>0?s[t]:s[t+1&1];{let i=r<0?n+r:r;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var b2="4.3.0";var vh=class{static sgd(t){return new Cl(t)}static momentum(t,e,n=!1){return new Ac(t,e,n)}static rmsprop(t,e=.9,n=0,o=null,s=!1){return new Dc(t,e,n,o,s)}static adam(t=.001,e=.9,n=.999,o=null){return new _c(t,e,n,o)}static adadelta(t=.001,e=.95,n=null){return new kc(t,e,n)}static adamax(t=.002,e=.9,n=.999,o=null,s=0){return new Ec(t,e,n,o,s)}static adagrad(t,e=.1){return new Tc(t,e)}};var Rc=vh;var M8=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function Sh(){return new Promise(r=>M8(()=>r()))}var S={};Kt(S,{ERF_A1:()=>J8,ERF_A2:()=>Q8,ERF_A3:()=>tY,ERF_A4:()=>eY,ERF_A5:()=>rY,ERF_P:()=>Z8,PARALLELIZE_THRESHOLD:()=>ky,RowPartitionType:()=>ma,SELU_SCALE:()=>cN,SELU_SCALEALPHA:()=>uN,applyActivation:()=>Sc,assertAndGetBroadcastShape:()=>Mt,assertAxesAreInnerMostDims:()=>vj,assertParamsConsistent:()=>L8,assignToTypedArray:()=>lY,axesAreInnerMostDims:()=>M0,calculateShapes:()=>aA,checkEinsumDimSizes:()=>dY,checkPadOnDimRoundingMode:()=>Se,combineLocations:()=>dE,combineRaggedTensorToTensorShapes:()=>B8,complexWithEvenIndex:()=>sY,complexWithOddIndex:()=>iY,computeConv2DInfo:()=>dc,computeConv3DInfo:()=>iE,computeDefaultPad:()=>P0,computeDilation2DInfo:()=>SK,computeOptimalWindowSize:()=>U8,computeOutAndReduceShapes:()=>L0,computeOutShape:()=>z8,computePool2DInfo:()=>O0,computePool3DInfo:()=>NK,convertConv2DDataFormat:()=>aE,decodeEinsumEquation:()=>mY,eitherStridesOrDilationsAreOne:()=>$r,expandShapeToKeepDim:()=>vo,exponent:()=>cY,exponents:()=>uY,fromStringArrayToUint8:()=>OY,fromUint8ToStringArray:()=>FY,getAxesPermutation:()=>z0,getBroadcastDims:()=>mE,getComplexWithIndex:()=>aY,getEinsumComputePath:()=>hY,getEinsumPermutation:()=>fY,getFusedBiasGradient:()=>vc,getFusedDyActivation:()=>Cc,getImageCenter:()=>H8,getInnerMostAxes:()=>Sj,getPermuted:()=>K8,getRaggedRank:()=>G8,getReductionAxes:()=>ye,getReshaped:()=>q8,getReshapedPermuted:()=>j8,getRowPartitionTypesHelper:()=>V8,getSliceBeginCoords:()=>X8,getSliceSize:()=>Y8,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>bY,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>wY,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>IY,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>SY,getSparseReshapeInputOutputMismatchErrorMessage:()=>kY,getSparseReshapeInputOutputMultipleErrorMessage:()=>NY,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>CY,getSparseReshapeNegativeOutputDimErrorMessage:()=>vY,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>AY,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>TY,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>_Y,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>EY,getUndoAxesPermutation:()=>hh,isIdentityPermutation:()=>gY,log:()=>wq,mergeRealAndImagArrays:()=>nY,prepareAndValidate:()=>u2,prepareSplitSize:()=>yY,segment_util:()=>mN,shouldFuse:()=>Nc,slice_util:()=>ze,splitRealAndImagArrays:()=>oY,stridesOrDilationsArePositive:()=>ta,tupleValuesAreOne:()=>so,upcastType:()=>lr,validateDefaultValueShape:()=>W8,validateInput:()=>_m,validateUpdateShape:()=>X0,warn:()=>Xi});function L8(r,t){let e=r[0].length;r.forEach((o,s)=>{_(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),_(t>=0&&t<e,()=>`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let n=r[0];r.forEach((o,s)=>{for(let i=0;i<e;i++)_(i===t||o[i]===n[i],()=>`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${n}) along the non-concatenated axis ${s}.`)})}function z8(r,t){let e=r[0].slice();for(let n=1;n<r.length;n++)e[t]+=r[n][t];return e}var ma;(function(r){r[r.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",r[r.VALUE_ROWIDS=1]="VALUE_ROWIDS",r[r.ROW_LENGTHS=2]="ROW_LENGTHS",r[r.ROW_SPLITS=3]="ROW_SPLITS",r[r.ROW_LIMITS=4]="ROW_LIMITS",r[r.ROW_STARTS=5]="ROW_STARTS"})(ma||(ma={}));function B8(r,t,e){let n=new Array;if(e==null&&t==null)return n;if(t==null)for(;n.length<r+e.length;)n.push(-1);else n=t.slice();if(e==null)return n;if(r+e.length!==n.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${r+e.length}, but shape.rank = ${n.length}`);for(let o=1;o<e.length;++o){let s=e[o],i=n[n.length-e.length+o],a=n[i];if(s>=0)if(a>=0){if(a!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${o+r}] = ${s} but shape[${o+r}] = ${a}`)}else n[i]=s}return n}function V8(r){let t={FIRST_DIM_SIZE:ma.FIRST_DIM_SIZE,VALUE_ROWIDS:ma.VALUE_ROWIDS,ROW_LENGTHS:ma.ROW_LENGTHS,ROW_SPLITS:ma.ROW_SPLITS,ROW_LIMITS:ma.ROW_LIMITS,ROW_STARTS:ma.ROW_STARTS},e=[];for(let n of r)if(n in t)e.push(t[n]);else break;return e}function G8(r){return r.length===0?0:r[0]===ma.FIRST_DIM_SIZE?r.length-1:r.length}function W8(r,t){if(r==null||t==null)return;let e=r.length,n=t.length;if(e>=n)throw new Error(`defaultValue.shape=${r} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${e} must be less than ragged tensor input flatValues.rank = ${n})`);for(let o=0;o<Math.min(e,n-1);++o){let s=r[o],i=t[o+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${r}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${o-r.length}] = ${s} but ragged tensor input.flatValues.shape[${o-r.length}] = ${i}`)}}var ky=30;function U8(r){return r<=ky?r:$p(r,Math.floor(Math.sqrt(r)))}function H8(r,t,e){let n=e*(typeof r=="number"?r:r[0]),o=t*(typeof r=="number"?r:r[1]);return[n,o]}function q8(r,t,e,n=!0){let o=[];if(n)o=o.concat(t.slice(0)),o.push(r[0]/e),o=o.concat(r.slice(1));else{o=o.concat(r[0]);let s=t.length;for(let i=0;i<s;++i)o=o.concat([r[i+1]/t[i],t[i]]);o=o.concat(r.slice(s+1))}return o}function K8(r,t,e=!0){let n=[];if(e){n.push(t);for(let o=t+1;o<r;++o)o<=2*t?(n.push(o),n.push(o-(t+1))):n.push(o)}else{let o=[],s=[];for(let i=1;i<r;++i)i>=t*2+1||i%2===1?s.push(i):o.push(i);n.push(...o),n.push(0),n.push(...s)}return n}function j8(r,t,e,n=!0){let o=[];n?o.push(r[0]/e):o.push(r[0]*e);for(let s=1;s<r.length;++s)s<=t.length?n?o.push(t[s-1]*r[s]):o.push(r[s]/t[s-1]):o.push(r[s]);return o}function X8(r,t){let e=[0];for(let n=0;n<t;++n)e.push(r[n][0]);return e}function Y8(r,t,e){let n=r.slice(0,1);for(let o=0;o<e;++o)n.push(r[o+1]-t[o][0]-t[o][1]);return n}var uN=1.7580993408473768,cN=1.0507009873554805;var Z8=.3275911,J8=.254829592,Q8=-.284496736,tY=1.421413741,eY=-1.453152027,rY=1.061405429;function nY(r,t){if(r.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${t.length}.`);let e=new Float32Array(r.length*2);for(let n=0;n<e.length;n+=2)e[n]=r[n/2],e[n+1]=t[n/2];return e}function oY(r){let t=new Float32Array(r.length/2),e=new Float32Array(r.length/2);for(let n=0;n<r.length;n+=2)t[n/2]=r[n],e[n/2]=r[n+1];return{real:t,imag:e}}function sY(r){let t=Math.ceil(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=0;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function iY(r){let t=Math.floor(r.length/4),e=new Float32Array(t),n=new Float32Array(t);for(let o=2;o<r.length;o+=4)e[Math.floor(o/4)]=r[o],n[Math.floor(o/4)]=r[o+1];return{real:e,imag:n}}function aY(r,t){let e=r[t*2],n=r[t*2+1];return{real:e,imag:n}}function lY(r,t,e,n){r[n*2]=t,r[n*2+1]=e}function uY(r,t){let e=new Float32Array(r/2),n=new Float32Array(r/2);for(let o=0;o<Math.ceil(r/2);o++){let s=(t?2:-2)*Math.PI*(o/r);e[o]=Math.cos(s),n[o]=Math.sin(s)}return{real:e,imag:n}}function cY(r,t,e){let n=(e?2:-2)*Math.PI*(r/t),o=Math.cos(n),s=Math.sin(n);return{real:o,imag:s}}var pN="->",pY=/->/g,w2=",",I2="...";function mY(r,t){r=r.replace(/\s/g,"");let e=(r.length-r.replace(pY,"").length)/pN.length;if(e<1)throw new Error("Equations without an arrow are not supported.");if(e>1)throw new Error(`Equation must contain exactly one arrow ("${pN}").`);let[n,o]=r.split(pN);_(n.indexOf(I2)===-1,()=>`The ellipsis notation ("${I2}") is not supported yet.`);let s=n.split(w2),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let a=[];for(let m=0;m<o.length;++m){let f=o[m];if(!s.some(d=>d.indexOf(f)!==-1))throw new Error(`Output subscripts contain the label ${f} not present in the input subscripts.`);a.indexOf(f)===-1&&a.push(f)}for(let m=0;m<n.length;++m){let f=n[m];a.indexOf(f)===-1&&f!==w2&&a.push(f)}let u=new Array(s.length);for(let m=0;m<i;++m){if(new Set(s[m].split("")).size!==s[m].length)throw new Error(`Found duplicate axes in input component ${s[m]}. Support for duplicate axes in input is not implemented yet.`);u[m]=[];for(let f=0;f<s[m].length;++f)u[m].push(a.indexOf(s[m][f]))}let l=a.length,c=o.length,p=[];for(let m=c;m<l;++m)p.push(m);return{allDims:a,summedDims:p,idDims:u}}function fY(r,t){let e=new Array(r);e.fill(-1);for(let o=0;o<t.length;++o)e[t[o]]=o;let n=[];for(let o=0;o<r;++o)e[o]===-1&&n.push(o);return e=e.filter(o=>o!==-1),{permutationIndices:e,expandDims:n}}function dY(r,t,e){let n=new Array(r);for(let o=0;o<e.length;++o){let s=e[o].shape;for(let i=0;i<t[o].length;++i)n[t[o][i]]===void 0?n[t[o][i]]=s[i]:_(n[t[o][i]]===s[i],()=>`Expected dimension ${n[t[o][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function hY(r,t){let e=r,n=[],o=0;r.length===0&&e.push(-1),o=r.length+1;for(let i=0;i<o;++i)n.push([]);let s=[];for(let i=0;i<e.length;++i){let a=e[i],u=xY(t,a);for(let l of u)s.indexOf(l)===-1&&(n[i].push(l),s.push(l))}return{path:e,steps:n}}function gY(r){return r.every((t,e)=>t===e)}function xY(r,t){let e=[];for(let n=0;n<r.length;++n)(r[n].length===0||r[n].indexOf(t)!==-1||t===-1)&&e.push(n);return e}function yY(r,t,e=0){let n=[];if(typeof t=="number")_(r.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),n=new Array(t).fill(r.shape[e]/t);else{let o=t.reduce((i,a)=>(a===-1&&(i+=1),i),0);_(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((a,u)=>u>0?a+u:a);t[s]=r.shape[e]-i}_(r.shape[e]===t.reduce((i,a)=>i+a),()=>"The sum of sizes must match the size of the axis dimension."),n=t}return n}function bY(r){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${r}`}function wY(r,t){return`indices(${r}, 0) is invalid: ${t} < 0`}function IY(r,t,e){return`indices(${r}, 0) is invalid: ${t} >= ${e}`}function CY(r,t){return`only one output dimension may be -1, not both ${r} and ${t}`}function vY(r,t){return`size ${r} must be non-negative, not ${t}`}function SY(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function NY(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a SparseTensor with ${e}
dense values, but the requested shape requires a multiple of ${n}. inputShape=${r} outputShape= ${t}`}function kY(r,t){let e=Qt(r),n=Qt(t);return`Input to reshape is a tensor with ${e} dense values, but the requested shape has ${n}. inputShape=${r} outputShape=${t}`}function TY(){return"segment ids must be >= 0"}function _Y(){return"segment ids are not increasing"}function EY(r,t){return`Segment id ${r} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function AY(r,t,e){return`Bad: indices[${r}] == ${t} out of range [0, ${e})`}var mN={};Kt(mN,{collectGatherOpShapeInfo:()=>RY,computeOutShape:()=>$Y,segOpComputeOptimalWindowSize:()=>DY});function DY(r,t){let e=!1,n;for(r<=ky?(n=r,e=!0):n=$p(r,Math.floor(Math.sqrt(r)));!e;)n>t||n===r?e=!0:n=$p(r,n+1);return n}function $Y(r,t,e){let n=[],o=r.length;for(let s=0;s<o;s++)s!==t?n.push(r[s]):n.push(e);return n}function RY(r,t,e,n){let o=t.shape.length,s=r.shape.length;if(n!==0&&(n<-o||n>o))throw new Error(`Expect batchDims in the range of [-${o}, ${o}], but got ${n}`);if(n<0&&(n+=o),n>s)throw new Error(`batchDims (${n}) must be less than rank(x) (
${s}).`);if(e<n)throw new Error(`batchDims (${n}) must be less than or equal to axis (${e}).`);for(let p=0;p<n;++p)if(r.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=r.shape[e],a=[],u=1,l=1,c=1;for(let p=0;p<n;++p)a.push(r.shape[p]),u*=r.shape[p];for(let p=n;p<e;p++)a.push(r.shape[p]),l*=r.shape[p];for(let p=n;p<o;p++)a.push(t.shape[p]);for(let p=e+1;p<s;p++)a.push(r.shape[p]),c*=r.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:a}}function FY(r){try{return r.map(t=>Qp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function OY(r){return r.map(t=>hu(t))}var Kr={};Kt(Kr,{nonMaxSuppressionV3Impl:()=>gy,nonMaxSuppressionV4Impl:()=>xy,nonMaxSuppressionV5Impl:()=>yy,whereImpl:()=>cy});ZA();var Ty={kernelName:Ti,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,So(J(e,"float32"),-1))}}};var C2={kernelName:Uo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Gt(J(e,"float32")),o=Ne(lt(ft(1),n));return Ut(ut(r,o))}}}};var v2={kernelName:Ho,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(lt(Gt(J(e,"float32")),1));return ut(r,n)}}}};var S2={kernelName:ro,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=pt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=pt(a,u)),R(a,n.shape)}}}};var N2={kernelName:qo,saveAllInputs:!0,gradFunc:(r,t)=>{let e={};return t.forEach((n,o)=>{e[o]=()=>r.clone()}),e}};var k2={kernelName:_i,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var T2={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>vt(e)}}};var _2={kernelName:Ko,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Ne(lt(ft(1),Gt(J(e,"float32")))))}}};var E2={kernelName:jo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Ne(Y(ft(1),Gt(J(e,"float32"))));return ut(r,n)}}}};var A2={kernelName:Zo,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=Y(Gt(e),Gt(n)),u=$(r,ut(n,a)),l=ye(e.shape,o);return l.length>0&&(u=pt(u,l)),R(u,e.shape)},b:()=>{let a=Y(Gt(e),Gt(n)),u=Ut($(r,ut(e,a))),l=ye(n.shape,o);return l.length>0&&(u=pt(u,l)),R(u,n.shape)}}}};var D2={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Y(Gt(J(e,"float32")),1))}}};var $2={kernelName:Yo,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,lt(ft(1),Gt(J(e,"float32"))))}}};function PY(r,t,e,n,o,s){let i=v(r,"dy","avgPool3dGrad"),a=v(t,"input","avgPool3dGrad"),u=i,l=a,c=!1;a.rank===4&&(c=!0,u=R(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),_(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),_(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),Se("avgPool3dGrad",o,s);let p={dy:u,input:l},m={filterSize:e,strides:n,pad:o,dimRoundingMode:s},f=T.runKernel(Xl,p,m);return c?R(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var R2=k({avgPool3dGrad_:PY});var F2={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i,dimRoundingMode:a}=e;return{x:()=>R2(r,n,o,s,i,a)}}};function MY(r,t,e,n,o){let s=v(r,"dy","avgPoolGrad"),i=v(t,"input","avgPoolGrad");_(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let a=i,u=s,l=!1;i.rank===3&&(l=!0,a=R(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=R(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),_(a.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${a.rank}.`);let c={dy:u,input:a},p={filterSize:e,strides:n,pad:o},m=T.runKernel(Fp,c,p);return l?R(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var O2=k({avgPoolGrad_:MY});var P2={kernelName:Jo,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{filterSize:o,strides:s,pad:i}=e;return{x:()=>O2(r,n,o,s,i)}}};var M2={kernelName:Qo,inputsToSave:["a","b"],gradFunc:(r,t,e)=>{let[n,o]=t,{transposeA:s,transposeB:i}=e;return!s&&!i?{a:()=>Bt(r,o,!1,!0),b:()=>Bt(n,r,!0,!1)}:!s&&i?{a:()=>Bt(r,o,!1,!1),b:()=>Bt(r,n,!0,!1)}:s&&!i?{a:()=>Bt(o,r,!1,!0),b:()=>Bt(n,r,!1,!1)}:{a:()=>Bt(o,r,!0,!0),b:()=>Bt(r,n,!0,!0)}}};var L2={kernelName:Di,gradFunc:(r,t,e)=>{let{blockShape:n,crops:o}=e;return{x:()=>Tu(r,n,o)}}};var z2={kernelName:a_,gradFunc:(r,t,e)=>{let n=e,o=n.inputShape,s=n.shape,i=Array.from(s);for(let u=o.length-1;u>=0;u--)if(o[u]===s[u])i[u]=1;else if(o[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let a=[];for(let u=0;u<i.length;u++)i[u]>1&&a.push(u);return{x:()=>pt(r,a,!0)}}};var B2={kernelName:fo,gradFunc:r=>({x:()=>r.clone()})};var V2={kernelName:ts,gradFunc:r=>({x:()=>vt(r)})};var G2={kernelName:ho,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>be(Or(cn(n,o),Vn(n,s)),r,vt(r))}}};var W2={kernelName:Zl,inputsToSave:["x"],gradFunc:Ty.gradFunc};var U2={kernelName:$i,saveAllInputs:!0,gradFunc:(r,t,e)=>{let n=t.map(u=>u.shape),{axis:o}=e,s=mr(o,t[0].shape)[0],i=n.map(u=>u[s]);return gr(r,i,s).map(u=>()=>u)}};var H2={kernelName:es,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{dilations:s,strides:i,pad:a,dataFormat:u}=e;return _(so(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>cm(n.shape,r,o,i,a,u),filter:()=>Dm(n,r,o.shape,i,a,u)}}};var q2={kernelName:rs,inputsToSave:["dy","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,{strides:s,pad:i,dataFormat:a,dimRoundingMode:u}=e;return{dy:()=>Sn(r,o,s,i,a,1,u),filter:()=>Dm(r,n,o.shape,s,i,a,u)}}};function LY(r,t,e,n,o){let s=r;r.rank===4&&(s=R(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let i=t;i.rank===4&&(i=R(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),_(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),_(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),_(i.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${e[4]}).`);let a={x:s,dy:i},u={strides:n,pad:o,filterShape:e};return T.runKernel($a,a,u)}var K2=k({conv3DBackpropFilter_:LY});var j2={kernelName:ns,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s}=e;_(so(n),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${n}'`);let[i,a]=t;return{x:()=>_x(i.shape,r,a,o,s),filter:()=>K2(i,r,a.shape,o,s)}}};var X2={kernelName:os,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Ut(Cm(J(e,"float32"))),r)}}};var Y2={kernelName:ss,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(vm(J(e,"float32")),r)}}};var Z2={kernelName:is,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o,exclusive:s,reverse:i}=e;return{x:()=>{let a=z0([o],n.rank),u=fm(r,o,s,!i);return a!=null&&(u=Vt(u,a)),u}}}};var J2={kernelName:as,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let{dilations:n,strides:o,pad:s,dimRoundingMode:i}=e,a=n==null?[1,1]:n;_(so(a),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[u,l]=t;return _(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),_(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),_(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),_($r(o,a),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${a}'.`),Se("depthwiseConv2d",s,i),{x:()=>fy(u.shape,r,l,o,s,a,i),filter:()=>my(u,r,l.shape,o,s,a,i)}}};var Q2={kernelName:ls,inputsToSave:["x","filter"],gradFunc:(r,t,e)=>{let[n,o]=t,s={x:n,filter:o,dy:r},i={x:n,filter:o,dy:r};return{x:()=>T.runKernel(tu,s,e),filter:()=>T.runKernel(eu,i,e)}}};var tD={kernelName:cs,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t,n={dy:r,y:e};return{x:()=>T.runKernel(Ma,n)}}};var eD={kernelName:La,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=$(sr(Ut(Gt(e))),2/Math.sqrt(Math.PI));return{x:()=>$(r,n)}}};var rD={kernelName:ps,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,e)}}};var nD={kernelName:Ri,inputsToSave:["input"],gradFunc:(r,t)=>{let[e]=t;return{input:()=>R(r,e.shape)}}};var oD={kernelName:ms,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,sr(e))}}};var sD={kernelName:fs,gradFunc:r=>({x:()=>vt(r)})};var iD={kernelName:ds,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(pt(a,u),n.shape));let l=Gt(n);return Ut(ut(a,J(l,"float32")))}}}};var aD={kernelName:hs,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,t,e)=>{let{varianceEpsilon:n}=e,[o,s,i,a]=t,u=a==null?ft(1):a,l=ye(s.shape,o.shape),c=[];if(s.rank===1){for(let I=0;I<o.shape.length-1;++I)c.push(o.shape[I]);c.push(1)}let p=lt(o,s),m=$(r,u),f=bm(Y(i,ft(n))),d=$($($(f,f),f),ft(-.5));return{x:()=>s.rank===1?R($($(r,Fr(R(f,[1,1,1,s.shape[0]]),c)),u),o.shape):R($($(r,f),u),o.shape),mean:()=>{let I=$($(f,ft(-1)),m);return s.rank===1&&(I=pt(I,l)),R(I,s.shape)},variance:()=>{let I=$($(d,p),m);return s.rank===1&&(I=pt(I,l)),R(I,s.shape)},scale:()=>{let I=$(p,f),N=$(r,I);return s.rank===1&&(N=pt(N,l)),R(N,s.shape)},offset:()=>{let I=r;return s.rank===1&&(I=pt(I,l)),R(I,s.shape)}}}};var cD={kernelName:Fi,inputsToSave:["x","indices"],gradFunc:(r,t,e)=>{let[n,o]=t,{axis:s}=e,i=mr(s,n.shape)[0];return{x:()=>{let u=n.shape,l=o.size,c=u.slice(0,i),p=c.length,m=u.slice(s,u.length).slice(1),f=m.length,d=lD(0,p),h=lD(p+1,p+1+f),g=uD([c,[l],m]),x=R(r,g),b=R(o,[l]),w=uD([[p],d,h]),I=Vt(x,w),N=Am(I,b,n.shape[i]),E=hh(w);return N=Vt(N,E),N},indices:()=>o}}};function lD(r,t){let e=[];for(let n=r;n<t;++n)e.push(n);return e}function uD(r){let t=[];for(let e=0;e<r.length;++e)for(let n=0;n<r[e].length;++n)t.push(r[e][n]);return t}var pD={kernelName:gs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>vt(e),b:()=>vt(n)}}};var mD={kernelName:go,gradFunc:r=>({x:()=>J(r,"float32")})};var fD={kernelName:xs,gradFunc:r=>({x:()=>vt(r)})};var dD={kernelName:ys,gradFunc:r=>({x:()=>vt(r)})};var hD={kernelName:bs,gradFunc:r=>({x:()=>vt(r)})};var gD={kernelName:ws,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{alpha:o}=e,s=Fe(n,0);return{x:()=>be(s,r,$(r,o))}}};var xD={kernelName:Cs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Y(e,1))}}};var yD={kernelName:Is,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,J(e,"float32"))}}};var bD={kernelName:u_,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e;return{logits:()=>{let i=sr(n);return lt(r,$(pt(r,o,!0),i))}}}};function zY(r,t,e,n=5,o=1,s=1,i=.5){let a={x:r,y:t,dy:e},u={depthRadius:n,bias:o,alpha:s,beta:i};return T.runKernel(Xa,a,u)}var wD=k({localResponseNormalizationBackprop_:zY});var ID={kernelName:vs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{depthRadius:s,bias:i,alpha:a,beta:u}=e;return{x:()=>wD(n,o,r,s,i,a,u)}}};function _y(r,t,e,n){return t.rank<e.rank&&(t=R(t,vo(t.shape,n))),r.rank<e.rank&&(r=R(r,vo(r.shape,n))),{x:()=>$(r,J(Rr(e,t),r.dtype))}}var fN={kernelName:Ss,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{reductionIndices:o}=n,s=t[0],i=t[1],a=mr(o,s.shape),u=_y(r,i,s,a);return{x:()=>u.x()}}};var CD={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(cn(e,n),"float32")),b:()=>$(r,J(bl(e,n),"float32"))}}};function BY(r,t,e,n,o,s,i){let a=v(r,"dy","maxPool3dGrad"),u=v(t,"input","maxPool3dGrad"),l=v(e,"output","maxPool3dGrad"),c=a,p=u,m=l,f=!1;u.rank===4&&(f=!0,c=R(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),p=R(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),m=R(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),_(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),_(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),Se("maxPool3dGrad",s,i);let d={dy:c,input:p,output:m},h={filterSize:n,strides:o,pad:s,dimRoundingMode:i},g=T.runKernel(nu,d,h);return f?R(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var vD=k({maxPool3dGrad_:BY});var SD={kernelName:Oi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=e;return{x:()=>vD(r,n,o,s,i,a,u)}}};function VY(r,t,e,n,o,s,i){let a=v(r,"dy","maxPoolGrad"),u=v(t,"input","maxPoolGrad"),l=v(e,"output","maxPoolGrad");_(u.rank===a.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${a.rank})`),_(a.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${a.rank}.`),_(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),Se("maxPoolGrad",s,i);let c={dy:a,input:u,output:l},p={filterSize:n,strides:o,pad:s,dimRoundingMode:i};return T.runKernel(Wp,c,p)}var ND=k({maxPoolGrad_:VY});var kD={kernelName:ks,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n,o]=t,{filterSize:s,strides:i,pad:a}=e;return{x:()=>ND(r,n,o,s,i,a)}}};var TD={kernelName:Ts,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=mr(o,n.shape),a=L0(n.shape,s)[1],u=Qt(a);return{x:()=>{let c=n.shape.slice();s.forEach(f=>{c[f]=1});let p=R(r,c);return ut($(p,dr(n.shape,"float32")),u)}}}};var _D={kernelName:_s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,t,e)=>{let n=e,{axis:o}=n,[s,i]=t,a=mr(o,s.shape),u=_y(r,i,s,a);return{x:()=>u.x()}}};var ED={kernelName:Es,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t;return{a:()=>$(r,J(Vn(e,n),"float32")),b:()=>$(r,J(Fe(e,n),"float32"))}}};var AD={kernelName:As,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var DD={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ye(e.shape,o);return a.length>0?R(pt(r,a),e.shape):r},b:()=>{let a=$(r,Ut(ia(ut(e,n)))),u=ye(n.shape,o);return u.length>0?R(pt(a,u),n.shape):a}}}};var $D={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=$(r,J(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,"float32")),u=ye(n.shape,o);return u.length>0?R(pt(a,u),n.shape):a}}}};var RD={kernelName:Pi,gradFunc:r=>({x:()=>Ut(r)})};var FD={kernelName:$s,inputsToSave:["indices"],gradFunc:(r,t)=>{let e=t[0];return{indices:()=>Te(e.shape,"float32")}}};var OD={kernelName:Mi,gradFunc:r=>({x:()=>vt(r)})};var PD={kernelName:Li,saveAllInputs:!0,gradFunc:(r,t,e)=>{let{axis:n}=e;return xr(r,n).map(s=>()=>s)}};var dN={kernelName:Rs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let n=t[0],{paddings:o}=e,s=o.map(i=>i[0]);return{x:()=>Ot(r,s,n.shape)}}};var MD={kernelName:Fs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,t)=>{let[e,n,o]=t,s=e,i=n,a=Mt(s.shape,i.shape);return{a:()=>{let c=J(i,"float32"),p=$(r,$(c,un(s,lt(c,ft(1))))),m=ye(s.shape,a);return m.length>0&&(p=pt(p,m)),R(p,s.shape)},b:()=>{let c=Fe(s,0),p=be(c,Nr(s),vt(s)),m=$(r,$(o,p)),f=ye(i.shape,a);return f.length>0&&(m=pt(m,f)),R(m,i.shape)}}}};var LD={kernelName:Os,inputsToSave:["x","alpha"],gradFunc:(r,t)=>{let[e,n]=t,o=Fe(e,0);return{x:()=>be(o,r,$(r,n)),alpha:()=>{let s=be(o,vt(r),$(r,e)),i=ye(n.shape,r.shape);return i.length>0&&(s=pt(s,i)),R(s,n.shape)}}}};function GY(r,t,e){let n=r.shape.slice();n[e]=1;let o=R(t,n),s=hc(r,e,!0,!1),i=hc(r,e,!0,!0),a=$(s,i);return $(o,a)}function WY(r,t,e){let n=r.shape.length,o=n-e.length,s=S.getAxesPermutation(e,n),i=r;s!=null&&(i=Vt(r,s));let a=i.shape.slice(),l=a.splice(n-e.length,e.length).reduce((m,f)=>m*f,1);a.push(l);let c=i.reshape(a),p=GY(c,t,o);if(p=p.reshape(i.shape),s!=null){let m=S.getUndoAxesPermutation(s);p=Vt(p,m)}return p}var zD={kernelName:Ps,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{axis:o}=e,s=[];return o==null?s=n.shape.map((i,a)=>a):typeof o=="number"?s=[o]:s=o,{x:()=>WY(n,r,s)}}};var BD={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=ut(r,J(n,"float32")),u=ye(e.shape,o);return u.length>0?R(pt(a,u),e.shape):a},b:()=>{let a=$(r,J(e,"float32")),u=ye(n.shape,o);u.length>0&&(a=R(pt(a,u),n.shape));let l=Gt(n);return Ut(ut(a,J(l,"float32")))}}}};var VD={kernelName:Ms,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Ut(Gt(e)))}}};var GD={kernelName:Vs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t,n=$(Vn(e,6),So(e));return{x:()=>$(r,J(n,"float32"))}}};var WD={kernelName:Ls,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,J(So(e),"float32"))}}};var UD={kernelName:zi,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>R(r,e.shape)}}};var HD={kernelName:Bs,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(nl,o,e)}}};var qD={kernelName:zs,inputsToSave:["images"],gradFunc:(r,t,e)=>{let[n]=t,o={dy:r,images:n};return{images:()=>T.runKernel(rl,o,e)}}};var KD={kernelName:Gs,gradFunc:(r,t,e)=>{let{dims:n}=e,o=mr(n,r.shape);return{x:()=>hr(r,o)}}};var jD={kernelName:Ws,gradFunc:r=>({x:()=>vt(r)})};var XD={kernelName:Us,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>Ut(ut(r,$(un(e,1.5),2)))}}};var YD={kernelName:Bi,inputsToSave:["condition"],gradFunc:(r,t)=>{let[e]=t;return{condition:()=>J(vt(e),"float32"),t:()=>$(r,J(e,r.dtype)),e:()=>$(r,J(Nu(e),r.dtype))}}};var ZD={kernelName:Hs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>{let n=Fe(e,ft(0)),o=ft(uN),s=ft(cN),i=$(r,s),a=$($(r,o),sr(J(e,"float32")));return be(n,i,a)}}}};var JD={kernelName:js,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(e,lt(ft(1),e)))}}};var QD={kernelName:Ks,gradFunc:r=>({x:()=>vt(r)})};var t$={kernelName:qs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(Iu(J(e,"float32")),r)}}};var e$={kernelName:al,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(mm(J(e,"float32")),r)}}};var r$={kernelName:Vi,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{begin:o,size:s}=e,i=n.shape,[a,u]=lN(n,o,s),l=[];for(let c=0;c<r.rank;c++)l.push([a[c],i[c]-a[c]-u[c]]);return{x:()=>mn(r,l)}}};var n$={kernelName:Js,outputsToSave:[!0],gradFunc:(r,t,e)=>{let[n]=t,{dim:o}=e,s=!0,i=$(r,n);return{logits:()=>lt(i,$(pt(i,[o],s),n))}}};var o$={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,tn(e))}}};var hN={kernelName:Gi,gradFunc:(r,t,e)=>{let{blockShape:n,paddings:o}=e;return{x:()=>wu(r,n,o)}}};var gN={kernelName:Wi,gradFunc:(r,t,e)=>{let{axis:n}=e;return{x:()=>oe(r,n)}}};var s$={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,$(Ne(J(e,"float32")),2))}}};var i$={kernelName:lu,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(r,$(J(e,"float32"),2))}}};var a$={kernelName:Qs,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=ft(2);return{a:()=>$(r,$(o,lt(e,n))),b:()=>$(r,$(o,lt(n,e)))}}};var l$={kernelName:xo,gradFunc:r=>({x:()=>vt(r)})};var u$={kernelName:ti,inputsToSave:["a","b"],gradFunc:(r,t)=>{let[e,n]=t,o=Mt(e.shape,n.shape);return{a:()=>{let a=r,u=ye(e.shape,o);return u.length>0&&(a=pt(a,u)),R(a,e.shape)},b:()=>{let a=r,u=ye(n.shape,o);return u.length>0&&(a=pt(a,u)),R(Ut(a),n.shape)}}}};var c$={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,o=n.shape.slice(),{axis:s}=e;mr(s,n.shape).forEach(l=>{o[l]=1});let a=R(r,o),u=$(a,dr(n.shape,"float32"));return{x:()=>u}}};var p$={kernelName:ei,inputsToSave:["x"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>ut(r,Gt(Iu(e)))}}};var m$={kernelName:ri,outputsToSave:[!0],gradFunc:(r,t)=>{let[e]=t;return{x:()=>$(lt(ft(1),Gt(e)),r)}}};var f$={kernelName:no,inputsToSave:["x"],gradFunc:(r,t,e)=>{let[n]=t,{reps:o}=e;return{x:()=>{let i=vt(n);if(n.rank===1)for(let a=0;a<o[0];++a)i=Y(i,Ot(r,[a*n.shape[0]],[n.shape[0]]));else if(n.rank===2)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1]],[n.shape[0],n.shape[1]]));else if(n.rank===3)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2]],[n.shape[0],n.shape[1],n.shape[2]]));else if(n.rank===4)for(let a=0;a<o[0];++a)for(let u=0;u<o[1];++u)for(let l=0;l<o[2];++l)for(let c=0;c<o[3];++c)i=Y(i,Ot(r,[a*n.shape[0],u*n.shape[1],l*n.shape[2],c*n.shape[3]],[n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${n.rank} tensors yet.`);return i}}}};var d$={kernelName:oo,gradFunc:(r,t,e)=>{let n=e,{perm:o}=n,s=hh(o);return{x:()=>Vt(r,s)}}};var h$={kernelName:Ui,gradFunc:(r,t,e)=>{let n=e,{axis:o}=n;return{value:()=>qe(r,o)}}};var g$={kernelName:fu,inputsToSave:["segmentIds"],gradFunc:(r,t)=>{let[e]=t;return{x:()=>UY(r,e)}}};function UY(r,t){let e=Nn(t,vt(t)),n=aa(r,e),o=cn(t,ft(0,"int32")),s=n.rank-o.rank;for(let a=0;a<s;++a)o=ir(o,a+1);o=Or(o,dr(n.shape,"bool"));let i=vt(n);return be(o,n,i)}var x$={kernelName:Hi,gradFunc:r=>({x:()=>vt(r)})};var HY=[Ty,C2,v2,S2,N2,k2,T2,_2,E2,A2,D2,$2,F2,P2,M2,L2,z2,B2,V2,G2,W2,U2,q2,H2,j2,X2,Y2,Z2,J2,Q2,BD,tD,eD,rD,nD,oD,iD,sD,aD,cD,pD,mD,fD,dD,hD,gD,xD,yD,bD,ID,fN,fN,CD,SD,kD,TD,_D,ED,AD,DD,$D,RD,FD,OD,PD,dN,dN,MD,LD,zD,VD,GD,WD,UD,HD,qD,KD,jD,XD,YD,ZD,JD,QD,t$,e$,r$,n$,o$,hN,hN,gN,gN,s$,a$,i$,l$,u$,c$,p$,m$,f$,d$,h$,g$,x$];for(let r of HY)p_(r);O().prototype.abs=function(){return this.throwIfDisposed(),Ee(this)};O().prototype.acos=function(){return this.throwIfDisposed(),ux(this)};O().prototype.acosh=function(){return this.throwIfDisposed(),cx(this)};O().prototype.add=function(r){return this.throwIfDisposed(),Y(this,r)};O().prototype.all=function(r,t){return this.throwIfDisposed(),am(this,r,t)};O().prototype.any=function(r,t){return this.throwIfDisposed(),fc(this,r,t)};O().prototype.argMax=function(r){return this.throwIfDisposed(),Qi(this,r)};O().prototype.argMin=function(r){return this.throwIfDisposed(),px(this,r)};O().prototype.asScalar=function(){return this.throwIfDisposed(),_(this.size===1,()=>"The array must have only 1 element."),R(this,[])};O().prototype.asType=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.as1D=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.as2D=function(r,t){return this.throwIfDisposed(),R(this,[r,t])};O().prototype.as3D=function(r,t,e){return this.throwIfDisposed(),R(this,[r,t,e])};O().prototype.as4D=function(r,t,e,n){return this.throwIfDisposed(),R(this,[r,t,e,n])};O().prototype.as5D=function(r,t,e,n,o){return this.throwIfDisposed(),R(this,[r,t,e,n,o])};O().prototype.asin=function(){return this.throwIfDisposed(),mx(this)};O().prototype.asinh=function(){return this.throwIfDisposed(),fx(this)};O().prototype.atan=function(){return this.throwIfDisposed(),dx(this)};O().prototype.atan2=function(r){return this.throwIfDisposed(),hx(this,r)};O().prototype.atanh=function(){return this.throwIfDisposed(),gx(this)};O().prototype.avgPool=function(r,t,e,n){return this.throwIfDisposed(),bu(this,r,t,e,n)};O().prototype.batchToSpaceND=function(r,t){return this.throwIfDisposed(),wu(this,r,t)};O().prototype.batchNorm=function(r,t,e,n,o){return this.throwIfDisposed(),ra(this,r,t,e,n,o)};O().prototype.broadcastTo=function(r){return this.throwIfDisposed(),na(this,r)};O().prototype.cast=function(r){return this.throwIfDisposed(),J(this,r)};O().prototype.ceil=function(){return this.throwIfDisposed(),Cx(this)};O().prototype.clipByValue=function(r,t){return this.throwIfDisposed(),vr(this,r,t)};O().prototype.concat=function(r,t){return this.throwIfDisposed(),r instanceof Pt&&(r=[r]),oe([this,...r],t)};O().prototype.conv1d=function(r,t,e,n,o,s){return this.throwIfDisposed(),um(this,r,t,e,n,o,s)};O().prototype.conv2dTranspose=function(r,t,e,n,o){return this.throwIfDisposed(),pm(this,r,t,e,n,o)};O().prototype.conv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Sn(this,r,t,e,n,o,s)};O().prototype.cos=function(){return this.throwIfDisposed(),Iu(this)};O().prototype.cosh=function(){return this.throwIfDisposed(),mm(this)};O().prototype.cumprod=function(r,t,e){return this.throwIfDisposed(),hc(this,r,t,e)};O().prototype.cumsum=function(r,t,e){return this.throwIfDisposed(),fm(this,r,t,e)};O().prototype.depthToSpace=function(r,t){return this.throwIfDisposed(),Ax(this,r,t)};O().prototype.depthwiseConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),oa(this,r,t,e,n,o,s)};O().prototype.dilation2d=function(r,t,e,n,o){return this.throwIfDisposed(),Dx(this,r,t,e,n,o)};O().prototype.divNoNan=function(r){return this.throwIfDisposed(),$x(this,r)};O().prototype.div=function(r){return this.throwIfDisposed(),ut(this,r)};O().prototype.dot=function(r){return this.throwIfDisposed(),Rx(this,r)};O().prototype.elu=function(){return this.throwIfDisposed(),sa(this)};O().prototype.equal=function(r){return this.throwIfDisposed(),Rr(this,r)};O().prototype.erf=function(){return this.throwIfDisposed(),Fx(this)};O().prototype.euclideanNorm=function(r,t){return this.throwIfDisposed(),Ox(this,r,t)};O().prototype.exp=function(){return this.throwIfDisposed(),sr(this)};O().prototype.expandDims=function(r){return this.throwIfDisposed(),ir(this,r)};O().prototype.expm1=function(){return this.throwIfDisposed(),Px(this)};O().prototype.fft=function(){return this.throwIfDisposed(),Au(this)};O().prototype.flatten=function(){return this.throwIfDisposed(),R(this,[this.size])};O().prototype.floor=function(){return this.throwIfDisposed(),ia(this)};O().prototype.floorDiv=function(r){return this.throwIfDisposed(),im(this,r)};O().prototype.gather=function(r,t,e){return this.throwIfDisposed(),aa(this,r,t,e)};O().prototype.greaterEqual=function(r){return this.throwIfDisposed(),cn(this,r)};O().prototype.greater=function(r){return this.throwIfDisposed(),Fe(this,r)};O().prototype.ifft=function(){return this.throwIfDisposed(),Il(this)};O().prototype.irfft=function(){return this.throwIfDisposed(),km(this)};O().prototype.isFinite=function(){return this.throwIfDisposed(),Mx(this)};O().prototype.isInf=function(){return this.throwIfDisposed(),Lx(this)};O().prototype.isNaN=function(){return this.throwIfDisposed(),zx(this)};O().prototype.leakyRelu=function(r){return this.throwIfDisposed(),vu(this,r)};O().prototype.lessEqual=function(r){return this.throwIfDisposed(),Vn(this,r)};O().prototype.less=function(r){return this.throwIfDisposed(),bl(this,r)};O().prototype.localResponseNormalization=function(r,t,e,n){return this.throwIfDisposed(),Bx(this,r,t,e,n)};O().prototype.logSigmoid=function(){return this.throwIfDisposed(),Wx(this)};O().prototype.logSoftmax=function(r){return this.throwIfDisposed(),dm(this,r)};O().prototype.logSumExp=function(r,t){return this.throwIfDisposed(),hm(this,r,t)};O().prototype.log=function(){return this.throwIfDisposed(),Nr(this)};O().prototype.log1p=function(){return this.throwIfDisposed(),Su(this)};O().prototype.logicalAnd=function(r){return this.throwIfDisposed(),Or(this,r)};O().prototype.logicalNot=function(){return this.throwIfDisposed(),Nu(this)};O().prototype.logicalOr=function(r){return this.throwIfDisposed(),gm(this,r)};O().prototype.logicalXor=function(r){return this.throwIfDisposed(),Ux(this,r)};O().prototype.matMul=function(r,t,e){return this.throwIfDisposed(),Bt(this,r,t,e)};O().prototype.maxPool=function(r,t,e,n){return this.throwIfDisposed(),ku(this,r,t,e,n)};O().prototype.max=function(r,t){return this.throwIfDisposed(),Sr(this,r,t)};O().prototype.maximum=function(r){return this.throwIfDisposed(),Nn(this,r)};O().prototype.mean=function(r,t){return this.throwIfDisposed(),ke(this,r,t)};O().prototype.min=function(r,t){return this.throwIfDisposed(),xl(this,r,t)};O().prototype.minimum=function(r){return this.throwIfDisposed(),ao(this,r)};O().prototype.mirrorPad=function(r,t){return this.throwIfDisposed(),Kx(this,r,t)};O().prototype.mod=function(r){return this.throwIfDisposed(),jx(this,r)};O().prototype.mul=function(r){return this.throwIfDisposed(),$(this,r)};O().prototype.neg=function(){return this.throwIfDisposed(),Ut(this)};O().prototype.norm=function(r,t,e){return this.throwIfDisposed(),yl(this,r,t,e)};O().prototype.notEqual=function(r){return this.throwIfDisposed(),ai(this,r)};O().prototype.oneHot=function(r,t=1,e=0){return this.throwIfDisposed(),la(this,r,t,e)};O().prototype.onesLike=function(){return this.throwIfDisposed(),Ir(this)};O().prototype.pad=function(r,t){return this.throwIfDisposed(),mn(this,r,t)};O().prototype.pool=function(r,t,e,n,o,s){return this.throwIfDisposed(),Xx(this,r,t,e,n,o,s)};O().prototype.pow=function(r){return this.throwIfDisposed(),un(this,r)};O().prototype.prelu=function(r){return this.throwIfDisposed(),_u(this,r)};O().prototype.prod=function(r,t){return this.throwIfDisposed(),Yx(this,r,t)};O().prototype.reciprocal=function(){return this.throwIfDisposed(),ry(this)};O().prototype.relu=function(){return this.throwIfDisposed(),Pr(this)};O().prototype.relu6=function(){return this.throwIfDisposed(),xm(this)};O().prototype.reshapeAs=function(r){return this.throwIfDisposed(),R(this,r.shape)};O().prototype.reshape=function(r){return this.throwIfDisposed(),R(this,r)};O().prototype.resizeBilinear=function(r,t,e){return this.throwIfDisposed(),by(this,r,t,e)};O().prototype.resizeNearestNeighbor=function(r,t,e){return this.throwIfDisposed(),wy(this,r,t,e)};O().prototype.reverse=function(r){return this.throwIfDisposed(),hr(this,r)};O().prototype.rfft=function(){return this.throwIfDisposed(),Du(this)};O().prototype.round=function(){return this.throwIfDisposed(),ym(this)};O().prototype.rsqrt=function(){return this.throwIfDisposed(),bm(this)};O().prototype.selu=function(){return this.throwIfDisposed(),wm(this)};O().prototype.separableConv2d=function(r,t,e,n,o,s){return this.throwIfDisposed(),Im(this,r,t,e,n,o,s)};O().prototype.sigmoid=function(){return this.throwIfDisposed(),tn(this)};O().prototype.sign=function(){return this.throwIfDisposed(),ny(this)};O().prototype.sin=function(){return this.throwIfDisposed(),Cm(this)};O().prototype.sinh=function(){return this.throwIfDisposed(),vm(this)};O().prototype.slice=function(r,t){return this.throwIfDisposed(),Ot(this,r,t)};O().prototype.softmax=function(r){return this.throwIfDisposed(),Eu(this,r)};O().prototype.softplus=function(){return this.throwIfDisposed(),ii(this)};O().prototype.spaceToBatchND=function(r,t){return this.throwIfDisposed(),Tu(this,r,t)};O().prototype.split=function(r,t){return this.throwIfDisposed(),gr(this,r,t)};O().prototype.sqrt=function(){return this.throwIfDisposed(),Ne(this)};O().prototype.square=function(){return this.throwIfDisposed(),Gt(this)};O().prototype.squaredDifference=function(r){return this.throwIfDisposed(),Tm(this,r)};O().prototype.squeeze=function(r){return this.throwIfDisposed(),Gn(this,r)};O().prototype.stack=function(r,t){this.throwIfDisposed();let e=r instanceof Pt?[this,r]:[this,...r];return qe(e,t)};O().prototype.step=function(r){return this.throwIfDisposed(),So(this,r)};O().prototype.stridedSlice=function(r,t,e,n,o,s,i,a){return this.throwIfDisposed(),oy(this,r,t,e,n,o,s,i,a)};O().prototype.sub=function(r){return this.throwIfDisposed(),lt(this,r)};O().prototype.sum=function(r,t){return this.throwIfDisposed(),pt(this,r,t)};O().prototype.tan=function(){return this.throwIfDisposed(),sy(this)};O().prototype.tanh=function(){return this.throwIfDisposed(),ea(this)};O().prototype.tile=function(r){return this.throwIfDisposed(),Fr(this,r)};O().prototype.toBool=function(){return this.throwIfDisposed(),J(this,"bool")};O().prototype.toFloat=function(){return this.throwIfDisposed(),J(this,"float32")};O().prototype.toInt=function(){return this.throwIfDisposed(),J(this,"int32")};O().prototype.topk=function(r,t){return this.throwIfDisposed(),ay(this,r,t)};O().prototype.transpose=function(r){return this.throwIfDisposed(),Vt(this,r)};O().prototype.unique=function(r){return this.throwIfDisposed(),ly(this,r)};O().prototype.unsortedSegmentSum=function(r,t){return this.throwIfDisposed(),Am(this,r,t)};O().prototype.unstack=function(r){return this.throwIfDisposed(),xr(this,r)};O().prototype.where=function(r,t){return this.throwIfDisposed(),be(r,this,t)};O().prototype.zerosLike=function(){return this.throwIfDisposed(),vt(this)};var kn=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,kn.prototype)}},jr=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,jr.prototype)}},z=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,z.prototype)}},St=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,St.prototype)}},$m=class extends Error{constructor(t){super(t),Object.setPrototypeOf(this,$m.prototype)}};var Nh=class{constructor(t){this.maxEntries=t||100,this.cache=new Map}get(t){let e;return this.cache.has(t)&&(e=this.cache.get(t),this.cache.delete(t),this.cache.set(t,e)),e}put(t,e){if(this.cache.has(t))this.cache.delete(t);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(t,e)}getMaxEntries(){return this.maxEntries}setMaxEntries(t){if(t<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${t}.`);if(this.maxEntries>t)for(let e=0;e<this.maxEntries-t;e++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=t}};function To(r,t){if(Array.isArray(r)){let e=[];for(let n=0;n<t;n++)e=e.concat(r);return e}else{let e=new Array(t);return e.fill(r),e}}function uo(r,t){if(!r)throw new $m(t)}function yN(r,t){let e=0;for(let n of r)n===t&&e++;return e}function kr(r){return r.length===1?r[0]:r}function we(r){return Array.isArray(r)?r:[r]}function _o(r){let e=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return e[0]!=="_"?e:"private"+e}function Sl(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(t,e)=>e.toUpperCase())}var ko={};function Rm(r){if(r==null)return null;let t={};return t.className=r.getClassName(),t.config=r.getConfig(),t}function xN(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(t=>xN(t));else{let t=Object.keys(r);for(let e of t){let n=r[e];n!=null&&typeof n=="object"&&(!Array.isArray(n)&&n.type==="ndarray"&&typeof n.value=="number"?r[e]=n.value:xN(n))}}}function fa(r,t={},e={},n="object",o=!1){if(typeof r=="string"){let s=r,i;if(s in e)i=e[s];else if(s in ko)i=ko[s];else if(i=t[s],i==null)throw new z(`Unknown ${n}: ${r}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=r;if(s.className==null||s.config==null)throw new z(`${n}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,a,u;if(i in e?[a,u]=e[i]:i in ko?[a,u]=ko.className:i in t&&([a,u]=t[i]),a==null)throw new z(`Unknown ${n}: ${i}. This may be due to one of the following reasons:
1. The ${n} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${n} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let f of Object.keys(ko))l[f]=ko[f];for(let f of Object.keys(e))l[f]=e[f];let c=s.config;c.customObjects=l;let p=Object.assign({},ko);for(let f of Object.keys(e))ko[f]=e[f];xN(s.config);let m=u(a,s.config,e,o);return ko=Object.assign({},p),m}else{let l=Object.assign({},ko);for(let p of Object.keys(e))ko[p]=e[p];let c=new a(s.config);return ko=Object.assign({},l),c}}}function qY(r,t){return r<t?-1:r>t?1:0}function kh(r,t){return-1*qY(r,t)}function Eo(r){if(r==null)return r;let t=[];for(let e of r)t.indexOf(e)===-1&&t.push(e);return t}function y$(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let t in r)if(r.hasOwnProperty(t))return!1;return!0}function da(r,t,e){if(e!=null&&r.indexOf(e)<0)throw new z(`${e} is not a valid ${t}. Valid values are ${r} or null/undefined.`)}function Ey(r,t,e=0,n=1/0){return uo(e>=0),uo(n>=e),Array.isArray(r)&&r.length>=e&&r.length<=n&&r.every(o=>typeof o===t)}function Qe(r,t){Array.isArray(r)?(y.assert(r.length>0,()=>`${t} is unexpectedly an empty array.`),r.forEach((e,n)=>Qe(e,`element ${n+1} of ${t}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${t} to be a positive integer, but got ${b$(r)}.`)}function b$(r){return r===null?"null":Array.isArray(r)?"["+r.map(t=>b$(t)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function w$(r,t,e){let n=e!=null?e():y.now(),o;return(...i)=>{let a=e!=null?e():y.now();return a-n<t||(n=a,o=r(...i)),o}}function Ay(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}var KY=0;function $y(){return KY++}var Dy={};function Fu(r=""){return r in Dy||(Dy[r]=0),Dy[r]+=1,r+Dy[r].toString()}var I$=["channelsFirst","channelsLast"],C$=["nearest","bilinear"],v$=["valid","same","causal"],S$=["max","avg"],N$=["sum","mul","concat","ave"];var Fm=new Map;function Oe(r){da(I$,"DataFormat",r)}function T$(r){da(C$,"InterpolationFormat",r)}function fn(r){da(v$,"PaddingMode",r)}function bN(r){da(S$,"PoolMode",r)}var Th=[],k$="/";function ci(r,t){Th.push(r);try{let e=t();return Th.pop(),e}catch(e){throw Th.pop(),e}}function jY(){return Th.length===0?"":Th.join(k$)+k$}function Ry(r){if(!_$(r))throw new Error("Not a valid tensor name: '"+r+"'");return jY()+r}function Fy(r){if(!_$(r))throw new Error("Not a valid tensor name: '"+r+"'");Fm.has(r)||Fm.set(r,0);let t=Fm.get(r);if(Fm.set(r,Fm.get(r)+1),t>0){let e=`${r}_${t}`;return Fm.set(e,1),e}else return r}var XY=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function _$(r){return!!r.match(XY)}function E$(r){return r===parseInt(r.toString(),10)}function Ao(r,t,e){t==null&&(t=0),e==null&&(e=r.length);let n=1;for(let o=t;o<e;++o)n*=r[o];return n}function Fc(r){if(r.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n<t&&(t=n)}return t}function pi(r){if(r.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let e=0;e<r.length;e++){let n=r[e];n>t&&(t=n)}return t}function dn(r,t){if(t<r)throw new z(`end (${t}) < begin (${r}) is forbidden.`);let e=[];for(let n=r;n<t;++n)e.push(n);return e}var wN;function ur(){return wN==null&&(wN=oE().epsilon()),wN}function hn(){return"channelsLast"}function en(r,t){return J(r,t)}function kl(r,t=-1){let e=r.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),R(r,e)}function A$(r,t){return B(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let e=kl(r,1);return Py(e,[1,t,1])})}function D$(r){let t=[Ao(r.shape)];return R(r,t)}function $$(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let t=[r.shape[0],Ao(r.shape,1)];return R(r,t)}function Nl(r,t,e){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:return yh(r,[t,0],[e,r.shape[1]]);case 3:return Nm(r,[t,0,0],[e,r.shape[1],r.shape[2]]);case 4:return Ic(r,[t,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Ot(r,[t,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Ot(r,[t,0,0,0,0,0],[e,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function IN(r,t,e){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:return yh(r,[0,t],[r.shape[0],e]);case 3:return Nm(r,[0,0,t],[r.shape[0],r.shape[1],e]);case 4:return Ic(r,[0,0,0,t],[r.shape[0],r.shape[1],r.shape[2],e]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function _h(r,t,e,n){return B(()=>{switch(r.rank){case 1:return Sm(r,t,e);case 2:switch(n){case 1:return Nl(r,t,e);case 2:return IN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 3:switch(n){case 1:return Nl(r,t,e);case 2:return Nm(r,[0,t,0],[r.shape[0],e,r.shape[2]]);case 3:return IN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}case 4:switch(n){case 1:return Nl(r,t,e);case 2:return Ic(r,[0,t,0,0],[r.shape[0],e,r.shape[2],r.shape[3]]);case 3:return Ic(r,[0,0,t,0],[r.shape[0],r.shape[1],e,r.shape[3]]);case 4:return IN(r,t,e);default:throw new z(`The axis is not within the rank of the tensor ${n}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Om(r,t=-1){let e;return t<0&&(e=r[0].rank,e!==0?t=e:t=0),t===r[0].rank&&(t=-1),oe(r,t)}function vN(r,t){switch(r.rank){case 1:return vx([r,t]);case 2:return Sx([r,t],0);case 3:return Nx([r,t],0);case 4:return kx([r,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Py(r,t){if(Array.isArray(t)||(t=[t]),r.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${r.rank})`);return Fr(r,t)}function Pm(r,t=0,e=1,n,o){return wc(r,t,e,n,o)}function Do(r,t,e,n){if(r.rank<2||t.rank<2)throw new St(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=r.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new St(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${t.shape}`)}if(r.rank===2&&t.rank===2)return Ru.matMul({a:r,b:t,transposeA:!1,transposeB:!1,bias:n?CN(r.rank,n,hn()):null,activation:e});{let o=r.shape.slice(),s=o.pop();r=R(r,[-1,s]);let i=t.shape.slice(),a=i.pop(),u=i.pop(),l=[...i,a],c=Array.from({length:t.rank},(d,h)=>h===0?t.rank-2:h<=t.rank-2?h-1:h);t=R(Vt(t,c),[u,-1]);let p=[...o,...l],m=!1,f=!1;return R(Ru.matMul({a:r,b:t,transposeA:m,transposeB:f,bias:n?CN(r.rank,n,hn()):null,activation:e}),p)}}function My(r,t,e){return B(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=J(t,"int32"),aa(r,t,e)))}function Oc(r){return $(r,r)}function CN(r,t,e){let n=t.shape;if(t.rank!==1&&t.rank!==r)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${r}`);if(r===5){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1,1]):R(t,[1,n[3],n[0],n[1],n[2]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===4){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1,1]):R(t,[1,n[2],n[0],n[1]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,1,n[0]]):R(t,[1].concat(n))}else if(r===3){if(e==="channelsFirst")return n.length===1?R(t,[1,n[0],1]):R(t,[1,n[1],n[0]]);if(e==="channelsLast")return n.length===1?R(t,[1,1,n[0]]):R(t,[1].concat(n))}else if(r<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function gn(r,t,e){return B(()=>(e==null&&(e=hn()),Oe(e),Y(r,CN(r.rank,t,e))))}function R$(r,t=1){if(t!==1)throw new St(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return sa(r)}function F$(r){return B(()=>ut(r,Y(Ee(r),1)))}function Ly(r,t,e,n){return B(()=>Y0(r,t,e,n))}function O$(r){return B(()=>{let t=Y(.5,$(.2,r));return vr(t,0,1)})}function Ou(r,t,e=!1){return e?r():t()}var P$=["fanIn","fanOut","fanAvg"],M$=["normal","uniform","truncatedNormal"];function YY(r){da(P$,"FanMode",r)}function ZY(r){da(M$,"Distribution",r)}var xn=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Mm=class extends xn{apply(t,e){return Te(t,e)}};Mm.className="Zeros";Q.registerClass(Mm);var Pu=class extends xn{apply(t,e){return dr(t,e)}};Pu.className="Ones";Q.registerClass(Pu);var Lm=class extends xn{constructor(t){if(super(),typeof t!="object")throw new z(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new z(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return B(()=>$(ft(this.value),dr(t,e)))}getConfig(){return{value:this.value}}};Lm.className="Constant";Q.registerClass(Lm);var zm=class extends xn{constructor(t){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return ua(t,this.minval,this.maxval,e,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};zm.className="RandomUniform";Q.registerClass(zm);var Bm=class extends xn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`randomNormal does not support dType ${e}.`);return Pm(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Bm.className="RandomNormal";Q.registerClass(Bm);var Vm=class extends xn{constructor(t){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`truncatedNormal does not support dType ${e}.`);return Em(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Vm.className="TruncatedNormal";Q.registerClass(Vm);var Gm=class extends xn{constructor(t){super(),this.gain=t.gain!=null?t.gain:1}apply(t,e){return B(()=>{if(t.length!==2||t[0]!==t[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return $(this.gain,gc(t[0]))})}getConfig(){return{gain:this.gain}}};Gm.className="Identity";Q.registerClass(Gm);function JY(r,t="channelsLast"){let e,n;if(Oe(t),r.length===2)e=r[0],n=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(t==="channelsFirst"){let o=Ao(r,2);e=r[1]*o,n=r[0]*o}else if(t==="channelsLast"){let o=Ao(r,0,r.length-2);e=r[r.length-2]*o,n=r[r.length-1]*o}}else{let o=Ao(r);e=Math.sqrt(o),n=Math.sqrt(o)}return[e,n]}var Xr=class extends xn{constructor(t){if(super(),t.scale<0)throw new z(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,YY(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,ZY(this.distribution),this.seed=t.seed}apply(t,e){let n=JY(t),o=n[0],s=n[1],i=this.scale;if(this.mode==="fanIn"?i/=Math.max(1,o):this.mode==="fanOut"?i/=Math.max(1,s):i/=Math.max(1,(o+s)/2),this.distribution==="normal"){let a=Math.sqrt(i);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new St(`${this.getClassName()} does not support dType ${e}.`);return Em(t,0,a,e,this.seed)}else{let a=Math.sqrt(3*i);return ua(t,-a,a,e,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Xr.className="VarianceScaling";Q.registerClass(Xr);var Pc=class extends Xr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Pc.className="GlorotUniform";Q.registerClass(Pc);var Mc=class extends Xr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Mc.className="GlorotNormal";Q.registerClass(Mc);var Lc=class extends Xr{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Lc.className="HeNormal";Q.registerClass(Lc);var zc=class extends Xr{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};zc.className="HeUniform";Q.registerClass(zc);var Bc=class extends Xr{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Bc.className="LeCunNormal";Q.registerClass(Bc);var Vc=class extends Xr{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return Xr.className}};Vc.className="LeCunUniform";Q.registerClass(Vc);var Wm=class extends xn{constructor(t){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed}apply(t,e){return B(()=>{if(t.length<2)throw new St("Shape must be at least 2D.");if(e!=="int32"&&e!=="float32"&&e!==void 0)throw new TypeError(`Unsupported data type ${e}.`);e=e;let n=y.sizeFromShape(t.slice(0,-1)),o=t[t.length-1],s=n*o;s>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${s}) elements: Slowness may result.`);let i=[Math.max(o,n),Math.min(o,n)],a=Pm(i,0,1,e,this.seed),u=Q0.qr(a,!1),l=u[0],p=u[1].flatten().stridedSlice([0],[Math.min(o,n)*Math.min(o,n)],[Math.min(o,n)+1]);return l=$(l,p.sign()),n<o&&(l=l.transpose()),$(ft(this.gain),l.reshape(t))})}getConfig(){return{gain:this.gain,seed:this.seed}}};Wm.className="Orthogonal";Q.registerClass(Wm);var L$={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function z$(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,"initializer")}function _e(r){return Rm(r)}function he(r){if(typeof r=="string"){let t=r in L$?L$[r]:r;if(t==="GlorotNormal")return new Mc;if(t==="GlorotUniform")return new Pc;if(t==="HeNormal")return new Lc;if(t==="HeUniform")return new zc;if(t==="LeCunNormal")return new Bc;if(t==="LeCunUniform")return new Vc;{let e={};return e.className=t,e.config={},z$(e)}}else return r instanceof xn?r:z$(r)}function zy(r){return Array.isArray(r)&&Array.isArray(r[0])}function Um(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Nt(r){let t;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);t=r[0]}else t=r;return t}function Wt(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Hm(r){let t=0;for(let e of r)e.shape.length===0?t+=1:t+=e.shape.reduce((n,o)=>n*o);return t}var V$="Variable",Eh=class{constructor(t,e="float32",n=V$,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=$y(),n=n==null?V$:n,this.originalName=Ry(n),this.name=Fy(this.originalName),this.trainable_=o,this.constraint=s,this.val=uy(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),tZ(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}};function tZ(r,t){if(r.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(t.shape))}function Ah(r){return r.map(t=>t.read())}function qm(r){r.forEach(t=>{t[0].write(t[1])})}var Ie=class{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}},rn=class{constructor(t,e,n,o,s,i,a){this.dtype=t,this.shape=e,this.sourceLayer=n,this.inputs=o,this.callArgs=s,this.outputTensorIndex=a,this.id=$y(),i!=null&&(this.originalName=Ry(i),this.name=Fy(this.originalName)),this.rank=e.length}},eZ=0,Tl=class{constructor(t,e){this.callArgs=e,this.id=eZ++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let n of t.inboundLayers)n!=null&&n.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rZ=0,Et=class extends Q.Serializable{constructor(t={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rZ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let n=this.getClassName();e=_o(n)+"_"+Fu(n)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let n;if(t.batchInputShape!=null)n=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),n=[s].concat(t.inputShape)}this.batchInputShape=n;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new jr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new z(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return kr(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return kr(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kn(`Layer ${this.name} is not connected, no input to return.`);return kr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kn(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kn(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return kr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=we(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=we(this.inputSpec);if(t.length!==e.length)throw new z(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let n=0;n<t.length;n++){let o=t[n],s=e[n];if(s==null)continue;let i=o.rank;if(s.ndim!=null&&i!==s.ndim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${i}`);if(s.maxNDim!=null&&i>s.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${i}`);if(s.minNDim!=null&&i<s.minNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${i}.`);if(s.dtype!=null&&o.dtype!==s.dtype)throw new z(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${o.dtype}.`);if(s.axes){let a=o.shape;for(let u in s.axes){let l=Number(u),c=s.axes[u],p=l>=0?a[l]:a[a.length+l];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${a}.`)}}if(s.shape!=null)for(let a=0;a<s.shape.length;++a){let u=s.shape[a],l=o.shape[a];if(u!=null&&l!=null&&u!==l)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${o.shape}.`)}}}call(t,e){return t}invokeCallHook(t,e){this._callHook!=null&&this._callHook(t,e)}setCallHook(t){this._callHook=t}clearCallHook(){this._callHook=null}apply(t,e){e=e||{},this.assertNotDisposed();let n=we(t),o=!0;for(let i of n)if(!(i instanceof rn)){o=!1;break}let s=!0;for(let i of n)if(i instanceof rn){s=!1;break}if(o===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return ci(this.name,()=>{if(!this.built){this.assertInputCompatibility(t);let i=[];for(let a of we(t))i.push(a.shape);this.build(kr(i)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let i=this.call(t,e),a=we(i),u=[];for(let l of a)n.indexOf(l)!==-1&&(l=l.clone()),u.push(l);if(i=kr(u),this.activityRegularizer!=null)throw new St("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}else{let i=nZ(t),a=this.computeOutputShape(i),u,l=oZ(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?i[0]:i),a!=null&&a.length>0&&Array.isArray(a[0])?u=a.map((c,p)=>new rn(l,c,this,we(t),e,this.name,p)):u=new rn(l,a,this,we(t),e,this.name),this.addInboundNode(t,u,null,null,i,a,e),this._refCount++,this.activityRegularizer!=null)throw new St("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return u}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape!=null)if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((n,o)=>{n!=null&&t[o]!=null&&t[o]!==n&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kn(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let n=JSON.stringify(e.outputShapes);t.indexOf(n)===-1&&t.push(n)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new kn(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new jr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Hm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return Ah(t?this.trainableWeights:this.weights)}setWeights(t){B(()=>{let e=this.weights;if(e.length!==t.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let n=[],o=Ah(e);for(let s=0;s<o.length;++s){let i=o[s],a=e[s],u=t[s];if(!y.arraysEqual(i.shape,u.shape))throw new z(`Layer weight shape ${i.shape} not compatible with provided weight shape ${u.shape}`);n.push([a,u])}qm(n)})}addWeight(t,e,n,o,s,i,a,u){if(this._addedWeightNames.indexOf(t)!==-1)throw new z(`Duplicate weight name ${t} for layer ${this.name}`);this._addedWeightNames.push(t),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(o=u!=null?u():he("zeros"));let l=o.apply(e,n),c=new Eh(l,n,t,i,a);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(c.read())),i==null&&(i=!0),i?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){t==null||Array.isArray(t)&&t.length===0||(t=we(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t))}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,n,o,s,i,a=null){let u=we(t);e=we(e),n=we(n),o=we(o),s=Um(s),i=Um(i);let l=[],c=[],p=[];for(let m of u)l.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new Tl({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:p,inputTensors:u,outputTensors:e,inputMasks:n,outputMasks:o,inputShapes:s,outputShapes:i},a);for(let m=0;m<e.length;m++)e[m].sourceLayer=this,e[m].nodeIndex=this.inboundNodes.length-1,e[m].tensorIndex=m}getConfig(){let t={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(t.batchInputShape=this.batchInputShape),this.dtype!=null&&(t.dtype=this.dtype),t}disposeWeights(){return this.weights.forEach(t=>t.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}};function nZ(r){r=we(r);let t=[];for(let e of r)t.push(e.shape);return kr(t)}function oZ(r){return"float32"}function SN(r,t,e){if((t==null||e!=null&&e>0)&&(t=r.sourceLayer,e=r.nodeIndex),t.inboundNodes.length===0)return[r];{let n=t.inboundNodes[e];if(n.inboundLayers.length===0)return n.inputTensors;{let o=[];for(let s=0;s<n.inboundLayers.length;s++){let i=n.inputTensors[s],a=n.inboundLayers[s],u=n.nodeIndices[s],l=SN(i,a,u);for(let c of l)o.indexOf(c)===-1&&o.push(c)}return o}}}var mi=class extends Et{constructor(t){if(super({dtype:t.dtype,name:t.name!=null?t.name:Fu("input").toString()}),t.batchSize==null&&(t.batchSize=null),t.sparse==null&&(t.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=t.sparse,t.inputShape!=null&&t.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let e=t.batchInputShape;if(e==null){if(t.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");e=[t.batchSize].concat(t.inputShape)}else if(t.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=t.dtype||"float32";this.batchInputShape=e,this.dtype=n,this.inputSpec=[{shape:e}];let o=new rn(this.dtype,this.batchInputShape,this,[],{},this.name);o.nodeIndex=0,o.tensorIndex=0,new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[o],outputTensors:[o],inputMasks:[null],outputMasks:[null],inputShapes:[e],outputShapes:[e]})}apply(t,e){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};mi.className="InputLayer";Q.registerClass(mi);function By(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=r.batchShape;r.shape!=null&&t==null&&(t=[null].concat(r.shape));let e=r.dtype;return e==null&&(e="float32"),new mi({batchInputShape:t,name:r.name,dtype:e,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}function sZ(r,t){if(r.dtype==null||r.dtype===t.dtype)return t;try{return J(t,r.dtype)}catch(e){throw new z(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var $o=class{constructor(t){if(this.id2Value={},this.id2Mask={},this.name2Id={},t instanceof $o)for(let e in t.id2Value)this.id2Value[e]=t.id2Value[e],e in t.id2Mask&&(this.id2Mask[e]=t.id2Mask[e]);else{if(t==null)return;for(let e of t)this.add(e.key,e.value)}}add(t,e,n){if(this.id2Value[t.id]==null)this.id2Value[t.id]=sZ(t,e),this.name2Id[t.name]=t.id,n!=null&&(this.id2Mask[t.id]=n);else throw new z(`Duplicate key: name=${t.name}, id=${t.id}`);return this}addFeed(t){this.add(t.key,t.value)}hasKey(t){return this.id2Value[t.id]!=null}names(){return Object.keys(this.name2Id)}getValue(t){if(t instanceof rn){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Value[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Value[e]}}getMask(t){if(t instanceof rn){if(this.id2Value[t.id]==null)throw new z(`Nonexistent key: ${t.name}`);return this.id2Mask[t.id]}else{let e=this.name2Id[t];if(e==null)throw new z(`Feed dict has no SymbolicTensor name: ${t}`);return this.id2Mask[e]}}disposeMasks(){this.id2Mask!=null&&Tt(this.id2Mask)}},Vy=new Nh,Gy=new Nh;function W$(r){Vy!=null&&Vy.setMaxEntries(r),Gy!=null&&Gy.setMaxEntries(r)}function Gc(r,t,e,n){let o=e==null?!1:e.training,s=Array.isArray(r),i=s?r:[r],a=i.map(d=>d.name),u=[],l=t.names();for(let d of a)l.indexOf(d)!==-1?u.push(t.getValue(d)):u.push(null);n!=null&&(n.maxNumTensors=-1/0,n.minNumTensors=1/0);let c=a.join(",")+"|"+t.names().sort().join(","),p=Vy.get(c),m;if(p==null){let d=iZ(i,t);p=d.sorted,m=d.recipientCounts,Vy.put(c,p),Gy.put(c,m)}m={},o||Object.assign(m,Gy.get(c));let f=new $o(t);for(let d=0;d<p.length;++d){if(n!=null){let F=ph().numTensors;F>n.maxNumTensors&&(n.maxNumTensors=F),F<n.minNumTensors&&(n.minNumTensors=F)}let h=p[d],g=h.sourceLayer;if(g instanceof mi)continue;let x=[],b=[],w=[],I=!1;for(let F of h.inputs){let P=f.getValue(F),V=f.getMask(F);x.push(P),b.push(V),V!=null&&(I=!0),o||(m[F.name]--,m[F.name]===0&&!t.hasKey(F)&&a.indexOf(F.name)===-1&&!P.isDisposed&&F.sourceLayer.stateful!==!0&&w.push(P))}I&&(e=e||{},e.mask=b[0]);let N=we(g.apply(x,e)),E=null;g.supportsMasking&&(E=g.computeMask(x,b));let A=lZ(h),D=Array.isArray(A)?A:[A];for(let F=0;F<D.length;++F){f.hasKey(D[F])||f.add(D[F],N[F],Array.isArray(E)?E[0]:E);let P=a.indexOf(D[F].name);P!==-1&&(u[P]=N[F])}o||Tt(w)}return f.disposeMasks(),s?u:u[0]}function iZ(r,t){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let e=[],n={};if(r.length===1){let o=G$(r[0],t);e=o.sorted,n=o.recipientMap}else{let o=new Set;for(let s of r){let{sorted:i,recipientMap:a}=G$(s,t);for(let u of i)o.has(u.name)||(e.push(u),o.add(u.name));for(let u in a)n[u]==null&&(n[u]=new Set),a[u].forEach(l=>n[u].add(l))}}return{sorted:e,recipientCounts:aZ(n)}}function aZ(r){let t={};for(let e in r)t[e]=r[e].size;return t}function G$(r,t){let e=new Set,n=[],o={};for(let a of t.names())e.add(a);let s=[],i=[];for(s.push(r);s.length>0;){let a=s[s.length-1];if(e.has(a.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(a.inputs.length===0||u)s.pop(),n.push(a),e.add(a.name),u&&i.pop();else{i.push(s.length-1);for(let l of a.inputs)o[l.name]==null&&(o[l.name]=new Set),o[l.name].add(a.name),!e.has(l.name)&&s.push(l)}}return{sorted:n,recipientMap:o}}function lZ(r){let t;if(r.sourceLayer.inboundNodes.length===1)t=r.sourceLayer.output;else{let e=null;for(let n=0;n<r.sourceLayer.inboundNodes.length;++n)for(let o of r.sourceLayer.inboundNodes[n].outputTensors)if(o.id===r.id){e=n;break}t=r.sourceLayer.getOutputAt(e)}return t}var uZ=L();uZ.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,W$);var q$={};Kt(q$,{maxNorm:()=>cZ,minMaxNorm:()=>fZ,nonNeg:()=>mZ,unitNorm:()=>pZ});function NN(r,t){return B(()=>Ne(pt($(r,r),t,!0)))}var Wc=class extends Q.Serializable{getConfig(){return{}}},Km=class extends Wc{constructor(t){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=NN(t,this.axis),n=vr(e,0,this.maxValue);return $(t,ut(n,Y(ur(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Km.className="MaxNorm";Q.registerClass(Km);var jm=class extends Wc{constructor(t){super(),this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>ut(t,Y(ur(),NN(t,this.axis))))}getConfig(){return{axis:this.axis}}};jm.className="UnitNorm";Q.registerClass(jm);var Xm=class extends Wc{apply(t){return Pr(t)}};Xm.className="NonNeg";Q.registerClass(Xm);var Ym=class extends Wc{constructor(t){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return B(()=>{let e=NN(t,this.axis),n=Y($(this.rate,vr(e,this.minValue,this.maxValue)),$(1-this.rate,e));return $(t,ut(n,Y(ur(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Ym.className="MinMaxNorm";Q.registerClass(Ym);var U$={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Be(r){return Rm(r)}function H$(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,"constraint")}function Ve(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in U$?U$[r]:r,config:{}};return H$(e)}else return r instanceof Wc?r:H$(r)}function cZ(r){return new Km(r)}function pZ(r){return new jm(r)}function mZ(){return new Xm}function fZ(r){return new Ym(r)}var K$={};Kt(K$,{constant:()=>gZ,glorotNormal:()=>vZ,glorotUniform:()=>CZ,heNormal:()=>SZ,heUniform:()=>NZ,identity:()=>wZ,leCunNormal:()=>kZ,leCunUniform:()=>TZ,ones:()=>hZ,orthogonal:()=>_Z,randomNormal:()=>yZ,randomUniform:()=>xZ,truncatedNormal:()=>bZ,varianceScaling:()=>IZ,zeros:()=>dZ});function dZ(){return new Mm}function hZ(){return new Pu}function gZ(r){return new Lm(r)}function xZ(r){return new zm(r)}function yZ(r){return new Bm(r)}function bZ(r){return new Vm(r)}function wZ(r){return new Gm(r)}function IZ(r){return new Xr(r)}function CZ(r){return new Pc(r)}function vZ(r){return new Mc(r)}function SZ(r){return new Lc(r)}function NZ(r){return new zc(r)}function kZ(r){return new Bc(r)}function TZ(r){return new Vc(r)}function _Z(r){return new Wm(r)}var kR={};Kt(kR,{Layer:()=>Et,RNN:()=>_n,RNNCell:()=>Dl,activation:()=>H7,add:()=>tJ,alphaDropout:()=>MJ,average:()=>eJ,averagePooling1d:()=>zN,averagePooling2d:()=>BN,averagePooling3d:()=>VN,avgPool1d:()=>cJ,avgPool2d:()=>mJ,avgPool3d:()=>dJ,avgPooling1d:()=>pJ,avgPooling2d:()=>fJ,avgPooling3d:()=>hJ,batchNormalization:()=>aJ,bidirectional:()=>EJ,categoryEncoding:()=>GJ,centerCrop:()=>BJ,concatenate:()=>rJ,conv1d:()=>P7,conv2d:()=>M7,conv2dTranspose:()=>L7,conv3d:()=>z7,conv3dTranspose:()=>B7,convLstm2d:()=>NJ,convLstm2dCell:()=>kJ,cropping2D:()=>G7,dense:()=>q7,depthwiseConv2d:()=>U7,dot:()=>iJ,dropout:()=>K7,elu:()=>A7,embedding:()=>Q7,flatten:()=>X7,gaussianDropout:()=>PJ,gaussianNoise:()=>OJ,globalAveragePooling1d:()=>gJ,globalAveragePooling2d:()=>xJ,globalMaxPool1d:()=>DJ,globalMaxPool2d:()=>$J,globalMaxPooling1d:()=>CR,globalMaxPooling2d:()=>vR,gru:()=>bJ,gruCell:()=>wJ,input:()=>RN,inputLayer:()=>E7,layerNormalization:()=>lJ,leakyReLU:()=>$7,lstm:()=>IJ,lstmCell:()=>CJ,masking:()=>LJ,maxPool1d:()=>RJ,maxPool2d:()=>FJ,maxPooling1d:()=>SR,maxPooling2d:()=>NR,maxPooling3d:()=>yJ,maximum:()=>nJ,minimum:()=>oJ,multiply:()=>sJ,permute:()=>J7,prelu:()=>R7,reLU:()=>D7,repeatVector:()=>Y7,rescaling:()=>zJ,reshape:()=>Z7,resizing:()=>VJ,rnn:()=>TJ,separableConv2d:()=>V7,simpleRNN:()=>vJ,simpleRNNCell:()=>SJ,softmax:()=>F7,spatialDropout1d:()=>j7,stackedRNNCells:()=>_J,thresholdedReLU:()=>O7,timeDistributed:()=>AJ,upSampling2d:()=>W7,zeroPadding2d:()=>uJ});async function ha(r){if(r==null)return;let t=[],e=[],n=[];for(let o in r){let s=r[o];if(typeof s!="number"){let i=s;t.push(i.data()),e.push(o),n.push(i)}}if(t.length>0){let o=await Promise.all(t);for(let s=0;s<o.length;++s)r[e[s]]=o[s][0];Tt(n)}}function Wy(r){if(r!=null)for(let t in r){let e=r[t];typeof e!="number"&&e.dispose()}}var j$;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(j$||(j$={}));var EZ=125,_l=class{constructor(){this.validationData=null}setParams(t){this.params=t}async onEpochBegin(t,e){}async onEpochEnd(t,e){}async onBatchBegin(t,e){}async onBatchEnd(t,e){}async onTrainBegin(t){}async onTrainEnd(t){}setModel(t){}},Uy=class{constructor(t,e=10){t==null&&(t=[]),this.callbacks=t,this.queueLength=e}append(t){this.callbacks.push(t)}setParams(t){for(let e of this.callbacks)e.setParams(t)}setModel(t){for(let e of this.callbacks)e.setModel(t)}async onEpochBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochBegin(t,e)}async onEpochEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onEpochEnd(t,e)}async onBatchBegin(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchBegin(t,e)}async onBatchEnd(t,e){e==null&&(e={});for(let n of this.callbacks)await n.onBatchEnd(t,e)}async onTrainBegin(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainBegin(t)}async onTrainEnd(t){t==null&&(t={});for(let e of this.callbacks)await e.onTrainEnd(t)}},kN=class extends _l{constructor(){super()}async onEpochBegin(t){this.seen=0,this.totals={}}async onBatchEnd(t,e){e==null&&(e={});let n=e.size==null?0:e.size;this.seen+=n;for(let o in e){let s=e[o];if(typeof s=="number")this.totals.hasOwnProperty(o)||(this.totals[o]=0),this.totals[o]=this.totals[o]+s*n;else{let i;o in this.totals?i=this.totals[o]:this.totals[o]=0;let a=B(()=>Y(this.totals[o],$(s,n)));this.totals[o]=a,i!=null&&i.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?e[n]=this.totals[n]/this.seen:B(()=>{let o=$(ut(1,this.seen),this.totals[n]);e[n]=o,this.totals[n].dispose(),$e(e[n])}))}},Hy=class extends _l{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let n in e)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(e[n])}async syncData(){let t=[],e=[],n=[];for(let s in this.history){let i=this.history[s];for(let a=0;a<i.length;++a)if(typeof i[a]!="number"){let u=i[a];t.push(u.data()),e.push(s),n.push(a)}}let o=await Promise.all(t);for(let s=0;s<o.length;++s)this.history[e[s]][n[s]].dispose(),this.history[e[s]][n[s]]=o[s][0]}},qy=class extends _l{constructor(t,e){if(super(),this.currentEpoch=0,this.nowFunc=t.nowFunc,this.nextFrameFunc=t.nextFrameFunc||Sh,this.yieldEvery=e||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=EZ),this.yieldEvery==="never"&&t.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=w$(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=t.onTrainBegin,this.trainEnd=t.onTrainEnd,this.epochBegin=t.onEpochBegin,this.epochEnd=t.onEpochEnd,this.batchBegin=t.onBatchBegin,this.batchEnd=t.onBatchEnd,this.yield=t.onYield}async maybeWait(t,e,n){let o=[];this.yield!=null&&(await ha(n),o.push(this.yield(t,e,n))),o.push(this.nextFrameFunc()),await Promise.all(o)}async onEpochBegin(t,e){this.currentEpoch=t,this.epochBegin!=null&&(await ha(e),await this.epochBegin(t,e))}async onEpochEnd(t,e){let n=[];this.epochEnd!=null&&(await ha(e),n.push(this.epochEnd(t,e))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(t,e){this.batchBegin!=null&&(await ha(e),await this.batchBegin(t,e))}async onBatchEnd(t,e){let n=[];this.batchEnd!=null&&(await ha(e),n.push(this.batchEnd(t,e))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):y.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,t,e)),await Promise.all(n)}async onTrainBegin(t){this.trainBegin!=null&&(await ha(t),await this.trainBegin(t))}async onTrainEnd(t){this.trainEnd!=null&&(await ha(t),await this.trainEnd(t))}};function Ky(r,t){return r==null&&(r={}),r instanceof _l?[r]:Array.isArray(r)&&r[0]instanceof _l?r:we(r).map(n=>new qy(n,t))}var yn=class{constructor(){}static registerCallbackConstructor(t,e){y.assert(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),yn.checkForDuplicate(e),yn.constructors[t]==null&&(yn.constructors[t]=[]),yn.constructors[t].push(e)}static checkForDuplicate(t){for(let e in yn.constructors)yn.constructors[+e].forEach(o=>{if(o===t)throw new z("Duplicate callback constructor.")})}static clear(){yn.constructors={}}static createCallbacks(t){let e=[];for(let n in yn.constructors){let o=+n;t>=o&&e.push(...yn.constructors[o])}return e.map(n=>new n)}};yn.constructors={};function jy(r,t,e,n,o,s,i,a,u){let l=new Hy,c=[new kN,...yn.createCallbacks(t)];r!=null&&c.push(...r),c.push(l);let p=new Uy(c);return p.setParams({epochs:e,initialEpoch:n,samples:o,steps:s,batchSize:i,verbose:t,doValidation:a,metrics:u}),{callbackList:p,history:l}}function bn(r,t={},e=!1){return fa(r,Q.SerializationMap.getMap().classNameMap,t,"layer",e)}function Dh(r,t){return B(()=>{r.dtype!=="float32"&&(r=J(r,"float32"));let e=pt(Oc(r),t,!0),n=Co(e.shape,ur()),o=Ne(Nn(e,n));return ut(r,o)})}function ga(r,t){return B(()=>ke(Oc(lt(t,r)),-1))}function Zm(r,t){return B(()=>ke(Ee(lt(t,r)),-1))}function Mu(r,t){return B(()=>{let e=lt(r,t),n=vr(Ee(r),ur(),Number.MAX_VALUE),o=Ee(ut(e,n));return $(100,ke(o,-1))})}function AZ(r,t){return B(()=>{let e=vr(t,ur(),Number.MAX_VALUE),n=Nr(Y(1,e)),o=vr(r,ur(),Number.MAX_VALUE),s=Nr(Y(1,o));return ke(Oc(lt(n,s)),-1)})}function DZ(r,t){return B(()=>{let e=Nn(0,lt(1,$(r,t)));return ke(Oc(e),-1)})}function $Z(r,t){return B(()=>{let e=Nn(0,lt(1,$(r,t)));return ke(e,-1)})}function RZ(r,t){return B(()=>{let e=pt($(r,t),-1),n=Sr($(lt(1,r),t),-1);return Nn(0,Y(1,lt(n,e)))})}function FZ(r,t){return B(()=>{let e=Math.log(2),n=lt(t,r),o=lt(Y(n,ii($(-2,n))),e);return ke(o,-1)})}function Uc(r,t,e=!1){return B(()=>{if(e)t=Eu(t);else{let n=pt(t,t.shape.length-1,!0);t=ut(t,n)}return t=vr(t,ur(),1-ur()),Ut(pt($(J(r,"float32"),Nr(t)),t.shape.length-1))})}function Jm(r,t,e=!1){return B(()=>{let n=J(ia(D$(r)),"int32");t=vr(t,ur(),1-ur());let o=t.shape,s=R(la(n,o[o.length-1]),o);return Uc(s,t,e)})}function OZ(r,t){if(!y.arraysEqual(r.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let e=Pr(t),n=Ut(Ee(t));return Y(lt(e,$(t,r)),Su(sr(n)))})}function Qm(r,t){return B(()=>{let e;return e=vr(t,ur(),1-ur()),e=Nr(ut(e,lt(1,e))),ke(OZ(r,e),-1)})}function PZ(r,t){return B(()=>{let e=vr(r,ur(),1),n=vr(t,ur(),1);return pt($(r,Nr(ut(e,n))),-1)})}function MZ(r,t){return B(()=>{let e=Nr(Y(ur(),t));return ke(lt(t,$(r,e)),-1)})}function Rh(r,t){return B(()=>{let e=Dh(r,-1),n=Dh(t,-1),o=$(e,n);return Ut(pt(o,-1))})}var $h={meanSquaredError:ga,meanAbsoluteError:Zm,meanAbsolutePercentageError:Mu,meanSquaredLogarithmicError:AZ,squaredHinge:DZ,hinge:$Z,categoricalHinge:RZ,logcosh:FZ,categoricalCrossentropy:Uc,sparseCategoricalCrossentropy:Jm,binaryCrossentropy:Qm,kullbackLeiblerDivergence:PZ,poisson:MZ,cosineProximity:Rh};function Xy(r){if(typeof r=="string"){if(r in $h)return $h[r];let t=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return r}function Fh(r,t){return B(()=>{let e=$(.5,Ir(t)),n=en(Fe(t,e),r.dtype);return ke(Rr(r,n),-1)})}function Oh(r,t){return B(()=>en(Rr(Qi(r,-1),Qi(t,-1)),"float32"))}function Y$(r,t){return B(()=>J(pt(Or(Rr(r,1),Rr(t,1))),"float32"))}function LZ(r,t){return B(()=>J(pt(Or(Rr(r,1),Rr(t,0))),"float32"))}function zZ(r,t){return B(()=>J(pt(Or(Rr(r,0),Rr(t,1))),"float32"))}function TN(r,t){return B(()=>{let e=Y$(r,t),n=zZ(r,t),o=Y(e,n);return J(be(Fe(o,0),ut(e,o),0),"float32")})}function Z$(r,t){return B(()=>{let e=Y$(r,t),n=LZ(r,t),o=Y(e,n);return J(be(Fe(o,0),ut(e,o),0),"float32")})}function Zy(r,t){return Qm(r,t)}function Jy(r,t){return r.rank===t.rank&&(r=Gn(r,[r.rank-1])),t=Qi(t,-1),t.dtype!==r.dtype&&(t=J(t,r.dtype)),J(Rr(r,t),"float32")}var BZ=ga,VZ=ga,GZ=Zm,WZ=Zm,UZ=Mu,HZ=Mu,Ph=Uc,qZ=Rh,_N=Jm,Yy={binaryAccuracy:Fh,categoricalAccuracy:Oh,precision:TN,categoricalCrossentropy:Ph,sparseCategoricalCrossentropy:_N,mse:BZ,MSE:VZ,mae:GZ,MAE:WZ,mape:UZ,MAPE:HZ,cosine:qZ};function J$(r){if(typeof r=="string"&&r in Yy)return Yy[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Mh(r){if(uo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let t;for(let e of Object.keys($h))if($h[e]===r){t=e;break}if(t!==void 0)return t;for(let e of Object.keys(Yy))if(Yy[e]===r){t=e;break}return t!==void 0?t:r.name}}function tR(r){let t={Adagrad:()=>Rc.adagrad(.01),Adadelta:()=>Rc.adadelta(1,.95,ur()),Adam:()=>Rc.adam(.001,.9,.999,ur()),Adamax:()=>Rc.adamax(.002,.9,.999,ur(),0),RMSProp:()=>Rc.rmsprop(.001,.9,0,ur()),SGD:()=>Rc.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,r in t)return t[r]();throw new z(`Unknown Optimizer ${r}`)}function AN(r,t,e=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!EN(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let n=JSON.stringify(r);n.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${n.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function EN(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let t=Object.keys(r);for(let e of t)if(typeof e!="string"||!EN(r[e]))return!1;return!0}else if(Array.isArray(r)){for(let t of r)if(!EN(t))return!1;return!0}else return!1;else{let t=typeof r;return t==="string"||t==="number"||t==="boolean"}}function eR(r,t,e,n=console.log){let o=XZ(r),s=["Layer (type)","Input Shape","Output shape","Param #"];o?(t=t||90,e=e||[.32,.61,.89,1]):(t=t||115,e=e||[.24,.48,.7,.8,1]),e[e.length-1]<=1&&(e=e.map(c=>Math.floor(t*c)));let i;if(!o){s.push("Receives inputs"),i=[];for(let c in r.nodesByDepth)i.push(...r.nodesByDepth[c])}n("_".repeat(t)),Qy(s,e,n),n("=".repeat(t));let a=r.layers;for(let c=0;c<a.length;++c)o?YZ(a[c],e,n):ZZ(a[c],e,i,n),n((c===a.length-1?"=":"_").repeat(t));r.checkTrainableWeightsConsistency();let u=jZ(r),l=Hm(r.nonTrainableWeights);n(`Total params: ${u+l}`),n(`Trainable params: ${u}`),n(`Non-trainable params: ${l}`),n("_".repeat(t))}function jZ(r){let t;return r.collectedTrainableWeights!=null?t=Hm(r.collectedTrainableWeights):t=Hm(r.trainableWeights),t}function XZ(r){let t=!0,e=[],n=[];for(let o in r.nodesByDepth)e.push(r.nodesByDepth[o]);for(let o of e){if(o.length>1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}n.push(...o)}if(t)for(let o of r.layers){let s=!1;for(let i of o.inboundNodes)if(n.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Qy(r,t,e=console.log){let n="";for(let o=0;o<r.length;++o)o>0&&(n=n.slice(0,n.length-1)+" "),n+=r[o],n=n.slice(0,t[o]),n+=" ".repeat(t[o]-n.length);e(n)}function YZ(r,t,e){let n,o;try{o=r.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){o="multiple"}try{n=JSON.stringify(r.outputShape)}catch(u){n="multiple"}let s=r.name,i=r.getClassName(),a=[`${s} (${i})`,o,n,r.countParams().toString()];Qy(a,t,e)}function ZZ(r,t,e,n){let o,s;try{s=r.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){s="multiple"}try{o=JSON.stringify(r.outputShape)}catch(p){o="multiple"}let i=[];for(let p of r.inboundNodes)if(!(e!=null&&e.length>0&&e.indexOf(p)===-1))for(let m=0;m<p.inboundLayers.length;++m){let f=p.inboundLayers[m].name,d=p.nodeIndices[m],h=p.tensorIndices[m];i.push(`${f}[${d}][${h}]`)}let a=r.name,u=r.getClassName(),l=i.length===0?"":i[0],c=[`${a} (${u})`,s,o,r.countParams().toString(),l];Qy(c,t,n);for(let p=1;p<i.length;++p)Qy(["","","","",i[p]],t,n)}function rR(r,t,e){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&t===0&&typeof e=="string"}function Hc(r,t){if(r===null)return null;if(typeof r=="string")return Sl(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];rR(t,o,s)?e.push(s):e.push(Hc(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n];if(n==="name"&&typeof o=="string")e[n]=o;else{let s=Sl(n);e[s]=Hc(o,s)}}return e}}function tb(r,t){if(r==null)return null;if(typeof r=="string")return _o(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let e=[],n=r.length;for(let o=0;o<n;++o){let s=r[o];rR(t,o,s)?e.push(s):e.push(tb(s,t))}return e}else{let e={};for(let n of Object.keys(r)){let o=r[n],s=_o(n);(n==="name"||n==="className")&&typeof o=="string"?e[s]=o:e[s]=tb(o,n)}return e}}var tf="4.3.0";var Wn=class extends Et{constructor(t){if(super({}),this.containerNodes=new Set,this.name=t.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Fu(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(t.inputs)?this.inputs=t.inputs.slice():this.inputs=[t.inputs],Array.isArray(t.outputs)?this.outputs=t.outputs.slice():this.outputs=[t.outputs],Eo(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);Eo(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(I),this.outputLayersTensorIndices.push(N)}for(let b of this.inputs){let w=b.sourceLayer,I=b.nodeIndex,N=b.tensorIndex;uo(I===0,"input layer has >1 nodes"),uo(N===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(I),this.inputLayersTensorIndices.push(N)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof mi))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${t.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let e={},n={},o={},s={},i={},a=[],u=(b,w,I,N,E,A)=>{(N==null||E==null||A==null)&&(N=b.sourceLayer,E=b.nodeIndex,A=b.tensorIndex);let D=N.inboundNodes[E];if(I.indexOf(D)!==-1)throw new jr(`The tensor ${b.name} at layer "${N.name}" is part of a cycle.`);if(w.indexOf(D)!==-1)return;this.containerNodes.add(Wn.nodeKey(N,E)),N.id in i||(i[N.id]=Object.keys(i).length),I.indexOf(D)===-1&&I.push(D);let F=D.inboundLayers.length;for(let P=0;P<F;P++){let V=D.inputTensors[P],G=D.inboundLayers[P],W=D.nodeIndices[P],q=D.tensorIndices[P];u(V,w,I,G,W,q)}for(w.push(D);I.indexOf(D)>=0;)I.splice(I.indexOf(D),1);a.push(D)},l=[],c=[];for(let b of this.outputs)u(b,l,c);let p=a.slice().reverse();for(let b of p){n[b.id]=b,b.id in e||(e[b.id]=0);let w=e[b.id],I=o[b.outboundLayer.id]==null?0:o[b.outboundLayer.id];w=Math.max(w,I),o[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,e[b.id]=w;for(let N=0;N<b.inboundLayers.length;N++){let E=b.inboundLayers[N],A=b.nodeIndices[N],D=E.inboundNodes[A],F=e[D.id]==null?0:e[D.id];e[D.id]=Math.max(w+1,F),n[D.id]=D}}let m={};for(let b in e){let w=e[b];w in m||(m[w]=[]),m[w].push(n[b])}let f={};for(let b in o){let w=o[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(kh);this.layers=[];for(let b of d){let w=f[b];w.sort((I,N)=>{let E=i[I.id],A=i[N.id];return E<A?-1:E>A?1:0});for(let I of w)I instanceof Wn&&this.internalContainerRefs.push(I),this.layers.push(I)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(kh);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let I=w.outboundLayer;if(I!=null){for(let N of w.inputTensors)if(h.indexOf(N)===-1)throw new jr(`Graph disconnected: cannot obtain value for tensor ${N} at layer "${I.name}". The following previous layers were accessed without issue: ${g}`);for(let N of w.outputTensors)h.push(N);g.push(I.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(I=>I===b).length;if(w!==1)throw new jr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(n=>n.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.layers)e.push(...n.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let n={},o=0;for(let i of this.layers)for(let a of i.weights){if(n[a.originalName]!=null)throw new z(`Duplicate weight name: ${a.originalName}`);n[a.originalName]=a,o++}let s=[];for(let i in t){let a=i;if(n[i]==null){let u=i.split("/");a=u.slice(0,-2).concat([u[u.length-1]]).join("/")}if(n[a]!=null)s.push([n[a],t[i]]);else if(e)throw new z(`Provided weight data has no target variable: ${i}`);delete n[a]}if(e){let i=[];for(let a in n)i.push(a);if(i.length>0)throw new z(`${i.length} of ${o} weights are not set: ${i}`)}qm(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${tf}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let n=tb(this.updatedConfig());return e?JSON.stringify(n):n}call(t,e){return B(()=>{t=we(t);let n=new $o;for(let o=0;o<this.inputs.length;++o)n.add(this.inputs[o],t[o]);return Gc(this.outputs,n,e)})}computeMask(t,e){return B(()=>{t=we(t);let n;return e==null?n=To(null,t.length):n=we(e),this.runInternalGraph(t,n)[1]})}computeOutputShape(t){let e=Um(t);if(e.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let a=0;a<e.length;a++){let u=this.inputLayers[a],l=e[a],c=u.name+"_0_0";n[c]=l}let o=Object.keys(this.nodesByDepth).map(a=>parseInt(a,10)).sort(kh);if(o.length>1)for(let a of o){let u=this.nodesByDepth[a];for(let l of u){let c=l.