face-api/dist/face-api.js

4998 lines
1.3 MiB

/*
Face-API
homepage: <https://github.com/vladmandic/face-api>
author: <https://github.com/vladmandic>'
*/
"use strict";var faceapi=(()=>{var ex=Object.defineProperty;var TD=Object.getOwnPropertyDescriptor;var CD=Object.getOwnPropertyNames;var _D=Object.prototype.hasOwnProperty;var ED=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var _h=(e,t)=>{for(var n in t)ex(e,n,{get:t[n],enumerable:!0})},AD=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of CD(t))!_D.call(e,r)&&r!==n&&ex(e,r,{get:()=>t[r],enumerable:!(a=TD(t,r))||a.enumerable});return e};var FD=e=>AD(ex({},"__esModule",{value:!0}),e);var rfe={};_h(rfe,{AgeGenderNet:()=>Ud,BoundingBox:()=>Jo,Box:()=>ot,ComposableTask:()=>Ia,ComputeAllFaceDescriptorsTask:()=>jr,ComputeFaceDescriptorsTaskBase:()=>jd,ComputeSingleFaceDescriptorTask:()=>Kr,DetectAllFaceLandmarksTask:()=>Xd,DetectAllFacesTask:()=>Wp,DetectFaceLandmarksTaskBase:()=>Kd,DetectFacesTaskBase:()=>Zd,DetectSingleFaceLandmarksTask:()=>Yd,DetectSingleFaceTask:()=>Jd,Dimensions:()=>wn,FACE_EXPRESSION_LABELS:()=>Ck,FaceDetection:()=>vt,FaceDetectionNet:()=>Rk,FaceExpressionNet:()=>Vd,FaceExpressions:()=>Gr,FaceLandmark68Net:()=>ol,FaceLandmark68TinyNet:()=>Gd,FaceLandmarkNet:()=>Fk,FaceLandmarks:()=>sa,FaceLandmarks5:()=>hk,FaceLandmarks68:()=>el,FaceMatch:()=>Tp,FaceMatcher:()=>Qd,FaceRecognitionNet:()=>ll,Gender:()=>yg,LabeledBox:()=>Cp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>un,ObjectDetection:()=>Br,Point:()=>Re,PredictedBox:()=>mk,Rect:()=>Qo,SsdMobilenetv1:()=>Ps,SsdMobilenetv1Options:()=>ka,TinyFaceDetector:()=>hl,TinyFaceDetectorOptions:()=>qd,TinyYolov2:()=>cl,TinyYolov2Options:()=>er,allFaces:()=>tfe,allFacesSsdMobilenetv1:()=>H$,allFacesTinyYolov2:()=>efe,awaitMediaLoaded:()=>wk,bufferToImage:()=>kk,computeFaceDescriptor:()=>Wme,createCanvas:()=>rl,createCanvasFromMedia:()=>Ld,createFaceDetectionNet:()=>Dme,createFaceRecognitionNet:()=>kme,createSsdMobilenetv1:()=>A$,createTinyFaceDetector:()=>nfe,createTinyYolov2:()=>Pme,detectAllFaces:()=>Cg,detectFaceLandmarks:()=>U$,detectFaceLandmarksTiny:()=>zme,detectLandmarks:()=>Jme,detectSingleFace:()=>Qme,draw:()=>Ek,env:()=>tt,euclideanDistance:()=>Ok,extendWithAge:()=>kg,extendWithFaceDescriptor:()=>wg,extendWithFaceDetection:()=>tl,extendWithFaceExpressions:()=>mg,extendWithFaceLandmarks:()=>Pp,extendWithGender:()=>Ig,extractFaceTensors:()=>Ap,extractFaces:()=>Ep,fetchImage:()=>lme,fetchJson:()=>Nk,fetchNetWeights:()=>ume,fetchOrThrow:()=>Ur,fetchVideo:()=>pme,getContext2dOrThrow:()=>Hn,getMediaDimensions:()=>al,imageTensorToCanvas:()=>Ik,imageToSquare:()=>Sk,inverseSigmoid:()=>tme,iou:()=>uk,isMediaElement:()=>ig,isMediaLoaded:()=>Od,isWithAge:()=>Ime,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>_k,isWithFaceLandmarks:()=>il,isWithGender:()=>Sme,loadAgeGenderModel:()=>Xme,loadFaceDetectionModel:()=>Yme,loadFaceExpressionModel:()=>Kme,loadFaceLandmarkModel:()=>Hme,loadFaceLandmarkTinyModel:()=>qme,loadFaceRecognitionModel:()=>jme,loadSsdMobilenetv1Model:()=>G$,loadTinyFaceDetectorModel:()=>Ume,loadTinyYolov2Model:()=>Gme,loadWeightMap:()=>Tk,locateFaces:()=>Zme,matchDimensions:()=>cme,minBbox:()=>pk,nets:()=>nt,nonMaxSuppression:()=>ck,normalize:()=>Ja,padToSquare:()=>dk,predictAgeAndGender:()=>Vme,recognizeFaceExpressions:()=>Bme,resizeResults:()=>q$,resolveInput:()=>nl,shuffleArray:()=>eme,sigmoid:()=>Rd,ssdMobilenetv1:()=>V$,tf:()=>Oe,tinyFaceDetector:()=>Ome,tinyYolov2:()=>Lme,toNetInput:()=>wt,utils:()=>lk,validateConfig:()=>Mk,version:()=>afe});var Oe={};_h(Oe,{Abs:()=>au,Acos:()=>ki,Acosh:()=>Ii,AdadeltaOptimizer:()=>Mw,AdagradOptimizer:()=>Pw,AdamOptimizer:()=>Ow,AdamaxOptimizer:()=>Lw,Add:()=>ks,AddN:()=>Si,All:()=>ru,Any:()=>su,ArgMax:()=>iu,ArgMin:()=>ou,Asin:()=>Ni,Asinh:()=>Ti,Atan:()=>Ci,Atan2:()=>Ei,Atanh:()=>_i,AvgPool:()=>Ai,AvgPool3D:()=>lu,AvgPool3DGrad:()=>Rc,AvgPoolGrad:()=>$m,BackendWasm:()=>s$,BatchMatMul:()=>Fi,BatchToSpaceND:()=>uu,Bincount:()=>pu,BroadcastArgs:()=>Mc,BroadcastTo:()=>GS,Callback:()=>hC,CallbackList:()=>b2,Cast:()=>$i,Ceil:()=>Di,ClipByValue:()=>Is,Complex:()=>Dm,ComplexAbs:()=>Pc,Concat:()=>cu,Conv2D:()=>Ri,Conv2DBackpropFilter:()=>Rm,Conv2DBackpropInput:()=>Mi,Conv3D:()=>Pi,Conv3DBackpropFilterV2:()=>du,Conv3DBackpropInputV2:()=>hu,Cos:()=>Oi,Cosh:()=>Li,CropAndResize:()=>fu,Cumprod:()=>mu,Cumsum:()=>zi,CustomCallback:()=>x2,DataStorage:()=>Em,DenseBincount:()=>Oc,DepthToSpace:()=>gu,DepthwiseConv2dNative:()=>Wi,DepthwiseConv2dNativeBackpropFilter:()=>Mm,DepthwiseConv2dNativeBackpropInput:()=>Pm,Diag:()=>Lc,Dilation2D:()=>Bi,Dilation2DBackpropFilter:()=>Ol,Dilation2DBackpropInput:()=>Pl,ENV:()=>xv,EarlyStopping:()=>mC,Einsum:()=>Om,Elu:()=>Ui,EluGrad:()=>bu,Environment:()=>VS,Equal:()=>xu,Erf:()=>yu,Exp:()=>Gi,ExpandDims:()=>vu,Expm1:()=>Hi,FFT:()=>Lm,Fill:()=>zc,FlipLeftRight:()=>wu,Floor:()=>qi,FloorDiv:()=>ji,FromPixels:()=>tm,FusedBatchNorm:()=>Ki,FusedConv2D:()=>si,FusedDepthwiseConv2D:()=>ii,GPGPUContext:()=>Yh,GatherNd:()=>Iu,GatherV2:()=>ku,GraphModel:()=>k1,Greater:()=>Su,GreaterEqual:()=>Xi,History:()=>y2,IFFT:()=>zm,Identity:()=>Yi,Imag:()=>Wm,InputSpec:()=>Wt,IsFinite:()=>Zi,IsInf:()=>Ji,IsNan:()=>Qi,KernelBackend:()=>$c,LRN:()=>ao,LRNGrad:()=>Fu,LayerVariable:()=>p2,LayersModel:()=>$r,LeakyRelu:()=>eo,Less:()=>Nu,LessEqual:()=>Tu,LinSpace:()=>Cu,Log:()=>to,Log1p:()=>no,LogSoftmax:()=>qS,LogicalAnd:()=>_u,LogicalNot:()=>Eu,LogicalOr:()=>Au,LogicalXor:()=>HS,LowerBound:()=>kR,MathBackendCPU:()=>Kf,MathBackendWebGL:()=>Zf,MatrixBandPart:()=>IR,Max:()=>ro,MaxPool:()=>io,MaxPool3D:()=>$u,MaxPool3DGrad:()=>Wc,MaxPoolGrad:()=>Bm,MaxPoolWithArgmax:()=>Vm,Maximum:()=>so,Mean:()=>oo,Min:()=>lo,Minimum:()=>uo,MirrorPad:()=>po,Mod:()=>Du,MomentumOptimizer:()=>zw,Multinomial:()=>Ru,Multiply:()=>co,Neg:()=>Mu,NonMaxSuppressionV3:()=>Ou,NonMaxSuppressionV4:()=>Lu,NonMaxSuppressionV5:()=>zu,NotEqual:()=>Pu,OP_SCOPE_SUFFIX:()=>Iv,OneHot:()=>ho,OnesLike:()=>Wu,Optimizer:()=>Or,OptimizerConstructors:()=>jT,Pack:()=>Bu,PadV2:()=>mo,Pool:()=>SR,Pow:()=>fo,Prelu:()=>go,Prod:()=>bo,RMSPropOptimizer:()=>Ww,RNN:()=>gr,RaggedGather:()=>Um,RaggedRange:()=>Gm,RaggedTensorToTensor:()=>Hm,Range:()=>Bc,Rank:()=>xx,Real:()=>qm,RealDiv:()=>Vi,Reciprocal:()=>yo,Reduction:()=>In,Relu:()=>xo,Relu6:()=>ko,Reshape:()=>Vu,ResizeBilinear:()=>wo,ResizeBilinearGrad:()=>Gu,ResizeNearestNeighbor:()=>vo,ResizeNearestNeighborGrad:()=>Uu,Reverse:()=>Io,RotateWithOffset:()=>ip,Round:()=>So,Rsqrt:()=>No,SGDOptimizer:()=>_f,ScatterNd:()=>Hu,SearchSorted:()=>ju,Select:()