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<l.inboundLayers.length;h++){let g=l.inboundLayers[h],x=l.nodeIndices[h],b=l.tensorIndices[h],w=`${g.name}_${x}_${b}`,I=n[w];p.push(I)}let m=c.computeOutputShape(kr(p)),f=Um(m),d=c.inboundNodes.indexOf(l);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;n[g]=f[h]}}}let s=[],i=[];for(let a=0;a<this.outputLayers.length;a++){let u=this.outputLayers[a],l=this.outputLayersNodeIndices[a],c=this.outputLayersTensorIndices[a],p=`${u.name}_${l}_${c}`;i.push(p)}for(let a=0;a<i.length;a++){let u=i[a];uo(u in n),s.push(n[u])}return kr(s)}runInternalGraph(t,e){e==null&&(e=To(null,t.length));let n={};for(let u=0;u<this.inputs.length;++u){let l=this.inputs[u],c=t[u],p=e[u];n[l.id]=[c,p]}let o=Object.keys(this.nodesByDepth).map(u=>parseInt(u,10)).sort(kh);for(let u of o){let l=this.nodesByDepth[u];for(let c of l){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in n&&d.push(n[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[I,N]=d[0];h.mask==null&&(h.mask=N),b=we(p.call(I,h)),w=we(p.computeMask(I,N)),g=[I],x=[N]}else g=d.map(I=>I[0]),x=d.map(I=>I[1]),h.mask==null&&(h.mask=x),b=we(p.call(g,h)),w=we(p.computeMask(g,x));if(p.activityRegularizer)throw new St("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let I=0;I<f.length;++I){let N=f[I],E=b[I],A=w[I];n[N.id]=[E,A]}}}}let s=[],i=[],a=[];for(let u of this.outputs){uo(u.id in n,`Could not compute output ${u.name} : ${u.id}`);let[l,c]=n[u.id];a.push(l.shape),s.push(l),i.push(c)}return[s,i,a]}buildNodeConversionMap(t){let e={},n;for(let o of this.layers){n=o instanceof Wn?1:0;for(let s=0;s<o.inboundNodes.length;s++){let i=Wn.nodeKey(o,s);this.containerNodes.has(i)&&(e[i]=n,n+=1)}}return e}getLayer(t,e){if(e!=null){if(this.layers.length<=e)throw new z(`Was asked to retrieve layer at index ${e}, but model only has ${this.layers.length} layer(s).`);return this.layers[e]}else if(t==null)throw new z("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===t)return n;throw new z(`No such layer: ${t}`)}calculateLosses(){return B(()=>{let t=[];for(let e of this.layers)for(let n=0;n<e.inboundNodes.length;++n){let o=Wn.nodeKey(e,n);this.containerNodes.has(o)&&t.push(...e.calculateLosses())}return t})}getConfig(){let t={name:this.name},e=this.buildNodeConversionMap(this.layers),n=[];for(let i of this.layers){let a=i.getClassName(),u=i.getConfig(),l=[];for(let p=0;p<i.inboundNodes.length;p++){let m=i.inboundNodes[p],f=Wn.nodeKey(i,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${i.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],I=Wn.nodeKey(x,b),N=e[I];N==null&&(N=0),h.push([x.name,N,w,d])}l.push(h)}}}let c={};c.name=i.name,c.className=a,c.config=u,c.inboundNodes=l,n.push(c)}t.layers=n;let o=[];for(let i=0;i<this.inputLayers.length;i++){let a=this.inputLayers[i],u=this.inputLayersNodeIndices[i],l=Wn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.inputLayersTensorIndices[i];o.push([a.name,c,p])}t.inputLayers=o;let s=[];for(let i=0;i<this.outputLayers.length;i++){let a=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=Wn.nodeKey(a,u);if(!this.containerNodes.has(l))continue;let c=e[l];c==null&&(c=0);let p=this.outputLayersTensorIndices[i];s.push([a.name,c,p])}return t.outputLayers=s,t}static fromConfig(t,e,n={},o=!1){let s={},i={};function a(g,x){g.name in i?i[g.name].push(x):i[g.name]=[x]}function u(g,x){let b=[],w;for(let I of x){let N=I[0],E=I[1],A=I[2];if(w=I[3]==null?{}:I[3],!(N in s)){a(g,x);return}let D=s[N];if(D.inboundNodes.length<=E){a(g,x);return}let F=D.inboundNodes[E];b.push(F.outputTensors[A])}b.length>0&&g.apply(kr(b),w)}function l(g){let x=g.name,b=bn(g,e.customObjects!=null?e.customObjects:{});b.setFastWeightInitDuringBuild(o),s[x]=b,g.inboundNodes.forEach(I=>{if(!(I instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${I}`);a(b,I)})}let c=e.name,p=e.layers;for(let g of p)l(g);for(;!y$(i);)for(let g of p){let x=s[g.name];if(x.name in i){let b=i[x.name];delete i[x.name];for(let w of b)u(x,w)}}let m=[],f=[],d=e.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];uo(x in s);let N=s[x].inboundNodes[b].outputTensors;m.push(N[w])}let h=e.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];uo(x in s);let N=s[x].inboundNodes[b].outputTensors;f.push(N[w])}return new t({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}};function JZ(r,t,e){let n=t.length;if(r==null||Array.isArray(r)&&r.length===0)return t.map(o=>null);if(n===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&t[0]in r?[r[t[0]]]:[r];if(Array.isArray(r)){if(r.length!==n)throw new Error(`Provided ${e} is an array of ${r.length} element(s), but the model has ${n} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let o=[];return t.forEach(s=>{s in r?o.push(r[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${n}) outputs, so ${e} must be either an array with ${n} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(r)}`)}function eb(r,t){return JZ(r,t,"classWeight")}async function rb(r,t,e,n){if(t!=null||n!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=B(()=>{if(r.shape.length===1)return ln(r);if(r.shape.length===2){if(r.shape[1]>1)return Qi(r,1);if(r.shape[1]===1)return R(r,[r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Tt(o);let i=[];return s.forEach(a=>{if(e[a]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${a} exists in the data but not in classWeight`);i.push(e[a])}),Ke(i,"float32")}else return null}function nR(r,t){return $(r,t)}var QZ=32;function iR(r,t){let e,n,o=t;e=o.xs,n=o.ys,y.assert(e!=null&&n!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=oR("input",r.inputNames,e),i=oR("output",r.outputNames,n),a=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(i.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let u=0;u<s.length;u++)y.assert(s[u].shape[0]===a,()=>`Batch size mismatch: input ${r.inputNames[u]} has ${s[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);for(let u=0;u<i.length;u++)y.assert(i[u].shape[0]===a,()=>`Batch size mismatch: output ${r.outputNames[u]} has ${i[u].shape[0]}; expected ${a} based on input ${r.inputNames[0]}.`);return{xs:s,ys:i}}function oR(r,t,e){if(e instanceof Pt)return[e];if(Array.isArray(e))return y.assert(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${r} keys ${t}.`),e;{let n=[];for(let o of t){if(e[o]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${o}'.`);n.push(e[o])}return n}}function t7(r){if(r.length===3)throw new St("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function aR(r,t,e){let n=e.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),y.assert(!n||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),y.assert(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let o=e.validationData!=null,s,i;if(o)if(sR(e.validationData))y.assert(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let g=t7(e.validationData);s=g.xs,i=g.ys}let a=r.makeTrainFunction(),u=r.getDedupedMetricsNames(),l;o?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=Ky(e.callbacks,e.yieldEvery),p=e.verbose==null?1:e.verbose,{callbackList:m,history:f}=jy(c,p,e.epochs,null,null,e7(t,e),null,o,l);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=e.initialEpoch==null?0:e.initialEpoch,h=await t.iterator();for(;d<e.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(n||(h=await t.iterator());!n||x<e.batchesPerEpoch;){let w=await h.next();if(n&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${e.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${e.batchesPerEpoch*e.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:I,ys:N}=iR(r,w.value),E={};E.batch=b,E.size=I[0].shape[0],await m.onBatchBegin(b,E);let A=[];if(e.classWeight!=null){let P=eb(e.classWeight,r.outputNames);for(let V=0;V<P.length;++V)A.push(await rb(N[V],null,P[V]))}let D=I.concat(N).concat(A),F=a(D);Tt(D);for(let P=0;P<u.length;++P){let V=u[P],G=F[P];E[V]=G,$e(G)}await m.onBatchEnd(b,E),Wy(E),b++,x++}if(n?x>=e.batchesPerEpoch:w.done){if(o){let I;sR(e.validationData)?I=we(await r.evaluateDataset(e.validationData,{batches:e.validationBatches})):I=we(r.evaluate(s,i,{batchSize:e.validationBatchSize==null?QZ:e.validationBatchSize,verbose:0}));for(let N=0;N<r.metricsNames.length;++N)g[`val_${r.metricsNames[N]}`]=I[N]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function e7(r,t){let e=null;return t.batchesPerEpoch!=null?e=t.batchesPerEpoch:Number.isFinite(r.size)&&(e=r.size),e}function sR(r){return typeof r.iterator=="function"}function r7(r){return typeof r.next=="function"}async function lR(r,t,e){e=e||{};let n=e.batches!=null,o=r.testFunction,s=[];if(e.verbose>0)throw new St("Verbose mode is not implemented yet.");y.assert(!n||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let i=r7(t)?t:await t.iterator(),a=0,u=0;for(;!n||u<e.batches;){let l=await i.next();if(s=B(()=>{if(l.value){let{xs:c,ys:p}=iR(r,l.value),m=c.concat(p),f=B(()=>o(m));if(Tt(m),u===0)for(let h=0;h<f.length;++h)s.push(ft(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=B(()=>Y(s[h],$(d,g))),u>0&&Tt(x)}Tt(f),a+=d,++u}return s}),l.done){n&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let c=s[l];s[l]=ut(s[l],a),Tt(c)}return kr(s)}function nb(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function ef(r,t,e){return r==null?[null]:Array.isArray(r)?r.map(n=>Nl(n,t,e-t)):Nl(r,t,e-t)}function ob(r,t){return B(()=>r==null?null:Array.isArray(r)?r.map(e=>ob(e,t)):My(r,t.dtype==="int32"?t:J(t,"int32")))}function sb(r,t){let e=[],n=0,o=null;for(;n<r;)o=n+t,o>=r&&(o=r),e.push([n,o]),n=o;return e}function DN(r){let t=[];r instanceof Pt&&(r=[r]);for(let e=0;e<r.length;++e){let n=r[e];if(n.rank===1)t.push(kl(n,1));else{if(n.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(n)}}return t}function Ro(r,t){if(r==null)return;let e=[];if(t instanceof Pt)e.push(t.id);else if(Array.isArray(t))t.forEach(o=>e.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let n=[];if(r instanceof Pt)e.indexOf(r.id)===-1&&n.push(r);else if(Array.isArray(r))r.forEach(o=>{e.indexOf(o.id)===-1&&n.push(o)});else if(r!=null)for(let o in r){let s=r[o];e.indexOf(s.id)===-1&&n.push(s)}n.forEach(o=>{o.isDisposed||o.dispose()})}function n7(r){return r instanceof Pt}function $N(r){return Array.isArray(r)}function uR(r){return!n7(r)&&!$N(r)}function cR(r,t,e,n=!0,o=""){if(t==null||t.length===0){if(r!=null){let i=!1;if($N(r)&&r.length>0)i=!0;else if(uR(r)){for(let a in r)if(r.hasOwnProperty(a)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${o} expected no data, but got ${r}`)}return[]}if(r==null)return t.map(i=>null);let s;if(uR(r)){r=r,s=[];for(let i of t){if(r[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(r[i])}}else if($N(r)){if(r=r,r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,t.length>1)throw new z(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=DN(s),e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s). but got array with shape ${a.shape}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c>=0&&l!==c)throw new z(`${o} expected a batch of elements where each example has shape [${e[i].slice(1,e[i].length)}] (i.e.,tensor shape [*,${e[i].slice(1,e[i].length)}]) but the ${o} received an input with ${a.shape[0]} examples, each with shape [${a.shape.slice(1,a.shape.length)}] (tensor shape [${a.shape}])`)}}return s}function o7(r,t,e){let n=Eo(r.map(s=>s.shape[0]));n.sort();let o=Eo(t.map(s=>s.shape[0]));if(o.sort(),n.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(o.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(n.length>0&&o.length>0&&!y.arraysEqual(n,o))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${n[0]} input sample(s) and ${o[0]} target sample(s).`)}function s7(r,t,e){let n=[ga,Qm,Uc];for(let o=0;o<r.length;++o){let s=r[o],i=t[o],a=e[o];if(i!=null){if(i===Uc&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(n.indexOf(i)!==-1){let u=s.shape.slice(1),l=a.slice(1);for(let c=0;c<u.length;++c){let p=u[c],m=l[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${a}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function pR(r,t,e,n=!0,o=""){let s;if(Array.isArray(r)){if(r.length!==t.length)throw new z(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(t.length>1)throw new z(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(e!=null)for(let i=0;i<t.length;++i){if(e[i]==null)continue;let a=s[i];if(a.shape.length!==e[i].length)throw new z(`Error when checking ${o}: expected ${t[i]} to have ${e[i].length} dimension(s), but got array with shape ${JSON.stringify(a.shape)}`);for(let u=0;u<e[i].length;++u){if(u===0&&!n)continue;let l=a.shape[u],c=e[i][u];if(c!=null&&c!==l)throw new z(`Error when checking ${o}: expected ${t[i]} to have shape ${JSON.stringify(e[i])} but got array with shape ${JSON.stringify(a.shape)}.`)}}}function i7(r,t){if(r==null||Array.isArray(r)&&r.length===0)return t.map(n=>[]);let e;if(typeof r=="string"||typeof r=="function")e=[r];else if(Array.isArray(r)||typeof r=="object")e=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(e))return t.map(n=>e);{let n=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),n.push(s)}return n}}var a7="layers-model",Un=class extends Wn{constructor(t){super(t),this.isTraining=!1}summary(t,e,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");eR(this,t,e,n)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=tR(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof qr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let i in t.loss)if(this.outputNames.indexOf(i)===-1)throw new z(`Unknown entry in loss dictionary: "${i}". Only expected the following keys: ${this.outputNames}`);for(let i of this.outputNames)t.loss[i]==null&&console.warn(`Output "${i}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${i} during training`),e.push(Xy(t.loss[i]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);e=t.loss.map(a=>Xy(a))}else{let i=Xy(t.loss);this.outputs.forEach(a=>{e.push(i)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let i=0;i<this.outputs.length;++i){let a=this.internalOutputShapes[i],u=this.outputNames[i];this.feedOutputNames.push(u),this.feedOutputShapes.push(a),this.feedLossFns.push(this.lossFunctions[i])}let n=[];this.metrics=t.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ci("loss",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=this.lossFunctions[i];this.outputs.length>1&&(this.metricsTensors.push([a,i]),this.metricsNames.push(this.outputNames[i]+"_loss"))}});let o=i7(t.metrics,this.outputNames),s=(i,a,u)=>{this.outputNames.length>1&&(a=this.outputNames[i]+"_"+a),this.metricsNames.push(a),this.metricsTensors.push([u,i])};ci("metric",()=>{for(let i=0;i<this.outputs.length;++i){if(n.indexOf(i)!==-1)continue;let a=o[i];(l=>{let c="",p,m,f;for(let d of l){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[i];g[g.length-1]===1||this.lossFunctions[i]===Qm?["accuracy","acc"].indexOf(d)!==-1?m=Fh:["crossentropy","ce"].indexOf(d)!==-1&&(m=Zy):this.lossFunctions[i]===Jm?["accuracy","acc"].indexOf(d)!==-1?m=Jy:["crossentropy","ce"].indexOf(d)!==-1&&(m=_N):["accuracy","acc"].indexOf(d)!==-1?m=Oh:["crossentropy","ce"].indexOf(d)!==-1&&(m=Ph);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=J$(d),p=c+Mh(d);let h;ci(p,()=>{h=f}),s(i,p,h)}})(a)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,n={}){let o=n.batchSize==null?32:n.batchSize;nb(o);let s=!0,i=this.standardizeUserDataXY(t,e,s,o);try{let a=i[0].concat(i[1]);this.makeTestFunction();let u=this.testFunction,l=this.testLoop(u,a,o,n.verbose,n.steps);return kr(l)}finally{Ro(i[0],t),Ro(i[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),lR(this,t,e)}checkNumSamples(t,e,n,o="steps"){let s;if(n!=null){if(s=null,e!=null)throw new z(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new z(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(e),o=n?e:[e],s=this.retrieveSymbolicTensors(o),i=new $o;if(t instanceof Pt&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new z(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let u=0;u<this.inputs.length;++u)i.add(this.inputs[u],t[u])}else for(let u of this.inputs){let l=t[u.name];if(l==null)throw new z(`No value is provided for the model's input ${u.name}`);i.add(u,l)}let a=Gc(s,i);return n?a:a[0]}retrieveSymbolicTensors(t){let e=To(null,t.length),n=t.length;for(let o of this.layers){let s=Array.isArray(o.output)?o.output:[o.output],i=s.map(a=>a.name);for(let a=0;a<t.length;++a){let u=i.indexOf(t[a]);if(u!==-1&&(e[a]=s[u],n--),n===0)break}if(n===0)break}if(n>0){let o=[];throw e.forEach((s,i)=>{s==null&&o.push(t[i])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,n=!1){return B(()=>{let o=this.checkNumSamples(t);if(n)throw new St("Verbose predictLoop() is not implemented yet.");let s=sb(o,e),i=this.outputs.map(a=>[]);for(let a=0;a<s.length;++a)B(()=>{let l=s[a][0],c=s[a][1],p=ef(t,l,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new $o(m);return Gc(this.outputs,f)}).forEach((l,c)=>i[c].push(l));return kr(i.map(a=>oe(a,0)))})}predict(t,e={}){let n=DN(t);pR(n,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return nb(o),this.predictLoop(n,o)}finally{Ro(n,t)}}predictOnBatch(t){pR(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,n=!0,o){if(this.optimizer_==null)throw new jr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let i=0;i<this.feedOutputShapes.length;++i){let a=this.feedOutputShapes[i];this.feedLossFns[i]===Jm?s.push(a.slice(0,a.length-1).concat([1])):s.push(a)}if(t=cR(t,this.feedInputNames,this.feedInputShapes,!1,"input"),e=cR(e,this.feedOutputNames,s,!1,"target"),o7(t,e,null),s7(e,this.feedLossFns,this.feedOutputShapes),this.stateful&&o!=null&&o>0&&t[0].shape[0]%o!==0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,n,o,s=!0,i){let[a,u]=this.standardizeUserDataXY(t,e,s,i);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(o!=null){let c=eb(o,this.outputNames);l=[];for(let p=0;p<c.length;++p)l.push(await rb(u[p],null,c[p]))}return[a,u,l]}testLoop(t,e,n,o=0,s){return B(()=>{let i=this.checkNumSamples(e,n,s,"steps"),a=[];if(o>0)throw new St("Verbose mode is not implemented yet.");if(s!=null)throw new St("steps mode in testLoop() is not implemented yet");{let u=sb(i,n),l=Ke(dn(0,i));for(let c=0;c<u.length;++c){let p=u[c][0],m=u[c][1],f=Nl(l,p,m-p),d=ob(e,f),h=t(d);if(c===0)for(let g=0;g<h.length;++g)a.push(ft(0));for(let g=0;g<h.length;++g){let x=h[g];a[g]=Y(a[g],$(m-p,x))}}for(let c=0;c<a.length;++c)a[c]=ut(a[c],i)}return a})}getDedupedMetricsNames(){let t=this.metricsNames,e=[];for(let n=0;n<t.length;++n){let o=t[n],s=o;if(yN(t,o)>1){let i=yN(t.slice(0,n),o);s+=`_${i}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],n=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),i=[],a=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:n[h]});let m=new $o(p),f=Gc(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let g=this.lossFunctions[h],x=g(o[h],f[h]);s[h]!=null&&(x=nR(x,s[h]));let b=ke(x);e.push(b),h===0?d=x:d=Y(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=e[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=ke(x(o[b],f[b]))}$e(g),i.push(g)}return d=ke(d),this.calculateLosses().forEach(h=>{d=Y(d,h)}),d},u=this.collectedTrainableWeights.map(p=>p.read()),l=!0;return[this.optimizer_.minimize(a,l,u)].concat(i)}}makeTestFunction(){this.testFunction=t=>B(()=>{let e=[],n,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),i=[];for(let l=0;l<this.inputs.length;++l)i.push({key:this.inputs[l],value:o[l]});let a=new $o(i),u=Gc(this.outputs,a);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],p=ke(c(s[l],u[l]));l===0?n=p:n=Y(n,p),e.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],p=this.metricsTensors[l][1],m=ke(c(s[p],u[p]));e.push(m)}return e})}async fit(t,e,n={}){if(this.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");this.isTraining=!0;let o,s,i,a,u,l,c,p,m;try{let f=n.batchSize==null?32:n.batchSize;nb(f);let d=!1,h=await this.standardizeUserData(t,e,n.sampleWeight,n.classWeight,d,f);o=h[0],s=h[1],m=h[2];let g=!1,x;if(n.validationData!=null&&n.validationData.length>0){if(g=!0,n.validationData.length===2)u=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new St("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let F=!0,P=await this.standardizeUserData(u,l,null,null,F,f);c=P[0],p=P[1],x=c.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){g=!0;let F=Math.floor(o[0].shape[0]*(1-n.validationSplit)),P=o[0].shape[0];c=ef(o,F,P),i=o,o=ef(o,0,F),p=ef(s,F,P),a=s,s=ef(s,0,F),x=c.concat(p)}else n.validationSteps!=null&&(g=!0);let b=o.concat(s).concat(m);this.checkTrainableWeightsConsistency();let w=this.makeTrainFunction(),I=this.getDedupedMetricsNames(),N,E;g?(this.makeTestFunction(),N=this.testFunction,E=I.slice().concat(I.map(F=>"val_"+F))):(N=null,x=[],E=I.slice());let A=Ky(n.callbacks,n.yieldEvery);return await this.fitLoop(w,b,I,f,n.epochs,n.verbose,A,N,x,n.shuffle,E,n.initialEpoch,null,null)}finally{this.isTraining=!1,Ro(o,t),Ro(s,e),Ro(i,t),Ro(a,e),Ro(c,u),Ro(p,l),m!=null&&Tt(m)}}async fitLoop(t,e,n,o,s,i,a,u,l,c,p,m,f,d){o==null&&(o=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(u!=null&&l!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=this.checkNumSamples(e,o,f,"steps_per_epoch"),x;g!=null&&(x=dn(0,g)),i==null&&(i=1);let{callbackList:b,history:w}=jy(a,i,s,m,g,f,o,h,p);b.setModel(this),this.history=w,await b.onTrainBegin(),this.stopTraining_=!1;for(let I=m;I<s;++I){await b.onEpochBegin(I);let N={};if(f!=null)throw new St("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new St("batch shuffling is not implemneted yet");c&&y.shuffle(x);let E=Ke(x),A=sb(g,o);for(let D=0;D<A.length;++D){let F={};if(await b.onBatchBegin(D,F),B(()=>{let P=A[D][0],V=A[D][1],G=Nl(E,P,V-P);F.batch=D,F.size=V-P;let W=ob(e,G),q=t(W);for(let H=0;H<n.length;++H){let K=n[H],X=q[H];F[K]=X,$e(X)}if(D===A.length-1&&h){let H=this.testLoop(u,l,o);for(let K=0;K<n.length;++K){let X=n[K],Z=H[K];$e(Z),N["val_"+X]=Z}}}),await b.onBatchEnd(D,F),Wy(F),this.stopTraining_)break}E.dispose()}if(await b.onEpochEnd(I,N),this.stopTraining_)break}return await b.onTrainEnd(),await this.history.syncData(),this.history}async fitDataset(t,e){return aR(this,t,e)}async trainOnBatch(t,e){let n=await this.standardizeUserData(t,e),o=n[0],s=n[1],a=this.makeTrainFunction()(o.concat(s)),u=[];for(let l of a){let c=await l.data();u.push(c[0])}return Tt(a),Ro(n[0],t),Ro(n[1],e),kr(u)}getNamedWeights(t){let e=[],n=t!=null&&t.trainableOnly,o=n?this.trainableWeights:this.weights,s=this.getWeights(n);for(let i=0;i<o.length;++i)n&&!o[i].trainable||e.push({name:o[i].originalName,tensor:s[i]});return e}set stopTraining(t){this.stopTraining_=t}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(t){this.optimizer_!==t&&(this.optimizer_=t,this.isOptimizerOwned=!1)}dispose(){let t=super.dispose();if(t.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let e=ph().numTensors;this.optimizer_.dispose(),t.numDisposedVariables+=e-ph().numTensors}return t}getLossIdentifiers(){let t;if(typeof this.loss=="string")t=_o(this.loss);else if(Array.isArray(this.loss)){for(let e of this.loss)if(typeof e!="string")throw new Error("Serialization of non-string loss is not supported.");t=this.loss.map(e=>_o(e))}else{let e=Object.keys(this.loss);t={};let n=this.loss;for(let o of e)if(typeof n[o]=="string")t[o]=_o(n[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[_o(Mh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>_o(Mh(t)));{let t={};for(let e in this.metrics)t[e]=_o(Mh(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=Hc(t.optimizer_config),n=bn(e),o;if(typeof t.loss=="string")o=Sl(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(i=>Sl(i));else if(t.loss!=null){o={};for(let i in t.loss)o[i]=Sl(t.loss[i])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(i=>Sl(i));else if(t.metrics!=null){s={};for(let i in t.metrics)s[i]=Sl(t.metrics[i])}this.compile({loss:o,metrics:s,optimizer:n})}async save(t,e){if(typeof t=="string"){let l=Mr.getSaveHandlers(t);if(l.length===0)throw new z(`Cannot find any save handlers for URL '${t}'`);if(l.length>1)throw new z(`Found more than one (${l.length}) save handlers for URL '${t}'`);t=l[0]}if(t.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Mr.encodeWeights(this.getNamedWeights(e)),o=!1,s=null,a={modelTopology:this.toJSON(s,o),format:a7,generatedBy:`TensorFlow.js tfjs-layers v${tf}`,convertedBy:null};if((e==null?!1:e.includeOptimizer)&&this.optimizer!=null){a.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:p}=await Mr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...p),n.data=Mr.concatenateArrayBuffers([n.data,c])}return this.userDefinedMetadata!=null&&(AN(this.userDefinedMetadata,this.name,!0),a.userDefinedMetadata=this.userDefinedMetadata),a.weightData=n.data,a.weightSpecs=n.specs,t.save(a)}setUserDefinedMetadata(t){AN(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}};Un.className="Model";Q.registerClass(Un);var ib=class extends Un{};ib.className="Functional";Q.registerClass(ib);async function mR(r,t){"modelTopology"in r||(r={modelTopology:r}),r=r;let e=r.modelTopology;e.model_config!=null&&(e=e.model_config);let n=Hc(e),o=bn(n,t);if(r.weightsManifest!=null){let s=await Mr.loadWeights(r.weightsManifest,r.pathPrefix,o.weights.map(a=>a.originalName)),i={};for(let a of o.weights)i[a.originalName]=s[a.originalName];o.loadWeights(i),Tt(s)}return o}async function fR(r,t){if(t==null&&(t={}),typeof r=="string"){let e=Mr.getLoadHandlers(r,t);if(e.length===0)e.push(Mr.browserHTTPRequest(r,t));else if(e.length>1)throw new z(`Found more than one (${e.length}) load handlers for URL '${r}'`);r=e[0]}return l7(r,void 0,t)}async function l7(r,t,e){if(e==null&&(e={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let n=await r.load(),o=n.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,i=n.weightData!=null&&n.weightSpecs!=null&&s,a=bn(Hc(o),t,i),u=n.trainingConfig;if(u!=null&&a.loadTrainingConfig(u),n.userDefinedMetadata!=null&&a.setUserDefinedMetadata(n.userDefinedMetadata),n.weightData!=null){if(n.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=u7(n.weightData,n.weightSpecs);a.loadWeights(l,s),a.optimizer!=null&&c.length>0&&await a.optimizer.setWeights(c),Tt(l),Tt(c.map(p=>p.tensor))}return a}function u7(r,t){let e=Mr.decodeWeights(r,t),n={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):n[s.name]=e[s.name]}),{modelWeights:n,optimizerWeights:o}}var xa=class extends Un{constructor(t){if(super({inputs:[],outputs:[]}),t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:Fu("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){if(t.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new z(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof xa||t instanceof Un,n;if(e){if(n=t,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=By({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=n.outputs,this.inputs=n.inputs;else{if(t.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=SN(this.outputs[0])}this.inboundNodes=[],new Tl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:To(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Wt(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Un({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,n=console.log){this.built||this.build(),super.summary(t,e,n)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,n={}){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,n)}async evaluateDataset(t,e){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,n={}){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.fit(t,e,n)}async fitDataset(t,e){if(!this.built)throw new jr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,n={},o=!1){let s,i={};if(e instanceof Array){if(e[0].className==null||e[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=e}else y.assert(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,i=e;let a=new t(i);if(!(a instanceof xa))throw new St(`Sequential.fromConfig called on non-Sequential input: ${a}`);for(let u of s){let c=bn(u,void 0,o);o&&c.setFastWeightInitDuringBuild(!0),a.add(c)}return a}set stopTraining(t){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let n={};n.className=e.getClassName(),n.config=e.getConfig(),t.push(n)}return{name:this.name,layers:t}}};xa.className="Sequential";Q.registerClass(xa);function c7(r){return new Un(r)}function p7(r){return new xa(r)}function RN(r){return By(r)}function m7(r,t){yn.registerCallbackConstructor(r,t)}var nn=class extends Q.Serializable{getConfig(){return{}}},ab=class extends nn{apply(t,e=1){return R$(t,e)}};ab.className="elu";Q.registerClass(ab);var lb=class extends nn{apply(t){return wm(t)}};lb.className="selu";Q.registerClass(lb);var ub=class extends nn{apply(t){return Pr(t)}};ub.className="relu";Q.registerClass(ub);var cb=class extends nn{apply(t){return B(()=>ao(6,Pr(t)))}};cb.className="relu6";Q.registerClass(cb);var pb=class extends nn{apply(t){return t}};pb.className="linear";Q.registerClass(pb);var mb=class extends nn{apply(t){return tn(t)}};mb.className="sigmoid";Q.registerClass(mb);var fb=class extends nn{apply(t){return O$(t)}};fb.className="hardSigmoid";Q.registerClass(fb);var db=class extends nn{apply(t){return ii(t)}};db.className="softplus";Q.registerClass(db);var hb=class extends nn{apply(t){return F$(t)}};hb.className="softsign";Q.registerClass(hb);var gb=class extends nn{apply(t){return ea(t)}};gb.className="tanh";Q.registerClass(gb);var rf=class extends nn{apply(t,e=-1){return Eu(t,e)}};rf.className="softmax";Q.registerClass(rf);var xb=class extends nn{apply(t,e=-1){return dm(t,e)}};xb.className="logSoftmax";Q.registerClass(xb);var yb=class extends nn{apply(t,e=1){return B(()=>$(tn($(t,e)),t))}};yb.className="swish";Q.registerClass(yb);var bb=class extends nn{apply(t){return B(()=>$(t,ea(ii(t))))}};bb.className="mish";Q.registerClass(bb);function fi(r){return r.getClassName()}function FN(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,"activation")}function di(r){if(r==null){let t={};return t.className="linear",t.config={},FN(t)}if(typeof r=="string"){let t={};return t.className=r,t.config={},FN(t)}else return r instanceof nn?r:FN(r)}function ON(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var wb=class extends Q.Serializable{},Lu=class extends wb{constructor(t){super(),ON(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return B(()=>{let e=Te([1]);return this.hasL1&&(e=Y(e,pt($(this.l1,Ee(t))))),this.hasL2&&(e=Y(e,pt($(this.l2,Oc(t))))),R(e,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}};Lu.className="L1L2";Q.registerClass(Lu);function gR(r){return ON(r),new Lu({l1:r!=null?r.l1:null,l2:0})}function xR(r){return ON(r),new Lu({l2:r!=null?r.l2:null,l1:0})}var dR={l1l2:"L1L2"};function me(r){return Rm(r)}function hR(r,t={}){return fa(r,Q.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ce(r){if(r==null)return null;if(typeof r=="string"){let e={className:r in dR?dR[r]:r,config:{}};return hR(e)}else return r instanceof wb?r:hR(r)}var nf=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=Nt(t);let n=Pr(t);return this.maxValue!=null&&(n=vr(n,0,this.maxValue)),n}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}};nf.className="ReLU";Q.registerClass(nf);var of=class extends Et{constructor(t){super(t==null?{}:t),this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Nt(t);return vu(n,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};of.className="LeakyReLU";Q.registerClass(of);var sf=class extends Et{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=he(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ce(t.alphaRegularizer),this.alphaConstraint=Ve(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Wt(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let o=1;o<t.length;++o)n[o]=t[o];this.inputSpec=[new Ie({ndim:t.length,axes:n})],this.built=!0}call(t,e){return t=Nt(t),_u(t,this.alpha.read())}getConfig(){let t={alphaInitializer:_e(this.alphaInitializer),alphaRegularizer:me(this.alphaRegularizer),alphaConstraint:Be(this.alphaConstraint),sharedAxes:this.sharedAxes},e=super.getConfig();return Object.assign(t,e),t}};sf.className="PReLU";Q.registerClass(sf);var af=class extends Et{constructor(t){if(super(t==null?{}:t),this.DEFAULT_ALPHA=1,t==null&&(t={}),t.alpha!=null&&t.alpha!==this.DEFAULT_ALPHA)throw new St(`Non-default alpha value (${t.alpha}) is not supported by the ELU layer yet.`);this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let n=Nt(t);return sa(n)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}};af.className="ELU";Q.registerClass(af);var lf=class extends Et{constructor(t){super(t==null?{}:t),this.DEFAULT_THETA=1,t==null&&(t={}),this.theta=t.theta==null?this.DEFAULT_THETA:t.theta}call(t,e){let n=Nt(t);return $(n,J(Fe(n,this.theta),"float32"))}computeOutputShape(t){return t}getConfig(){let t={theta:this.theta},e=super.getConfig();return Object.assign(t,e),t}};lf.className="ThresholdedReLU";Q.registerClass(lf);var uf=class extends Et{constructor(t){super(t==null?{}:t),this.DEFAULT_AXIS=1,t==null&&(t={}),this.softmax=new rf().apply,this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis}call(t,e){let n=Nt(t);return this.softmax(n,this.axis)}computeOutputShape(t){return t}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};uf.className="Softmax";Q.registerClass(uf);function zu(r,t,e){if(typeof r=="number")return To(r,t);if(r.length!==t)throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${r.length} elements.`);for(let n=0;n<t;++n){let o=r[n];if(!E$(o))throw new z(`The ${e} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(r)} including a non-integer number ${o}`)}return r}function Tn(r,t,e,n,o=1){if(r==null)return r;let s=t+(t-1)*(o-1),i;return e==="same"?i=r:i=r-s+1,Math.floor((i+n-1)/n)}function hi(r,t,e,n){if(r==null)return null;if(n==="valid")r=r*t+pi([e-t,0]);else if(n==="same")r=r*t;else throw new z(`Unsupport padding mode: ${n}.`);return r}function Lh(r,t){return B(()=>(Oe(t),t==="channelsFirst"?Vt(r,[0,2,3,1]):r))}function PN(r,t){return B(()=>(Oe(t),t==="channelsFirst"?Vt(r,[0,2,3,4,1]):r))}function d7(r,t,e,n=1,o="valid",s,i=1){return B(()=>{if(s==null&&(s=hn()),Oe(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(r=Vt(r,[0,2,1])),o==="causal")throw new St("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let a=um(r,t,n,o==="same"?"same":"valid","NWC",i);return e!=null&&(a=gn(a,e)),a})}function yR(r,t,e,n=[1,1],o="valid",s,i,a=null){return B(()=>{if(s==null&&(s=hn()),Oe(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let u=Lh(r,s);if(o==="causal")throw new St("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=Ru.conv2d({x:u,filter:t,strides:n,pad:o==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:e,activation:a}),s==="channelsFirst"&&(u=Vt(u,[0,3,1,2])),u})}function h7(r,t,e,n=[1,1,1],o="valid",s,i){return B(()=>{if(s==null&&(s=hn()),Oe(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let a=PN(r,s);if(o==="causal")throw new St("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return a=Tx(a,t,n,o==="same"?"same":"valid","NDHWC",i),e!=null&&(a=gn(a,e)),s==="channelsFirst"&&(a=Vt(a,[0,4,1,2,3])),a})}var qc=class extends Et{constructor(t,e){if(super(e),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",qc.verifyArgs(e),this.rank=t,Qe(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new St(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zu(e.kernelSize,t,"kernelSize"),this.strides=zu(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,fn(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Oe(this.dataFormat),this.activation=di(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=he(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ve(e.biasConstraint),this.biasRegularizer=Ce(e.biasRegularizer),this.activityRegularizer=Ce(e.activityRegularizer),this.dilationRate=zu(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(uo("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!Ey(t.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:fi(this.activation),useBias:this.useBias,biasInitializer:_e(this.biasInitializer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),biasConstraint:Be(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}},Bu=class extends qc{constructor(t,e){super(t,e),this.kernel=null,Bu.verifyArgs(e),this.filters=e.filters,Qe(this.filters,"filters"),this.kernelInitializer=he(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ve(e.kernelConstraint),this.kernelRegularizer=Ce(e.kernelRegularizer)}build(t){t=Wt(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[e]}`);let n=t[e],o=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:n}}],this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n,o=this.bias==null?null:this.bias.read(),s=Ay(this.activation.getClassName());if(s!=null&&this.rank===2)n=yR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=d7(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=yR(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=h7(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new St("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(t){t=Wt(t);let e=[],n=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s<n.length;++s){let i=Tn(n[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);e.push(i)}let o=[t[0]];return this.dataFormat==="channelsLast"?(o=o.concat(e),o.push(this.filters)):(o.push(this.filters),o=o.concat(e)),o}getConfig(){let t={filters:this.filters,kernelInitializer:_e(this.kernelInitializer),kernelRegularizer:me(this.kernelRegularizer),kernelConstraint:Be(this.kernelConstraint)},e=super.getConfig();return Object.assign(t,e),t}static verifyArgs(t){if(!("filters"in t)||typeof t.filters!="number"||t.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(t.filters)}`)}},El=class extends Bu{constructor(t){super(2,t),El.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Ey(t.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}};El.className="Conv2D";Q.registerClass(El);var Al=class extends Bu{constructor(t){super(3,t),Al.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}};Al.className="Conv3D";Q.registerClass(Al);var cf=class extends El{constructor(t){if(super(t),this.inputSpec=[new Ie({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Wt(t),t.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ie({ndim:4,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=Nt(t);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a;this.dataFormat==="channelsFirst"?(i=2,a=3):(i=1,a=2);let u=o[i],l=o[a],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=hi(u,m,c,this.padding),h=hi(l,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(n=Vt(n,[0,2,3,1]));let x=pm(n,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Vt(x,[0,3,1,2])),this.bias!=null&&(x=gn(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(t){t=Wt(t);let e=t.slice(),n,o,s;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3):(n=3,o=1,s=2);let i=this.kernelSize[0],a=this.kernelSize[1],u=this.strides[0],l=this.strides[1];return e[n]=this.filters,e[o]=hi(e[o],u,i,this.padding),e[s]=hi(e[s],l,a,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};cf.className="Conv2DTranspose";Q.registerClass(cf);var pf=class extends Al{constructor(t){if(super(t),this.inputSpec=[new Ie({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Wt(t),t.length!==5)throw new z("Input should have rank 5; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=t[e],o=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ie({ndim:5,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{let n=Nt(t);if(n.shape.length!==5)throw new z(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let o=n.shape,s=o[0],i,a,u;this.dataFormat==="channelsFirst"?(u=2,i=3,a=4):(u=1,i=2,a=3);let l=o[u],c=o[i],p=o[a],m=this.kernelSize[0],f=this.kernelSize[1],d=this.kernelSize[2],h=this.strides[0],g=this.strides[1],x=this.strides[2],b=hi(l,h,m,this.padding),w=hi(c,g,f,this.padding),I=hi(p,x,d,this.padding),N=[s,b,w,I,this.filters];this.dataFormat!=="channelsLast"&&(n=Vt(n,[0,2,3,4,1]));let E=Ex(n,this.kernel.read(),N,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(E=Vt(E,[0,4,1,2,3])),this.bias!==null&&(E=gn(E,this.bias.read(),this.dataFormat)),this.activation!==null&&(E=this.activation.apply(E)),E})}computeOutputShape(t){t=Wt(t);let e=t.slice(),n,o,s,i;this.dataFormat==="channelsFirst"?(n=1,o=2,s=3,i=4):(n=4,o=1,s=2,i=3);let a=this.kernelSize[0],u=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],p=this.strides[1],m=this.strides[2];return e[n]=this.filters,e[o]=hi(e[o],c,a,this.padding),e[s]=hi(e[s],p,u,this.padding),e[i]=hi(e[i],m,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}};pf.className="Conv3DTranspose";Q.registerClass(pf);var Ib=class extends Bu{constructor(t,e){if(super(t,e),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ce(e.depthwiseRegularizer),this.depthwiseConstraint=Ve(e.depthwiseConstraint),this.pointwiseInitializer=he(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ce(e.pointwiseRegularizer),this.pointwiseConstraint=Ve(e.pointwiseConstraint)}build(t){if(t=Wt(t),t.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(t)}`);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(t[e])}`);let n=t[e],o=this.kernelSize.concat([n,this.depthMultiplier]),s=[];for(let a=0;a<this.rank;++a)s.push(1);s.push(n*this.depthMultiplier,this.filters);let i=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",o,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,i,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,i,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,i,this.biasConstraint):this.bias=null,this.inputSpec=[new Ie({ndim:this.rank+2,axes:{[e]:n}})],this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n;if(this.rank===1)throw new St("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Vt(t,[0,2,3,1])),n=Im(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=gn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Vt(n,[0,3,1,2])),n})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.pointwiseInitializer=_e(this.pointwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.pointwiseRegularizer=me(this.pointwiseRegularizer),t.depthwiseConstraint=Be(this.depthwiseConstraint),t.pointwiseConstraint=Be(this.pointwiseConstraint),t}};Ib.className="SeparableConv";var mf=class extends Ib{constructor(t){super(2,t)}};mf.className="SeparableConv2D";Q.registerClass(mf);var Vu=class extends Bu{constructor(t){super(1,t),Vu.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!Ey(t.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}};Vu.className="Conv1D";Q.registerClass(Vu);var ff=class extends Et{constructor(t){super(t),typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return B(()=>{if(t=Nt(t),this.dataFormat==="channelsLast"){let n=_h(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return _h(n,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=_h(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return _h(n,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};ff.className="Cropping2D";Q.registerClass(ff);var df=class extends Et{constructor(t){super(t),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),this.interpolation=t.interpolation==null?"nearest":t.interpolation,T$(this.interpolation)}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],n=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,n]}else{let e=t[1]==null?null:this.size[0]*t[1],n=t[2]==null?null:this.size[1]*t[2];return[t[0],e,n,t[3]]}}call(t,e){return B(()=>{let n=Nt(t),o=n.shape;if(this.dataFormat==="channelsFirst"){n=Vt(n,[0,2,3,1]);let s=this.size[0]*o[2],i=this.size[1]*o[3],a=this.interpolation==="nearest"?lo.resizeNearestNeighbor(n,[s,i]):lo.resizeBilinear(n,[s,i]);return Vt(a,[0,3,1,2])}else{let s=this.size[0]*o[1],i=this.size[1]*o[2];return this.interpolation==="nearest"?lo.resizeNearestNeighbor(n,[s,i]):lo.resizeBilinear(n,[s,i])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},e=super.getConfig();return Object.assign(t,e),t}};df.className="UpSampling2D";Q.registerClass(df);function g7(r,t,e=[1,1],n="valid",o,s){return B(()=>{o==null&&(o=hn()),Oe(o);let i=Lh(r,o);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=oa(i,t,e,n==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(i=Vt(i,[0,3,1,2])),i})}var hf=class extends qc{constructor(t){super(2,t),this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=he(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ve(t.depthwiseConstraint),this.depthwiseRegularizer=Ce(t.depthwiseRegularizer)}build(t){if(t=Wt(t),t.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let n=t[e],o=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{t=Nt(t);let n=g7(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=gn(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(t){t=Wt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=Tn(e,this.kernelSize[0],this.padding,this.strides[0]),i=Tn(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,i]:[t[0],s,i,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=_e(this.depthwiseInitializer),t.depthwiseRegularizer=me(this.depthwiseRegularizer),t.depthwiseConstraint=Be(this.depthwiseRegularizer),t}};hf.className="DepthwiseConv2D";Q.registerClass(hf);function MN(r,t,e,n){if(Array.isArray(r)){if(t!=null||e!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");n!=null&&(e=r.slice(r.length-n,r.length),r=r.slice(0,r.length-n)),r.length>1&&(t=r.slice(1,r.length)),r=r[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:r,initialState:t,constants:e}}function LN(r,t,e,n=!1,o,s,i=!1,a=!1){return B(()=>{let u=t.shape.length;if(u<3)throw new z(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(dn(2,u));if(t=Vt(t,l),s!=null)throw new St("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=J(J(o,"bool"),"float32"),o.rank===u-1&&(o=ir(o,-1)),o=Vt(o,l)),n&&(t=hr(t,0),o!=null&&(o=hr(o,0)));let c=[],p,m=e,f=t.shape[0],d=xr(t),h;o!=null&&(h=xr(o));for(let x=0;x<f;++x){let b=d[x],w=B(()=>r(b,m));if(o==null)p=w[0],m=w[1];else{let I=B(()=>{let N=h[x],E=lt(Ir(N),N),A=Y($(w[0],N),$(m[0],E)),D=m.map((F,P)=>Y($(w[1][P],N),$(F,E)));return{output:A,newStates:D}});p=I.output,m=I.newStates}a&&c.push(p)}let g;return a&&(g=qe(c,1)),[p,g,m]})}var _n=class extends Et{constructor(t){super(t);let e;if(t.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new Xc({cells:t.cell}):e=t.cell,e.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new Ie({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return dn(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){zy(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let n=e[0],o;if(this.returnSequences?o=[t[0],t[1],n]:o=[t[0],n],this.returnState){let s=[];for(let i of e)s.push([t[0],i]);return[o].concat(s)}else return o}computeMask(t,e){return B(()=>{Array.isArray(e)&&(e=e[0]);let n=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[n].concat(o)}else return n})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let n=0;n<t;++n)e.push(null);return e}else return this.states_}set states(t){this.states_=t}build(t){if(this.numConstants!=null)throw new St("Constants support is not implemented in RNN yet.");zy(t)&&(t=t[0]),t=t;let n=this.stateful?t[0]:null,o=t.slice(2);this.inputSpec[0]=new Ie({shape:[n,null,...o]});let s=[t[0]].concat(t.slice(2));this.cell.build(s);let i;if(Array.isArray(this.cell.stateSize)?i=this.cell.stateSize:i=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(a=>a.shape[a.shape.length-1]),i))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=i.map(a=>new Ie({shape:[null,a]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new kn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_=[Te([n,this.cell.stateSize])];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>Te([n,o])):this.states_[0]=Te([n,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let o=0;o<this.states_.length;++o){let s=t[o],i=Array.isArray(this.cell.stateSize)?this.cell.stateSize[o]:this.cell.stateSize,a=[n,i];if(!y.arraysEqual(s.shape,a))throw new z(`State ${o} is incompatible with layer ${this.name}: expected shape=${a}, received shape=${s.shape}`);this.states_[o]=s}}this.states_=this.states_.map(o=>$e(o.clone()))})}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=MN(t,n,o,this.numConstants);t=s.inputs,n=s.initialState,o=s.constants;let i=[],a=[];if(n!=null){e.initialState=n,i=i.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ie({shape:l.shape}));a=a.concat(this.stateSpec)}if(o!=null&&(e.constants=o,i=i.concat(o),this.numConstants=o.length),i[0]instanceof rn){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=Nt(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let i=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==i)throw new z(`RNN Layer has ${i} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let a={training:o},l=LN((d,h)=>{let g=this.cell.call([d].concat(h),a);return[g[0],g.slice(1)]},t,s,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],p=l[1],m=l[2];this.stateful&&this.resetStates(m,o);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(t){return B(()=>{let e=Te(t.shape);return e=pt(e,[1,2]),e=kl(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Py(e,[1,n]):e):this.cell.stateSize>1?[Py(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===_n.className&&(e.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),t),e)}static fromConfig(t,e,n={}){let o=e.cell,s=bn(o,n);return new t(Object.assign(e,{cell:s}))}};_n.className="RNN";Q.registerClass(_n);var Dl=class extends Et{},Kc=class extends Dl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Qe(this.units,"units"),this.activation=di(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Fc([1,pi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Fc([1,pi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Wt(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let n=t[1];t=t[0];let o=e.training==null?!1:e.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:o,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(n),rate:this.recurrentDropout,training:o,dropoutFunc:this.dropoutFunc}));let s,i=this.dropoutMask,a=this.recurrentDropoutMask;i!=null?s=Do($(t,i),this.kernel.read()):s=Do(t,this.kernel.read()),this.bias!=null&&(s=gn(s,this.bias.read())),a!=null&&(n=$(n,a));let u=Y(s,Do(n,this.recurrentKernel.read()));return this.activation!=null&&(u=this.activation.apply(u)),[u,u]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:fi(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},t),e)}};Kc.className="SimpleRNNCell";Q.registerClass(Kc);var gf=class extends _n{constructor(t){t.cell=new Kc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}};gf.className="SimpleRNN";Q.registerClass(gf);var jc=class extends Dl{constructor(t){if(super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=t.units,Qe(this.units,"units"),this.activation=di(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=di(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Fc([1,pi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Fc([1,pi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Wt(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return B(()=>{if(t=t,t.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training==null?!1:e.training,o=t[1];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(o),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,a,u,l;0<this.dropout&&this.dropout<1&&(t=$(t,s[0]));let c=Do(t,this.kernel.read());this.useBias&&(c=gn(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(o=$(o,i[0]));let p=this.recurrentKernel.read(),[m,f]=gr(p,[2*this.units,this.units],p.rank-1),d=Do(o,m),[h,g,x]=gr(c,3,c.rank-1),[b,w]=gr(d,2,d.rank-1);a=this.recurrentActivation.apply(Y(h,b)),u=this.recurrentActivation.apply(Y(g,w));let I=Do($(u,o),f);l=this.activation.apply(Y(x,I));let N=Y($(a,o),$(Y(1,Ut(a)),l));return[N,N]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:fi(this.activation),recurrentActivation:fi(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},t),e)}};jc.className="GRUCell";Q.registerClass(jc);var xf=class extends _n{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new jc(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};xf.className="GRU";Q.registerClass(xf);var $l=class extends Dl{constructor(t){super(t),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,Qe(this.units,"units"),this.activation=di(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=di(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=he(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=Ce(t.kernelRegularizer),this.recurrentRegularizer=Ce(t.recurrentRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.kernelConstraint=Ve(t.kernelConstraint),this.recurrentConstraint=Ve(t.recurrentConstraint),this.biasConstraint=Ve(t.biasConstraint),this.dropout=Fc([1,pi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Fc([1,pi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.dropoutFunc=t.dropoutFunc,this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Wt(t);let n=t[t.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,i=this.units;o=new(e=class extends xn{apply(u,l){let c=s.apply([i]),p=new Pu().apply([i]),m=s.apply([i*2]);return vN(vN(c,p),m)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(t),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(o),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,a=this.recurrentDropoutMask,u,l,c,p;0<this.dropout&&this.dropout<1&&(t=$(t,i[0]));let m=Do(t,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(o=$(o,a[0])),m=Y(m,Do(o,this.recurrentKernel.read())),this.useBias&&(m=gn(m,this.bias.read()));let[f,d,h,g]=gr(m,4,m.rank-1);u=this.recurrentActivation.apply(f),l=this.recurrentActivation.apply(d),c=Y($(l,s),$(u,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=$(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:fi(this.activation),recurrentActivation:fi(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),recurrentInitializer:_e(this.recurrentInitializer),biasInitializer:_e(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:me(this.kernelRegularizer),recurrentRegularizer:me(this.recurrentRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),recurrentConstraint:Be(this.recurrentConstraint),biasConstraint:Be(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},t),e)}};$l.className="LSTMCell";Q.registerClass($l);var yf=class extends _n{constructor(t){t.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),t.cell=new $l(t),super(t)}call(t,e){return B(()=>{this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}};yf.className="LSTM";Q.registerClass(yf);var Xc=class extends Dl{constructor(t){super(t),this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return B(()=>{t=t;let n=t.slice(1),o=[];for(let a of this.cells.slice().reverse())Array.isArray(a.stateSize)?o.push(n.splice(0,a.stateSize.length)):o.push(n.splice(0,1));o.reverse();let s=[],i;for(let a=0;a<this.cells.length;++a){let u=this.cells[a];n=o[a],a===0?i=[t[0]].concat(n):i=[i[0]].concat(n),i=u.call(i,e),s.push(i.slice(1))}n=[];for(let a of s.slice().reverse())n.push(...a);return[i[0]].concat(n)})}build(t){zy(t)&&(t=t[0]),t=t;let e;this.cells.forEach((n,o)=>{ci(`RNNCell_${o}`,()=>{n.build(t),Array.isArray(n.stateSize)?e=n.stateSize[0]:e=n.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),o={cells:this.cells.map(e)};return Object.assign(Object.assign({},t),o)}static fromConfig(t,e,n={}){let o=[];for(let s of e.cells)o.push(bn(s,n));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let n of this.cells)e.push(...n.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return Ah(t)}setWeights(t){let e=[];for(let n of this.cells){let o=n.weights.length,s=t.splice(o);for(let i=0;i<n.weights.length;++i)e.push([n.weights[i],s[i]])}qm(e)}};Xc.className="StackedRNNCells";Q.registerClass(Xc);function Rl(r){let{ones:t,rate:e,training:n=!1,count:o=1,dropoutFunc:s}=r,i=()=>s!=null?s(t(),e):Ly(t(),e),a=()=>Ou(i,t,n);return!o||o<=1?$e(a().clone()):Array(o).fill(void 0).map(a).map(l=>$e(l.clone()))}var x7=function(r,t){var e={};for(var n in r)Object.prototype.hasOwnProperty.call(r,n)&&t.indexOf(n)<0&&(e[n]=r[n]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,n=Object.getOwnPropertySymbols(r);o<n.length;o++)t.indexOf(n[o])<0&&Object.prototype.propertyIsEnumerable.call(r,n[o])&&(e[n[o]]=r[n[o]]);return e};var Cb=class extends _n{constructor(t){if(t.unroll)throw new St("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(t.cell))throw new St("It is not possible at the moment to stack convolutional cells.");super(t),this.inputSpec=[new Ie({ndim:5})]}call(t,e){return B(()=>{if(this.cell.dropoutMask!=null&&(Tt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Tt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new z("ConvRNN2D cell does not support constants");let n=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:n,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return B(()=>{let{stateSize:e}=this.cell,n=t.shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)],i=Te(s);return Array.isArray(e)?Array(e.length).fill(i):[i]})}resetStates(t,e=!1){B(()=>{if(!this.stateful)throw new kn("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,o=this.computeSingleOutputShape(n),s=[o[0],...o.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_=[Te(s)];else if(t==null)Tt(this.states_),this.keptStates!=null&&(Tt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Te(s)):this.states_[0]=Te(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):Tt(this.states_);for(let a=0;a<this.states_.length;++a){let u=t[a],l=s;if(!y.arraysEqual(u.shape,l))throw new z(`State ${a} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${u.shape}`);this.states_[a]=u}}this.states_=this.states_.map(a=>$e(a.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:n,kernelSize:o,padding:s,strides:i,dilationRate:a}=this.cell,u=e==="channelsFirst",l=t[u?3:2],c=t[u?4:3],p=Tn(l,o[0],s,i[0],a[0]),m=Tn(c,o[1],s,i[1],a[1]);return[...t.slice(0,2),...u?[n,p,m]:[p,m,n]]}};Cb.className="ConvRNN2D";var Yc=class extends $l{constructor(t){let{filters:e,kernelSize:n,strides:o,padding:s,dataFormat:i,dilationRate:a}=t;super(Object.assign(Object.assign({},t),{units:e})),this.filters=e,Qe(this.filters,"filters"),this.kernelSize=zu(n,2,"kernelSize"),this.kernelSize.forEach(u=>Qe(u,"kernelSize")),this.strides=zu(o||1,2,"strides"),this.strides.forEach(u=>Qe(u,"strides")),this.padding=s||"valid",fn(this.padding),this.dataFormat=i||"channelsLast",Oe(this.dataFormat),this.dilationRate=zu(a||1,2,"dilationRate"),this.dilationRate.forEach(u=>Qe(u,"dilationRate"))}build(t){var e;t=Wt(t);let n=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${t[n]}`);let o=t[n],s=4,i=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",i,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let a=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",a,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let u;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;u=new(e=class extends xn{apply(m,f){let d=l.apply([c]),h=dr([c]),g=l.apply([c*2]);return Om([d,h,g])}},e.className="CustomInit",e)}else u=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,u,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return B(()=>{if(t.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let n=e.training||!1,o=t[0],s=t[1],i=t[2],a=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Rl({ones:()=>Ir(o),rate:this.dropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let u=this.dropoutMask,l=(nt,st,at)=>!st||!st[at]?nt:$(st[at],nt),c=l(o,u,0),p=l(o,u,1),m=l(o,u,2),f=l(o,u,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Rl({ones:()=>Ir(s),rate:this.recurrentDropout,training:n,count:a,dropoutFunc:this.dropoutFunc}));let d=this.recurrentDropoutMask,h=l(s,d,0),g=l(s,d,1),x=l(s,d,2),b=l(s,d,3),w=3,[I,N,E,A]=gr(this.kernel.read(),a,w),[D,F,P,V]=this.useBias?gr(this.bias.read(),a):[null,null,null,null];c=this.inputConv(c,I,D,this.padding),p=this.inputConv(p,N,F,this.padding),m=this.inputConv(m,E,P,this.padding),f=this.inputConv(f,A,V,this.padding);let[G,W,q,H]=gr(this.recurrentKernel.read(),a,w);h=this.recurrentConv(h,G),g=this.recurrentConv(g,W),x=this.recurrentConv(x,q),b=this.recurrentConv(b,H);let K=this.recurrentActivation.apply(Y(c,h)),X=this.recurrentActivation.apply(Y(p,g)),Z=Y($(X,i),$(K,this.activation.apply(Y(m,x)))),et=$(this.recurrentActivation.apply(Y(f,b)),this.activation.apply(Z));return[et,et,Z]})}getConfig(){let t=super.getConfig(),{units:e}=t,n=x7(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),o)}inputConv(t,e,n,o){let s=Sn(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?gn(s,n,this.dataFormat):s}recurrentConv(t,e){return Sn(t,e,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Yc.className="ConvLSTM2DCell";Q.registerClass(Yc);var bf=class extends Cb{constructor(t){let e=new Yc(t);super(Object.assign(Object.assign({},t),{cell:e}))}static fromConfig(t,e){return new t(e)}};bf.className="ConvLSTM2D";Q.registerClass(bf);var Zc=class extends Et{constructor(t){super(t),this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,n=[];for(let o=0;o<this.noiseShape.length;++o)n.push(this.noiseShape[o]==null?e[o]:this.noiseShape[o]);return n}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);if(0<this.rate&&this.rate<1){let o=e.training==null?!1:e.training,s=this.getNoiseShape(n);return Ou(()=>Ly(n,this.rate,s,this.seed),()=>n,o)}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}};Zc.className="Dropout";Q.registerClass(Zc);var wf=class extends Zc{constructor(t){super(t),this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}};wf.className="SpatialDropout1D";Q.registerClass(wf);var If=class extends Et{constructor(t){if(super(t),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,Qe(this.units,"units"),this.activation=di(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=he(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=he(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ve(t.kernelConstraint),this.biasConstraint=Ve(t.biasConstraint),this.kernelRegularizer=Ce(t.kernelRegularizer),this.biasRegularizer=Ce(t.biasRegularizer),this.activityRegularizer=Ce(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Wt(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Wt(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=Ay(this.activation.getClassName()),s;return o!=null?s=Do(n,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Do(n,this.kernel.read()),this.bias!=null&&(s=gn(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:fi(this.activation),useBias:this.useBias,kernelInitializer:_e(this.kernelInitializer),biasInitializer:_e(this.biasInitializer),kernelRegularizer:me(this.kernelRegularizer),biasRegularizer:me(this.biasRegularizer),activityRegularizer:me(this.activityRegularizer),kernelConstraint:Be(this.kernelConstraint),biasConstraint:Be(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}};If.className="Dense";Q.registerClass(If);var Cf=class extends Et{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Wt(t);for(let e of t.slice(1))if(e==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],Ao(t,1)]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);if(this.dataFormat==="channelsFirst"&&n.rank>1){let o=[0];for(let s=2;s<n.rank;++s)o.push(s);o.push(1),n=Vt(n,o)}return $$(n)})}getConfig(){let t={};this.dataFormat!=null&&(t.dataFormat=this.dataFormat);let e=super.getConfig();return Object.assign(t,e),t}};Cf.className="Flatten";Q.registerClass(Cf);var vf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.activation=di(t.activation)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return this.activation.apply(n)})}getConfig(){let t={activation:fi(this.activation)},e=super.getConfig();return Object.assign(t,e),t}};vf.className="Activation";Q.registerClass(vf);var Sf=class extends Et{constructor(t){super(t),this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return B(()=>(t=Nt(t),A$(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}};Sf.className="RepeatVector";Q.registerClass(Sf);var Nf=class extends Et{constructor(t){super(t),this.targetShape=t.targetShape;for(let e=0;e<this.targetShape.length;++e)this.isUnknown(this.targetShape[e])&&(this.targetShape[e]=null)}isUnknown(t){return t<0||t==null}fixUnknownDimension(t,e){let n="Total size of new array must be unchanged.",o=e.slice(),s=1,i=null;for(let u=0;u<o.length;++u){let l=o[u];if(this.isUnknown(l))if(i===null)i=u;else throw new z("Can only specifiy one unknown dimension.");else s*=l}let a=Ao(t);if(i!==null){if(s===0||a%s!==0)throw new z(n);o[i]=a/s}else if(a!==s)throw new z(n);return o}computeOutputShape(t){let e=!1;for(let n=0;n<t.length;++n)if(this.isUnknown(t[n])){e=!0;break}return e?t.slice(0,1).concat(this.targetShape):t.slice(0,1).concat(this.fixUnknownDimension(t.slice(1),this.targetShape))}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=n.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return R(n,s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}};Nf.className="Reshape";Q.registerClass(Nf);var kf=class extends Et{constructor(t){if(super(t),t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=dn(1,t.dims.length+1);if(!y.arraysEqual(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ie({ndim:this.dims.length+1})]}computeOutputShape(t){t=Wt(t);let e=t.slice();return this.dims.forEach((n,o)=>{e[o+1]=t[n]}),e}call(t,e){return Vt(Nt(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}};kf.className="Permute";Q.registerClass(kf);var Tf=class extends Et{constructor(t){super(t==null?{}:t),this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let n=Nt(t),o=-1;return fc(ai(n,this.maskValue),o)}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t),o=-1,s=!0,i=fc(ai(n,this.maskValue),o,s);return $(n,J(i,n.dtype))})}};Tf.className="Masking";Q.registerClass(Tf);var _f=class extends Et{constructor(t){if(super(t),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(we(t.inputLength))}this.inputDim=t.inputDim,Qe(this.inputDim,"inputDim"),this.outputDim=t.outputDim,Qe(this.outputDim,"outputDim"),this.embeddingsInitializer=he(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ce(t.embeddingsRegularizer),this.activityRegularizer=Ce(t.activityRegularizer),this.embeddingsConstraint=Ve(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return B(()=>this.maskZero?(t=Nt(t),ai(t,vt(t))):null)}computeOutputShape(t){if(t=Wt(t),this.inputLength==null)return[...t,this.outputDim];let e=we(this.inputLength);if(e.length!==t.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let n=0;for(let o=0;o<e.length;++o){let s=e[o],i=t[o+1];if(s!=null&&i!=null&&s!==i)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);s==null&&(e[n]=i),n++}}return[t[0],...e,this.outputDim]}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);n.dtype!=="int32"&&(n=en(n,"int32"));let o=My(this.embeddings.read(),R(n,[n.size]));return R(o,Wt(this.computeOutputShape(n.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_e(this.embeddingsInitializer),embeddingsRegularizer:me(this.embeddingsRegularizer),activityRegularizer:me(this.activityRegularizer),embeddingsConstraint:Be(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}};_f.className="Embedding";Q.registerClass(_f);var Fl=class extends Et{constructor(t){super(t||{}),this.supportsMasking=!0}mergeFunction(t){throw new St}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length<e.length)return this.computeElementwiseOpOutputShape(e,t);if(e.length===0)return t;let n=t.slice(0,t.length-e.length);for(let o=0;o<e.length;++o){let s=t[t.length-e.length+o],i=e[o];if(s==null||i==null||s<0||i<0)n.push(null);else if(s===1)n.push(i);else if(i===1)n.push(s);else{if(s!==i)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(t)+" "+JSON.stringify(e));n.push(s)}}return n}build(t){if(Array.isArray(t)&&!Array.isArray(t[0])&&(t=[Wt(t)]),t=t,t.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${t.length} input(s).`);let e=[];for(let s of t)s!=null&&s[0]!==null&&e.push(s[0]);if(e=Eo(e),e.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let n=t[0]==null?null:t[0].slice(1);for(let s=1;s<t.length;++s){let i=t[s]==null?null:t[s].slice(1);n=this.computeElementwiseOpOutputShape(n,i)}let o=t.map(s=>s.length);t.indexOf(null)===-1&&Eo(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return B(()=>{if(t=t,this.reshapeRequired){let n=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=pi(o);for(let i of t){let a=i.rank;for(let u=0;u<s-a;++u)i=kl(i,1);n.push(i)}return this.mergeFunction(n)}else{let s=!1;for(let u of t){let l=u.rank;if(l==null){let c=u.shape,p=c[0],m=c.slice(1).concat([p]),f=R(u,[p].concat(Ao(c.slice(1))));f=Vt(f,[1,0]),f=R(f,m),n.push(f),s=!0}else if(l>1){let c=dn(1,l).concat([0]);n.push(Vt(u,c)),s=!0}else n.push(u)}let i=this.mergeFunction(n),a=i.rank;if(s){if(a==null){let u=i.shape,l=u.length,c=u[l-1],p=[c].concat(u.slice(0,u.length-1));i=R(Vt(R(i,[-1,c]),[1,0]),p)}else if(a>1){let u=[a-1].concat(dn(0,a-1));i=Vt(i,u)}}return i}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o<t.length;++o){let s=t[o]==null?null:t[o].slice(1);e=this.computeElementwiseOpOutputShape(e,s)}let n=[];for(let o of t)o!=null&&o[0]!==null&&n.push(o[0]);return n=Eo(n),n.length===1?e=n.concat(e):e=[null].concat(e),e}computeMask(t,e){return B(()=>{if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an Array");if(!Array.isArray(t))throw new z("`inputs` should be an Array");if(e.length!==t.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:ir(o,0));let n=e[0];for(let o=1;o<e.length-1;++o)n=Or(n,e[o]);return n})}},Ef=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Y(e,t[n]);return e})}};Ef.className="Add";Q.registerClass(Ef);var Af=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=$(e,t[n]);return e})}};Af.className="Multiply";Q.registerClass(Af);var Df=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0].clone();for(let n=1;n<t.length;++n)e=Y(e,t[n]);return $(1/t.length,e)})}};Df.className="Average";Q.registerClass(Df);var $f=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=Nn(e,t[n]);return e})}};$f.className="Maximum";Q.registerClass($f);var Rf=class extends Fl{constructor(t){super(t)}mergeFunction(t){return B(()=>{let e=t[0];for(let n=1;n<t.length;++n)e=ao(e,t[n]);return e})}};Rf.className="Minimum";Q.registerClass(Rf);var Ff=class extends Fl{constructor(t){super(t),this.DEFAULT_AXIS=-1,t==null&&(t={}),this.axis=t.axis==null?this.DEFAULT_AXIS:t.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){if(!(Array.isArray(t)&&Array.isArray(t[0]))||t.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");t=t;let e=!0;for(let o of t)if(o!=null){e=!1;break}if(e)return;let n=[];for(let o=0;o<t.length;++o){let s=t[o].slice();s.splice(this.axis,1);let i=!1;for(let a of n)if(y.arraysEqual(a,s)){i=!0;break}i||n.push(s)}if(n.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return B(()=>Om(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let e=t,n=e[0].slice(),o=this.axis<0?n.length+this.axis:this.axis;for(let s of e.slice(1)){if(n[o]==null||s[o]==null){n[o]=null;break}n[o]+=s[o]}return n}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new z("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new z(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return B(()=>{let n=!0;if(e.forEach(i=>{if(i!=null){n=!1;return}}),n)return null;let o=[];for(let i=0;i<t.length;++i)e[i]==null?o.push(J(Ir(t[i]),"bool")):e[i].rank<t[i].rank?o.push(ir(e[i],-1)):o.push(e[i]);let s=oe(o,this.axis);return am(s,-1,!1)})}getConfig(){let t={axis:this.axis},e=super.getConfig();return Object.assign(t,e),t}};Ff.className="Concatenate";Q.registerClass(Ff);function zh(r,t){for(;r<0;)r+=t;return r}function y7(r,t,e){if(r.shape.length>3||t.shape.length>3)throw new St("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),r.dtype==="complex64"||t.dtype==="complex64")throw new St("batchDot is not implemented for complex64-type Tensors yet.");let n=r.shape.length,o=t.shape.length;e==null&&(e=[n-1,o-2]);let s=e;return B(()=>{let i;if(n>o){i=n-o;let u=[];for(let l=0;l<i;++l)u.push(1);t=R(t,t.shape.concat(u))}else if(o>n){i=o-n;let u=[];for(let l=0;l<i;++l)u.push(1);r=R(r,r.shape.concat(u))}else i=0;let a;if(r.shape.length===2&&t.shape.length===2)s[0]===s[1]?a=pt($(r,t),s[0]):a=pt($(Vt(r,[1,0]),t),s[1]);else{let u=s[0]!==r.shape.length-1,l=s[1]===t.shape.length-1;a=Bt(r,t,u,l)}if(i>0){let u;n>o?u=n+o-3:u=n-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);a=Gn(a,l)}return a.shape.length===1&&(a=ir(a,1)),a})}var Of=class extends Fl{constructor(t){super(t),this.axes=t.axes,this.normalize=t.normalize==null?!1:t.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],n=t[1];if(e.length>3||n.length>3)throw new St("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);if(e[o[0]]!==n[o[1]])throw new z(`Dimension incompatibility: ${e[o[0]]} !== ${n[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],n=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,i)=>zh(s,t[i].shape.length)):o=[zh(this.axes,e.shape.length),zh(this.axes,n.shape.length)],this.normalize&&(e=Dh(e,o[0]),n=Dh(n,o[1])),y7(e,n,o)}interpretAxes(t,e){let n;return Array.isArray(this.axes)?n=this.axes:n=[zh(this.axes,t.length),zh(this.axes,e.length)],n}computeOutputShape(t){y.assert(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),n=t[1].slice();if(e.length>3||n.length>3)throw new St("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,n);e.splice(o[0],1),n.splice(o[1],1),n.splice(0,1);let s=e.concat(n);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}};Of.className="Dot";Q.registerClass(Of);var Pf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return Ou(()=>Y(Pm(n.shape,0,this.stddev),n),()=>n,e.training||!1)})}};Pf.className="GaussianNoise";Q.registerClass(Pf);var Mf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{this.invokeCallHook(t,e);let n=Nt(t);return this.rate>0&&this.rate<1?Ou(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return $(n,Pm(n.shape,1,s))},()=>n,e.training||!1):n})}};Mf.className="GaussianDropout";Q.registerClass(Mf);var Lf=class extends Et{constructor(t){super(t),this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||Nt(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(t);return Ou(()=>{let s=Nt(t),i=1.6732632423543772,a=1.0507009873554805,u=-i*a,l=cn(ua(n),this.rate);l=en(l,"float32");let c=((1-this.rate)*(1+this.rate*u**2))**-.5,p=-c*u*this.rate,m=Y($(s,l),$(Y(l,-1),u));return Y($(m,c),p)},()=>Nt(t),e.training||!1)}return t})}};Lf.className="AlphaDropout";Q.registerClass(Lf);function Bh(r,t,e,n,o,s=.001){let i;if(r.rank===2)i=yx(r,t,e,n,o,s);else if(r.rank===3)i=bx(r,t,e,n,o,s);else if(r.rank===4)i=wx(r,t,e,n,o,s);else throw new St(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return i}function b7(r,t,e,n,o=.001){return B(()=>{let s=xc(r,n),i=s.mean,a=s.variance;return[Bh(r,i,a,e,t,o),i,a]})}function w7(r,t,e,n,o=.001){return B(()=>{let s=xc(r,n),i=s.mean,a=s.variance,u=[];for(let d of dn(0,r.rank))n.indexOf(d)!==-1?u.push(1):u.push(r.shape[d]);let l=R(i,u),c=R(a,u),p=t==null?null:R(t,u),m=e==null?null:R(e,u);return[Bh(r,l,c,m,p,o),i,a]})}function I7(r,t,e,n,o=.001){return y.arraysEqual(n.slice().sort(),dn(0,r.rank-1))?b7(r,t,e,n,o):w7(r,t,e,n,o)}var zf=class extends Et{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.movingMeanInitializer=he(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=he(t.movingVarianceInitializer||"ones"),this.betaConstraint=Ve(t.betaConstraint),this.gammaConstraint=Ve(t.gammaConstraint),this.betaRegularizer=Ce(t.betaRegularizer),this.gammaRegularizer=Ce(t.gammaRegularizer)}build(t){t=Wt(t);let e=this.axis>=0?this.axis:this.axis+t.length,n=t[e];if(n==null)throw new z(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new Ie({ndim:t.length,axes:{[e]:n}})];let o=[n];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return B(()=>{let n=e.training==null?!1:e.training,o=Nt(t),s=o.shape,i=s.length,a=dn(0,i),u=this.axis>=0?this.axis:this.axis+i;a.splice(u,1);let l=To(1,i);l[u]=s[u];let c=a.slice();c.sort();let p=!y.arraysEqual(c,dn(0,i).slice(0,i-1)),m=()=>{if(p){let b=R(this.movingMean.read(),l),w=R(this.movingVariance.read(),l),I=this.center?R(this.beta.read(),l):null,N=this.scale?R(this.gamma.read(),l):null;return Bh(o,b,w,I,N,this.epsilon)}else return Bh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return m();let[f,d,h]=I7(o,this.gamma.read(),this.beta.read(),a,this.epsilon),g=(b,w,I)=>{B(()=>{let N=1-I,E=b.read(),A=$(lt(E,w),N);b.write(lt(E,A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),movingMeanInitializer:_e(this.movingMeanInitializer),movingVarianceInitializer:_e(this.movingVarianceInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer),betaConstraint:Be(this.betaConstraint),gammaConstraint:Be(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}};zf.className="BatchNormalization";Q.registerClass(zf);var Bf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=he(t.betaInitializer||"zeros"),this.gammaInitializer=he(t.gammaInitializer||"ones"),this.betaRegularizer=Ce(t.betaRegularizer),this.gammaRegularizer=Ce(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Wt(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=e);for(let s of this.axis)if(s<0||s>=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Eo(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let n=Nt(t),o=n.shape,s=o.length;return B(()=>{let{mean:a,variance:u}=xc(n,this.axis,!0),l=To(1,s);for(let h of this.axis)l[h]=o[h];let c=h=>h!=null&&h.shape.length!==s?R(h,l):h,p=this.scale?c(this.gamma.read()):null,m=this.center?c(this.beta.read()):null,f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(o[h]),d.push(1)):(f.push(1),d.push(o[h]));return a=Fr(a,f),u=Fr(u,f),p!=null&&(p=Fr(p,d)),m!=null&&(m=Fr(m,d)),Bh(n,a,u,m,p,this.epsilon)})}getConfig(){let t={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_e(this.betaInitializer),gammaInitializer:_e(this.gammaInitializer),betaRegularizer:me(this.betaRegularizer),gammaRegularizer:me(this.gammaRegularizer)},e=super.getConfig();return Object.assign(t,e),t}};Bf.className="LayerNormalization";Q.registerClass(Bf);function C7(r,t,e){return B(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=hn()),e!=="channelsLast"&&e!=="channelsFirst")throw new z(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let n;return e==="channelsFirst"?n=[[0,0],[0,0],t[0],t[1]]:n=[[0,0],t[0],t[1],[0,0]],mn(r,n)})}var Vf=class extends Et{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?hn():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,n;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],n=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);n=t.padding[1]}this.padding=[e,n]}this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){t=Wt(t);let e,n;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?n=t[3]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],t[1],e,n]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?n=t[2]+this.padding[1][0]+this.padding[1][1]:n=null,[t[0],e,n,t[3]])}call(t,e){return B(()=>C7(Nt(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}};Vf.className="ZeroPadding2D";Q.registerClass(Vf);function _b(r,t,e,n,o,s){return B(()=>{Oe(o),bN(s),fn(n),e==null&&(e=[1,1]),n==null&&(n="valid"),o==null&&(o=hn()),s==null&&(s="max"),r=Lh(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=ku(r,t,e,a):i=bu(r,t,e,a),o==="channelsFirst"&&(i=Vt(i,[0,3,1,2])),i})}function bR(r,t,e,n,o,s){return B(()=>{Oe(o),bN(s),fn(n),e==null&&(e=[1,1,1]),n==null&&(n="valid"),o==null&&(o=hn()),s==null&&(s="max"),r=PN(r,o);let i,a=n==="same"?"same":"valid";return s==="max"?i=qx(r,t,e,a):i=xx(r,t,e,a),o==="channelsFirst"&&(i=Vt(i,[0,4,1,2,3])),i})}var vb=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if(Qe(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,fn(this.padding),this.inputSpec=[new Ie({ndim:3})]}computeOutputShape(t){t=Wt(t);let e=Tn(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return B(()=>{this.invokeCallHook(t,e),t=kl(Nt(t),2);let n=this.poolingFunction(Nt(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Gn(n,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}},Gf=class extends vb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),_b(t,e,n,o,s,"max")}};Gf.className="MaxPooling1D";Q.registerClass(Gf);var Wf=class extends vb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),_b(t,e,n,o,s,"avg")}};Wf.className="AveragePooling1D";Q.registerClass(Wf);var Sb=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];Qe(this.poolSize,"poolSize"),Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),fn(this.padding),this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){t=Wt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n]:[t[0],e,n,t[3]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(Nt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Uf=class extends Sb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),_b(t,e,n,o,s,"max")}};Uf.className="MaxPooling2D";Q.registerClass(Uf);var Hf=class extends Sb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),_b(t,e,n,o,s,"avg")}};Hf.className="AveragePooling2D";Q.registerClass(Hf);var Nb=class extends Et{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];Qe(this.poolSize,"poolSize"),Qe(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),fn(this.padding),this.inputSpec=[new Ie({ndim:5})]}computeOutputShape(t){t=Wt(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],n=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=Tn(e,this.poolSize[0],this.padding,this.strides[0]),n=Tn(n,this.poolSize[1],this.padding,this.strides[1]),o=Tn(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,n,o]:[t[0],e,n,o,t[4]]}call(t,e){return B(()=>(this.invokeCallHook(t,e),this.poolingFunction(Nt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},qf=class extends Nb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),bR(t,e,n,o,s,"max")}};qf.className="MaxPooling3D";Q.registerClass(qf);var Kf=class extends Nb{constructor(t){super(t)}poolingFunction(t,e,n,o,s){return Oe(s),fn(o),bR(t,e,n,o,s,"avg")}};Kf.className="AveragePooling3D";Q.registerClass(Kf);var kb=class extends Et{constructor(t){super(t),this.inputSpec=[new Ie({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new St}},jf=class extends kb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=Nt(t);return ke(n,1)})}};jf.className="GlobalAveragePooling1D";Q.registerClass(jf);var Xf=class extends kb{constructor(t){super(t||{})}call(t,e){return B(()=>{let n=Nt(t);return Sr(n,1)})}};Xf.className="GlobalMaxPooling1D";Q.registerClass(Xf);var Tb=class extends Et{constructor(t){super(t),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Oe(this.dataFormat),this.inputSpec=[new Ie({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new St}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}},Yf=class extends Tb{call(t,e){return B(()=>{let n=Nt(t);return this.dataFormat==="channelsLast"?ke(n,[1,2]):ke(n,[2,3])})}};Yf.className="GlobalAveragePooling2D";Q.registerClass(Yf);var Zf=class extends Tb{call(t,e){return B(()=>{let n=Nt(t);return this.dataFormat==="channelsLast"?Sr(n,[1,2]):Sr(n,[2,3])})}};Zf.className="GlobalMaxPooling2D";Q.registerClass(Zf);var Eb=class extends Et{constructor(t){super(t),this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,n={}){let o=e.layer,s=bn(o,n);delete e.layer;let i={layer:s};return Object.assign(i,e),new t(i)}},Jf=class extends Eb{constructor(t){super(t),this.supportsMasking=!0}build(t){if(t=Wt(t),t.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Wt(t);let e=[t[0]].concat(t.slice(2)),n=this.layer.computeOutputShape(e),o=t[1];return[n[0],o].concat(n.slice(1))}call(t,e){return B(()=>(t=Nt(t),LN((i,a)=>[Nt(this.layer.call(i,e)),[]],t,[],!1,null,null,!1,!0)[1]))}};Jf.className="TimeDistributed";Q.registerClass(Jf);function v7(r){da(N$,"BidirectionalMergeMode",r)}var S7="concat",Qf=class extends Eb{constructor(t){super(t);let e=t.layer.getConfig(),n={};n.className=t.layer.getClassName(),n.config=e,this.forwardLayer=bn(n),e.goBackwards=e.goBackwards!==!0;let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=bn(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?S7:t.mergeMode,v7(this.mergeMode),t.weights)throw new St("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,n=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,n)),this.backwardLayer.setWeights(t.slice(n))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let n,o,s;return this.returnState&&(s=e.slice(1)),n=e[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,o=[n]):this.mergeMode==null?o=[n,n.slice()]:o=[n],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):kr(o)}apply(t,e){let n=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=MN(t,n,o,this.numConstants);if(t=s.inputs,n=s.initialState,o=s.constants,Array.isArray(t)&&(n=t.slice(1),t=t[0]),(n==null||n.length===0)&&o==null)return super.apply(t,e);let i=[],a=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=n,i.push(...n);let c=n.map(p=>new Ie({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),a.push(...c)}if(o!=null)throw new St("Support for constants in Bidirectional layers is not implemented yet.");let u=i[0]instanceof rn;for(let l of i)if(l instanceof rn!==u)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(u){let l=[t].concat(i),c=this.inputSpec.concat(a),p=this.inputSpec;this.inputSpec=c;let m=super.apply(l,e);return this.inputSpec=p,m}else return super.apply(t,e)}call(t,e){return B(()=>{let n=e.initialState,o,s;if(n==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let u=n.slice(0,n.length/2),l=n.slice(n.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:u})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:l}))}let i;this.returnState&&(Array.isArray(o)&&(i=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=hr(s,1));let a;return this.mergeMode==="concat"?a=Om([o,s]):this.mergeMode==="sum"?a=Y(o,s):this.mergeMode==="ave"?a=$(.5,Y(o,s)):this.mergeMode==="mul"?a=$(o,s):this.mergeMode==null&&(a=[o,s]),this.returnState?this.mergeMode==null?a.concat(i):[a].concat(i):a})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){ci(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),ci(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[e,e]:n=e:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(i=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let n=bn(e.layer);if(delete e.layer,e.numConstants!=null)throw new St("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=n,new t(o)}};Qf.className="Bidirectional";Q.registerClass(Qf);var td=class extends Et{constructor(t){super(t),this.scale=t.scale,t.offset?this.offset=t.offset:this.offset=0}getConfig(){let t={scale:this.scale,offset:this.offset},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>(t=Nt(t),t.dtype!=="float32"&&(t=en(t,"float32")),Y($(t,this.scale),this.offset)))}};td.className="Rescaling";Q.registerClass(td);var{resizeBilinear:N7,cropAndResize:k7}=lo,ed=class extends Et{constructor(t){super(t),this.height=t.height,this.width=t.width}centerCrop(t,e,n,o,s,i,a,u){return B(()=>{let l,c=!1,p=e/i,m=n/a,f=(o+e)/i,d=(s+n)/a,h=[p,m,f,d],g=[];t.rank===3?(c=!0,l=qe([t])):l=t;for(let N=0;N<l.shape[0];N++)g.push(h);let x=or(g,[g.length,4]),b=ca(0,g.length,1,"int32"),I=k7(l,x,b,[o,s],"nearest");return c?en(Nt(xr(I)),u):en(I,u)})}upsize(t,e,n,o){return B(()=>{let s=N7(t,[e,n]);return en(s,o)})}call(t,e){return B(()=>{let n=Nt(t),o=n.dtype,s=n.shape,i=s[s.length-3],a=s[s.length-2],u=0;i!==this.height&&(u=Math.floor((i-this.height)/2));let l=0;return a!==this.width&&(l=Math.floor((a-this.width)/2),l===0&&(l=1)),u>=0&&l>=0?this.centerCrop(n,u,l,this.height,this.width,i,a,o):this.upsize(t,this.height,this.width,o)})}getConfig(){let t={height:this.height,width:this.width},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){t=Wt(t);let e=t.length-3,n=t.length-2;return t[e]=this.height,t[n]=this.width,t}};ed.className="CenterCrop";Q.registerClass(ed);function wR(r,t,e,n){let o=Nt(r);if(o.dtype!=="int32"&&(o=en(o,"int32")),t==="int")return o;let s=o.shape;if(o.rank===0&&(o=ir(o,-1)),t==="oneHot"&&o.shape[o.shape.length-1]!==1&&(o=ir(o,-1)),o.rank>2)throw new z(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${o.rank}.`);let i=["multiHot","oneHot"].includes(t),a=o,u;if(typeof n!="undefined"&&t==="count"?u=dh(a,n,e,i):u=dh(a,[],e,i),t!=="tfIdf")return u;if(n)return $(u,n);throw new z("When outputMode is 'tfIdf', weights must be provided.")}var rd=class extends Et{constructor(t){super(t),this.numTokens=t.numTokens,t.outputMode?this.outputMode=t.outputMode:this.outputMode="multiHot"}getConfig(){let t={numTokens:this.numTokens,outputMode:this.outputMode},e=super.getConfig();return Object.assign(t,e),t}computeOutputShape(t){return t=Wt(t),t==null?[this.numTokens]:this.outputMode==="oneHot"&&t[t.length-1]!==1?(t.push(this.numTokens),t):(t[t.length-1]=this.numTokens,t)}call(t,e){return B(()=>{t=Nt(t),t.dtype!=="int32"&&(t=en(t,"int32"));let n;if(typeof e.countWeights!="undefined"){if(this.outputMode!=="count")throw new z(`countWeights is not used when outputMode !== count.
Received countWeights=${e.countWeights}`);n=Nt(e.countWeights)}let o=Sr(t),s=xl(t),i=Fe(this.numTokens,o).bufferSync().get(0),a=cn(s,0).bufferSync().get(0);if(!(i&&a))throw new z(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return wR(t,this.outputMode,this.numTokens,n)})}};rd.className="CategoryEncoding";Q.registerClass(rd);var _7=["bilinear","nearest"],IR=new Set(_7),nd=class extends Et{constructor(t){if(super(t),this.height=t.height,this.width=t.width,t.interpolation)if(IR.has(t.interpolation))this.interpolation=t.interpolation;else throw new z(`Invalid interpolation parameter: ${t.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=!!t.cropToAspectRatio}computeOutputShape(t){t=Wt(t);let e=t[2];return[this.height,this.width,e]}getConfig(){let t={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},e=super.getConfig();return Object.assign(t,e),t}call(t,e){return B(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return lo.resizeBilinear(t,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return lo.resizeNearestNeighbor(t,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...IR]} are supported`)})}};nd.className="Resizing";Q.registerClass(nd);function E7(r){return new mi(r)}function A7(r){return new af(r)}function D7(r){return new nf(r)}function $7(r){return new of(r)}function R7(r){return new sf(r)}function F7(r){return new uf(r)}function O7(r){return new lf(r)}function P7(r){return new Vu(r)}function M7(r){return new El(r)}function L7(r){return new cf(r)}function z7(r){return new Al(r)}function B7(r){return new pf(r)}function V7(r){return new mf(r)}function G7(r){return new ff(r)}function W7(r){return new df(r)}function U7(r){return new hf(r)}function H7(r){return new vf(r)}function q7(r){return new If(r)}function K7(r){return new Zc(r)}function j7(r){return new wf(r)}function X7(r){return new Cf(r)}function Y7(r){return new Sf(r)}function Z7(r){return new Nf(r)}function J7(r){return new kf(r)}function Q7(r){return new _f(r)}function tJ(r){return new Ef(r)}function eJ(r){return new Df(r)}function rJ(r){return new Ff(r)}function nJ(r){return new $f(r)}function oJ(r){return new Rf(r)}function sJ(r){return new Af(r)}function iJ(r){return new Of(r)}function aJ(r){return new zf(r)}function lJ(r){return new Bf(r)}function uJ(r){return new Vf(r)}function zN(r){return new Wf(r)}function cJ(r){return zN(r)}function pJ(r){return zN(r)}function BN(r){return new Hf(r)}function mJ(r){return BN(r)}function fJ(r){return BN(r)}function VN(r){return new Kf(r)}function dJ(r){return VN(r)}function hJ(r){return VN(r)}function gJ(r){return new jf(r)}function xJ(r){return new Yf(r)}function CR(r){return new Xf(r)}function vR(r){return new Zf(r)}function SR(r){return new Gf(r)}function NR(r){return new Uf(r)}function yJ(r){return new qf(r)}function bJ(r){return new xf(r)}function wJ(r){return new jc(r)}function IJ(r){return new yf(r)}function CJ(r){return new $l(r)}function vJ(r){return new gf(r)}function SJ(r){return new Kc(r)}function NJ(r){return new bf(r)}function kJ(r){return new Yc(r)}function TJ(r){return new _n(r)}function _J(r){return new Xc(r)}function EJ(r){return new Qf(r)}function AJ(r){return new Jf(r)}var DJ=CR,$J=vR,RJ=SR,FJ=NR;function OJ(r){return new Pf(r)}function PJ(r){return new Mf(r)}function MJ(r){return new Lf(r)}function LJ(r){return new Tf(r)}function zJ(r){return new td(r)}function BJ(r){return new ed(r)}function VJ(r){return new nd(r)}function GJ(r){return new rd(r)}var TR={};Kt(TR,{MAPE:()=>QJ,MSE:()=>rQ,binaryAccuracy:()=>WJ,binaryCrossentropy:()=>UJ,categoricalAccuracy:()=>qJ,categoricalCrossentropy:()=>KJ,cosineProximity:()=>YJ,mape:()=>tQ,meanAbsoluteError:()=>ZJ,meanAbsolutePercentageError:()=>JJ,meanSquaredError:()=>eQ,mse:()=>nQ,precision:()=>jJ,recall:()=>XJ,sparseCategoricalAccuracy:()=>HJ});function WJ(r,t){return Fh(r,t)}function UJ(r,t){return Zy(r,t)}function HJ(r,t){return Jy(r,t)}function qJ(r,t){return Oh(r,t)}function KJ(r,t){return Ph(r,t)}function jJ(r,t){return TN(r,t)}function XJ(r,t){return Z$(r,t)}function YJ(r,t){return Rh(r,t)}function ZJ(r,t){return Zm(r,t)}function JJ(r,t){return Mu(r,t)}function QJ(r,t){return Mu(r,t)}function tQ(r,t){return Mu(r,t)}function eQ(r,t){return ga(r,t)}function rQ(r,t){return ga(r,t)}function nQ(r,t){return ga(r,t)}var _R={};Kt(_R,{modelFromJSON:()=>mR});var ER={};Kt(ER,{l1:()=>sQ,l1l2:()=>oQ,l2:()=>iQ});function oQ(r){return new Lu(r)}function sQ(r){return gR(r)}function iQ(r){return xR(r)}var Db=class extends _l{constructor(){super(...arguments),this.model=null}setModel(t){if(!(t instanceof Un))throw new Error("model must be a LayersModel, not some other Container");this.model=t}};function Ab(r,t){return r<t}function AR(r,t){return r>t}var $b=class extends Db{constructor(t){if(super(),t==null&&(t={}),t.restoreBestWeights)throw new St("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Ab:this.mode==="max"?this.monitorFunc=AR:this.monitor.indexOf("acc")!==-1?this.monitorFunc=AR:this.monitorFunc=Ab,this.monitorFunc===Ab&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Ab?1/0:-1/0}async onEpochEnd(t,e){await ha(e);let n=this.getMonitorValue(e);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0)))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}};function aQ(r){return new $b(r)}var lQ={earlyStopping:aQ};var uQ=L();uQ.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,r=>{r&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var co;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_QINT16=15]="DT_QINT16",r[r.DT_QUINT16=16]="DT_QUINT16",r[r.DT_UINT16=17]="DT_UINT16",r[r.DT_COMPLEX128=18]="DT_COMPLEX128",r[r.DT_HALF=19]="DT_HALF",r[r.DT_RESOURCE=20]="DT_RESOURCE",r[r.DT_VARIANT=21]="DT_VARIANT",r[r.DT_UINT32=22]="DT_UINT32",r[r.DT_UINT64=23]="DT_UINT64",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",r[r.DT_QINT16_REF=115]="DT_QINT16_REF",r[r.DT_QUINT16_REF=116]="DT_QUINT16_REF",r[r.DT_UINT16_REF=117]="DT_UINT16_REF",r[r.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",r[r.DT_HALF_REF=119]="DT_HALF_REF",r[r.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",r[r.DT_VARIANT_REF=121]="DT_VARIANT_REF",r[r.DT_UINT32_REF=122]="DT_UINT32_REF",r[r.DT_UINT64_REF=123]="DT_UINT64_REF"})(co||(co={}));var DR;(function(r){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(DR||(DR={}));var GN={};function pQ(r,t){let e={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:t};GN[r]=e}function Rb(r){return GN[r]}function mQ(r){delete GN[r]}function C(r,t,e,n,o){let s=t.inputParams[r];if(s&&s.inputIndexStart!==void 0){let a=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?a+1:s.inputIndexEnd,l=a<0?t.inputNames.length+a:a;if(s.type==="tensor")return cr(t.inputNames[l],e,n,o);if(s.type==="tensors"){let m=t.inputs.slice(a,u);return t.inputNames.slice(a,u).filter((d,h)=>{var g;return((g=m[h])===null||g===void 0?void 0:g.op)!=="NoOp"}).map(d=>cr(d,e,n,o))}let c=cr(t.inputNames[l],e,n,o),p=c.dataSync();return s.type==="number"?p[0]:y.toNestedArray(c.shape,p)}let i=t.attrParams[r];return i&&i.value}function cr(r,t,e,n){let[o,s]=wn(r,e);if(n!=null){let a=n.getHashTableHandleByName(o);if(a!=null)return a}let i=e.currentContextIds.find(a=>!!t[Fb(o,a)]);return i!==void 0?t[Fb(o,i)][s]:void 0}function WN(r,t,e){return t[Fb(r,e.currentContextId)]}function gi(r,t){let[e,n,o]=wn(r,t);return[Fb(e,t&&t.currentContextId),n,o]}function Fb(r,t){return t?`${r}-${t}`:r}function wn(r,t){if(r==="")return["",0,void 0];let e=t!=null&&t.parseNodeNameCache!=null;if(e){let s=t.parseNodeNameCache.get(r);if(s!=null)return s}let n=r.split(":"),o;if(n.length===1)o=[r,0,void 0];else{let s=n[0],i=n.length===3?n[1]:void 0,a=Number(n[n.length-1]);o=[s,a,i]}return e&&t.parseNodeNameCache.set(r,o),o}function Vh(r,t,e){let n=C("pad",r,t,e);if(n==="explicit"){n=C("explicitPaddings",r,t,e);let o=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)o[s][0]=n[s*2],o[s][1]=n[s*2+1];return o}return n}function xi(r){return r.kept?r:ln(r)}var UN={};Kt(UN,{json:()=>fQ});var fQ=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var HN={};Kt(HN,{json:()=>dQ});var dQ=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var qN={};Kt(qN,{json:()=>hQ});var hQ=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}];var KN={};Kt(KN,{json:()=>gQ});var gQ=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var jN={};Kt(jN,{json:()=>xQ});var xQ=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var XN={};Kt(XN,{json:()=>yQ});var yQ=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var YN={};Kt(YN,{json:()=>bQ});var bQ=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var ZN={};Kt(ZN,{json:()=>wQ});var wQ=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var JN={};Kt(JN,{json:()=>IQ});var IQ=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var QN={};Kt(QN,{json:()=>CQ});var CQ=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}];var tk={};Kt(tk,{json:()=>vQ});var vQ=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var ek={};Kt(ek,{json:()=>SQ});var SQ=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}];var rk={};Kt(rk,{json:()=>NQ});var NQ=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var nk={};Kt(nk,{json:()=>kQ});var kQ=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var ok={};Kt(ok,{json:()=>TQ});var TQ=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}];var sk={};Kt(sk,{json:()=>_Q});var _Q=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}];var ik={};Kt(ik,{json:()=>EQ});var EQ=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var ak={};Kt(ak,{json:()=>AQ});var AQ=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}];var lk={};Kt(lk,{json:()=>DQ});var DQ=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}];var Gh=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let t=[UN,HN,qN,KN,jN,XN,YN,ZN,JN,QN,tk,ek,rk,nk,ok,sk,ik,ak,lk],e=[].concat(...t.map(n=>n.json));this.opMappers=e.reduce((n,o)=>(n[o.tfOpName]=o,n),{})}transformGraph(t,e={}){let n=t.node,o=[],s=[],i=[],a=n.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?o.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&i.push(h[g.name]),h),{}),u=[],l=[],c={},p={};e!=null&&(c=this.mapSignatureEntries(e.inputs),p=this.mapSignatureEntries(e.outputs));let m=Object.keys(a);m.forEach(h=>{let g=a[h];g.inputNames.forEach((x,b)=>{let[w,,I]=gi(x),N=a[w];if(N.outputs!=null){let E=N.outputs.indexOf(I);if(E!==-1){let A=`${w}:${E}`;g.inputNames[b]=A}}g.inputs.push(N),N.children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=a[h];g.children.length===0&&l.push(g)}):Object.keys(p).forEach(h=>{let[g]=gi(h),x=a[g];x!=null&&(x.signatureKey=p[h],l.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=gi(h),x=a[g];x&&(x.signatureKey=c[h],u.push(x))}):u=o;let f={};t.library!=null&&t.library.function!=null&&(f=t.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:a,inputs:u,outputs:l,weights:s,placeholders:o,signature:e,functions:f};return i.length>0&&(d.initNodes=i),d}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,n)=>(e[t[n].name]=n,e),{})}mapNode(t){let e=Rb(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let n={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.slice(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr,outputs:e.outputs};return e.inputs!=null&&(n.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(n.attrParams=e.attrs.reduce((o,s)=>{let i=s.type,a;switch(s.type){case"string":a=Ob(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Ob(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":a=Gb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Gb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":a=Mb(t.attr,s.tfName,s.defaultValue||0),a===void 0&&s.tfDeprecatedName&&(a=Mb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":a=Vb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Vb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":a=Pb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Pb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":a=Ub(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Ub(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":a=Bb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Bb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":a=Wb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Wb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":a=Lb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=Lb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":a=zb(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=zb(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":a=$R(t.attr,s.tfName,s.defaultValue),a===void 0&&s.tfDeprecatedName&&(a=$R(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:a,type:i},o},{})),n}mapFunction(t){let e=t.nodeDef,n=[],o=[],s={};e!=null&&(s=e.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&o.push(p[m.name]),p),{}));let i=[],a=[];t.signature.inputArg.forEach(p=>{let[m]=gi(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:uk(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,i.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach((f,d)=>{let[h,,g]=gi(f),x=s[h];if(x.outputs!=null){let b=x.outputs.indexOf(g);if(b!==-1){let w=`${h}:${b}`;m.inputNames[d]=w}}m.inputs.push(x),x.children.push(m)})});let l=t.ret;t.signature.outputArg.forEach(p=>{let[m,f]=gi(l[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,a.push(d))});let c=this.mapArgsToSignature(t);return{nodes:s,inputs:i,outputs:a,weights:o,placeholders:n,signature:c}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n),e),{}),outputs:t.signature.outputArg.reduce((e,n)=>(e[n.name]=this.mapArgToTensorInfo(n,t.ret),e),{})}}mapArgToTensorInfo(t,e){let n=t.name;return e!=null&&(n=e[n]),{name:n,dtype:t.type}}};function $Q(r){let t=L().global;if(typeof t.atob!="undefined")return t.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function RR(r,t){let e=Array.isArray(r)?String.fromCharCode.apply(null,r):$Q(r);return t?e:e.toLowerCase()}function Ob(r,t,e,n=!1){let o=r[t];return o!=null?RR(o.s,n):e}function Pb(r,t,e){let n=r[t];return n?n.b:e}function Mb(r,t,e){let n=r[t]||{},o=n.i!=null?n.i:n.f!=null?n.f:e;return typeof o=="number"?o:parseInt(o,10)}function uk(r){switch(typeof r=="string"&&(r=co[r]),r){case co.DT_FLOAT:case co.DT_HALF:return"float32";case co.DT_INT32:case co.DT_INT64:case co.DT_INT8:case co.DT_UINT8:return"int32";case co.DT_BOOL:return"bool";case co.DT_DOUBLE:return"float32";case co.DT_STRING:return"string";default:return null}}function $R(r,t,e){let n=r[t];return n&&n.func?n.func.name:e}function Lb(r,t,e){let n=r[t];return n&&n.type?uk(n.type):e}function zb(r,t,e){let n=r[t];return n&&n.list&&n.list.type?n.list.type.map(o=>uk(o)):e}function FR(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Bb(r,t,e){let n=r[t];return n&&n.shape?FR(n.shape):e}function Vb(r,t,e){let n=r[t];return n?((n.list.f&&n.list.f.length?n.list.f:n.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function Gb(r,t,e,n=!1){let o=r[t];return o&&o.list&&o.list.s?o.list.s.map(s=>RR(s,n)):e}function Wb(r,t,e){let n=r[t];return n&&n.list&&n.list.shape?n.list.shape.map(o=>FR(o)):e}function Ub(r,t,e){let n=r[t];return n&&n.list&&n.list.b?n.list.b:e}var Hb=class{constructor(t,e,n){this.node=t,this.tensorMap=e,this.context=n,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return cr(t,this.tensorMap,this.context)}getAttr(t,e){let n=this.node.rawAttrs[t];if(n.tensor!=null)return cr(t,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Mb(this.node.rawAttrs,t,e);if(n.s!=null)return Ob(this.node.rawAttrs,t,e);if(n.b!=null)return Pb(this.node.rawAttrs,t,e);if(n.shape!=null)return Bb(this.node.rawAttrs,t,e);if(n.type!=null)return Lb(this.node.rawAttrs,t,e);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Vb(this.node.rawAttrs,t,e);if(n.list.s!=null)return Gb(this.node.rawAttrs,t,e);if(n.list.shape!=null)return Wb(this.node.rawAttrs,t,e);if(n.list.b!=null)return Ub(this.node.rawAttrs,t,e);if(n.list.type!=null)return zb(this.node.rawAttrs,t,e)}return e}};var se={};Kt(se,{OP_SCOPE_SUFFIX:()=>v0,abs:()=>Ee,acos:()=>ux,acosh:()=>cx,add:()=>Y,addN:()=>sE,all:()=>am,any:()=>fc,argMax:()=>Qi,argMin:()=>px,asin:()=>mx,asinh:()=>fx,atan:()=>dx,atan2:()=>hx,atanh:()=>gx,avgPool:()=>bu,avgPool3d:()=>xx,basicLSTMCell:()=>lE,batchNorm:()=>ra,batchNorm2d:()=>yx,batchNorm3d:()=>bx,batchNorm4d:()=>wx,batchToSpaceND:()=>wu,bincount:()=>Ix,booleanMaskAsync:()=>jX,broadcastArgs:()=>cE,broadcastTo:()=>na,buffer:()=>bt,cast:()=>J,ceil:()=>Cx,clipByValue:()=>vr,clone:()=>ln,complex:()=>vn,concat:()=>oe,concat1d:()=>vx,concat2d:()=>Sx,concat3d:()=>Nx,concat4d:()=>kx,conv1d:()=>um,conv2d:()=>Sn,conv2dTranspose:()=>pm,conv3d:()=>Tx,conv3dTranspose:()=>Ex,cos:()=>Iu,cosh:()=>mm,cosineWindow:()=>bh,cumprod:()=>hc,cumsum:()=>fm,denseBincount:()=>dh,depthToSpace:()=>Ax,depthwiseConv2d:()=>oa,diag:()=>pE,dilation2d:()=>Dx,div:()=>ut,divNoNan:()=>$x,dot:()=>Rx,dropout:()=>Y0,einsum:()=>fE,elu:()=>sa,enclosingPowerOfTwo:()=>Z0,equal:()=>Rr,erf:()=>Fx,euclideanNorm:()=>Ox,exp:()=>sr,expandDims:()=>ir,expm1:()=>Px,eye:()=>gc,fft:()=>Au,fill:()=>Co,floor:()=>ia,floorDiv:()=>im,fused:()=>Ru,gather:()=>aa,gatherND:()=>o5,greater:()=>Fe,greaterEqual:()=>cn,ifft:()=>Il,imag:()=>Cu,image:()=>lo,inTopKAsync:()=>a5,irfft:()=>km,isFinite:()=>Mx,isInf:()=>Lx,isNaN:()=>zx,leakyRelu:()=>vu,less:()=>bl,lessEqual:()=>Vn,linalg:()=>Q0,linspace:()=>gE,localResponseNormalization:()=>Bx,log:()=>Nr,log1p:()=>Su,logSigmoid:()=>Wx,logSoftmax:()=>dm,logSumExp:()=>hm,logicalAnd:()=>Or,logicalNot:()=>Nu,logicalOr:()=>gm,logicalXor:()=>Ux,losses:()=>l8,lowerBound:()=>xE,matMul:()=>Bt,max:()=>Sr,maxPool:()=>ku,maxPool3d:()=>qx,maxPoolWithArgmax:()=>yE,maximum:()=>Nn,mean:()=>ke,meshgrid:()=>bE,min:()=>xl,minimum:()=>ao,mirrorPad:()=>Kx,mod:()=>jx,moments:()=>xc,movingAverage:()=>ZX,mul:()=>$,multiRNNCell:()=>wE,multinomial:()=>IE,neg:()=>Ut,norm:()=>yl,notEqual:()=>ai,oneHot:()=>la,ones:()=>dr,onesLike:()=>Ir,op:()=>k,outerProduct:()=>CE,pad:()=>mn,pad1d:()=>vE,pad2d:()=>SE,pad3d:()=>NE,pad4d:()=>kE,pool:()=>Xx,pow:()=>un,prelu:()=>_u,print:()=>lx,prod:()=>Yx,raggedGather:()=>TE,raggedRange:()=>_E,raggedTensorToTensor:()=>EE,rand:()=>AE,randomGamma:()=>ZE,randomNormal:()=>wc,randomStandardNormal:()=>JE,randomUniform:()=>ua,range:()=>ca,real:()=>wl,reciprocal:()=>ry,relu:()=>Pr,relu6:()=>xm,reshape:()=>R,reverse:()=>hr,reverse1d:()=>QE,reverse2d:()=>tA,reverse3d:()=>eA,reverse4d:()=>rA,rfft:()=>Du,round:()=>ym,rsqrt:()=>bm,scalar:()=>ft,scatterND:()=>QX,searchSorted:()=>gh,selu:()=>wm,separableConv2d:()=>Im,setdiff1dAsync:()=>nA,sigmoid:()=>tn,sign:()=>ny,signal:()=>a8,sin:()=>Cm,sinh:()=>vm,slice:()=>Ot,slice1d:()=>Sm,slice2d:()=>yh,slice3d:()=>Nm,slice4d:()=>Ic,softmax:()=>Eu,softplus:()=>ii,spaceToBatchND:()=>Tu,sparse:()=>u8,sparseToDense:()=>r5,spectral:()=>i8,split:()=>gr,sqrt:()=>Ne,square:()=>Gt,squaredDifference:()=>Tm,squeeze:()=>Gn,stack:()=>qe,step:()=>So,stridedSlice:()=>oy,string:()=>c8,sub:()=>lt,sum:()=>pt,tan:()=>sy,tanh:()=>ea,tensor:()=>or,tensor1d:()=>Ke,tensor2d:()=>li,tensor3d:()=>iy,tensor4d:()=>oA,tensor5d:()=>sA,tensor6d:()=>iA,tensorScatterUpdate:()=>lA,tile:()=>Fr,topk:()=>ay,transpose:()=>Vt,truncatedNormal:()=>Em,unique:()=>ly,unsortedSegmentSum:()=>Am,unstack:()=>xr,upperBound:()=>uA,variable:()=>uy,where:()=>be,whereAsync:()=>py,zeros:()=>Te,zerosLike:()=>vt});var OR=(r,t,e,n=se)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[n.add(C("a",r,t,e),C("b",r,t,e))];case"AddN":return[n.addN(C("tensors",r,t,e))];case"FloorMod":case"Mod":return[n.mod(C("a",r,t,e),C("b",r,t,e))];case"Mul":return[n.mul(C("a",r,t,e),C("b",r,t,e))];case"RealDiv":case"Div":return[n.div(C("a",r,t,e),C("b",r,t,e))];case"DivNoNan":return[n.divNoNan(C("a",r,t,e),C("b",r,t,e))];case"FloorDiv":return[n.floorDiv(C("a",r,t,e),C("b",r,t,e))];case"Sub":return[n.sub(C("a",r,t,e),C("b",r,t,e))];case"Minimum":return[n.minimum(C("a",r,t,e),C("b",r,t,e))];case"Maximum":return[n.maximum(C("a",r,t,e),C("b",r,t,e))];case"Pow":return[n.pow(C("a",r,t,e),C("b",r,t,e))];case"SquaredDifference":return[n.squaredDifference(C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var PR=(r,t,e,n=se)=>{switch(r.op){case"Abs":case"ComplexAbs":return[n.abs(C("x",r,t,e))];case"Acos":return[n.acos(C("x",r,t,e))];case"Acosh":return[n.acosh(C("x",r,t,e))];case"Asin":return[n.asin(C("x",r,t,e))];case"Asinh":return[n.asinh(C("x",r,t,e))];case"Atan":return[n.atan(C("x",r,t,e))];case"Atan2":return[n.atan2(C("x",r,t,e),C("y",r,t,e))];case"Atanh":return[n.atanh(C("x",r,t,e))];case"Ceil":return[n.ceil(C("x",r,t,e))];case"Complex":return[n.complex(C("real",r,t,e),C("imag",r,t,e))];case"Cos":return[n.cos(C("x",r,t,e))];case"Cosh":return[n.cosh(C("x",r,t,e))];case"Elu":return[n.elu(C("x",r,t,e))];case"Erf":return[n.erf(C("x",r,t,e))];case"Exp":return[n.exp(C("x",r,t,e))];case"Expm1":return[n.expm1(C("x",r,t,e))];case"Floor":return[n.floor(C("x",r,t,e))];case"Log":return[n.log(C("x",r,t,e))];case"Log1p":return[n.log1p(C("x",r,t,e))];case"Imag":return[n.imag(C("x",r,t,e))];case"Neg":return[n.neg(C("x",r,t,e))];case"Reciprocal":return[n.reciprocal(C("x",r,t,e))];case"Real":return[n.real(C("x",r,t,e))];case"Relu":return[n.relu(C("x",r,t,e))];case"Round":return[n.round(C("x",r,t,e))];case"Selu":return[n.selu(C("x",r,t,e))];case"Sigmoid":return[n.sigmoid(C("x",r,t,e))];case"Sin":return[n.sin(C("x",r,t,e))];case"Sign":return[n.sign(C("x",r,t,e))];case"Sinh":return[n.sinh(C("x",r,t,e))];case"Softplus":return[n.softplus(C("x",r,t,e))];case"Sqrt":return[n.sqrt(C("x",r,t,e))];case"Square":return[n.square(C("x",r,t,e))];case"Tanh":return[n.tanh(C("x",r,t,e))];case"Tan":return[n.tan(C("x",r,t,e))];case"ClipByValue":return[n.clipByValue(C("x",r,t,e),C("clipValueMin",r,t,e),C("clipValueMax",r,t,e))];case"Relu6":return[n.relu6(C("x",r,t,e))];case"Rsqrt":return[n.rsqrt(cr(r.inputNames[0],t,e))];case"Prod":return[n.prod(C("x",r,t,e),C("axes",r,t,e))];case"LeakyRelu":return[n.leakyRelu(C("x",r,t,e),C("alpha",r,t,e))];case"Prelu":return[n.prelu(C("x",r,t,e),C("alpha",r,t,e))];case"IsNan":return[n.isNaN(cr(r.inputNames[0],t,e))];case"IsInf":return[n.isInf(cr(r.inputNames[0],t,e))];case"IsFinite":return[n.isFinite(cr(r.inputNames[0],t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Hn(r,t,e=""){if(!(typeof r=="number"||typeof t=="number")){y.assert(r.length===t.length,()=>e+` Shapes ${r} and ${t} must match`);for(let n=0;n<r.length;n++){let o=r[n],s=t[n];y.assert(o<0||s<0||o===s,()=>e+` Shapes ${r} and ${t} must match`)}}}function MR(r){return!(typeof r=="number"||r.some(t=>t<0))}function od(r,t,e){let n=qb(r,e),o=!MR(n);if(o&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${n}`);if(o&&t.forEach(s=>{n=qb(s.shape,n)}),!MR(n))throw new Error(`Non-fully-defined elementShape: ${n}`);return n}function qb(r,t){if(typeof r=="number")return t;if(typeof t=="number")return r;if(r.length!==t.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${t}`);let e=[];for(let n=0;n<r.length;++n){let o=r[n],s=t[n];if(o>=0&&s>=0&&o!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${t}`);e[n]=o>=0?o:s}return e}var Kb=class{constructor(t,e,n,o,s,i,a){this.name=t,this.dtype=e,this.maxSize=n,this.elementShape=o,this.identicalElementShapes=s,this.dynamicSize=i,this.clearAfterRead=a,this.tensors=[],this.closed_=!1,this.idTensor=ft(0),$e(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t},
because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),Hn(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);n.tensor=e,$e(e),n.written=!0,this.tensors[t]=n}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((n,o)=>this.write(n,e[o]))}gather(t,e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o<this.size();o++)t.push(o)}if(t.length===0)return or([],[0].concat(this.elementShape));let n=this.readMany(t);return Hn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),qe(n,0)}concat(t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${t}`);if(this.size()===0)return or([],[0].concat(this.elementShape));let e=[];for(let o=0;o<this.size();o++)e.push(o);let n=this.readMany(e);return Hn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),oe(n,0)}scatter(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let n=Math.max(...t);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(t,xr(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let n=0,o=t.map(u=>(n+=u,n));if(n!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:e.size/n,i=[];B(()=>{e=R(e,[1,n,s]);for(let u=0;u<t.length;++u){let c=[0,u===0?0:o[u-1],0],p=[1,t[u],s];i[u]=R(Ot(e,c,p),this.elementShape)}return i});let a=[];for(let u=0;u<t.length;u++)a[u]=u;this.writeMany(a,i)}};var Ol=class{get id(){return this.idTensor.id}constructor(t,e,n,o=-1){this.tensors=t,this.elementShape=e,this.elementDtype=n,t!=null&&t.forEach(s=>{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Hn(e,s.shape,"TensorList shape mismatch: "),$e(s)}),this.idTensor=ft(0),this.maxNumElements=o,$e(this.idTensor)}copy(){return new Ol([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,n=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Hn(t,this.elementShape,"TensorList shape mismatch: ");let o=od(this.elementShape,this.tensors,t);return B(()=>{let s=this.tensors.map(i=>R(i,o));return qe(s,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=od(this.elementShape,this.tensors,t),o=this.tensors.pop();return o.kept=!1,Hn(o.shape,t,"TensorList shape mismatch: "),R(o,n)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(Hn(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");$e(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);let e=new Ol([],this.elementShape,this.elementDtype,this.maxNumElements);e.tensors.length=t;for(let n=0;n<Math.min(this.tensors.length,t);++n)e.tensors[n]=this.tensors[n];return e}getItem(t,e,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);Hn(this.tensors[t].shape,e,"TensorList shape mismatch: ");let o=od(this.elementShape,this.tensors,e);return R(this.tensors[t],o)}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);Hn(this.elementShape,e.shape,"TensorList shape mismatch: "),$e(e),this.tensors[t]!=null&&(this.tensors[t].kept=!1),this.tensors[t]=e}gather(t,e,n){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);Hn(this.elementShape,n,"TensorList shape mismatch: "),t=t.slice(0,this.size());let o=od(this.elementShape,this.tensors,n);return t.length===0?or([],[0].concat(o)):B(()=>{let s=t.map(i=>R(this.tensors[i],o));return qe(s,0)})}concat(t,e){if(t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);Hn(this.elementShape,e,"TensorList shape mismatch: ");let n=od(this.elementShape,this.tensors,e);return this.size()===0?or([],[0].concat(n)):B(()=>{let o=this.tensors.map(s=>R(s,n));return oe(o,0)})}};function LR(r,t,e){let n=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==e)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${e}`);let o=r.shape.slice(1);Hn(o,t,"TensorList shape mismatch: ");let s=xr(r);return new Ol(s,t,n)}function zR(r,t,e,n){return new Ol([],r,t,n)}function BR(r,t,e,n){if(t.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${r.shape[0]}`);let o=Math.max(...t);if(n!=null&&n!==-1&&o>=n)throw new Error(`Max index must be < array size (${o} vs. ${n})`);let s=new Ol([],e,r.dtype,n),i=xr(r,0);return t.forEach((a,u)=>{s.setItem(a,i[u])}),s}function VR(r,t,e){let n=0,o=t.map(c=>(n+=c,n));if(n!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),i=qb(s,e),a=n===0?0:r.size/n,u=B(()=>{let c=[];r=R(r,[1,n,a]);for(let p=0;p<t.length;++p){let f=[0,p===0?0:o[p-1],0],d=[1,t[p],a];c[p]=R(Ot(r,f,d),i)}return r.dispose(),c}),l=new Ol([],e,r.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var GR=async(r,t,e)=>{switch(r.op){case"If":case"StatelessIf":{let n=C("thenBranch",r,t,e),o=C("elseBranch",r,t,e),s=C("cond",r,t,e),i=C("args",r,t,e);return(await s.data())[0]?e.functionMap[n].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(i,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let n=C("body",r,t,e),o=C("cond",r,t,e),s=C("args",r,t,e),i=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),a=s.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&a.indexOf(c.id)===-1&&c.dispose()});let l=s;for(;u[0];){let c=l;l=await e.functionMap[n].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);let p=l.map(f=>f.id);c.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await e.functionMap[o].executeFunctionAsync(l,e.tensorArrayMap,e.tensorListMap);u=await m[0].data(),m.forEach(f=>{!f.kept&&a.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return l}case"LoopCond":{let n=C("pred",r,t,e);return[xi(n)]}case"Switch":{let n=C("pred",r,t,e),o=C("data",r,t,e);return o.kept||(o=xi(o)),(await n.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let n=r.inputNames.find(o=>cr(o,t,e)!==void 0);if(n){let o=cr(n,t,e);return[xi(o)]}return}case"Enter":{let n=C("frameName",r,t,e),o=C("tensor",r,t,e);return e.enterFrame(n),[xi(o)]}case"Exit":{let n=C("tensor",r,t,e);return e.exitFrame(),[xi(n)]}case"NextIteration":{let n=C("tensor",r,t,e);return e.nextIteration(),[xi(n)]}case"TensorArrayV3":{let n=C("size",r,t,e),o=C("dtype",r,t,e),s=C("elementShape",r,t,e),i=C("dynamicSize",r,t,e),a=C("clearAfterRead",r,t,e),u=C("identicalElementShapes",r,t,e),l=C("name",r,t,e),c=new Kb(l,o,n,s,u,i,a);return e.addTensorArray(c),[c.idTensor,ft(1)]}case"TensorArrayWriteV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.write(o,s),[i.idTensor]}case"TensorArrayReadV3":{let n=C("tensorArrayId",r,t,e),o=C("index",r,t,e);return[e.getTensorArray(n.id).read(o)]}case"TensorArrayGatherV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("dtype",r,t,e);return[e.getTensorArray(n.id).gather(o,s)]}case"TensorArrayScatterV3":{let n=C("tensorArrayId",r,t,e),o=C("indices",r,t,e),s=C("tensor",r,t,e),i=e.getTensorArray(n.id);return i.scatter(o,s),[i.idTensor]}case"TensorArrayConcatV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id),s=C("dtype",r,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let n=C("tensorArrayId",r,t,e),o=C("tensor",r,t,e),s=C("lengths",r,t,e),i=e.getTensorArray(n.id);return i.split(s,o),[i.idTensor]}case"TensorArraySizeV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return[ft(o.size(),"int32")]}case"TensorArrayCloseV3":{let n=C("tensorArrayId",r,t,e),o=e.getTensorArray(n.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("tensor",r,t,e),i=e.getTensorList(n.id);return i.setItem(o,s),[i.idTensor]}case"TensorListGetItem":{let n=C("tensorListId",r,t,e),o=C("index",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).getItem(o,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let n=C("indices",r,t,e),o=C("tensor",r,t,e),s=C("elementShape",r,t,e),i=C("numElements",r,t,e),a=BR(o,n,s,i);return e.addTensorList(a),[a.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let n=C("elementShape",r,t,e),o=C("elementDType",r,t,e),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=C(s,r,t,e),a=r.op==="TensorListReserve"?-1:i,u=zR(n,o,i,a);return e.addTensorList(u),[u.idTensor]}case"TensorListGather":{let n=C("tensorListId",r,t,e),o=C("indices",r,t,e),s=C("elementShape",r,t,e),i=C("elementDType",r,t,e);return[e.getTensorList(n.id).gather(o,i,s)]}case"TensorListStack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=C("numElements",r,t,e);return[e.getTensorList(n.id).stack(o,s,i)]}case"TensorListFromTensor":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e),i=LR(n,o,s);return e.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id),s=C("dtype",r,t,e),i=C("elementShape",r,t,e);return[o.concat(s,i)]}case"TensorListPushBack":{let n=C("tensorListId",r,t,e),o=C("tensor",r,t,e),s=e.getTensorList(n.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let n=C("tensorListId",r,t,e),o=C("elementShape",r,t,e),s=C("elementDType",r,t,e);return[e.getTensorList(n.id).popBack(o,s)]}case"TensorListSplit":{let n=C("tensor",r,t,e),o=C("elementShape",r,t,e),s=C("lengths",r,t,e),i=VR(n,s,o);return e.addTensorList(i),[i.idTensor]}case"TensorListLength":{let n=C("tensorListId",r,t,e),o=e.getTensorList(n.id);return[ft(o.size(),"int32")]}case"TensorListResize":{let n=C("tensorListId",r,t,e),o=C("size",r,t,e),i=e.getTensorList(n.id).resize(o);return e.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function WR(r,t,e){let[n,o]=C("fusedOps",r,t,e),s=n==="biasadd",i=!s,a=o==="prelu",u=n==="fusedbatchnorm",l=C("numArgs",r,t,e);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&s&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=C("strides",r,t,e),p=Vh(r,t,e),m=C("dataFormat",r,t,e).toUpperCase(),f=C("dilations",r,t,e),[d,h]=C("args",r,t,e);i&&(h=d,d=void 0);let g=C("leakyreluAlpha",r,t,e);return{stride:c,pad:p,dataFormat:m,dilations:f,biasArg:d,preluArg:h,activationFunc:o,leakyreluAlpha:g}}var UR=(r,t,e,n=se)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilation",r,t,e);return[n.conv1d(C("x",r,t,e),C("filter",r,t,e),o,s,i,a)]}case"Conv2D":{let o=C("strides",r,t,e),s=Vh(r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv2d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,i,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=WR(r,t,e);return[n.fused.conv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:s,dataFormat:i,dilations:a,biasArg:u,preluArg:l,activationFunc:c,leakyreluAlpha:p}=WR(r,t,e);return[n.fused.depthwiseConv2d({x:C("x",r,t,e),filter:C("filter",r,t,e),strides:[o[1],o[2]],pad:s,dataFormat:i,dilations:[a[1],a[2]],bias:u,activation:c,preluActivationWeights:l,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,t,e),s=C("strides",r,t,e),i=Vh(r,t,e);return[n.conv2dTranspose(C("x",r,t,e),C("filter",r,t,e),o,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,t,e),s=Vh(r,t,e),i=C("dilations",r,t,e),a=C("dataFormat",r,t,e).toUpperCase();return[n.depthwiseConv2d(C("input",r,t,e),C("filter",r,t,e),[o[1],o[2]],s,a,[i[1],i[2]])]}case"Conv3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dataFormat",r,t,e).toUpperCase(),a=C("dilations",r,t,e);return[n.conv3d(C("x",r,t,e),C("filter",r,t,e),[o[1],o[2],o[3]],s,i,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPool":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s)]}case"MaxPoolWithArgmax":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e),a=C("includeBatchInIndex",r,t,e),{result:u,indexes:l}=n.maxPoolWithArgmax(C("x",r,t,e),[i[1],i[2]],[o[1],o[2]],s,a);return[u,l]}case"AvgPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.avgPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"MaxPool3D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("kernelSize",r,t,e);return[n.maxPool3d(C("x",r,t,e),[i[1],i[2],i[3]],[o[1],o[2],o[3]],s)]}case"Dilation2D":{let o=C("strides",r,t,e),s=C("pad",r,t,e),i=C("dilations",r,t,e),a=o[1],u=o[2],l=i[1],c=i[2];return[n.dilation2d(C("x",r,t,e),C("filter",r,t,e),[a,u],s,[l,c],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var HR=(r,t,e,n=se)=>{switch(r.op){case"Fill":{let o=C("shape",r,t,e),s=C("dtype",r,t,e),i=C("value",r,t,e);return[n.fill(o,i,s)]}case"LinSpace":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("num",r,t,e);return[n.linspace(o,s,i)]}case"Multinomial":{let o=C("logits",r,t,e),s=C("numSamples",r,t,e),i=C("seed",r,t,e);return[n.multinomial(o,s,i)]}case"OneHot":{let o=C("indices",r,t,e),s=C("depth",r,t,e),i=C("onValue",r,t,e),a=C("offValue",r,t,e),u=C("dtype",r,t,e);return[n.oneHot(o,s,i,a,u)]}case"Ones":return[n.ones(C("shape",r,t,e),C("dtype",r,t,e))];case"OnesLike":return[n.onesLike(C("x",r,t,e))];case"RandomStandardNormal":return[n.randomStandardNormal(C("shape",r,t,e),C("dtype",r,t,e),C("seed",r,t,e))];case"RandomUniform":return[n.randomUniform(C("shape",r,t,e),C("minval",r,t,e),C("maxval",r,t,e),C("dtype",r,t,e))];case"Range":{let o=C("start",r,t,e),s=C("stop",r,t,e),i=C("step",r,t,e);return[n.range(o,s,i,C("dtype",r,t,e))]}case"TruncatedNormal":{let o=C("shape",r,t,e),s=C("mean",r,t,e),i=C("stdDev",r,t,e),a=C("seed",r,t,e);return[n.truncatedNormal(o,s,i,C("dtype",r,t,e),a)]}case"Zeros":return[n.zeros(C("shape",r,t,e),C("dtype",r,t,e))];case"ZerosLike":return[n.zerosLike(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function ck(r,t,e){let n=C("boxes",r,t,e),o=C("scores",r,t,e),s=C("maxOutputSize",r,t,e),i=C("iouThreshold",r,t,e),a=C("scoreThreshold",r,t,e),u=C("softNmsSigma",r,t,e);return{boxes:n,scores:o,maxOutputSize:s,iouThreshold:i,scoreThreshold:a,softNmsSigma:u}}var qR=async(r,t,e,n,o=se)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l,softNmsSigma:c}=ck(r,t,e),p=await o.image.nonMaxSuppressionWithScoreAsync(s,i,a,u,l,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=ck(r,t,e),c=C("padToMaxOutputSize",r,t,e),p=await o.image.nonMaxSuppressionPaddedAsync(s,i,a,u,l,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:a,iouThreshold:u,scoreThreshold:l}=ck(r,t,e);return[await o.image.nonMaxSuppressionAsync(s,i,a,u,l)]}case"Where":{let s=o.cast(C("condition",r,t,e),"bool"),i=[await o.whereAsync(s)];return s.dispose(),i}case"ListDiff":return o.setdiff1dAsync(C("x",r,t,e),C("y",r,t,e));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var KR=(r,t,e,n=se)=>{switch(r.op){case"LowerBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.lowerBound(o,s)]}case"TopKV2":{let o=C("x",r,t,e),s=C("k",r,t,e),i=C("sorted",r,t,e),a=n.topk(o,s,i);return[a.values,a.indices]}case"UpperBound":{let o=C("sortedSequence",r,t,e),s=C("values",r,t,e);return[n.upperBound(o,s)]}case"Unique":{let o=C("x",r,t,e),s=n.unique(o);return[s.values,s.indices]}case"UniqueV2":{let o=C("x",r,t,e),s=C("axis",r,t,e),i=n.unique(o,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jR=(r,t,e,n=se)=>{switch(r.op){case"Const":return t[r.name];case"PlaceholderWithDefault":let o=C("default",r,t,e);return[cr(r.name,t,e)||o];case"Placeholder":return[cr(r.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=C("x",r,t,e);return[xi(c)]}case"IdentityN":return C("x",r,t,e).map(c=>xi(c));case"Snapshot":let s=C("x",r,t,e);return[xi(s)];case"Shape":return[n.tensor1d(C("x",r,t,e).shape,"int32")];case"ShapeN":return C("x",r,t,e).map(c=>n.tensor1d(c.shape));case"Size":return[n.scalar(C("x",r,t,e).size,"int32")];case"Rank":return[n.scalar(C("x",r,t,e).rank,"int32")];case"NoOp":return[n.scalar(1)];case"Print":let i=C("x",r,t,e),a=C("data",r,t,e),u=C("message",r,t,e),l=C("summarize",r,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(u);for(let c=0;c<a.length;c++)console.log(Array.prototype.slice.call(a[c].dataSync()).slice(0,l));return[i];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var jb=class{get id(){return this.handle.id}constructor(t,e){this.keyDType=t,this.valueDType=e,this.handle=ft(0),this.tensorMap=new Map,$e(this.handle)}clearAndClose(){this.tensorMap.forEach(t=>t.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ft(this.size(),"int32")}async import(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),B(()=>{let o=xr(e),s=n.length,i=o.length;y.assert(s===i,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${i} elements.`);for(let a=0;a<s;a++){let u=n[a],l=o[a];$e(l),this.tensorMap.set(u,l)}return this.handle})}async find(t,e){this.checkKeyAndValueTensor(t,e);let n=await t.data();return B(()=>{let o=[];for(let s=0;s<n.length;s++){let i=n[s],a=this.findWithDefault(i,e);o.push(a)}return qe(o)})}findWithDefault(t,e){let n=this.tensorMap.get(t);return n!=null?n:e}checkKeyAndValueTensor(t,e){if(t.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${t.dtype}`);if(e.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${e.dtype}`)}};var XR=async(r,t,e,n)=>{switch(r.op){case"HashTable":case"HashTableV2":{let o=n.getHashTableHandleByName(r.name);if(o!=null)return[o];{let s=C("keyDType",r,t,e),i=C("valueDType",r,t,e),a=new jb(s,i);return n.addHashTable(r.name,a),[a.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("values",r,t,e);return[await n.getHashTableById(o.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let o=C("tableHandle",r,t,e,n),s=C("keys",r,t,e),i=C("defaultValue",r,t,e);return[await n.getHashTableById(o.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let o=C("tableHandle",r,t,e,n);return[n.getHashTableById(o.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var YR=(r,t,e,n=se)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeBilinear(o,[s[0],s[1]],i,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,t,e),s=C("size",r,t,e),i=C("alignCorners",r,t,e),a=C("halfPixelCenters",r,t,e);return[n.image.resizeNearestNeighbor(o,[s[0],s[1]],i,a)]}case"CropAndResize":{let o=C("image",r,t,e),s=C("boxes",r,t,e),i=C("boxInd",r,t,e),a=C("cropSize",r,t,e),u=C("method",r,t,e),l=C("extrapolationValue",r,t,e);return[n.image.cropAndResize(o,s,i,a,u,l)]}case"ImageProjectiveTransformV3":{let o=C("images",r,t,e),s=C("transforms",r,t,e),i=C("outputShape",r,t,e),a=C("fillValue",r,t,e),u=C("interpolation",r,t,e),l=C("fillMode",r,t,e);return[n.image.transform(o,s,u.toLowerCase(),l.toLowerCase(),a,i)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var ZR=(r,t,e,n=se)=>{switch(r.op){case"Equal":return[n.equal(C("a",r,t,e),C("b",r,t,e))];case"NotEqual":return[n.notEqual(C("a",r,t,e),C("b",r,t,e))];case"Greater":return[n.greater(C("a",r,t,e),C("b",r,t,e))];case"GreaterEqual":return[n.greaterEqual(C("a",r,t,e),C("b",r,t,e))];case"Less":return[n.less(C("a",r,t,e),C("b",r,t,e))];case"LessEqual":return[n.lessEqual(C("a",r,t,e),C("b",r,t,e))];case"LogicalAnd":return[n.logicalAnd(C("a",r,t,e),C("b",r,t,e))];case"LogicalNot":return[n.logicalNot(C("a",r,t,e))];case"LogicalOr":return[n.logicalOr(C("a",r,t,e),C("b",r,t,e))];case"Select":case"SelectV2":return[n.where(C("condition",r,t,e),C("a",r,t,e),C("b",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var JR=(r,t,e,n=se)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[n.matMul(C("a",r,t,e),C("b",r,t,e),C("transposeA",r,t,e),C("transposeB",r,t,e))];case"Einsum":return[n.einsum(C("equation",r,t,e),...C("tensors",r,t,e))];case"Transpose":return[n.transpose(C("x",r,t,e),C("perm",r,t,e))];case"_FusedMatMul":let[o,s]=C("fusedOps",r,t,e),i=o==="biasadd",a=s==="prelu",u=C("numArgs",r,t,e),l=C("leakyreluAlpha",r,t,e);if(i){if(a&&u!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&u!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=C("args",r,t,e);return[n.fused.matMul({a:C("a",r,t,e),b:C("b",r,t,e),transposeA:C("transposeA",r,t,e),transposeB:C("transposeB",r,t,e),bias:c,activation:s,preluActivationWeights:p,leakyreluAlpha:l})];case"MatrixBandPart":return[n.linalg.bandPart(C("a",r,t,e),C("numLower",r,t,e),C("numUpper",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var QR=(r,t,e,n=se)=>{switch(r.op){case"EuclideanNorm":return[n.euclideanNorm(C("x",r,t,e),C("axis",r,t,e),C("keepDims",r,t,e))];case"FusedBatchNorm":case"FusedBatchNormV2":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"FusedBatchNormV3":return[n.batchNorm(C("x",r,t,e),C("mean",r,t,e),C("variance",r,t,e),C("offset",r,t,e),C("scale",r,t,e),C("epsilon",r,t,e))];case"LRN":return[n.localResponseNormalization(C("x",r,t,e),C("radius",r,t,e),C("bias",r,t,e),C("alpha",r,t,e),C("beta",r,t,e))];case"Softmax":return[n.softmax(C("x",r,t,e))];case"LogSoftmax":return[n.logSoftmax(C("x",r,t,e))];case"SparseToDense":return[n.sparseToDense(C("sparseIndices",r,t,e),C("outputShape",r,t,e),C("sparseValues",r,t,e),C("defaultValue",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tF=(r,t,e,n=se)=>{switch(r.op){case"RaggedGather":{let{outputNestedSplits:o,outputDenseValues:s}=n.raggedGather(C("paramsNestedSplits",r,t,e),C("paramsDenseValues",r,t,e),C("indices",r,t,e),C("outputRaggedRank",r,t,e));return o.concat(s)}case"RaggedRange":{let{rtNestedSplits:o,rtDenseValues:s}=n.raggedRange(C("starts",r,t,e),C("limits",r,t,e),C("splits",r,t,e));return[o,s]}case"RaggedTensorToTensor":return[n.raggedTensorToTensor(C("shape",r,t,e),C("values",r,t,e),C("defaultValue",r,t,e),C("rowPartitionTensors",r,t,e),C("rowPartitionTypes",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var eF=(r,t,e,n=se)=>{switch(r.op){case"Max":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.max(C("x",r,t,e),a,u)]}case"Mean":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.mean(C("x",r,t,e),a,u)]}case"Min":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.min(C("x",r,t,e),a,u)]}case"Sum":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.sum(C("x",r,t,e),a,u)]}case"All":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.all(C("x",r,t,e),a,u)]}case"Any":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.any(C("x",r,t,e),a,u)]}case"ArgMax":{let a=C("axis",r,t,e);return[n.argMax(C("x",r,t,e),a)]}case"ArgMin":{let a=C("axis",r,t,e);return[n.argMin(C("x",r,t,e),a)]}case"Prod":{let a=C("axis",r,t,e),u=C("keepDims",r,t,e);return[n.prod(C("x",r,t,e),a,u)]}case"Cumprod":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumprod(C("x",r,t,e),a,u,l)]}case"Cumsum":{let a=C("axis",r,t,e),u=C("exclusive",r,t,e),l=C("reverse",r,t,e);return[n.cumsum(C("x",r,t,e),a,u,l)]}case"Bincount":let o=C("x",r,t,e),s=C("weights",r,t,e),i=C("size",r,t,e);return[n.bincount(o,s,i)];case"DenseBincount":{let a=C("x",r,t,e),u=C("weights",r,t,e),l=C("size",r,t,e),c=C("binaryOutput",r,t,e);return[n.denseBincount(a,u,l,c)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rF=(r,t,e,n=se)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,t,e),s=C("axis",r,t,e),i=C("tensors",r,t,e);return i=i.slice(0,o),[n.concat(i,s)]}case"Gather":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gather(o,n.cast(s,"int32"),0)]}case"GatherV2":{let o=C("axis",r,t,e),s=C("batchDims",r,t,e),i=C("x",r,t,e),a=C("indices",r,t,e);return[n.gather(i,n.cast(a,"int32"),o,s)]}case"Reverse":{let o=C("dims",r,t,e),s=[];for(let a=0;a<o.length;a++)o[a]&&s.push(a);let i=C("x",r,t,e);return[n.reverse(i,s)]}case"ReverseV2":{let o=C("axis",r,t,e),s=C("x",r,t,e);return[n.reverse(s,o)]}case"Slice":{let o=C("begin",r,t,e),s=C("size",r,t,e);return[n.slice(C("x",r,t,e),o,s)]}case"StridedSlice":{let o=C("begin",r,t,e),s=C("end",r,t,e),i=C("strides",r,t,e),a=C("beginMask",r,t,e),u=C("endMask",r,t,e),l=C("ellipsisMask",r,t,e),c=C("newAxisMask",r,t,e),p=C("shrinkAxisMask",r,t,e),m=C("x",r,t,e);return[n.stridedSlice(m,o,s,i,a,u,l,c,p)]}case"Pack":return B(()=>{let o=C("axis",r,t,e),s=C("tensors",r,t,e),i=s[0].shape,a=n.squeeze(s[0]).shape,u=s.map(l=>{let c=y.arraysEqual(l.shape,i);if(!c&&!y.arraysEqual(n.squeeze(l).shape,a))throw new Error("the input tensors shape does not match");return c?l:n.reshape(l,i)});return[n.stack(u,o)]});case"Unpack":{let o=C("axis",r,t,e),s=C("tensor",r,t,e);return n.unstack(s,o)}case"Tile":{let o=C("reps",r,t,e);return[n.tile(C("x",r,t,e),o)]}case"Split":case"SplitV":{let o=C("axis",r,t,e),s=C("numOrSizeSplits",r,t,e),i=C("x",r,t,e);return n.split(i,s,o)}case"ScatterNd":{let o=C("indices",r,t,e),s=C("values",r,t,e),i=C("shape",r,t,e);return[n.scatterND(o,s,i)]}case"GatherNd":{let o=C("x",r,t,e),s=C("indices",r,t,e);return[n.gatherND(o,s)]}case"SparseToDense":{let o=C("sparseIndices",r,t,e),s=C("outputShape",r,t,e),i=C("sparseValues",r,t,e),a=C("defaultValue",r,t,e);return[n.sparseToDense(o,i,s,i.dtype===a.dtype?a:n.cast(a,i.dtype))]}case"TensorScatterUpdate":{let o=C("indices",r,t,e),s=C("values",r,t,e),i=C("tensor",r,t,e);return[n.tensorScatterUpdate(i,o,s)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nF=(r,t,e,n=se)=>{switch(r.op){case"SparseFillEmptyRows":{let{outputIndices:o,outputValues:s,emptyRowIndicator:i,reverseIndexMap:a}=n.sparse.sparseFillEmptyRows(C("indices",r,t,e),C("values",r,t,e),C("denseShape",r,t,e),C("defaultValue",r,t,e));return[o,s,i,a]}case"SparseReshape":{let{outputIndices:o,outputShape:s}=n.sparse.sparseReshape(C("inputIndices",r,t,e),C("inputShape",r,t,e),C("newShape",r,t,e));return[o,s]}case"SparseSegmentMean":return[n.sparse.sparseSegmentMean(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];case"SparseSegmentSum":return[n.sparse.sparseSegmentSum(C("data",r,t,e),C("indices",r,t,e),C("segmentIds",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oF=(r,t,e,n=se)=>{switch(r.op){case"FFT":return[n.fft(C("x",r,t,e))];case"IFFT":return[n.ifft(C("x",r,t,e))];case"RFFT":return[n.rfft(C("x",r,t,e))];case"IRFFT":return[n.irfft(C("x",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sF=(r,t,e,n=se)=>{switch(r.op){case"StaticRegexReplace":return[n.string.staticRegexReplace(C("input",r,t,e),C("pattern",r,t,e),C("rewrite",r,t,e),C("replaceGlobal",r,t,e))];case"StringNGrams":{let{nGrams:o,nGramsSplits:s}=n.string.stringNGrams(C("data",r,t,e),C("dataSplits",r,t,e),C("separator",r,t,e),C("nGramWidths",r,t,e),C("leftPad",r,t,e),C("rightPad",r,t,e),C("padWidth",r,t,e),C("preserveShortSequences",r,t,e));return[o,s]}case"StringSplit":{let{indices:o,values:s,shape:i}=n.string.stringSplit(C("input",r,t,e),C("delimiter",r,t,e),C("skipEmpty",r,t,e));return[o,s,i]}case"StringToHashBucketFast":return[n.string.stringToHashBucketFast(C("input",r,t,e),C("numBuckets",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iF=(r,t,e,n=se)=>{switch(r.op){case"Cast":return[n.cast(C("x",r,t,e),C("dtype",r,t,e))];case"ExpandDims":{let o=C("axis",r,t,e);return[n.expandDims(C("x",r,t,e),o)]}case"Squeeze":{let o=C("axis",r,t,e);return[n.squeeze(C("x",r,t,e),o)]}case"Reshape":return[n.reshape(C("x",r,t,e),C("shape",r,t,e))];case"MirrorPad":return[n.mirrorPad(C("x",r,t,e),C("padding",r,t,e),C("mode",r,t,e))];case"PadV2":case"Pad":return[n.pad(C("x",r,t,e),C("padding",r,t,e),C("constantValue",r,t,e))];case"SpaceToBatchND":{let o=C("blockShape",r,t,e),s=C("paddings",r,t,e);return[n.spaceToBatchND(C("x",r,t,e),o,s)]}case"BatchToSpaceND":{let o=C("blockShape",r,t,e),s=C("crops",r,t,e);return[n.batchToSpaceND(C("x",r,t,e),o,s)]}case"DepthToSpace":{let o=C("blockSize",r,t,e),s=C("dataFormat",r,t,e).toUpperCase();return[n.depthToSpace(C("x",r,t,e),o,s)]}case"BroadcastTo":return[n.broadcastTo(C("x",r,t,e),C("shape",r,t,e))];case"BroadcastArgs":return[n.broadcastArgs(C("s0",r,t,e),C("s1",r,t,e))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function pk(r,t,e,n,o=B){let s=((i,a,u)=>{switch(i.category){case"arithmetic":return o(()=>OR(i,a,u));case"basic_math":return o(()=>PR(i,a,u));case"control":return GR(i,a,u);case"convolution":return o(()=>UR(i,a,u));case"creation":return o(()=>HR(i,a,u));case"dynamic":return qR(i,a,u);case"evaluation":return o(()=>KR(i,a,u));case"image":return o(()=>YR(i,a,u));case"graph":return o(()=>jR(i,a,u));case"logical":return o(()=>ZR(i,a,u));case"matrices":return o(()=>JR(i,a,u));case"normalization":return o(()=>QR(i,a,u));case"ragged":return o(()=>tF(i,a,u));case"reduction":return o(()=>eF(i,a,u));case"slice_join":return o(()=>rF(i,a,u));case"sparse":return o(()=>nF(i,a,u));case"spectral":return o(()=>oF(i,a,u));case"string":return o(()=>sF(i,a,u));case"transformation":return o(()=>iF(i,a,u));case"hash_table":return XR(i,a,u,n);case"custom":let l=Rb(i.op);if(l&&l.customExecutor)return l.customExecutor(new Hb(i,a,u));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,t,e);return y.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Wh=class{constructor(t={},e={},n={},o={},s){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=n,this.functionMap=o,this.parseNodeNameCache=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;e<this.contexts.length-1;e++){let n=this.contexts.slice(0,this.contexts.length-e);t.push(this.contextIdforContexts(n))}t.push(""),this._currentContextIds=t}contextIdforContexts(t){return t?t.map(e=>e.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}};function mk(r,t,e,n){let o=new Set,s=[],i=null,a=null,u=new Set,l=new Set(Object.keys(r).map(m=>wn(m)[0]));n=n||[];let c=new Set(n.map(m=>wn(m.name)[0])),p=[...t];for(;p.length>0;){let m=p.pop();if((Jc(m)||o9(m)||s9(m))&&i==null&&(i=m,a=i.children.map(f=>f.name).filter(f=>o.has(f))),o.add(m.name),e[m.name]==null&&!l.has(m.name)&&!c.has(m.name)){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{u.has(f.name)||(u.add(f.name),p.push(f))})}}return{inputs:r,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:i,syncInputs:a}}function aF(r,t){let{usedNodes:e,inputs:n}=t,o=Object.keys(n).map(g=>wn(g)[0]).map(g=>r.nodes[g]),s=r.initNodes||[],i=g=>e.has(typeof g=="string"?g:g.name);function a(g){return[...new Map(g.map(x=>[x.name,x])).values()]}let u=a([...o,...r.weights,...s]).filter(i),l=a([...u,...Object.values(r.nodes)]).filter(i),c=new Map(l.map(g=>[g.name,g])),p={};for(let g of l){p[g.name]=p[g.name]||0;for(let x of g.children)i(x)||(p[x.name]=Number.POSITIVE_INFINITY),p[x.name]=(p[x.name]||0)+1}let m=Object.entries(p).filter(([,g])=>g===0).map(([g])=>g),f=[...m];for(;m.length>0;){let g=m.pop(),x=c.get(g);for(let b of x.children.filter(i))--p[b.name]===0&&(f.push(b.name),m.push(b.name))}let d=f.map(g=>c.get(g)),h=QQ(d,u);return t9(h,u),h}function QQ(r,t){let e=new Map(r.map(i=>[i.name,i])),n=t.map(i=>i.name),o=new Set(n);for(;n.length>0;){let i=n.pop(),a=e.get(i);for(let u of a.children)!e.has(u.name)||o.has(u.name)||(o.add(u.name),n.push(u.name))}return r.filter(i=>o.has(i.name))}var sd=class extends Error{constructor(t){super(`NodesExecutionOrderError: ${t}`)}};function t9(r,t){let e=new Map(r.map((a,u)=>[a.name,u])),n=new Set(t.map(a=>a.name)),o=a=>n.has(typeof a=="string"?a:a.name),s=new Set(r.map(a=>a.name)),i=a=>s.has(typeof a=="string"?a:a.name);for(let a of r){for(let u of a.children.filter(i)){if(!e.has(u.name))throw new sd(`Child ${u.name} of node ${a.name} is unreachable.`);if(e.get(a.name)>e.get(u.name))throw new sd(`Node ${a.name} is scheduled to run after its child ${u.name}.`)}if(!o(a))for(let u of a.inputs){if(!e.has(u.name))throw new sd(`Input ${u.name} of node ${a.name} is unreachable.`);if(e.get(u.name)>e.get(a.name))throw new sd(`Node ${a.name} is scheduled to run before its input ${u.name}.`)}}}function lF(r){let t=new Map(r.map((a,u)=>[a.name,u])),e=Number.MAX_SAFE_INTEGER,n=r.map((a,u)=>Jc(a)?e:u),o=a=>{let u=n[t.get(a.name)];return u==null?-1:u},s=r.map((a,u)=>a.children.map(o).reduce((l,c)=>Math.max(l,c),n[u])),i=new Map;for(let a=0;a<r.length;++a){let u=s[a];if(u===e)continue;let l=r[a],c=r[u];i.has(c.name)||i.set(c.name,[]),i.get(c.name).push(l.name)}return i}var e9=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),r9=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),n9=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function Jc(r){return e9.has(r.op)}function o9(r){return r9.has(r.op)}function s9(r){return n9.has(r.op)}var Qc=class{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(n=>t[n].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(n=>{this._functionExecutorMap[n]=new Qc(t.functions[n],this)})}getCompilationKey(t,e){let n=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return n.join(this.SEPARATOR)+"--"+o.join(this.SEPARATOR)}compile(t,e){let n=mk(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:i}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${i}]`);if(o.length>0){let l=e.map(p=>p.name),c=Object.keys(t);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${c}]. Missing the following inputs: [${o}]`)}let a=aF(this.graph,n),u=lF(a);return{orderedNodes:a,nodeLiveUntilMap:u}}cloneAndKeepTensor(t){if(t==null)return null;let e=t.clone();return $e(e),e}cloneTensorList(t){return t?t.map(n=>this.cloneAndKeepTensor(n)):null}cloneTensorMap(t){return Object.fromEntries(Object.entries(t).map(([e,n])=>[e,this.cloneTensorList(n)]))}execute(t,e){this.disposeIntermediateTensors(),t=this.mapInputs(t);let n=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=n.map(m=>this.graph.nodes[wn(m)[0]]),s=e.map(m=>wn(m)[0]),i=new Set(s),a=s.map(m=>this.graph.nodes[m]);a.length===0&&(a=this._outputs);let u=this.getCompilationKey(o,a),l=this.compiledMap.get(u);l==null&&(l=this.compile(t,a),this.compiledMap.set(u,l));try{this.keepIntermediateTensors=L().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let c={},p={};return B(()=>{let m=new Wh(this.weightMap,c,p,this.functionExecutorMap,this.parseNodeNameCache),f=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(t).forEach(x=>{let[b,w]=wn(x,m),I=[];I[w]=t[x],f[b]=I,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(I))});let d=this.getFrozenTensorIds(f),{orderedNodes:h,nodeLiveUntilMap:g}=l;for(let x of h){if(f[x.name])continue;let b=pk(x,f,m,this._resourceManager);if(y.isPromise(b))throw new Error(`The execution of the op '${x.op}' returned a promise. Please use model.executeAsync() instead.`);f[x.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[x.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(x,f,m,d,i,g.get(x.name))}return this.parent==null&&m.dispose(d),e.map(x=>cr(x,f,m))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(n=>t[n]).map(n=>n.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,n,o,s,i,a){if(!(Jc(e)||i.has(t))){for(let u of n[t])u!=null&&(a[u.id]=(a[u.id]||0)+e.children.length);for(let u of e.inputs){if(Jc(u))continue;let l=WN(u.name,n,o);if(l!=null)for(let c of l){if(!c||c.kept||s.has(c.id))continue;let p=a[c.id];p===1?(c.dispose(),delete a[c.id]):p!=null&&a[c.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(t,e,n,o,s,i){if(!(Jc(t)||s.has(t.name))&&i!=null)for(let a of i){let u=WN(a,e,n);for(let l of u)!l||l.kept||o.has(l.id)||l.dispose()}}async executeAsync(t,e){return this._executeAsync(t,e)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(t=>{for(let e of t)e&&!e.isDisposed&&e.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(t,e,n=!1,o={},s={}){this.disposeIntermediateTensors(),n||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));try{this.keepIntermediateTensors=L().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(m){this.keepIntermediateTensors=!1,console.warn(m.message)}let i=new Wh(this.weightMap,o,s,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let a=await this.executeWithControlFlow(t,i,e,n),u=e.map(m=>cr(m,a,i)),l=u.map(m=>m.id),c=Object.keys(t).map(m=>t[m].id),p=new Set([...l,...c,...this.weightIds]);return Object.values(a).forEach(m=>{m.forEach(f=>{f&&!f.isDisposed&&!p.has(f.id)&&f.dispose()})}),this.parent==null&&i.dispose(p),u}async executeFunctionAsync(t,e,n){let o=t.reduce((s,i,a)=>(s[this.inputs[a].name]=i,s),{});return this._executeAsync(o,this.outputNodes,!0,e,n)}async executeWithControlFlow(t,e,n,o){let s=Object.keys(t),i=s.map(I=>this.graph.nodes[wn(I)[0]]),a=n.map(I=>wn(I)[0]),u=new Set(a),l=a.map(I=>this.graph.nodes[I]);l.length===0&&(l=this._outputs);let{usedNodes:c,missingInputs:p,dynamicNode:m,syncInputs:f}=mk(t,l,this.weightMap,this._initNodes),d=[...i,...this.graph.weights,...this._initNodes||[]].map(I=>({node:I,contexts:e.currentContext})),h=Object.assign({},this.weightMap);Object.keys(t).forEach(I=>{let[N,E]=wn(I),A=[];A[E]=t[I],h[N]=A});let g={},x=this.getFrozenTensorIds(h),b={};for(;d.length>0;){let I=this.processStack(i,d,e,h,b,x,u,g,c);await Promise.all(I)}m==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let w=l.filter(I=>!Jc(I)&&!cr(I.name,h,e)).map(I=>I.name);if(w.length>0){let I="";throw m!=null&&(I=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${f}]`),new Error(`Cannot compute the outputs [${w}] from the provided inputs [${s}]. Consider providing the following inputs: [${p}]. ${I}`)}return h}processStack(t,e,n,o,s,i,a,u,l){let c=[];for(;e.length>0;){let p=e.pop();n.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,o,n)&&([m]=gi(p.node.name,n)),o[p.node.name]==null){let f=pk(p.node,o,n,this._resourceManager);m||([m]=gi(p.node.name,n));let d=n.currentContext;y.isPromise(f)?c.push(f.then(h=>(o[m]=h,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(h)),n.currentContext=d,this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l),h))):(o[m]=f,this.keepIntermediateTensors&&(this.clonedTensorsMap[m]=this.cloneTensorList(f)),this.checkTensorForDisposal(m,p.node,o,n,i,a,u),this.processChildNodes(p.node,e,n,o,s,l))}else this.processChildNodes(p.node,e,n,o,s,l)}return c}processChildNodes(t,e,n,o,s,i){t.children.forEach(a=>{let[u]=gi(a.name,n);s[u]||!i.has(a.name)||(a.op==="Merge"?a.inputNames.some(l=>!!cr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})):a.inputNames.every(l=>!!cr(l,o,n))&&(s[u]=!0,e.push({contexts:n.currentContext,node:a})))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let n=t[e],[o]=wn(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let i=s.attrParams.shape.value,a=i.length===n.shape.length&&n.shape.every((u,l)=>i[l]===-1||i[l]===u);y.assert(a,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${i}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(t){var e,n;let o={};for(let s in t){let i=(n=(e=this._signature)===null||e===void 0?void 0:e.inputs)===null||n===void 0?void 0:n[s];i!=null?o[i.name]=t[s]:o[s]=t[s]}return o}checkInputs(t){let e=Object.keys(t).filter(n=>{let[o]=wn(n);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>{var n,o;let s=(o=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||o===void 0?void 0:o[e];return s!=null?s.name:e},{})}checkOutputs(t){t.forEach(e=>{let[n]=wn(e);if(!this.graph.nodes[n])throw new Error(`The output '${e}' is not found in the graph`)})}};var Xb=class{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}};var i9="?tfjs-format=file",a9="model.json",Uh=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(t,e={},n=Mr){this.modelUrl=t,this.loadOptions=e,this.version="n/a",this.io=n,e==null&&(this.loadOptions={}),this.resourceManager=new Xb}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(t,this.loadOptions);else{let e=this.io.getLoadHandlers(t,this.loadOptions);if(e.length===0)e.push(this.io.browserHTTPRequest(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=this.handler.load();return y.isPromise(t)?t.then(e=>this.loadSync(e)):this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let s=this.artifacts.userDefinedMetadata;s.signature!=null&&(n=s.signature),s.structuredOutputKeys!=null&&(this.structuredOutputKeys=s.structuredOutputKeys)}this.signature=n,this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Qc(Gh.Instance.transformGraph(e,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null&&t.modelInitializer.node!=null){let s=Gh.Instance.transformGraph(t.modelInitializer);this.initializer=new Qc(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=t.initializerSignature}return!0}async save(t,e){if(typeof t=="string"){let n=this.io.getSaveHandlers(t);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${t}'`);t=n[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}addStructuredOutputNames(t){if(this.structuredOutputKeys){let e=t instanceof Pt?[t]:t,n={};return e.forEach((o,s)=>n[this.structuredOutputKeys[s]]=o),n}return t}predict(t,e){let n=this.execute(t,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(t,e){let n=await this.executeAsync(t,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(t){var e;if(!(t instanceof Pt)&&!Array.isArray(t)){let s=(e=this.signature)===null||e===void 0?void 0:e.inputs;if(s!=null)for(let i in s){let a=s[i];a.resourceId!=null&&(t[i]=this.resourceIdToCapturedInput[a.resourceId])}return t}t=Array.isArray(t)?t:[t];let n=Object.keys(this.resourceIdToCapturedInput).length;if(t.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${t.length} input tensors provided.`);let o=0;return this.inputNodes.reduce((s,i)=>{var a,u,l;let c=(l=(u=(a=this.signature)===null||a===void 0?void 0:a.inputs)===null||u===void 0?void 0:u[i])===null||l===void 0?void 0:l.resourceId;return c!=null?s[i]=this.resourceIdToCapturedInput[c]:s[i]=t[o++],s},{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(t){if(this.resourceIdToCapturedInput={},this.initializerSignature){let e=this.initializerSignature.outputs,n=Object.keys(e);for(let o=0;o<n.length;o++){let s=n[o],i=e[s];this.resourceIdToCapturedInput[i.resourceId]=t[o]}}}execute(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=this.executor.execute(t,e);return n.length>1?n:n[0]}async executeAsync(t,e){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let n=await this.executor.executeAsync(t,e);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,n)=>(e[n]=[t[n]],e),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Tt(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function l9(r,t={},e=Mr){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof r=="string"&&(r=c9(r));let n=new Uh(r,t,e);return await n.load(),n}function u9(r){if(r==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(r instanceof Array){let[n,o]=r;if(!n)throw new Error("modelJSON must be the first element of the array");if(!o||!(o instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in n))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in n))throw new Error("Model JSON is missing 'weightsManifest'");let s=Mr.getWeightSpecs(n.weightsManifest),i=Mr.getModelArtifactsForJSONSync(n,s,o);t=Mr.fromMemorySync(i)}else if("load"in r)t=r;else if("modelTopology"in r&&"weightSpecs"in r&&"weightData"in r)t=Mr.fromMemorySync(r);else throw new Error("Unknown model format");let e=new Uh(t);return e.load(),e}function c9(r){return r.endsWith("/")||(r=r+"/"),`${r}${a9}${i9}`}var uF="4.3.0";var EF={};Kt(EF,{CSVDataset:()=>ld,Dataset:()=>yi,FileDataSource:()=>fd,TextLineDataset:()=>ad,URLDataSource:()=>dd,array:()=>bF,csv:()=>SF,func:()=>NF,generator:()=>kF,microphone:()=>_F,version_data:()=>Rk,webcam:()=>TF,zip:()=>wF});var yF=Kl(xh());var hF=Kl(xh());function cF(r,t){return Yb(r,t)}function Yb(r,t,e=new Map,n=new Set){if(r==null)return null;if(typeof Blob=="function"&&r instanceof Blob)return r.slice();if(n.has(r))throw new Error("Circular references are not supported.");if(e.has(r))return e.get(r);let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(Gu(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let a=r[i],u=Yb(a,t,e,n);s[i]=u}return n.delete(r),r.__proto__&&(s.__proto__=r.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return e.set(r,o.value),o.value}function pF(r,t=dk){return mF(r,t)}function mF(r,t,e=new Set){let n=r[0];if(e.has(n))throw new Error("Circular references are not supported.");let o=t(r);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(Gu(n)){let s=Array.isArray(n)?[]:{};e.add(n);for(let i in n){let a=r.map(l=>l[i]),u=mF(a,t,e);s[i]=u}return e.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return o.value}function dk(r){return r===null?null:Gu(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function Zb(r,t){let e=new Map;Yb(r,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(y.isPromise(s)){let i=await s;e.set(o,i)}}return Yb(r,t,e)}function Gu(r){let t=!1;if(L().get("IS_BROWSER"))t=r instanceof TextDecoder;else{let{StringDecoder:e}=fk();t=r instanceof e}return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Pt)&&!(r instanceof Promise)&&!t)}function fF(r){return r==null||p9(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Pt||y.isTypedArray(r)}function p9(r){return r===null||typeof r!="object"&&typeof r!="function"}function dF(r){return cF(r,m9)}function m9(r){return r instanceof Pt?{value:r.clone(),recurse:!1}:Gu(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var id=class{constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),n=this.get(e);return this.set(e,this.pop()),n}};var tp=class extends id{constructor(){super(tp.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),n=this.length();for(let o=0;o<n;o++)e[o]=this.get(this.wrap(this.begin+o));this.data=e,this.capacity=t,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};tp.INITIAL_CAPACITY=32;function Tk(r){return new hk(r)}function Hh(r){return new gk(r)}function gF(r,t){return new Qb(r,t)}function xF(r,t=Pl.FAIL){return new Nk(r,t)}var tr=class{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],n=await t.next();for(;!n.done;)e.push(n.value),n=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),n=t(e.value);for(;!e.done&&n;)e=await this.next(),n=t(e.value)}handleErrors(t){return new vk(this,t)}filter(t){return new Ik(this,t)}map(t){return new Ck(this,t)}mapAsync(t){return new Jb(this,t)}serialMapAsync(t){return new Jb(this,t).serial()}flatmap(t){return new Sk(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new wk(this,t,e)}columnMajorBatch(t,e=!0,n=dk){return this.rowMajorBatch(t,e).map(s=>pF(s,n))}concatenate(t,e){return new Qb(Tk([this,t]),e)}take(t){return t<0||t==null?this:new bk(this,t)}skip(t){return t<0||t==null?this:new yk(this,t)}prefetch(t){return new tw(this,t)}shuffle(t,e){return new kk(this,t,e)}serial(){return new xk(this)}},hk=class extends tr{constructor(t){super(),this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:dF(t),done:!1}}},gk=class extends tr{constructor(t){super(),this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}},xk=class extends tr{constructor(t){super(),this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},yk=class extends tr{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let t=await this.upstream.next();if(t.done)return t;Tt(t.value)}return this.upstream.next()}},bk=class extends tr{constructor(t,e){super(),this.upstream=t,this.maxCount=e,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},wk=class extends tr{constructor(t,e,n=!0){super(),this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length<this.batchSize;){let e=await this.upstream.next();if(e.done)return this.enableSmallLastBatch&&t.length>0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}},Ik=class extends tr{constructor(t,e){super(),this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;Tt(t.value)}}},Ck=class extends tr{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},vk=class extends tr{constructor(t,e){super(),this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}},Jb=class extends tr{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=Io.getTensorsInContainer(t.value),n=await this.transform(t.value),o=Io.getTensorsInContainer(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return{value:n,done:!1}}},ep=class extends tr{constructor(){super(),this.outputQueue=new tp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Sk=class extends ep{constructor(t,e){super(),this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=Io.getTensorsInContainer(t.value),n=this.transform(t.value),o=Io.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of e)Io.isTensorInList(s,o)||s.dispose();return!0}},Qb=class extends tr{constructor(t,e){super(),this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}},Pl;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Pl||(Pl={}));var Nk=class extends tr{constructor(t,e=Pl.FAIL){super(),this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(t){await t;let e=0,n=0;function o(i){return i instanceof tr?{value:i.next().then(u=>(e++,u.done&&n++,u.value)),recurse:!1}:{value:null,recurse:!0}}let s=await Zb(this.iterators,o);if(e===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Pl.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Pl.SHORTEST:return{value:null,done:!0};case Pl.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},tw=class extends tr{constructor(t,e){super(),this.upstream=t,this.bufferSize=e,this.buffer=new id(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}},kk=class extends tw{constructor(t,e,n){super(t,e),this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=hF.alea(n||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}};var yi=class{constructor(){this.size=null}batch(t,e=!0){let n=this;y.assert(t>0,()=>`batchSize needs to be positive, but it is