=>Ku,Selu:()=>To,Sequential:()=>Xl,Sigmoid:()=>Eo,Sign:()=>_o,Sin:()=>Co,Sinh:()=>Yu,Slice:()=>Xu,Softmax:()=>Do,Softplus:()=>Ao,SpaceToBatchND:()=>Zu,SparseFillEmptyRows:()=>Vc,SparseReshape:()=>Qu,SparseSegmentMean:()=>Uc,SparseSegmentSum:()=>Gc,SparseToDense:()=>ep,SplitV:()=>Ju,Sqrt:()=>Fo,Square:()=>Hc,SquaredDifference:()=>Ro,StaticRegexReplace:()=>qc,Step:()=>Ns,StridedSlice:()=>tp,StringNGrams:()=>jc,StringSplit:()=>Kc,StringToHashBucketFast:()=>Xc,Sub:()=>Mo,Sum:()=>$o,SymbolicTensor:()=>Va,Tan:()=>Po,Tanh:()=>Oo,Tensor:()=>Te,TensorBuffer:()=>Bt,TensorScatterUpdate:()=>qu,Tile:()=>Ss,TopK:()=>np,Transform:()=>ap,Transpose:()=>Fr,Unique:()=>Yc,Unpack:()=>rp,UnsortedSegmentSum:()=>Zc,UpperBound:()=>NR,Variable:()=>cs,ZerosLike:()=>sp,_FusedMatMul:()=>ri,abs:()=>zt,acos:()=>Ev,acosh:()=>Av,add:()=>X,addN:()=>gN,all:()=>Zm,any:()=>xc,argMax:()=>ui,argMin:()=>Fv,asin:()=>$v,asinh:()=>Dv,atan:()=>Rv,atan2:()=>Mv,atanh:()=>Pv,avgPool:()=>ya,avgPool3d:()=>Lv,backend:()=>fN,backend_util:()=>N,basicLSTMCell:()=>vN,batchNorm:()=>Cs,batchNorm2d:()=>zv,batchNorm3d:()=>Wv,batchNorm4d:()=>Bv,batchToSpaceND:()=>rd,bincount:()=>Vv,booleanMaskAsync:()=>lT,broadcastArgs:()=>wN,broadcastTo:()=>ti,broadcast_util:()=>op,browser:()=>Bo,buffer:()=>ze,callbacks:()=>eq,cast:()=>ie,ceil:()=>Uv,clipByValue:()=>nn,clone:()=>or,complex:()=>Dr,concat:()=>Je,concat1d:()=>Gv,concat2d:()=>Hv,concat3d:()=>qv,concat4d:()=>jv,constraints:()=>h2,conv1d:()=>Jm,conv2d:()=>Rt,conv2dTranspose:()=>Qm,conv3d:()=>Xv,conv3dTranspose:()=>Yv,copyRegisteredKernels:()=>ER,cos:()=>sd,cosh:()=>ef,cosineWindow:()=>If,cumprod:()=>kc,cumsum:()=>tf,customGrad:()=>cr,data:()=>OC,denseBincount:()=>om,deprecationWarn:()=>_v,depthToSpace:()=>Zv,depthwiseConv2d:()=>_s,deregisterOp:()=>aq,device_util:()=>td,diag:()=>IN,dilation2d:()=>Jv,disableDeprecationWarnings:()=>zM,dispose:()=>_e,disposeVariables:()=>WM,div:()=>he,divNoNan:()=>Qv,dot:()=>ew,dropout:()=>Aw,einsum:()=>NN,elu:()=>lp,enableDebugMode:()=>LM,enableProdMode:()=>OM,enclosingPowerOfTwo:()=>Fw,engine:()=>Ea,env:()=>G,equal:()=>ea,erf:()=>tw,euclideanNorm:()=>rw,exp:()=>yn,expandDims:()=>Qt,expm1:()=>sw,eye:()=>nf,fft:()=>md,fill:()=>xn,findBackend:()=>jM,findBackendFactory:()=>KM,floor:()=>pp,floorDiv:()=>Ym,forceHalfFloat:()=>nA,fused:()=>Hl,gather:()=>cp,gatherND:()=>dT,gather_util:()=>Uw,getBackend:()=>HM,getGradient:()=>bx,getKernel:()=>nm,getKernelsForBackend:()=>am,getThreadsCount:()=>Hhe,gpgpu_util:()=>RE,grad:()=>VO,grads:()=>UO,greater:()=>_n,greaterEqual:()=>Mr,ifft:()=>Gl,imag:()=>id,image:()=>Fa,inTopKAsync:()=>hT,initializers:()=>m2,input:()=>D2,io:()=>qt,irfft:()=>bf,isFinite:()=>iw,isInf:()=>ow,isNaN:()=>lw,keep:()=>Ht,kernel_impls:()=>fr,layers:()=>f2,leakyRelu:()=>od,less:()=>Wl,lessEqual:()=>Es,linalg:()=>Rw,linspace:()=>AN,loadGraphModel:()=>uj,loadGraphModelSync:()=>pj,loadLayersModel:()=>JG,localResponseNormalization:()=>uw,log:()=>ta,log1p:()=>ld,logSigmoid:()=>pw,logSoftmax:()=>rf,logSumExp:()=>sf,logicalAnd:()=>Da,logicalNot:()=>ud,logicalOr:()=>of,logicalXor:()=>cw,losses:()=>NT,lowerBound:()=>$N,matMul:()=>$e,math:()=>MT,max:()=>fa,maxPool:()=>Mt,maxPool3d:()=>dw,maxPoolWithArgmax:()=>DN,maximum:()=>mr,mean:()=>Et,memory:()=>im,meshgrid:()=>RN,metrics:()=>pC,min:()=>zl,minimum:()=>hs,mirrorPad:()=>hw,mod:()=>mw,model:()=>tH,models:()=>cC,moments:()=>pd,movingAverage:()=>uT,mul:()=>z,multiRNNCell:()=>MN,multinomial:()=>PN,neg:()=>yt,nextFrame:()=>Gw,norm:()=>up,notEqual:()=>hi,oneHot:()=>Bl,ones:()=>Qn,onesLike:()=>na,op:()=>L,outerProduct:()=>ON,pad:()=>xa,pad1d:()=>LN,pad2d:()=>zN,pad3d:()=>WN,pad4d:()=>BN,pool:()=>fw,pow:()=>Rr,prelu:()=>dd,print:()=>Cv,prod:()=>gw,profile:()=>BM,raggedGather:()=>VN,raggedRange:()=>UN,raggedTensorToTensor:()=>GN,rand:()=>HN,randomGamma:()=>XN,randomNormal:()=>uf,randomStandardNormal:()=>YN,randomUniform:()=>dp,range:()=>mi,ready:()=>GM,real:()=>Vl,reciprocal:()=>ww,registerBackend:()=>Xm,registerCallbackConstructor:()=>aH,registerGradient:()=>jS,registerKernel:()=>Jc,registerOp:()=>nq,regularizers:()=>dC,relu:()=>Ke,relu6:()=>pf,removeBackend:()=>qM,reshape:()=>W,reverse:()=>ba,reverse1d:()=>ZN,reverse2d:()=>JN,reverse3d:()=>QN,reverse4d:()=>eT,rfft:()=>fd,round:()=>cf,rsqrt:()=>df,scalar:()=>ve,scatterND:()=>pT,scatter_util:()=>xf,searchSorted:()=>lf,selu:()=>hf,separableConv2d:()=>As,sequential:()=>nH,serialization:()=>ne,setBackend:()=>UM,setPlatform:()=>XM,setThreadsCount:()=>Ghe,setWasmPath:()=>Vhe,setWasmPaths:()=>Uhe,setWebGLContext:()=>rE,setdiff1dAsync:()=>tT,shared:()=>T1,sigmoid:()=>ma,sign:()=>kw,signal:()=>ST,sin:()=>mf,sinh:()=>ff,slice:()=>Ve,slice1d:()=>hd,slice2d:()=>gf,slice3d:()=>zo,slice4d:()=>Ul,slice_util:()=>Kt,softmax:()=>Xa,softplus:()=>Lo,spaceToBatchND:()=>cd,sparse:()=>TT,sparseToDense:()=>cT,spectral:()=>IT,split:()=>zn,sqrt:()=>mn,square:()=>ut,squaredDifference:()=>yf,squeeze:()=>Fs,stack:()=>Dt,step:()=>Wo,stridedSlice:()=>Iw,string:()=>CT,sub:()=>pe,sum:()=>fe,sumOutType:()=>Km,tan:()=>Sw,tanh:()=>ci,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>$a,tensor3d:()=>gd,tensor4d:()=>Ma,tensor5d:()=>nT,tensor6d:()=>aT,tensorScatterUpdate:()=>sT,tensor_util:()=>Ua,test_util:()=>qN,tidy:()=>P,tile:()=>Ln,time:()=>VM,topk:()=>Tw,train:()=>js,transpose:()=>De,truncatedNormal:()=>wf,unique:()=>Cw,unregisterGradient:()=>_R,unregisterKernel:()=>CR,unsortedSegmentSum:()=>kf,unstack:()=>ct,upcastType:()=>ga,upperBound:()=>iT,util:()=>v,valueAndGrad:()=>GO,valueAndGrads:()=>HO,variable:()=>_w,variableGrads:()=>FN,version:()=>Jhe,version_converter:()=>dj,version_core:()=>oB,version_cpu:()=>lK,version_layers:()=>d0,version_wasm:()=>qhe,version_webgl:()=>K9,webgl:()=>X9,webgl_util:()=>aE,where:()=>tn,whereAsync:()=>Ew,zeros:()=>Nt,zerosLike:()=>qe});var $D=Object.create,fv=Object.defineProperty,DD=Object.getOwnPropertyDescriptor,RD=Object.getOwnPropertyNames,MD=Object.getPrototypeOf,PD=Object.prototype.hasOwnProperty,Ut=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ee=(e,t)=>{for(var n in t)fv(e,n,{get:t[n],enumerable:!0})},OD=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of RD(t))!PD.call(e,r)&&r!==n&&fv(e,r,{get:()=>t[r],enumerable:!(a=DD(t,r))||a.enumerable});return e},vs=(e,t,n)=>(n=e!=null?$D(MD(e)):{},OD(t||!e||!e.__esModule?fv(n,"default",{value:e,enumerable:!0}):n,e)),LD=Ut((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,H;return M?