${t}`);let o;return this.size===1/0||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),En(async()=>(await n.iterator()).columnMajorBatch(t,e,f9),o)}concatenate(t){let e=this,n;return this.size===1/0||t.size===1/0?n=1/0:this.size!=null&&t.size!=null?n=this.size+t.size:n=null,En(async()=>(await e.iterator()).concatenate(await t.iterator()),n)}filter(t){let e=this,n;return this.size===1/0?n=1/0:n=null,En(async()=>(await e.iterator()).filter(o=>B(()=>t(o))),n)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return En(async()=>(await e.iterator()).map(n=>B(()=>t(n))),this.size)}mapAsync(t){let e=this;return En(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return En(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,n;return this.size!=null&&t>0?n=this.size*t:t===0?n=0:this.size!=null&&(t===void 0||t<0)?n=1/0:n=null,En(async()=>{let o=Hh(async()=>({value:await e.iterator(),done:!1}));return gF(o.take(t))},n)}skip(t){let e=this,n;return this.size!=null&&t>=0&&this.size>=t?n=this.size-t:this.size!=null&&(this.size<t||t===void 0||t<0)?n=0:n=null,En(async()=>(await e.iterator()).skip(t),n)}shuffle(t,e,n=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=yF.alea(e||y.now().toString());return En(async()=>{let i=s.int32();return n&&(i+=s.int32()),(await o.iterator()).shuffle(t,i.toString())},this.size)}take(t){let e=this,n;return this.size!=null&&this.size>t?n=t:this.size!=null&&this.size<=t?n=this.size:n=null,En(async()=>(await e.iterator()).take(t),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};yi.MAX_BUFFER_SIZE=1e4;function En(r,t=null){return new class extends yi{constructor(){super(...arguments),this.size=t}async iterator(){return r()}}}function bF(r){return En(async()=>Tk(r),r.length)}function wF(r){if(!Gu(r))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(r))for(let e=0;e<r.length;e++)t=t==null?r[e].size:Math.min(t,r[e].size);else if(r instanceof Object)for(let e in r)t=t==null?r[e].size:Math.min(t,r[e].size);return En(async()=>{let e=await Zb(r,n=>{if(n instanceof yi)return{value:n.iterator(),recurse:!1};if(Gu(n))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return xF(e,Pl.SHORTEST)},t)}function f9(r){if(r===null)return null;let t=r[0];return fF(t)?{value:d9(r),recurse:!1}:{value:null,recurse:!0}}function d9(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Pt?qe(r):or(r)}var ad=class extends yi{constructor(t){super(),this.input=t}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o))}};var ew='"',qh=Symbol("out"),IF=Symbol("field"),rw=Symbol("quote"),_k=Symbol("quoteafterquote"),CF=Symbol("quoteinquote"),ld=class extends yi{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&y.assert(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),n=Object.keys(e).filter(o=>e[o]>1);if(y.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let o of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(o)===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let n=e.value;return this.parseRow(n,!1)}else return null}constructor(t,e){super(),this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new ad(t),e||(e={}),this.hasHeader=e.hasHeader!==!1,this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(y.assert(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),n={},o={};for(let s=0;s<this.fullColumnNames.length;s++){let i=this.fullColumnNames[s],a=this.columnConfigs?this.columnConfigs[i]:null;if(!(this.configuredColumnsOnly&&!a)){let u=e[s],l=null;if(u==="")if(a&&a.default!==void 0)l=a.default;else{if(a&&(a.required||a.isLabel))throw new Error(`Required column ${i} is empty in this line: ${t}`);l=void 0}else{let c=Number(u);if(isNaN(c))a&&a.dtype==="bool"?l=this.getBoolean(u):l=u;else if(!a||!a.dtype)l=c;else switch(a.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(u);break;default:l=c}}a&&a.isLabel?o[i]=l:n[i]=l}}return Object.keys(o).length===0?n:{xs:n,ys:o}}getBoolean(t){return t==="1"||t.toLowerCase()==="true"?1:0}parseRow(t,e=!0){let n=[],o=0,s=t.length,i=qh;for(let a=0;a<s;a++)switch(i){case qh:switch(t.charAt(a)){case ew:o=a+1,i=rw;break;case this.delimiter:if(o=a+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),i=qh;break;default:i=IF,o=a;break}break;case IF:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a)),i=qh,o=a+1;break;default:}break;case rw:switch(t.charAt(a)){case ew:i=_k;break;default:}break;case _k:switch(t.charAt(a)){case this.delimiter:n.push(t.substring(o,a-1)),i=qh,o=a+1;break;case ew:i=rw;break;default:i=CF;break}break;case CF:switch(t.charAt(a)){case ew:i=rw;break;default:}break;default:}if(i===_k?n.push(t.substring(o,s-1)):n.push(t.substring(o)),e&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}};var ud=class extends tr{constructor(t){super(),this.microphoneConfig=t,this.isClosed=!1,this.fftSize=t.fftSize||1024;let e=Math.log2(this.fftSize);if(this.fftSize<0||e<4||e>14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=t.includeSpectrogram!==!1,this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(!L().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let e=new ud(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,n=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(n.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(n.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],n=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,n=new Float32Array(t.length*e);return t.forEach((o,s)=>n.set(o,s*e)),n}getTensorFromAudioDataArray(t,e){let n=new Float32Array(y.sizeFromShape(e));return n.set(t,n.length-t.length),or(n,e)}};var cd=class extends tr{constructor(t,e){if(super(),this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,i=(1-o)/2,a=s+n,u=o+i;this.cropBox=li([i,s,u,a],[1,4])}else this.cropBox=li([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(!L().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let n=new cd(t,e);return await n.start(),n}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=Sy.fromPixels(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return B(()=>{let e=ir(J(t,"float32"),0),n;n=lo.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=n.shape;return R(n,o.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var pd=class{};var Kh=class extends tr{split(t){return new Ek(this,t)}},Ek=class extends Kh{constructor(t,e){super(),this.upstream=t,this.impl=new Ak(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Ak=class extends ep{constructor(t,e){super(),this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let n of e.slice(0,-1))this.outputQueue.push(n);return this.carryover=e[e.length-1],!0}};var nw=class extends tr{decodeUTF8(){return new Dk(this)}},Dk=class extends Kh{constructor(t){super(),this.upstream=t,this.impl=new $k(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},$k=class extends ep{constructor(t){if(super(),this.upstream=t,L().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=fk();this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let n;return L().get("IS_BROWSER")?n=this.decoder.decode(e,{stream:!0}):n=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(n),!0}};var md=class extends nw{constructor(t,e={}){super(),this.file=t,this.options=e,y.assert(t instanceof Uint8Array||(L().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,n)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=a=>{let u=s.result;if(u instanceof ArrayBuffer&&(u=new Uint8Array(u)),!(u instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));e(u)},s.onabort=a=>n(new Error("Aborted")),s.onerror=a=>n(new Error(a.type));let i=this.file.slice(this.offset,o);s.readAsArrayBuffer(i)}this.offset=o}),done:!1}}};async function vF(r,t={},e){let n,o;typeof r=="string"?n=r:(n=r.url,o=h9(r));let s=await(e||y.fetch)(n,o);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new md(i,t)}else throw new Error(s.statusText)}var h9=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function ow(r){return typeof r=="string"&&r.slice(0,7)==="file://"}var fd=class extends pd{constructor(t,e={}){super(),this.input=t,this.options=e}async iterator(){if(ow(this.input)&&L().get("IS_NODE")){let t=sw();this.input=t.readFileSync(this.input.slice(7))}return new md(this.input,this.options)}};var dd=class extends pd{constructor(t,e={}){super(),this.url=t,this.fileOptions=e}async iterator(){return ow(this.url)?new fd(this.url,this.fileOptions).iterator():vF(this.url,this.fileOptions)}};function SF(r,t={}){return new ld(new dd(r),t)}function NF(r){let t=Hh(r);return En(async()=>t)}function kF(r){return En(async()=>{let t=await r();return Hh(()=>t.next())})}async function TF(r,t){return cd.create(r,t)}async function _F(r){return ud.create(r)}var Rk="4.3.0";function tt(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var g9=Kr.whereImpl,Wu=class extends Go{nextDataId(){return Wu.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Ta(this,Bn())}write(t,e,n){this.firstUse&&(this.firstUse=!1,L().get("IS_NODE")&&S.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let o={id:this.nextDataId()};return this.data.set(o,{values:t,dtype:n,refCount:1}),o}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return{dataId:o,shape:t,dtype:e}}refCount(t){return this.data.has(t)?this.data.get(t).refCount:0}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,n,o,s){this.data.set(t,{values:e,dtype:o,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:n}=this.data.get(t);if(e==="complex64"){let o=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return S.mergeRealAndImagArrays(o,s)}return y.convertBackendValuesAndArrayBuffer(this.data.get(t).values,e)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return bt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return bt(t.shape,t.dtype,e)}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(e,n,t),this)}disposeData(t,e=!1){if(this.data.has(t)){if(this.data.get(t).refCount--,!e&&this.data.get(t).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(t);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(t)}return!0}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(t){tt([t],"where");let e=this.readSync(t.dataId);return g9(t.shape,e)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Wu.nextDataId=0;var bw={};Kt(bw,{addImpl:()=>Pk,bincountImpl:()=>xd,bincountReduceImpl:()=>iw,castImpl:()=>Ok,ceilImpl:()=>Mk,concatImpl:()=>rp,equalImpl:()=>Lk,expImpl:()=>Bk,expm1Impl:()=>Gk,floorDivImpl:()=>Uk,floorImpl:()=>Wk,gatherNdImpl:()=>aw,gatherV2Impl:()=>lw,greaterEqualImpl:()=>qk,greaterImpl:()=>Hk,lessEqualImpl:()=>jk,lessImpl:()=>Kk,linSpaceImpl:()=>uw,logImpl:()=>Xk,maxImpl:()=>cw,maximumImpl:()=>Yk,minimumImpl:()=>Zk,multiplyImpl:()=>jh,negImpl:()=>Jk,notEqualImpl:()=>Qk,prodImpl:()=>tT,raggedGatherImpl:()=>pw,raggedRangeImpl:()=>mw,raggedTensorToTensorImpl:()=>fw,rangeImpl:()=>op,rsqrtImpl:()=>eT,scatterImpl:()=>bi,sigmoidImpl:()=>sO,simpleAbsImpl:()=>Fk,sliceImpl:()=>sp,sparseFillEmptyRowsImpl:()=>dw,sparseReshapeImpl:()=>hw,sparseSegmentReductionImpl:()=>wd,sqrtImpl:()=>lO,squaredDifferenceImpl:()=>nT,staticRegexReplaceImpl:()=>oT,stridedSliceImpl:()=>gw,stringNGramsImpl:()=>ip,stringSplitImpl:()=>ap,stringToHashBucketFastImpl:()=>lp,subImpl:()=>iT,tileImpl:()=>xw,topKImpl:()=>yw,transposeImpl:()=>yd,uniqueImpl:()=>up});function Fk(r){let t=new Float32Array(r.length);for(let e=0;e<r.length;++e)t[e]=Math.abs(r[e]);return t}var x9=r=>{let{x:t}=r.inputs,e=r.backend;tt(t,"abs");let n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId).values;return n=Fk(o),e.makeOutput(n,t.shape,t.dtype)},AF={kernelName:Ti,backendName:"cpu",kernelFunc:x9};function te(r){return(t,e,n,o,s)=>{let i=S.assertAndGetBroadcastShape(t,e),a=i.length,u=y.computeStrides(i),l=y.sizeFromShape(i),c=y.getTypedArrayFromDType(s,l),p=t.length,m=e.length,f=y.computeStrides(t),d=y.computeStrides(e),h=S.getBroadcastDims(t,i),g=S.getBroadcastDims(e,i);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(n[x%n.length],o[x%o.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,a,u),w=b.slice(-p);h.forEach(A=>w[A]=0);let I=y.locToIndex(w,p,f),N=b.slice(-m);g.forEach(A=>N[A]=0);let E=y.locToIndex(N,m,d);c[x]=r(n[I],o[E])}return[c,i]}}function Cr(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=e.makeTensorInfo(n.shape,"complex64"),u=e.data.get(a.dataId);return u.complexTensorInfos={real:e.makeTensorInfo(n.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",i)},a}var DF={kernelName:Op,backendName:"cpu",kernelFunc:Cr};function hd(r,t,e="float32"){if(e==="complex64"){let o=hd(r,t,"float32"),s=hd(r,t,"float32");return Cr({inputs:{real:o,imag:s},backend:r})}let n=y.makeZerosTypedArray(y.sizeFromShape(t),e);return r.makeTensorInfo(t,e,n)}function Yr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var $F={kernelName:go,backendName:"cpu",kernelFunc:Yr};function Fo(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var RF={kernelName:jp,backendName:"cpu",kernelFunc:Fo};function Ok(r,t,e,n){if(n==="int32"){let o=Int32Array.from(r);return[t,"int32",o]}if(n==="bool"){let o=y.toTypedArray([0],e),[s,i]=te((a,u)=>a!==u?1:0)(t,[],r,o,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${e} to ${n}`)}function Oo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return Yr({inputs:{x:o},backend:e});let c=hd(e,o.shape,o.dtype),p=Oo({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),m=Cr({inputs:{real:p,imag:c},backend:e});return e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),m}if(o.dtype==="complex64"){let c=Fo({inputs:{input:o},backend:e}),p=Oo({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),p}if(!y.hasEncodingLoss(o.dtype,s)){let c=Yr({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}let i=e.data.get(o.dataId).values,[a,u,l]=Ok(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}var FF={kernelName:fo,backendName:"cpu",kernelFunc:Oo};function ie(r,t,e,n){return e==null?({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;tt([i,a],r);let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=i.dtype==="string"?S.fromUint8ToStringArray(l):l,m=i.dtype==="string"?S.fromUint8ToStringArray(c):c,f=n||i.dtype,[d,h]=t(i.shape,a.shape,p,m,f);return u.makeTensorInfo(h,f,d)}:({inputs:o,backend:s})=>{let{a:i,b:a}=o,u=s;if(i.dtype==="complex64"||a.dtype==="complex64"){let l=Oo({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=u.data.get(p.dataId).values,d=u.data.get(m.dataId).values,h=Oo({inputs:{x:a},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=u.data.get(x.dataId).values,I=u.data.get(b.dataId).values,[N,E,A]=e(i.shape,a.shape,f,d,w,I),D=u.makeTensorInfo(A,"float32",N),F=u.makeTensorInfo(A,"float32",E),P=Cr({inputs:{real:D,imag:F},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(h),u.disposeIntermediateTensorInfo(D),u.disposeIntermediateTensorInfo(F),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(a.dataId).values,p=n||i.dtype,[m,f]=t(i.shape,a.shape,l,c,p);return u.makeTensorInfo(f,p,m)}}}function gd(r){return(t,e,n,o,s,i)=>{let a=S.assertAndGetBroadcastShape(t,e),u=y.sizeFromShape(a),l=a.length,c=y.computeStrides(a),p=y.getTypedArrayFromDType("float32",u),m=y.getTypedArrayFromDType("float32",u),f=S.getBroadcastDims(t,a),d=S.getBroadcastDims(e,a),h=S.mergeRealAndImagArrays(n,o),g=S.mergeRealAndImagArrays(s,i),x=t.length,b=y.computeStrides(t),w=e.length,I=y.computeStrides(e);if(f.length+d.length===0)for(let N=0;N<p.length;N++){let E=N%h.length,A=N%g.length,D=r(h[E*2],h[E*2+1],g[A*2],g[A*2+1]);p[N]=D.real,m[N]=D.imag}else for(let N=0;N<p.length;N++){let E=y.indexToLoc(N,l,c),A=E.slice(-x);f.forEach(G=>A[G]=0);let D=y.locToIndex(A,x,b),F=E.slice(-w);d.forEach(G=>F[G]=0);let P=y.locToIndex(F,w,I),V=r(h[D*2],h[D*2+1],g[P*2],g[P*2+1]);p[N]=V.real,m[N]=V.imag}return[p,m,a]}}var Pk=te((r,t)=>r+t),y9=gd((r,t,e,n)=>({real:r+e,imag:t+n})),ya=ie(ro,Pk,y9),OF={kernelName:ro,backendName:"cpu",kernelFunc:ya};function xd(r,t,e,n,o){let s=y.sizeFromShape(n),i=y.makeZerosTypedArray(o,e);for(let a=0;a<r.length;a++){let u=r[a];if(u<0)throw new Error("Input x must be non-negative!");u>=o||(s>0?i[u]+=t[a]:i[u]+=1)}return i}function iw(r,t,e,n=!1){let o=r.shape[0],s=r.shape[1],i=bt([o,e],t.dtype);for(let a=0;a<o;a++)for(let u=0;u<s;u++){let l=r.get(a,u);if(l<0)throw new Error("Input x must be non-negative!");l>=e||(n?i.set(1,a,l):t.size>0?i.set(i.get(a,l)+t.get(a,u),a,l):i.set(i.get(a,l)+1,a,l))}return i}function _r(r){return(t,e,n)=>{let o=y.getArrayFromDType(e,t.length);for(let s=0;s<t.length;++s)o[s]=r(t[s],n);return o}}function At(r,t,e){let n=_r(t);return An(r,n,e)}function An(r,t,e){return({inputs:n,attrs:o,backend:s})=>{let{x:i}=n;tt(i,r);let a=s,u=a.data.get(i.dataId).values,l;if(i.dtype==="string"){if(!Array.isArray(u))throw new Error("String tensor's value was not an instance of Array");l=S.fromUint8ToStringArray(u)}else l=u;let c=e||i.dtype,p=t(l,c,o);return a.makeTensorInfo(i.shape,c,p)}}var Mk=_r(r=>Math.ceil(r)),b9=An(ts,Mk),PF={kernelName:ts,backendName:"cpu",kernelFunc:b9};function rp(r,t,e,n){let o=y.getArrayFromDType(e,y.sizeFromShape(t));if(n&&e!=="string"){let s=0;r.forEach(i=>{let a=y.sizeFromShape(i.shape);o.set(i.vals,s),s+=a})}else{let s=0;r.forEach(i=>{let a=e==="string"?S.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+s;for(let p=0;p<i.shape[1];++p)o[c+p]=a[u++]}s+=i.shape[1]})}return o}var Lk=te((r,t)=>r===t?1:0),zk=ie(za,Lk,null,"bool"),MF={kernelName:za,backendName:"cpu",kernelFunc:zk};var Bk=_r(r=>Math.exp(r)),Vk=An(ps,Bk,"float32"),LF={kernelName:ps,backendName:"cpu",kernelFunc:Vk};var Gk=_r(r=>Math.expm1(r)),w9=An(ms,Gk),zF={kernelName:ms,backendName:"cpu",kernelFunc:w9};var Wk=_r(r=>Math.floor(r)),I9=An(fs,Wk),BF={kernelName:fs,backendName:"cpu",kernelFunc:I9};var Uk=te((r,t)=>Math.floor(r/t)),C9=ie(ds,Uk,null,"int32"),VF={kernelName:ds,backendName:"cpu",kernelFunc:C9};function aw(r,t,e,n,o,s,i,a,u){let l=bt([n,s],e);for(let c=0;c<n;c++){let p=[],m=0;for(let f=0;f<o;f++){let d=r[c*o+f];m+=d*i[f],p.push(d)}if(m<0||m>=u/s)throw new Error(`Invalid indices: ${p} does not index into ${a}`);for(let f=0;f<s;f++)l.values[c*s+f]=t.get(...t.indexToLoc(m*s+f))}return l}function lw(r,t,e){let n=bt(e,r.dtype);for(let o=0;o<n.size;++o){let i=n.indexToLoc(o).slice(),a=i[0],u=i[2],l=t.locToIndex([a,u]);i[2]=t.values[l];let c=r.locToIndex(i);0<=c&&c<r.values.length&&(n.values[o]=r.values[c])}return n}var Hk=te((r,t)=>r>t?1:0),v9=ie(Ga,Hk,null,"bool"),GF={kernelName:Ga,backendName:"cpu",kernelFunc:v9};var qk=te((r,t)=>r>=t?1:0),S9=ie(gs,qk,null,"bool"),WF={kernelName:gs,backendName:"cpu",kernelFunc:S9};var Kk=te((r,t)=>r<t?1:0),N9=ie(Wa,Kk,null,"bool"),UF={kernelName:Wa,backendName:"cpu",kernelFunc:N9};var jk=te((r,t)=>r<=t?1:0),k9=ie(Ua,jk,null,"bool"),HF={kernelName:Ua,backendName:"cpu",kernelFunc:k9};function uw(r,t,e){let n=(t-r)/(e-1),o=y.makeZerosTypedArray(e,"float32");o[0]=r;for(let s=1;s<o.length;s++)o[s]=o[s-1]+n;return o}var Xk=_r(r=>Math.log(r)),T9=An(Is,Xk),qF={kernelName:Is,backendName:"cpu",kernelFunc:T9};function cw(r,t,e,n){let o=y.getTypedArrayFromDType(n,y.sizeFromShape(e));for(let s=0;s<o.length;++s){let i=s*t,a=r[i];for(let u=0;u<t;++u){let l=r[i+u];(Number.isNaN(l)||l>a)&&(a=l)}o[s]=a}return o}var Yk=te((r,t)=>Math.max(r,t)),_9=ie(Ns,Yk),KF={kernelName:Ns,backendName:"cpu",kernelFunc:_9};var Zk=te((r,t)=>Math.min(r,t)),E9=ie(Es,Zk),jF={kernelName:Es,backendName:"cpu",kernelFunc:E9};var jh=te((r,t)=>r*t),A9=gd((r,t,e,n)=>({real:r*e-t*n,imag:r*n+t*e})),np=ie(Ds,jh,A9),XF={kernelName:Ds,backendName:"cpu",kernelFunc:np};function Jk(r,t,e){let n=y.createScalarValue(-1,e);return jh([],t,n,r,e)}function D9(r){let{inputs:t,backend:e}=r,{x:n}=t;tt(n,"neg");let o=e.data.get(n.dataId).values,[s,i]=Jk(o,n.shape,n.dtype);return e.makeTensorInfo(i,n.dtype,s)}var YF={kernelName:Pi,backendName:"cpu",kernelFunc:D9};var Qk=te((r,t)=>r!==t?1:0),$9=ie(Ja,Qk,null,"bool"),ZF={kernelName:Ja,backendName:"cpu",kernelFunc:$9};function yd(r,t,e,n,o){let s=t.length,i=y.sizeFromShape(t),a=y.computeStrides(t),u=y.computeStrides(o),l=y.getTypedArrayFromDType(e,y.sizeFromShape(o));for(let c=0;c<i;++c){let p=y.indexToLoc(c,s,a),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[n[d]];let f=y.locToIndex(m,s,u);l[f]=r[c]}return l}function Ge(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{perm:s}=e;tt(o,"transpose");let i=o.shape.length,a=new Array(i);for(let p=0;p<a.length;p++)a[p]=o.shape[s[p]];let u=n.data.get(o.dataId).values,l=yd(u,o.shape,o.dtype,s,a);return{dataId:n.write(l,a,o.dtype),shape:a,dtype:o.dtype}}var JF={kernelName:oo,backendName:"cpu",kernelFunc:Ge};function tT(r,t,e,n){let[o,s]=S.computeOutAndReduceShapes(r,n),i=lr(t,"int32"),a=y.makeZerosTypedArray(y.sizeFromShape(o),i),u=y.sizeFromShape(s);for(let l=0;l<a.length;++l){let c=l*u,p=1;for(let m=0;m<u;++m)p*=e[c+m];a[l]=p}return{outVals:a,outShape:o,outDtype:i}}function R9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"prod");let a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=S.getAxesPermutation(u,a),c=u,p=o,m=[];l!=null&&(p=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),m.push(p),c=S.getInnerMostAxes(c.length,a));let f=e.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=tT(p.shape,p.dtype,f,c),x=h;return i&&(x=S.expandShapeToKeepDim(h,u)),m.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.makeTensorInfo(x,g,d)}var QF={kernelName:Ps,backendName:"cpu",kernelFunc:R9};function F9(r,t,e){r.forEach((n,o)=>{if(n<0||n>=e){let s=y.indexToLoc(o,t.length,y.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${n} is not in [0, ${e})`)}})}function O9(r,t){for(let e=0;e<r.length;++e){let n=r[e],o=e===r.length-1?t:r[e+1].length;if(n.length===0)throw new Error("Ragged splits may not be empty");if(n[0]<0)throw new Error("Ragged splits must be non-negative");if(n[n.length-1]>o)throw new Error("Ragged splits must not point past values");for(let s=1;s<n.length;++s)if(n[s-1]>n[s])throw new Error("Ragged splits must be sorted in ascending order")}}function P9(r,t,e,n){let o=[],s=0,i=t.length-1+e.length,a=new Array(i).fill(null).map(()=>[0]);O9(e,n);let u=1;for(let l=0;l<t.length-1;++l){u*=t[l];let c=t[l+1];for(let p=1;p<u+1;++p)a[l].push(p*c)}for(let l=0;l<r.length;++l){let c=r[l],p=r[l]+1;for(let m=0;m<e.length;++m){let f=e[m],d=m+t.length-1;if(d>=0){let h=a[d],g=h[h.length-1]-f[c];for(let x=c;x<p;++x)a[d].push(f[x+1]+g)}c=f[c],p=f[p]}p!==c&&(o.push([c,p]),s+=p-c)}return{outSplits:a,valueSlices:o,numValues:s}}function M9(r){let t=[];for(let e=0;e<r.length;++e){let n=r[e].length,o=y.getArrayFromDType("int32",n);t.push(o),r[e].forEach((s,i)=>o[i]=s)}return t}function tO(r,t){let e=r.slice(0,t);for(;e.length<t;)e.push(1);for(let n=t;n<r.length;n++)e[t-1]*=r[n];return e}function L9(r,t,e,n,o,s){let i=tO(t,2)[1],a=tO(s,2)[1],u=0;for(let l of e)for(let c=l[0];c<l[1];++c){for(let p=0;p<n;++p)o[u*a+p]=r[c*i+p];++u}}function z9(r,t,e,n,o){let s=t.slice();s[0]=o;let i=y.getArrayFromDType(e,y.sizeFromShape(s)),a=r.length,u=a===0?0:a/t[0];return L9(r,t,n,u,i,s),[i,s]}function pw(r,t,e,n,o,s,i,a){if(r.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let u=t[0][0]-1;if(F9(s,i,u),n.length===0)throw new Error("params.rank must be nonzero");let l=n[0],{outSplits:c,valueSlices:p,numValues:m}=P9(s,i,r,l),f=M9(c),d=z9(e,n,o,p,m);return[f,d[0],d[1]]}var eO=2147483647;function mw(r,t,e,n,o,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(o.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let a=t.length===0,u=o.length===0,l=i.length===0,c=[];a||c.push(t[0]),u||c.push(o[0]),l||c.push(i[0]);for(let g=1;g<c.length;++g)if(c[g]!==c[g-1])throw new Error("starts, limits, and deltas must have the same shape");let p=c.length===0?1:c[0],m=y.getArrayFromDType("int32",p+1);m[0]=0;for(let g=0;g<p;++g){let x=a?r[0]:r[g],b=u?n[0]:n[g],w=l?s[0]:s[g];if(w===0)throw new Error("Requires delta != 0");let I;if(w>0&&b<x||w<0&&b>x)I=0;else if(I=Math.ceil(Math.abs((b-x)/w)),I>eO)throw new Error(`Requires ((limit - start) / delta) <= ${eO}`);m[g+1]=m[g]+I}let f=m[p],d=y.getArrayFromDType(e,f),h=0;for(let g=0;g<p;++g){let x=m[g+1]-m[g],b=a?r[0]:r[g],w=l?s[0]:s[g];for(let I=0;I<x;++I)d[h++]=b,b+=w}return[m,d]}var Po=S.RowPartitionType,bd=class{constructor(t,e,n,o,s,i,a,u,l,c){this.shape=t,this.shapeShape=e,this.values=n,this.valuesShape=o,this.valuesDType=s,this.defaultValue=i,this.defaultValueShape=a,this.rowPartitionValues=u,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=S.getRowPartitionTypesHelper(c),this.raggedRank=S.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(t){return this.rowPartitionTypes[0]===Po.FIRST_DIM_SIZE?this.rowPartitionTypes[t+1]:this.rowPartitionTypes[t]}getRowPartitionTensor(t){return this.rowPartitionTypes[0]===Po.FIRST_DIM_SIZE?this.rowPartitionValues[t+1]:this.rowPartitionValues[t]}getMaxWidth(t){let e=this.getRowPartitionTensor(t-1);switch(this.getRowPartitionTypeByDimension(t-1)){case Po.VALUE_ROWIDS:return bd.getMaxWidthValueRowID(e);case Po.ROW_SPLITS:return bd.getMaxWidthRowSplit(e);default:throw new Error(`Cannot handle partition type ${Po[this.getRowPartitionTypeByDimension(t-1)]}`)}}static getMaxWidthRowSplit(t){let e=t.length;if(e===0||e===1)return 0;let n=0;for(let o=0;o<e-1;++o){let s=t[o+1]-t[o];s>n&&(n=s)}return n}static getMaxWidthValueRowID(t){let e=t.length;if(e===0)return 0;let n=0,o=t[0],s=0;for(let i=1;i<e;++i){let a=t[i];a!==o&&(o=a,s=Math.max(i-n,s),n=i)}return Math.max(e-n,s)}tensorShapeFromTensor(t,e,n=!0){if(e.length===0){if(t[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return nO(t,n)}calculateOutputSize(t){let e=this.valuesShape,n=this.defaultValueShape;S.validateDefaultValueShape(n,e);let o=this.tensorShapeFromTensor(this.shape,this.shapeShape),i=S.combineRaggedTensorToTensorShapes(this.raggedRank,o,e);i[0]<0&&(i[0]=t);for(let a=1;a<=this.raggedRank;++a)i[a]<0&&(i[a]=this.getMaxWidth(a));return i}calculateFirstParentOutputIndex(t,e,n){let o=Math.min(t,n),s=[],i=0;for(let a=0;a<o;++a,i+=e)s.push(i);for(let a=o;a<t;++a)s.push(-1);return y.assert(s.length===t,()=>"Final length of result must be equal to firstDimension."),s}calculateOutputIndexRowSplit(t,e,n,o){let s=t.length,i=[];for(let a=0;a<s-1;++a){let u=t[a+1]-t[a],l=Math.min(o,u),c=e[a];c===-1&&(l=0);for(let p=0;p<l;++p)i.push(c),c+=n;for(let p=0;p<u-l;++p)i.push(-1)}if(s>0&&i.length!==t[s-1])throw new Error("Invalid row split size.");return i}calculateOutputIndexValueRowID(t,e,n,o){let s=t.length,i=[];if(s===0)return[];let a=0,u=t[0];if(u>=e.length)throw new Error(`Got currentValueRowId=${u}, which is not less than ${e.length}`);let l=e[u];i.push(l);for(let c=1;c<s;++c){let p=t[c];if(p===u)l>=0&&(++a,a<o?l+=n:l=-1);else{if(a=0,u=p,p>=e.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${e.length}`);l=e[p]}i.push(l)}if(i.length!==t.length)throw new Error("Invalid row ids.");return i}calculateOutputIndex(t,e,n,o){let s=this.getRowPartitionTensor(t),i=this.getRowPartitionTypeByDimension(t);switch(i){case Po.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(s,e,n,o);case Po.ROW_SPLITS:if(s.length-1>e.length)throw new Error(`Row partition size is greater than output size: ${s.length-1} > ${e.length}`);return this.calculateOutputIndexRowSplit(s,e,n,o);default:throw new Error(`Unsupported partition type: ${Po[i]}`)}}getFirstDimensionSize(){let t=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let e=this.rowPartitionTypes[0];switch(e){case Po.FIRST_DIM_SIZE:return t[0];case Po.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Po.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Po[e]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),n=this.calculateOutputSize(e),o=new Array(this.raggedRank+1);o[o.length-1]=1;for(let u=o.length-2;u>=0;--u)o[u]=o[u+1]*n[u+1];let s=nO(n,!1),i=y.getArrayFromDType(this.valuesDType,y.sizeFromShape(s));if(o[0]*n[0]>0){let u=this.calculateFirstParentOutputIndex(e,o[0],n[0]);for(let l=1;l<=this.raggedRank;++l)u=this.calculateOutputIndex(l-1,u,o[l],n[l]);this.setOutput(this.raggedRank,u,i,s)}return[s,i]}setOutput(t,e,n,o){if(n.length===0)return;let s=this.values,i=n,a=o.slice();a=a.slice(t+1);let u=y.sizeFromShape(a),l=e.length,c=this.defaultValue;if(c.length!==u&&c.length!==1){let d=this.defaultValueShape;B(()=>{let h=R(c,d);c=na(h,a).dataSync()})}let p=0,m=0,f=0;for(let d=0;d<=l;++d){let h=d<l?e[d]:-1;if(h===f){++f;continue}if(m<f){let g=s.subarray(p*u),x=i.subarray(m*u),b=(f-m)*u;rO(x,g,b)}if(d>=l){let g=n.length;h=Math.floor(g/u)}if(h>f)if(this.defaultValue.length===1)i.subarray(f*u,h*u).fill(this.defaultValue[0]),f=h;else for(;h>f;){let g=i.slice(f*u);rO(g,c,u),++f}h<0?(p=d+1,m=f):(p=d,m=f,f=m+1)}}};function rO(r,t,e){for(let n=0;n<e;n++)r[n]=t[n]}function nO(r,t){let e=[];for(let n of r){if(n<0){if(!t)throw new Error(`Dimension ${n} must be >= 0`);if(n<-1)throw new Error(`Dimension ${n} must be >= -1`);n=-1}e.push(n)}return e}function fw(r,t,e,n,o,s,i,a,u,l){return new bd(r,t,e,n,o,s,i,a,u,l).compute()}function op(r,t,e,n){let o=r===t,s=r<t&&e<0,i=t<r&&e>1;if(o||s||i)return y.makeZerosTypedArray(0,n);let a=Math.abs(Math.ceil((t-r)/e)),u=y.makeZerosTypedArray(a,n);t<r&&e===1&&(e=-1),u[0]=r;for(let l=1;l<u.length;l++)u[l]=u[l-1]+e;return u}var eT=_r(r=>1/Math.sqrt(r)),B9=An(Us,eT),oO={kernelName:Us,backendName:"cpu",kernelFunc:B9};function bi(r,t,e,n,o,s,i,a,u,l){let c=[n/o,o],p=r.values,m=t.values;if(n===0)return bt(e,t.dtype);let f=u instanceof le?u:bt(c,t.dtype);typeof u=="string"||typeof u=="number"?f.values.fill(u):typeof u=="boolean"&&f.values.fill(+u);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<i;x++){let b=p[d*i+x];h.push(b),g+=b*a[x]}if(g<0||g>=n/o)throw new Error(`Invalid indices: ${h} does not index into ${e}`);for(let x=0;x<o;x++)l?f.values[g*o+x]+=m[d*o+x]:f.values[g*o+x]=t.rank===0?m[0]:m[d*o+x]}return f}var sO=_r(r=>1/(1+Math.exp(-r))),rT=At(js,r=>1/(1+Math.exp(-r))),iO={kernelName:js,backendName:"cpu",kernelFunc:rT};function sp(r,t,e,n,o){let s=ze.isSliceContinous(n,t,e),i=y.sizeFromShape(e),a=y.computeStrides(n);if(s){let p=ze.computeFlatOffset(t,a);return o==="string"?r.slice(p,p+i):r.subarray(p,p+i)}let u=o==="string"?S.fromUint8ToStringArray(r):r,l=bt(n,o,u),c=bt(e,o);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+t[h]);c.set(l.get(...f),...m)}return o==="string"?S.fromStringArrayToUint8(c.values):c.values}function Mo(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n;tt(o,"slice");let[a,u]=ze.parseSliceParams(o,s,i);ze.assertParamsValid(o,a,u);let l=e.data.get(o.dataId).values,c=sp(l,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,c)}var aO={kernelName:Vi,backendName:"cpu",kernelFunc:Mo};function dw(r,t,e,n,o,s,i){let a=t[0],u=s[0],l=new Array(u),c=new Array(a),p=t[1];if(u===0){if(a!==0)throw new Error(S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(a));let g=y.getArrayFromDType(e,0),x=y.getArrayFromDType(o,0);return[g,[0,p],x,l,c]}let m=!0,f=0,d=new Array(u).fill(0);for(let g=0;g<a;++g){let x=r[g*p];if(x<0)throw new Error(S.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,x));if(x>=u)throw new Error(S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,x,u));++d[x],m=m&&x>=f,f=x}let h=!0;for(let g=0;g<u;++g){let x=d[g]===0;l[g]=x,h=h&&!x,d[g]=Math.max(d[g],1),g>0&&(d[g]+=d[g-1])}if(h&&m){let g=r,x=n;for(let b=0;b<a;++b)c[b]=b;return[g,[a,p],x,l,c]}else{let g=d[u-1],x=y.getArrayFromDType(e,g*p),b=y.getArrayFromDType(o,g),w=new Array(u).fill(0);for(let I=0;I<a;++I){let N=r[I*p],E=w[N],A=(N===0?0:d[N-1])+E;w[N]++;for(let D=0;D<p;++D)x[A*p+D]=r[I*p+D];b[A]=n[I],c[I]=A}for(let I=0;I<u;++I)if(w[I]===0){let E=I===0?0:d[I-1];x[E*p+0]=I;for(let A=1;A<p;++A)x[E*p+A]=0;b[E]=i}return[x,[g,p],b,l,c]}}function hw(r,t,e,n,o){let s=y.sizeFromShape(n),i=t[0],a=o.length,u=[],l=1,c=-1;for(let g=0;g<a;++g){let x=o[g];if(x===-1){if(c!==-1)throw new Error(S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(x<0)throw new Error(S.getSparseReshapeNegativeOutputDimErrorMessage(g,x));l*=x,u.push(x)}}if(c!==-1){if(l<=0)throw new Error(S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(s/l);if(l*g!==s)throw new Error(S.getSparseReshapeInputOutputMultipleErrorMessage(n,u));u[c]=g}if(y.sizeFromShape(u)!==s)throw new Error(S.getSparseReshapeInputOutputMismatchErrorMessage(n,u));let m=n.length,f=[];if(m>0){f[m-1]=1;for(let g=m-2;g>=0;--g)f[g]=f[g+1]*n[g+1]}let d=[];if(a>0){d[a-1]=1;for(let g=a-2;g>=0;--g)d[g]=d[g+1]*u[g+1]}let h=y.getArrayFromDType(e,i*a);for(let g=0;g<i;++g){let x=0;for(let b=0;b<m;++b)x+=r[g*m+b]*f[b];for(let b=0;b<a;++b)h[g*a+b]=Math.trunc(x/d[b]),x%=d[b]}return[h,[i,a],u]}function wd(r,t,e,n,o,s=!1,i=0){let a=n.length,u=[t[0],r.length/t[0]],l=u[1],p=a>0?o[a-1]+1:0;if(p<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=t.slice();m[0]=p;let f=m.reduce((w,I)=>w*I,1),d=y.getArrayFromDType(e,f);if(a===0)return p>0&&d.fill(i),[d,m];if(p<=0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let h=0,g=1,x=0,b=o[h];for(;;){let w=0;if(g<a){if(w=o[g],b===w){++g;continue}if(b>=w)throw new Error(S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>x&&d.fill(i,x*l,b*l);for(let I=h;I<g;++I){let N=n[I];if(N<0||N>=u[0])throw new Error(S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(I,n[I],u[0]));for(let E=0;E<l;E++)d[b*l+E]+=r[N*l+E]}if(s)for(let I=0;I<l;I++)d[b*l+I]/=g-h;if(h=g,++g,x=b+1,b=w,g>a)break}return x<p&&d.fill(i,x*l,p*l),[d,m]}var lO=_r(r=>Math.sqrt(r)),V9=At(Ys,r=>Math.sqrt(r)),uO={kernelName:Ys,backendName:"cpu",kernelFunc:V9};var nT=te((r,t)=>{let e=r-t;return e*e}),G9=ie(Qs,nT),cO={kernelName:Qs,backendName:"cpu",kernelFunc:G9};var oT=_r((r,t)=>{let{pattern:e,replaceGlobal:n,rewrite:o}=t;return r.replace(new RegExp(e,n?"g":""),o)}),W9=An(oc,oT),pO={kernelName:oc,backendName:"cpu",kernelFunc:W9};function gw(r,t,e,n){let o=bt(r,t.dtype);for(let s=0;s<o.size;s++){let i=o.indexToLoc(s),a=new Array(i.length);for(let u=0;u<a.length;u++)a[u]=i[u]*e[u]+n[u];o.set(t.get(...a),...i)}return o}var sT=class{constructor(t,e,n,o,s,i){this.separator=y.encodeString(t),this.nGramWidths=e,this.leftPad=y.encodeString(n),this.rightPad=y.encodeString(o),this.padWidth=s,this.preserveShort=i}getPadWidth(t){return Math.min(this.padWidth<0?t-1:this.padWidth,t-1)}getNumNGrams(t,e){let n=this.getPadWidth(e);return Math.max(0,t+2*n-e+1)}createNGrams(t,e,n,o,s,i){for(let a=0;a<s;++a){let u=this.getPadWidth(i),l=Math.max(0,u-a),c=Math.max(0,u-(s-(a+1))),p=i-(l+c),m=e+(l>0?0:a-u),f=0;f+=l*this.leftPad.length;for(let b=0;b<p;++b)f+=t[m+b].length;f+=c*this.rightPad.length;let d=l+c+p-1;f+=d*this.separator.length,n[o+a]=new Uint8Array(f);let h=n[o+a],g=0,x=b=>b.forEach(w=>h[g++]=w);for(let b=0;b<l;++b)x(this.leftPad),x(this.separator);for(let b=0;b<p-1;++b)x(t[m+b]),x(this.separator);if(p>0){x(t[m+p-1]);for(let b=0;b<c;++b)x(this.separator),x(this.rightPad)}else{for(let b=0;b<c-1;++b)x(this.rightPad),x(this.separator);x(this.rightPad)}}}compute(t,e){let n=t.length,o=e.length;if(o>0){let u=e[0];if(u!==0)throw new Error(`First split value must be 0, got ${u}`);for(let l=1;l<o;++l){let c=e[l]>=u;if(c=c&&e[l]<=n,!c)throw new Error(`Invalid split value ${e[l]}, must be in [${u}, ${n}]`);u=e[l]}if(u!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${u}`)}let s=o-1,i=y.getArrayFromDType("int32",o);if(n===0||o===0){let u=new Array(n);for(let l=0;l<=s;++l)i[l]=0;return[u,i]}i[0]=0;for(let u=1;u<=s;++u){let l=e[u]-e[u-1],c=0;this.nGramWidths.forEach(p=>{c+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&c===0&&(c=1),i[u]=i[u-1]+c}let a=new Array(i[s]);for(let u=0;u<s;++u){let l=e[u],c=i[u];if(this.nGramWidths.forEach(p=>{let m=e[u+1]-e[u],f=this.getNumNGrams(m,p);this.createNGrams(t,l,a,c,f,p),c+=f}),this.preserveShort&&c===i[u]){let p=e[u+1]-e[u];if(p===0)continue;let m=p+2*this.padWidth,f=1;this.createNGrams(t,l,a,c,f,m)}}return[a,i]}};function ip(r,t,e,n,o,s,i,a){return new sT(e,n,o,s,i,a).compute(r,t)}function U9(r,t,e,n){if(!r.length)return;if(t.length===0){for(let s=0;s<r.length;++s)n.push(r.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=r.indexOf(s);for(;i!==-1;){let a=r.subarray(0,i);(!e||a.length!==0)&&n.push(a),r=r.subarray(i+1),i=r.indexOf(s)}(!e||r.length!==0)&&n.push(r);return}let o=0;for(let s=0;s<r.length+1;s++)if(s===r.length||t.indexOf(r[s])!==-1){let i=r.subarray(o,s);(!e||i.length!==0)&&n.push(i),o=s+1}}function ap(r,t,e){let n=r.length,o=[],s=0,i=0,a=new Array(n);for(let m=0;m<n;++m){let f=o.length;U9(r[m],t,e,o);let d=o.length-f;a[m]=d,s+=d,i=Math.max(i,d)}let u=y.getArrayFromDType("int32",s*2),l=new Array(s),c=[n,i],p=0;for(let m=0;m<n;++m)for(let f=0;f<a[m];++f)u[p*2]=m,u[p*2+1]=f,l[p]=o[p],++p;return[u,l,c]}function lp(r,t){let e=y.getArrayFromDType("int32",r.length);for(let n=0;n<r.length;++n)e[n]=y.fingerPrint64(r[n]).modulo(t).getLowBitsUnsigned();return e}var iT=te((r,t)=>r-t),H9=gd((r,t,e,n)=>({real:r-e,imag:t-n})),Xh=ie(ti,iT,H9),mO={kernelName:ti,backendName:"cpu",kernelFunc:Xh};function xw(r,t){let e=new Array(r.rank);for(let o=0;o<e.length;o++)e[o]=r.shape[o]*t[o];let n=bt(e,r.dtype);for(let o=0;o<n.values.length;++o){let s=n.indexToLoc(o),i=new Array(r.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%r.shape[u];let a=r.locToIndex(i);n.values[o]=r.values[a]}return n}var Yh=(r,t)=>{let e=t.value-r.value;return e===0?r.index-t.index:e};function fO(r,t,e=0,n=r.length-1){for(;n>e;){if(n-e>600){let a=n-e+1,u=t-e+1,l=Math.log(a),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(a-c)/a)*Math.sign(u-a/2),m=Math.max(e,Math.floor(t-u*c/a+p)),f=Math.min(n,Math.floor(t+(a-u)*c/a+p));fO(r,t,m,f)}let o=r[t],s=e,i=n;for(y.swap(r,e,t),Yh(r[n],o)>0&&y.swap(r,e,n);s<i;){for(y.swap(r,s,i),s++,i--;Yh(r[s],o)<0;)s=s+1;for(;Yh(r[i],o)>0;)i=i-1}Yh(r[e],o)===0?y.swap(r,e,i):(i=i+1,y.swap(r,i,n)),i<=t&&(e=i+1),t<=i&&(n=i-1)}}function yw(r,t,e,n,o){let s=t[t.length-1],[i,a]=[r.length/s,s],u=y.getTypedArrayFromDType(e,i*n),l=y.getTypedArrayFromDType("int32",i*n);for(let p=0;p<i;p++){let m=p*a,f=r.subarray(m,m+a),d=new Array(f.length);f.forEach((b,w)=>d[w]={value:b,index:w}),n<d.length&&(fO(d,n),d=d.slice(0,n)),o&&d.sort(Yh);let h=p*n,g=u.subarray(h,h+n),x=l.subarray(h,h+n);for(let b=0;b<n;b++)g[b]=d[b].value,x[b]=d[b].index}let c=t.slice();return c[c.length-1]=n,[bt(c,e,u),bt(c,"int32",l)]}function up(r,t,e,n){let o=y.parseAxisParam(t,e)[0],s=[1,e[0],1];for(let d=0;d<o;d++)s[0]*=e[d];s[1]=e[o];for(let d=o+1;d<e.length;d++)s[2]*=e[d];let i=new Map,a=new Int32Array(e[o]),u=new le(s,n,r),l=[],c=s[0]===1&&s[2]===1;for(let d=0;d<e[o];d++){let h;if(c)h=r[d].toString();else{let x=[];for(let b=0;b<s[0];b++)for(let w=0;w<s[2];w++)x.push(u.get(b,d,w));h=x.join(",")}let g=i.get(h);if(g!=null)a[d]=g;else{let x=i.size;i.set(h,x),a[d]=x,l.push(d)}}let p=s.slice();p[1]=i.size;let m=new le(p,n);l.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(u.get(g,d,x),g,h,x)});let f=e.slice();return f[o]=p[1],{outputValues:m.values,outputShape:f,indices:a}}var dO="4.3.0";sm("cpu",()=>new Wu,1);var aT=At(cs,r=>r>=0?r:Math.exp(r)-1),hO={kernelName:cs,backendName:"cpu",kernelFunc:aT};function lT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n;tt([o],"leakyRelu");let i=y.sizeFromShape(o.shape),a=e.data.get(o.dataId).values,u=y.getTypedArrayFromDType("float32",i);for(let l=0;l<a.length;l++)u[l]=a[l]<0?s*a[l]:a[l];return e.makeTensorInfo(o.shape,"float32",u)}var gO={kernelName:ws,backendName:"cpu",kernelFunc:lT};var q9=te((r,t)=>r<0?t*r:r);function uT(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t;tt([n,o],"prelu");let s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,[a,u]=q9(n.shape,o.shape,s,i,"float32");return e.makeTensorInfo(u,"float32",a)}var xO={kernelName:Os,backendName:"cpu",kernelFunc:uT};var cT=At(Ls,r=>Math.max(0,r)),yO={kernelName:Ls,backendName:"cpu",kernelFunc:cT};var pT=At(Vs,r=>Math.min(Math.max(0,r),6)),bO={kernelName:Vs,backendName:"cpu",kernelFunc:pT};function cp(r,t,e,n,o){if(e==="linear")return Yr({inputs:{x:t},backend:r});if(e==="relu")return cT({inputs:{x:t},backend:r});if(e==="elu")return aT({inputs:{x:t},backend:r});if(e==="relu6")return pT({inputs:{x:t},backend:r});if(e==="prelu")return uT({inputs:{x:t,alpha:n},backend:r});if(e==="leakyrelu")return lT({inputs:{x:t},backend:r,attrs:{alpha:o}});if(e==="sigmoid")return rT({inputs:{x:t},backend:r});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Jt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(a);y.assert(i===u,()=>`The new shape (${a}) has ${u} elements and the old shape (${o.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let l=e.data.get(o.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=a,p.shape=a}return{dataId:o.dataId,shape:a,dtype:o.dtype}}var wO={kernelName:zi,backendName:"cpu",kernelFunc:Jt};function mT(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;tt([o,s],"matMul");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=Jt({inputs:{x:o},backend:e,attrs:{shape:I}}),A=Jt({inputs:{x:s},backend:e,attrs:{shape:N}}),D=i?E.shape[1]:E.shape[2],F=i?E.shape[2]:E.shape[1],P=a?A.shape[1]:A.shape[2],V=Math.max(g,x),G=e.data.get(E.dataId).values,W=e.data.get(A.dataId).values,q=y.computeStrides(E.shape),H=y.computeStrides(A.shape),[K,X,Z]=i?[q[0],1,q[1]]:[q[0],q[1],1],[et,nt,st]=a?[1,H[1],H[0]]:[H[1],1,H[0]],at=F*P,ot=bt([V,F,P],E.dtype),it=ot.values,mt=e.blockSize;for(let gt=0;gt<V;gt++){let It=gt%g,Rt=gt%x;for(let Dt=0;Dt<F;Dt+=mt){let Ht=Math.min(Dt+mt,F);for(let qt=0;qt<P;qt+=mt){let ce=Math.min(qt+mt,P);for(let ge=0;ge<D;ge+=mt){let ee=Math.min(ge+mt,D);for(let xe=Dt;xe<Ht;xe++)for(let fe=qt;fe<ce;fe++){let Ae=0;for(let De=ge;De<ee;De++){let Fn=G[It*K+xe*X+De*Z],ar=W[De*et+fe*nt+Rt*st];Ae+=Fn*ar}it[gt*at+(xe*P+fe)]+=Ae}}}}}return e.disposeIntermediateTensorInfo(E),e.disposeIntermediateTensorInfo(A),e.makeTensorInfo(w,ot.dtype,ot.values)}var IO={kernelName:Qo,backendName:"cpu",kernelFunc:mT};function K9(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m,f,d,h=[];m=mT({inputs:{a:o,b:s},attrs:{transposeA:u,transposeB:l},backend:e}),i&&(f=ya({inputs:{a:m,b:i},backend:e}),h.push(m),m=f),c&&(d=cp(e,m,c,a,p),h.push(m),m=d);for(let x of h)e.disposeIntermediateTensorInfo(x);return m}var CO={kernelName:qi,backendName:"cpu",kernelFunc:K9};var j9=At(Uo,r=>Math.acos(r)),vO={kernelName:Uo,backendName:"cpu",kernelFunc:j9};var X9=At(Ho,r=>Math.acosh(r)),SO={kernelName:Ho,backendName:"cpu",kernelFunc:X9};function Y9(r){let{inputs:t,backend:e}=r,n=t;tt(t,"addN");let o=n.map(a=>e.data.get(a.dataId).values),s=bt(n[0].shape,n[0].dtype),i=s.values;for(let a=0;a<n.length;a++){let u=o[a];for(let l=0;l<i.length;l++)i[l]+=u[l]}return e.makeTensorInfo(s.shape,s.dtype,s.values)}var NO={kernelName:qo,backendName:"cpu",kernelFunc:Y9};function Z9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"all");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];w=w&&N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var kO={kernelName:Ea,backendName:"cpu",kernelFunc:Z9};function J9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"any");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];w=w||N}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var TO={kernelName:Aa,backendName:"cpu",kernelFunc:J9};function Q9(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMax");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ge({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let I=0;I<d;++I){let N=h[x+I];N>b&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var _O={kernelName:_i,backendName:"cpu",kernelFunc:Q9};function ttt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n;tt(o,"argMin");let i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Ge({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],S.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=S.computeOutAndReduceShapes(u.shape,i),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=e.data.get(u.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let I=0;I<d;++I){let N=h[x+I];N<b&&(b=N,w=I)}f[g]=w}return l.forEach(g=>e.disposeIntermediateTensorInfo(g)),e.makeTensorInfo(c,"int32",f)}var EO={kernelName:Ei,backendName:"cpu",kernelFunc:ttt};var ett=At(Ko,r=>Math.asin(r)),AO={kernelName:Ko,backendName:"cpu",kernelFunc:ett};var rtt=At(jo,r=>Math.asinh(r)),DO={kernelName:jo,backendName:"cpu",kernelFunc:rtt};var ntt=At(Xo,r=>Math.atan(r)),$O={kernelName:Xo,backendName:"cpu",kernelFunc:ntt};var ott=te((r,t)=>Math.atan2(r,t)),stt=ie(Zo,ott),RO={kernelName:Zo,backendName:"cpu",kernelFunc:stt};var itt=At(Yo,r=>Math.atanh(r)),FO={kernelName:Yo,backendName:"cpu",kernelFunc:itt};function Id(r,t,e,n,o,s){let i=o.strideHeight,a=o.strideWidth,u=o.dilationHeight,l=o.dilationWidth,c=o.effectiveFilterHeight,p=o.effectiveFilterWidth,m=o.padInfo.top,f=o.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=bt(o.outShape,e),g=h.values,x=o.outShape[1]*o.outShape[2]*o.outShape[3],b=o.outShape[2]*o.outShape[3],w=o.outShape[3];for(let I=0;I<o.batchSize;++I){let N=I*x,E=I*n[0];for(let A=0;A<o.inChannels;++A)for(let D=0;D<o.outHeight;++D){let F=D*i-m,P=Math.max(0,F),V=Math.min(o.inHeight,c+F),G=N+D*b;for(let W=0;W<o.outWidth;++W){let q=W*a-f,H=Math.max(0,q),K=Math.min(o.inWidth,p+q),X=d,Z=0,et=0;for(let st=P;st<V;st+=u){let at=E+st*n[1];for(let ot=H;ot<K;ot+=l){let it=at+ot*n[2],mt=r[it+A];s==="max"&&mt>X?X=mt:s==="avg"&&(Z+=mt,et++)}if(isNaN(X))break}let nt=G+W*w+A;g[nt]=s==="avg"?Z/et:X}}}return h}function ww(r,t,e,n,o=!1,s=!1){let i=bt(n.outShape,"int32"),a=n.strideHeight,u=n.strideWidth,l=n.dilationHeight,c=n.dilationWidth,p=n.effectiveFilterHeight,m=n.effectiveFilterWidth,f=n.padInfo.top,d=n.padInfo.left,h=bt(t,e,r);for(let g=0;g<n.batchSize;++g)for(let x=0;x<n.inChannels;++x)for(let b=0;b<n.outHeight;++b){let w=b*a-f,I=w;for(;I<0;)I+=l;let N=Math.min(n.inHeight,p+w);for(let E=0;E<n.outWidth;++E){let A=E*u-d,D=A;for(;D<0;)D+=c;let F=Math.min(n.inWidth,m+A),P=Number.NEGATIVE_INFINITY,V=-1;for(let G=I;G<N;G+=l){let W=G-w;for(let q=D;q<F;q+=c){let H=q-A,K=h.get(g,G,q,x);K>P&&(P=K,o?V=s?((g*n.inHeight+G)*n.inWidth+q)*n.inChannels+x:(G*n.inWidth+q)*n.inChannels+x:V=W*m+H)}}i.set(V,g,b,E,x)}}return i}function Iw(r,t,e,n,o,s){let i=o.strideDepth,a=o.strideHeight,u=o.strideWidth,l=o.dilationDepth,c=o.dilationHeight,p=o.dilationWidth,m=o.effectiveFilterDepth,f=o.effectiveFilterHeight,d=o.effectiveFilterWidth,h=o.padInfo.front,g=o.padInfo.top,x=o.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=bt(o.outShape,e),I=w.values,N=o.outShape[1]*o.outShape[2]*o.outShape[3]*o.outShape[4],E=o.outShape[2]*o.outShape[3]*o.outShape[4],A=o.outShape[3]*o.outShape[4],D=o.outShape[4];for(let F=0;F<o.batchSize;++F){let P=F*N,V=F*n[0];for(let G=0;G<o.inChannels;++G)for(let W=0;W<o.outDepth;++W){let q=W*i-h,H=q;for(;H<0;)H+=l;let K=Math.min(o.inDepth,m+q),X=P+W*E;for(let Z=0;Z<o.outHeight;++Z){let et=Z*a-g,nt=et;for(;nt<0;)nt+=c;let st=Math.min(o.inHeight,f+et),at=X+Z*A;for(let ot=0;ot<o.outWidth;++ot){let it=ot*u-x,mt=it;for(;mt<0;)mt+=p;let gt=Math.min(o.inWidth,d+it),It=at+ot*D,Rt=b,Dt=0,Ht=0;for(let ce=H;ce<K;ce+=l){let ge=V+ce*n[1];for(let ee=nt;ee<st;ee+=c){let xe=ge+ee*n[2];for(let fe=mt;fe<gt;fe+=p){let Ae=xe+fe*n[3],De=r[Ae+G];if(s==="max"&&De>Rt?Rt=De:s==="avg"&&(Dt+=De,Ht++),isNaN(Rt))break}if(isNaN(Rt))break}if(isNaN(Rt))break}let qt=It+G;I[qt]=s==="avg"?Dt/Math.max(Ht,1):Rt}}}}return w}function OO(r,t){let e=bt(t.outShape,"int32"),n=t.strideDepth,o=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,a=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,m=t.padInfo.front,f=t.padInfo.top,d=t.padInfo.left;for(let h=0;h<t.batchSize;++h)for(let g=0;g<t.inChannels;++g)for(let x=0;x<t.outDepth;++x){let b=x*n-m,w=b;for(;w<0;)w+=i;let I=Math.min(t.inDepth,l+b);for(let N=0;N<t.outHeight;++N){let E=N*o-f,A=E;for(;A<0;)A+=a;let D=Math.min(t.inHeight,c+E);for(let F=0;F<t.outWidth;++F){let P=F*s-d,V=P;for(;V<0;)V+=u;let G=Math.min(t.inWidth,p+P),W=Number.NEGATIVE_INFINITY,q=-1;for(let H=w;H<I;H+=i){let K=H-b;for(let X=A;X<D;X+=a){let Z=X-E;for(let et=V;et<G;et+=u){let nt=et-P,st=r.get(h,H,X,et,g);st>=W&&(W=st,q=K*c*p+Z*c+nt)}}}e.set(q,h,x,N,F,g)}}}return e}function att(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Yr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=Id(m,o.shape,o.dtype,f,c,"avg");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var PO={kernelName:Jo,backendName:"cpu",kernelFunc:att};function ltt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"avgPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Iw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"avg");return e.makeTensorInfo(m.shape,"float32",m.values)}var MO={kernelName:Ai,backendName:"cpu",kernelFunc:ltt};function utt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"avgPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,I=c.effectiveFilterDepth,N=c.effectiveFilterHeight,E=c.effectiveFilterWidth,A=I-1-c.padInfo.front,D=E-1-c.padInfo.left,F=N-1-c.padInfo.top,P=bt(s.shape,"float32"),V=1/(d*h*g),G=e.bufferSync(o);for(let W=0;W<c.batchSize;++W)for(let q=0;q<c.inChannels;++q)for(let H=0;H<c.inDepth;++H)for(let K=0;K<c.inHeight;++K)for(let X=0;X<c.inWidth;++X){let Z=H-A,et=K-F,nt=X-D,st=0;for(let at=0;at<I;at+=x){let ot=(Z+at)/p;if(!(ot<0||ot>=c.outDepth||Math.floor(ot)!==ot))for(let it=0;it<N;it+=b){let mt=(et+it)/m;if(!(mt<0||mt>=c.outHeight||Math.floor(mt)!==mt))for(let gt=0;gt<E;gt+=w){let It=(nt+gt)/f;if(It<0||It>=c.outWidth||Math.floor(It)!==It)continue;let Rt=G.get(W,ot,mt,It,q);st+=Rt}}}P.set(st*V,W,H,K,X,q)}return e.makeTensorInfo(P.shape,P.dtype,P.values)}var LO={kernelName:Xl,backendName:"cpu",kernelFunc:utt};function ctt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;tt([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,I=x-1-c.padInfo.top,N=bt(i.shape,"float32"),E=1/(f*d),A=e.data.get(o.dataId).values,D=bt(o.shape,"float32",A);for(let F=0;F<c.batchSize;++F)for(let P=0;P<c.inChannels;++P)for(let V=0;V<c.inHeight;++V)for(let G=0;G<c.inWidth;++G){let W=V-I,q=G-w,H=0;for(let K=0;K<x;K+=h){let X=(W+K)/p;if(!(X<0||X>=c.outHeight||Math.floor(X)!==X))for(let Z=0;Z<b;Z+=g){let et=(q+Z)/m;if(et<0||et>=c.outWidth||Math.floor(et)!==et)continue;let nt=D.get(F,X,et,P);H+=nt}}N.set(H*E,F,V,G,P)}return e.makeTensorInfo(N.shape,N.dtype,N.values)}var zO={kernelName:Fp,backendName:"cpu",kernelFunc:ctt};function ptt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,scale:s,offset:i,mean:a,variance:u}=t;y.assert(a.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),tt([o,a,u,s,i],"batchNorm");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=e.data.get(o.dataId).values,p=e.data.get(a.dataId).values,m=e.data.get(u.dataId).values,f=s?e.data.get(s.dataId).values:new Float32Array([1]),d=i?e.data.get(i.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,I=0,N=0,E=0,A=0;for(let D=0;D<c.length;++D)h[D]=d[I++]+(c[D]-p[N++])*f[E++]/Math.sqrt(m[A++]+l),I>=g&&(I=0),N>=w&&(N=0),E>=x&&(E=0),A>=b&&(A=0);return e.makeTensorInfo(o.shape,o.dtype,h)}var BO={kernelName:hs,backendName:"cpu",kernelFunc:ptt};function mtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;tt([o],"batchToSpaceND");let a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=Jt({inputs:{x:o},backend:e,attrs:{shape:u}}),d=Ge({inputs:{x:f},backend:e,attrs:{perm:l}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Mo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var VO={kernelName:Di,backendName:"cpu",kernelFunc:mtt};function ftt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=xd(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var GO={kernelName:Da,backendName:"cpu",kernelFunc:ftt};function dtt(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.data.get(n.dataId).values,i=e.data.get(o.dataId).values,a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var WO={kernelName:Yl,backendName:"cpu",kernelFunc:dtt};var htt=At(ho,(r,t)=>{let e=t;return r>e.clipValueMax?e.clipValueMax:r<e.clipValueMin?e.clipValueMin:r}),UO={kernelName:ho,backendName:"cpu",kernelFunc:htt};var gtt=r=>{let{x:t}=r.inputs,e=r.backend,n=new Float32Array(y.sizeFromShape(t.shape)),o=e.data.get(t.dataId),s=o.complexTensorInfos.real,i=o.complexTensorInfos.imag,a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values;for(let l=0;l<a.length;l++){let c=a[l],p=u[l];n[l]=Math.hypot(c,p)}return e.makeOutput(n,t.shape,"float32")},HO={kernelName:Zl,backendName:"cpu",kernelFunc:gtt};function ba(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.data.get(n.dataId).complexTensorInfos.imag,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}var qO={kernelName:Gp,backendName:"cpu",kernelFunc:ba};function Uu(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(h=>h.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(h=>y.sizeFromShape(h.shape)>0);if(u.length===1)return Yr({inputs:{x:u[0]},backend:e});if(u[0].dtype==="complex64"){let h=u.map(I=>Fo({inputs:{input:I},backend:e})),g=u.map(I=>ba({inputs:{input:I},backend:e})),x=Uu({inputs:h,backend:e,attrs:{axis:s}}),b=Uu({inputs:g,backend:e,attrs:{axis:s}}),w=Cr({inputs:{real:x,imag:b},backend:e});return h.forEach(I=>e.disposeIntermediateTensorInfo(I)),g.forEach(I=>e.disposeIntermediateTensorInfo(I)),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),w}let l=u.map(h=>{let x=[-1,y.sizeFromShape(h.shape.slice(s))];return Jt({inputs:{x:h},backend:e,attrs:{shape:x}})}),c=l.map(h=>({vals:e.data.get(h.dataId).values,shape:h.shape}));a=S.computeOutShape(l.map(h=>h.shape),1);let p=l[0].shape[0]===1,m=rp(c,a,t[0].dtype,p),f=S.computeOutShape(u.map(h=>h.shape),s),d=e.makeTensorInfo(f,t[0].dtype,m);return l.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var KO={kernelName:$i,backendName:"cpu",kernelFunc:Uu};function fT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n;tt([o,s],"conv2d");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",I=new le(m.outShape,o.dtype),N=y.computeStrides(o.shape),E=y.computeStrides(s.shape),A=N[0],D=w?N[1]:N[2],F=w?N[2]:1,P=w?1:N[1],V=I.strides[0],G=w?I.strides[1]:I.strides[2],W=w?I.strides[2]:1,q=w?1:I.strides[1],H=e.data.get(o.dataId).values,K=e.data.get(s.dataId).values,X=I.values;for(let Z=0;Z<m.batchSize;++Z){let et=Z*A,nt=Z*V;for(let st=0;st<m.outHeight;++st){let at=nt+st*G,ot=st*m.strideHeight-b;for(let it=0;it<f;++it){let mt=ot+it*h;if(mt<0||mt>=m.inHeight)continue;let gt=it*E[0],It=et+mt*D;for(let Rt=0;Rt<m.outWidth;++Rt){let Dt=at+Rt*W,Ht=Rt*m.strideWidth-x;for(let qt=0;qt<d;++qt){let ce=Ht+qt*g;if(ce<0||ce>=m.inWidth)continue;let ge=gt+qt*E[1],ee=It+ce*F,xe=ge;for(let fe=0;fe<m.inChannels;++fe){let Ae=H[ee+fe*P];for(let De=0;De<m.outChannels;++De)X[Dt+De*q]+=Ae*K[xe+De];xe+=m.outChannels}}}}}}return e.makeTensorInfo(I.shape,I.dtype,X)}var jO={kernelName:es,backendName:"cpu",kernelFunc:fT};function xtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"conv2dBackpropFilter");let p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new le(m.filterShape,"float32"),w=m.padInfo.left,I=m.padInfo.top,N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,A=new le(o.shape,o.dtype,N),D=new le(s.shape,s.dtype,E);for(let F=0;F<h;++F){let P=Math.max(0,Math.ceil((I-F)/f)),V=Math.min(m.outHeight,(m.inHeight+I-F)/f);for(let G=0;G<g;++G){let W=Math.max(0,Math.ceil((w-G)/d)),q=Math.min(m.outWidth,(m.inWidth+w-G)/d);for(let H=0;H<m.inChannels;++H)for(let K=0;K<m.outChannels;++K){let X=0;for(let Z=0;Z<m.batchSize;++Z)for(let et=P;et<V;++et){let nt=F+et*f-I;for(let st=W;st<q;++st){let at=G+st*d-w;x?X+=A.get(Z,nt,at,H)*D.get(Z,et,st,K):X+=A.get(Z,H,nt,at)*D.get(Z,K,et,st)}}b.set(X,F,G,H,K)}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var XO={kernelName:Pp,backendName:"cpu",kernelFunc:xtt};function ytt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n;tt([o,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(o.shape),f=S.convertConv2DDataFormat(l),d=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,f),h=new le(d.inShape,"float32"),g=h.values,x=e.data.get(o.dataId).values,b=e.data.get(s.dataId).values,[w,I,N]=p,{batchSize:E,filterHeight:A,filterWidth:D,inChannels:F,inHeight:P,inWidth:V,outChannels:G,outHeight:W,outWidth:q,strideHeight:H,strideWidth:K}=d;f=d.dataFormat;let X=A-1-d.padInfo.top,Z=D-1-d.padInfo.left,et=f==="channelsLast",nt=h.strides[0],st=et?h.strides[1]:h.strides[2],at=et?h.strides[2]:1,ot=et?1:h.strides[1],it=m[0],mt=et?m[1]:m[2],gt=et?m[2]:1,It=et?1:m[1];for(let Rt=0;Rt<E;++Rt)for(let Dt=0;Dt<F;++Dt)for(let Ht=0;Ht<P;++Ht){let qt=Ht-X,ce=Math.max(0,Math.ceil(qt/H)),ge=Math.min(W,(A+qt)/H);for(let ee=0;ee<V;++ee){let xe=ee-Z,fe=Math.max(0,Math.ceil(xe/K)),Ae=Math.min(q,(D+xe)/K),De=0;for(let ar=ce;ar<ge;++ar){let Yn=ar*H-qt;for(let Br=fe;Br<Ae;++Br){let je=Br*K-xe,Vr=it*Rt+mt*ar+gt*Br,Gr=w*(A-1-Yn)+I*(D-1-je)+N*Dt;for(let Zn=0;Zn<G;++Zn){let Jn=x[Vr+It*Zn],Jr=b[Gr+Zn];De+=Jn*Jr}}}let Fn=nt*Rt+st*Ht+at*ee+ot*Dt;g[Fn]=De}}return e.makeTensorInfo(h.shape,h.dtype,h.values)}var YO={kernelName:rs,backendName:"cpu",kernelFunc:ytt};function btt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;tt([o,s],"conv3d");let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=l,x=g.front,b=g.left,w=g.top,I=new le(l.outShape,o.dtype),N=e.data.get(o.dataId).values,E=e.data.get(s.dataId).values,A=I.values,D=y.computeStrides(o.shape),F=y.computeStrides(s.shape);for(let P=0;P<l.batchSize;++P){let V=P*D[0],G=P*I.strides[0];for(let W=0;W<l.outDepth;++W){let q=G+W*I.strides[1],H=W*l.strideDepth-x;for(let K=0;K<c;++K){let X=H+K*f;if(X<0||X>=l.inDepth)continue;let Z=K*F[0],et=V+X*D[1];for(let nt=0;nt<l.outHeight;++nt){let st=q+nt*I.strides[2],at=nt*l.strideHeight-w;for(let ot=0;ot<p;++ot){let it=at+ot*d;if(it<0||it>=l.inHeight)continue;let mt=Z+ot*F[1],gt=et+it*D[2];for(let It=0;It<l.outWidth;++It){let Rt=st+It*l.outChannels,Dt=It*l.strideWidth-b;for(let Ht=0;Ht<m;++Ht){let qt=Dt+Ht*h;if(qt<0||qt>=l.inWidth)continue;let ce=mt+Ht*F[2],ge=gt+qt*l.inChannels,ee=ce;for(let xe=0;xe<l.inChannels;++xe){let fe=N[ge+xe];for(let Ae=0;Ae<l.outChannels;++Ae)A[Rt+Ae]+=fe*E[ee+Ae];ee+=l.outChannels}}}}}}}}return e.makeTensorInfo(I.shape,I.dtype,I.values)}var ZO={kernelName:ns,backendName:"cpu",kernelFunc:btt};function wtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;tt([o,s],"conv3dBackpropFilterV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(o.shape,u,i,1,a),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new le(p.filterShape,"float32"),w=b.values,[I,N,E,A]=b.strides,D=e.data.get(s.dataId).values,[F,P,V,G]=c,W=e.data.get(o.dataId).values,[q,H,K,X]=l,Z=p.padInfo.front,et=p.padInfo.left,nt=p.padInfo.top;for(let st=0;st<h;++st){let at=Math.max(0,Math.ceil((Z-st)/m)),ot=Math.min(p.outDepth,(p.inDepth+Z-st)/m),it=st*I;for(let mt=0;mt<g;++mt){let gt=Math.max(0,Math.ceil((nt-mt)/f)),It=Math.min(p.outHeight,(p.inHeight+nt-mt)/f),Rt=mt*N+it;for(let Dt=0;Dt<x;++Dt){let Ht=Math.max(0,Math.ceil((et-Dt)/d)),qt=Math.min(p.outWidth,(p.inWidth+et-Dt)/d),ce=Dt*E+Rt;for(let ge=0;ge<p.inChannels;++ge){let ee=ge*A+ce;for(let xe=0;xe<p.outChannels;++xe){let fe=0;for(let Ae=0;Ae<p.batchSize;++Ae){let De=Ae*q,Fn=Ae*F;for(let ar=at;ar<ot;++ar){let Br=(st+ar*m-Z)*H+De,je=ar*P+Fn;for(let Vr=gt;Vr<It;++Vr){let Zn=(mt+Vr*f-nt)*K+Br,Jn=Vr*V+je;for(let Jr=Ht;Jr<qt;++Jr){let Vo=(Dt+Jr*d-et)*X+Zn,Si=Jr*G+Jn;fe+=W[Vo+ge]*D[Si+xe]}}}}w[ee+xe]=fe}}}}}return e.makeTensorInfo(b.shape,b.dtype,b.values)}var JO={kernelName:$a,backendName:"cpu",kernelFunc:wtt};function Itt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;tt([o],"conv3dBackpropInputV2");let l=y.computeStrides(o.shape),c=y.computeStrides(s.shape),p=S.computeConv3DInfo(u,s.shape,a,1,i),m=new le(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=e.data.get(o.dataId).values,[w,I,N,E]=l,A=e.data.get(s.dataId).values,[D,F,P,V]=c,{batchSize:G,filterDepth:W,filterHeight:q,filterWidth:H,inChannels:K,inDepth:X,inHeight:Z,inWidth:et,outChannels:nt,outDepth:st,outHeight:at,outWidth:ot,strideDepth:it,strideHeight:mt,strideWidth:gt}=p,It=W-1-p.padInfo.front,Rt=q-1-p.padInfo.top,Dt=H-1-p.padInfo.left;for(let Ht=0;Ht<G;++Ht)for(let qt=0;qt<K;++qt)for(let ce=0;ce<X;++ce){let ge=ce-It,ee=Math.max(0,Math.ceil(ge/it)),xe=Math.min(st,(W+ge)/it);for(let fe=0;fe<Z;++fe){let Ae=fe-Rt,De=Math.max(0,Math.ceil(Ae/mt)),Fn=Math.min(at,(q+Ae)/mt);for(let ar=0;ar<et;++ar){let Yn=ar-Dt,Br=Math.max(0,Math.ceil(Yn/gt)),je=Math.min(ot,(H+Yn)/gt),Vr=0;for(let Gr=ee;Gr<xe;++Gr){let Zn=Gr*it-ge;for(let Jn=De;Jn<Fn;++Jn){let Jr=Jn*mt-Ae;for(let Ca=Br;Ca<je;++Ca){let Vo=Ca*gt-Yn,Si=w*Ht+I*Gr+N*Jn+E*Ca,Er=D*(W-1-Zn)+F*(q-1-Jr)+P*(H-1-Vo)+V*qt;for(let va=0;va<nt;++va){let Ud=b[Si+va],Hd=A[Er+va];Vr+=Ud*Hd}}}}f[d*Ht+h*ce+g*fe+x*ar+qt]=Vr}}}return e.makeTensorInfo(m.shape,m.dtype,m.values)}var QO={kernelName:Ra,backendName:"cpu",kernelFunc:Itt};var Ctt=At(os,r=>Math.cos(r)),tP={kernelName:os,backendName:"cpu",kernelFunc:Ctt};var vtt=At(ss,r=>Math.cosh(r)),eP={kernelName:ss,backendName:"cpu",kernelFunc:vtt};function Stt(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,[c,p,m,f]=o.shape,d=s.shape[0],[h,g]=a,x=bt([d,h,g,f],"float32"),b=e.data.get(s.dataId).values,w=e.data.get(i.dataId).values,I=e.data.get(o.dataId).values,N=y.computeStrides(o.shape),E=y.computeStrides(x.shape);for(let A=0;A<d;A++){let D=A*4,F=b[D],P=b[D+1],V=b[D+2],G=b[D+3],W=w[A];if(W>=c)continue;let q=h>1?(V-F)*(p-1)/(h-1):0,H=g>1?(G-P)*(m-1)/(g-1):0;for(let K=0;K<h;K++){let X=h>1?F*(p-1)+K*q:.5*(F+V)*(p-1);if(X<0||X>p-1){for(let Z=0;Z<g;Z++)for(let et=0;et<f;et++){let nt=et+Z*E[2]+K*E[1]+A*E[0];x.values[nt]=l}continue}if(u==="bilinear"){let Z=Math.floor(X),et=Math.ceil(X),nt=X-Z;for(let st=0;st<g;st++){let at=g>1?P*(m-1)+st*H:.5*(P+G)*(m-1);if(at<0||at>m-1){for(let gt=0;gt<f;gt++){let It=gt+st*E[2]+K*E[1]+A*E[0];x.values[It]=l}continue}let ot=Math.floor(at),it=Math.ceil(at),mt=at-ot;for(let gt=0;gt<f;gt++){let It=gt+ot*N[2]+Z*N[1]+W*N[0],Rt=I[It];It=gt+it*N[2]+Z*N[1]+W*N[0];let Dt=I[It];It=gt+ot*N[2]+et*N[1]+W*N[0];let Ht=I[It];It=gt+it*N[2]+et*N[1]+W*N[0];let qt=I[It],ce=Rt+(Dt-Rt)*mt,ge=Ht+(qt-Ht)*mt;It=gt+st*E[2]+K*E[1]+A*E[0],x.values[It]=ce+(ge-ce)*nt}}}else for(let Z=0;Z<g;++Z){let et=g>1?P*(m-1)+Z*H:.5*(P+G)*(m-1);if(et<0||et>m-1){for(let at=0;at<f;at++){let ot=at+Z*E[2]+K*E[1]+A*E[0];x.values[ot]=l}continue}let nt=Math.round(et),st=Math.round(X);for(let at=0;at<f;at++){let ot=at+nt*N[2]+st*N[1]+W*N[0],it=at+Z*E[2]+K*E[1]+A*E[0];x.values[it]=I[ot]}}}}return e.makeTensorInfo(x.shape,x.dtype,x.values)}var rP={kernelName:Oa,backendName:"cpu",kernelFunc:Stt};function Ntt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumprod");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ge({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=lr(l.dtype,"int32"),m=y.makeOnesTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?1:f[w];else{let I=h(x,b-1);m[w]=i?f[I]*m[I]:f[w]*m[I]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=S.getUndoAxesPermutation(u),b=Ge({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var nP={kernelName:Fa,backendName:"cpu",kernelFunc:Ntt};function ktt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;tt(o,"cumsum");let u=S.getAxesPermutation([s],o.shape.length),l=o;u!=null&&(l=Ge({inputs:{x:o},backend:e,attrs:{perm:u}}));let c=S.getInnerMostAxes(1,o.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=lr(l.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(l.shape),p),f=e.data.get(l.dataId).values,d=l.shape[l.shape.length-1],h=a?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=i?0:f[w];else{let I=h(x,b-1);m[w]=i?f[I]+m[I]:f[w]+m[I]}}let g=e.makeTensorInfo(l.shape,p,m);if(u!=null){let x=S.getUndoAxesPermutation(u),b=Ge({inputs:{x:g},backend:e,attrs:{perm:x}});return e.disposeIntermediateTensorInfo(g),e.disposeIntermediateTensorInfo(l),b}return g}var oP={kernelName:is,backendName:"cpu",kernelFunc:ktt};function Ttt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=xd(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=iw(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var sP={kernelName:Jl,backendName:"cpu",kernelFunc:Ttt};function _tt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n;y.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let a=o.shape[0],u=o.shape[1],l=o.shape[2],c=o.shape[3],p=u*s,m=l*s,f=c/(s*s),d=e.data.get(o.dataId).values,h=new Float32Array(a*p*m*f),g=0;for(let x=0;x<a;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),I=b%s;for(let N=0;N<m;++N){let E=Math.floor(N/s),A=N%s,D=(I*s+A)*f;for(let F=0;F<f;++F){let V=F+D+c*(E+l*(w+u*x));h[g++]=d[V]}}}return e.makeTensorInfo([a,p,m,f],o.dtype,h)}var iP={kernelName:Pa,backendName:"cpu",kernelFunc:_tt};function dT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n;tt([o,s],"depthwiseConv2DNative");let c=y.computeStrides(o.shape),p=y.computeStrides(s.shape),m=u;m==null&&(m=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(i,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${m}'`);let f=S.computeConv2DInfo(o.shape,s.shape,i,m,a,l,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,I=b.top,N=f.outChannels/f.inChannels,E=new le(f.outShape,o.dtype),A=e.data.get(o.dataId).values,D=e.data.get(s.dataId).values,F=E.values;for(let P=0;P<f.batchSize;++P){let V=P*c[0],G=P*E.strides[0];for(let W=0;W<f.outHeight;++W){let q=G+W*E.strides[1],H=W*f.strideHeight-I;for(let K=0;K<d;++K){let X=H+K*g;if(X<0||X>=f.inHeight)continue;let Z=K*p[0],et=V+X*c[1];for(let nt=0;nt<f.outWidth;++nt){let st=q+nt*E.strides[2],at=nt*f.strideWidth-w;for(let ot=0;ot<h;++ot){let it=at+ot*x;if(it<0||it>=f.inWidth)continue;let mt=Z+ot*p[1],gt=et+it*f.inChannels,It=st,Rt=mt;for(let Dt=0;Dt<f.inChannels;++Dt){let Ht=A[gt+Dt];for(let qt=0;qt<N;++qt)F[It+qt]+=Ht*D[Rt+qt];It+=N,Rt+=N}}}}}}return e.makeTensorInfo(E.shape,E.dtype,E.values)}var aP={kernelName:as,backendName:"cpu",kernelFunc:dT};function Ett(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n;tt([o,s],"depthwiseConv2dNativeBackpropFilter");let p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new le(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,I=e.data.get(o.dataId).values,N=new le(o.shape,o.dtype,I),E=e.data.get(s.dataId).values,A=new le(s.shape,s.dtype,E);for(let D=0;D<d;++D){let F=Math.max(0,Math.ceil((b-D)/m)),P=Math.min(p.outHeight,(p.inHeight+b-D)/m);for(let V=0;V<h;++V){let G=Math.max(0,Math.ceil((x-V)/f)),W=Math.min(p.outWidth,(p.inWidth+x-V)/f);for(let q=0;q<p.outChannels;++q){let H=Math.trunc(q/w),K=q%w,X=0;for(let Z=0;Z<p.batchSize;++Z)for(let et=F;et<P;++et){let nt=D+et*m-b;for(let st=G;st<W;++st){let at=V+st*f-x;X+=N.get(Z,nt,at,H)*A.get(Z,et,st,q)}}g.set(X,D,V,H,K)}}}return e.makeTensorInfo(g.shape,g.dtype,g.values)}var lP={kernelName:Mp,backendName:"cpu",kernelFunc:Ett};function Att(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n;tt([o,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(o.shape),m=y.computeStrides(s.shape),f=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),d=new le(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=e.data.get(o.dataId).values,[I,N,E]=p,A=e.data.get(s.dataId).values,[D,F,P]=m,{batchSize:V,filterHeight:G,filterWidth:W,inChannels:q,inHeight:H,inWidth:K,outChannels:X,outHeight:Z,outWidth:et,strideHeight:nt,strideWidth:st}=f,at=G-1-f.padInfo.top,ot=W-1-f.padInfo.left,it=X/q;for(let mt=0;mt<V;++mt)for(let gt=0;gt<q;++gt)for(let It=0;It<H;++It){let Rt=It-at,Dt=Math.max(0,Math.ceil(Rt/nt)),Ht=Math.min(Z,(G+Rt)/nt);for(let qt=0;qt<K;++qt){let ce=qt-ot,ge=Math.max(0,Math.ceil(ce/st)),ee=Math.min(et,(W+ce)/st),xe=0;for(let fe=Dt;fe<Ht;++fe){let Ae=fe*nt-Rt;for(let De=ge;De<ee;++De){let Fn=De*st-ce,ar=I*mt+N*fe+E*De,Yn=D*(G-1-Ae)+F*(W-1-Fn)+P*gt;for(let Br=0;Br<it;++Br){let je=gt*it+Br,Vr=w[ar+je],Gr=A[Yn+Br];xe+=Vr*Gr}}}h[g*mt+x*It+b*qt+gt]=xe}}return e.makeTensorInfo(d.shape,d.dtype,d.values)}var uP={kernelName:Lp,backendName:"cpu",kernelFunc:Att};function Dtt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.data.get(n.dataId).values,i=bt([o,o],n.dtype),a=i.values;for(let l=0;l<s.length;l++)a[l*o+l]=s[l];let u=[...n.shape,...n.shape];return e.makeTensorInfo(u,i.dtype,i.values)}var cP={kernelName:Ql,backendName:"cpu",kernelFunc:Dtt};var pP={kernelName:ls,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o}=r,{strides:s,pad:i,dilations:a}=e,u=t,l=u.data.get(n.dataId).values,c=n.shape.length,p=u.data.get(o.dataId).values,m=o.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:I,strideWidth:N,filterHeight:E,filterWidth:A,dilationHeight:D,dilationWidth:F,outShape:P}=S.computeDilation2DInfo(n.shape,o.shape,s,i,"NHWC",a),V=y.sizeFromShape(P),G=P.length,W=y.getArrayFromDType(n.dtype,V);for(let H=0;H<f;++H)for(let K=0;K<x;++K){let X=K*I-w.top;for(let Z=0;Z<b;++Z){let et=Z*N-w.left;for(let nt=0;nt<g;++nt){let st=Number.MIN_SAFE_INTEGER;for(let ot=0;ot<E;++ot){let it=X+ot*D;if(it>=0&&it<d)for(let mt=0;mt<A;++mt){let gt=et+mt*F;if(gt>=0&&gt<h){let It=y.locToIndex([H,it,gt,nt],c,y.computeStrides(n.shape)),Rt=y.locToIndex([ot,mt,nt],m,y.computeStrides(o.shape)),Dt=l[It]+p[Rt];Dt>st&&(st=Dt)}}}let at=y.locToIndex([H,K,Z,nt],G,y.computeStrides(P));W[at]=st}}}return{dataId:u.write(y.toTypedArray(W,n.dtype),P,n.dtype),shape:P,dtype:n.dtype}}};var mP={kernelName:eu,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${eu}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let K=0;K<x;++K){let X=K*I-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,nt=0,st=0;for(let at=0;at<N;++at){let ot=H+at*A;if(ot>=0&&ot<f)for(let it=0;it<E;++it){let mt=X+it*D;if(mt>=0&&mt<d){let gt=c[W][ot][mt][Z]+p[at][it][Z];gt>et&&(et=gt,nt=at,st=it)}}}V[nt][st][Z]+=P[W][q][K][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var fP={kernelName:tu,backendName:"cpu",kernelFunc:({inputs:r,backend:t,attrs:e})=>{let{x:n,filter:o,dy:s}=r,{strides:i,pad:a,dilations:u}=e,l=t,c=y.toNestedArray(n.shape,l.data.get(n.dataId).values),p=y.toNestedArray(o.shape,l.data.get(o.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:I,filterHeight:N,filterWidth:E,dilationHeight:A,dilationWidth:D,outShape:F}=S.computeDilation2DInfo(n.shape,o.shape,i,a,"NHWC",u);y.assert(s.rank===F.length,()=>`Error in ${tu}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let P=y.toNestedArray(F,l.data.get(s.dataId).values),V=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let W=0;W<m;++W)for(let q=0;q<g;++q){let H=q*w-b.top;for(let K=0;K<x;++K){let X=K*I-b.left;for(let Z=0;Z<h;++Z){let et=Number.MIN_SAFE_INTEGER,nt=H<0?0:H,st=X<0?0:X;for(let at=0;at<N;++at){let ot=H+at*A;if(ot>=0&&ot<f)for(let it=0;it<E;++it){let mt=X+it*D;if(mt>=0&&mt<d){let gt=c[W][ot][mt][Z]+p[at][it][Z];gt>et&&(et=gt,nt=ot,st=mt)}}}V[W][nt][st][Z]+=P[W][q][K][Z]}}}return{dataId:l.write(y.toTypedArray(V,n.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ml(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"sum");let a;o.dtype==="bool"?a=Oo({inputs:{x:o},backend:e,attrs:{dtype:"int32"}}):a=Yr({inputs:{x:o},backend:e});let u=a.shape.length,l=y.parseAxisParam(s,a.shape),c=S.getAxesPermutation(l,u),p=l,m=a;c!=null&&(m=Ge({inputs:{x:a},backend:e,attrs:{perm:c}}),p=S.getInnerMostAxes(p.length,u)),S.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=S.computeOutAndReduceShapes(m.shape,p),h=S.upcastType(m.dtype,"int32"),g=hd(e,f,h),x=y.sizeFromShape(d),b=e.data.get(g.dataId).values,w=e.data.get(m.dataId).values;for(let I=0;I<b.length;++I){let N=I*x,E=0;for(let A=0;A<x;++A)E+=w[N+A];b[I]=E}if(i){let I=S.expandShapeToKeepDim(g.shape,l),N=g;g=Jt({inputs:{x:g},backend:e,attrs:{shape:I}}),e.disposeIntermediateTensorInfo(N)}return e.disposeIntermediateTensorInfo(a),c!=null&&e.disposeIntermediateTensorInfo(m),g}var dP={kernelName:Zs,backendName:"cpu",kernelFunc:Ml};function $tt(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(x)?w=s[g]:(w=Ge({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let I=w.shape.slice();for(let N=0;N<b.length;++N)I.splice(b[N],0,1);y.arraysEqual(w.shape,I)||(w=Jt({inputs:{x:w},backend:e,attrs:{shape:I}}),d.push(w)),m===null?m=w:(m=np({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=Ml({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var hP={kernelName:zp,backendName:"cpu",kernelFunc:$tt};function Rtt(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t;tt([n,o],"eluGrad");let s=new Float32Array(y.sizeFromShape(o.shape)),i=e.data.get(o.dataId).values,a=e.data.get(n.