(S>>>=0,(H=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),H&&(i[S]=B),B)):(S|=0,(H=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),H&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return F}else{if(S<=-b)return D;if(S+1>=b)return E}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||36<B)throw RangeError("radix");var U;if((U=S.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var H=l(p(B,8)),j=x,K=0;K<S.length;K+=8){var Z=Math.min(8,S.length-K),J=parseInt(S.substring(K,K+Z),B);if(Z<8){var ee=l(p(B,Z));j=j.mul(ee).add(l(J))}else j=j.mul(H),j=j.add(l(J))}return j.unsigned=M,j}a.fromString=d;function c(S,M){return typeof S=="number"?l(S,M):typeof S=="string"?d(S,M):u(S.low,S.high,typeof M=="boolean"?M:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,b=g/2,y=o(m),x=o(0);a.ZERO=x;var w=o(0,!0);a.UZERO=w;var I=o(1);a.ONE=I;var T=o(1,!0);a.UONE=T;var C=o(-1);a.NEG_ONE=C;var E=u(-1,2147483647,!1);a.MAX_VALUE=E;var F=u(-1,-1,!0);a.MAX_UNSIGNED_VALUE=F;var D=u(0,-2147483648,!1);a.MIN_VALUE=D;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(D)){var M=l(S),B=this.div(M),U=B.mul(M).sub(this);return B.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var H=l(p(S,6),this.unsigned),j=this,K="";;){var Z=j.div(H),J=j.sub(Z.mul(H)).toInt()>>>0,ee=J.toString(S);if(j=Z,j.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&!(S&1<<M);M--);return this.high!=0?M+33:M+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,H=this.low&65535,j=S.high>>>16,K=S.high&65535,Z=S.low>>>16,J=S.low&65535,ee=0,ae=0,te=0,re=0;return re+=H+J,te+=re>>>16,re&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+j,ee&=65535,u(te<<16|re,ee<<16|ae,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(D))return S.isOdd()?D:x;if(S.eq(D))return this.isOdd()?D:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(y)&&S.lt(y))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,H=this.low>>>16,j=this.low&65535,K=S.high>>>16,Z=S.high&65535,J=S.low>>>16,ee=S.low&65535,ae=0,te=0,re=0,se=0;return se+=j*ee,re+=se>>>16,se&=65535,re+=H*ee,te+=re>>>16,re&=65535,re+=j*J,te+=re>>>16,re&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=H*J,ae+=te>>>16,te&=65535,te+=j*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*J+H*Z+j*K,ae&=65535,u(re<<16|se,ae<<16|te,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,H;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;H=w}else{if(this.eq(D)){if(S.eq(I)||S.eq(C))return D;if(S.eq(D))return I;var j=this.shr(1);return B=j.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),H=B.add(U.div(S)),H)}else if(S.eq(D))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();H=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),J=l(B),ee=J.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,J=l(B,this.unsigned),ee=J.mul(S);J.isZero()&&(J=I),H=H.add(J),U=U.sub(ee)}return H},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),zD=Ut(()=>{}),WD=Ut(()=>{}),BD=Ut((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c<d.length;c++){u+=d.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VD=Ut((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),UD=Ut((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d<p.length+64;d++)u.x^=p.charCodeAt(d)|0,d==p.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),GD=Ut((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],d.x=f,d.i=0,h=256;h>0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),HD=Ut((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,b,y=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(b=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=m+b,f=h==0?f+1:0);for(f>=128&&(y[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=y[f+34&127],h=y[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,y[f]=m^h;d.w=b,d.X=y,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),qD=Ut((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d<p.length+20;d++)u.b^=p.charCodeAt(d)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jD=Ut(()=>{}),KD=Ut((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var E=[];T=T==!0?{entropy:!0}:T||{};var F=y(b(T.entropy?[I,w(a)]:I==null?x():I,3),E),D=new f(E),$=function(){for(var S=D.g(i),M=u,B=0;S<p;)S=(S+B)*s,M*=s,B=D.g(1);for(;S>=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return $.int32=function(){return D.g(4)|0},$.quick=function(){return D.g(4)/4294967296},$.double=$,y(w(D.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,D),S.state=function(){return g(D,{})}),B?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,E=this,F=0,D=E.i=E.j=0,$=E.S=[];for(C||(I=[C++]);F<s;)$[F]=F++;for(F=0;F<s;F++)$[F]=$[D=c&D+I[F%C]+(T=$[F])],$[D]=T;(E.g=function(S){for(var M,B=0,U=E.i,H=E.j,j=E.S;S--;)M=j[U=c&U+1],B=B*s+j[c&(j[U]=j[H=c&H+M])+(j[H]=M)];return E.i=U,E.j=H,B})(s)}function g(I,T){return T.i=I.i,T.j=I.j,T.S=I.S.slice(),T}function b(I,T){var C=[],E=typeof I,F;if(T&&E=="object")for(F in I)try{C.push(b(I[F],T-1))}catch(D){}return C.length?C:E=="string"?I:I+"\0"}function y(I,T){for(var C=I+"",E,F=0;F<C.length;)T[c&F]=c&(E^=T[c&F]*19)+C.charCodeAt(F++);return w(T)}function x(){try{var I;return h&&(I=h.randomBytes)?I=I(s):(I=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(I)),w(I)}catch(E){var T=n.navigator,C=T&&T.plugins;return[+new Date,n,C,n.screen,w(a)]}}function w(I){return String.fromCharCode.apply(0,I)}if(y(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=jD()}catch(I){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),_m=Ut((e,t)=>{var n=BD(),a=VD(),r=UD(),s=GD(),i=HD(),o=qD(),l=KD();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),FS=Ut(()=>{}),gv=Ut(()=>{}),$S=Ut(()=>{}),XD=Ut(()=>{}),YD=Ut(()=>{}),ZD=Ut(()=>{}),JD=Ut((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=Me&&lt(ue.buffer),ft}function i(){return ue.buffer!=Me&&lt(ue.buffer),jn}function o(){return ue.buffer!=Me&&lt(ue.buffer),Ot}function l(){return ue.buffer!=Me&&lt(ue.buffer),pn}function u(){return ue.buffer!=Me&&lt(ue.buffer),$n}function p(){return ue.buffer!=Me&&lt(ue.buffer),la}function d(){return ue.buffer!=Me&&lt(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(R,q){h=R,m=q});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),b=[],y="./this.program",x=(R,q)=>{throw q},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,E="";function F(R){return c.locateFile?c.locateFile(R,E):E+R}var D,$,S,M;function B(R){R instanceof Vs||J("exiting due to exception: "+R)}if(T){var U=gv(),H=$S();I?E=H.dirname(E)+"/":E=__dirname+"/",D=(q,le)=>(q=vl(q)?new URL(q):H.normalize(q),U.readFileSync(q,le?void 0:"utf8")),S=q=>{var le=D(q,!0);return le.buffer||(le=new Uint8Array(le)),le},$=(q,le,Ne)=>{q=vl(q)?new URL(q):H.normalize(q),U.readFile(q,function(Pe,Fe){Pe?Ne(Pe):le(Fe.