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=0?s[u]=a[u]:s[u]=a[u]*(l+1)}return e.makeTensorInfo(o.shape,"float32",s)}var gP={kernelName:Ma,backendName:"cpu",kernelFunc:Rtt};var Ftt=S.ERF_P,Ott=S.ERF_A1,Ptt=S.ERF_A2,Mtt=S.ERF_A3,Ltt=S.ERF_A4,ztt=S.ERF_A5,Btt=At(La,r=>{let t=Math.sign(r),e=Math.abs(r),n=1/(1+Ftt*e);return t*(1-((((ztt*n+Ltt)*n+Mtt)*n+Ptt)*n+Ott)*n*Math.exp(-e*e))}),xP={kernelName:La,backendName:"cpu",kernelFunc:Btt};function Cd(r){let{inputs:t,backend:e,attrs:n}=r,{input:o}=t,{dim:s}=n,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),Jt({inputs:{x:o},backend:e,attrs:{shape:a}})}var yP={kernelName:Ri,backendName:"cpu",kernelFunc:Cd};var Vtt=te((r,t)=>r/t),Zh=ie(us,Vtt),Jh={kernelName:us,backendName:"cpu",kernelFunc:Zh};function Cw(r,t,e){let n=r.shape,o=n[0],s=n[1],i=e.data.get(r.dataId),a=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[o,s],c=y.sizeFromShape(l),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<o;g++){let x=Mo({inputs:{x:a},backend:e,attrs:{begin:[g,0],size:[1,s]}}),b=Mo({inputs:{x:u},backend:e,attrs:{begin:[g,0],size:[1,s]}}),w=Cr({inputs:{real:x,imag:b},backend:e}),{real:I,imag:N}=Gtt(w,t,e),E=S.mergeRealAndImagArrays(I,N);for(let A=0;A<s;A++){let D=S.getComplexWithIndex(E,A);p[g*s+A]=D.real,m[g*s+A]=D.imag}e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(w)}let f=e.makeTensorInfo(l,"float32",p),d=e.makeTensorInfo(l,"float32",m),h=Cr({inputs:{real:f,imag:d},backend:e});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),h}function Gtt(r,t,e){let n=y.sizeFromShape(r.shape),o=e.data.get(r.dataId),s=e.data.get(o.complexTensorInfos.real.dataId).values,i=e.data.get(o.complexTensorInfos.imag.dataId).values;if(Wtt(n)){let a=hT(s,i,n,t,e),u=[r.shape[0],r.shape[1]];if(t){let l=e.makeTensorInfo(u,"float32",a.real),c=e.makeTensorInfo(u,"float32",a.imag),p=e.makeTensorInfo([],"float32",y.createScalarValue(n,"float32")),m=Yr({inputs:{x:p},backend:e}),f=Jh.kernelFunc({inputs:{a:l,b:p},backend:e}),d=Jh.kernelFunc({inputs:{a:c,b:m},backend:e}),h=e.data.get(f.dataId).values,g=e.data.get(d.dataId).values;return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return a}else{let a=S.mergeRealAndImagArrays(s,i),u=Utt(a,n,t);return S.splitRealAndImagArrays(u)}}function Wtt(r){return(r&r-1)===0}function hT(r,t,e,n,o){if(e===1)return{real:r,imag:t};let s=S.mergeRealAndImagArrays(r,t),i=e/2,a=S.complexWithEvenIndex(s),u=a.real,l=a.imag,c=[u.length],p=o.makeTensorInfo(c,"float32",u),m=o.makeTensorInfo(c,"float32",l),f=Cr({inputs:{real:p,imag:m},backend:o}),d=S.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=o.makeTensorInfo(x,"float32",h),w=o.makeTensorInfo(x,"float32",g),I=Cr({inputs:{real:b,imag:w},backend:o}),N=hT(u,l,i,n,o),E=N.real,A=N.imag,D=[E.length],F=o.makeTensorInfo(D,"float32",E),P=o.makeTensorInfo(D,"float32",A),V=Cr({inputs:{real:F,imag:P},backend:o}),G=hT(h,g,i,n,o),W=G.real,q=G.imag,H=[W.length],K=o.makeTensorInfo(H,"float32",W),X=o.makeTensorInfo(H,"float32",q),Z=Cr({inputs:{real:K,imag:X},backend:o}),et=S.exponents(e,n),nt=[et.real.length],st=o.makeTensorInfo(nt,"float32",et.real),at=o.makeTensorInfo(nt,"float32",et.imag),ot=Cr({inputs:{real:st,imag:at},backend:o}),it=np({inputs:{a:ot,b:Z},backend:o}),mt=ya({inputs:{a:V,b:it},backend:o}),gt=Xh({inputs:{a:V,b:it},backend:o}),It=Fo({inputs:{input:mt},backend:o}),Rt=Fo({inputs:{input:gt},backend:o}),Dt=ba({inputs:{input:mt},backend:o}),Ht=ba({inputs:{input:gt},backend:o}),qt=Uu({inputs:[It,Rt],backend:o,attrs:{axis:0}}),ce=Uu({inputs:[Dt,Ht],backend:o,attrs:{axis:0}}),ge=o.data.get(qt.dataId).values,ee=o.data.get(ce.dataId).values;return o.disposeIntermediateTensorInfo(p),o.disposeIntermediateTensorInfo(m),o.disposeIntermediateTensorInfo(f),o.disposeIntermediateTensorInfo(b),o.disposeIntermediateTensorInfo(w),o.disposeIntermediateTensorInfo(I),o.disposeIntermediateTensorInfo(F),o.disposeIntermediateTensorInfo(P),o.disposeIntermediateTensorInfo(V),o.disposeIntermediateTensorInfo(K),o.disposeIntermediateTensorInfo(X),o.disposeIntermediateTensorInfo(Z),o.disposeIntermediateTensorInfo(st),o.disposeIntermediateTensorInfo(at),o.disposeIntermediateTensorInfo(ot),o.disposeIntermediateTensorInfo(it),o.disposeIntermediateTensorInfo(mt),o.disposeIntermediateTensorInfo(gt),o.disposeIntermediateTensorInfo(It),o.disposeIntermediateTensorInfo(Dt),o.disposeIntermediateTensorInfo(Rt),o.disposeIntermediateTensorInfo(Ht),o.disposeIntermediateTensorInfo(qt),o.disposeIntermediateTensorInfo(ce),{real:ge,imag:ee}}function Utt(r,t,e){let n=new Float32Array(t*2);for(let o=0;o<t;o++){let s=0,i=0;for(let a=0;a<t;a++){let u=S.exponent(o*a,t,e),l=S.getComplexWithIndex(r,a);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}e&&(s/=t,i/=t),S.assignToTypedArray(n,s,i,o)}return n}function Htt(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=Cw(a,!1,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var bP={kernelName:Bp,backendName:"cpu",kernelFunc:Htt};function Qh(r){let{backend:t,attrs:e}=r,{shape:n,value:o,dtype:s}=e,i=s||y.inferDtype(o),a=y.getArrayFromDType(i,y.sizeFromShape(n));return qtt(a,o,i),t.makeTensorInfo(n,i,a)}var wP={kernelName:ru,backendName:"cpu",kernelFunc:Qh};function qtt(r,t,e){r.fill(t)}var IP={kernelName:Ba,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,o=e,s=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[i,a,u,l]=n.shape,c=o.data.get(n.dataId).values;for(let m=0;m<i;m++){let f=m*u*a*l;for(let d=0;d<a;d++){let h=d*(u*l);for(let g=0;g<u;g++){let x=g*l;for(let b=0;b<l;b++){let w=Math.round(u-g-1),I=f+h+x+b,N=c[I];if(w>=0&&w<u){let E=w*l,A=f+h+E+b;N=c[A]}s[I]=N}}}}return{dataId:o.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};function Ktt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=fT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let x=Jt({inputs:{x:i},backend:e,attrs:{shape:[i.shape[0],1,1]}});h=ya({inputs:{a:h,b:x},backend:e}),e.disposeIntermediateTensorInfo(x)}else h=ya({inputs:{a:h,b:i},backend:e});e.disposeIntermediateTensorInfo(g)}if(f){let g=h;if(c==="NCHW"&&f==="prelu"&&a.shape.length===1&&a.shape[0]!==1){let x=Jt({inputs:{x:a},backend:e,attrs:{shape:[a.shape[0],1,1]}});h=cp(e,h,f,x,d),e.disposeIntermediateTensorInfo(x)}else h=cp(e,h,f,a,d);e.disposeIntermediateTensorInfo(g)}return h}var CP={kernelName:Ki,backendName:"cpu",kernelFunc:Ktt};function jtt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=dT({inputs:{x:o,filter:s},backend:e,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m}});if(i){let g=h;h=ya({inputs:{a:h,b:i},backend:e}),e.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=cp(e,h,f,a,d),e.disposeIntermediateTensorInfo(g)}return h}var vP={kernelName:ji,backendName:"cpu",kernelFunc:jtt};function Xtt(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=y.sizeFromShape(n.shape),i=o.shape,a=i[i.length-1],[u,l,c,p]=S.prepareAndValidate(n,o);if(l===0)return e.makeTensorInfo(u,n.dtype,[]);let m=e.data.get(o.dataId).values,f=e.bufferSync(n),d=aw(m,f,n.dtype,l,a,c,p,n.shape,s);return e.makeTensorInfo(u,n.dtype,d.values)}var SP={kernelName:Va,backendName:"cpu",kernelFunc:Xtt};function Ytt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n;tt([o,s],"gatherV2");let u=y.parseAxisParam(i,o.shape)[0],l=e.data.get(s.dataId).values,c=o.shape[u];for(let I=0;I<l.length;++I){let N=l[I];y.assert(N<=c-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${c-1}]`)}let p=a;a==null&&(p=0);let m=y.sizeFromShape(s.shape),f=S.segment_util.collectGatherOpShapeInfo(o,s,u,p),d=Jt({inputs:{x:o},backend:e,attrs:{shape:[f.batchSize,f.outerSize,f.dimSize,f.sliceSize]}}),h=Jt({inputs:{x:s},backend:e,attrs:{shape:[f.batchSize,m/f.batchSize]}}),g=[f.batchSize,f.outerSize,m/f.batchSize,f.sliceSize],x=e.bufferSync(h),b=e.bufferSync(d),w=lw(b,x,g);return e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.makeTensorInfo(f.outputShape,w.dtype,w.values)}var NP={kernelName:Fi,backendName:"cpu",kernelFunc:Ytt};function Ztt(r){let{inputs:t,backend:e}=r,{input:n}=t,o=y.sizeFromShape(n.shape),s=n.shape[n.shape.length-1],i=o/s,a=Jt({inputs:{x:n},backend:e,attrs:{shape:[i,s]}}),u=Cw(a,!0,e),l=Jt({inputs:{x:u},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(u),l}var kP={kernelName:Vp,backendName:"cpu",kernelFunc:Ztt};var Jtt=At(xs,r=>Number.isFinite(r)?1:0,"bool"),TP={kernelName:xs,backendName:"cpu",kernelFunc:Jtt};var Qtt=At(ys,r=>Math.abs(r)===1/0?1:0,"bool"),_P={kernelName:ys,backendName:"cpu",kernelFunc:Qtt};var tet=At(bs,r=>Number.isNaN(r)?1:0,"bool"),EP={kernelName:bs,backendName:"cpu",kernelFunc:tet};function eet(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=uw(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var AP={kernelName:Ha,backendName:"cpu",kernelFunc:eet};var ret=At(Cs,r=>Math.log1p(r)),DP={kernelName:Cs,backendName:"cpu",kernelFunc:ret};var net=te((r,t)=>r&&t),oet=ie(qa,net,null,"bool"),$P={kernelName:qa,backendName:"cpu",kernelFunc:oet};var set=At(Ka,r=>r?0:1,"bool"),RP={kernelName:Ka,backendName:"cpu",kernelFunc:set};var iet=te((r,t)=>r||t),aet=ie(ja,iet,null,"bool"),FP={kernelName:ja,backendName:"cpu",kernelFunc:aet};function uet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;tt(o,"LRN");let l=o.shape[3],c=l-1,p=e.data.get(o.dataId).values,m=y.sizeFromShape(o.shape),f=new Float32Array(m);function d(h){let g=h%l,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let I=p[x];w+=I*I}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(i+a*g,-u);f[h]=x}return e.makeTensorInfo(o.shape,o.dtype,f)}var OP={kernelName:vs,backendName:"cpu",kernelFunc:uet};function cet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;tt(i,"LRNGrad");let p=y.sizeFromShape(i.shape),m=i.shape[3],f=e.data.get(i.dataId).values,d=e.data.get(o.dataId).values,h=e.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,I=b-w+Math.max(0,w-a),N=b-w+Math.min(m,w+a+1),E=0;for(let A=I;A<N;A++)E+=Math.pow(d[A],2);E=l*E+u;for(let A=I;A<N;A++){let D=-2*l*c*d[A]*h[b]/E;b===A&&(D+=Math.pow(E,-c)),D*=f[b],g[A]+=D}}return e.makeTensorInfo(i.shape,o.dtype,g)}var PP={kernelName:Xa,backendName:"cpu",kernelFunc:cet};function gT(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=e,u=o.shape,l=u.length,c=y.parseAxisParam(s,u),p=c,m=S.getAxesPermutation(p,l),f=a.data.get(o.dataId).values;if(m!=null){let I=new Array(l);for(let N=0;N<I.length;N++)I[N]=u[m[N]];f=yd(f,u,o.dtype,m,I),p=S.getInnerMostAxes(p.length,l),u=I}tt(o,"max"),S.assertAxesAreInnerMostDims("max",p,l);let[d,h]=S.computeOutAndReduceShapes(u,p),g=y.sizeFromShape(h),x=cw(f,g,d,o.dtype),b=a.write(x,d,o.dtype),w=d;return i&&(w=S.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:o.dtype}}var MP={kernelName:Ss,backendName:"cpu",kernelFunc:gT};function pet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;tt(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Yr({inputs:{x:o},backend:e});else{let m=e.data.get(o.dataId).values,f=y.computeStrides(o.shape),d=Id(m,o.shape,o.dtype,f,c,"max");p=e.makeTensorInfo(c.outShape,o.dtype,d.values)}return p}var LP={kernelName:ks,backendName:"cpu",kernelFunc:pet};function met(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n;tt(o,"maxPool3d");let c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.data.get(o.dataId).values,m=Iw(p,o.shape,o.dtype,y.computeStrides(o.shape),c,"max");return e.makeTensorInfo(m.shape,"float32",m.values)}var zP={kernelName:Oi,backendName:"cpu",kernelFunc:met};function fet(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n;tt([o,s],"maxPool3DGrad");let c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.bufferSync(s),m=OO(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,I=c.effectiveFilterHeight,N=c.effectiveFilterWidth,E=w-1-c.padInfo.front,A=N-1-c.padInfo.left,D=I-1-c.padInfo.top,F=bt(s.shape,"float32"),P=e.bufferSync(o);for(let V=0;V<c.batchSize;++V)for(let G=0;G<c.inChannels;++G)for(let W=0;W<c.inDepth;++W)for(let q=0;q<c.inHeight;++q)for(let H=0;H<c.inWidth;++H){let K=W-E,X=q-D,Z=H-A,et=0;for(let nt=0;nt<w;nt+=g){let st=(K+nt)/f;if(!(st<0||st>=c.outDepth||Math.floor(st)!==st))for(let at=0;at<I;at+=x){let ot=(X+at)/d;if(!(ot<0||ot>=c.outHeight||Math.floor(ot)!==ot))for(let it=0;it<N;it+=b){let mt=(Z+it)/h;if(mt<0||mt>=c.outWidth||Math.floor(mt)!==mt)continue;let gt=w*I*N-1-m.get(V,st,ot,mt,G),It=nt*I*N+at*N+it,Rt=gt===It?1:0;if(Rt===0)continue;let Dt=P.get(V,st,ot,mt,G);et+=Dt*Rt}}}F.set(et,V,W,q,H,G)}return e.makeTensorInfo(F.shape,F.dtype,F.values)}var BP={kernelName:nu,backendName:"cpu",kernelFunc:fet};function det(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;tt([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=e.data.get(a.dataId).values,d=bt(m.outShape,a.dtype,ww(f,a.shape,a.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,I=m.effectiveFilterWidth,N=I-1-m.padInfo.left,E=w-1-m.padInfo.top,A=bt(a.shape,"float32"),D=e.data.get(o.dataId).values,F=bt(o.shape,"float32",D);for(let P=0;P<m.batchSize;++P)for(let V=0;V<m.inChannels;++V)for(let G=0;G<m.inHeight;++G)for(let W=0;W<m.inWidth;++W){let q=G-E,H=W-N,K=0;for(let X=0;X<w;X+=x){let Z=(q+X)/h;if(!(Z<0||Z>=m.outHeight||Math.floor(Z)!==Z))for(let et=0;et<I;et+=b){let nt=(H+et)/g;if(nt<0||nt>=m.outWidth||Math.floor(nt)!==nt)continue;let st=w*I-1-d.get(P,Z,nt,V),at=X*I+et,ot=st===at?1:0;if(ot===0)continue;let it=F.get(P,Z,nt,V);K+=it*ot}}A.set(K,P,G,W,V)}return e.makeTensorInfo(A.shape,A.dtype,A.values)}var VP={kernelName:Wp,backendName:"cpu",kernelFunc:det};function GP(r,t,e,n,o){let s=y.computeStrides(t),i=Id(r,t,e,s,o,"max"),a=ww(r,t,e,o,!0,n);return[i.values,a.values]}var WP={kernelName:Up,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;tt(n,"MaxPoolWithArgmax");let l=u.data.get(n.dataId).values,c=S.computePool2DInfo(n.shape,o,s,[1,1],i),[p,m]=GP(l,n.shape,n.dtype,a,c),f=u.write(p,c.outShape,n.dtype),d=u.write(m,c.outShape,n.dtype);return[{dataId:f,shape:c.outShape,dtype:n.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function het(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=y.parseAxisParam(s,o.shape),l=S.computeOutAndReduceShapes(o.shape,a)[1],c=y.sizeFromShape(l),p=[],m=e.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=Oo({inputs:{x:o},backend:e,attrs:{dtype:"float32"}});p.push(f);let d=Zh({inputs:{a:f,b:m},backend:e});p.push(d);let h=Ml({inputs:{x:d},backend:e,attrs:{axis:s,keepDims:i}});return p.forEach(g=>e.disposeIntermediateTensorInfo(g)),h}var UP={kernelName:Ts,backendName:"cpu",kernelFunc:het};function get(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;tt(o,"min");let a=y.parseAxisParam(s,o.shape),u=a,l=S.getAxesPermutation(u,o.shape.length),c=o;l!=null&&(c=Ge({inputs:{x:o},backend:e,attrs:{perm:l}}),u=S.getInnerMostAxes(u.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,m]=S.computeOutAndReduceShapes(c.shape,u),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=e.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let I=0;I<f;++I){let N=h[b+I];(Number.isNaN(N)||N<w)&&(w=N)}d[x]=w}l!=null&&e.disposeIntermediateTensorInfo(c);let g=e.makeTensorInfo(p,c.dtype,d);if(i){let x=S.expandShapeToKeepDim(p,a),b=Jt({inputs:{x:g},backend:e,attrs:{shape:x}});return e.disposeIntermediateTensorInfo(g),b}return g}var HP={kernelName:_s,backendName:"cpu",kernelFunc:get};function xet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,mode:i}=n;tt(o,"mirrorPad");let a=s.map((w,I)=>w[0]+o.shape[I]+w[1]),u=s.map(w=>w[0]),l=s.map((w,I)=>w[0]+o.shape[I]),c=i==="reflect"?0:1,p=e.data.get(o.dataId).values,m=o.shape.length,f=y.computeStrides(o.shape),d=y.sizeFromShape(a),h=a.length,g=y.computeStrides(a),x=y.getTypedArrayFromDType(o.dtype,d);for(let w=0;w<d;w++){let I=y.indexToLoc(w,h,g);for(let E=0;E<h;E++)I[E]<u[E]?I[E]=u[E]*2-I[E]-c:I[E]>=l[E]&&(I[E]=(l[E]-1)*2-I[E]+c);I=I.map((E,A)=>E-u[A]);let N=y.locToIndex(I,m,f);x[w]=p[N]}return{dataId:e.write(x,a,o.dtype),shape:a,dtype:o.dtype}}var qP={kernelName:As,backendName:"cpu",kernelFunc:xet};var yet=te((r,t)=>{let e=r%t;return r<0&&t<0||r>=0&&t>=0?e:(e+t)%t}),bet=ie(Ya,yet),KP={kernelName:Ya,backendName:"cpu",kernelFunc:bet};var XP=Kl(xh());function xT(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=o.shape.length,a=s;if(a===-1&&(a=i-1),a!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${a}`);let u=y.parseAxisParam([a],o.shape),l=gT({inputs:{x:o},backend:e,attrs:{reductionIndices:u,keepDims:!1}}),c=S.expandShapeToKeepDim(l.shape,u),p=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),m=Xh({inputs:{a:o,b:p},backend:e}),f=Vk({inputs:{x:m},backend:e}),d=Ml({inputs:{x:f},backend:e,attrs:{axis:u,keepDims:!1}}),h=Jt({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Zh({inputs:{a:f,b:h},backend:e});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),g}var jP={kernelName:Js,backendName:"cpu",kernelFunc:xT};function wet(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;tt(o,"multinomial");let u=a?o:xT({inputs:{logits:o},backend:e,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=e.data.get(u.dataId).values,m=[l,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<l;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=XP.alea(i.toString()),b=d*s;for(let w=0;w<s;++w){let I=x();f[b+w]=g.length;for(let N=0;N<g.length;N++)if(I<g[N]){f[b+w]=N;break}}}return a||e.disposeIntermediateTensorInfo(u),e.makeTensorInfo(m,"int32",f)}var YP={kernelName:Za,backendName:"cpu",kernelFunc:wet};var Iet=Kr.nonMaxSuppressionV3Impl;function Cet(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n;tt(o,"NonMaxSuppression");let l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,{selectedIndices:p}=Iet(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var ZP={kernelName:Qa,backendName:"cpu",kernelFunc:Cet};var vet=Kr.nonMaxSuppressionV4Impl;function Net(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n;tt(o,"NonMaxSuppressionPadded");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=vet(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var JP={kernelName:tl,backendName:"cpu",kernelFunc:Net};var ket=Kr.nonMaxSuppressionV5Impl;function Tet(r){let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n;tt(o,"NonMaxSuppressionWithScore");let c=e.data.get(o.dataId).values,p=e.data.get(s.dataId).values,m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=ket(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var QP={kernelName:el,backendName:"cpu",kernelFunc:Tet};function _et(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n;tt(o,"oneHot");let l=y.sizeFromShape(o.shape),c=new Float32Array(l*i);c.fill(u);let p=e.data.get(o.dataId).values;for(let m=0;m<l;++m)p[m]>=0&&p[m]<i&&(c[m*i+p[m]]=a);return e.makeTensorInfo([...o.shape,i],s,c)}var tM={kernelName:$s,backendName:"cpu",kernelFunc:_et};function tg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Fo({inputs:{input:n},backend:e}),s=tg({inputs:{x:o},backend:e}),i=ba({inputs:{input:n},backend:e}),a=tg({inputs:{x:i},backend:e}),u=Cr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Qh({backend:e,attrs:{shape:n.shape,value:0,dtype:n.dtype}})}var eM={kernelName:Hi,backendName:"cpu",kernelFunc:tg};function rM(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(n.dtype==="complex64"){let o=Fo({inputs:{input:n},backend:e}),s=rM({inputs:{x:o},backend:e}),i=ba({inputs:{input:n},backend:e}),a=tg({inputs:{x:i},backend:e}),u=Cr({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Qh({backend:e,attrs:{shape:n.shape,value:1,dtype:n.dtype}})}var nM={kernelName:Mi,backendName:"cpu",kernelFunc:rM};function yT(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return Cd({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=Cd({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=Uu({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var oM={kernelName:Li,backendName:"cpu",kernelFunc:yT};function Eet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;tt(o,"pad");let a=s.map((b,w)=>b[0]+o.shape[w]+b[1]),u=s.map(b=>b[0]),l=e.data.get(o.dataId).values,c=y.sizeFromShape(o.shape),p=o.shape.length,m=y.computeStrides(o.shape),f=y.sizeFromShape(a),d=a.length,h=y.computeStrides(a),g=y.getTypedArrayFromDType(o.dtype,f);i!==0&&g.fill(i);for(let b=0;b<c;b++){let I=y.indexToLoc(b,p,m).map((E,A)=>E+u[A]),N=y.locToIndex(I,d,h);g[N]=l[b]}return{dataId:e.write(g,a,o.dtype),shape:a,dtype:o.dtype}}var vw={kernelName:Rs,backendName:"cpu",kernelFunc:Eet};var Aet=te((r,t)=>Math.pow(r,t)),Det=ie(Fs,Aet),sM={kernelName:Fs,backendName:"cpu",kernelFunc:Det};function $et(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.data.get(x.dataId).values),l=o.map(x=>x.shape),c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,[m,f,d]=pw(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var iM={kernelName:Hp,backendName:"cpu",kernelFunc:$et};function Ret(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=mw(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var aM={kernelName:qp,backendName:"cpu",kernelFunc:Ret};function Fet(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.data.get(o.dataId).values,c=e.data.get(s.dataId).values,p=e.data.get(i.dataId).values,m=a.map(g=>e.data.get(g.dataId).values),f=a.map(g=>g.shape),[d,h]=fw(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var lM={kernelName:Kp,backendName:"cpu",kernelFunc:Fet};function Oet(r){let{backend:t,attrs:e}=r,{start:n,stop:o,dtype:s,step:i}=e,a=op(n,o,i,s);return t.makeTensorInfo([a.length],s,a)}var uM={kernelName:ou,backendName:"cpu",kernelFunc:Oet};var Pet=At(Ms,r=>1/r),cM={kernelName:Ms,backendName:"cpu",kernelFunc:Pet};function Met(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeBilinear");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(y.sizeFromShape([p,l,c,d])),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=0,I=x[0]/b[0],N=x[1]/b[1];for(let E=0;E<p;E++)for(let A=0;A<l;A++){let D;i?D=I*(A+.5)-.5:D=I*A;let F=Math.max(0,Math.floor(D)),P=D-F,V=Math.min(m-1,Math.ceil(D)),G=E*u[0]+F*u[1],W=E*u[0]+V*u[1];for(let q=0;q<c;q++){let H;i?H=N*(q+.5)-.5:H=N*q;let K=Math.max(0,Math.floor(H)),X=H-K,Z=Math.min(f-1,Math.ceil(H)),et=G+K*u[2],nt=W+K*u[2],st=G+Z*u[2],at=W+Z*u[2];for(let ot=0;ot<d;ot++){let it=h[et+ot],mt=h[nt+ot],gt=h[st+ot],It=h[at+ot],Rt=it+(gt-it)*X,Dt=mt+(It-mt)*X,Ht=Rt+(Dt-Rt)*P;g[w++]=Ht}}}return e.makeTensorInfo([p,l,c,d],"float32",g)}var pM={kernelName:Bs,backendName:"cpu",kernelFunc:Met};function Let(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeBilinearGrad");let a=y.computeStrides(o.shape),[u,l,c,p]=o.shape,[,m,f]=s.shape,d=new Float32Array(u*l*c*p),h=[i&&m>1?l-1:l,i&&f>1?c-1:c],g=[i&&m>1?m-1:m,i&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=e.data.get(s.dataId).values,I=0;for(let N=0;N<u;N++){let E=N*a[0];for(let A=0;A<m;A++){let D=A*x,F=Math.floor(D),P=Math.min(Math.ceil(D),l-1),V=E+F*a[1],G=E+P*a[1],W=D-F,q=1-W;for(let H=0;H<f;H++){let K=H*b,X=Math.floor(K),Z=Math.min(Math.ceil(K),c-1),et=K-X,nt=1-et,st=V+X*a[2],at=V+Z*a[2],ot=G+X*a[2],it=G+Z*a[2],mt=q*nt,gt=q*et,It=W*nt,Rt=W*et;for(let Dt=0;Dt<p;Dt++){let Ht=w[I++];d[st+Dt]+=Ht*mt,d[at+Dt]+=Ht*gt,d[ot+Dt]+=Ht*It,d[it+Dt]+=Ht*Rt}}}}return e.makeTensorInfo([u,c,l,p],"float32",d)}var mM={kernelName:nl,backendName:"cpu",kernelFunc:Let};function zet(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n;tt(o,"resizeNearestNeighbor");let u=y.computeStrides(o.shape),[l,c]=a,[p,m,f,d]=o.shape,h=e.data.get(o.dataId).values,g=new Float32Array(p*l*c*d),x=[s&&l>1?m-1:m,s&&c>1?f-1:f],b=[s&&l>1?l-1:l,s&&c>1?c-1:c],w=x[0]/b[0],I=x[1]/b[1],N=0;for(let E=0;E<p;E++){let A=E*u[0];for(let D=0;D<l;D++){let F=i?w*(D+.5):w*D,P=Math.min(m-1,s?Math.round(F):Math.floor(F));i&&(P=Math.max(0,P));let V=A+P*u[1];for(let G=0;G<c;G++){let W=i?I*(G+.5):I*G,q=Math.min(f-1,s?Math.round(W):Math.floor(W));i&&(q=Math.max(0,q));let H=V+q*u[2];for(let K=0;K<d;K++){let X=h[H+K];g[N++]=X}}}}return e.makeTensorInfo([p,l,c,d],o.dtype,g)}var fM={kernelName:zs,backendName:"cpu",kernelFunc:zet};function Bet(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n;tt([s,o],"resizeNearestNeighborGrad");let a=y.computeStrides(o.shape),u=y.computeStrides(s.shape),[l,c,p,m]=o.shape,[,f,d]=s.shape,h=new Float32Array(l*c*p*m),g=e.data.get(s.dataId).values,x=[i&&f>1?c-1:c,i&&d>1?p-1:p],b=[i&&f>1?f-1:f,i&&d>1?d-1:d],w=x[0]/b[0],I=x[1]/b[1],N=1/w,E=1/I,A=Math.ceil(N)*2+2,D=Math.ceil(E)*2+2;for(let F=0;F<l;F++){let P=F*a[0];for(let V=0;V<c;V++){let G=P+V*a[1],W=Math.floor(V*N),q=Math.floor(W-A/2);for(let H=0;H<p;H++){let K=G+H*a[2],X=Math.floor(H*E),Z=Math.floor(X-D/2);for(let et=0;et<m;et++){let nt=0;for(let st=0;st<A;st++){let at=st+q;if(at<0||at>=f)continue;let ot=P+at*u[1],it=at*w,mt=Math.min(c-1,i?Math.round(it):Math.floor(it));if(V===mt)for(let gt=0;gt<D;gt++){let It=gt+Z;if(It<0||It>=d)continue;let Rt=ot+It*u[2],Dt=It*I,Ht=Math.min(p-1,i?Math.round(Dt):Math.floor(Dt));H===Ht&&(nt+=g[Rt+et])}}h[K+et]=nt}}}}return e.makeTensorInfo(o.shape,o.dtype,h)}var dM={kernelName:rl,backendName:"cpu",kernelFunc:Bet};function Vet(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n;tt(o,"reverse");let i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return Yr({inputs:{x:o},backend:e});let u=new le(o.shape,o.dtype),l=e.bufferSync(o);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),m=p.slice();a.forEach(f=>m[f]=o.shape[f]-1-m[f]),u.set(l.get(...m),...p)}return e.makeTensorInfo(u.shape,u.dtype,u.values)}var hM={kernelName:Gs,backendName:"cpu",kernelFunc:Vet};var gM={kernelName:fl,backendName:"cpu",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(n.shape)),[l,c,p,m]=n.shape,[f,d]=S.getImageCenter(i,c,p),h=255,g=Math.sin(o),x=Math.cos(o),b=a.data.get(n.dataId).values;for(let I=0;I<l;I++){let N=I*p*c*m;for(let E=0;E<c;E++){let A=E*(p*m);for(let D=0;D<p;D++){let F=D*m;for(let P=0;P<m;P++){let V=[l,E,D,P],G=V[2],W=V[1],q=(G-f)*x-(W-d)*g,H=(G-f)*g+(W-d)*x;q=Math.round(q+f),H=Math.round(H+d);let K=s;if(typeof s!="number"&&(P===3?K=h:K=s[P]),q>=0&&q<p&&H>=0&&H<c){let Z=H*(p*m),et=q*m,nt=N+Z+et+P;K=b[nt]}let X=N+A+F+P;u[X]=K}}}}return{dataId:a.write(u,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var Get=At(Ws,r=>{let t=Math.floor(r);return r-t<.5?Math.floor(r):r-t>.5?Math.ceil(r):t%2===0?t:t+1}),xM={kernelName:Ws,backendName:"cpu",kernelFunc:Get};function Wet(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=!0,f=e.bufferSync(o),d=e.bufferSync(s),h=bi(f,d,i,p,l,u,a,c,0,m);return e.makeTensorInfo(i,h.dtype,h.values)}var yM={kernelName:ol,backendName:"cpu",kernelFunc:Wet};function Uet(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<t?e=o+1:n=o;return n}function Het(r,t){let e=0,n=r.length,o=0;for(;e<n;)o=Math.floor((e+n)/2),r[o]<=t?e=o+1:n=o;return n}function bM(r,t,e,n,o,s){let i=y.getArrayFromDType("int32",e*o);for(let a=0;a<e;++a){let u=r.slice(a*n,(a+1)*n),l=a*o;for(let c=0;c<o;++c)i[l+c]=s==="left"?Uet(u,t[c+l]):Het(u,t[c+l])}return i}function qet(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,l=bM(a,u,o.shape[0],o.shape[1],s.shape[1],i);return e.makeTensorInfo(s.shape,"int32",l)}var wM={kernelName:il,backendName:"cpu",kernelFunc:qet};function Ket(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t;tt([n,o,s],"select");let i=n.shape.length,a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=lr(o.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(o.shape),c),m=0,f=i===0||i>1||o.shape.length===1?1:y.sizeFromShape(o.shape.slice(1));for(let d=0;d<a.length;d++)for(let h=0;h<f;h++)a[d]===1?p[m++]=u[d]:p[m++]=l[d];return e.makeTensorInfo(o.shape,c,p)}var IM={kernelName:Bi,backendName:"cpu",kernelFunc:Ket};var jet=S.SELU_SCALEALPHA,Xet=S.SELU_SCALE,Yet=At(Hs,r=>r>=0?Xet*r:jet*(Math.exp(r)-1)),CM={kernelName:Hs,backendName:"cpu",kernelFunc:Yet};var Zet=At(Ks,r=>r<0?-1:r>0?1:0),vM={kernelName:Ks,backendName:"cpu",kernelFunc:Zet};var Jet=At(qs,r=>Math.sin(r)),SM={kernelName:qs,backendName:"cpu",kernelFunc:Jet};var Qet=At(al,r=>Math.sinh(r)),NM={kernelName:al,backendName:"cpu",kernelFunc:Qet};var trt=11920928955078125e-23,kM=Math.log(trt)+2,ert=At(Xs,r=>{let t=r>-kM,e=r<kM,n=Math.exp(r),o;return e?o=n:t?o=r:o=Math.log(1+n),o}),TM={kernelName:Xs,backendName:"cpu",kernelFunc:ert};function rrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;tt([o],"spaceToBatchND");let a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=vw.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=Jt({inputs:{x:l},backend:e,attrs:{shape:c}}),b=Ge({inputs:{x:h},backend:e,attrs:{perm:p}}),N=Jt({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(b),N}var _M={kernelName:Gi,backendName:"cpu",kernelFunc:rrt};function nrt(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.data.get(n.dataId).values,u=e.data.get(o.dataId).values,l=e.data.get(s.dataId).values,c=e.data.get(i.dataId).values[0],[p,m,f,d,h]=dw(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var EM={kernelName:su,backendName:"cpu",kernelFunc:nrt};function ort(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.data.get(o.dataId).values),a=e.data.get(n.dataId).values,u=Array.from(e.data.get(s.dataId).values),[l,c,p]=hw(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var AM={kernelName:ll,backendName:"cpu",kernelFunc:ort};function srt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=wd(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var DM={kernelName:iu,backendName:"cpu",kernelFunc:srt};function irt(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(o.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=e.data.get(n.dataId).values,a=e.data.get(o.dataId).values,u=e.data.get(s.dataId).values,[l,c]=wd(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var $M={kernelName:au,backendName:"cpu",kernelFunc:irt};function art(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1,d=e.bufferSync(o),h;switch(s.dtype){case"bool":{let g=e.bufferSync(s),x=!!e.data.get(i.dataId).values[0];h=bi(d,g,a,m,c,l,u,p,x,f);break}case"float32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=bi(d,g,a,m,c,l,u,p,x,f);break}case"int32":{let g=e.bufferSync(s),x=e.data.get(i.dataId).values[0];h=bi(d,g,a,m,c,l,u,p,x,f);break}case"string":{let g=e.bufferSync(s),x=y.decodeString(e.data.get(i.dataId).values[0]);h=bi(d,g,a,m,c,l,u,p,x,f);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return e.makeTensorInfo(a,h.dtype,h.values)}var RM={kernelName:ul,backendName:"cpu",kernelFunc:art};function lrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Mo({inputs:{x:o},backend:e,attrs:{begin:l,size:m}});return l[a]+=p,f})}var FM={kernelName:Wi,backendName:"cpu",kernelFunc:lrt};var OM={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:r,backend:t})=>{let{x:e}=r,n=t;tt(e,"square");let o=n.data.get(e.dataId).values,s=new Float32Array(o.length);for(let a=0;a<o.length;++a){let u=o[a];s[a]=u*u}return{dataId:n.write(s,e.shape,e.dtype),shape:e.shape,dtype:e.dtype}}};var urt=At(xo,(r,t)=>{let e=t;return isNaN(r)?NaN:r>0?1:e.alpha}),PM={kernelName:xo,backendName:"cpu",kernelFunc:urt};function crt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n;tt(o,"stridedSlice");let{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=Jt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=ze.computeOutShape(b,w,I),A=Mo({inputs:{x:o},backend:e,attrs:{begin:b,size:E}});N=Jt({inputs:{x:A},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(A)}else{let E=e.bufferSync(o),A=gw(f,E,I,b);N=e.makeTensorInfo(d,A.dtype,A.values)}return N}var MM={kernelName:cl,backendName:"cpu",kernelFunc:crt};function prt(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.data.get(c.dataId).values,f=e.data.get(p.dataId).values,[d,h]=ip(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var LM={kernelName:uu,backendName:"cpu",kernelFunc:prt};function mrt(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.data.get(s.dataId).values,u=e.data.get(i.dataId).values[0],[l,c,p]=ap(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var zM={kernelName:cu,backendName:"cpu",kernelFunc:mrt};function frt(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.data.get(s.dataId).values,a=lp(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var BM={kernelName:pu,backendName:"cpu",kernelFunc:frt};var drt=At(ei,r=>Math.tan(r)),VM={kernelName:ei,backendName:"cpu",kernelFunc:drt};var hrt=At(ri,r=>Math.tanh(r)),GM={kernelName:ri,backendName:"cpu",kernelFunc:hrt};function grt(r){let{inputs:t,backend:e}=r,{tensor:n,indices:o,updates:s}=t,{sliceRank:i,numUpdates:a,sliceSize:u,strides:l,outputSize:c}=S.calculateShapes(s,o,n.shape),p=!1,m=e.bufferSync(o),f=e.bufferSync(s),d=e.bufferSync(n),h=bi(m,f,n.shape,c,u,a,i,l,d,p);return e.makeTensorInfo(n.shape,h.dtype,h.values)}var WM={kernelName:sl,backendName:"cpu",kernelFunc:grt};function xrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;tt(o,"tile");let i=xw(e.bufferSync(o),s);return e.makeTensorInfo(i.shape,i.dtype,i.values)}var UM={kernelName:no,backendName:"cpu",kernelFunc:xrt};function yrt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n;tt(o,"topk");let a=e.data.get(o.dataId).values,[u,l]=yw(a,o.shape,o.dtype,s,i);return[e.makeTensorInfo(u.shape,u.dtype,u.values),e.makeTensorInfo(l.shape,l.dtype,l.values)]}var HM={kernelName:pl,backendName:"cpu",kernelFunc:yrt};function brt(r){let{inputs:t,attrs:e,backend:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=e,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=y.computeStrides(o.shape),b=x[0],w=x[1],I=x[2],N=y.computeStrides(g),E=N[0],A=N[1],D=N[2],F=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(g));F.fill(u);let P=n.data.get(o.dataId).values,V=n.data.get(s.dataId).values;for(let W=0;W<c;++W){let q=s.shape[0]===1?V:V.subarray(W*8,W*8+8);for(let H=0;H<d;++H)for(let K=0;K<h;++K)for(let X=0;X<f;++X){let Z,et=q[6]*K+q[7]*H+1;if(et===0)continue;let nt=(q[0]*K+q[1]*H+q[2])/et,st=(q[3]*K+q[4]*H+q[5])/et,at=qM(nt,m,a),ot=qM(st,p,a);switch(i){case"nearest":Z=Srt(P,p,m,b,w,I,W,ot,at,X,u);break;case"bilinear":Z=Nrt(P,p,m,b,w,I,W,ot,at,X,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let it=W*E+H*A+K*D+X;F[it]=Z}return n.makeTensorInfo(g,o.dtype,F)}return{dataId:n.write(F,g,o.dtype),shape:o.shape,dtype:o.dtype}}var KM={kernelName:ml,backendName:"cpu",kernelFunc:brt};function qM(r,t,e){switch(e){case"reflect":return wrt(r,t);case"wrap":return Irt(r,t);case"nearest":return vrt(r,t);case"constant":default:return Crt(r,t)}}function wrt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=2*t;e<n&&(e=n*Math.trunc(-e/n)+e),e=e<-t?e+n:-e-1}else if(e>t-1)if(t<=1)e=0;else{let n=2*t;e-=n*Math.trunc(e/n),e>=t&&(e=n-e-1)}return y.clamp(0,e,t-1)}function Irt(r,t){let e=r;if(e<0)if(t<=1)e=0;else{let n=t-1;e+=t*(Math.trunc(-e/n)+1)}else if(e>t-1)if(t<=1)e=0;else{let n=t-1;e-=t*Math.trunc(e/n)}return y.clamp(0,e,t-1)}function Crt(r,t){return r}function vrt(r,t){return y.clamp(0,r,t-1)}function eg(r,t,e,n,o,s,i,a,u,l,c){let p=i*n+a*o+u*s+l;return 0<=a&&a<t&&0<=u&&u<e?r[p]:c}function Srt(r,t,e,n,o,s,i,a,u,l,c){let p=Math.round(a),m=Math.round(u);return eg(r,t,e,n,o,s,i,p,m,l,c)}function Nrt(r,t,e,n,o,s,i,a,u,l,c){let p=Math.floor(a),m=Math.floor(u),f=p+1,d=m+1,h=(d-u)*eg(r,t,e,n,o,s,i,p,m,l,c)+(u-m)*eg(r,t,e,n,o,s,i,p,d,l,c),g=(d-u)*eg(r,t,e,n,o,s,i,f,m,l,c)+(u-m)*eg(r,t,e,n,o,s,i,f,d,l,c);return(f-a)*h+(a-p)*g}function krt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;tt(s,"unique");let i=n.data.get(s.dataId).values,{outputValues:a,outputShape:u,indices:l}=up(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var jM={kernelName:mu,backendName:"cpu",kernelFunc:krt};function Trt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape.length,a=o.shape[s],u=new Array(i-1),l=0;for(let f=0;f<i;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i).fill(0),p=o.shape.slice();p[s]=1;let m=new Array(a);for(let f=0;f<m.length;f++){c[s]=f;let d=Mo({inputs:{x:o},backend:e,attrs:{begin:c,size:p}});m[f]=Jt({inputs:{x:d},backend:e,attrs:{shape:u}}),e.disposeIntermediateTensorInfo(d)}return m}var XM={kernelName:Ui,backendName:"cpu",kernelFunc:Trt};function _rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n;tt(o,"unsortedSegmentSum");let a=o.shape.length,u=s.shape.length,l=[],c=[],p=a-u,m=s;for(let d=0;d<p;++d){let h=Cd({inputs:{input:m},backend:e,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<i;++d){let h=y.createScalarValue(d,"int32"),g=e.makeTensorInfo([],"int32",h),x=zk({inputs:{a:g,b:m},backend:e}),b=Oo({inputs:{x},backend:e,attrs:{dtype:"float32"}}),w=np({inputs:{a:b,b:o},backend:e}),I=Ml({inputs:{x:w},backend:e,attrs:{axis:0,keepDims:!1}});l.push(I),c.push(g),c.push(x),c.push(b),c.push(w),c.push(I)}let f=yT({inputs:l,backend:e,attrs:{axis:0}});return c.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var YM={kernelName:fu,backendName:"cpu",kernelFunc:_rt};var Ert=[CO,AF,vO,SO,OF,NO,kO,TO,_O,EO,AO,DO,$O,RO,FO,PO,MO,LO,zO,IO,BO,VO,GO,WO,FF,PF,UO,DF,HO,KO,jO,XO,YO,ZO,JO,QO,tP,eP,rP,nP,oP,sP,iP,aP,lP,uP,cP,pP,mP,fP,hP,hO,gP,MF,xP,LF,yP,zF,bP,wP,IP,BF,VF,CP,vP,SP,NP,GF,WF,$F,kP,qO,TP,_P,EP,gO,UF,HF,AP,qF,DP,$P,RP,FP,OP,PP,MP,KF,LP,zP,BP,VP,WP,UP,HP,jF,qP,KP,YP,XF,YF,ZP,JP,QP,ZF,tM,nM,oM,vw,sM,xO,QF,iM,aM,lM,uM,RF,Jh,cM,yO,bO,wO,pM,mM,fM,dM,hM,gM,xM,oO,yM,wM,IM,CM,iO,vM,SM,NM,aO,jP,TM,_M,EM,AM,DM,$M,RM,FM,uO,OM,cO,pO,PM,MM,LM,zM,BM,mO,dP,VM,GM,WM,UM,HM,KM,JF,jM,XM,YM,eM];for(let r of Ert)sc(r);var kd={};Kt(kd,{assertNotComplex:()=>wi,bindCanvasToFramebuffer:()=>Lrt,bindColorTextureToFramebuffer:()=>sg,bindTextureToProgramUniformSampler:()=>FT,bindTextureUnit:()=>tL,bindVertexBufferToProgramAttribute:()=>Ew,callAndCheck:()=>ht,canBeRepresented:()=>CT,createFragmentShader:()=>ST,createFramebuffer:()=>DT,createProgram:()=>NT,createStaticIndexBuffer:()=>_T,createStaticVertexBuffer:()=>TT,createTexture:()=>ET,createVertexShader:()=>vT,getBatchDim:()=>zl,getExtensionOrThrow:()=>vd,getFramebufferErrorMessage:()=>eL,getMaxTexturesInShader:()=>MT,getNumChannels:()=>Prt,getProgramUniformLocation:()=>RT,getProgramUniformLocationOrThrow:()=>$T,getRowsCols:()=>Bl,getShapeAs3D:()=>Nd,getTextureShapeFromLogicalShape:()=>OT,getWebGLDisjointQueryTimerVersion:()=>LT,getWebGLErrorMessage:()=>QM,getWebGLMaxTextureSize:()=>PT,hasExtension:()=>Kn,isCapableOfRenderingToFloatTexture:()=>zT,isDownloadFloatTextureEnabled:()=>BT,isReshapeFree:()=>qu,isWebGLFenceEnabled:()=>VT,isWebGLVersionEnabled:()=>Dw,linkProgram:()=>kT,logShaderSourceAndInfoLog:()=>_w,resetMaxTextureSize:()=>zrt,resetMaxTexturesInShader:()=>Brt,unbindColorTextureFromFramebuffer:()=>Aw,unbindTextureUnit:()=>Mrt,validateFramebuffer:()=>Sd,validateProgram:()=>og,validateTextureSize:()=>AT});var pp={},Sw={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function bT(r,t){pp[r]=t}function qn(r,t){if(!(r in pp)||t!=null){let n=Drt(r,t);if(n!==null)pp[r]=n;else return console.log("Could not get context for WebGL version",r),null}let e=pp[r];return e==null||e.isContextLost()?(delete pp[r],qn(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),pp[r])}function Art(r){if(!L().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Drt(r,t){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=t==null?Art(r):t;return e.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete pp[r]},!1),L().getBool("SOFTWARE_WEBGL_ENABLED")&&(Sw.failIfMajorPerformanceCaveat=!1),r===1?e.getContext("webgl",Sw)||e.getContext("experimental-webgl",Sw):e.getContext("webgl2",Sw)}var Hu;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(Hu||(Hu={}));var Zr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Zr||(Zr={}));var Lr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Lr||(Lr={}));function mp(r,t){return[t,r]}function ZM(r,t){return r*t}function rg(r){let t=y.sizeFromShape(r),e=Math.ceil(t/4);return y.sizeToSquarishShape(e)}function wa(r,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(r/2))]}function JM(r,t){let[e,n]=wa(r,t);return e*n*4}function ng(r,t){let e=r,n,o,s,i,a,u,l,c,p,m;return L().getNumber("WEBGL_VERSION")===2?(n=e.R32F,o=e.R16F,s=e.RGBA16F,i=e.RGBA32F,a=e.RED,l=4,c=1,p=e.HALF_FLOAT,m=e.FLOAT,u=e.RGBA8):(n=r.RGBA,o=r.RGBA,s=r.RGBA,i=e.RGBA,a=r.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,m=r.FLOAT,u=r.RGBA),{internalFormatFloat:n,internalFormatHalfFloat:o,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:a,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function ht(r,t){let e=t();return L().getBool("DEBUG")&&$rt(r),e}function $rt(r){let t=r.getError();if(t!==r.NO_ERROR)throw new Error("WebGL Error: "+QM(r,t))}var Rrt=596e-10,Frt=65504;function CT(r){return!!(L().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||Rrt<Math.abs(r)&&Math.abs(r)<Frt)}function QM(r,t){switch(t){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function vd(r,t){return Ll(r,()=>r.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function vT(r,t){let e=Ll(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function ST(r,t){let e=Ll(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ht(r,()=>r.shaderSource(e,t)),ht(r,()=>r.compileShader(e)),L().get("ENGINE_COMPILE_ONLY"))return e;if(r.getShaderParameter(e,r.COMPILE_STATUS)===!1)throw _w(t,r.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}var Ort=/ERROR: [0-9]+:([0-9]+):/g;function _w(r,t){let e=Ort.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(r);return}let n=+e[1],o=r.split(`
`),s=o.length.toString().length+2,i=o.map((p,m)=>y.rightPad((m+1).toString(),s)+p),a=0;for(let p=0;p<i.length;p++)a=Math.max(i[p].length,a);let u=i.slice(0,n-1),l=i.slice(n-1,n),c=i.slice(n);console.log(u.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${y.rightPad(l[0],a)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function NT(r){return Ll(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function kT(r,t){if(ht(r,()=>r.linkProgram(t)),!L().get("ENGINE_COMPILE_ONLY")&&r.getProgramParameter(t,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function og(r,t){if(ht(r,()=>r.validateProgram(t)),r.getProgramParameter(t,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function TT(r,t){let e=Ll(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function _T(r,t){let e=Ll(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return ht(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,e)),ht(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,t,r.STATIC_DRAW)),e}function Prt(){return L().getNumber("WEBGL_VERSION")===2?1:4}function ET(r){return Ll(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function AT(r,t){let e=L().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||t<=0){let n=`[${r}x${t}]`;throw new Error("Requested texture size "+n+" is invalid.")}if(r>e||t>e){let n=`[${r}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+n+" greater than WebGL maximum on this browser / GPU "+o+".")}}function DT(r){return Ll(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ew(r,t,e,n,o,s,i){let a=r.getAttribLocation(t,e);return a===-1?!1:(ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,n)),ht(r,()=>r.vertexAttribPointer(a,o,r.FLOAT,!1,s,i)),ht(r,()=>r.enableVertexAttribArray(a)),!0)}function tL(r,t,e){rL(r,e),ht(r,()=>r.activeTexture(r.TEXTURE0+e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,t))}function Mrt(r,t){rL(r,t),ht(r,()=>r.activeTexture(r.TEXTURE0+t)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function $T(r,t,e){return Ll(r,()=>r.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function RT(r,t,e){return r.getUniformLocation(t,e)}function FT(r,t,e,n){ht(r,()=>tL(r,t,n)),ht(r,()=>r.uniform1i(e,n))}function Lrt(r){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),ht(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),ht(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function sg(r,t,e){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0))}function Aw(r,t){ht(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),ht(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function Sd(r){let t=r.checkFramebufferStatus(r.FRAMEBUFFER);if(t!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+eL(r,t))}function eL(r,t){switch(t){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ll(r,t,e){let n=ht(r,()=>t());if(n==null)throw new Error(e);return n}function rL(r,t){let e=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,n=t+r.TEXTURE0;if(n<r.TEXTURE0||n>e){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function zl(r,t=2){return y.sizeFromShape(r.slice(0,r.length-t))}function Bl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Nd(r){let t=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(t=[zl(r),...Bl(r)]),t}function OT(r,t=!1){let e=L().getNumber("WEBGL_MAX_TEXTURE_SIZE"),n=L().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");n===1/0&&L().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(n=e/2),t&&(e=e*2,n=n*2,r=r.map((a,u)=>u>=r.length-2?y.nearestLargerEven(r[u]):r[u]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r),s=null;r.length<=1&&o<=e?s=[1,o]:r.length===2&&r[0]<=e&&r[1]<=e?s=r:r.length===3&&r[0]*r[1]<=e&&r[2]<=e?s=[r[0]*r[1],r[2]]:r.length===3&&r[0]<=e&&r[1]*r[2]<=e?s=[r[0],r[1]*r[2]]:r.length===4&&r[0]*r[1]*r[2]<=e&&r[3]<=e?s=[r[0]*r[1]*r[2],r[3]]:r.length===4&&r[0]<=e&&r[1]*r[2]*r[3]<=e&&(s=[r[0],r[1]*r[2]*r[3]]);let i=s!=null&&Math.max(...s)>n&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let a=zl(r),u=2,l=2;r.length&&([u,l]=Bl(r)),o=a*(u/2)*(l/2),s=y.sizeToSquarishShape(o).map(c=>c*2)}else s=y.sizeToSquarishShape(o);return s}function Nw(r){return r%2===0}function qu(r,t){if(r=r.slice(-2),t=t.slice(-2),y.arraysEqual(r,t)||!r.length||!t.length||r[0]===0||r[1]===0||t[0]===0||t[1]===0)return!0;if(r.length!==t.length){let e=r[r.length-1],n=t[t.length-1];if(e===n||Nw(e)&&Nw(n)&&(r[0]===1||t[0]===1))return!0}return r[1]===t[1]&&Nw(r[0])&&Nw(t[0])}var kw,Tw;function PT(r){if(kw==null){let t=qn(r);kw=t.getParameter(t.MAX_TEXTURE_SIZE)}return kw}function zrt(){kw=null}function Brt(){Tw=null}function MT(r){if(Tw==null){let t=qn(r);Tw=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Tw)}function LT(r){if(r===0)return 0;let t,e=qn(r);return Kn(e,"EXT_disjoint_timer_query_webgl2")&&r===2?t=2:Kn(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function Kn(r,t){return r.getExtension(t)!=null}function Dw(r){try{if(qn(r)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function zT(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,"OES_texture_float"))return!1}else if(!Kn(t,"EXT_color_buffer_float"))return!1;return IT(t)}function BT(r){if(r===0)return!1;let t=qn(r);if(r===1){if(!Kn(t,"OES_texture_float")||!Kn(t,"WEBGL_color_buffer_float"))return!1}else{if(Kn(t,"EXT_color_buffer_float"))return IT(t);let n="EXT_color_buffer_half_float";if(Kn(t,n)){let o=t.getExtension(n);return Vrt(t,o)}return!1}return IT(t)}function IT(r){let t=ng(r),e=r.createTexture();r.bindTexture(r.TEXTURE_2D,e);let n=1,o=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatFloat,n,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(e),r.deleteFramebuffer(s),i}function Vrt(r,t){let e=ng(r,t),n=r.createTexture();r.bindTexture(r.TEXTURE_2D,n);let o=1,s=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let i=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,i),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,n,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(n),r.deleteFramebuffer(i),a}function VT(r){return r!==2?!1:qn(r).fenceSync!=null}function wi(r,t){Array.isArray(r)||(r=[r]),r.forEach(e=>{e!=null&&y.assert(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var _t=L();_t.registerFlag("HAS_WEBGL",()=>_t.getNumber("WEBGL_VERSION")>0);_t.registerFlag("WEBGL_VERSION",()=>Dw(2)?2:Dw(1)?1:0);_t.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);_t.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>_t.get("WEBGL_VERSION")===2);_t.registerFlag("WEBGL_CPU_FORWARD",()=>!0);_t.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);_t.registerFlag("WEBGL_PACK",()=>_t.getBool("HAS_WEBGL"));_t.registerFlag("WEBGL_PACK_NORMALIZATION",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_CLIP",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_PACK_REDUCE",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_LAZILY_UNPACK",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_CONV_IM2COL",()=>_t.getBool("WEBGL_PACK"));_t.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>PT(_t.getNumber("WEBGL_VERSION")));_t.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>MT(_t.getNumber("WEBGL_VERSION")));_t.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=_t.getNumber("WEBGL_VERSION");return r===0?0:LT(r)});_t.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>_t.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!xu.isMobile());_t.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>zT(_t.getNumber("WEBGL_VERSION")));_t.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>_t.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:_t.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));_t.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>BT(_t.getNumber("WEBGL_VERSION")));_t.registerFlag("WEBGL_FENCE_API_ENABLED",()=>VT(_t.getNumber("WEBGL_VERSION")));_t.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>_t.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);_t.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});_t.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>xu.isMobile()?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});_t.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);_t.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);_t.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);_t.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);_t.registerFlag("WEBGL_EXP_CONV",()=>!1);_t.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>_t.getBool("IS_TEST"));_t.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);_t.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);_t.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);_t.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function We(){let r,t,e,n,o,s,i,a,u,l;return L().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",t="in",e="out",n="in",o="texture",s="outputColor",i="out vec4 outputColor;",a=L().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",u="",l=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",t="attribute",e="varying",n="varying",o="texture2D",s="gl_FragColor",i="",a=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,u=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,l=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:t,varyingVs:e,varyingFs:n,texture2D:o,output:s,defineOutput:i,defineSpecialNaN:a,defineSpecialInf:u,defineRound:l}}function Ii(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / ${o}`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * ${o}`:`index -= ${r[s]} * ${o}`;return`${i}; ${a};`}).join("")}function fp(r,t,e="index"){let n=y.computeStrides(t);return n.map((o,s)=>{let i=`int ${r[s]} = ${e} / outShapeStrides[${s}]`,a=s===n.length-1?`int ${r[s+1]} = ${e} - ${r[s]} * outShapeStrides[${s}]`:`index -= ${r[s]} * outShapeStrides[${s}]`;return`${i}; ${a};`}).join("")}function Grt(r,t){let e=r.length,n=r.map(s=>`${t}[${s}]`),o=new Array(e-1);o[e-2]=n[e-1];for(let s=e-3;s>=0;--s)o[s]=`(${o[s+1]} * ${n[s+1]})`;return o}function nL(r,t,e="index"){let n=r.map((s,i)=>i),o=Grt(n,t);return o.map((s,i)=>{let a=`int ${r[i]} = ${e} / ${o[i]}`,u=i===o.length-1?`int ${r[i+1]} = ${e} - ${r[i]} * ${o[i]}`:`index -= ${r[i]} * ${o[i]}`;return`${a}; ${u};`}).join("")}function Td(r){let t=y.computeStrides(r).map(e=>e.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function _d(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var $w=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var{getBroadcastDims:oL}=S;function sL(r,t,e){let n=[];if(r.forEach(f=>{let d=y.sizeFromShape(f.shapeInfo.logicalShape);if(f.shapeInfo.isUniform?n.push(`uniform float ${f.name}${d>1?`[${d}]`:""};`):(n.push(`uniform sampler2D ${f.name};`),n.push(`uniform int offset${f.name};`)),e.enableShapeUniforms){let{uniformShape:h}=Rw(e.packedInputs,f.shapeInfo.logicalShape,f.shapeInfo.texShape);switch(h.length){case 1:n.push(`uniform int ${f.name}Shape;`);break;case 2:n.push(`uniform ivec2 ${f.name}Shape;`);break;case 3:n.push(`uniform ivec3 ${f.name}Shape;`);break;case 4:n.push(`uniform ivec4 ${f.name}Shape;`);break;default:break}n.push(`uniform ivec2 ${f.name}TexShape;`)}}),e.enableShapeUniforms){switch(t.logicalShape.length){case 1:n.push("uniform int outShape;");break;case 2:n.push("uniform ivec2 outShape;"),n.push("uniform int outShapeStrides;");break;case 3:n.push("uniform ivec3 outShape;"),n.push("uniform ivec2 outShapeStrides;");break;case 4:n.push("uniform ivec4 outShape;"),n.push("uniform ivec3 outShapeStrides;");break;default:break}n.push("uniform ivec2 outTexShape;")}e.customUniforms&&e.customUniforms.forEach(f=>{n.push(`uniform ${f.type} ${f.name}${f.arrayIndex?`[${f.arrayIndex}]`:""};`)});let o=n.join(`
`),s=r.map(f=>Wrt(f,t,e.packedInputs,e.enableShapeUniforms)).join(`
`),i=t.texShape,a=We(),u=qrt(a),l,c,p=Xrt(a);return t.isPacked?(l=Urt(t.logicalShape,i,e.enableShapeUniforms),c=jrt(a)):(l=Hrt(t.logicalShape,i,e.enableShapeUniforms),c=Krt(a)),e.packedInputs&&(p+=Qrt),[p,u,c,o,l,s,e.userCode].join(`
`)}function Ad(r,t=!1){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return pnt(r,t);case 1:return fnt(r,t);case 2:return hnt(r,t);case 3:return xnt(r,t);case 4:return bnt(r,t);case 5:return wnt(r);case 6:return Int(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function iL(r,t){switch(r.shapeInfo.logicalShape.length){case 0:return cnt(r);case 1:return mnt(r,t);case 2:return dnt(r,t);case 3:return gnt(r,t);default:return ynt(r,t)}}function Wrt(r,t,e=!1,n){let o="";e?o+=iL(r,n):o+=Ad(r,n);let s=r.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(e?o+=Cnt(r,t):o+=vnt(r,t)),o}function Urt(r,t,e){switch(r.length){case 0:return aL();case 1:return tnt(r,t,e);case 2:return lnt(r,t,e);case 3:return rnt(r,t,e);default:return ont(r,t,e)}}function Hrt(r,t,e){switch(r.length){case 0:return aL();case 1:return ent(r,t,e);case 2:return unt(r,t,e);case 3:return nnt(r,t,e);case 4:return snt(r,t,e);case 5:return int(r,t);case 6:return ant(r,t);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function qrt(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function Krt(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function jrt(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function Xrt(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${Yrt}
${Zrt}
${Jrt}
`}var Yrt=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Zrt=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Jrt=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Qrt=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function aL(){return`
int getOutputCoords() {
return 0;
}
`}function tnt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?e?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function ent(r,t,e){return t[0]===1?e?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?e?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:e?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function rnt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[2]/2),s=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function nnt(r,t,e){if(e)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${fp(["r","c","d"],r)}
return ivec3(r, c, d);
}
`;let n=Ii(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function ont(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],o=Math.ceil(r[r.length-1]/2),s=o*Math.ceil(r[r.length-2]/2),i=s,a="",u="b, r, c";for(let l=2;l<r.length-1;l++)i*=r[r.length-l-1],a=`
int b${l} = index / ${i};
index -= b${l} * ${i};
`+a,u=`b${l}, `+u;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${a}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${u});
}
`}function snt(r,t,e){if(e)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${fp(["r","c","d","d2"],r)}
return ivec4(r, c, d, d2);
}
`;let n=Ii(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function int(r,t){let e=Ii(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function ant(r,t){let e=Ii(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${e}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function lnt(r,t,e){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(y.arraysEqual(r,t))return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let o=Math.ceil(r[1]/2);return e?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function unt(r,t,e){return y.arraysEqual(r,t)?e?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:r[1]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:e?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function dp(r){return`offset${r}`}function cnt(r){let t=r.name,e="get"+t.charAt(0).toUpperCase()+t.slice(1),n=We();return`
vec4 ${e}() {
return ${n.texture2D}(${t}, halfCR);
}
`}function pnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${n}() {return ${e};}`;let[o,s]=r.shapeInfo.texShape;if(o===1&&s===1)return`
float ${n}() {
return sampleTexture(${e}, halfCR);
}
`;let i=dp(e);if(t)return`
float ${n}() {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], ${i});
return sampleTexture(${e}, uv);
}
`;let[a,u]=r.shapeInfo.texShape;return`
float ${n}() {
vec2 uv = uvFromFlat(${a}, ${u}, ${i});
return sampleTexture(${e}, uv);
}
`}function mnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,s=We();if(t)return`
vec4 ${n}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${e}, uv);
}
`;let i=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)];return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function fnt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${n}(int index) {
${Dd(r)}
}
`;let o=r.shapeInfo.texShape,s=o[0],i=o[1];if(i===1&&s===1)return`
float ${n}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=dp(e);return i===1?t?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / float(${e}TexShape[0]));
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${s}.0);
return sampleTexture(${e}, uv);
}
`:s===1?t?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / float(${e}TexShape[1]), 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:t?`
float ${n}(int index) {
vec2 uv = uvFromFlat(${e}TexShape[0], ${e}TexShape[1], index + ${a});
return sampleTexture(${e}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function dnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=s[0],a=s[1],u=We();if(s!=null&&y.arraysEqual(e,s))return t?`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return ${u.texture2D}(${n}, uv);
}
`:`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${i}.0);
return ${u.texture2D}(${n}, uv);
}
`;if(t)return`
vec4 ${o}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${u.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],c=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function hnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape;if(s!=null&&y.arraysEqual(e,s)){if(t)return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`;let m=s[0],f=s[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:i,keptDims:a}=y.squeezeShape(e),u=i;if(u.length<e.length){let m=$d(r,u),f=["row","col"];return`
${Ad(m,t)}
float ${o}(int row, int col) {
return ${o}(${Rd(f,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${Dd(r)}
}
`;let l=s[0],c=s[1],p=dp(n);return c===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?t?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${p};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function gnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=r.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(e[0]===1){let m=e.slice(1),f=[1,2],d=$d(r,m),h=["b","row","col"];return`
${iL(d,t)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${Rd(h,f)});
}
`}let a=We();if(t)return`
vec4 ${o}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${n}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`;let u=i[0],l=i[1],c=Math.ceil(e[2]/2),p=c*Math.ceil(e[1]/2);return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${u}, ${l}, ${p}, ${c}, b, row, col);
return ${a.texture2D}(${n}, uv);
}
`}function xnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[1]*e[2],i=e[2],{newShape:a,keptDims:u}=y.squeezeShape(e),l=a;if(l.length<e.length){let h=$d(r,l),g=["row","col","depth"];return`
${Ad(h,t)}
float ${o}(int row, int col, int depth) {
return ${o}(${Rd(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${Dd(r)}
}
`;let c=r.shapeInfo.texShape,p=c[0],m=c[1],f=r.shapeInfo.flatOffset;if(m===s&&f==null)return t?`
float ${o}(int row, int col, int depth) {
int stride1 = ${n}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&f==null)return t?`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let d=dp(n);return t?`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${n}Shape[1] * ${n}Shape[2];
int stride1 = ${n}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${d};
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${d};
vec2 uv = uvFromFlat(${p}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function ynt(r,t){let e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=We();if(t)return`
vec4 ${n}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${e}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${e}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${e}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${e}TexShape[0]) / 2.0), ceil(float(${e}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${o.texture2D}(${e}, uv);
}
`;let s=r.shapeInfo.logicalShape,i=s.length,a=r.shapeInfo.texShape,u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],l=u[0],c=u[1],p=Math.ceil(s[i-1]/2),m=p*Math.ceil(s[i-2]/2),f="int b, int row, int col",d=`b * ${m} + (row / 2) * ${p} + (col / 2)`;for(let h=2;h<i-1;h++)f=`int b${h}, `+f,m*=s[i-h-1],d=`b${h} * ${m} + `+d;return`
vec4 ${n}(${f}) {
int index = ${d};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
return ${o.texture2D}(${e}, uv);
}
`}function bnt(r,t){let e=r.shapeInfo.logicalShape,n=r.name,o="get"+n.charAt(0).toUpperCase()+n.slice(1),s=e[3],i=e[2]*s,a=e[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(e);if(u.length<e.length){let b=$d(r,u),w=["row","col","depth","depth2"];return`
${Ad(b,t)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${Rd(w,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, 1)));
${Dd(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1],d=`int stride2 = ${n}Shape[3];`,h=`int stride1 = ${n}Shape[2] * stride2;`,g=`int stride0 = ${n}Shape[1] * stride1;`;if(f===a&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
${d}
${h}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;if(f===s&&c==null)return t?`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n}Shape[1] * ${n}Shape[2], ${n}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}TexShape[1], ${n}TexShape[0]);
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${n}, uv);
}
`;let x=dp(n);return t?`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${d}
${h}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${x});
return sampleTexture(${n}, uv);
}
`:`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${m}, ${f}, index + ${x});
return sampleTexture(${n}, uv);
}
`}function wnt(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),o=t[4],s=t[3]*o,i=t[2]*s,a=t[1]*i,{newShape:u,keptDims:l}=y.squeezeShape(t);if(u.length<t.length){let h=$d(r,u),g=["row","col","depth","depth2","depth3"];return`
${Ad(h)}
float ${n}(int row, int col, int depth, int depth2, int depth3) {
return ${n}(${Rd(g,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${a}, ${i}, ${s}, ${o})) +
depth3;
${Dd(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===a&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;if(f===o&&c==null)return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${e}, uv);
}
`;let d=dp(e);return`
float ${n}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${i} + depth * ${s} +
depth2 * ${o} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${e}, uv);
}
`}function Int(r){let t=r.shapeInfo.logicalShape,e=r.name,n="get"+e.charAt(0).toUpperCase()+e.slice(1),{newShape:o,keptDims:s}=y.squeezeShape(t);if(o.length<t.length){let g=$d(r,o),x=["row","col","depth","depth2","depth3","depth4"];return`
${Ad(g)}
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${n}(${Rd(x,s)});
}
`}let i=t[5],a=t[4]*i,u=t[3]*a,l=t[2]*u,c=t[1]*l;if(r.shapeInfo.isUniform)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${l}, ${u}, ${a})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${Dd(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${l}, ${u}, ${a}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;if(d===i&&p==null)return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${e}, uv);
}
`;let h=dp(e);return`
float ${n}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${l} + depth * ${u} +
depth2 * ${a} + depth3 * ${i} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${e}, uv);
}
`}function Dd(r){let t=r.name,e=y.sizeFromShape(r.shapeInfo.logicalShape);return e<2?`return ${t};`:`
for (int i = 0; i < ${e}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Cnt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=r.shapeInfo.logicalShape.length,i=t.logicalShape.length,a=oL(r.shapeInfo.logicalShape,t.logicalShape),u=zt(i),l=i-s,c,p=["x","y","z","w","u","v"];s===0?c="":i<2&&a.length>=1?c="coords = 0;":c=a.map(b=>`coords.${p[b+l]} = 0;`).join(`
`);let m="";i<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+l]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(t.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)i===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(a.length){let b=s-2,w=s-1;a.indexOf(b)>-1&&a.indexOf(w)>-1?f="return vec4(outputValue.x);":a.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":a.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${o}() {
${u} coords = getOutputCoords();
${c}
vec4 outputValue = get${n}(${m});
${f}
}
`}function vnt(r,t){let e=r.name,n=e.charAt(0).toUpperCase()+e.slice(1),o="get"+n+"AtOutCoords",s=t.texShape,i=r.shapeInfo.texShape,a=r.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!r.shapeInfo.isUniform&&a===u&&r.shapeInfo.flatOffset==null&&y.arraysEqual(i,s))return`
float ${o}() {
return sampleTexture(${e}, resultUV);
}
`;let l=zt(u),c=oL(r.shapeInfo.logicalShape,t.logicalShape),p=u-a,m,f=["x","y","z","w","u","v"];a===0?m="":u<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return u<2&&a>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${o}() {
${l} coords = getOutputCoords();
${m}
return get${n}(${d});
}
`}function zt(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Rw(r,t,e){let{newShape:n,keptDims:o}=y.squeezeShape(t),s=t.length,i=r&&s===3&&t[0]===1,a=i?t.slice(1):n,u=!r&&s>1&&!y.arraysEqual(t,e)&&n.length<s||i;return{useSqueezeShape:u,uniformShape:u?a:t,keptDims:o}}function $d(r,t){let e=JSON.parse(JSON.stringify(r));return e.shapeInfo.logicalShape=t,e}function Rd(r,t){return t.map(e=>r[e]).join(", ")}function uL(r,t,e,n){let o=e.map((c,p)=>{let m={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(m.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:m}}),s=o.map(c=>c.shapeInfo),i={logicalShape:n.shape,texShape:n.texData.texShape,isUniform:!1,isPacked:n.texData.isPacked,flatOffset:null},a=sL(o,i,t),u=ST(r.gl,a),l=r.createProgram(u);return L().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:u,source:a,webGLProgram:l,inShapeInfos:s,outShapeInfo:i},GT(r,t,l))}function GT(r,t,e){let n=[],o=[],s,i,a,u=null,l=null;l=r.getUniformLocation(e,"NAN",!1),L().getNumber("WEBGL_VERSION")===1&&(u=r.getUniformLocation(e,"INFINITY",!1));let c=!1;for(let p of t.variableNames){let m={name:p,uniform:r.getUniformLocation(e,p,c),offset:r.getUniformLocation(e,`offset${p}`,c)};t.enableShapeUniforms&&(m.shape=r.getUniformLocation(e,`${p}Shape`,c),m.texShape=r.getUniformLocation(e,`${p}TexShape`,c)),n.push(m)}if(t.enableShapeUniforms&&(s=r.getUniformLocation(e,"outShape",c),a=r.getUniformLocation(e,"outShapeStrides",c),i=r.getUniformLocation(e,"outTexShape",c)),t.customUniforms)for(let p of t.customUniforms)o.push(r.getUniformLocation(e,p.name,c));return{variablesLocations:n,customUniformLocations:o,infLoc:u,nanLoc:l,outShapeLocation:s,outShapeStridesLocation:a,outTexShapeLocation:i}}function lL(r,t){if(r.length!==t.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${t.length} inputs`);r.forEach((e,n)=>{let o=e.logicalShape,s=t[n],i=s.shape;if(!y.arraysEqual(o,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${i} must match`);if(e.isUniform&&s.isUniform)return;let a=e.texShape,u=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(a,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${a} and ${u} must match`)})}function cL(r,t,e,n,o){t.program.enableShapeUniforms||(lL(t.inShapeInfos,e),lL([t.outShapeInfo],[n]));let s=n.texData.texture,i=n.texData.texShape;n.texData.isPacked?r.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):r.setOutputMatrixTexture(s.texture,i[0],i[1]),r.setProgram(t.webGLProgram),L().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&r.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&r.gl.uniform1f(t.nanLoc,NaN);for(let u=0;u<e.length;++u){let l=e[u],{uniform:c,offset:p,shape:m,texShape:f}=t.variablesLocations[u];if(m){let{uniformShape:d}=Rw(t.program.packedInputs,l.shape,l.texData.texShape);switch(d.length){case 1:r.gl.uniform1iv(m,new Int32Array(d));break;case 2:r.gl.uniform2iv(m,new Int32Array(d));break;case 3:r.gl.uniform3iv(m,new Int32Array(d));break;case 4:r.gl.uniform4iv(m,new Int32Array(d));break;default:break}}if(f&&r.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),c!=null){if(l.isUniform){if(y.sizeFromShape(l.shape)<2)r.gl.uniform1f(c,l.uniformValues[0]);else{let d=l.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),r.gl.uniform1fv(c,d)}continue}l.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,l.texData.slice.flatOffset),r.setInputMatrixTexture(l.texData.texture.texture,c,u)}}let a=t.outShapeLocation;if(a)switch(n.shape.length){case 1:r.gl.uniform1iv(a,new Int32Array(n.shape));break;case 2:r.gl.uniform2iv(a,new Int32Array(n.shape));break;case 3:r.gl.uniform3iv(a,new Int32Array(n.shape));break;case 4:r.gl.uniform4iv(a,new Int32Array(n.shape));break;default:break}if(t.outShapeStridesLocation){let u=y.computeStrides(n.shape);switch(n.shape.length){case 2:r.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:r.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:r.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}if(t.outTexShapeLocation&&r.gl.uniform2i(t.outTexShapeLocation,n.texData.texShape[0],n.texData.texShape[1]),t.program.customUniforms&&o)for(let u=0;u<t.program.customUniforms.length;++u){let l=t.program.customUniforms[u],c=t.customUniformLocations[u],p=o[u];if(l.type==="float")r.gl.uniform1fv(c,p);else if(l.type==="vec2")r.gl.uniform2fv(c,p);else if(l.type==="vec3")r.gl.uniform3fv(c,p);else if(l.type==="vec4")r.gl.uniform4fv(c,p);else if(l.type==="int")r.gl.uniform1iv(c,p);else if(l.type==="ivec2")r.gl.uniform2iv(c,p);else if(l.type==="ivec3")r.gl.uniform3iv(c,p);else if(l.type==="ivec4")r.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}r.executeProgram()}function pL(r,t,e){let n="";t.concat(e).forEach(i=>{let a=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(r.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=Rw(r.packedInputs,i.shape,u),m="",f="",d="";if(c.length===1&&r.packedInputs){let N=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];m=`${N[0]>1}_${N[1]>1}`}else if(c.length===2&&!r.packedInputs)f=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!r.packedInputs){let N=y.computeStrides(c);d=`${N[0]===u[1]}_${N[N.length-1]===u[1]}`}let h=i.shape.length,g=c.length===2&&y.arraysEqual(i.shape,u),x=y.sizeFromShape(i.shape)===1,b=S.getBroadcastDims(i.shape,e.shape),w=!r.packedInputs&&h===e.shape.length&&y.arraysEqual(u,e.texData.texShape),I=r.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;n+=`${h}_${w}_${l?p:""}_${c.length}_${x}_${b}_${g}_${m}_${f}_${d}_${I}_${a}`}else{let u=i.isUniform?"uniform":i.texData.texShape;n+=`${i.shape}_${u}_${a}`}});let o=r.userCode,s=r.constructor.name;return s+="_"+n+"_"+o+`${L().getNumber("WEBGL_VERSION")}`,s}function de(r){return L().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&r<=4}var Fw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Hu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?fp(["r","c","d"],t):Ii(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${e.output} = result;
}
`}};var Ow=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Hu.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let e=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?fp(["r","c","d"],t):Ii(["r","c","d"],t)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${e.output} = result;
}
`}};var Pw=class{constructor(t){this.variableNames=["A"],this.outTexUsage=Zr.DOWNLOAD;let e=We();this.outputShape=t,this.userCode=`
${$w}
void main() {
float x = getAAtOutCoords();
${e.output} = encode_float(x);
}
`}};var Mw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zr.DOWNLOAD;let e=We();this.outputShape=t,this.userCode=`
${$w}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${e.output} = encode_float(x);
}
`}};var knt={R:0,G:1,B:2,A:3},ig=class{constructor(t,e=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let o=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let s="result";e&&(s="floor(result * 255. + 0.5)");let i="";for(let a=0;a<n.length;a++){let u=n[a];i+=`
if(offset == ${a}) {
result = values[${knt[u]}];
}`}this.userCode=`
${this.enableShapeUniforms?_d():Td(t)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${o.texture2D}(A, uv);
${i}
}
${o.output} = vec4(${s}, 0., 0., 0.);
}
`}};var Lw=class{constructor(t,e=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=We();this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let o="",s="result";e&&(s="floor(result * 255. + 0.5)");for(let i=0;i<=1;i++)for(let a=0;a<=1;a++){let u=i*2+a;o+=`
localCoords = coords;
if(localCoords[2] + ${a} < ${this.enableShapeUniforms?"outShape[2]":`${t[2]}`}) {
localCoords[2] += ${a};
if (localCoords[1] + ${i} < ${this.enableShapeUniforms?"outShape[1]":`${t[1]}`}) {
localCoords[1] += ${i};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${u}] = values[0];
} else if (offset == 1) {
result[${u}] = values[1];
} else if (offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?_d():Td(t)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${o}
${n.output} = ${s};
}
`}};var s1={};Kt(s1,{bindVertexProgramAttributeStreams:()=>ZT,createBufferFromOutputTexture:()=>t1,createFloat16MatrixTexture:()=>KT,createFloat16PackedMatrixTexture:()=>YT,createFloat32MatrixTexture:()=>qT,createIndexBuffer:()=>HT,createPackedMatrixTexture:()=>XT,createUnsignedBytesMatrixTexture:()=>jT,createVertexBuffer:()=>UT,createVertexShader:()=>WT,downloadByteEncodedFloatMatrixFromOutputTexture:()=>r1,downloadFloat32MatrixFromBuffer:()=>e1,downloadMatrixFromPackedOutputTexture:()=>o1,downloadPackedMatrixFromBuffer:()=>n1,getInternalFormatForFloat16MatrixTexture:()=>Bw,getInternalFormatForFloat16PackedMatrixTexture:()=>Ww,getInternalFormatForFloat32MatrixTexture:()=>zw,getInternalFormatForPackedMatrixTexture:()=>Gw,getInternalFormatForUnsignedBytesMatrixTexture:()=>Vw,uploadDenseMatrixToTexture:()=>JT,uploadPixelDataToTexture:()=>QT});function WT(r){let t=We(),e=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return vT(r,e)}function UT(r){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return TT(r,t)}function HT(r){let t=new Uint16Array([0,1,2,2,1,3]);return _T(r,t)}function ag(r,t,e,n,o,s){AT(t,e);let i=ET(r),a=r.TEXTURE_2D;return ht(r,()=>r.bindTexture(a,i)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MIN_FILTER,r.NEAREST)),ht(r,()=>r.texParameteri(a,r.TEXTURE_MAG_FILTER,r.NEAREST)),L().getNumber("WEBGL_VERSION")===1?ht(r,()=>r.texImage2D(a,0,n,t,e,0,o,s,null)):ht(r,()=>r.texStorage2D(a,1,n,t,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null)),{texture:i,texShape:[e,t]}}function zw(r){return r.internalFormatFloat}function qT(r,t,e,n){let[o,s]=mp(t,e);return ag(r,o,s,zw(n),n.textureFormatFloat,r.FLOAT)}function Bw(r){return r.internalFormatHalfFloat}function KT(r,t,e,n){let[o,s]=mp(t,e);return ag(r,o,s,Bw(n),n.textureFormatFloat,n.textureTypeHalfFloat)}function Vw(r){return r.downloadTextureFormat}function jT(r,t,e,n){let[o,s]=mp(t,e);return ag(r,o,s,Vw(n),r.RGBA,r.UNSIGNED_BYTE)}function Gw(r){return r.internalFormatPackedFloat}function XT(r,t,e,n){let[o,s]=wa(t,e);return ag(r,o,s,Gw(n),r.RGBA,r.FLOAT)}function Ww(r){return r.internalFormatPackedHalfFloat}function YT(r,t,e,n){let[o,s]=wa(t,e);return ag(r,o,s,Ww(n),r.RGBA,n.textureTypeHalfFloat)}function ZT(r,t,e){return ht(r,()=>r.bindBuffer(r.ARRAY_BUFFER,e)),Ew(r,t,"clipSpacePos",e,3,20,0)&&Ew(r,t,"uv",e,2,20,12)}function JT(r,t,e,n,o,s){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t));let i,a,u;o instanceof Uint8Array?(i=new Uint8Array(e*n*4),a=r.UNSIGNED_BYTE,u=r.RGBA):(i=new Float32Array(e*n*4),a=r.FLOAT,u=s.internalFormatPackedFloat),i.set(o),L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e,n,r.RGBA,a,i)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,u,e,n,0,r.RGBA,a,i)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function QT(r,t,e){ht(r,()=>r.bindTexture(r.TEXTURE_2D,t)),e.data instanceof Uint8Array?L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,e.width,e.height,r.RGBA,r.UNSIGNED_BYTE,e.data)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,e.width,e.height,0,r.RGBA,r.UNSIGNED_BYTE,e.data)):L().getNumber("WEBGL_VERSION")===2?ht(r,()=>r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,e)):ht(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,e)),ht(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function t1(r,t,e,n){let o=r.createBuffer();ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,o));let a=4*4*t*e;return ht(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,a,r.STREAM_READ)),ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,0)),ht(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),o}function e1(r,t,e){let n=r,o=new Float32Array(e);return n.bindBuffer(n.PIXEL_PACK_BUFFER,t),n.getBufferSubData(n.PIXEL_PACK_BUFFER,0,o),n.bindBuffer(n.PIXEL_PACK_BUFFER,null),o}function r1(r,t,e,n){let[o,s]=mp(t,e),i=4,a=new Uint8Array(ZM(t*e,i));return ht(r,()=>r.readPixels(0,0,o,s,n.downloadTextureFormat,r.UNSIGNED_BYTE,a)),new Float32Array(a.buffer)}function n1(r,t,e,n,o,s,i,a){let u=r,l=new Float32Array(JM(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function o1(r,t,e){let n=new Float32Array(t*e*4);return ht(r,()=>r.readPixels(0,0,e,t,r.RGBA,r.FLOAT,n)),n}var hp=class{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let e=L().getNumber("WEBGL_VERSION");if(t!=null?(this.gl=t,bT(e,t)):this.gl=qn(e),t=this.gl,L().getNumber("WEBGL_VERSION")===2){let s=t;this.createVertexArray=()=>ht(s,()=>s.createVertexArray()),this.bindVertexArray=i=>ht(s,()=>s.bindVertexArray(i)),this.deleteVertexArray=i=>ht(s,()=>s.deleteVertexArray(i)),this.getVertexArray=()=>ht(s,()=>s.getParameter(s.VERTEX_ARRAY_BINDING))}else if(t!=null){let s=t.getExtension("OES_vertex_array_object");if(s==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ht(t,()=>s.createVertexArrayOES()),this.bindVertexArray=i=>ht(t,()=>s.bindVertexArrayOES(i)),this.deleteVertexArray=i=>ht(t,()=>s.deleteVertexArrayOES(i)),this.getVertexArray=()=>ht(t,()=>t.getParameter(s.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),L().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",i="OES_texture_half_float";if(this.textureFloatExtension=vd(this.gl,s),Kn(this.gl,i))this.textureHalfFloatExtension=vd(this.gl,i);else if(L().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Kn(this.gl,o))this.colorBufferHalfFloatExtension=vd(this.gl,o);else if(L().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Kn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Kn(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=UT(this.gl),this.indexBuffer=HT(this.gl),this.framebuffer=DT(this.gl),this.textureConfig=ng(this.gl,this.textureHalfFloatExtension)}get debug(){return L().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;ht(t,()=>t.finish()),ht(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),ht(t,()=>t.deleteFramebuffer(this.framebuffer)),ht(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),ht(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),ht(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),qT(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),KT(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),jT(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),QT(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,n,o){this.throwIfDisposed(),JT(this.gl,t,e,n,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),YT(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),XT(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(Aw(this.gl,this.framebuffer),this.outputTexture=null),ht(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,n){return this.downloadMatrixDriver(t,()=>r1(this.gl,e,n,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,n,o,s,i){return n1(this.gl,t,e,n,o,s,i,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return e1(this.gl,t,e)}createBufferFromTexture(t,e,n){this.bindTextureToFrameBuffer(t);let o=t1(this.gl,e,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,n;if(L().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),n=()=>{let i=o.clientWaitSync(s,0,0);return i===o.ALREADY_SIGNALED||i===o.CONDITION_SATISFIED},e=s}else L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(e,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:e,isFencePassed:n}}downloadMatrixFromPackedTexture(t,e,n){return this.downloadMatrixDriver(t,()=>o1(this.gl,e,n))}createProgram(t){this.throwIfDisposed();let e=this.gl;this.vertexShader==null&&(this.vertexShader=WT(e));let n=NT(e);ht(e,()=>e.attachShader(n,this.vertexShader)),ht(e,()=>e.attachShader(n,t)),kT(e,n);let o;return o=Object.assign(n,{vao:this.createVertexArray()}),this.bindVertexArray(o.vao),ht(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),console.assert(ZT(e,o,this.vertexBuffer),"gpgpu_util.bindVertexProgramAttributeStreams not fully successful."),this.debug&&og(e,o),this.setProgram(o),o}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&(ht(this.gl,()=>this.gl.deleteProgram(t)),this.deleteVertexArray(t.vao))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&(this.bindVertexArray(this.program.vao),this.debug&&og(this.gl,this.program)),ht(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,n=!0){return this.throwIfDisposed(),n?$T(this.gl,t,e):RT(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),ht(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,n){this.throwIfDisposed(),this.throwIfNoProgram(),FT(this.gl,t,e,n)}setOutputMatrixTexture(t,e,n){this.setOutputMatrixTextureDriver(t,n,e)}setOutputPackedMatrixTexture(t,e,n){this.throwIfDisposed();let[o,s]=wa(e,n);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,n,o){this.setOutputMatrixWriteRegionDriver(n,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,n,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&og(this.gl,this.program),Sd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;if(this.debug){let e=this.getVertexArray();console.assert(e===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ht(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ht(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=vd(this.gl,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,n=this.getQueryTimerExtensionWebGL2();e.endQuery(n.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(t,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let n=this.gl;return n.getQueryParameter(t,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(t,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let n=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(t,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),o=n.getQueryObjectEXT(t,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=Tnt(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:n}=this.itemsToPoll[e];n()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in L().platform&&(n=L().platform.setTimeoutCustom.bind(L().platform)),y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(t){this.throwIfDisposed(),sg(this.gl,t,this.framebuffer),this.debug&&Sd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(sg(this.gl,this.outputTexture,this.framebuffer),this.debug&&Sd(this.gl)):Aw(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let n=e();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(t,e,n){this.throwIfDisposed();let o=this.gl;sg(o,t,this.framebuffer),this.debug&&Sd(o),this.outputTexture=t,ht(o,()=>o.viewport(0,0,e,n)),ht(o,()=>o.scissor(0,0,e,n))}setOutputMatrixWriteRegionDriver(t,e,n,o){this.throwIfDisposed(),ht(this.gl,()=>this.gl.scissor(t,e,n,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Tnt(r){let t=0;for(;t<r.length&&r[t]();++t);return t-1}var{addImpl:mL,bincountImpl:Uw,bincountReduceImpl:fL,castImpl:dL,ceilImpl:hL,concatImpl:gL,equalImpl:xL,expImpl:yL,expm1Impl:bL,floorImpl:wL,gatherNdImpl:IL,gatherV2Impl:CL,greaterImpl:vL,greaterEqualImpl:SL,lessImpl:NL,lessEqualImpl:kL,linSpaceImpl:TL,logImpl:_L,maxImpl:EL,maximumImpl:AL,minimumImpl:DL,multiplyImpl:$L,negImpl:RL,notEqualImpl:FL,prodImpl:OL,raggedGatherImpl:PL,raggedRangeImpl:ML,raggedTensorToTensorImpl:LL,rangeImpl:zL,rsqrtImpl:BL,scatterImpl:VL,sigmoidImpl:GL,simpleAbsImpl:Hw,sliceImpl:WL,sparseFillEmptyRowsImpl:UL,sparseReshapeImpl:HL,sparseSegmentReductionImpl:qw,sqrtImpl:qL,staticRegexReplaceImpl:KL,stridedSliceImpl:jL,stringNGramsImpl:XL,stringSplitImpl:YL,stringToHashBucketFastImpl:ZL,subImpl:JL,tileImpl:QL,topKImpl:tz,transposeImpl:gp,uniqueImpl:ez}=bw;function i1(r,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${r}.${e}`)}function er(r,t){return t===1?[r]:i1(r,t)}function rz(r,t){if(r===1)return"rc";let e="";for(let n=0;n<r;n++)e+=t[n],n<r-1&&(e+=",");return e}var Kw=class{constructor(t){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.enableShapeUniforms=de(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let e=er("rc",this.rank),n=zt(this.rank),o=this.getOutOfBoundsCondition(e),s=this.getSetup(e),i=this.getOutput(e);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${o}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}getSourceCoordsArr(t){let e=[];for(let n=0;n<=1;n++)for(let o=0;o<=1;o++){let s=`${n===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let i=2;i<this.rank;i++)s=`${t[t.length-1-i]},`+s;e.push(s)}return e}getOutOfBoundsCondition(t){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let e="";for(let n=this.rank-2;n<this.rank;n++)e+=`${t[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(e+="||");return e}getSetup(t){if(this.rank===1)return"";let e=t.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],o=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${e[0]};
int c = ${e[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${o};
`}getOutput(t){let e=this.getSourceCoordsArr(t);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${e[0]}),
cEdge ? 0. : getA(${e[1]}),
rEdge ? 0. : getA(${e[2]}),
rEdge || cEdge ? 0. : getA(${e[3]})`}};var Fd=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let n="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),n+=`
${s}
${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${o}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${o>0?"}":""}
`}this.userCode=`
${_nt(e,this.enableShapeUniforms)}
${this.enableShapeUniforms?_d():Td(t)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":t[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":t[2]};
${n}
setOutput(result);
}
`}};function _nt(r,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?nL(["r","c","d"],"inputShape"):Ii(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var jw=class{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(t,e,n){let o=oz(e,n),s=sz(t,o,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let i=nz(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=i,this.log();let u=this.freeTextures[s].pop();return this.usedTextures[s].push(u),u}let a;return o===Lr.PACKED_2X2_FLOAT32?a=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Lr.PACKED_2X2_FLOAT16?a=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT32?a=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Lr.UNPACKED_FLOAT16?a=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Lr.PACKED_4X1_UNSIGNED_BYTE&&(a=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(a),this.numUsedTextures++,this._numBytesAllocated+=i,this.log(),a}releaseTexture(t,e,n,o){if(this.freeTextures==null)return;let s=oz(n,o),i=sz(e,s,o);i in this.freeTextures||(this.freeTextures[i]=[]);let a=nz(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),u=L().get("WEBGL_DELETE_TEXTURE_THRESHOLD");u!==-1&&this._numBytesAllocated>u?(this.gpgpu.deleteMatrixTexture(t.texture),this._numBytesAllocated-=a):(this.freeTextures[i].push(t),this.numFreeTextures++,this._numBytesFree+=a),this.numUsedTextures--;let l=this.usedTextures[i],c=l&&l.indexOf(t);if(c==null||c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l[c]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Ent(r,t){let e=r;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===r.RGBA)return 16;if(t===e.RGBA16F)return 8;if(t===e.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function nz(r,t,e,n,o){let s=Ant(t,n),i;if(o){let[u,l]=wa(r[0],r[1]);i=u*l}else{let[u,l]=mp(r[0],r[1]);i=u*l}let a=Ent(e,s);return i*a}function Ant(r,t){switch(r){case Lr.PACKED_2X2_FLOAT32:return Gw(t);case Lr.PACKED_2X2_FLOAT16:return Ww(t);case Lr.UNPACKED_FLOAT32:return zw(t);case Lr.UNPACKED_FLOAT16:return Bw(t);case Lr.PACKED_4X1_UNSIGNED_BYTE:return Vw(t);default:throw new Error(`Unknown physical texture type ${r}`)}}function Dnt(r){return L().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?Lr.PACKED_2X2_FLOAT32:Lr.UNPACKED_FLOAT32:r?Lr.PACKED_2X2_FLOAT16:Lr.UNPACKED_FLOAT16}function oz(r,t){if(r===Zr.UPLOAD)return Lr.PACKED_2X2_FLOAT32;if(r===Zr.RENDER||r==null)return Dnt(t);if(r===Zr.DOWNLOAD||r===Zr.PIXELS)return Lr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function sz(r,t,e){return`${r[0]}_${r[1]}_${t}_${e}`}var zr=class{constructor(t,e){this.variableNames=["A"],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${e}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},yr="if (isnan(x)) return x;",iz="return x;",a1="return abs(x);";var az="return (x >= 0.0) ? x : (exp(x) - 1.0);",lz=yr+`
return (x < 0.0) ? 0.0 : x;
`,uz=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Ia="return x;",cz="return 1.0 / (1.0 + exp(-1.0 * x));";var mz="return x;",fz=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,dz=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,hz=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,gz="return 1.0 / (1.0 + exp(-1.0 * x));",Dn=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${e}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Xw=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let e=t.length,n=er("rc",e),o=zt(e),s=rz(e,n),i=n.slice(-2),a=e<=1?"rc":`vec2(${i.join(",")})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${a}));
}
`}};var Rnt=Kr.whereImpl,Fnt=1e-7,Ont=1e-4,Yw={};function Pnt(r){return r in Yw||(Yw[r]={}),Yw[r]}var Mnt=L().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Lnt=600;function znt(){return L().global.screen==null?1024:L().global.screen.height*L().global.screen.width*window.devicePixelRatio*Lnt/1024/1024}var Ku=class extends Go{nextDataId(){return Ku.nextDataId++}constructor(t){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!L().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let e;if(t!=null){if(t instanceof hp)e=t;else{let n=qn(L().getNumber("WEBGL_VERSION"),t);e=new hp(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=qn(L().getNumber("WEBGL_VERSION"));e=new hp(n),this.binaryCache=Pnt(L().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=e,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new jw(this.gpgpu),this.numMBBeforeWarning=znt(),this.texData=new Ta(this,Bn())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(t,e,n,o,s,i){let a=this.makeTensorInfo(e,n),u=this.texData.get(a.dataId);u.isPacked=!1,u.texture={texture:t,texShape:[o,s]},u.texShape=[o,s];let l=Nd(e),c=new ig(l,!1,i),p=this.runWebGLProgram(c,[a],n,[[o,s]]);return p.shape=e,u.texture=null,this.disposeIntermediateTensorInfo(a),p.dataId}write(t,e,n){if((L().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||L().getBool("DEBUG"))&&this.checkNumericalProblems(t),n==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={id:this.nextDataId()};return this.texData.set(o,{shape:e,dtype:n,values:t,usage:Zr.UPLOAD,refCount:1}),o}refCount(t){return this.texData.has(t)?this.texData.get(t).refCount:0}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,n,o,s){if(L().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:n,dtype:o,values:e,usage:Zr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(t){this.disposeData(t.dataId)}readSync(t){let e=this.texData.get(t),{values:n,dtype:o,complexTensorInfos:s,slice:i,shape:a,isPacked:u}=e;if(i!=null){let m;u?m=new Dn(a,Ia):m=new zr(a,Ia);let f=this.runWebGLProgram(m,[{dataId:t,shape:a,dtype:o}],o),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(n!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return n;let l=this.activeTimers!=null,c;l&&(c=y.now());let p;if(o==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=S.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(t);return l&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(t,p)}async read(t){if(this.pendingRead.has(t)){let d=this.pendingRead.get(t);return new Promise(h=>d.push(h))}let e=this.texData.get(t),{values:n,shape:o,slice:s,dtype:i,complexTensorInfos:a,isPacked:u}=e;if(s!=null){let d;u?d=new Dn(o,Ia):d=new zr(o,Ia);let h=this.runWebGLProgram(d,[{dataId:t,shape:o,dtype:i}],i),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(n!=null)return this.convertAndCacheOnCPU(t);if(L().getBool("DEBUG")&&!L().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&L().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(i!=="complex64"&&L().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(t);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture.texture,...rg(o))}this.pendingRead.set(t,[]),i!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(i==="complex64"){let d=await Promise.all([this.read(a.real.dataId),this.read(a.imag.dataId)]),h=d[0],g=d[1];p=S.mergeRealAndImagArrays(h,g)}else if(l==null)p=this.getValuesFromTexture(t);else{let d=y.sizeFromShape(o);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let d=this.gpgpu.gl;ht(d,()=>d.deleteBuffer(l))}let m=this.convertAndCacheOnCPU(t,p),f=this.pendingRead.get(t);return this.pendingRead.delete(t),f.forEach(d=>d(m)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t)&&Bn().removeDataId(t,this),this.pendingDeletes--),m}readToGPU(t,e={}){let n=this.texData.get(t),{values:o,shape:s,slice:i,dtype:a,isPacked:u,texture:l}=n;if(a==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(i!=null){let f;u?f=new Dn(s,Ia):f=new zr(s,Ia);let d=this.runWebGLProgram(f,[{dataId:t,shape:s,dtype:a}],a),h=this.readToGPU(d,e);return this.disposeIntermediateTensorInfo(d),h}if(l==null)throw o!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let c=this.decode(t,e.customTexShape),p=Bn().makeTensorFromTensorInfo(c),m=this.texData.get(c.dataId);return Object.assign({tensorRef:p},m.texture)}bufferSync(t){let e=this.readSync(t.dataId);if(t.dtype==="string")try{let n=e.map(o=>y.decodeString(o));return bt(t.shape,t.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return bt(t.shape,t.dtype,e)}checkNumericalProblems(t){if(t!=null)for(let e=0;e<t.length;e++){let n=t[e];if(!CT(n))throw L().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(t){let{shape:e,dtype:n,isPacked:o}=this.texData.get(t),s=y.sizeFromShape(e);if(L().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(t),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture.texture,...rg(e)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let i=L().getBool("WEBGL_PACK")&&o===!0,a=i?Nd(e):e,u=i?new Mw(a):new Pw(a),l=this.runWebGLProgram(u,[{shape:a,dtype:n,dataId:t}],"float32"),c=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(t){let e=this.activeTimers,n=[],o=!1;this.programTimersStack==null?(this.programTimersStack=n,o=!0):this.activeTimers.push(n),this.activeTimers=n,t();let s=y.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),i=y.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let a={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let u=await Promise.all(s);a.kernelMs=y.sum(u),a.getExtraProfileInfo=()=>u.map((l,c)=>({name:i[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else a.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,a})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(t){return L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=y.now(),t)}async getQueryTime(t){if(L().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t,e=!1){if(this.pendingDisposal.has(t))return!1;if(!this.texData.has(t))return!0;if(e?this.texData.get(t).refCount=0:this.texData.get(t).refCount--,!e&&this.texData.get(t).refCount>0)return!1;if(this.pendingRead.has(t))return this.pendingDisposal.add(t),this.pendingDeletes++,!1;this.releaseGPUData(t);let{complexTensorInfos:n}=this.texData.get(t);return n!=null&&(this.disposeData(n.real.dataId,e),this.disposeData(n.imag.dataId,e)),this.texData.delete(t),!0}releaseGPUData(t){let{texture:e,dtype:n,texShape:o,usage:s,isPacked:i,slice:a}=this.texData.get(t),u=a&&a.origDataId||t,l=this.dataRefCount.get(u);l>1?this.dataRefCount.set(u,l-1):(this.dataRefCount.delete(u),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,n),this.textureManager.releaseTexture(e,o,s,i)));let c=this.texData.get(t);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture.texture}getDataInfo(t){return this.texData.get(t)}shouldExecuteOnCPU(t,e=Mnt){return L().getBool("WEBGL_CPU_FORWARD")&&t.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<e)}getGPGPUContext(){return this.gpgpu}where(t){S.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return Rnt(t.shape,e)}packedUnaryOp(t,e,n){let o=new Dn(t.shape,e),s=this.compileAndRun(o,[t],n);return Bn().makeTensorFromTensorInfo(s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let o=Hw(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,o)}if(L().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,a1,t.dtype);let e=new zr(t.shape,a1),n=this.compileAndRun(e,[t]);return Bn().makeTensorFromTensorInfo(n)}makeTensorInfo(t,e,n){let o;if(e==="string"&&n!=null&&n.length>0&&y.isString(n[0])){let s=n.map(i=>y.encodeString(i));o=this.write(s,t,e)}else o=this.write(n,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,n){return Bn().makeTensorFromTensorInfo(this.makeTensorInfo(t,e,n),this)}unpackTensor(t){let e=new Xw(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new Kw(t.shape),n=!0;return this.runWebGLProgram(e,[t],t.dtype,null,n)}packedReshape(t,e){let n=[zl(t.shape),...Bl(t.shape)],o={dtype:t.dtype,shape:n,dataId:t.dataId},s=[zl(e),...Bl(e)],i=new Fd(s,n),a=!0,u=[n],l=this.runWebGLProgram(i,[o],t.dtype,u,a);return{dataId:l.dataId,shape:e,dtype:l.dtype}}decode(t,e){let n=this.texData.get(t),{isPacked:o,shape:s,dtype:i}=n;if(e!=null){let m=y.sizeFromShape(s),f=e[0]*e[1]*4;y.assert(m<=f,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let a=Nd(s),u;o?u=new Ow(a):u=new Fw(a);let l=!0,c=[e!=null?e:rg(a)],p=this.runWebGLProgram(u,[{shape:a,dtype:i,dataId:t}],i,c,l,e);return{dtype:i,shape:s,dataId:p.dataId}}runWebGLProgram(t,e,n,o,s=!1,i){let a=this.makeTensorInfo(t.outputShape,n),u=this.texData.get(a.dataId);if(t.packedOutput&&(u.isPacked=!0),t.outPackingScheme===Hu.DENSE){let x=i!=null?i:rg(t.outputShape);u.texShape=x.map(b=>b*2)}if(t.outTexUsage!=null&&(u.usage=t.outTexUsage),y.sizeFromShape(a.shape)===0)return u.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],c=e.map(x=>{if(x.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(x.dataId);if(b.texture==null){if(!t.packedInputs&&y.sizeFromShape(x.shape)<=L().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:x.shape,texData:null,isUniform:!0,uniformValues:b.values};t.packedInputs&&(b.isPacked=!0,b.shape=x.shape)}if(this.uploadToGPU(x.dataId),!!b.isPacked!=!!t.packedInputs)x=b.isPacked?this.unpackTensor(x):this.packTensor(x),l.push(x),b=this.texData.get(x.dataId);else if(b.isPacked&&!qu(b.shape,x.shape)){let w=x,I=x.shape;x.shape=b.shape,x=this.packedReshape(x,I),l.push(x),b=this.texData.get(x.dataId),w.shape=I}return{shape:x.shape,texData:b,isUniform:!1}});this.uploadToGPU(a.dataId);let p={shape:a.shape,texData:u,isUniform:!1},m=pL(t,c,p),f=this.getAndSaveBinary(m,()=>uL(this.gpgpu,t,c,p)),d=this.activeTimers!=null,h;d&&(h=this.startTimer()),L().get("ENGINE_COMPILE_ONLY")||cL(this.gpgpu,f,c,p,o),l.forEach(x=>this.disposeIntermediateTensorInfo(x)),d&&(h=this.endTimer(h),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(h)}));let g=L().get("WEBGL_FLUSH_THRESHOLD");if(g>0){let x=y.now();x-this.lastGlFlushTime>g&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=x)}if(!L().getBool("WEBGL_LAZILY_UNPACK")&&u.isPacked&&s===!1){let x=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),x}return a}compileAndRun(t,e,n,o,s=!1){return n=n||e[0].dtype,this.runWebGLProgram(t,e,n,o,s)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(L().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!L().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=L().getBool("DEBUG");L().set("DEBUG",!1);let e=this.abs(ft(1e-8)).dataSync()[0];if(L().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?Fnt:Ont}uploadToGPU(t){let e=this.texData.get(t),{shape:n,dtype:o,values:s,texture:i,usage:a,isPacked:u}=e;if(i!=null)return;let l=this.activeTimers!=null,c;l&&(c=y.now());let p=e.texShape;if(p==null&&(p=OT(n,u),e.texShape=p),s!=null){let m=Nd(n),f,d=p[1],h=p[0],g=s instanceof Uint8Array||s instanceof Uint8ClampedArray;(u||!g)&&([d,h]=wa(p[0],p[1])),u?f=new Lw(m,g):f=new ig(m,g);let x=g?[h,d]:p,b=this.makeTensorInfo(x,o),w=this.texData.get(b.dataId);g?w.usage=Zr.PIXELS:w.usage=Zr.UPLOAD,w.texShape=x,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),d,h,s);let I=[[h,d]],N=!0,E=this.runWebGLProgram(f,[b],o,I,N),A=this.texData.get(E.dataId);e.texShape=A.texShape,e.isPacked=A.isPacked,e.usage=A.usage,L().get("ENGINE_COMPILE_ONLY")?this.disposeData(E.dataId):(e.texture=A.texture,e.values=null,this.texData.delete(E.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,a,o,u);e.texture=m}}convertAndCacheOnCPU(t,e){let n=this.texData.get(t),{dtype:o}=n;return e!=null&&(n.values=Bnt(e,o)),n.values}acquireTexture(t,e,n,o){if(this.numBytesInGPU+=this.computeBytes(t,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*y.bytesPerElement(e)}checkCompileCompletion(){for(let[,t]of Object.entries(this.binaryCache))this.checkCompletion_(t)}async checkCompileCompletionAsync(){let t=[];if(this.gpgpu.parallelCompilationExtension){for(let[,e]of Object.entries(this.binaryCache))t.push(this.checkCompletionAsync_(e));return Promise.all(t)}else{for(let[,e]of Object.entries(this.binaryCache)){let n=new Promise(o=>{try{this.checkCompletion_(e),o(!0)}catch(s){throw s}});t.push(n)}return Promise.all(t)}}async checkCompletionAsync_(t){return this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(t):(await Sh(),this.checkCompletionAsync_(t))}checkCompletion_(t){if(this.gpgpu.gl.getProgramParameter(t.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(t.webGLProgram)),this.gpgpu.gl.getShaderParameter(t.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(_w(t.source,this.gpgpu.gl.getShaderInfoLog(t.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let t of Object.values(this.binaryCache)){let{variablesLocations:e,customUniformLocations:n,infLoc:o,nanLoc:s,outShapeLocation:i,outShapeStridesLocation:a,outTexShapeLocation:u}=GT(this.gpgpu,t.program,t.webGLProgram);t.variablesLocations=e,t.customUniformLocations=n,t.infLoc=o,t.nanLoc=s,t.outShapeLocation=i,t.outShapeStridesLocation=a,t.outTexShapeLocation=u}}createTensorFromGPUData(t,e,n){t.channels=t.channels||"RGBA";let{texture:o,height:s,width:i,channels:a}=t,u=Bn().backend;if(!u.gpgpu.gl.isTexture(o))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=u.writeTexture(o,e,n,s,i,a);return Bn().makeTensorFromDataId(l,e,n,u)}};Ku.nextDataId=0;function Bnt(r,t){if(t==="float32"||t==="complex64")return r;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let n=0;n<e.length;++n)e[n]=Math.round(r[n]);return e}else throw new Error(`Unknown dtype ${t}`)}var xz="4.3.0";function yz(){L().set("WEBGL_FORCE_F16_TEXTURES",!0)}xu.isBrowser()&&sm("webgl",()=>new Ku,2);var n2e={forceHalfFloat:yz};var Od=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var po=class{constructor(t,e,n){this.variableNames=["A","B"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.enableShapeUniforms=de(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${t}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var jn=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`;var Lo=class{constructor(t,e,n,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=S.assertAndGetBroadcastShape(e,n);let s=this.outputShape.length;this.enableShapeUniforms=de(s);let i="";if(o)if(s===0||y.sizeFromShape(this.outputShape)===1)i=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(i=`
${zt(s)} coords = getOutputCoords();
`,s===1)this.enableShapeUniforms?i+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:i+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let u=er("coords",s);this.enableShapeUniforms?i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= outShape[${s} - 2];
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= outShape[${s} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:i+=`
bool nextRowOutOfBounds =
(${u[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${u[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${t}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${i}
setOutput(result);
}
`}};function rr(r){let{inputs:t,backend:e}=r,{x:n}=t;return e.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var bz={kernelName:go,backendName:"webgl",kernelFunc:rr};function $n(r){let{inputs:t,backend:e}=r,{real:n,imag:o}=t,s=e.makeTensorInfo(n.shape,"complex64"),i=e.texData.get(s.dataId),a=rr({inputs:{x:n},backend:e}),u=rr({inputs:{x:o},backend:e});return i.complexTensorInfos={real:a,imag:u},s}var wz={kernelName:Op,backendName:"webgl",kernelFunc:$n};var l1="return (a < 0.) ? b * a : a;",u1=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Vnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{alpha:s}=n,i=e.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),a=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(u1,o.shape,i.shape):new po(l1,o.shape,i.shape),u=e.runWebGLProgram(a,[o,i],"float32");return e.disposeIntermediateTensorInfo(i),u}var Iz={kernelName:ws,backendName:"webgl",kernelFunc:Vnt};var c1="return (a < 0.) ? b * a : a;",p1=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Gnt(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(p1,n.shape,o.shape):new po(c1,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],"float32")}var Cz={kernelName:Os,backendName:"webgl",kernelFunc:Gnt};var zo="if (isnan(x)) return x;";function wt({opSnippet:r,packedOpSnippet:t,cpuKernelImpl:e,dtype:n}){return({inputs:o,backend:s})=>{let{x:i}=o,a=s,u=n||i.dtype;if(a.shouldExecuteOnCPU([i])&&e!=null){let p=a.texData.get(i.dataId),m=e(p.values,u);return a.makeTensorInfo(i.shape,u,m)}let l=L().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new Dn(i.shape,t):c=new zr(i.shape,r),a.runWebGLProgram(c,[i],u)}}function ue({opSnippet:r,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:n=!1,cpuKernelImpl:o,dtype:s}){return({inputs:i,backend:a})=>{let{a:u,b:l}=i,c=a;if(n&&u.dtype==="complex64"){let d=c.texData.get(u.dataId),h=c.texData.get(l.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[I,N]=w,E={dataId:I.dataId,dtype:I.dtype,shape:u.shape},A={dataId:N.dataId,dtype:N.dtype,shape:l.shape},D=new po(r,u.shape,l.shape);return c.runWebGLProgram(D,[E,A],lr(I.dtype,N.dtype))}),b=$n({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||lr(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&o!=null){let d=c.texData.get(u.dataId).values,h=c.texData.get(l.dataId).values,g=u.dtype==="string"?S.fromUint8ToStringArray(d):d,x=u.dtype==="string"?S.fromUint8ToStringArray(h):h,[b,w]=o(u.shape,l.shape,g,x,p),I=c.makeTensorInfo(w,p),N=c.texData.get(I.dataId);return N.values=b,I}let m=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,f;return m?f=new Lo(t,u.shape,l.shape,e):f=new po(r,u.shape,l.shape),c.runWebGLProgram(f,[u,l],p)}}function Vl(r,t=!1){if(r==="linear")return t?mz:iz;if(r==="relu")return t?dz:lz;if(r==="elu")return t?fz:az;if(r==="relu6")return t?hz:uz;if(r==="prelu")return t?p1:c1;if(r==="leakyrelu")return t?u1:l1;if(r==="sigmoid")return t?gz:cz;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Pd=class{constructor(t,e,n,o=!1,s=!1,i=!1,a=null,u=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=de(this.outputShape.length);let c=o?t[1]:t[2],p=Math.ceil(c/2),m=o?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";a&&(u?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${a}
}`:l?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${a}
}`:g=`vec4 activation(vec4 x) {
${a}
}`,x="result = activation(result);");let b=i?"result += getBiasAtOutCoords();":"";i&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let w="rc.x",I="rc.x";t[0]<e[0]?w=`imod(rc.x, ${t[0]})`:e[0]<t[0]&&(I=`imod(rc.x, ${e[0]})`),this.userCode=`
${g}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${w};
int batchB = ${I};
for (int i = 0; i < ${p}; i++) {
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var m1={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},lg=class{constructor(t,e,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=S.assertAndGetBroadcastShape(e,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${t}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var vz="return a * b;";function ug(r){let{inputs:t,backend:e}=r,{a:n,b:o}=t,s=S.upcastType(n.dtype,o.dtype);if(n.dtype==="complex64"){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),l=new lg(m1.REAL,n.shape,o.shape),c=new lg(m1.IMAG,n.shape,o.shape),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:n.shape},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:n.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:o.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:o.shape}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=$n({inputs:{real:m,imag:f},backend:e});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}if(e.shouldExecuteOnCPU([n,o])){let a=e.texData.get(n.dataId),u=e.texData.get(o.dataId),[l,c]=$L(n.shape,o.shape,a.values,u.values,s),p=e.makeTensorInfo(c,s),m=e.texData.get(p.dataId);return m.values=l,p}let i;return L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Lo(vz,n.shape,o.shape):i=new po(vz,n.shape,o.shape),e.runWebGLProgram(i,[n,o],s)}var Sz={kernelName:Ds,backendName:"webgl",kernelFunc:ug};function Nz(r,t,e){let n=[zl(r.shape),...Bl(r.shape)],o={dtype:r.dtype,shape:n,dataId:r.dataId},s=[zl(t),...Bl(t)],i=new Fd(s,n),a=!0,u=[n],l=e.runWebGLProgram(i,[o],r.dtype,u,a);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function rt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{shape:s}=n,i=e,a=y.sizeFromShape(o.shape),u=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(u);y.assert(a===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${o.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(o.dataId);return c.isPacked&&!qu(o.shape,u)&&!(c.texture!==null&&qu(c.shape,u))?Nz(o,u,i):(i.incRef(o.dataId),{dataId:o.dataId,shape:u,dtype:o.dtype})}var kz={kernelName:zi,backendName:"webgl",kernelFunc:rt};var cg=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a=Math.floor(n/4)*4,u=n%4,l="sumValue += dot(values, ones);";if(e!=null){let p=1/e;l=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${a}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${a};
if (${u===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}};var Zw=class{constructor(t,e){this.variableNames=["x"];let{windowSize:n,batchSize:o,inSize:s,outSize:i}=t;this.outputShape=[o,i];let a="0.0",u="";e==="prod"?a="1.0":e==="min"?(a="1.0 / 1e-20",u="min"):e==="max"&&(a="-1.0 / 1e-20",u="max");let l=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?l="sumValue":e==="prod"?l="prodValue":e==="all"?l="allValue":e==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,p=n%4,m=`
if (${e==="sum"}) {
sumValue += dot(values, ones);
} else if (${e==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${u}(values, minMaxValue);
if (${e==="min"} || ${e==="max"}) {
minMaxValue = ${u}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,f="vec4";e==="all"?(a="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):e==="any"&&(a="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${a};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${a});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${l});
}
`}};function Unt(r){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:r[1],n=S.computeOptimalWindowSize(e);t.push({inSize:e,windowSize:n,outSize:Math.ceil(e/n)})}return t}function Xn(r,t,e,n){let o=Unt(r.shape),s=r;for(let i=0;i<o.length;i++){let{inSize:a,windowSize:u,outSize:l}=o[i],c,p;e==="mean"?c=i===0?new cg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},a):new cg({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l}):c=new Zw({windowSize:u,inSize:a,batchSize:r.shape[0],outSize:l},e),p=s,s=n.runWebGLProgram(c,[s],t),p.dataId!==r.dataId&&n.disposeIntermediateTensorInfo(p)}return s}var Jw=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[e[i]];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=Hnt(e);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function Hnt(r){let t=r.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],n=new Array(t);for(let o=0;o<r.length;o++)n[r[o]]=e[o];return n.join()}var Qw=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(t.length);for(let c=0;c<n.length;c++)n[c]=t[e[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=zt(this.rank),s=i1("rc",this.rank),i=new Array(this.rank);for(let c=0;c<e.length;c++)i[e[c]]=s[c];let a=`vec2(${i.slice(-2).join()})`,u=`++${s[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${i.join()}), ${a})`;this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${u}) {
result[1] = ${l};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${u}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function ju(r,t,e){let n=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qw(r.shape,t):new Jw(r.shape,t);return e.runWebGLProgram(n,[r],r.dtype)}function Tz(r,t,e,n){let o=t,s=r.shape.length,i=y.parseAxisParam(o,r.shape),a=i,u=S.getAxesPermutation(a,s),l=u!=null,c=r;l&&(c=ju(r,u,n),a=S.getInnerMostAxes(a.length,s)),S.assertAxesAreInnerMostDims("sum",a,s);let[p,m]=S.computeOutAndReduceShapes(c.shape,a),f=p;e&&(f=S.expandShapeToKeepDim(p,i));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=rt({inputs:{x:c},attrs:{shape:[g,d]},backend:n}),b=pc(r.dtype),w=Xn(x,b,"sum",n),I=rt({inputs:{x:w},attrs:{shape:f},backend:n});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),l&&n.disposeIntermediateTensorInfo(c),I}function xp(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n;return Tz(o,s,i,e)}var _z={kernelName:Zs,backendName:"webgl",kernelFunc:xp};function Pe(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{perm:s}=n,i=e,a=o.shape.length,u=new Array(a);for(let c=0;c<u.length;c++)u[c]=o.shape[s[c]];let l;if(i.shouldExecuteOnCPU([o])){let p=i.texData.get(o.dataId).values,m=gp(p,o.shape,o.dtype,s,u);l=i.makeTensorInfo(u,o.dtype);let f=i.texData.get(l.dataId);f.values=m}else l=ju(o,s,i);return l}var Ez={kernelName:oo,backendName:"webgl",kernelFunc:Pe};var f1=1e3;function yp({a:r,b:t,transposeA:e,transposeB:n,backend:o,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:a=0,activation:u=null}){let l=r.shape.length,c=t.shape.length,p=e?r.shape[l-2]:r.shape[l-1],m=n?t.shape[c-1]:t.shape[c-2],f=e?r.shape[l-1]:r.shape[l-2],d=n?t.shape[c-2]:t.shape[c-1],h=r.shape.slice(0,-2),g=t.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),I=Ur.assertAndGetBroadcastShape(r.shape.slice(0,-2),t.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${t.shape} and transposeA=${e} and transposeB=${n} must match.`);let N=e?[x,p,f]:[x,f,p],E=n?[b,d,m]:[b,m,d],A=rt({inputs:{x:r},backend:o,attrs:{shape:N}}),D=rt({inputs:{x:t},backend:o,attrs:{shape:E}}),F=[A,D],P=Math.max(x,b),V=e?A.shape[1]:A.shape[2],G=s!=null,W=i!=null,q=u==="leakyrelu",H=u!=null?Vl(u,!0):null,K=G||W||q||H!=null,X;if((f===1||d===1)&&V>f1&&K===!1){let et=A,nt=D;e&&(et=Pe({inputs:{x:A},backend:o,attrs:{perm:[0,2,1]}}),F.push(et)),n&&(nt=Pe({inputs:{x:D},backend:o,attrs:{perm:[0,2,1]}}),F.push(nt));let st=d!==1,at=d===1,ot=et;st&&(ot=rt({inputs:{x:et},backend:o,attrs:{shape:[P,V,1]}}),F.push(ot));let it=d===1?2:1,mt=nt;at&&(mt=rt({inputs:{x:nt},backend:o,attrs:{shape:[P,1,V]}}),F.push(mt));let gt=ug({inputs:{a:ot,b:mt},backend:o});X=xp({inputs:{x:gt},backend:o,attrs:{axis:it,keepDims:!0}}),F.push(gt)}else{let et=lr(r.dtype,t.dtype),nt=new Pd(N,E,[P,f,d],e,n,G,H,W,q),st=[A,D];if(s!=null&&st.push(s),W&&st.push(i),q){let at=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));st.push(at),F.push(at)}X=o.runWebGLProgram(nt,st,et)}let Z=rt({inputs:{x:X},backend:o,attrs:{shape:I}});F.push(X);for(let et of F)o.disposeIntermediateTensorInfo(et);return Z}function qnt(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n;return yp({a:o,b:s,transposeA:u,transposeB:l,backend:e,bias:i,preluActivationWeights:a,leakyreluAlpha:p,activation:c})}var Az={kernelName:qi,backendName:"webgl",kernelFunc:qnt};var Dz="return abs(x);";function Knt(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])&&n.dtype!=="complex64"){let s=e.texData.get(n.dataId),i=Hw(s.values);return e.makeTensorInfo(n.shape,n.dtype,i)}let o;return L().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Dn(n.shape,Dz):o=new zr(n.shape,Dz),e.runWebGLProgram(o,[n],n.dtype)}var $z={kernelName:Ti,backendName:"webgl",kernelFunc:Knt};var jnt=yr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,Xnt=wt({opSnippet:jnt}),Rz={kernelName:Uo,backendName:"webgl",kernelFunc:Xnt};var Ynt=yr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,Znt=wt({opSnippet:Ynt}),Fz={kernelName:Ho,backendName:"webgl",kernelFunc:Znt};var Oz="return a + b;",Jnt=ue({opSnippet:Oz,packedOpSnippet:Oz,supportsComplex:!0,cpuKernelImpl:mL}),Pz={kernelName:ro,backendName:"webgl",kernelFunc:Jnt};var tI=class{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${o};
setOutput(result);
}
`}};var eI=class{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,i)=>`T${i}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${o};
setOutput(result);
}
`}};function rI(r){let{inputs:t,backend:e}=r,n=t;if(n.length===1)return rr({inputs:{x:n[0]},backend:e});if(n.length>L().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(n.length/2),l=rI({inputs:n.slice(0,u),backend:e}),c=rI({inputs:n.slice(u),backend:e});return rI({inputs:[l,c],backend:e})}let o=n.map(u=>u.dtype).reduce((u,l)=>lr(u,l)),s=n.map(u=>u.shape),a=L().getBool("WEBGL_PACK")?new eI(n[0].shape,s):new tI(n[0].shape,s);return e.runWebGLProgram(a,n,o)}var Mz={kernelName:qo,backendName:"webgl",kernelFunc:rI};function Qnt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("all",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Xn(h,h.dtype,"all",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var Lz={kernelName:Ea,backendName:"webgl",kernelFunc:Qnt};function tot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,a)),S.assertAxesAreInnerMostDims("any",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Xn(h,h.dtype,"any",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var zz={kernelName:Aa,backendName:"webgl",kernelFunc:tot};var nI=class{constructor(t,e,n){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:i}=t;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,i];let a=e==="max"?">":"<",u=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${o}; i++) {
int inIdx = ${u};
float candidate = getA(batch, inIdx);
if (candidate ${a} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var oI=class{constructor(t,e,n,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(t.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],i=Math.ceil(s/e);this.outputShape=t.slice(0,-1),i>1&&this.outputShape.push(i),o||this.variableNames.push("bestIndicesA");let a=this.outputShape,u=a.length,l=zt(u),c=er("coords",u),p,m;if(i===1){m=u+1;let D=zt(m);p=`
${D} sourceLocR = ${D}(${c.join()}, 0);
++${c[u-1]};
${D} sourceLocG = ${D}(${c.join()}, 0);
++${c[u-2]};
${D} sourceLocA = ${D}(${c.join()}, 0);
--${c[u-1]};
${D} sourceLocB = ${D}(${c.join()}, 0);
--${c[u-2]};`}else m=u,p=`
${l} sourceLocR = coords;
++${c[u-1]};
${l} sourceLocG = coords;
++${c[u-2]};
${l} sourceLocA = coords;
--${c[u-1]};
${l} sourceLocB = coords;
--${c[u-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(D=>"int "+D),g=er("sourceLocR",m-1).concat("inIdx.r"),x=er("sourceLocG",m-1).concat("inIdx.g"),b=er("sourceLocB",m-1).concat("inIdx.b"),w=er("sourceLocA",m-1).concat("inIdx.a"),I=n==="max"?"greaterThan":"lessThan",N=o?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,E=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,A=o?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${A}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[u-1]} < ${a[u-1]-1};
bool hasNextRow = ${c[u-2]} < ${a[u-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${e};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${E};
for (int i = 0; i < ${e}; i++) {
inIdx = srcIdx;
${N}
vec4 candidate = ${E};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${I}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function Bz(r,t,e,n=null){let o=t.shape[0],s=t.shape[1];n!=null&&(o=n.shape[0],s=n.shape[1]);let i=S.computeOptimalWindowSize(s),a={windowSize:i,inSize:s,batchSize:o,outSize:Math.ceil(s/i)},u=new nI(a,e,n==null),l=[t];n!=null&&l.push(n);let c=r.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=Bz(r,t,e,c);return r.disposeIntermediateTensorInfo(c),p}function Vz(r,t,e,n=null){let o=n!=null?n.shape:t.shape,s=o[o.length-1],i=S.computeOptimalWindowSize(s),a=new oI(o,i,e,n==null),u=n==null?[t]:[t,n],l=r.runWebGLProgram(a,u,"int32");if(l.shape.length===t.shape.length){let c=Vz(r,t,e,l);return r.disposeIntermediateTensorInfo(l),c}return l}function sI(r,t,e,n){let o=[e];if(S.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),o,t.shape.length),!L().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=r.texData.get(t.dataId),a=i!==null&&i.isPacked,u=t;a&&(u=r.unpackTensor(t),s.push(u));let[l,c]=S.computeOutAndReduceShapes(u.shape,o),p=y.sizeFromShape(c),m=rt({inputs:{x:u},backend:r,attrs:{shape:[-1,p]}});s.push(m);let f=Bz(r,m,n);s.push(f);let d=rt({inputs:{x:f},backend:r,attrs:{shape:l}});return s.forEach(h=>r.disposeIntermediateTensorInfo(h)),d}return Vz(r,t,n)}function eot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=sI(e,u,i[0],"max");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var Gz={kernelName:_i,backendName:"webgl",kernelFunc:eot};function rot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s}=n,i=y.parseAxisParam(s,o.shape),a=S.getAxesPermutation(i,o.shape.length),u=o,l=[];a!=null&&(u=Pe({inputs:{x:o},backend:e,attrs:{perm:a}}),l.push(u),i=S.getInnerMostAxes(i.length,u.shape.length)),S.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=sI(e,u,i[0],"min");return l.forEach(p=>e.disposeIntermediateTensorInfo(p)),c}var Wz={kernelName:Ei,backendName:"webgl",kernelFunc:rot};var not=yr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,oot=wt({opSnippet:not}),Uz={kernelName:Ko,backendName:"webgl",kernelFunc:oot};var sot=yr+"return log(x + sqrt(x * x + 1.0));",iot=wt({opSnippet:sot}),Hz={kernelName:jo,backendName:"webgl",kernelFunc:iot};var aot=yr+`
return atan(x);
`,lot=wt({opSnippet:aot}),qz={kernelName:Xo,backendName:"webgl",kernelFunc:lot};var uot=Od+`
return atan(a, b);
`,cot=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jn+`
return result;
`,pot=ue({opSnippet:uot,packedOpSnippet:cot}),Kz={kernelName:Zo,backendName:"webgl",kernelFunc:pot};var mot=yr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,fot=wt({opSnippet:mot}),jz={kernelName:Yo,backendName:"webgl",kernelFunc:fot};var Ci=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideHeight,u=t.strideWidth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterHeight,m=t.effectiveFilterWidth,f=t.padInfo.top,d=t.padInfo.left;this.outputShape=t.outShape;let h=e==="avg",g=`((batch * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + d`,x=`(xR * ${t.inWidth} + xC) * ${t.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${D} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(I="avgValue / max(count, 1.0)");let N=Math.floor(i/4)*4,E=i%4,A=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${a}, ${u});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${N}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${A}
}
int xC = xCCorner + ${N};
if (${E===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${A}
} else if (${E===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${A}
} else if (${E===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${A}
}
}
setOutput(${I});
}
`}},Xu=class{constructor(t,e,n,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let i=t.filterWidth,a=t.strideDepth,u=t.strideHeight,l=t.strideWidth,c=t.dilationDepth,p=t.dilationHeight,m=t.dilationWidth,f=t.effectiveFilterDepth,d=t.effectiveFilterHeight,h=t.effectiveFilterWidth,g=t.padInfo.front,x=t.padInfo.top,b=t.padInfo.left;this.outputShape=t.outShape;let w=e==="avg",I="0.0";if(w||(I="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${P} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let N="max",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(E="avgValue / max(count, 1.0)");let A=Math.floor(i/4)*4,D=i%4,F=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${N}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${a}, ${u}, ${l});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${I};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${t.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${I});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${A}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${F}
}
int xC = xCCorner + ${A};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${F}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${F}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${F}
}
}
}
setOutput(${E});
}
`}};function dot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;wi(o,"avgPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return rr({inputs:{x:o},backend:e});let p=new Ci(c,"avg",!1);return e.runWebGLProgram(p,[o],"float32")}var Xz={kernelName:Jo,backendName:"webgl",kernelFunc:dot};function hot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,u,l),m=new Xu(p,"avg",!1);return e.runWebGLProgram(m,[o],"float32")}var Yz={kernelName:Ai,backendName:"webgl",kernelFunc:hot};var iI=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterHeight,l=t.effectiveFilterWidth,c=u-1-t.padInfo.top,p=l-1-t.padInfo.left,m=1/(e*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${u};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${a}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},aI=class{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.effectiveFilterDepth,m=t.effectiveFilterHeight,f=t.effectiveFilterWidth,d=p-1-t.padInfo.front,h=m-1-t.padInfo.top,g=f-1-t.padInfo.left,x=1/(e*n*o);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${u}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function got(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new aI(m);return e.runWebGLProgram(f,[o],i.dtype)}var Zz={kernelName:Xl,backendName:"webgl",kernelFunc:got};function xot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s;wi([o,s],"avgPoolGrad");let{filterSize:a,strides:u,pad:l}=n,c=S.computePool2DInfo(i.shape,a,u,1,l),p=new iI(c);return e.runWebGLProgram(p,[o],i.dtype)}var Jz={kernelName:Fp,backendName:"webgl",kernelFunc:xot};function yot(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;return yp({a:o,b:s,transposeA:i,transposeB:a,backend:e})}var Qz={kernelName:Qo,backendName:"webgl",kernelFunc:yot};var lI=class{constructor(t,e,n,o,s,i){this.outputShape=[],this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="0.0";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="1.0";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${a};
float scale = ${u};
float inv = scale * inversesqrt(variance + float(${i}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var uI=class{constructor(t,e,n,o,s,i){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],S.assertAndGetBroadcastShape(t,e),S.assertAndGetBroadcastShape(t,n);let a="vec4(0.0)";o!=null&&(S.assertAndGetBroadcastShape(t,o),this.variableNames.push("offset"),a="getOffsetAtOutCoords()");let u="vec4(1.0)";s!=null&&(S.assertAndGetBroadcastShape(t,s),this.variableNames.push("scale"),u="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=`
void main() {
vec4 offset = ${a};
vec4 scale = ${u};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${i}));
setOutput((x - mean) * inv + offset);
}
`}};var bot=({inputs:r,backend:t,attrs:e})=>{let{x:n,mean:o,variance:s,offset:i,scale:a}=r;y.assert(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=e;u==null&&(u=.001);let l=[n,o,s],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;a!=null&&(p=a.shape,l.push(a));let m=L().getBool("WEBGL_PACK_NORMALIZATION")?new uI(n.shape,o.shape,s.shape,c,p,u):new lI(n.shape,o.shape,s.shape,c,p,u);return t.runWebGLProgram(m,l,l[0].dtype)},t3={kernelName:hs,backendName:"webgl",kernelFunc:bot};var cI=class{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=zt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=wot(this.rank),o,s=t.map((i,a)=>`sourceLoc.${d1[a]} = start[${a}] + coords.${d1[a]};`);o=`
${e} sourceLoc;
${e} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
void main() {
${o}
setOutput(getSource(${n}));
}
`}},d1=["x","y","z","w","u","v"];function wot(r){if(r===1)return"sourceLoc";if(r<=6)return d1.slice(0,r).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var pI=class{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let e=zt(this.rank),n=er("coords",this.rank),o=er("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,i=`getChannel(getSource(${o.join()}), ${s})`,a=`
result.x = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.y = ${i};
--${o[this.rank-1]};
}
`,u=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${t[this.rank-2]}) {
++${o[this.rank-2]};
result.z = ${i};
if (++${n[this.rank-1]} < ${t[this.rank-1]}) {
++${o[this.rank-1]};
result.w = ${i};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${e}(${t.map((c,p)=>`start[${p}]`).join()});`:t.map((c,p)=>`${o[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${e} coords = getOutputCoords();
${e} sourceLoc;
${l}
vec4 result = vec4(0.);
${a}
${u}
setOutput(result);
}
`}};function Iot(r,t,e,n){let o=n.texData.get(r.dataId),s=n.makeTensorInfo(e,r.dtype),i=n.texData.get(s.dataId);Object.assign(i,o),i.refCount=1,i.shape=e,i.dtype=r.dtype;let a=ze.computeFlatOffset(t,y.computeStrides(r.shape));o.slice&&(a+=o.slice.flatOffset),i.slice={flatOffset:a,origDataId:o.slice&&o.slice.origDataId||r.dataId};let u=n.dataRefCount.get(i.slice.origDataId)||1;return n.dataRefCount.set(i.slice.origDataId,u+1),s}function vi(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,size:i}=n,[a,u]=ze.parseSliceParams(o,s,i);if(ze.assertParamsValid(o,a,u),y.sizeFromShape(u)===0)return e.makeTensorInfo(u,o.dtype,[]);if(e.shouldExecuteOnCPU([o])||o.dtype==="string"){let p=e.texData.get(o.dataId),m=WL(p.values,a,u,o.shape,o.dtype);return e.makeTensorInfo(u,o.dtype,m)}let{isPacked:l}=e.texData.get(o.dataId),c=ze.isSliceContinous(o.shape,a,u);if(l||!c){let p=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new pI(u):new cI(u),m=[a];return e.runWebGLProgram(p,[o],o.dtype,m)}return e.uploadToGPU(o.dataId),Iot(o,a,u,e)}var e3={kernelName:Vi,backendName:"webgl",kernelFunc:vi};var Cot=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n;y.assert(o.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((b,w)=>b*w),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=[],d=rt({inputs:{x:o},backend:e,attrs:{shape:u}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:l}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:c}}),x=vi({inputs:{x:g},backend:e,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>e.disposeIntermediateTensorInfo(b)),x},r3={kernelName:Di,backendName:"webgl",kernelFunc:Cot};function vot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i}=n,a=e.readSync(o.dataId),u=e.readSync(s.dataId),l=Uw(a,u,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,l)}var n3={kernelName:Da,backendName:"webgl",kernelFunc:vot};function Sot(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.readSync(n.dataId),i=e.readSync(o.dataId),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeTensorInfo([a.length],"int32",Int32Array.from(a))}var o3={kernelName:Yl,backendName:"webgl",kernelFunc:Sot};var Not="return float(a != b);",h1=ue({opSnippet:Not,cpuKernelImpl:FL,dtype:"bool"}),s3={kernelName:Ja,backendName:"webgl",kernelFunc:h1};function Gl(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return rr({inputs:{x:o.complexTensorInfos.real},backend:e})}var i3={kernelName:jp,backendName:"webgl",kernelFunc:Gl};var kot="return float(int(x));";function a3(r,t){let e=new zr(r.shape,kot),n=t.runWebGLProgram(e,[r],"int32");return{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}function g1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dtype:s}=n;if(s==="complex64"){if(o.dtype==="complex64")return rr({inputs:{x:o},backend:e});let i=Te(o.shape),a=g1({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),u=$n({inputs:{real:a,imag:i},backend:e});return i.dispose(),e.disposeIntermediateTensorInfo(a),u}if(o.dtype==="complex64"){let i=Gl({inputs:{input:o},backend:e}),a=g1({inputs:{x:i},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(i),a}if(!y.hasEncodingLoss(o.dtype,s)){let i=rr({inputs:{x:o},backend:e});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(e.shouldExecuteOnCPU([o])){let i=e.texData.get(o.dataId).values,[a,u,l]=dL(i,o.shape,o.dtype,s);return e.makeTensorInfo(a,u,l)}if(s==="int32")return a3(o,e);if(s==="bool"){let i=e.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),u=h1({inputs:{a:o,b:i},backend:e});return e.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}var l3={kernelName:fo,backendName:"webgl",kernelFunc:g1};var u3="return ceil(x);",Tot=wt({opSnippet:u3,packedOpSnippet:u3,cpuKernelImpl:hL}),c3={kernelName:ts,backendName:"webgl",kernelFunc:Tot};var mI=class{constructor(t){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}};var fI=class{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=t,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function _ot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a;L().getBool("WEBGL_PACK_CLIP")?a=new fI(o.shape):a=new mI(o.shape);let u=[[s],[i]];return e.runWebGLProgram(a,[o],o.dtype,u)}var p3={kernelName:ho,backendName:"webgl",kernelFunc:_ot};var dI=class{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function m3(r,t){return{dataId:t.dataId,dtype:t.dtype,shape:r.shape}}function Eot(r){let{inputs:t,backend:e}=r,{x:n}=t,o=e.texData.get(n.dataId),s=new dI(n.shape),i=[m3(n,o.complexTensorInfos.real),m3(n,o.complexTensorInfos.imag)];return e.runWebGLProgram(s,i,i[0].dtype)}var f3={kernelName:Zl,backendName:"webgl",kernelFunc:Eot};var hI=class{constructor(t){this.outputShape=[],this.outputShape=S.computeOutShape(t,1),this.variableNames=t.map((i,a)=>`T${a}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let i=1;i<e.length;i++)e[i]=e[i-1]+t[i][1];let n=[`if (yC < ${e[0]}) setOutput(getT0(yR, yC));`];for(let i=1;i<e.length;i++){let a=e[i-1];n.push(`else if (yC < ${e[i]}) setOutput(getT${i}(yR, yC-${a}));`)}let o=e.length,s=e[e.length-1];n.push(`else setOutput(getT${o}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}};var xI=class{constructor(t,e){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=S.computeOutShape(t,e);let n=this.outputShape,o=n.length,s=zt(o),i=er("coords",o),a=["x","y","z","w","u","v"].slice(0,o);this.variableNames=t.map((h,g)=>`T${g}`);let u=new Array(t.length-1);u[0]=t[0][e];for(let h=1;h<u.length;h++)u[h]=u[h-1]+t[h][e];let l=a[e],c=a.slice(-2),p=a.join(),m=`if (${l} < ${u[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<u.length;h++){let g=u[h-1];m+=`
if (${l} < ${u[h]} && ${l} >= ${u[h-1]}) {
return getChannel(
getT${h}(${gI(a,l,g)}),
vec2(${gI(c,l,g)}));
}`}let f=u.length,d=u[u.length-1];m+=`
return getChannel(
getT${f}(${gI(a,l,d)}),
vec2(${gI(c,l,d)}));`,this.userCode=`
float getValue(${a.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${i}), 0., 0., 0.);
${i[o-1]} = ${i[o-1]} + 1;
if (${i[o-1]} < ${n[o-1]}) {
result.g = getValue(${i});
}
${i[o-2]} = ${i[o-2]} + 1;
if (${i[o-2]} < ${n[o-2]}) {
result.a = getValue(${i});
}
${i[o-1]} = ${i[o-1]} - 1;
if (${i[o-2]} < ${n[o-2]} &&
${i[o-1]} < ${n[o-1]}) {
result.b = getValue(${i});
}
setOutput(result);
}
`}};function gI(r,t,e){let n=r.indexOf(t);return r.map((s,i)=>i===n?`${s} - ${e}`:s).join()}function bp(r){let{inputs:t,backend:e}=r,{input:n}=t,o=e.texData.get(n.dataId);return rr({inputs:{x:o.complexTensorInfos.imag},backend:e})}var d3={kernelName:Gp,backendName:"webgl",kernelFunc:bp};function Md(r,t,e){let n=r[0].dtype;if(n==="complex64"){let f=r.map(b=>Gl({inputs:{input:b},backend:e})),d=r.map(b=>bp({inputs:{input:b},backend:e})),h=Md(f,t,e),g=Md(d,t,e),x=$n({inputs:{real:h,imag:g},backend:e});return f.forEach(b=>e.disposeIntermediateTensorInfo(b)),d.forEach(b=>e.disposeIntermediateTensorInfo(b)),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),x}let o=e.shouldExecuteOnCPU(r);if(n==="string"&&(o=!0),o){let f=r.map(I=>{let E=[-1,y.sizeFromShape(I.shape.slice(t))];return rt({inputs:{x:I},backend:e,attrs:{shape:E}})}),d=f.map(I=>({vals:e.readSync(I.dataId),shape:I.shape})),h=S.computeOutShape(f.map(I=>I.shape),1),g=f[0].shape[0]===1,x=gL(d,h,n,g),b=S.computeOutShape(r.map(I=>I.shape),t),w=e.makeTensorInfo(b,n,x);return f.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}let s=r.filter(f=>y.sizeFromShape(f.shape)>0),i=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let f=i?new zr(r[0].shape,Ia):new Dn(r[0].shape,Ia);return e.runWebGLProgram(f,r,n)}let a=L().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>a){let f=[];for(let h=0;h<s.length;h+=a){let g=s.slice(h,h+a);f.push(Md(g,t,e))}let d=Md(f,t,e);for(let h of f)e.disposeIntermediateTensorInfo(h);return d}if(i){let f=new xI(s.map(d=>d.shape),t);return e.runWebGLProgram(f,s,n)}let{tensors2D:u,outShape:l}=Aot(s,t,e),c=new hI(u.map(f=>f.shape)),p=e.runWebGLProgram(c,u,n);u.forEach(f=>e.disposeIntermediateTensorInfo(f));let m=rt({inputs:{x:p},attrs:{shape:l},backend:e});return e.disposeIntermediateTensorInfo(p),m}function Aot(r,t,e){let n=S.computeOutShape(r.map(s=>s.shape),t);return{tensors2D:r.map(s=>rt({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(t))]},backend:e})),outShape:n}}function x1(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n,s=y.parseAxisParam(o,t[0].shape)[0],i=t.map(l=>l.shape);S.assertParamsConsistent(i,s);let a=S.computeOutShape(t.map(l=>l.shape),s);if(y.sizeFromShape(a)===0)return e.makeTensorInfo(a,t[0].dtype,[]);let u=t.filter(l=>y.sizeFromShape(l.shape)>0);return u.length===1?rr({inputs:{x:u[0]},backend:e}):Md(u,s,e)}var h3={kernelName:$i,backendName:"webgl",kernelFunc:x1};var Ld=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let i=t.padInfo.top,a=t.padInfo.left,u=t.strideHeight,l=t.strideWidth,c=t.dilationHeight,p=t.dilationWidth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4,g=t.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,I="",N="";n&&(o?I=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?I=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:I=`
float activation(float x) {
${n}
}
`,N="result = activation(result);");let E=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${I}
const ivec2 strides = ivec2(${u}, ${l});
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${E}
${N}
setOutput(result);
}
`}},yI=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,n=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=t.dilationDepth,l=t.dilationHeight,c=t.dilationWidth,p=t.filterDepth,m=t.filterHeight,f=t.filterWidth,d=Math.floor(t.inChannels/4)*4,h=t.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${i}, ${a});
const ivec3 pads = ivec3(${e}, ${n}, ${o});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${u};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var zd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.padInfo.left,a=t.strideWidth,u=t.dilationWidth,l=t.filterHeight,c=t.filterWidth,p=c,m=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)m+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;m+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${t.inChannels}; d1 += 2) {
`;for(let g=0;g<c;g++)m+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;m+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(p+1)/2;g++){let x=g*2;if(m+=`
xC = xCCorner + ${x*u};
`,a===1){if(x<c&&(i%2===1?(m+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
`,u===1&&x>0?m+=`
xC${x} = vec4(xTexelC${x-2}.zw, xTexelC${x}.xy);
`:m+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${x} = vec4(previous.zw, xTexelC${x}.xy);
} else {
xC${x} = vec4(0.0, 0.0, xTexelC${x}.xy);
}
`):m+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xC${x} = xTexelC${x};
`,x+1<c)){let b=i%2===0?y.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(m+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
`,u>1?m+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${x+1} = vec4(previous.zw, xTexelC${x+1}.xy);
} else {
xC${x+1} = vec4(0.0, 0.0, xTexelC${x+1}.xy);
}
`:m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.xy);
`):b===1?m+=`
xC${x+1} = xTexelC${x};
`:m+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x+1} = xTexelC${x+1};
`}}else x<c&&(i%2===1?(m+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.0);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`,x+1<c&&(m+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${x+1} = vec4(xTexelC${x+1}.xy, final.xy);
`)):(m+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${x}Ready == 0) {
xTexelC${x} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${x}.zw = vec2(0.0);
}
xTexelC${x}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${x+1}Ready == 0) {
xTexelC${x+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${x+1}.zw = vec2(0.);
}
xTexelC${x+1}Ready = 1;
}
xC${x} = vec4(
xTexelC${x}.xy, xTexelC${x+1}.xy);
`,x+1<c&&(m+=`
xC${x+1} = vec4(xTexelC${x}.zw, xTexelC${x+1}.zw);
`)));x<c&&(m+=`
wTexel = getW(r, ${x}, d1, d2);
dotProd += xC${x}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${t.inChannels}) {
dotProd += xC${x}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,x+1<c&&(m+=`
wTexel = getW(r, ${x+1}, d1, d2);
dotProd += xC${x+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${t.inChannels}) {
dotProd += xC${x+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}m+=`
}
`,m+=`
}
`,m+=`
}
`;let f="",d="";n&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:f=`vec4 activation(vec4 x) {
${n}
}`,d="result = activation(result);");let h=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${f}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${m}
vec4 result = dotProd - vec4(0.000000000000001);
${h}
${d}
setOutput(result);
}
`}};var bI=class{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=t,this.enableShapeUniforms=de(this.outputShape.length);let{dataFormat:n}=e,o=We(),s=n==="channelsLast",i=s?1:2,a=s?2:3,u=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${t[2]} && pos < ${t[1]}) {`,l="";for(let c=0;c<=1;c++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${c};