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(q){if(!(q instanceof Vs))throw q}),process.on("unhandledRejection",function(q){throw q}),x=(q,le)=>{if(Sa())throw process.exitCode=q,le;B(le),process.exit(q)},c.inspect=function(){return"[Emscripten Module object]"};let R;try{R=XD()}catch(q){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),q}global.Worker=R.Worker}else(w||I)&&(I?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof a!="undefined"&&a&&(E=a),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",T||(D=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.send(null),q.responseText},I&&(S=R=>{var q=new XMLHttpRequest;return q.open("GET",R,!1),q.responseType="arraybuffer",q.send(null),new Uint8Array(q.response)}),$=(R,q,le)=>{var Ne=new XMLHttpRequest;Ne.open("GET",R,!0),Ne.responseType="arraybuffer",Ne.onload=()=>{if(Ne.status==200||Ne.status==0&&Ne.response){q(Ne.response);return}le()},Ne.onerror=le,Ne.send(null)}),M=R=>document.title=R);T&&typeof performance=="undefined"&&(global.performance=YD().performance);var j=console.log.bind(console),K=console.warn.bind(console);T&&(j=R=>U.writeSync(1,R+`
`),K=R=>U.writeSync(2,R+`
`));var Z=c.print||j,J=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(b=c.arguments),c.thisProgram&&(y=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,re=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var ye=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Bs("no native wasm support detected");var ue,be,ke=!1,Se;function We(R,q){R||Bs(q)}var Ge=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ht(R,q,le){for(var Ne=q+le,Pe=q;R[Pe]&&!(Pe>=Ne);)++Pe;if(Pe-q>16&&R.buffer&&Ge)return Ge.decode(R.buffer instanceof SharedArrayBuffer?R.slice(q,Pe):R.subarray(q,Pe));for(var Fe="";q<Pe;){var me=R[q++];if(!(me&128)){Fe+=String.fromCharCode(me);continue}var we=R[q++]&63;if((me&224)==192){Fe+=String.fromCharCode((me&31)<<6|we);continue}var _t=R[q++]&63;if((me&240)==224?me=(me&15)<<12|we<<6|_t:me=(me&7)<<18|we<<12|_t<<6|R[q++]&63,me<65536)Fe+=String.fromCharCode(me);else{var pa=me-65536;Fe+=String.fromCharCode(55296|pa>>10,56320|pa&1023)}}return Fe}function st(R,q){return R?ht(i(),R,q):""}function at(R,q,le,Ne){if(!(Ne>0))return 0;for(var Pe=le,Fe=le+Ne-1,me=0;me<R.length;++me){var we=R.charCodeAt(me);if(we>=55296&&we<=57343){var _t=R.charCodeAt(++me);we=65536+((we&1023)<<10)|_t&1023}if(we<=127){if(le>=Fe)break;q[le++]=we}else if(we<=2047){if(le+1>=Fe)break;q[le++]=192|we>>6,q[le++]=128|we&63}else if(we<=65535){if(le+2>=Fe)break;q[le++]=224|we>>12,q[le++]=128|we>>6&63,q[le++]=128|we&63}else{if(le+3>=Fe)break;q[le++]=240|we>>18,q[le++]=128|we>>12&63,q[le++]=128|we>>6&63,q[le++]=128|we&63}}return q[le]=0,le-Pe}function rt(R,q,le){return at(R,i(),q,le)}var Me,ft,jn,Ot,oa,pn,$n,la,Dn;C&&(Me=c.buffer);function lt(R){Me=R,c.HEAP8=ft=new Int8Array(R),c.HEAP16=Ot=new Int16Array(R),c.HEAP32=pn=new Int32Array(R),c.HEAPU8=jn=new Uint8Array(R),c.HEAPU16=oa=new Uint16Array(R),c.HEAPU32=$n=new Uint32Array(R),c.HEAPF32=la=new Float32Array(R),c.HEAPF64=Dn=new Float64Array(R)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,Me=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:32768,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&J("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and/or