${u}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${i}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${a}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${s}) {
innerDims = vec2(d1, ch);
result[${c*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${c*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${o.output} = result;
}
`}};function wI(r,t){let e=r.length;return e>=3?t?[...r.slice(0,-3),r[e-3]*r[e-2],r[e-1]]:[...r.slice(0,-3),r[e-3],r[e-2]*r[e-1]]:!t&&e===1&&r[0]>1?[r[0],1]:null}function II({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let u=r.shape,l=n.texData.get(r.dataId),c=e.inChannels,p=u[0]*u[1]*u[2],m=e.outChannels,f=e.dataFormat==="channelsLast",d=!1,h=!1,g,x=[];if(s!=null){let I=wI(s.shape,f);I!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:I}}),x.push(s))}if(o!=null){let I=wI(o.shape,f);I!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:I}}),x.push(o))}if(!((p===1||m===1)&&c>f1)&&l.isPacked&&f&&l.texture!=null&&u[2]%2!==0&&y.arraysEqual(l.shape.slice(-3),u.slice(-3))){let I=u[0]*u[1]*(u[2]+1),N={dataId:r.dataId,shape:[1,I,e.inChannels],dtype:r.dtype},E=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,y.assert(qu(l.shape,N.shape),()=>`packed reshape ${l.shape} to ${N.shape} isn't free`);let A=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}});x.push(A);let D=yp({a:N,b:A,backend:n,transposeA:d,transposeB:h,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i}),F=n.texData.get(D.dataId);y.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=E,F.shape=e.outShape,g=rr({inputs:{x:D},backend:n}),g.shape=e.outShape,x.push(D)}else{let I=e.outHeight*e.outWidth,N=rt({inputs:{x:r},backend:n,attrs:{shape:f?[e.batchSize,I,e.inChannels]:[e.batchSize,e.inChannels,I]}}),E=rt({inputs:{x:t},backend:n,attrs:{shape:[1,e.inChannels,e.outChannels]}}),A=yp({a:f?N:E,b:f?E:N,transposeA:!f,transposeB:h,backend:n,bias:o,activation:a,preluActivationWeights:s,leakyreluAlpha:i});g=rt({inputs:{x:A},backend:n,attrs:{shape:e.outShape}}),x.push(N),x.push(E),x.push(A)}for(let I of x)n.disposeIntermediateTensorInfo(I);return g}function CI({x:r,filter:t,convInfo:e,backend:n,bias:o=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:a=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=e,d=f==="channelsLast",h=u*l*c,g=m*p,x=[e.batchSize,h,g],b=!0,w=!1,I=[];if(s!=null){let Z=wI(s.shape,d);Z!=null&&(s=rt({inputs:{x:s},backend:n,attrs:{shape:Z}}),I.push(s))}if(o!=null){let Z=wI(o.shape,d);Z!=null&&(o=rt({inputs:{x:o},backend:n,attrs:{shape:Z}}),I.push(o))}let N=rt({inputs:{x:t},backend:n,attrs:{shape:[1,h,y.sizeFromShape(t.shape)/h]}});I.push(N);let E=new bI(x,e),A=[r.shape,[e.padInfo.top,e.padInfo.left],[e.strideHeight,e.strideWidth],[e.dilationHeight,e.dilationWidth],[e.inChannels],[e.filterWidth*e.inChannels],[e.outWidth]],D=n.runWebGLProgram(E,[r],"float32",A),F=rt({inputs:{x:D},backend:n,attrs:{shape:x}});I.push(D),I.push(F);let P=o!=null,V=s!=null,G=a==="leakyrelu",W=a?Vl(a,!0):null,q=new Pd(d?F.shape:N.shape,d?N.shape:F.shape,d?[e.batchSize,g,e.outChannels]:[e.batchSize,e.outChannels,g],b,w,P,W,V,G),H=d?[F,N]:[N,F];if(o&&H.push(o),V&&H.push(s),G){let Z=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));H.push(Z),I.push(Z)}let K=n.runWebGLProgram(q,H,"float32"),X=rt({inputs:{x:K},backend:n,attrs:{shape:e.outShape}});I.push(K);for(let Z of I)n.disposeIntermediateTensorInfo(Z);return X}function Dot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,s.shape,i,l,a,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=II({x:o,filter:s,convInfo:m,backend:e});else if(m.strideWidth<=2&&p==="channelsLast"&&L().getBool("WEBGL_EXP_CONV")){let h=new zd(m),g=[[m.padInfo.top,m.padInfo.left],[m.strideHeight,m.strideWidth],[m.dilationHeight,m.dilationWidth],[m.inHeight,m.inWidth]];f=e.runWebGLProgram(h,[o,s],"float32",g)}else if(L().getBool("WEBGL_CONV_IM2COL"))f=CI({x:o,filter:s,convInfo:m,backend:e});else{let h=new Ld(m);f=e.runWebGLProgram(h,[o,s],"float32")}let d=rt({inputs:{x:f},backend:e,attrs:{shape:m.outShape}});return e.disposeIntermediateTensorInfo(f),d}var g3={kernelName:es,backendName:"webgl",kernelFunc:Dot};var vI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
${i?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},SI=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=t.dataFormat==="channelsLast",a=e-1-t.padInfo.top,u=n-1-t.padInfo.left,l=i?1:2,c=i?2:3,p=i?3:1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
if (${i}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},NI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,i=t.padInfo.top,a=t.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yF = 0; yF < ${t.outDepth}; yF++) {
int xF = wF + yF * ${e} - ${s};
if (xF < 0 || xF >= ${t.inDepth}) {
continue;
}
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${i};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${a};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},kI=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,n=t.filterHeight,o=t.filterWidth,s=t.strideDepth,i=t.strideHeight,a=t.strideWidth,u=e-1-t.padInfo.front,l=n-1-t.padInfo.top,c=o-1-t.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${u}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${e}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${e} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${i}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${t.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function $ot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,filterShape:c}=n,p=S.convertConv2DDataFormat(u),m=S.computeConv2DInfo(o.shape,c,i,1,a,l,!1,p),f=new vI(m);return e.runWebGLProgram(f,[o,s],"float32")}var x3={kernelName:Pp,backendName:"webgl",kernelFunc:$ot};var TI=class{constructor(t){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=t.inShape,this.enableShapeUniforms=de(this.outputShape.length);let e=t.filterHeight,n=t.filterWidth,o=e-1-t.padInfo.top,s=n-1-t.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${o}, ${s});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
int wCPerm = ${n} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${t.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${t.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${t.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function Rot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{inputShape:i,strides:a,pad:u,dataFormat:l,dimRoundingMode:c}=n,p=S.convertConv2DDataFormat(l),m=S.computeConv2DInfo(i,s.shape,a,1,u,c,!1,p);if(L().getBool("WEBGL_PACK")&&p==="channelsLast"){let f=[[m.strideHeight,m.strideWidth]],d=new TI(m);return e.runWebGLProgram(d,[o,s],"float32",f)}else{let f=new SI(m);return e.runWebGLProgram(f,[o,s],"float32")}}var y3={kernelName:rs,backendName:"webgl",kernelFunc:Rot};function Fot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=new yI(l);return e.runWebGLProgram(c,[o,s],"float32")}var b3={kernelName:ns,backendName:"webgl",kernelFunc:Fot};function Oot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n,l=S.computeConv3DInfo(o.shape,u,i,1,a),c=new NI(l);return e.runWebGLProgram(c,[o,s],"float32")}var w3={kernelName:$a,backendName:"webgl",kernelFunc:Oot};function Pot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n,l=S.computeConv3DInfo(u,s.shape,a,1,i),c=new kI(l);return e.runWebGLProgram(c,[o,s],"float32")}var I3={kernelName:Ra,backendName:"webgl",kernelFunc:Pot};var Mot=zo+`
return cos(x);
`,Lot=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${jn}
return result;
`,zot=wt({opSnippet:Mot,packedOpSnippet:Lot}),C3={kernelName:os,backendName:"webgl",kernelFunc:zot};var Bot=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Vot=wt({opSnippet:Bot}),v3={kernelName:ss,backendName:"webgl",kernelFunc:Vot};var _I=class{constructor(t,e,n,o,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[i,a,u,l]=t,[c]=e,[p,m]=n;this.outputShape=[c,p,m,l];let f=o==="bilinear"?1:0,[d,h]=[`${a-1}.0`,`${u-1}.0`],[g,x,b]=p>1?[`${(a-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,I,N]=m>1?[`${(u-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${i}) {
return;
}
float height_scale = ${x};
float width_scale = ${I};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${N};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var Got=r=>{let{inputs:t,backend:e,attrs:n}=r,{image:o,boxes:s,boxInd:i}=t,{cropSize:a,method:u,extrapolationValue:l}=n,c=new _I(o.shape,s.shape,a,u,l);return e.runWebGLProgram(c,[o,s,i],"float32")},S3={kernelName:Oa,backendName:"webgl",kernelFunc:Got};var wp;(function(r){r.Prod="*",r.Sum="+"})(wp||(wp={}));var pg=class{constructor(t,e,n,o){this.op=t,this.outputShape=e,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let s=this.outputShape.length,i=this.op===wp.Prod?"1.0":"0.0",a=n?i:`getX(${N3(s,"coords",this.op)})`,u=this.outputShape[this.outputShape.length-1],l="",c="";n?(l=o?`end != ${u-1}`:"end != 0",c=o?"end + 1":"end - 1"):(l=o?`end + pow2 < ${u}`:"end >= pow2",c=o?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${zt(s)} coords = getOutputCoords();
int end = ${k3(s,"coords",this.op)};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${c};
${k3(s,"coords",this.op)} = idx;
val ${this.op}= getX(${N3(s,"coords",this.op)});
}
setOutput(val);
}
`}};function N3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.x, ${t}.y`;if(r===3)return`${t}.x, ${t}.y, ${t}.z`;if(r===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function k3(r,t,e){if(r===1)return`${t}`;if(r===2)return`${t}.y`;if(r===3)return`${t}.z`;if(r===4)return`${t}.w`;throw new Error(`Cumulative ${e} for rank ${r} is not yet supported`)}function EI(r,t,e,n,o,s){let i=t.shape.length,a=S.getAxesPermutation([n],i),u=t;a!=null&&(u=Pe({inputs:{x:t},backend:e,attrs:{perm:a}}));let l=S.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${n}`);let c=u.shape[l],p=rr({inputs:{x:u},backend:e});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new pg(r,u.shape,!1,s),d=[[m]],h=p;p=e.runWebGLProgram(f,[p],p.dtype,d),e.disposeIntermediateTensorInfo(h)}if(o){let m=new pg(r,u.shape,o,s),f=p;p=e.runWebGLProgram(m,[p],p.dtype),e.disposeIntermediateTensorInfo(f)}if(a!=null){let m=S.getUndoAxesPermutation(a),f=Pe({inputs:{x:p},backend:e,attrs:{perm:m}});return e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(u),f}return p}function Wot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return EI(wp.Prod,o,e,s,i,a)}var T3={kernelName:Fa,backendName:"webgl",kernelFunc:Wot};function Uot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n;return EI(wp.Sum,o,e,s,i,a)}var _3={kernelName:is,backendName:"webgl",kernelFunc:Uot};function Hot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,weights:s}=t,{size:i,binaryOutput:a}=n;if(o.shape.length===1){let u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=Uw(u,l,s.dtype,s.shape,i);return e.makeTensorInfo([i],s.dtype,c)}else if(o.shape.length===2){let u=e.bufferSync(o),l=e.bufferSync(s),c=fL(u,l,i,a);return e.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${o.shape.length}.`)}var E3={kernelName:Jl,backendName:"webgl",kernelFunc:Hot};var AI=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${e};
int offset_h = imod(h, ${e});
int in_w = w / ${e};
int offset_w = imod(w, ${e});
int offset_d = (offset_h * ${e} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function qot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=new AI(d,s,i);return e.runWebGLProgram(h,[o],o.dtype)}var A3={kernelName:Pa,backendName:"webgl",kernelFunc:qot};var Bd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.filterHeight,a=t.filterWidth,u=t.outChannels/t.inChannels,l="",c="";n&&(o?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,c="result = activation(result);");let p=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${u};
int q = d2 - d1 * ${u};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${i}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${a}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${c}
setOutput(result);
}
`}};var Vd=class{constructor(t,e=!1,n=null,o=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=t.outShape,this.enableShapeUniforms=de(this.outputShape.length);let i=t.outChannels/t.inChannels,a=t.padInfo.left,u=t.strideWidth,l=t.dilationWidth,c=t.filterHeight,p=t.filterWidth,m=p,f=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let x=0;x<p;x++)f+=`
vec4 xTexelC${x*2};
int xTexelC${x*2}Ready;
vec4 xTexelC${x*2+1};
int xTexelC${x*2+1}Ready;
vec4 xC${x};`;f+=`
for (int r = 0; r < ${c}; r++) {
`;for(let x=0;x<p;x++)f+=`
xTexelC${x*2} = vec4(0.0);
xTexelC${x*2}Ready = 0;
xTexelC${x*2+1} = vec4(0.0);
xTexelC${x*2+1}Ready = 0;
xC${x} = vec4(0.0);`;f+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let x=0;x<(m+1)/2;x++){let b=x*2;if(f+=`
xC = xCCorner + ${b*l};
`,u===1){if(b<p&&(a%2===1?(f+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?f+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:f+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):f+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let w=a%2===0?y.nearestLargerEven(l):l;l%2===0&&a%2===1||l%2!==0&&a%2!==1?(f+=`
xCOffset = xC + imod(pads[1], 2) + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?f+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):w===1?f+=`
xC${b+1} = xTexelC${b};
`:f+=`
xCOffset = xC + ${w};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(a%2===1?(f+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(f+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(f+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(f+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(f+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(f+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}f+=`
}
`,f+=`
}
`;let d="",h="";n&&(o?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:s?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:d=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let g=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${f}
vec4 result = dotProd - vec4(0.000000000000001);
${g}
${h}
setOutput(result);
}
`}};function Kot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u,dimRoundingMode:l}=n,c=u;c==null&&(c=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=S.computeConv2DInfo(o.shape,s.shape,i,c,a,l,!0),m;L().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?m=new Vd(p):m=new Bd(p);let f=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return e.runWebGLProgram(m,[o,s],"float32",f)}var D3={kernelName:as,backendName:"webgl",kernelFunc:Kot};var DI=class{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,n=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,i=t.outChannels/t.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${i} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${t.batchSize}; b++) {
for (int yR = 0; yR < ${t.outHeight}; yR++) {
int xR = wR + yR * ${e} - ${o};
if (xR < 0 || xR >= ${t.inHeight}) {
continue;
}
for (int yC = 0; yC < ${t.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${s};
if (xC < 0 || xC >= ${t.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},$I=class{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,n=t.filterWidth,o=t.strideHeight,s=t.strideWidth,i=e-1-t.padInfo.top,a=n-1-t.padInfo.left,u=t.outChannels/t.inChannels;this.userCode=`
const ivec2 pads = ivec2(${i}, ${a});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${e}; wR++) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${e} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${u}; dm++) {
int d2 = d1 * ${u} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function jot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,filterShape:c}=n,p=S.computeConv2DInfo(o.shape,c,i,a,u,l,!0),m=new DI(p);return e.runWebGLProgram(m,[o,s],"float32")}var $3={kernelName:Mp,backendName:"webgl",kernelFunc:jot};function Xot(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{strides:i,dilations:a,pad:u,dimRoundingMode:l,inputShape:c}=n,p=S.computeConv2DInfo(c,s.shape,i,a,u,l,!0),m=new $I(p);return e.runWebGLProgram(m,[o,s],"float32")}var R3={kernelName:Lp,backendName:"webgl",kernelFunc:Xot};var RI=class{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Yot(r){let{inputs:t,backend:e}=r,{x:n}=t,o=[...n.shape,...n.shape],s=y.sizeFromShape(n.shape),i=rt({inputs:{x:n},backend:e,attrs:{shape:[s]}}),a=new RI(s),u=e.runWebGLProgram(a,[i],i.dtype),l=rt({inputs:{x:u},backend:e,attrs:{shape:o}});return e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(u),l}var F3={kernelName:Ql,backendName:"webgl",kernelFunc:Yot};var FI=class{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let{inHeight:e,inWidth:n,padInfo:o,strideHeight:s,strideWidth:i,filterHeight:a,filterWidth:u,dilationHeight:l,dilationWidth:c}=t,{top:p,left:m}=o;this.userCode=`
const ivec2 strides = ivec2(${s}, ${i});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${a}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${e}) {
for (int w = 0; w < ${u}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Zot(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n,l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c,p=new FI(l);c=e.runWebGLProgram(p,[o,s],"float32");let m=rt({inputs:{x:c},backend:e,attrs:{shape:l.outShape}});return e.disposeIntermediateTensorInfo(c),m}var O3={kernelName:ls,backendName:"webgl",kernelFunc:Zot};function Jot(r){let{inputs:t,backend:e,attrs:n}=r,{equation:o}=n,s=t,{allDims:i,summedDims:a,idDims:u}=S.decodeEinsumEquation(o,s.length);S.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:c}=S.getEinsumComputePath(a,u),p=c.length,m=null,f=i.length,d=[];for(let h=0;h<p;++h){for(let g of c[h]){let{permutationIndices:x,expandDims:b}=S.getEinsumPermutation(f,u[g]),w;S.isIdentityPermutation(x)?w=s[g]:(w=Pe({inputs:{x:s[g]},backend:e,attrs:{perm:x}}),d.push(w));let I=w.shape.slice();for(let N=0;N<b.length;++N)I.splice(b[N],0,1);y.arraysEqual(w.shape,I)||(w=rt({inputs:{x:w},backend:e,attrs:{shape:I}}),d.push(w)),m===null?m=w:(m=ug({inputs:{a:w,b:m},backend:e}),d.push(m))}h<p-1&&(l[h]>=0&&(m=xp({inputs:{x:m},backend:e,attrs:{axis:l[h]-(i.length-f),keepDims:!1}}),d.push(m)),f--)}for(let h of d)h!==m&&e.disposeIntermediateTensorInfo(h);return m}var P3={kernelName:zp,backendName:"webgl",kernelFunc:Jot};var Qot="return (x >= 0.0) ? x : (exp(x) - 1.0);",tst=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,est=wt({opSnippet:Qot,packedOpSnippet:tst}),M3={kernelName:cs,backendName:"webgl",kernelFunc:est};var rst="return (b >= 0.0) ? a : a * (b + 1.0);",nst=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,ost=r=>{let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=L().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Lo(nst,n.shape,o.shape):new po(rst,n.shape,o.shape);return e.runWebGLProgram(s,[n,o],n.dtype)},L3={kernelName:Ma,backendName:"webgl",kernelFunc:ost};var sst=`
return vec4(equal(a, b));
`,ist="return float(a == b);",ast=ue({opSnippet:ist,packedOpSnippet:sst,dtype:"bool",cpuKernelImpl:xL}),z3={kernelName:za,backendName:"webgl",kernelFunc:ast};var lst=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${S.ERF_P};
float a1 = ${S.ERF_A1};
float a2 = ${S.ERF_A2};
float a3 = ${S.ERF_A3};
float a4 = ${S.ERF_A4};
float a5 = ${S.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,ust=wt({opSnippet:lst}),B3={kernelName:La,backendName:"webgl",kernelFunc:ust};var cst=zo+`
return exp(x);
`,pst=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,y1=wt({opSnippet:cst,packedOpSnippet:pst,cpuKernelImpl:yL,dtype:"float32"}),V3={kernelName:ps,backendName:"webgl",kernelFunc:y1};function OI(r){let{inputs:t,attrs:e,backend:n}=r,{dim:o}=e,{input:s}=t,i=s.shape.length,a=s.shape.slice(),u=o;return o<0&&(y.assert(-(i+1)<=o,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+o+1),a.splice(u,0,1),rt({inputs:{x:s},backend:n,attrs:{shape:a}})}var G3={kernelName:Ri,backendName:"webgl",kernelFunc:OI};var W3="return exp(x) - 1.0;",mst=wt({opSnippet:W3,packedOpSnippet:W3,cpuKernelImpl:bL}),U3={kernelName:ms,backendName:"webgl",kernelFunc:mst};var mg=class{constructor(t,e,n){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,i=n?`${o}.0`:"1.0",a;if(t==="real")a="return real * expR - imag * expI;";else if(t==="imag")a="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${a}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${o});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${o}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${i};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function PI(r,t,e){let n=e.texData.get(r.dataId),o=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=o/s,a=rt({inputs:{x:r},backend:e,attrs:{shape:[i,s]}}),u=a.shape,l=new mg("real",u,t),c=new mg("imag",u,t),p=[{dataId:n.complexTensorInfos.real.dataId,dtype:n.complexTensorInfos.real.dtype,shape:u},{dataId:n.complexTensorInfos.imag.dataId,dtype:n.complexTensorInfos.imag.dtype,shape:u}],m=e.runWebGLProgram(l,p,"float32"),f=e.runWebGLProgram(c,p,"float32"),d=$n({inputs:{real:m,imag:f},backend:e});e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f);let h=rt({inputs:{x:d},backend:e,attrs:{shape:r.shape}});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(d),h}function fst(r){let{inputs:t,backend:e}=r,{input:n}=t;return PI(n,!1,e)}var H3={kernelName:Bp,backendName:"webgl",kernelFunc:fst};var MI=class{constructor(t,e){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=t,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Wl(r){let{backend:t,attrs:e}=r,{shape:n,value:o}=e,{dtype:s}=e;if(s=s||y.inferDtype(o),s==="string"){let i=y.getArrayFromDType(s,y.sizeFromShape(n));return i.fill(o),t.makeTensorInfo(n,s,i)}else{let i=new MI(n,o),a=[[o]];return t.runWebGLProgram(i,[],s,a)}}var q3={kernelName:ru,backendName:"webgl",kernelFunc:Wl};var LI=class{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${e} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${e}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var K3={kernelName:Ba,backendName:"webgl",kernelFunc:({inputs:r,backend:t})=>{let{image:e}=r,n=t,o=new LI(e.shape);return n.runWebGLProgram(o,[e],e.dtype)}};var j3="return floor(x);",dst=wt({opSnippet:j3,packedOpSnippet:j3,cpuKernelImpl:wL}),X3={kernelName:fs,backendName:"webgl",kernelFunc:dst};var hst=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,gst=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,xst=ue({opSnippet:hst,packedOpSnippet:gst,dtype:"int32"}),Y3={kernelName:ds,backendName:"webgl",kernelFunc:xst};var zI=class{constructor(t){this.variableNames=["A"];let e=We(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var BI=class{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=We(),[n,o]=t;this.outputShape=t,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${o}.0, ${n}.0);
vec4 values = ${e.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${e.output} = result;
}
`}};var Z3={kernelName:rh,backendName:"webgl",kernelFunc:yst},Gd,b1=L().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function yst(r){let{inputs:t,backend:e,attrs:n}=r,{pixels:o}=t,{numChannels:s}=n,i=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,a=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[u,l]=i?[o.videoWidth,o.videoHeight]:[o.width,o.height],c=[l,u],p=[l,u,s];if(a||i){let h=L().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Gd==null||h!==b1)&&(b1=h,Gd=document.createElement("canvas").getContext("2d",{willReadFrequently:b1})),Gd.canvas.width=u,Gd.canvas.height=l,Gd.drawImage(o,0,0,u,l),o=Gd.canvas}let m=e.makeTensorInfo(c,"int32");e.texData.get(m.dataId).usage=Zr.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(m.dataId),o);let f=L().getBool("WEBGL_PACK")?new BI(p):new zI(p),d=e.runWebGLProgram(f,[m],"int32");return e.disposeData(m.dataId),d}function bst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=n,h=S.convertConv2DDataFormat(c),g=S.computeConv2DInfo(o.shape,s.shape,u,p,l,m,!1,h),x,b=[],w=i!=null,I=a!=null,N=f==="leakyrelu",E=()=>{let D=[o,s],F=(P,V)=>{if(V==="NCHW"&&P.shape.length===1&&P.shape[0]!==1){let G=rt({inputs:{x:P},backend:e,attrs:{shape:[P.shape[0],1,1]}});return b.push(G),G}return P};if(w&&D.push(F(i,c)),I&&D.push(F(a,c)),N){let P=e.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));D.push(P),b.push(P)}return D};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=II({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else if(g.strideWidth<=2&&h==="channelsLast"&&L().getBool("WEBGL_EXP_CONV")){let D=f?Vl(f,!0):null,F=new zd(g,w,D,I,N),P=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],V=E();x=e.runWebGLProgram(F,V,"float32",P)}else if(L().getBool("WEBGL_CONV_IM2COL"))x=CI({x:o,filter:s,convInfo:g,backend:e,bias:i,activation:f,preluActivationWeights:a,leakyreluAlpha:d});else{let D=f?Vl(f,!1):null,F=new Ld(g,w,D,I,N),P=E();x=e.runWebGLProgram(F,P,"float32")}let A=rt({inputs:{x},backend:e,attrs:{shape:g.outShape}});return b.push(x),b.forEach(D=>e.disposeIntermediateTensorInfo(D)),A}var J3={kernelName:Ki,backendName:"webgl",kernelFunc:bst};function wst(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=n,d=[],h=c;h==null&&(h=[1,1]),y.assert(S.eitherStridesOrDilationsAreOne(u,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${h}'`);let g=S.computeConv2DInfo(o.shape,s.shape,u,h,l,p,!0),x=L().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=m?Vl(m,x):null,w=[o,s],I=i!=null,N=a!=null,E=m==="leakyrelu";if(I&&w.push(i),N&&w.push(a),E){let P=e.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(P),d.push(P)}let A;x?A=new Vd(g,I,b,N,E):A=new Bd(g,I,b,N,E);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=e.runWebGLProgram(A,w,"float32",D);return d.forEach(P=>e.disposeIntermediateTensorInfo(P)),F}var Q3={kernelName:ji,backendName:"webgl",kernelFunc:wst};var VI=class{constructor(t,e,n,o){this.sliceDim=t,this.strides=e,this.paramsShape=o,this.variableNames=["x","indices"],this.outputShape=n;let s=zt(n.length),i=`
int index;`;for(let a=0;a<this.sliceDim;a++)i+=`
index = round(getIndices(coords[0], ${a}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[a]};
flattenIndex += index * ${this.strides[a]};`;this.userCode=`
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${i}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Ist(r){let{inputs:t,backend:e}=r,{params:n,indices:o}=t,s=o.shape,i=s[s.length-1],a=y.sizeFromShape(n.shape),[u,l,c,p]=S.prepareAndValidate(n,o),m=rt({inputs:{x:o},backend:e,attrs:{shape:[l,i]}}),f=rt({inputs:{x:n},backend:e,attrs:{shape:[y.sizeFromShape(n.shape)/c,c]}});if(e.shouldExecuteOnCPU([n,o])||n.dtype==="string"){let x=e.readSync(o.dataId),b=e.bufferSync(n),w=IL(x,b,n.dtype,l,i,c,p,n.shape,a);return e.makeTensorInfo(u,n.dtype,w.values)}let d=new VI(i,p,[l,c],n.shape),h=e.runWebGLProgram(d,[f,m],f.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:u}});return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(h),g}var tB={kernelName:Va,backendName:"webgl",kernelFunc:Ist};var GI=class{constructor(t,e){this.variableNames=["A","indices"],this.outputShape=e,this.rank=e.length;let n=zt(this.rank),o=Cst(t,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${t[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${o}));
}
`}};function Cst(r,t){let e=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let o=0;o<r.length;o++)o===2?n.push("index"):n.push(`${e[o]}`);return n.join()}function w1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,indices:s}=t,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0];if(L().get("DEBUG")){let b=e.readSync(s.dataId),w=o.shape[u];for(let I=0;I<b.length;++I){let N=b[I];y.assert(N<=w-1&&N>=0,()=>`GatherV2: the index value ${N} is not in [0, ${w-1}]`)}}let l=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),c=y.sizeFromShape(s.shape),p=[],m=rt({inputs:{x:o},backend:e,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),f=rt({inputs:{x:s},backend:e,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(m),p.push(f);let d=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(e.shouldExecuteOnCPU([o,s])||o.dtype==="string"){let b=e.bufferSync(f),w=e.bufferSync(m),I=CL(w,b,d);return p.forEach(N=>e.disposeIntermediateTensorInfo(N)),e.makeTensorInfo(l.outputShape,I.dtype,I.values)}let h=new GI(m.shape,d),g=e.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=rt({inputs:{x:g},backend:e,attrs:{shape:l.outputShape}});return p.forEach(b=>e.disposeIntermediateTensorInfo(b)),x}var eB={kernelName:Fi,backendName:"webgl",kernelFunc:w1};var vst="return float(a > b);",Sst=`
return vec4(greaterThan(a, b));
`,Nst=ue({opSnippet:vst,packedOpSnippet:Sst,cpuKernelImpl:vL,dtype:"bool"}),rB={kernelName:Ga,backendName:"webgl",kernelFunc:Nst};var kst="return float(a >= b);",Tst=`
return vec4(greaterThanEqual(a, b));
`,_st=ue({opSnippet:kst,packedOpSnippet:Tst,dtype:"bool",cpuKernelImpl:SL}),nB={kernelName:gs,backendName:"webgl",kernelFunc:_st};function Est(r){let{inputs:t,backend:e}=r,{input:n}=t;return PI(n,!0,e)}var oB={kernelName:Vp,backendName:"webgl",kernelFunc:Est};var Ast="return float(!isnan(x) && !isinf(x));",Dst=wt({opSnippet:Ast,dtype:"bool"}),sB={kernelName:xs,backendName:"webgl",kernelFunc:Dst};var $st="return float(isinf(x));",Rst=wt({opSnippet:$st,dtype:"bool"}),iB={kernelName:ys,backendName:"webgl",kernelFunc:Rst};var Fst="return float(isnan(x));",Ost=wt({opSnippet:Fst,dtype:"bool"}),aB={kernelName:bs,backendName:"webgl",kernelFunc:Ost};var Pst="return float(a < b);",Mst=`
return vec4(lessThan(a, b));
`,Lst=ue({opSnippet:Pst,packedOpSnippet:Mst,cpuKernelImpl:NL,dtype:"bool"}),lB={kernelName:Wa,backendName:"webgl",kernelFunc:Lst};var zst="return float(a <= b);",Bst=`
return vec4(lessThanEqual(a, b));
`,Vst=ue({opSnippet:zst,packedOpSnippet:Bst,cpuKernelImpl:kL,dtype:"bool"}),uB={kernelName:Ua,backendName:"webgl",kernelFunc:Vst};function Gst(r){let{backend:t,attrs:e}=r,{start:n,stop:o,num:s}=e,i=TL(n,o,s);return t.makeTensorInfo([i.length],"float32",i)}var cB={kernelName:Ha,backendName:"webgl",kernelFunc:Gst};var Wst=zo+`
return x < 0.0 ? 0./0. : log(x);
`,Ust=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Hst=wt({opSnippet:Wst,packedOpSnippet:Ust,cpuKernelImpl:_L}),pB={kernelName:Is,backendName:"webgl",kernelFunc:Hst};var qst=zo+`
return log(1.0 + x);
`,Kst=wt({opSnippet:qst}),mB={kernelName:Cs,backendName:"webgl",kernelFunc:Kst};var jst="return float(a >= 1.0 && b >= 1.0);",Xst=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Yst=ue({opSnippet:jst,packedOpSnippet:Xst,dtype:"bool"}),fB={kernelName:qa,backendName:"webgl",kernelFunc:Yst};var Zst="return float(!(x >= 1.0));",Jst=wt({opSnippet:Zst}),dB={kernelName:Ka,backendName:"webgl",kernelFunc:Jst};var Qst="return float(a >= 1.0 || b >= 1.0);",tit=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,eit=ue({opSnippet:Qst,packedOpSnippet:tit,dtype:"bool"}),hB={kernelName:ja,backendName:"webgl",kernelFunc:eit};var WI=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[];let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${i}; j <= ${i}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${a}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${u};
setOutput(val);
}
`}};var UI=class{constructor(t,e,n,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let i=e,a=t[3]-1;this.outputShape=t;let u,l=`float(${n}) + float(${o}) * sum`;s===.5?u=`inversesqrt(${l})`:s===1?u=`1.0/(${l})`:u=`exp(log(${l}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${i};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${i}; j <= ${i}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${a}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${u};
setOutput(result);
}
`}};var rit=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n,l=L().getBool("WEBGL_PACK_NORMALIZATION")?new UI(o.shape,s,i,a,u):new WI(o.shape,s,i,a,u);return e.runWebGLProgram(l,[o],o.dtype)},gB={kernelName:vs,backendName:"webgl",kernelFunc:rit};var HI=class{constructor(t,e,n,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=n,this.alpha=o,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${e})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${e} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${o}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${o})
* float(${s})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var nit=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n,p=new HI(o.shape,a,u,l,c);return e.runWebGLProgram(p,[o,s,i],o.dtype)},xB={kernelName:Xa,backendName:"webgl",kernelFunc:nit};function yB(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Xn(a,r.dtype,"max",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}function I1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reductionIndices:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=e.shouldExecuteOnCPU([o]),f=o;if(p){if(m){let w=e.texData.get(f.dataId).values,I=new Array(a);for(let A=0;A<I.length;A++)I[A]=o.shape[c[A]];let N=gp(w,o.shape,o.dtype,c,I);f=e.makeTensorInfo(I,o.dtype);let E=e.texData.get(f.dataId);E.values=N}else f=ju(o,c,e);l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("max",l,a);let[d,h]=S.computeOutAndReduceShapes(f.shape,l),g=d;i&&(g=S.expandShapeToKeepDim(d,u));let x;if(m){let w=e.texData.get(f.dataId).values,I=EL(w,y.sizeFromShape(h),g,o.dtype);x=e.makeTensorInfo(g,o.dtype);let N=e.texData.get(x.dataId);N.values=I}else x=yB(f,h,g,e);return p&&e.disposeIntermediateTensorInfo(f),x}var bB={kernelName:Ss,backendName:"webgl",kernelFunc:I1};var oit=Od+`
return max(a, b);
`,sit=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jn+`
return result;
`,iit=ue({opSnippet:oit,packedOpSnippet:sit,cpuKernelImpl:AL}),wB={kernelName:Ns,backendName:"webgl",kernelFunc:iit};function ait(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;wi(o,"maxPool");let{filterSize:s,strides:i,pad:a,dimRoundingMode:u}=n,l=1;y.assert(S.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=S.computePool2DInfo(o.shape,s,i,l,a,u);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return rr({inputs:{x:o},backend:e});let p=new Ci(c,"max",!1);return e.runWebGLProgram(p,[o],o.dtype)}var IB={kernelName:ks,backendName:"webgl",kernelFunc:ait};function lit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dataFormat:u,dimRoundingMode:l}=n,c=[1,1,1],p=S.computePool3DInfo(o.shape,s,i,c,a,l,u),m=new Xu(p,"max",!1);return e.runWebGLProgram(m,[o],o.dtype)}var CB={kernelName:Oi,backendName:"webgl",kernelFunc:lit};var qI=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,n=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,i=t.effectiveFilterWidth,a=s-1-t.padInfo.top,u=i-1-t.padInfo.left,l=s*i-1;this.userCode=`
const ivec2 pads = ivec2(${a}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${o}) {
float dyR = float(dyRCorner + wR) / ${e}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${i}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${i} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},KI=class{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,n=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,i=t.dilationHeight,a=t.dilationWidth,u=t.effectiveFilterDepth,l=t.effectiveFilterHeight,c=t.effectiveFilterWidth,p=u-1-t.padInfo.front,m=l-1-t.padInfo.top,f=c-1-t.padInfo.left,d=u*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${e}.0;
if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${i}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${t.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${a}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${t.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function uit(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,i=s,{filterSize:a,strides:u,pad:l,dimRoundingMode:c}=n,p=[1,1,1],m=S.computePool3DInfo(i.shape,a,u,p,l,c),f=new Xu(m,"max",!0),d=e.runWebGLProgram(f,[i],i.dtype),h=new KI(m),g=e.runWebGLProgram(h,[o,d],i.dtype);return e.disposeIntermediateTensorInfo(d),g}var vB={kernelName:nu,backendName:"webgl",kernelFunc:uit};function cit(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s,output:i}=t,a=s;wi([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=n,m=S.computePool2DInfo(a.shape,u,l,1,c,p),f=!0,d=new Ci(m,"max",f),h=e.runWebGLProgram(d,[a],a.dtype),g=new qI(m),x=e.runWebGLProgram(g,[o,h],a.dtype);return e.disposeIntermediateTensorInfo(h),x}var SB={kernelName:Wp,backendName:"webgl",kernelFunc:cit};function NB(r,t,e,n){let o=new Ci(e,"max",!1),s=n.runWebGLProgram(o,[r],"float32");o=new Ci(e,"max",!0,!0,t);let i=n.runWebGLProgram(o,[r],"float32");return[s,i]}var kB={kernelName:Up,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{filterSize:o,strides:s,pad:i,includeBatchInIndex:a}=t,u=e;y.assert(n.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${n.shape.length}.`);let l=[1,1];y.assert(S.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let c=S.computePool2DInfo(n.shape,o,s,l,i),[p,m]=NB(n,a,c,u);return[p,m]}};function TB(r,t,e,n){let o=y.sizeFromShape(t),i=y.sizeFromShape(r.shape)/o,a=rt({inputs:{x:r},attrs:{shape:[i,o]},backend:n}),u=Xn(a,"float32","mean",n),l=rt({inputs:{x:u},attrs:{shape:e},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(u),l}var _B={kernelName:Ts,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{x:n}=r,{keepDims:o,axis:s}=t,i=e,a=n.shape.length,u=y.parseAxisParam(s,n.shape),l=u,c=S.getAxesPermutation(l,a),p=c!=null,m=i.shouldExecuteOnCPU([n]),f=[],d=n;if(p){if(m){let I=i.texData.get(d.dataId).values,N=new Array(a);for(let D=0;D<N.length;D++)N[D]=n.shape[c[D]];let E=gp(I,n.shape,n.dtype,c,N);d=i.makeTensorInfo(N,n.dtype);let A=i.texData.get(d.dataId);A.values=E}else d=ju(n,c,i);f.push(d),l=S.getInnerMostAxes(l.length,a)}S.assertAxesAreInnerMostDims("sum",l,a);let[h,g]=S.computeOutAndReduceShapes(d.shape,l),x=h;o&&(x=S.expandShapeToKeepDim(h,u));let b=TB(d,g,x,i);for(let w of f)i.disposeIntermediateTensorInfo(w);return b}};function pit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=y.parseAxisParam(s,o.shape),l=u,c=S.getAxesPermutation(l,a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),l=S.getInnerMostAxes(l.length,o.shape.length)),S.assertAxesAreInnerMostDims("min",l,a);let[m,f]=S.computeOutAndReduceShapes(p.shape,l),d=y.sizeFromShape(f),h=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,d]}}),g=Xn(h,h.dtype,"min",e),x;if(i){let b=S.expandShapeToKeepDim(m,u);x=rt({inputs:{x:g},backend:e,attrs:{shape:b}})}else x=rt({inputs:{x:g},backend:e,attrs:{shape:m}});return e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(g),c!=null&&e.disposeIntermediateTensorInfo(p),x}var EB={kernelName:_s,backendName:"webgl",kernelFunc:pit};var mit=Od+`
return min(a, b);
`,fit=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jn+`
return result;
`,dit=ue({opSnippet:mit,packedOpSnippet:fit,cpuKernelImpl:DL}),AB={kernelName:Es,backendName:"webgl",kernelFunc:dit};var jI=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=e.map((c,p)=>c[0]+t[p]+c[1]);let o=t.length,s=zt(o),i=e.map(c=>c[0]).join(","),a=e.map((c,p)=>c[0]+t[p]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),l=n==="reflect"?0:1;if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${o}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${s} coords = outC - start;
setOutput(getX(${u}));
}
`}};var XI=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((d,h)=>d[0]+t[h]+d[1]);let o=t.length,s=zt(o),i=e.map(d=>d[0]).join(","),a=e.map((d,h)=>d[0]+t[h]).join(","),u=er("rc",o),l=er("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=n==="reflect"?0:1,f="";if(o===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {
${d}
result[2] = getChannel(getX(${l.join()}), ${p});
${u[o-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var hit=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{paddings:o,mode:s}=e,i=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new XI(n.shape,o,s):new jI(n.shape,o,s);return t.runWebGLProgram(i,[n],n.dtype)},DB={kernelName:As,backendName:"webgl",kernelFunc:hit};var git=`if (b == 0.0) return NAN;
return mod(a, b);`,xit=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+jn+`
return result;
`,yit=ue({opSnippet:git,packedOpSnippet:xit}),$B={kernelName:Ya,backendName:"webgl",kernelFunc:yit};var YI=class{constructor(t,e,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[t,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${e-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${e-1}));
}
`}};var bit=`
if (a == b) {
return 1.0;
};
return a / b;`,wit=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,C1=ue({opSnippet:bit,packedOpSnippet:wit,checkOutOfBounds:!0}),RB={kernelName:us,backendName:"webgl",kernelFunc:C1};var FB="return a - b;",v1=ue({opSnippet:FB,packedOpSnippet:FB,supportsComplex:!0,cpuKernelImpl:JL}),OB={kernelName:ti,backendName:"webgl",kernelFunc:v1};function S1(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{dim:s}=n,i=y.parseAxisParam([s],o.shape),a=I1({inputs:{x:o},backend:e,attrs:{reductionIndices:i,keepDims:!1}}),u=S.expandShapeToKeepDim(a.shape,i),l=rt({inputs:{x:a},backend:e,attrs:{shape:u}}),c=v1({inputs:{a:o,b:l},backend:e}),p=y1({inputs:{x:c},backend:e}),m=xp({inputs:{x:p},backend:e,attrs:{axis:i,keepDims:!1}}),f=rt({inputs:{x:m},backend:e,attrs:{shape:u}}),d=C1({inputs:{a:p,b:f},backend:e});return e.disposeIntermediateTensorInfo(a),e.disposeIntermediateTensorInfo(l),e.disposeIntermediateTensorInfo(c),e.disposeIntermediateTensorInfo(p),e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(f),d}var PB={kernelName:Js,backendName:"webgl",kernelFunc:S1};function Iit(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n,u=a?o:S1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new YI(l,c,s),m=[[i]],f=e.runWebGLProgram(p,[u],"int32",m);return a||e.disposeIntermediateTensorInfo(u),f}var MB={kernelName:Za,backendName:"webgl",kernelFunc:Iit};var Cit=yr+`
return -x;
`,vit=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Sit(r){let{inputs:t,backend:e}=r,{x:n}=t;if(e.shouldExecuteOnCPU([n])){let s=e.texData.get(n.dataId),[i,a]=RL(s.values,n.shape,n.dtype);return e.makeTensorInfo(a,n.dtype,i)}let o;return L().getBool("WEBGL_PACK_UNARY_OPERATIONS")?o=new Dn(n.shape,vit):o=new zr(n.shape,Cit),e.runWebGLProgram(o,[n],n.dtype)}var LB={kernelName:Pi,backendName:"webgl",kernelFunc:Sit};var Nit=Kr.nonMaxSuppressionV3Impl;function kit(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),{selectedIndices:p}=Nit(l,c,i,a,u);return e.makeTensorInfo([p.length],"int32",new Int32Array(p))}var zB={kernelName:Qa,backendName:"webgl",kernelFunc:kit};var Tit=Kr.nonMaxSuppressionV4Impl;function _it(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,padToMaxOutputSize:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=Tit(c,p,i,a,u,l);return[e.makeTensorInfo([m.length],"int32",new Int32Array(m)),e.makeTensorInfo([],"int32",new Int32Array([f]))]}var BB={kernelName:tl,backendName:"webgl",kernelFunc:_it};var Eit=Kr.nonMaxSuppressionV5Impl;function Ait(r){S.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:e,attrs:n}=r,{boxes:o,scores:s}=t,{maxOutputSize:i,iouThreshold:a,scoreThreshold:u,softNmsSigma:l}=n,c=e.readSync(o.dataId),p=e.readSync(s.dataId),m=i,f=a,d=u,h=l,{selectedIndices:g,selectedScores:x}=Eit(c,p,m,f,d,h);return[e.makeTensorInfo([g.length],"int32",new Int32Array(g)),e.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var VB={kernelName:el,backendName:"webgl",kernelFunc:Ait};var ZI=class{constructor(t,e,n,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${o}), float(${n}),
float(index == coords.y)));
}
`}};var Dit=r=>{let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=y.sizeFromShape(o.shape),c=new ZI(l,i,a,u),p=rt({inputs:{x:o},backend:e,attrs:{shape:[l]}}),m=e.runWebGLProgram(c,[p],s);e.disposeIntermediateTensorInfo(p);let f=[...o.shape,i],d=rt({inputs:{x:m},backend:e,attrs:{shape:f}});return e.disposeIntermediateTensorInfo(m),d},GB={kernelName:$s,backendName:"webgl",kernelFunc:Dit};function fg(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="complex64"){let o=Gl({inputs:{input:n},backend:e}),s=fg({inputs:{x:o},backend:e}),i=bp({inputs:{input:n},backend:e}),a=fg({inputs:{x:i},backend:e}),u=$n({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Wl({attrs:{shape:n.shape,dtype:n.dtype,value:n.dtype==="string"?"":0},backend:e})}var WB={kernelName:Hi,backendName:"webgl",kernelFunc:fg};function UB(r){let{inputs:t,backend:e}=r,{x:n}=t;if(n.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(n.dtype==="complex64"){let o=Gl({inputs:{input:n},backend:e}),s=UB({inputs:{x:o},backend:e}),i=bp({inputs:{input:n},backend:e}),a=fg({inputs:{x:i},backend:e}),u=$n({inputs:{real:s,imag:a},backend:e});return e.disposeIntermediateTensorInfo(o),e.disposeIntermediateTensorInfo(s),e.disposeIntermediateTensorInfo(i),e.disposeIntermediateTensorInfo(a),u}else return Wl({attrs:{shape:n.shape,dtype:n.dtype,value:1},backend:e})}var HB={kernelName:Mi,backendName:"webgl",kernelFunc:UB};function $it(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return OI({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=OI({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=x1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeIntermediateTensorInfo(c)),l}var qB={kernelName:Li,backendName:"webgl",kernelFunc:$it};var JI=class{constructor(t,e,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((l,c)=>l[0]+t[c]+l[1]);let o=t.length,s=zt(o),i=e.map(l=>l[0]).join(","),a=e.map((l,c)=>l[0]+t[c]).join(","),u=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=`
int start = ${i};
int end = ${a};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${i});
${s} end = ${s}(${a});
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${u}));
}
}
`}};var QI=class{constructor(t,e,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=e.map((h,g)=>h[0]+t[g]+h[1]);let o=t.length,s=zt(o),i=e.map(h=>h[0]).join(","),a=e.map((h,g)=>h[0]+t[g]).join(","),u=er("rc",o),l=er("source",o),c=`${u[o-1]} < ${this.outputShape[o-1]}`,p=o===1?"source":`vec2(${l.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${u[o-1]} += 1;
if(${c}) {
`,o===1?"":`}
rc = outputLoc;
${u[o-2]} += 1;
if(${u[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${u[o-1]} += 1;
if(${c}) {`],f=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=o===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${l.join()}), ${p});
}
`;d+=o===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${i});
const ${s} end = ${s}(${a});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}};var N1=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{paddings:s,constantValue:i}=n;if(y.sizeFromShape(o.shape)===0){let l=s.map((c,p)=>c[0]+o.shape[p]+c[1]);return Wl({backend:e,attrs:{shape:l,value:i,dtype:o.dtype}})}let a=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QI(o.shape,s,i):new JI(o.shape,s,i),u=[[i]];return e.runWebGLProgram(a,[o],o.dtype,u)},KB={kernelName:Rs,backendName:"webgl",kernelFunc:N1};var Rit=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Fit=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+jn+`
return result;
`,Oit=ue({opSnippet:Rit,packedOpSnippet:Fit}),jB={kernelName:Fs,backendName:"webgl",kernelFunc:Oit};function Pit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,keepDims:i}=n,a=o.shape.length,u=[],l=y.parseAxisParam(s,o.shape),c=l,p=S.getAxesPermutation(c,a),m=o;p!=null&&(m=Pe({inputs:{x:o},backend:e,attrs:{perm:p}}),c=S.getInnerMostAxes(c.length,a),u.push(m)),S.assertAxesAreInnerMostDims("prod",c,a);let f;if(e.shouldExecuteOnCPU([m])){let d=e.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=OL(m.shape,m.dtype,d,c);f=e.makeTensorInfo(g,x,h)}else{let[d,h]=S.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=rt({inputs:{x:m},backend:e,attrs:{shape:[-1,g]}}),b=pc(o.dtype),w=Xn(x,b,"prod",e);f=rt({inputs:{x:w},backend:e,attrs:{shape:d}}),u.push(x),u.push(w)}if(i){u.push(f);let d=S.expandShapeToKeepDim(f.shape,l);f=rt({inputs:{x:f},backend:e,attrs:{shape:d}})}return u.forEach(d=>e.disposeIntermediateTensorInfo(d)),f}var XB={kernelName:Ps,backendName:"webgl",kernelFunc:Pit};function Mit(r){let{inputs:t,backend:e,attrs:n}=r,{paramsNestedSplits:o,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:a}=n,u=o.map(x=>e.readSync(x.dataId)),l=o.map(x=>x.shape),c=e.readSync(s.dataId),p=e.readSync(i.dataId),[m,f,d]=PL(u,l,c,s.shape,s.dtype,p,i.shape,a),h=m.map(x=>e.makeTensorInfo([x.length],"int32",x)),g=e.makeTensorInfo(d,s.dtype,f);return h.concat([g])}var YB={kernelName:Hp,backendName:"webgl",kernelFunc:Mit};function Lit(r){let{inputs:t,backend:e}=r,{starts:n,limits:o,deltas:s}=t,i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=ML(i,n.shape,n.dtype,a,o.shape,u,s.shape),p=e.makeTensorInfo([l.length],"int32",l),m=e.makeTensorInfo([c.length],n.dtype,c);return[p,m]}var ZB={kernelName:qp,backendName:"webgl",kernelFunc:Lit};function zit(r){let{inputs:t,backend:e,attrs:n}=r,{shape:o,values:s,defaultValue:i,rowPartitionTensors:a}=t,{rowPartitionTypes:u}=n,l=e.readSync(o.dataId),c=e.readSync(s.dataId),p=e.readSync(i.dataId),m=a.map(g=>e.readSync(g.dataId)),f=a.map(g=>g.shape),[d,h]=LL(l,o.shape,c,s.shape,s.dtype,p,i.shape,m,f,u);return e.makeTensorInfo(d,s.dtype,h)}var JB={kernelName:Kp,backendName:"webgl",kernelFunc:zit};var k1=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=zL(n,o,s,i);return t.makeTensorInfo([a.length],i,a)},QB={kernelName:ou,backendName:"webgl",kernelFunc:k1};var Bit="return 1.0 / x;",Vit=wt({opSnippet:Bit}),tV={kernelName:Ms,backendName:"webgl",kernelFunc:Vit};var Git=yr+`
return (x < 0.0) ? 0.0 : x;
`,Wit=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Uit=wt({opSnippet:Git,packedOpSnippet:Wit}),eV={kernelName:Ls,backendName:"webgl",kernelFunc:Uit};var Hit=yr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,qit=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Kit=wt({opSnippet:Hit,packedOpSnippet:qit}),rV={kernelName:Vs,backendName:"webgl",kernelFunc:Kit};var tC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var eC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function jit(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new eC(o.shape,u,l,s,i):new tC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],"float32")}var nV={kernelName:Bs,backendName:"webgl",kernelFunc:jit};var rC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Xit(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new rC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var oV={kernelName:nl,backendName:"webgl",kernelFunc:Xit};var nC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${a}.0, ${u}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};var oC=class{constructor(t,e,n,o,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[i,a,u,l]=t;this.outputShape=[i,e,n,l];let c=[o&&e>1?a-1:a,o&&n>1?u-1:u],p=[o&&e>1?e-1:e,o&&n>1?n-1:n],m=o?"0.5":"0.0",f;s?f="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":f="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${a}.0, ${u}.0,
${u}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Yit(r){let{inputs:t,backend:e,attrs:n}=r,{images:o}=t,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,c=L().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new oC(o.shape,u,l,s,i):new nC(o.shape,u,l,s,i);return e.runWebGLProgram(c,[o],o.dtype)}var sV={kernelName:zs,backendName:"webgl",kernelFunc:Yit};var sC=class{constructor(t,e,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e;let[,o,s]=e,[,i,a]=t,u=[n&&i>1?o-1:o,n&&a>1?s-1:s],l=[n&&i>1?i-1:i,n&&a>1?a-1:a],c=u[0]/l[0],p=u[1]/l[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${i}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${a}) {
continue;
}
float sourceFracRow =
float(${u[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${u[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${o}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Zit(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=new sC(s.shape,o.shape,i);return e.runWebGLProgram(a,[s],s.dtype)}var iV={kernelName:rl,backendName:"webgl",kernelFunc:Zit};var iC=class{constructor(t,e){this.variableNames=["x"];let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=t,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${t[0]} - coord - 1));
}
`;return}let o=a=>e.indexOf(a)!==-1&&t[a]!==1?`${t[a]} - coords[${a}] - 1`:`coords[${a}]`,s=t.map((a,u)=>o(u)).join(","),i=zt(n);this.userCode=`
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var aC=class{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=t.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=t;let o=er("rc",n),s=`${o[n-1]} + 1 < ${this.outputShape[n-1]}`,i=`${o[n-2]} + 1 < ${this.outputShape[n-2]}`,a=zt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${t[0]} - rc - 1),
${t[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${t[0]} - (rc + 1) - 1),
${t[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${u(o.slice())};
if(${s}){
result.g = ${l(o.slice())};
}
if(${i}) {
result.b = ${c(o.slice())};
if(${s}) {
result.a = ${p(o.slice())};
}
}
setOutput(result);
}
`;function u(d){return m(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",m(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",m(d)}function p(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",m(d)}function m(d){let h=t.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return e.indexOf(d)!==-1&&t[d]!==1?`${t[d]} - ${h[d]} - 1`:`${h[d]}`}}};function Jit(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=o.shape.length,a=y.parseAxisParam(s,o.shape);if(i===0)return rr({inputs:{x:o},backend:e});let u=L().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aC(o.shape,a):new iC(o.shape,a);return e.runWebGLProgram(u,[o],o.dtype)}var aV={kernelName:Gs,backendName:"webgl",kernelFunc:Jit};var lC=class{constructor(t,e){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=t[1],o=t[2];this.outputShape=t;let s="";typeof e=="number"?s=`float outputValue = ${e.toFixed(2)};`:s=`
vec3 fill = vec3(${e.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${o} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}};var lV={kernelName:fl,backendName:"webgl",kernelFunc:({inputs:r,attrs:t,backend:e})=>{let{image:n}=r,{radians:o,fillValue:s,center:i}=t,a=e,u=new lC(n.shape,s),[l,c]=S.getImageCenter(i,n.shape[1],n.shape[2]),p=[[l,c,Math.sin(o),Math.cos(o)]];return a.runWebGLProgram(u,[n],n.dtype,p)}};var Qit=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,tat=wt({opSnippet:Qit}),uV={kernelName:Ws,backendName:"webgl",kernelFunc:tat};var eat="return inversesqrt(x);",rat=wt({opSnippet:eat,cpuKernelImpl:BL}),cV={kernelName:Us,backendName:"webgl",kernelFunc:rat};var Yu=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=i;let l=zt(s.length),c=zt(i.length),p="";n===1?p="i":n===2&&(p="i, j");let m=`getIndices(${p})`,f="";o===1?f="i":o===2&&(f="i, coords[1]");let d=`getUpdates(${f})`,h="";u&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=e>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${c} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${t}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${e}; j++) {
int index = round(${m});
flattenedIndex += index * ${x};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(${g}, sum, float(found)));
}
`}};var uC=class{constructor(t,e,n,o,s,i,a=!0,u=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=i;let l=zt(s.length),c=zt(i.length),p="";n===1?p="i":n===2&&(p="i, j");let m=`getIndices(${p})`,f="";o===1?f="i":o===2&&(f="i, coords[1]");let d=`getUpdates(${f})`,h="";u&&(h="coords[0], coords[1]");let g=`getDefaultValue(${h})`,x=e>1?"strides[j]":"strides",b=e>1?"strides[j + 1]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${c} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${t}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${e}; j+=2) {
ivec4 index = round(${m});
flattenedIndex += index.xz * ${x};
if (j + 1 < ${e}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${d};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${g}, sum, found));
}
`}};function nat(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o,updates:s}=t,{shape:i}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(s,o,i),m=[p/l,l];if(p===0)return e.makeTensorInfo(i,o.dtype);let f=rt({inputs:{x:o},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:s},backend:e,attrs:{shape:[u,l]}}),h=e.makeTensorInfo([],"float32",new Float32Array([0])),g;L().getBool("WEBGL_PACK")?g=new uC(u,a,f.shape.length,d.shape.length,c,m):g=new Yu(u,a,f.shape.length,d.shape.length,c,m);let x=e.runWebGLProgram(g,[d,f,h],d.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:i}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(x),e.disposeIntermediateTensorInfo(h),b}var pV={kernelName:ol,backendName:"webgl",kernelFunc:nat};var cC=class{constructor(t,e,n,o){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[t,n];let s="while (left < right) {",i=`for (int i = 0; i < ${Math.ceil(Math.log2(e+1))}; ++i) { if (left >= right) break;`,a=L().getNumber("WEBGL_VERSION")===2?s:i,u=o==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${a}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${u} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function oat(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n,a=new cC(o.shape[0],o.shape[1],s.shape[1],i),u=[[o.shape[1]]];return e.runWebGLProgram(a,[o,s],"int32",u)}var mV={kernelName:il,backendName:"webgl",kernelFunc:oat};var pC=class{constructor(t,e,n){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",o="resRC";else{let a=["resRC.x","resRC.y","resRC.z","resRC.w"],u=[],l=[];for(let c=0;c<e.length;c++)l.push(`${a[c]}`),c<t&&u.push(`${a[c]}`);o=u.join(),s=l.join()}let i=zt(n);this.userCode=`
void main() {
${i} resRC = getOutputCoords();
float cVal = getC(${o});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function sat(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=new pC(n.shape.length,o.shape,o.shape.length);return e.runWebGLProgram(i,[n,o,s],lr(o.dtype,s.dtype))}var fV={kernelName:Bi,backendName:"webgl",kernelFunc:sat};var iat=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${S.SELU_SCALEALPHA};
float scale = ${S.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,aat=wt({opSnippet:iat}),dV={kernelName:Hs,backendName:"webgl",kernelFunc:aat};var lat=zo+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,uat=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,cat=wt({opSnippet:lat,packedOpSnippet:uat,cpuKernelImpl:GL}),hV={kernelName:js,backendName:"webgl",kernelFunc:cat};var pat=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,mat=wt({opSnippet:pat}),gV={kernelName:Ks,backendName:"webgl",kernelFunc:mat};var fat=zo+`
return sin(x);
`,dat=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${jn}
return result;
`,hat=wt({opSnippet:fat,packedOpSnippet:dat}),xV={kernelName:qs,backendName:"webgl",kernelFunc:hat};var gat=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,xat=wt({opSnippet:gat}),yV={kernelName:al,backendName:"webgl",kernelFunc:xat};var yat=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,bat=wt({opSnippet:yat}),bV={kernelName:Xs,backendName:"webgl",kernelFunc:bat};var wat=r=>{let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n;y.assert(o.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let a=s.reduce((x,b)=>x*b),u=[[0,0]];u.push(...i);for(let x=1+s.length;x<o.shape.length;++x)u.push([0,0]);let l=[],c=N1({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),p=S.getReshaped(c.shape,s,a,!1),m=S.getPermuted(p.length,s.length,!1),f=S.getReshapedPermuted(c.shape,s,a,!1),d=rt({inputs:{x:c},backend:e,attrs:{shape:p}}),h=Pe({inputs:{x:d},backend:e,attrs:{perm:m}}),g=rt({inputs:{x:h},backend:e,attrs:{shape:f}});return l.push(c),l.push(d),l.push(h),l.forEach(x=>e.disposeIntermediateTensorInfo(x)),g},wV={kernelName:Gi,backendName:"webgl",kernelFunc:wat};function Iat(r){let{inputs:t,backend:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(n.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${n.shape}`);if(o.shape.length!==1)throw new Error(`Values must be a vector, saw:
${o.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let a=e.readSync(n.dataId),u=e.readSync(o.dataId),l=e.readSync(s.dataId),c=e.readSync(i.dataId)[0],[p,m,f,d,h]=UL(a,n.shape,n.dtype,u,o.dtype,l,c);return[e.makeTensorInfo(m,n.dtype,p),e.makeTensorInfo([m[0]],o.dtype,f),e.makeTensorInfo([d.length],"bool",new Uint8Array(d.map(g=>Number(g)))),e.makeTensorInfo([h.length],n.dtype,new Int32Array(h))]}var IV={kernelName:su,backendName:"webgl",kernelFunc:Iat};function Cat(r){let{inputs:t,backend:e}=r,{inputIndices:n,inputShape:o,newShape:s}=t;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(e.readSync(o.dataId)),a=e.readSync(n.dataId),u=Array.from(e.readSync(s.dataId)),[l,c,p]=HL(a,n.shape,n.dtype,i,u);return[e.makeTensorInfo(c,n.dtype,l),e.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var CV={kernelName:ll,backendName:"webgl",kernelFunc:Cat};function vat(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=qw(i,n.shape,n.dtype,a,u,!0);return e.makeTensorInfo(c,n.dtype,l)}var vV={kernelName:iu,backendName:"webgl",kernelFunc:vat};function Sat(r){let{inputs:t,backend:e}=r,{data:n,indices:o,segmentIds:s}=t;if(n.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(o.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=e.readSync(n.dataId),a=e.readSync(o.dataId),u=e.readSync(s.dataId),[l,c]=qw(i,n.shape,n.dtype,a,u);return e.makeTensorInfo(c,n.dtype,l)}var SV={kernelName:au,backendName:"webgl",kernelFunc:Sat};function Nat(r){let{inputs:t,backend:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=t,{outputShape:a}=n,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=S.calculateShapes(s,o,a),f=!1;if(s.dtype==="string"){let x=e.bufferSync(o),b=e.bufferSync(s),w=y.decodeString(e.readSync(i.dataId)[0]),I=VL(x,b,a,m,c,l,u,p,w,f);return e.makeTensorInfo(a,I.dtype,I.values)}let d=new Yu(l,u,o.shape.length,s.shape.length,p,[m,1],f),h=e.runWebGLProgram(d,[s,o,i],s.dtype),g=rt({inputs:{x:h},backend:e,attrs:{shape:a}});return e.disposeIntermediateTensorInfo(h),g}var NV={kernelName:ul,backendName:"webgl",kernelFunc:Nat};function kat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=n,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=o.shape.length,c=new Array(l).fill(0),p=o.shape.slice();return u.map(m=>{let f=[...p];f[a]=m;let d=vi({inputs:{x:o},backend:e,attrs:{begin:c,size:f}});return c[a]+=m,d})}var kV={kernelName:Wi,backendName:"webgl",kernelFunc:kat};var TV="return sqrt(x);",Tat=wt({opSnippet:TV,packedOpSnippet:TV,cpuKernelImpl:qL}),_V={kernelName:Ys,backendName:"webgl",kernelFunc:Tat};var _at="return x * x;",Eat=wt({opSnippet:_at}),EV={kernelName:lu,backendName:"webgl",kernelFunc:Eat};var AV="return (a - b) * (a - b);",Aat=ue({opSnippet:AV,packedOpSnippet:AV}),DV={kernelName:Qs,backendName:"webgl",kernelFunc:Aat};function Dat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t;if(o.dtype!=="string")throw new Error("Input must be of datatype string");let s=e.readSync(o.dataId),i=S.fromUint8ToStringArray(s),a=KL(i,"string",n);return e.makeTensorInfo(o.shape,"string",a)}var $V={kernelName:oc,backendName:"webgl",kernelFunc:Dat};function $at({inputs:r,attrs:t,backend:e}){let{x:n}=r,o=yr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new zr(n.shape,o);return e.runWebGLProgram(s,[n],n.dtype)}var RV={kernelName:xo,backendName:"webgl",kernelFunc:$at};var mC=class{constructor(t,e,n){this.variableNames=["x"],this.outputShape=n;let o=n.length,s=zt(n.length),i=zt(n.length),a="";if(o===1)a="coords * strides + begin";else{let u=0;a=n.map((l,c)=>(u++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${u-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${t});
${s} strides = ${s}(${e});
void main() {
${i} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}};function Rat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=rt({inputs:{x:o},backend:e,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let A=ze.computeOutShape(b,w,I),D=vi({inputs:{x:o},backend:e,attrs:{begin:b,size:A}});N=rt({inputs:{x:D},backend:e,attrs:{shape:d}}),e.disposeIntermediateTensorInfo(D)}else if(e.shouldExecuteOnCPU([o])){let D=e.readSync(o.dataId),F=bt(o.shape,o.dtype,D),P=jL(f,F,I,b);N=e.makeTensorInfo(d,o.dtype,P.values)}else{let D=new mC(b,I,f);N=e.runWebGLProgram(D,[o],o.dtype)}let E=rt({inputs:{x:N},backend:e,attrs:{shape:d}});return e.disposeIntermediateTensorInfo(N),E}var FV={kernelName:cl,backendName:"webgl",kernelFunc:Rat};function Fat(r){let{inputs:t,backend:e,attrs:n}=r,{separator:o,nGramWidths:s,leftPad:i,rightPad:a,padWidth:u,preserveShortSequences:l}=n,{data:c,dataSplits:p}=t,m=e.readSync(c.dataId),f=e.readSync(p.dataId),[d,h]=XL(m,f,o,s,i,a,u,l);return[e.makeTensorInfo([d.length],"string",d),e.makeTensorInfo(p.shape,"int32",h)]}var OV={kernelName:uu,backendName:"webgl",kernelFunc:Fat};function Oat(r){let{inputs:t,backend:e,attrs:n}=r,{skipEmpty:o}=n,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let a=e.readSync(s.dataId),u=e.readSync(i.dataId)[0],[l,c,p]=YL(a,u,o),m=c.length;return[e.makeTensorInfo([m,2],"int32",l),e.makeTensorInfo([m],"string",c),e.makeTensorInfo([2],"int32",new Int32Array(p))]}var PV={kernelName:cu,backendName:"webgl",kernelFunc:Oat};function Pat(r){let{inputs:t,backend:e,attrs:n}=r,{numBuckets:o}=n,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(o<=0)throw new Error("Number of buckets must be at least 1");let i=e.readSync(s.dataId),a=ZL(i,o);return e.makeTensorInfo(s.shape,"int32",a)}var MV={kernelName:pu,backendName:"webgl",kernelFunc:Pat};var Mat="return tan(x);",Lat=wt({opSnippet:Mat}),LV={kernelName:ei,backendName:"webgl",kernelFunc:Lat};var zat=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Bat=wt({opSnippet:zat}),zV={kernelName:ri,backendName:"webgl",kernelFunc:Bat};function Vat(r){let{inputs:t,backend:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=t,{}=n,{sliceRank:a,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=S.calculateShapes(i,s,o.shape),m=[p/l,l];if(p===0)return e.makeTensorInfo(o.shape,s.dtype);let f=rt({inputs:{x:s},backend:e,attrs:{shape:[u,a]}}),d=rt({inputs:{x:i},backend:e,attrs:{shape:[u,l]}}),h=rt({inputs:{x:o},backend:e,attrs:{shape:m}}),g=new Yu(u,a,f.shape.length,d.shape.length,c,m,!1,!0),x=e.runWebGLProgram(g,[d,f,h],h.dtype),b=rt({inputs:{x},backend:e,attrs:{shape:o.shape}});return e.disposeIntermediateTensorInfo(f),e.disposeIntermediateTensorInfo(d),e.disposeIntermediateTensorInfo(h),e.disposeIntermediateTensorInfo(x),b}var BV={kernelName:sl,backendName:"webgl",kernelFunc:Vat};var fC=class{constructor(t,e){this.variableNames=["A"];let n=new Array(t.length);for(let i=0;i<n.length;i++)n[i]=t[i]*e[i];this.outputShape=n,this.rank=n.length;let o=zt(this.rank),s=Gat(t);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function Gat(r){let t=r.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${r[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],n=[];for(let o=0;o<r.length;o++)n.push(`imod(${e[o]}, ${r[o]})`);return n.join()}function T1(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{reps:s}=n;if(o.dtype==="string"||o.shape.length>5){let u=e.readSync(o.dataId),l=o.dtype==="string"?u.map(m=>y.decodeString(m)):u,c=bt(o.shape,o.dtype,l),p=QL(c,s);return e.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new fC(o.shape,s);return e.runWebGLProgram(i,[o],o.dtype)}var VV={kernelName:no,backendName:"webgl",kernelFunc:T1};var dC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},hC=class{constructor(t){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=t,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Ip(r,t){t!==null&&r.disposeIntermediateTensorInfo(t)}function GV(r){let t=1;for(;t<r;)t*=2;return t}function Wat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{k:s,sorted:i}=n,a=L().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=L().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=o.shape,c=l[l.length-1];if(e.shouldExecuteOnCPU([o])||c<a||s>u){let P=e.readSync(o.dataId),[V,G]=tz(P,l,o.dtype,s,i);return[e.makeTensorInfo(V.shape,V.dtype,V.values),e.makeTensorInfo(G.shape,G.dtype,G.values)]}if(s===0)return l[l.length-1]=0,[e.makeTensorInfo(l,o.dtype,[]),e.makeTensorInfo(l,"int32",[])];if(c===1)return[o,Wl({attrs:{shape:l,dtype:"int32",value:0},backend:e})];let p=e.texData.get(o.dataId),m=p!==null&&p.isPacked,f=m?e.unpackTensor(o):o,h=y.sizeFromShape(l)/c,g=rt({inputs:{x:f},attrs:{shape:[h,c]},backend:e});m&&Ip(e,f);let x=GV(s),b=GV(c),w=null,I=()=>w===null?[g,g]:[g,w],N=(P,V,G)=>{let W=I(),q=new dC(G),K=[[c],[w===null?1:0],[Number.NEGATIVE_INFINITY],[P],[V]],X=w;w=e.runWebGLProgram(q,W,"int32",K),Ip(e,X)};for(let P=1;P<x;P*=2){let V=P*2;for(let G=P;G>=1;G/=2)N(V,G,[h,b])}for(let P=b;P>x;P/=2){let V=I(),G=new hC([h,P/2]),q=[[c],[w===null?1:0],[x]],H=w;w=e.runWebGLProgram(G,V,"int32",q),Ip(e,H);let K=x/2,X=K*2;for(let Z=K;Z>=1;Z/=2)N(X,Z,w.shape)}let E=w;w=vi({inputs:{x:w},backend:e,attrs:{begin:0,size:[h,s]}}),Ip(e,E);let A=w1({inputs:{x:g,indices:w},backend:e,attrs:{axis:1,batchDims:1}});Ip(e,g);let D=l.slice(0,-1);D.push(s),E=w,w=rt({inputs:{x:w},attrs:{shape:D},backend:e}),Ip(e,E);let F=A;return A=rt({inputs:{x:A},attrs:{shape:D},backend:e}),Ip(e,F),[A,w]}var WV={kernelName:pl,backendName:"webgl",kernelFunc:Wat};var gC=class{constructor(t,e,n,o,s,i){this.variableNames=["Image","Transforms"],this.outputShape=i;let a=n==="nearest"?1:2,u;switch(o){case"constant":u=1;break;case"reflect":u=2;break;case"wrap":u=3;break;case"nearest":u=4;break;default:u=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${u} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${u} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${t} && 0 <= coordX && coordX < ${e}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${e}));
float mapY = mapCoord(inY, float(${t}));
if (${a} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Uat(r){let{inputs:t,backend:e,attrs:n}=r,{image:o,transforms:s}=t,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new gC(p,m,i,a,u,g);return e.runWebGLProgram(x,[o,s],"float32")}var UV={kernelName:ml,backendName:"webgl",kernelFunc:Uat};function Hat(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t;wi(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=n.readSync(s.dataId),{outputValues:a,outputShape:u,indices:l}=ez(i,o,s.shape,s.dtype);return[n.makeTensorInfo(u,s.dtype,a),n.makeTensorInfo([l.length],"int32",l)]}var HV={kernelName:mu,backendName:"webgl",kernelFunc:Hat};function qat(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o,a=i.shape.length,u=o.shape[s],l=new Array(a-1),c=0;for(let h=0;h<a;h++)h!==s&&(l[c++]=i.shape[h]);let p=[],m=new Array(a).fill(0),f=i.shape.slice();f[s]=1;let d=new Array(u);for(let h=0;h<d.length;h++){m[s]=h;let g=vi({inputs:{x:i},backend:e,attrs:{begin:m,size:f}}),x=rt({inputs:{x:g},backend:e,attrs:{shape:l}});d[h]=x,p.push(g)}return p.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}var qV={kernelName:Ui,backendName:"webgl",kernelFunc:qat};var xC=class{constructor(t,e){this.variableNames=["x","segmentIds"];let n=t.windowSize,o=t.batchSize,s=t.inSize,i=t.numSegments,a=i*Math.ceil(s/n);this.outputShape=[o,a];let u="0.0",l="sumValue",c=Math.floor(n/4)*4,p=n%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%n>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${u};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${i})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${i})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${l});
}
`}};function Kat(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,segmentIds:s}=t,{numSegments:i}=n,a=o.shape.length,u=[],l=0,c=S.getAxesPermutation([l],a),p=o;c!=null&&(p=Pe({inputs:{x:o},backend:e,attrs:{perm:c}}),u.push(p),l=S.getInnerMostAxes(1,a)[0]);let m=S.segment_util.computeOutShape(p.shape,l,i),f=y.sizeFromShape([p.shape[l]]),d=rt({inputs:{x:p},backend:e,attrs:{shape:[-1,f]}});u.push(d);let h=pc(o.dtype),g=(I,N,E,A,D)=>{let F=I.shape[0],P=I.shape[1],V=S.segment_util.segOpComputeOptimalWindowSize(P,D),G={windowSize:V,inSize:P,batchSize:F,numSegments:D},W=new xC(G,N),q=e.compileAndRun(W,[I,E],A);if(u.push(q),q.shape[1]===D)return q;let H=k1({backend:e,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),K=T1({inputs:{x:H},backend:e,attrs:{reps:[P/V]}});return u.push(H),u.push(K),g(q,N,K,A,D)},x=g(d,"unsortedSegmentSum",s,h,i),b=rt({inputs:{x},backend:e,attrs:{shape:m}}),w=b;if(c!=null){u.push(b);let I=S.getUndoAxesPermutation(c);w=Pe({inputs:{x:w},backend:e,attrs:{perm:I}})}return u.forEach(I=>e.disposeIntermediateTensorInfo(I)),w}var KV={kernelName:fu,backendName:"webgl",kernelFunc:Kat};var jat=[Az,$z,Rz,Fz,Pz,Mz,Lz,zz,Gz,Wz,Uz,Hz,qz,Kz,jz,Xz,Yz,Zz,Jz,Qz,t3,r3,n3,o3,l3,c3,p3,wz,f3,h3,g3,x3,y3,b3,w3,I3,C3,v3,S3,T3,_3,E3,A3,D3,$3,R3,F3,O3,P3,M3,L3,z3,B3,V3,G3,U3,H3,q3,K3,X3,Y3,Z3,J3,Q3,tB,eB,rB,nB,bz,oB,d3,sB,iB,aB,Iz,lB,uB,cB,pB,mB,fB,dB,hB,gB,xB,bB,wB,IB,CB,vB,SB,kB,_B,EB,AB,DB,$B,MB,Sz,LB,zB,BB,VB,s3,GB,HB,qB,KB,jB,Cz,XB,YB,ZB,JB,QB,i3,RB,tV,eV,rV,kz,nV,oV,sV,iV,aV,lV,uV,cV,pV,mV,fV,dV,hV,gV,xV,yV,e3,PB,bV,wV,IV,CV,vV,SV,NV,kV,_V,EV,DV,$V,RV,FV,OV,PV,MV,OB,_z,LV,zV,BV,VV,WV,UV,Ez,HV,qV,KV,WB];for(let r of jat)sc(r);var kt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(kt||(kt={}));var Zu;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu",r[r.sigmoid=5]="sigmoid",r[r.elu=6]="elu"})(Zu||(Zu={}));var jV;function Xat(r){jV=r.wasm.cwrap(qi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Yat(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s,bias:i,preluActivationWeights:a}=t;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=n,m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=0;if(i!=null){let D=e.dataIdMap.get(i.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);d=D.id}let h=a==null?0:e.dataIdMap.get(a.dataId).id,g=Zu[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=u?o.shape[2]:o.shape[1],b=l?s.shape[1]:s.shape[2],w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)),I=e.makeOutput([...w,x,b],o.dtype),N=e.dataIdMap.get(I.dataId).id,E=new Uint8Array(new Int32Array(o.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return jV(m,E,o.shape.length,f,A,s.shape.length,u,l,g,d,h,p||0,N),I}var XV={kernelName:qi,backendName:"wasm",setupFunc:Xat,kernelFunc:Yat};function Ct(r,t){let e;function n(s){e=s.wasm.cwrap(r,null,["number","number","number"])}function o(s){let{backend:i,inputs:{x:a}}=s,u=i.dataIdMap.get(a.dataId).id,l=i.makeOutput(a.shape,t||a.dtype),c=i.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(u,kt[a.dtype],c),l}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:o}}var YV=Ct(Ti);var ZV=Ct(Uo);var JV=Ct(Ho);function ae(r,t,e){let n;function o(i){n=i.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:a,inputs:u}=i,{a:l,b:c}=u,p=a.dataIdMap.get(l.dataId).id,m=a.dataIdMap.get(c.dataId).id,f=e!=null?e:l.dtype,d=S.assertAndGetBroadcastShape(l.shape,c.shape),h=a.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(l.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=a.dataIdMap.get(h.dataId).id;return(()=>n(p,g,l.shape.length,m,x,c.shape.length,kt[l.dtype],b))(),h}return{kernelName:r,backendName:"wasm",setupFunc:o,kernelFunc:s}}var Zat=!0,QV=ae(ro,Zat);var tG;function Jat(r){tG=r.wasm.cwrap(qo,null,["array","number","number","number"])}function Qat(r){let{inputs:t,backend:e}=r,n=e.makeOutput(t[0].shape,t[0].dtype);if(y.sizeFromShape(n.shape)===0)return n;let o=t.map(a=>e.dataIdMap.get(a.dataId).id),s=new Uint8Array(new Int32Array(o).buffer),i=e.dataIdMap.get(n.dataId).id;return tG(s,o.length,kt[n.dtype],i),n}var eG={kernelName:qo,backendName:"wasm",setupFunc:Jat,kernelFunc:Qat};function Cp(r){let{inputs:{x:t},backend:e}=r;if(t.dtype==="string")return or(e.readSync(t.dataId),t.shape,t.dtype);let n=e.makeOutput(t.shape,t.dtype),o=e.typedArrayFromHeap(t);return e.typedArrayFromHeap(n).set(o),n}var rG={kernelName:go,backendName:"wasm",kernelFunc:Cp};var nG;function tlt(r){nG=r.wasm.cwrap(oo,null,["number","array","number","number","number","array","number"])}function mo(r){let{inputs:t,backend:e,attrs:n}=r,[o,s]=rlt(t.x.shape,n.perm),i=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(i=!1);let a=elt(t.x.shape,n.perm),u={dataId:t.x.dataId,shape:o,dtype:t.x.dtype};if(i){let d=Cp({inputs:t,backend:e});return d.shape=a,d}let l=e.makeOutput(a,u.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.dataIdMap.get(l.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(u.shape).buffer);return nG(c,f,u.shape.length,kt[u.dtype],p,m,s.length),l}function elt(r,t){let e=new Array(r.length);for(let n=0;n<e.length;n++)e[n]=r[t[n]];return e}function rlt(r,t){let e=[],n=[];for(let o=0;o<r.length;++o)r[o]!==1&&e.push(r[o]),r[t[o]]!==1&&n.push(t[o]);for(let o=0;o<n.length;++o){let s=-1;for(let i=0;i<n.length;++i)n[i]>=o&&(s===-1||n[s]>n[i])&&(s=i);n[s]=o}return[e,n]}var oG={kernelName:oo,backendName:"wasm",kernelFunc:mo,setupFunc:tlt};function In(r,t,e){let n=r.shape,o=r.shape.length,s=y.parseAxisParam(t,n),i=s,a=S.getAxesPermutation(i,o),u=null,l=!1;if(a!=null){let c=new Array(o);for(let f=0;f<c.length;f++)c[f]=n[a[f]];i=S.getInnerMostAxes(i.length,o),u=mo({inputs:{x:r},attrs:{perm:a},backend:e});let p=e.dataIdMap.get(r.dataId).id;e.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var sG;function nlt(r){sG=r.wasm.cwrap(Ea,null,["number, number, number"])}function olt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("all",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;sG(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var iG={kernelName:Ea,backendName:"wasm",setupFunc:nlt,kernelFunc:olt};var aG;function slt(r){aG=r.wasm.cwrap(Aa,null,["number, number, number"])}function ilt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("any",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;aG(u,x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var lG={kernelName:Aa,backendName:"wasm",setupFunc:slt,kernelFunc:ilt};function yC(r){let t;function e(o){t=o.wasm.cwrap(r,null,["number","number","number","number","number"])}function n(o){let{backend:s,inputs:i,attrs:a}=o,{axis:u}=a,{x:l}=i,c=s.dataIdMap.get(l.dataId).id,p=c,m=l,{transposed:f,axes:d,inputWasTransposed:h}=In(l,u,s);if(h){let N=s.dataIdMap.get(f.dataId).id;N!==c&&(m=f,p=N)}let g=m.shape.slice(0,-1),x=s.makeOutput(g,"int32"),b=s.dataIdMap.get(x.dataId).id,w=y.sizeFromShape(x.shape),I=m.shape[d[0]];return t(p,kt[m.dtype],w,I,b),h&&s.disposeData(f.dataId),x}return{kernelName:r,backendName:"wasm",setupFunc:e,kernelFunc:n}}var uG=yC(_i);var cG=yC(Ei);var pG=Ct(Ko);var mG=Ct(jo);var fG=Ct(Xo);var dG=ae(Zo,!1);var hG=Ct(Yo);var gG;function alt(r){gG=r.wasm.cwrap(Jo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function llt(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let I=n.makeOutput(c.outShape,"float32"),N=n.dataIdMap.get(I.dataId).id;return gG(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,N),I}var xG={kernelName:Jo,backendName:"wasm",setupFunc:alt,kernelFunc:llt};var yG;function ult(r){yG=r.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function clt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return yG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var bG={kernelName:Ai,backendName:"wasm",setupFunc:ult,kernelFunc:clt};var wG;function plt(r){wG=r.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mlt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return wG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left,c.filterDepth,c.filterHeight,c.filterWidth),p}var IG={kernelName:Xl,backendName:"wasm",setupFunc:plt,kernelFunc:mlt};function pr(r){let{inputs:t,attrs:e}=r,{x:n}=t,{shape:o}=e,s=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(o,s);return y.assert(s===y.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${n.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(n.dataId),{dataId:n.dataId,shape:i,dtype:n.dtype}}var CG={kernelName:zi,backendName:"wasm",kernelFunc:pr};var vG;function flt(r){vG=r.wasm.cwrap(Qo,null,["number","array","number","number","array","number","number","number","number"])}function dlt(r){let{inputs:t,backend:e,attrs:n}=r,{a:o,b:s}=t,{transposeA:i,transposeB:a}=n;if(o.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=o.shape.length,l=s.shape.length,c=i?o.shape[u-2]:o.shape[u-1],p=a?s.shape[l-1]:s.shape[l-2],m=i?o.shape[u-1]:o.shape[u-2],f=a?s.shape[l-2]:s.shape[l-1],d=o.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),w=Ur.assertAndGetBroadcastShape(o.shape.slice(0,-2),s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${i} and transposeB=${a} must match.`);let I=i?[g,c,m]:[g,m,c],N=a?[x,f,p]:[x,p,f],E=pr({inputs:{x:o},backend:e,attrs:{shape:I}}),A=pr({inputs:{x:s},backend:e,attrs:{shape:N}}),D=e.dataIdMap.get(E.dataId).id,F=e.dataIdMap.get(A.dataId).id,P=i?E.shape[2]:E.shape[1],V=a?A.shape[1]:A.shape[2],G=Math.max(g,x),W=e.makeOutput([G,P,V],E.dtype),q=e.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(E.shape).buffer),K=new Uint8Array(new Int32Array(A.shape).buffer);return vG(D,H,E.shape.length,F,K,A.shape.length,i,a,q),e.disposeData(E.dataId),e.disposeData(A.dataId),W.shape=w,W}var SG={kernelName:Qo,backendName:"wasm",setupFunc:flt,kernelFunc:dlt};function Bo(r){let{inputs:{x:t},attrs:{begin:e,size:n},backend:o}=r,[s,i]=ze.parseSliceParams(t,e,n),a=ze.isSliceContinous(t.shape,s,i),u=o.readSync(t.dataId),l=o.makeOutput(i,t.dtype),c=y.computeStrides(t.shape),p=o.dataIdMap.get(l.dataId);if(a){let d=ze.computeFlatOffset(s,c);return t.dtype==="string"?p.stringBytes=u.slice(d,d+y.sizeFromShape(i)):o.typedArrayFromHeap(l).set(u.subarray(d,d+y.sizeFromShape(i))),l}if(t.dtype==="string"){let d=sp(u,s,i,t.shape,t.dtype);return p.stringBytes=d,l}let m=o.typedArrayFromHeap(l),f=t.shape.length;if(f===2)hlt(u,c[0],m,s,i);else if(f===3)glt(u,c[0],c[1],m,s,i);else if(f===4)xlt(u,c[0],c[1],c[2],m,s,i);else{let d=sp(u,s,i,t.shape,t.dtype);m.set(d)}return l}function hlt(r,t,e,n,o){let s=0,i=n[0],a=n[1],u=i+o[0];for(let l=i;l<u;l++){let c=l*t+a;e.set(r.subarray(c,c+o[1]),s),s+=o[1]}}function glt(r,t,e,n,o,s){let i=0,a=o[0],u=o[1],l=o[2],c=a+s[0],p=u+s[1];for(let m=a;m<c;m++)for(let f=u;f<p;f++){let d=m*t+f*e+l;n.set(r.subarray(d,d+s[2]),i),i+=s[2]}}function xlt(r,t,e,n,o,s,i){let a=0,u=s[0],l=s[1],c=s[2],p=u+i[0],m=l+i[1],f=c+i[2],d=s[3];for(let h=u;h<p;h++)for(let g=l;g<m;g++)for(let x=c;x<f;x++){let b=h*t+g*e+x*n+d;o.set(r.subarray(b,b+i[3]),a),a+=i[3]}}var NG={kernelName:Vi,backendName:"wasm",kernelFunc:Bo};function ylt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,crops:i}=n,a=s.reduce((x,b)=>x*b),u=S.getReshaped(o.shape,s,a),l=S.getPermuted(u.length,s.length),c=S.getReshapedPermuted(o.shape,s,a),p=S.getSliceBeginCoords(i,s.length),m=S.getSliceSize(c,i,s.length),f=pr({inputs:{x:o},backend:e,attrs:{shape:u}}),d=mo({inputs:{x:f},backend:e,attrs:{perm:l}}),h=pr({inputs:{x:d},backend:e,attrs:{shape:c}}),g=Bo({inputs:{x:h},backend:e,attrs:{begin:p,size:m}});return e.disposeData(f.dataId),e.disposeData(d.dataId),e.disposeData(f.dataId),g}var kG={kernelName:Di,backendName:"wasm",kernelFunc:ylt};var TG;function blt(r){TG=r.wasm.cwrap(Da,null,["number","number","boolean","number","number","number"])}function wlt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i}=n,a=s.shape.reduce((p,m)=>p*m,1)!==0,u=o.shape.length===1?[i]:[o.shape[0],i],l=t.makeOutput(u,s.dtype);function c(p){return t.dataIdMap.get(p.dataId).id}return TG(c(o),i,a,c(s),kt[s.dtype],c(l)),l}var _G={kernelName:Da,backendName:"wasm",setupFunc:blt,kernelFunc:wlt};function Ilt(r){let{inputs:t,backend:e}=r,{s0:n,s1:o}=t,s=e.typedArrayFromHeap(n),i=e.typedArrayFromHeap(o),a=S.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return e.makeOutput([a.length],"int32",void 0,new Int32Array(a))}var EG={kernelName:Yl,backendName:"wasm",kernelFunc:Ilt};function Rn(r){let{inputs:{x:t},attrs:{dtype:e},backend:n}=r,o=n.makeOutput(t.shape,e),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(o).set(s),o}var AG={kernelName:fo,backendName:"wasm",kernelFunc:Rn};var DG=Ct(ts);var $G;function Clt(r){$G=r.wasm.cwrap(ho,null,["number","number","number","number"])}function vlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{clipValueMin:s,clipValueMax:i}=n,a=e.dataIdMap.get(o.dataId).id,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(u.dataId).id;return $G(a,s,i,l),u}var RG={kernelName:ho,backendName:"wasm",setupFunc:Clt,kernelFunc:vlt};function _1(r){let{inputs:t,backend:e}=r,n=y.parseAxisParam(r.attrs.axis,t[0].shape)[0],o=t.map(f=>f.shape);S.assertParamsConsistent(o,n);let s=S.computeOutShape(t.map(f=>f.shape),n),i=t.filter(f=>y.sizeFromShape(f.shape)>0);if(i.length===1)return Cp({inputs:{x:i[0]},backend:e});let a=e.makeOutput(s,t[0].dtype);if(y.sizeFromShape(s)===0)return a;if(i[0].dtype==="string"){let f=i.map(w=>{let N=[-1,y.sizeFromShape(w.shape.slice(n))];return pr({inputs:{x:w},backend:e,attrs:{shape:N}})}),d=f.map(w=>({vals:e.readSync(w.dataId),shape:w.shape}));s=S.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=rp(d,s,t[0].dtype,h),x=S.computeOutShape(i.map(w=>w.shape),n);a.shape=x;let b=e.dataIdMap.get(a.dataId);return b.stringBytes=S.fromStringArrayToUint8(g),f.forEach(w=>e.disposeData(w.dataId)),a}let u=y.sizeFromShape(i[0].shape.slice(0,n)),l=0,c=i.map(f=>{let d=y.sizeFromShape(f.shape.slice(n));return l+=d,d}),p=i.map(f=>e.typedArrayFromHeap(f)),m=e.typedArrayFromHeap(a);for(let f=0;f<u;f++){let d=f*l;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var FG={kernelName:$i,backendName:"wasm",kernelFunc:_1};var OG;function Slt(r){OG=r.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Nlt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:m}=e,f=S.convertConv2DDataFormat(m),d=S.computeConv2DInfo(o.shape,s.shape,u,l,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,I=d.padInfo.left,N=d.dilationHeight,E=d.dilationWidth,A=d.strideHeight,D=d.strideWidth,F=d.inChannels,P=d.outChannels,V=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let G=n.makeOutput(d.outShape,"float32"),W=n.dataIdMap.get(G.dataId).id;return OG(i,o.shape[0],o.shape[1],o.shape[2],a,h,g,x,b,w,I,V,N,E,A,D,F,P,W),G}var PG={kernelName:es,backendName:"wasm",setupFunc:Slt,kernelFunc:Nlt};var MG;function klt(r){MG=r.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Tlt(r){let{backend:t,inputs:e,attrs:n}=r,{dy:o,filter:s}=e,{strides:i,pad:a,dataFormat:u,dimRoundingMode:l,inputShape:c}=n,p=1,m=S.convertConv2DDataFormat(u),f=S.computeConv2DInfo(c,s.shape,i,p,a,l,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:I,outHeight:N,outWidth:E,strideHeight:A,strideWidth:D}=f,F=h-1-f.padInfo.top,P=g-1-f.padInfo.left,V=f.dataFormat==="channelsLast",G=y.computeStrides(f.inShape),W=y.computeStrides(o.shape),[q,H,K]=y.computeStrides(s.shape),X=G[0],Z=V?G[1]:G[2],et=V?G[2]:1,nt=V?1:G[1],st=W[0],at=V?W[1]:W[2],ot=V?W[2]:1,it=V?1:W[1],mt=t.makeOutput(f.inShape,"float32"),gt=t.dataIdMap.get(mt.dataId).id,It=t.dataIdMap.get(o.dataId).id,Rt=t.dataIdMap.get(s.dataId).id;return MG(It,Rt,d,h,g,b,w,x,N,E,I,A,D,F,P,q,H,K,X,Z,et,nt,st,at,ot,it,gt),mt}var LG={kernelName:rs,backendName:"wasm",setupFunc:klt,kernelFunc:Tlt};var zG;function _lt(r){zG=r.wasm.cwrap(ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Elt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(o.shape,s.shape,i,u,a),c=e.makeOutput(l.outShape,o.dtype);return zG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var BG={kernelName:ns,backendName:"wasm",setupFunc:_lt,kernelFunc:Elt};var VG;function Alt(r){VG=r.wasm.cwrap($a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Dlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,dy:s}=t,{strides:i,pad:a,filterShape:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(o.shape,u,i,1,a),c=e.makeOutput(l.filterShape,s.dtype);return VG(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var GG={kernelName:$a,backendName:"wasm",setupFunc:Alt,kernelFunc:Dlt};var WG;function $lt(r){WG=r.wasm.cwrap(Ra,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Rlt(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,filter:s}=t,{pad:i,strides:a,inputShape:u}=n;if(o.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${o.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let l=S.computeConv3DInfo(u,s.shape,a,1,i),c=e.makeOutput(l.inShape,o.dtype);return WG(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(c.dataId).id,l.batchSize,l.inDepth,l.inHeight,l.inWidth,l.inChannels,l.outDepth,l.outHeight,l.outWidth,l.outChannels,l.strideDepth,l.strideHeight,l.strideWidth,l.dilationDepth,l.dilationHeight,l.dilationWidth,l.filterDepth,l.filterHeight,l.filterWidth,l.padInfo.front,l.padInfo.top,l.padInfo.left),c}var UG={kernelName:Ra,backendName:"wasm",setupFunc:$lt,kernelFunc:Rlt};var HG=Ct(os);var qG=Ct(ss);var E1;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(E1||(E1={}));var KG;function Flt(r){KG=r.wasm.cwrap(Oa,null,["number","number","number","number","array","number","number","number","number","number"])}function Olt(r){let{backend:t,inputs:e,attrs:n}=r,{method:o,extrapolationValue:s,cropSize:i}=n,{image:a,boxes:u,boxInd:l}=e,c=u.shape[0],[p,m]=i,f=[c,p,m,a.shape[3]],d=t.dataIdMap.get(a.dataId),h;a.dtype!=="float32"&&(h=Rn({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),d=t.dataIdMap.get(h.dataId));let g=d.id,x=t.dataIdMap.get(u.dataId).id,b=t.dataIdMap.get(l.dataId).id,w=t.makeOutput(f,"float32"),I=t.dataIdMap.get(w.dataId).id,N=new Uint8Array(new Int32Array(a.shape).buffer);return KG(g,x,b,c,N,p,m,E1[o],s,I),h!=null&&t.disposeData(h.dataId),w}var jG={kernelName:Oa,backendName:"wasm",setupFunc:Flt,kernelFunc:Olt};var XG;function Plt(r){XG=r.wasm.cwrap(Fa,null,["number","number","number","number","number","number"])}function Mlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumprod does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumprod",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;XG(d,i?1:0,a?1:0,f,h,kt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var YG={kernelName:Fa,backendName:"wasm",setupFunc:Plt,kernelFunc:Mlt};var ZG;function Llt(r){ZG=r.wasm.cwrap(is,null,["number","number","number","number","number","number"])}function zlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{axis:s,exclusive:i,reverse:a}=n,u=o.shape.length;y.assert(o.dtype==="float32"||o.dtype==="int32",()=>`cumsum does not support ${o.dtype} tensors in the WASM backend`);let l=S.getAxesPermutation([s],u),c=o;l!==null&&(c=mo({inputs:{x:o},attrs:{perm:l},backend:e}));let p=S.getInnerMostAxes(1,u)[0];S.assertAxesAreInnerMostDims("cumsum",[p],u);let m=e.makeOutput(c.shape,c.dtype),f=c.shape[p],d=e.dataIdMap.get(c.dataId).id,h=e.dataIdMap.get(m.dataId).id;ZG(d,i?1:0,a?1:0,f,h,kt[o.dtype]);let g=m;if(l!==null){let x=S.getUndoAxesPermutation(l);g=mo({inputs:{x:m},attrs:{perm:x},backend:e}),e.disposeData(c.dataId),e.disposeData(m.dataId)}return g}var JG={kernelName:is,backendName:"wasm",setupFunc:Llt,kernelFunc:zlt};var QG;function Blt(r){QG=r.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function Vlt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,weights:s}=e,{size:i,binaryOutput:a}=n,u=s.shape.reduce((m,f)=>m*f,1)!==0,l=o.shape.length===1?[i]:[o.shape[0],i],c=t.makeOutput(l,s.dtype);function p(m){return t.dataIdMap.get(m.dataId).id}return QG(p(o),new Uint8Array(new Int32Array(o.shape).buffer),o.shape.length,i,u,p(s),kt[s.dtype],a,p(c)),c}var tW={kernelName:Jl,backendName:"wasm",setupFunc:Blt,kernelFunc:Vlt};var eW;function Glt(r){eW=r.wasm.cwrap(Pa,null,["number","number","number","array","number","array","array","number","number"])}function Wlt(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{blockSize:s,dataFormat:i}=n,a=o.shape[0],u=i==="NHWC"?o.shape[1]:o.shape[2],l=i==="NHWC"?o.shape[2]:o.shape[3],c=i==="NHWC"?o.shape[3]:o.shape[1],p=u*s,m=l*s,f=c/(s*s),d=i==="NHWC"?[a,p,m,f]:[a,f,p,m],h=t.makeOutput(d,"float32"),x=t.dataIdMap.get(o.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),I=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),N=t.dataIdMap.get(h.dataId).id;return eW(x,s,i==="NHWC"?1:0,b,o.shape.length-1,w,I,d.length,N),h}var rW={kernelName:Pa,backendName:"wasm",setupFunc:Glt,kernelFunc:Wlt};var nW;function Ult(r){nW=r.wasm.cwrap(as,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hlt(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s}=t,i=n.dataIdMap.get(o.dataId).id,a=n.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=e,m=l==null?[1,1]:l,f=S.computeConv2DInfo(o.shape,s.shape,u,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,I=f.dilationHeight,N=f.dilationWidth,E=f.strideHeight,A=f.strideWidth,D=f.inChannels,F=f.outChannels,P=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let V=n.makeOutput(f.outShape,"float32"),G=n.dataIdMap.get(V.dataId).id;return nW(i,o.shape[0],o.shape[1],o.shape[2],a,d,h,g,x,b,w,P,I,N,E,A,D,F,G),V}var oW={kernelName:as,backendName:"wasm",setupFunc:Ult,kernelFunc:Hlt};var sW;function qlt(r){sW=r.wasm.cwrap("Diag",null,["number","number","number","number"])}function Klt(r){let{inputs:t,backend:e}=r,{x:n}=t,o=y.sizeFromShape(n.shape),s=e.makeOutput([...n.shape,...n.shape],n.dtype);return sW(e.dataIdMap.get(n.dataId).id,kt[n.dtype],o,e.dataIdMap.get(s.dataId).id),s}var iW={kernelName:Ql,backendName:"wasm",setupFunc:qlt,kernelFunc:Klt};var aW;function jlt(r){aW=r.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s}=t,{strides:i,pad:a,dilations:u}=n;if(o.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${o.dtype} and ${s.dtype}`);let l=S.computeDilation2DInfo(o.shape,s.shape,i,a,"NHWC",u),c=e.makeOutput(l.outShape,o.dtype);return aW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(c.dataId).id,kt[o.dtype],l.batchSize,l.inChannels,l.inHeight,l.inWidth,l.outHeight,l.outWidth,l.strideHeight,l.strideWidth,l.dilationHeight,l.dilationWidth,l.filterHeight,l.filterWidth,l.padInfo.top,l.padInfo.left),c}var lW={kernelName:ls,backendName:"wasm",setupFunc:jlt,kernelFunc:Xlt};var uW;function Ylt(r){uW=r.wasm.cwrap(eu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,"NHWC",l),p=e.makeOutput(s.shape,s.dtype);return uW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,kt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var cW={kernelName:eu,backendName:"wasm",setupFunc:Ylt,kernelFunc:Zlt};var pW;function Jlt(r){pW=r.wasm.cwrap(tu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qlt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,filter:s,dy:i}=t,{strides:a,pad:u,dilations:l}=n;if(o.dtype!==s.dtype||o.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${o.dtype}, ${s.dtype}, and ${i.dtype}`);let c=S.computeDilation2DInfo(o.shape,s.shape,a,u,"NHWC",l),p=e.makeOutput(o.shape,o.dtype);return pW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,kt[o.dtype],c.batchSize,c.inChannels,c.inHeight,c.inWidth,c.outHeight,c.outWidth,c.strideHeight,c.strideWidth,c.dilationHeight,c.dilationWidth,c.filterHeight,c.filterWidth,c.padInfo.top,c.padInfo.left),p}var mW={kernelName:tu,backendName:"wasm",setupFunc:Jlt,kernelFunc:Qlt};var fW=Ct(cs);var dW;function tut(r){dW=r.wasm.cwrap(Ma,null,["number","number","number"])}function eut(r){let{inputs:t,backend:e}=r,{dy:n,y:o}=t,s=e.makeOutput(o.shape,"float32"),i=a=>e.dataIdMap.get(a.dataId).id;return dW(i(o),i(n),i(s)),s}var hW={kernelName:Ma,backendName:"wasm",setupFunc:tut,kernelFunc:eut};var rut=!1,gW=ae(za,rut,"bool");var xW=Ct(ps,"float32");function bC(r){let{inputs:t,attrs:e,backend:n}=r,{input:o}=t,{dim:s}=e,i=o.shape.length,a=o.shape.slice(),u=s;return s<0&&(y.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),a.splice(u,0,1),pr({inputs:{x:o},backend:n,attrs:{shape:a}})}var yW={kernelName:Ri,backendName:"wasm",kernelFunc:bC};var bW=Ct(ms,"float32");function A1(r){let{attrs:{shape:t,value:e,dtype:n},backend:o}=r,s=o.makeOutput(t,n);return o.typedArrayFromHeap(s).fill(e),s}var wW={kernelName:ru,backendName:"wasm",kernelFunc:A1};var IW;function nut(r){IW=r.wasm.cwrap(Ba,null,["number","number","number","number","number","number"])}function out(r){let{inputs:t,backend:e}=r,{image:n}=t,o=e.makeOutput(n.shape,n.dtype),s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,[a,u,l,c]=n.shape;return IW(s,a,u,l,c,i),o}var CW={kernelName:Ba,backendName:"wasm",kernelFunc:out,setupFunc:nut};var vW=Ct(fs);var sut=!1,SW=ae(ds,sut);var NW;function iut(r){NW=r.wasm.cwrap(hs,null,["number","number","number","number","number","number","number"])}function aut(r){let{backend:t,inputs:e,attrs:n}=r,{varianceEpsilon:o}=n,{x:s,mean:i,variance:a,offset:u,scale:l}=e,c=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,m=t.dataIdMap.get(a.dataId).id,f=u!=null?t.dataIdMap.get(u.dataId).id:0,d=l!=null?t.dataIdMap.get(l.dataId).id:0,h=t.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=t.dataIdMap.get(h.dataId).id;return NW(c,p,m,f,d,o,g),h}var kW={kernelName:hs,backendName:"wasm",setupFunc:iut,kernelFunc:aut};var TW;function lut(r){TW=r.wasm.cwrap(Ki,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uut(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m),g=Zu[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,K=h.padInfo.type==="SAME"?1:0,X=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,"float32"),st=n.dataIdMap.get(nt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return TW(x,X,Z,et,b,N,E,I,A,D,F,P,K,V,G,W,q,H,w,g,at,d||0,st),nt}var _W={kernelName:Ki,backendName:"wasm",setupFunc:lut,kernelFunc:uut};var EW;function cut(r){EW=r.wasm.cwrap(ji,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function put(r){let{inputs:t,attrs:e,backend:n}=r,{x:o,filter:s,bias:i,preluActivationWeights:a}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=e,h=S.computeConv2DInfo(o.shape,s.shape,u,c,l,m,!0),g=Zu[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=n.dataIdMap.get(o.dataId).id,b=n.dataIdMap.get(s.dataId).id,w=h.outChannels,I=0;if(i!=null){let ot=n.dataIdMap.get(i.dataId);if(ot.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ot.shape.length}.`);if(ot.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ot.shape}) does not match the number of output channels (${w})`);I=ot.id}let N=h.filterHeight,E=h.filterWidth,A=h.padInfo.top,D=h.padInfo.right,F=h.padInfo.bottom,P=h.padInfo.left,V=h.dilationHeight,G=h.dilationWidth,W=h.strideHeight,q=h.strideWidth,H=h.inChannels,K=h.padInfo.type==="SAME"?1:0,X=h.batchSize,Z=h.inHeight,et=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let nt=n.makeOutput(h.outShape,"float32"),st=n.dataIdMap.get(nt.dataId).id,at=a==null?0:n.dataIdMap.get(a.dataId).id;return EW(x,X,Z,et,b,N,E,I,A,D,F,P,K,V,G,W,q,H,w,g,at,d||0,st),nt}var AW={kernelName:ji,backendName:"wasm",setupFunc:cut,kernelFunc:put};var DW;function mut(r){DW=r.wasm.cwrap(Va,null,["number","number","number","number","number","number","array","number"])}function fut(r){let{backend:t,inputs:e}=r,{params:n,indices:o}=e,[s,i,a,u]=Ny.prepareAndValidate(n,o),l=t.makeOutput(s,n.dtype);if(i===0)return l;let c=o.shape,p=c[c.length-1],f=t.dataIdMap.get(n.dataId).id,h=t.dataIdMap.get(o.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),x=t.dataIdMap.get(l.dataId).id;return DW(f,kt[n.dtype],h,i,p,a,g,x),l}var $W={kernelName:Va,backendName:"wasm",setupFunc:mut,kernelFunc:fut};var RW;function dut(r){RW=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function hut(r){let{backend:t,inputs:e,attrs:n}=r,{x:o,indices:s}=e,{axis:i,batchDims:a}=n,u=y.parseAxisParam(i,o.shape)[0],l=t.readSync(s.dataId),c=o.shape[u];for(let F=0;F<l.length;++F){let P=l[F];y.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=S.segment_util.collectGatherOpShapeInfo(o,s,u,a),m=pr({inputs:{x:o},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),f=y.sizeFromShape(s.shape),d=pr({inputs:{x:s},attrs:{shape:[p.batchSize,f/p.batchSize]},backend:t}),h=[p.batchSize,p.outerSize,f/p.batchSize,p.sliceSize],g=t.makeOutput(h,o.dtype);if(y.sizeFromShape(o.shape)===0)return g;let x=m.shape.length-1,w=t.dataIdMap.get(m.dataId).id,N=t.dataIdMap.get(d.dataId).id,E=t.dataIdMap.get(g.dataId).id,A=new Uint8Array(new Int32Array(y.computeStrides(m.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(h)).buffer);return RW(w,kt[o.dtype],A,x,N,p.batchSize,D,E),t.disposeData(m.dataId),t.disposeData(d.dataId),g.shape=p.outputShape,g}var FW={kernelName:Fi,backendName:"wasm",setupFunc:dut,kernelFunc:hut};var gut=!1,OW=ae(Ga,gut,"bool");var xut=!1,PW=ae(gs,xut,"bool");var MW=Ct(xs,"bool");var LW=Ct(ys,"bool");var zW=Ct(bs,"bool");var BW;function yut(r){BW=r.wasm.cwrap(ws,null,["number","number","number","number"])}function but(r){let{inputs:{x:t},attrs:{alpha:e},backend:n}=r,o=n.dataIdMap.get(t.dataId).id,s=n.makeOutput(t.shape,"float32");if(y.sizeFromShape(t.shape)!==0){let i=n.dataIdMap.get(s.dataId).id;BW(o,kt[t.dtype],e,i)}return s}var VW={kernelName:ws,backendName:"wasm",setupFunc:yut,kernelFunc:but};var wut=!1,GW=ae(Wa,wut,"bool");var Iut=!1,WW=ae(Ua,Iut,"bool");var UW;function Cut(r){UW=r.wasm.cwrap(Ha,null,["number","number","number","number"])}function vut(r){let{attrs:t,backend:e}=r,{start:n,stop:o,num:s}=t,i=Math.floor(s),a=e.makeOutput([i],"float32");return UW(e.dataIdMap.get(a.dataId).id,n,o,i),a}var HW={kernelName:Ha,backendName:"wasm",setupFunc:Cut,kernelFunc:vut};var qW=Ct(Is);var KW=Ct(Cs);var Sut=!1,jW=ae(qa,Sut,"bool");var XW=Ct(Ka);var Nut=!1,YW=ae(ja,Nut,"bool");var kut=!1,ZW=ae(l_,kut,"bool");var JW;function Tut(r){JW=r.wasm.cwrap(vs,null,["number","number","number","number","number","number","number"])}function _ut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{depthRadius:s,bias:i,alpha:a,beta:u}=n;if(o.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let l=e.makeOutput(o.shape,o.dtype);return JW(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(l.dataId).id,o.shape[3],s,i,a,u),l}var QW={kernelName:vs,backendName:"wasm",setupFunc:Tut,kernelFunc:_ut};var tU;function Eut(r){tU=r.wasm.cwrap(Xa,null,["number","number","number","number","number","number","number","number","number"])}function Aut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o,y:s,dy:i}=t,{depthRadius:a,bias:u,alpha:l,beta:c}=n;if(o.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let p=e.makeOutput(o.shape,o.dtype);return tU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(i.dataId).id,e.dataIdMap.get(p.dataId).id,i.shape[3],a,u,l,c),p}var eU={kernelName:Xa,backendName:"wasm",setupFunc:Eut,kernelFunc:Aut};var rU;function Dut(r){rU=r.wasm.cwrap(Ss,null,["number","number","number","number"])}function $ut(r){let{backend:t,inputs:e,attrs:n}=r,{reductionIndices:o,keepDims:s}=n,{x:i}=e,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;l=c,u=w}let d=l.shape.length;S.assertAxesAreInnerMostDims("max",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,i.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;rU(u,kt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var nU={kernelName:Ss,backendName:"wasm",setupFunc:Dut,kernelFunc:$ut};var Rut=!1,oU=ae(Ns,Rut);var sU;function Fut(r){sU=r.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Out(r){let{inputs:t,attrs:e,backend:n}=r,o=t.x,s=n.dataIdMap.get(o.dataId).id;y.assert(o.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${o.dtype}.`);let{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=e,c=S.computePool2DInfo(o.shape,i,a,1,u,l),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,I=c.strideWidth,N=c.inChannels,E=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=n.makeOutput(c.outShape,"float32"),D=n.dataIdMap.get(A.dataId).id;return sU(s,o.shape[0],o.shape[1],o.shape[2],p,m,f,d,h,g,x,b,w,I,N,E,D),A}var iU={kernelName:ks,backendName:"wasm",setupFunc:Fut,kernelFunc:Out};var aU;function Put(r){aU=r.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Mut(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{filterSize:s,strides:i,pad:a,dimRoundingMode:u,dataFormat:l}=n,c=S.computePool3DInfo(o.shape,s,i,1,a,u,l),p=e.makeOutput(c.outShape,o.dtype);return aU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var lU={kernelName:Oi,backendName:"wasm",setupFunc:Put,kernelFunc:Mut};var uU;function Lut(r){uU=r.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zut(r){let{inputs:t,backend:e,attrs:n}=r,{dy:o,input:s}=t,{filterSize:i,strides:a,pad:u,dimRoundingMode:l}=n,c=S.computePool3DInfo(s.shape,i,a,1,u,l),p=e.makeOutput(s.shape,s.dtype);return uU(e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(p.dataId).id,c.batchSize,c.inChannels,c.inDepth,c.inHeight,c.inWidth,c.outDepth,c.outHeight,c.outWidth,c.strideDepth,c.strideHeight,c.strideWidth,c.dilationDepth,c.dilationHeight,c.dilationWidth,c.effectiveFilterDepth,c.effectiveFilterHeight,c.effectiveFilterWidth,c.padInfo.front,c.padInfo.top,c.padInfo.left),p}var cU={kernelName:nu,backendName:"wasm",setupFunc:Lut,kernelFunc:zut};var pU;function But(r){pU=r.wasm.cwrap(Ts,null,["number, number, number"])}function Vut(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t),d=p;if(f){let I=t.dataIdMap.get(c.dataId).id;I!==a&&(l=c,u=I,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("mean",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=l;l.dtype!=="float32"&&(b=Rn({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(b.dataId).id);let w=t.makeOutput(h,"float32");if(y.sizeFromShape(l.shape)!==0){let I=t.dataIdMap.get(w.dataId).id;pU(u,x,I)}if(f&&t.disposeData(c.dataId),s){let I=S.expandShapeToKeepDim(w.shape,m);w.shape=I}return l.dtype!=="float32"&&t.disposeData(b.dataId),w}var mU={kernelName:Ts,backendName:"wasm",setupFunc:But,kernelFunc:Vut};var fU;function Gut(r){fU=r.wasm.cwrap(_s,null,["number","number","number","number"])}function Wut(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t);if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w)}let d=l.shape.length;S.assertAxesAreInnerMostDims("min",p,d);let[h,g]=S.computeOutAndReduceShapes(l.shape,p),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;fU(u,kt[i.dtype],x,w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var dU={kernelName:_s,backendName:"wasm",setupFunc:Gut,kernelFunc:Wut};var Uut=!1,hU=ae(Es,Uut);var D1;(function(r){r[r.reflect=0]="reflect",r[r.symmetric=1]="symmetric"})(D1||(D1={}));var gU;function Hut(r){gU=r.wasm.cwrap(As,null,["number","array","number","number","array","array","number","number"])}function qut(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,mode:o}}=r,s=n.map((d,h)=>d[0]+t.shape[h]+d[1]),i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),u=e.dataIdMap.get(a.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=n.map(d=>d[0]),p=n.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return gU(i,l,t.shape.length,kt[t.dtype],m,f,D1[o],u),a}var xU={kernelName:As,backendName:"wasm",kernelFunc:qut,setupFunc:Hut};var yU;function Kut(r){yU=r.wasm.cwrap(Js,null,["number","number","number","number"])}function $1(r){let{backend:t,inputs:{logits:e},attrs:{dim:n}}=r,o=t.dataIdMap.get(e.dataId).id,s=t.makeOutput(e.shape,e.dtype),i=t.dataIdMap.get(s.dataId).id,a=e.shape[n],u=y.sizeFromShape(e.shape)/a;return y.sizeFromShape(s.shape)===0||yU(o,i,a,u),s}var bU={kernelName:Js,backendName:"wasm",setupFunc:Kut,kernelFunc:$1};var wU;function jut(r){wU=r.wasm.cwrap(Za,null,["number","number","number","number","number","number"])}function Xut(r){let{inputs:t,backend:e,attrs:n}=r,{logits:o}=t,{numSamples:s,seed:i,normalized:a}=n;if(o.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${o.dtype}`);let u=a?o:$1({inputs:{logits:o},backend:e,attrs:{dim:o.shape.length-1}}),[l,c]=u.shape,p=e.makeOutput([l,s],"int32");return wU(e.dataIdMap.get(u.dataId).id,l,c,s,i,e.dataIdMap.get(p.dataId).id),a||e.disposeData(u.dataId),p}var IU={kernelName:Za,backendName:"wasm",setupFunc:jut,kernelFunc:Xut};var Yut=!0,CU=ae(Ds,Yut);var vU=Ct(Pi);function Wd(r,t){let e=new Int32Array(r.wasm.HEAPU8.buffer,t,4),n=e[0],o=e[1],s=e[2],i=e[3];return r.wasm._free(t),{pSelectedIndices:n,selectedSize:o,pSelectedScores:s,pValidOutputs:i}}var SU;function Zut(r){SU=r.wasm.cwrap(Qa,"number",["number","number","number","number","number"])}function Jut(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i}=n,{boxes:a,scores:u}=e,l=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=SU(l,c,s,o,i),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Wd(t,p);return t.wasm._free(d),t.wasm._free(h),t.makeOutput([f],"int32",m)}var NU={kernelName:Qa,backendName:"wasm",setupFunc:Zut,kernelFunc:Jut};var kU;function Qut(r){kU=r.wasm.cwrap(tl,"number",["number","number","number","number","number","bool"])}function tct(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=kU(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Wd(t,m);t.wasm._free(h);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([],"int32",g);return[x,b]}var TU={kernelName:tl,backendName:"wasm",setupFunc:Qut,kernelFunc:tct};var _U;function ect(r){_U=r.wasm.cwrap(el,"number",["number","number","number","number","number","number"])}function rct(r){let{backend:t,inputs:e,attrs:n}=r,{iouThreshold:o,maxOutputSize:s,scoreThreshold:i,softNmsSigma:a}=n,{boxes:u,scores:l}=e,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,m=_U(c,p,s,o,i,a),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Wd(t,m);t.wasm._free(g);let x=t.makeOutput([d],"int32",f),b=t.makeOutput([d],"float32",h);return[x,b]}var EU={kernelName:el,backendName:"wasm",setupFunc:ect,kernelFunc:rct};var nct=!1,AU=ae(Ja,nct,"bool");var DU;function oct(r){DU=r.wasm.cwrap($s,null,["number","number","number","number","number"])}function sct(r){let{inputs:t,backend:e,attrs:n}=r,{indices:o}=t,{dtype:s,depth:i,onValue:a,offValue:u}=n,l=e.makeOutput([...o.shape,i],s),c=e.dataIdMap.get(l.dataId).id,m=e.dataIdMap.get(o.dataId).id;return DU(m,i,a,u,c),l}var $U={kernelName:$s,backendName:"wasm",setupFunc:oct,kernelFunc:sct};function ict(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(1),n}var RU={kernelName:Mi,backendName:"wasm",kernelFunc:ict};function act(r){let{inputs:t,backend:e,attrs:n}=r,{axis:o}=n;if(t.length===1)return bC({inputs:{input:t[0]},backend:e,attrs:{dim:o}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let a=[],u=t.map(c=>{let p=bC({inputs:{input:c},backend:e,attrs:{dim:o}});return a.push(p),p}),l=_1({inputs:u,backend:e,attrs:{axis:o}});return a.forEach(c=>e.disposeData(c.dataId)),l}var FU={kernelName:Li,backendName:"wasm",kernelFunc:act};var OU;function lct(r){OU=r.wasm.cwrap(Rs,null,["number","array","number","number","array","array","number","number"])}function uct(r){let{inputs:{x:t},backend:e,attrs:{paddings:n,constantValue:o}}=r,s=n.map((h,g)=>h[0]+t.shape[g]+h[1]);if(y.sizeFromShape(t.shape)===0)return A1({backend:e,attrs:{shape:s,value:o,dtype:t.dtype}});let i=e.dataIdMap.get(t.dataId).id,a=e.makeOutput(s,t.dtype),l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=n.map(h=>h[0]),m=n.map(h=>h[1]),f=new Uint8Array(new Int32Array(p).buffer),d=new Uint8Array(new Int32Array(m).buffer);return OU(i,c,t.shape.length,kt[t.dtype],f,d,o,l),a}var wC={kernelName:Rs,backendName:"wasm",kernelFunc:uct,setupFunc:lct};var cct=!1,PU=ae(Fs,cct);var MU;function pct(r){MU=r.wasm.cwrap(Os,null,["number","number","number"])}function mct(r){let{inputs:t,backend:e}=r,{x:n,alpha:o}=t,s=e.dataIdMap.get(n.dataId).id,i=e.dataIdMap.get(o.dataId).id,a=s,u=n,l=u;u.dtype!=="float32"&&(l=Rn({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),a=e.dataIdMap.get(l.dataId).id);let c=e.makeOutput(n.shape,"float32"),p=e.dataIdMap.get(c.dataId).id;return MU(a,i,p),u.dtype!=="float32"&&e.disposeData(l.dataId),c}var LU={kernelName:Os,backendName:"wasm",setupFunc:pct,kernelFunc:mct};var zU;function fct(r){zU=r.wasm.cwrap(Ps,null,["number","number","number","number"])}function dct(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("prod",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;zU(u,x,kt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var BU={kernelName:Ps,backendName:"wasm",setupFunc:fct,kernelFunc:dct};var hct=r=>{let{backend:t,attrs:e}=r,{start:n,stop:o,step:s,dtype:i}=e,a=op(n,o,s,i),u=t.makeOutput([a.length],i);return t.typedArrayFromHeap(u).set(a),u},VU={kernelName:ou,backendName:"wasm",kernelFunc:hct};var gct=!0,GU=ae(us,gct);var WU=Ct(Ms);var UU=Ct(Ls);var HU=Ct(Vs);var qU;function xct(r){qU=r.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number"])}function yct(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.dataIdMap.get(o.dataId),g;h.dtype!=="float32"&&(g=Rn({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),h=t.dataIdMap.get(g.dataId));let x=h.id,b=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return b;let w=t.dataIdMap.get(b.dataId).id;return qU(x,c,p,m,f,u,l,s?1:0,i?1:0,w),g!=null&&t.disposeData(g.dataId),b}var KU={kernelName:Bs,backendName:"wasm",setupFunc:xct,kernelFunc:yct};var jU;function bct(r){jU=r.wasm.cwrap(nl,null,["number","number","number","array","array","boolean"])}function wct(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,"float32"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!=="float32"&&(l=Rn({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),u=e.dataIdMap.get(l.dataId)),jU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var XU={kernelName:nl,backendName:"wasm",setupFunc:bct,kernelFunc:wct};var YU;function Ict(r){YU=r.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number"])}function Cct(r){let{backend:t,inputs:e,attrs:n}=r,{images:o}=e,{alignCorners:s,halfPixelCenters:i,size:a}=n,[u,l]=a,[c,p,m,f]=o.shape,d=[c,u,l,f],h=t.makeOutput(d,"float32");if(y.sizeFromShape(o.shape)===0)return h;let g=t.dataIdMap.get(o.dataId),x;g.dtype!=="float32"&&(x=Rn({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(x.dataId));let b=g.id,w=t.dataIdMap.get(h.dataId).id;return YU(b,c,p,m,f,u,l,s?1:0,i?1:0,w),x!=null&&t.disposeData(x.dataId),h}var ZU={kernelName:zs,backendName:"wasm",setupFunc:Ict,kernelFunc:Cct};var JU;function vct(r){JU=r.wasm.cwrap(rl,null,["number","number","number","array","array","boolean"])}function Sct(r){let{inputs:t,backend:e,attrs:n}=r,{images:o,dy:s}=t,{alignCorners:i}=n,a=e.makeOutput(o.shape,"float32"),u=e.dataIdMap.get(o.dataId),l;return u.dtype!=="float32"&&(l=Rn({backend:e,inputs:{x:o},attrs:{dtype:"float32"}}),u=e.dataIdMap.get(l.dataId)),JU(e.dataIdMap.get(o.dataId).id,e.dataIdMap.get(s.dataId).id,e.dataIdMap.get(a.dataId).id,new Uint8Array(new Int32Array(o.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),l!=null&&e.disposeData(l.dataId),a}var QU={kernelName:rl,backendName:"wasm",setupFunc:vct,kernelFunc:Sct};var t4;function Nct(r){t4=r.wasm.cwrap(Gs,null,["number","array","number","array","number","number"])}function kct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{dims:s}=n,i=y.parseAxisParam(s,o.shape);if(o.shape.length===0)return Cp({inputs:{x:o},backend:e});let a=e.makeOutput(o.shape,o.dtype),u=e.dataIdMap.get(o.dataId).id,l=e.dataIdMap.get(a.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(o.shape).buffer);t4(u,c,i.length,p,o.shape.length,l);let m=pr({inputs:{x:a},attrs:{shape:o.shape},backend:e});return e.disposeData(a.dataId),m}var e4={kernelName:Gs,backendName:"wasm",kernelFunc:kct,setupFunc:Nct};var r4;function Tct(r){r4=r.wasm.cwrap(fl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ct(r){let{inputs:t,backend:e,attrs:n}=r,{image:o}=t,{radians:s,fillValue:i,center:a}=n,u=e.makeOutput(o.shape,o.dtype),l=e.dataIdMap.get(o.dataId).id,c=e.dataIdMap.get(u.dataId).id,[p,m,f,d]=o.shape,[h,g]=S.getImageCenter(a,m,f),x=i===0,b=255,w=typeof i=="number"?[i,i,i,x?0:b]:[...i,b],I=new Uint8Array(new Int32Array(w).buffer);return r4(l,p,m,f,d,s,h,g,I,w.length,c),u}var n4={kernelName:fl,backendName:"wasm",kernelFunc:_ct,setupFunc:Tct};var o4=Ct(Ws);var s4=Ct(Us);var i4;function Ect(r){i4=r.wasm.cwrap(ol,null,["number","number","number","number","number","number","array","number","number"])}function Act(r){let{backend:t,inputs:e,attrs:n}=r,{indices:o,updates:s}=e,{shape:i}=n,a=t.makeOutput(i,s.dtype);if(y.sizeFromShape(i)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(s,o,i),d=t.dataIdMap.get(o.dataId).id,g=t.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=t.dataIdMap.get(a.dataId).id;return i4(d,g,kt[s.dtype],u,l,c,x,m,b),a}var a4={kernelName:ol,backendName:"wasm",setupFunc:Ect,kernelFunc:Act};var l4;function Dct(r){l4=r.wasm.cwrap(il,null,["number","number","number","number","number","number","bool","number"])}function $ct(r){let{inputs:t,backend:e,attrs:n}=r,{sortedSequence:o,values:s}=t,{side:i}=n;if(o.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${o.dtype} and ${s.dtype}`);let a=e.makeOutput(s.shape,"int32");function u(l){return e.dataIdMap.get(l.dataId).id}return l4(u(o),u(s),o.shape[0],o.shape[1],s.shape[1],kt[o.dtype],i==="left",u(a)),a}var u4={kernelName:il,backendName:"wasm",setupFunc:Dct,kernelFunc:$ct};var c4;function Rct(r){c4=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Fct(r){let{inputs:t,backend:e}=r,{condition:n,t:o,e:s}=t,i=e.dataIdMap.get(n.dataId).id,a=e.dataIdMap.get(o.dataId).id,u=e.dataIdMap.get(s.dataId).id,l=e.makeOutput(o.shape,o.dtype),c=e.dataIdMap.get(l.dataId).id,p=n.shape.length,m=o.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(o.shape.slice(1));return c4(i,a,u,f,c),l}var p4={kernelName:Bi,backendName:"wasm",kernelFunc:Fct,setupFunc:Rct};var m4=Ct(Hs);var f4;function Oct(r){f4=r.wasm.cwrap(js,null,["number","number"])}function Pct(r){let{backend:t,inputs:{x:e}}=r,n=t.dataIdMap.get(e.dataId).id,o=t.makeOutput(e.shape,e.dtype),s=t.dataIdMap.get(o.dataId).id;return y.sizeFromShape(o.shape)===0||f4(n,s),o}var d4={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Oct,kernelFunc:Pct};var h4=Ct(Ks);var g4=Ct(qs);var x4=Ct(Xs);function Mct(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,{blockShape:s,paddings:i}=n,a=y.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let E=1+s.length;E<o.shape.length;++E)u.push([0,0]);let l=wC.kernelFunc({inputs:{x:o},backend:e,attrs:{paddings:u,constantValue:0}}),c=S.getReshaped(l.shape,s,a,!1),p=S.getPermuted(c.length,s.length,!1),m=S.getReshapedPermuted(l.shape,s,a,!1),h=pr({inputs:{x:l},backend:e,attrs:{shape:c}}),b=mo({inputs:{x:h},backend:e,attrs:{perm:p}}),N=pr({inputs:{x:b},backend:e,attrs:{shape:m}});return e.disposeData(l.dataId),e.disposeData(h.dataId),e.disposeData(b.dataId),N}var y4={kernelName:Gi,backendName:"wasm",kernelFunc:Mct};var b4;function Lct(r){b4=r.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function zct(r){let{backend:t,inputs:e}=r,{indices:n,values:o,denseShape:s,defaultValue:i}=e,a=n.shape[0],u=n.shape[1],l=t.readSync(s.dataId)[0],c=[a+l,u],p=t.dataIdMap.get(n.dataId).id,m=t.dataIdMap.get(o.dataId).id,f=t.dataIdMap.get(i.dataId).id,d=t.makeOutput(c,n.dtype),h=t.dataIdMap.get(d.dataId).id,g=t.makeOutput(c.slice(0,1),o.dtype),x=t.dataIdMap.get(g.dataId).id,b=t.makeOutput([l],"bool"),w=t.dataIdMap.get(b.dataId).id,I=t.makeOutput([a],n.dtype),N=t.dataIdMap.get(I.dataId).id,E=t.makeOutput([4],"int32"),A=t.dataIdMap.get(E.dataId).id,D=b4(p,m,kt[o.dtype],a,l,u,f,h,x,w,N,A),F=t.readSync(E.dataId),P;switch(F[0]){case 1:{P=S.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{P=S.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:P=S.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:P=""}if(t.disposeData(E.dataId),P)throw t.disposeData(d.dataId),t.disposeData(g.dataId),t.disposeData(b.dataId),t.disposeData(I.dataId),new Error(P);let V=d,G=g;return D!==c[0]&&(V=Bo({inputs:{x:d},attrs:{begin:0,size:[D,u]},backend:t}),G=Bo({inputs:{x:g},attrs:{begin:0,size:D},backend:t}),t.disposeData(d.dataId),t.disposeData(g.dataId)),[V,G,b,I]}var w4={kernelName:su,backendName:"wasm",setupFunc:Lct,kernelFunc:zct};var I4;function Bct(r){I4=r.wasm.cwrap(ll,null,["number","number","number","number","number","number","number"])}function Vct(r){let{backend:t,inputs:e}=r,{inputIndices:n,inputShape:o,newShape:s}=e;if(n.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${n.shape}`);if(o.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${o.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(n.dataId).id,a=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(s.dataId).id,l=n.shape[0],c=y.sizeFromShape(s.shape),p=t.makeOutput([l,c],n.dtype),m=t.dataIdMap.get(p.dataId).id,f=t.makeOutput([c],s.dtype),d=t.dataIdMap.get(f.dataId).id,h=t.makeOutput([3],"int32"),g=t.dataIdMap.get(h.dataId).id;I4(i,a,u,l,m,d,g);let x=t.readSync(h.dataId),b;switch(x[0]){case 0:{b=S.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(x[1],x[2]);break}case 1:{b=S.getSparseReshapeNegativeOutputDimErrorMessage(x[1],x[2]);break}case 2:b=S.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let w=Array.from(t.readSync(o.dataId)),I=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMultipleErrorMessage(w,I);break}case 4:{let w=Array.from(t.readSync(o.dataId)),I=Array.from(t.readSync(f.dataId));b=S.getSparseReshapeInputOutputMismatchErrorMessage(w,I);break}default:b=""}if(t.disposeData(h.dataId),b)throw t.disposeData(p.dataId),t.disposeData(f.dataId),new Error(b);return[p,f]}var C4={kernelName:ll,backendName:"wasm",setupFunc:Bct,kernelFunc:Vct};var v4;function IC(r){v4=r.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function CC(r,t){let{backend:e,inputs:n}=r,{data:o,indices:s,segmentIds:i}=n,a=s.shape[0],u=e.readSync(i.dataId,a-1,a)[0],c=a>0?u+1:0;if(c<0)throw new Error(S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=o.shape.slice();p[0]=c;let m=e.dataIdMap.get(o.dataId).id,f=e.dataIdMap.get(s.dataId).id,d=e.dataIdMap.get(i.dataId).id,h=e.makeOutput(p,o.dtype),g=e.dataIdMap.get(h.dataId).id,x=e.makeOutput([4],"int32"),b=e.dataIdMap.get(x.dataId).id;v4(m,kt[o.dtype],o.shape[0],f,d,g,b,t,0);let w=e.readSync(x.dataId),I;switch(w[0]){case 0:{I=S.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{I=S.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:I=S.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(w[1],w[2]);break;case 3:I=S.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(w[1],w[2],w[3]);break;default:I=""}if(e.disposeData(x.dataId),I)throw e.disposeData(h.dataId),new Error(I);return h}function Gct(r){return CC(r,!0)}var S4={kernelName:iu,backendName:"wasm",setupFunc:IC,kernelFunc:Gct};function Wct(r){return CC(r,!1)}var N4={kernelName:au,backendName:"wasm",setupFunc:IC,kernelFunc:Wct};var k4;function Uct(r){k4=r.wasm.cwrap(ul,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Hct(r){let{backend:t,inputs:e,attrs:n}=r,{sparseIndices:o,sparseValues:s,defaultValue:i}=e,{outputShape:a}=n,u=t.makeOutput(a,i.dtype);if(y.sizeFromShape(a)===0)return u;let{sliceRank:l,numUpdates:c,sliceSize:p,strides:m,outputSize:f}=S.calculateShapes(s,o,a),d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,x=new Uint8Array(new Int32Array(m).buffer),b=t.dataIdMap.get(u.dataId).id;return k4(d,h,s.shape.length,g,kt[i.dtype],l,c,p,x,f,b),u}var T4={kernelName:ul,backendName:"wasm",setupFunc:Uct,kernelFunc:Hct};function qct(r){let{inputs:t,attrs:e,backend:n}=r,{x:o}=t,{numOrSizeSplits:s,axis:i}=e,a=y.parseAxisParam(i,o.shape)[0],u=S.prepareSplitSize(o,s,a),l=new Array(o.shape.length).fill(0),c=o.shape.slice();return u.map(p=>{let m=[...c];m[a]=p;let f=Bo({inputs:{x:o},attrs:{begin:l,size:m},backend:n});return l[a]+=p,f})}var _4={kernelName:Wi,backendName:"wasm",kernelFunc:qct};var E4=Ct(Ys);var A4=Ct(lu);var Kct=!0,D4=ae(Qs,Kct);var $4;function jct(r){$4=r.wasm.cwrap(xo,null,["number","number","number","number"])}function Xct(r){let{backend:t,inputs:e,attrs:n}=r,{alpha:o}=n,{x:s}=e,i=t.dataIdMap.get(s.dataId).id,a=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(a.dataId).id;return $4(i,o,kt[s.dtype],u),a}var R4={kernelName:xo,backendName:"wasm",setupFunc:jct,kernelFunc:Xct};var F4;function Yct(r){F4=r.wasm.cwrap(cl,null,["number","array","number","array","array","array","array","array","number","number"])}function Zct(r){let{backend:t,inputs:e,attrs:n}=r,{x:o}=e,{begin:s,end:i,strides:a,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=n,{finalShapeSparse:f,finalShape:d,isIdentity:h,sliceDim0:g,isSimpleSlice:x,begin:b,end:w,strides:I}=ze.sliceInfo(o.shape,s,i,a,u,l,c,p,m),N;if(h)N=pr({inputs:{x:o},backend:t,attrs:{shape:d}});else if(g||x){y.assert(o.shape.length>=1,()=>`Input must have rank at least 1, got: ${o.shape.length}`);let E=ze.computeOutShape(b,w,I),A=Bo({inputs:{x:o},backend:t,attrs:{begin:b,size:E}});N=pr({inputs:{x:A},backend:t,attrs:{shape:d}}),t.disposeData(A.dataId)}else{let E=t.makeOutput(f,"float32"),A=t.dataIdMap.get(o.dataId).id,D=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),F=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(w).buffer),V=new Uint8Array(new Int32Array(I).buffer),G=new Uint8Array(new Int32Array(f).buffer),W=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer),q=t.dataIdMap.get(E.dataId).id;F4(A,D,o.shape.length,F,P,V,G,W,f.length,q),N=pr({inputs:{x:E},backend:t,attrs:{shape:d}}),t.disposeData(E.dataId)}return N}var O4={kernelName:cl,backendName:"wasm",setupFunc:Yct,kernelFunc:Zct};function Jct(r){let{backend:t,inputs:e,attrs:n}=r,{data:o,dataSplits:s}=e,{separator:i,nGramWidths:a,leftPad:u,rightPad:l,padWidth:c,preserveShortSequences:p}=n,m=t.readSync(o.dataId),f=t.readSync(s.dataId),[d,h]=ip(m,f,i,a,u,l,c,p),g=t.makeOutput([d.length],"string"),x=t.dataIdMap.get(g.dataId);x.stringBytes=d;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(h),[g,b]}var P4={kernelName:uu,backendName:"wasm",kernelFunc:Jct};function Qct(r){let{backend:t,inputs:e,attrs:n}=r,{input:o,delimiter:s}=e,{skipEmpty:i}=n,a=t.readSync(o.dataId),u=t.readSync(s.dataId),[l,c,p]=ap(a,u[0],i),m=c.length,f=t.makeOutput([m,2],"int32");t.typedArrayFromHeap(f).set(l);let h=t.makeOutput([m],"string"),g=t.dataIdMap.get(h.dataId);g.stringBytes=c;let x=t.makeOutput([2],"int32");return t.typedArrayFromHeap(x).set(p),[f,h,x]}var M4={kernelName:cu,backendName:"wasm",kernelFunc:Qct};function tpt(r){let{backend:t,inputs:e,attrs:n}=r,{input:o}=e,{numBuckets:s}=n,i=t.readSync(o.dataId),a=lp(i,s),u=t.makeOutput(o.shape,"int32");return t.typedArrayFromHeap(u).set(a),u}var L4={kernelName:pu,backendName:"wasm",kernelFunc:tpt};var ept=!0,z4=ae(ti,ept);var B4;function rpt(r){B4=r.wasm.cwrap(Zs,null,["number","number","number","number"])}function npt(r){let{backend:t,inputs:e,attrs:n}=r,{axis:o,keepDims:s}=n,{x:i}=e,a=t.dataIdMap.get(i.dataId).id,u=a,l=i,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=In(i,o,t),d=p;if(f){let w=t.dataIdMap.get(c.dataId).id;w!==a&&(l=c,u=w,d=S.getInnerMostAxes(d.length,l.shape.length))}S.assertAxesAreInnerMostDims("sum",d,l.shape.length);let[h,g]=S.computeOutAndReduceShapes(l.shape,d),x=y.sizeFromShape(g),b=t.makeOutput(h,l.dtype);if(y.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(b.dataId).id;B4(u,x,kt[b.dtype],w)}if(f&&t.disposeData(c.dataId),s){let w=S.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var V4={kernelName:Zs,backendName:"wasm",setupFunc:rpt,kernelFunc:npt};var G4=Ct(ei);var W4=Ct(ri);var U4;function opt(r){U4=r.wasm.cwrap(sl,null,["number","number","number","number","number","number","array","number","number","number"])}function spt(r){let{backend:t,inputs:e,attrs:n}=r,{tensor:o,indices:s,updates:i}=e,{}=n,a=t.makeOutput(o.shape,o.dtype);if(y.sizeFromShape(o.shape)===0)return a;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:m}=$u.calculateShapes(i,s,o.shape),d=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=t.dataIdMap.get(o.dataId).id,w=new Uint8Array(new Int32Array(p).buffer),I=t.dataIdMap.get(a.dataId).id;return U4(d,g,kt[i.dtype],u,l,c,w,m,I,b),a}var H4={kernelName:sl,backendName:"wasm",setupFunc:opt,kernelFunc:spt};var q4;function ipt(r){q4=r.wasm.cwrap(no,null,["number","array","number","array","number","number"])}function apt(r){let{inputs:t,backend:e,attrs:n}=r,{x:o}=t,s=e.dataIdMap.get(o.dataId).id,{reps:i}=n,a=new Array(o.shape.length);for(let m=0;m<a.length;m++)a[m]=o.shape[m]*i[m];let u=new Uint8Array(new Int32Array(o.shape).buffer),l=new Uint8Array(new Int32Array(a).buffer),c=e.makeOutput(a,o.dtype),p=e.dataIdMap.get(c.dataId).id;return q4(s,u,o.shape.length,l,a.length,kt[c.dtype],p),c}var K4={kernelName:no,backendName:"wasm",setupFunc:ipt,kernelFunc:apt};var j4;function lpt(r){j4=r.wasm.cwrap(pl,null,["number","array","number","number","number","bool","number","number"])}var upt=({inputs:r,backend:t,attrs:e})=>{let{x:n}=r,{k:o,sorted:s}=e,i=t.dataIdMap.get(n.dataId).id,a=new Uint8Array(new Int32Array(n.shape).buffer),u=n.shape.slice();u[u.length-1]=o;let l=t.makeOutput(u,n.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),m=t.dataIdMap.get(p.dataId).id;return j4(i,a,n.shape.length,kt[n.dtype],o,s,c,m),[l,p]},X4={kernelName:pl,backendName:"wasm",setupFunc:lpt,kernelFunc:upt};var Y4;function cpt(r){Y4=r.wasm.cwrap(ml,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function ppt(r){let{backend:t,inputs:e,attrs:n}=r,{image:o,transforms:s}=e,{interpolation:i,fillMode:a,fillValue:u,outputShape:l}=n,[c,p,m,f]=o.shape,[d,h]=l!=null?l:[p,m],g=[c,d,h,f],x=new Uint8Array(new Int32Array(y.computeStrides(o.shape)).buffer),b=new Uint8Array(new Int32Array(y.computeStrides(g)).buffer),w=t.makeOutput(g,o.dtype),I=t.dataIdMap.get(w.dataId).id,E=t.dataIdMap.get(o.dataId).id,D=t.dataIdMap.get(s.dataId).id,F=i==="nearest"?1:2,P;switch(a){case"constant":P=1;break;case"reflect":P=2;break;case"wrap":P=3;break;case"nearest":P=4;break;default:P=1;break}return Y4(E,D,s.shape[0]>1,c,d,h,f,m,p,x,o.shape.length-1,b,g.length-1,F,P,u,I),w}var Z4={kernelName:ml,backendName:"wasm",setupFunc:cpt,kernelFunc:ppt};function mpt(r){let{inputs:t,attrs:e,backend:n}=r,{axis:o}=e,{x:s}=t,{outputValues:i,outputShape:a,indices:u}=up(n.readSync(s.dataId),o,s.shape,s.dtype);return[n.makeOutput(a,s.dtype,void 0,i),n.makeOutput([u.length],"int32",void 0,u)]}var J4={kernelName:mu,backendName:"wasm",kernelFunc:mpt};function fpt(r){let{inputs:t,backend:e,attrs:n}=r,{value:o}=t,{axis:s}=n;s<0&&(s+=o.shape.length);let i=o.shape[s],a=o.shape.length,u=new Array(a-1),l=0;for(let f=0;f<a;f++)f!==s&&(u[l++]=o.shape[f]);let c=new Array(i),p=new Array(a).fill(0),m=o.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Bo({inputs:{x:o},attrs:{begin:p,size:m},backend:e});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:u}))}var Q4={kernelName:Ui,backendName:"wasm",kernelFunc:fpt};function dpt(r){let{inputs:{x:t},backend:e}=r,n=e.makeOutput(t.shape,t.dtype);return e.typedArrayFromHeap(n).fill(0),n}var tH={kernelName:Hi,backendName:"wasm",kernelFunc:dpt};var hpt=[XV,YV,ZV,JV,QV,eG,iG,lG,uG,cG,pG,mG,fG,dG,hG,xG,bG,IG,SG,kG,_G,EG,AG,DG,RG,FG,PG,LG,BG,GG,UG,HG,qG,jG,YG,JG,tW,rW,oW,iW,lW,cW,mW,fW,hW,gW,xW,yW,bW,wW,CW,vW,SW,kW,_W,AW,$W,FW,OW,PW,rG,MW,LW,zW,VW,GW,WW,HW,KW,qW,jW,XW,YW,ZW,QW,eU,nU,oU,iU,lU,cU,mU,dU,hU,xU,IU,CU,vU,NU,TU,EU,AU,$U,RU,FU,wC,PU,LU,BU,VU,GU,WU,UU,HU,CG,KU,XU,ZU,QU,e4,n4,o4,s4,a4,u4,p4,m4,d4,h4,g4,NG,bU,x4,y4,w4,C4,S4,N4,T4,_4,E4,A4,D4,R4,O4,P4,M4,L4,z4,V4,G4,W4,H4,K4,X4,Z4,oG,J4,Q4,tH];for(let r of hpt)sc(r);var R1=L();R1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(r){return!1}});R1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(R1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var B1=Kl(oH()),cH=Kl(iH()),V1=Kl(aH());var lH=B1.default||B1,gpt=V1.default||V1,xg=class extends Go{constructor(t){super(),this.wasm=t,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(mH),z1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Ta(this,Bn())}write(t,e,n){let o={id:this.dataIdNextNumber++};return this.move(o,t,e,n,1),o}numDataIds(){return this.dataIdMap.numDataIds()}async time(t){let e=y.now();return t(),{kernelMs:y.now()-e}}move(t,e,n,o,s){let i=this.dataIdNextNumber++;if(o==="string"){let c=e;this.dataIdMap.set(t,{id:i,stringBytes:c,shape:n,dtype:o,memoryOffset:null,refCount:s});return}let a=y.sizeFromShape(n),u=a*y.bytesPerElement(o),l=this.wasm._malloc(u);this.dataIdMap.set(t,{id:i,memoryOffset:l,shape:n,dtype:o,refCount:s}),this.wasm.tfjs.registerTensor(i,a,l),e!=null&&this.wasm.HEAPU8.set(new Uint8Array(e.buffer,e.byteOffset,u),l)}async read(t){return this.readSync(t)}readSync(t,e,n){let{memoryOffset:o,dtype:s,shape:i,stringBytes:a}=this.dataIdMap.get(t);if(s==="string")return(e==null||e===0)&&(n==null||n>=a.length)?a:a.slice(e,n);e=e||0,n=n||y.sizeFromShape(i);let u=y.bytesPerElement(s),l=this.wasm.HEAPU8.slice(o+e*u,o+n*u);return ypt(l.buffer,s)}disposeData(t,e=!1){if(this.dataIdMap.has(t)){let n=this.dataIdMap.get(t);if(n.refCount--,!e&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(t)}return!0}refCount(t){return this.dataIdMap.has(t)?this.dataIdMap.get(t).refCount:0}incRef(t){let e=this.dataIdMap.get(t);e!=null&&e.refCount++}floatPrecision(){return 32}getMemoryOffset(t){return this.dataIdMap.get(t).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(t,e,n,o){let s;if(n==null)s=this.write(o!=null?o:null,t,e);else{let i=this.dataIdNextNumber++;s={id:i},this.dataIdMap.set(s,{id:i,memoryOffset:n,shape:t,dtype:e,refCount:1});let a=y.sizeFromShape(t);this.wasm.tfjs.registerTensor(i,a,n)}return{dataId:s,shape:t,dtype:e}}typedArrayFromHeap({shape:t,dtype:e,dataId:n}){let o=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),i=y.sizeFromShape(t);switch(e){case"float32":return new Float32Array(o,s,i);case"int32":return new Int32Array(o,s,i);case"bool":return new Uint8Array(o,s,i);default:throw new Error(`Unknown dtype ${e}`)}}};function xpt(r){return(t,e)=>(y.fetch(r,{credentials:"same-origin"}).then(n=>{n.ok||t.env.a(`failed to load wasm binary file at '${r}'`),n.arrayBuffer().then(o=>{WebAssembly.instantiate(o,t).then(s=>{e(s.instance,s.module)})})}),{})}function uH(r,t,e){if(NC!=null)return NC;let n="tfjs-backend-wasm.wasm";return r&&t?n="tfjs-backend-wasm-threaded-simd.wasm":r&&(n="tfjs-backend-wasm-simd.wasm"),hg!=null&&hg[n]!=null?hg[n]:e+n}async function pH(){let[r,t]=await Promise.all([L().getAsync("WASM_HAS_SIMD_SUPPORT"),L().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((e,n)=>{let o={};o.locateFile=(a,u)=>{if(a.endsWith(".worker.js")){let l=cH.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return a.endsWith(".wasm")?uH(r,t,dg!=null?dg:u):u+a},G1&&(o.instantiateWasm=xpt(uH(r,t,dg!=null?dg:"")));let s=!1;o.onAbort=()=>{if(s||gg)return;gg=!0,n({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&r&&NC==null?(o.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+lH.toString()],{type:"text/javascript"}),i=lH(o)):i=gpt(o),i.then(a=>{s=!0,gg=!1;let u=null;a.tfjs={init:a.cwrap("init",null,[]),initWithThreadsCount:a.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:a.cwrap("get_threads_count","number",[]),registerTensor:a.cwrap("register_tensor",null,["number","number","number"]),disposeData:a.cwrap("dispose_data",u,["number"]),dispose:a.cwrap("dispose",u,[])},e({wasm:a})}).catch(n)})}function ypt(r,t){switch(t){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${t}`)}}var bpt=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],NC=null,dg=null,hg={},gg=!1,G1=!1;function wpt(r,t=!1){if(R0("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),gg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");NC=r,G1=t}function Ipt(r,t=!1){if(gg)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")dg=r;else{hg=r;let e=bpt.filter(n=>hg[n]==null);if(e.length>0)throw new Error(`There were no entries found for the following binaries: ${e.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}G1=t}var mH=-1,z1=-1;function Cpt(r){mH=r}function vpt(){if(z1===-1)throw new Error("WASM backend not initialized.");return z1}var Spt="4.3.0";var Npt=2;sm("wasm",async()=>{let{wasm:r}=await pH();return new xg(r)},Npt);var fH="4.3.0",kpt="4.3.0",Tpt="4.3.0",_pt="4.3.0",Ept="4.3.0",Apt={tfjs:fH,"tfjs-core":fH,"tfjs-converter":kpt,"tfjs-backend-cpu":Tpt,"tfjs-backend-webgl":_pt,"tfjs-backend-wasm":Ept};export{Ti as Abs,Uo as Acos,Ho as Acosh,kc as AdadeltaOptimizer,Tc as AdagradOptimizer,_c as AdamOptimizer,Ec as AdamaxOptimizer,ro as Add,qo as AddN,Ea as All,Aa as Any,_i as ArgMax,Ei as ArgMin,Ko as Asin,jo as Asinh,Xo as Atan,Zo as Atan2,Yo as Atanh,Jo as AvgPool,Ai as AvgPool3D,Xl as AvgPool3DGrad,Fp as AvgPoolGrad,xg as BackendWasm,Qo as BatchMatMul,Di as BatchToSpaceND,Da as Bincount,Yl as BroadcastArgs,a_ as BroadcastTo,Db as Callback,Uy as CallbackList,fo as Cast,ts as Ceil,ho as ClipByValue,Op as Complex,Zl as ComplexAbs,$i as Concat,es as Conv2D,Pp as Conv2DBackpropFilter,rs as Conv2DBackpropInput,ns as Conv3D,$a as Conv3DBackpropFilterV2,Ra as Conv3DBackpropInputV2,os as Cos,ss as Cosh,Oa as CropAndResize,Fa as Cumprod,is as Cumsum,qy as CustomCallback,Ta as DataStorage,Jl as DenseBincount,Pa as DepthToSpace,as as DepthwiseConv2dNative,Mp as DepthwiseConv2dNativeBackpropFilter,Lp as DepthwiseConv2dNativeBackpropInput,Ql as Diag,ls as Dilation2D,eu as Dilation2DBackpropFilter,tu as Dilation2DBackpropInput,r0 as ENV,$b as EarlyStopping,zp as Einsum,cs as Elu,Ma as EluGrad,th as Environment,za as Equal,La as Erf,ps as Exp,Ri as ExpandDims,ms as Expm1,Bp as FFT,ru as Fill,Ba as FlipLeftRight,fs as Floor,ds as FloorDiv,rh as FromPixels,hs as FusedBatchNorm,Ki as FusedConv2D,ji as FusedDepthwiseConv2D,hp as GPGPUContext,Va as GatherNd,Fi as GatherV2,Uh as GraphModel,Ga as Greater,gs as GreaterEqual,Hy as History,Vp as IFFT,go as Identity,Gp as Imag,Ie as InputSpec,xs as IsFinite,ys as IsInf,bs as IsNan,Go as KernelBackend,vs as LRN,Xa as LRNGrad,Eh as LayerVariable,Un as LayersModel,ws as LeakyRelu,Wa as Less,Ua as LessEqual,Ha as LinSpace,Is as Log,Cs as Log1p,u_ as LogSoftmax,qa as LogicalAnd,Ka as LogicalNot,ja as LogicalOr,l_ as LogicalXor,Ppt as LowerBound,Wu as MathBackendCPU,Ku as MathBackendWebGL,Mpt as MatrixBandPart,Ss as Max,ks as MaxPool,Oi as MaxPool3D,nu as MaxPool3DGrad,Wp as MaxPoolGrad,Up as MaxPoolWithArgmax,Ns as Maximum,Ts as Mean,_s as Min,Es as Minimum,As as MirrorPad,Ya as Mod,Ac as MomentumOptimizer,Za as Multinomial,Ds as Multiply,Pi as Neg,Qa as NonMaxSuppressionV3,tl as NonMaxSuppressionV4,el as NonMaxSuppressionV5,Ja as NotEqual,v0 as OP_SCOPE_SUFFIX,$s as OneHot,Mi as OnesLike,qr as Optimizer,vh as OptimizerConstructors,Li as Pack,Rs as PadV2,Lpt as Pool,Fs as Pow,Os as Prelu,Ps as Prod,Dc as RMSPropOptimizer,_n as RNN,Hp as RaggedGather,qp as RaggedRange,Kp as RaggedTensorToTensor,ou as Range,f0 as Rank,jp as Real,us as RealDiv,Ms as Reciprocal,Ze as Reduction,Ls as Relu,Vs as Relu6,zi as Reshape,Bs as ResizeBilinear,nl as ResizeBilinearGrad,zs as ResizeNearestNeighbor,rl as ResizeNearestNeighborGrad,Gs as Reverse,fl as RotateWithOffset,Ws as Round,Us as Rsqrt,Cl as SGDOptimizer,ol as ScatterNd,il as SearchSorted,Bi as Select,Hs as Selu,xa as Sequential,js as Sigmoid,Ks as Sign,qs as Sin,al as Sinh,Vi as Slice,Js as Softmax,Xs as Softplus,Gi as SpaceToBatchND,su as SparseFillEmptyRows,ll as SparseReshape,iu as SparseSegmentMean,au as SparseSegmentSum,ul as SparseToDense,Wi as SplitV,Ys as Sqrt,lu as Square,Qs as SquaredDifference,oc as StaticRegexReplace,xo as Step,cl as StridedSlice,uu as StringNGrams,cu as StringSplit,pu as StringToHashBucketFast,ti as Sub,Zs as Sum,rn as SymbolicTensor,ei as Tan,ri as Tanh,Pt as Tensor,le as TensorBuffer,sl as TensorScatterUpdate,no as Tile,pl as TopK,ml as Transform,oo as Transpose,mu as Unique,Ui as Unpack,fu as UnsortedSegmentSum,zpt as UpperBound,dl as Variable,Hi as ZerosLike,qi as _FusedMatMul,Ee as abs,ux as acos,cx as acosh,Y as add,sE as addN,am as all,fc as any,Qi as argMax,px as argMin,mx as asin,fx as asinh,dx as atan,hx as atan2,gx as atanh,bu as avgPool,xx as avgPool3d,oE as backend,S as backend_util,lE as basicLSTMCell,ra as batchNorm,yx as batchNorm2d,bx as batchNorm3d,wx as batchNorm4d,wu as batchToSpaceND,Ix as bincount,jX as booleanMaskAsync,cE as broadcastArgs,na as broadcastTo,Ur as broadcast_util,Sy as browser,bt as buffer,lQ as callbacks,J as cast,Cx as ceil,vr as clipByValue,ln as clone,vn as complex,oe as concat,vx as concat1d,Sx as concat2d,Nx as concat3d,kx as concat4d,q$ as constraints,um as conv1d,Sn as conv2d,pm as conv2dTranspose,Tx as conv3d,Ex as conv3dTranspose,qpt as copyRegisteredKernels,Iu as cos,mm as cosh,bh as cosineWindow,hc as cumprod,fm as cumsum,pn as customGrad,EF as data,dh as denseBincount,R0 as deprecationWarn,Ax as depthToSpace,oa as depthwiseConv2d,mQ as deregisterOp,xu as device_util,pE as diag,Dx as dilation2d,tdt as disableDeprecationWarnings,Tt as dispose,edt as disposeVariables,ut as div,$x as divNoNan,Rx as dot,Y0 as dropout,fE as einsum,sa as elu,Qft as enableDebugMode,Jft as enableProdMode,Z0 as enclosingPowerOfTwo,Bn as engine,L as env,Rr as equal,Fx as erf,Ox as euclideanNorm,sr as exp,ir as expandDims,Px as expm1,gc as eye,Au as fft,Co as fill,adt as findBackend,ldt as findBackendFactory,ia as floor,im as floorDiv,yz as forceHalfFloat,Ru as fused,aa as gather,o5 as gatherND,Ny as gather_util,sdt as getBackend,s0 as getGradient,oh as getKernel,Kg as getKernelsForBackend,vpt as getThreadsCount,s1 as gpgpu_util,Jj as grad,Qj as grads,Fe as greater,cn as greaterEqual,Il as ifft,Cu as imag,lo as image,a5 as inTopKAsync,K$ as initializers,RN as input,Mr as io,km as irfft,Mx as isFinite,Lx as isInf,zx as isNaN,$e as keep,Kr as kernel_impls,kR as layers,vu as leakyRelu,bl as less,Vn as lessEqual,Q0 as linalg,gE as linspace,l9 as loadGraphModel,u9 as loadGraphModelSync,fR as loadLayersModel,Bx as localResponseNormalization,Nr as log,Su as log1p,Wx as logSigmoid,dm as logSoftmax,hm as logSumExp,Or as logicalAnd,Nu as logicalNot,gm as logicalOr,Ux as logicalXor,l8 as losses,xE as lowerBound,Bt as matMul,a2 as math,Sr as max,ku as maxPool,qx as maxPool3d,yE as maxPoolWithArgmax,Nn as maximum,ke as mean,ph as memory,bE as meshgrid,TR as metrics,xl as min,ao as minimum,Kx as mirrorPad,jx as mod,c7 as model,_R as models,xc as moments,ZX as movingAverage,$ as mul,wE as multiRNNCell,IE as multinomial,Ut as neg,Sh as nextFrame,yl as norm,ai as notEqual,la as oneHot,dr as ones,Ir as onesLike,k as op,CE as outerProduct,mn as pad,vE as pad1d,SE as pad2d,NE as pad3d,kE as pad4d,Xx as pool,un as pow,_u as prelu,lx as print,Yx as prod,rdt as profile,TE as raggedGather,_E as raggedRange,EE as raggedTensorToTensor,AE as rand,ZE as randomGamma,wc as randomNormal,JE as randomStandardNormal,ua as randomUniform,ca as range,odt as ready,wl as real,ry as reciprocal,sm as registerBackend,m7 as registerCallbackConstructor,p_ as registerGradient,sc as registerKernel,pQ as registerOp,ER as regularizers,Pr as relu,xm as relu6,idt as removeBackend,R as reshape,hr as reverse,QE as reverse1d,tA as reverse2d,eA as reverse3d,rA as reverse4d,Du as rfft,ym as round,bm as rsqrt,ft as scalar,QX as scatterND,$u as scatter_util,gh as searchSorted,wm as selu,Im as separableConv2d,p7 as sequential,Q as serialization,iK as setBackend,udt as setPlatform,Cpt as setThreadsCount,wpt as setWasmPath,Ipt as setWasmPaths,bT as setWebGLContext,nA as setdiff1dAsync,bw as shared,tn as sigmoid,ny as sign,a8 as signal,Cm as sin,vm as sinh,Ot as slice,Sm as slice1d,yh as slice2d,Nm as slice3d,Ic as slice4d,ze as slice_util,Eu as softmax,ii as softplus,Tu as spaceToBatchND,u8 as sparse,r5 as sparseToDense,i8 as spectral,gr as split,Ne as sqrt,Gt as square,Tm as squaredDifference,Gn as squeeze,qe as stack,So as step,oy as stridedSlice,c8 as string,lt as sub,pt as sum,pc as sumOutType,sy as tan,ea as tanh,or as tensor,Ke as tensor1d,li as tensor2d,iy as tensor3d,oA as tensor4d,sA as tensor5d,iA as tensor6d,lA as tensorScatterUpdate,Io as tensor_util,YE as test_util,B as tidy,Fr as tile,ndt as time,ay as topk,Rc as train,Vt as transpose,Em as truncatedNormal,ly as unique,Hpt as unregisterGradient,Upt as unregisterKernel,Am as unsortedSegmentSum,xr as unstack,lr as upcastType,uA as upperBound,y as util,t6 as valueAndGrad,e6 as valueAndGrads,uy as variable,Vx as variableGrads,Apt as version,uF as version_converter,b2 as version_core,dO as version_cpu,tf as version_layers,Spt as version_wasm,xz as version_webgl,n2e as webgl,kd as webgl_util,be as where,py as whereAsync,Te as zeros,vt as zerosLike};