recent version)"),Error("bad memory");ue&&(Me=ue.buffer),Rn=Me.byteLength,lt(Me);var Kn,kr=[],yl=[],tr=[],Bp=!1;function Sa(){return ye}function Xr(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)_g(c.preRun.shift());Up(kr)}function Zt(){Bp=!0,!C&&Up(yl)}function eh(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)Lk(c.postRun.shift());Up(tr)}}function _g(R){kr.unshift(R)}function Eg(R){yl.unshift(R)}function Lk(R){tr.unshift(R)}var Yr=0,xl=null,Ir=null;function Ag(R){Yr++,c.monitorRunDependencies&&c.monitorRunDependencies(Yr)}function th(R){if(Yr--,c.monitorRunDependencies&&c.monitorRunDependencies(Yr),Yr==0&&(xl!==null&&(clearInterval(xl),xl=null),Ir)){var q=Ir;Ir=null,q()}}function Bs(R){c.onAbort&&c.onAbort(R),R="Aborted("+R+")",J(R),ke=!0,Se=1,R+=". Build with -sASSERTIONS for more info.";var q=new WebAssembly.RuntimeError(R);throw m(q),q}var Fg="data:application/octet-stream;base64,";function nh(R){return R.startsWith(Fg)}function vl(R){return R.startsWith("file://")}var gn;gn="tfjs-backend-wasm-threaded-simd.wasm",nh(gn)||(gn=F(gn));function ah(R){try{if(R==gn&&se)return new Uint8Array(se);if(S)return S(R);throw"both async and sync fetching of the wasm failed"}catch(q){Bs(q)}}function $g(){if(!se&&(w||I)){if(typeof fetch=="function"&&!vl(gn))return fetch(gn,{credentials:"same-origin"}).then(function(R){if(!R.ok)throw"failed to load wasm binary file at '"+gn+"'";return R.arrayBuffer()}).catch(function(){return ah(gn)});if($)return new Promise(function(R,q){$(gn,function(le){R(new Uint8Array(le))},q)})}return Promise.resolve().then(function(){return ah(gn)})}function Dg(){var R={env:gh,wasi_snapshot_preview1:gh};function q(me,we){var _t=me.exports;if(c.asm=_t,Vg(c.asm._emscripten_tls_init),Kn=c.asm.__indirect_function_table,Eg(c.asm.__wasm_call_ctors),be=we,!C){var pa=Ae.unusedWorkers.length;Ae.unusedWorkers.forEach(function(Nr){Ae.loadWasmModuleToWorker(Nr,function(){--pa||th("wasm-instantiate")})})}}C||Ag("wasm-instantiate");function le(me){q(me.instance,me.module)}function Ne(me){return $g().then(function(we){return WebAssembly.instantiate(we,R)}).then(function(we){return we}).then(me,function(we){J("failed to asynchronously prepare wasm: "+we),Bs(we)})}function Pe(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!nh(gn)&&!vl(gn)&&!T&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(me){var we=WebAssembly.instantiateStreaming(me,R);return we.then(le,function(_t){return J("wasm streaming compile failed: "+_t),J("falling back to ArrayBuffer instantiation"),Ne(le)})}):Ne(le)}if(c.instantiateWasm)try{var Fe=c.instantiateWasm(R,q);return Fe}catch(me){J("Module.instantiateWasm callback failed with error: "+me),m(me)}return Pe().catch(m),{}}var zk,Wk,rh={};function Vs(R){this.name="ExitStatus",this.message="Program terminated with exit("+R+")",this.status=R}function Rg(R){var q=Ae.pthreads[R];delete Ae.pthreads[R],q.terminate(),Zy(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(q),1),q.pthread_ptr=0}function Mg(R){var q=Ae.pthreads[R];q.postMessage({cmd:"cancel"})}function Vp(R){var q=Ae.pthreads[R];We(q),Ae.returnWorkerToPool(q)}function Pg(R){var q=Ae.getNewWorker();if(!q)return 6;Ae.runningWorkers.push(q),Ae.pthreads[R.pthread_ptr]=q,q.pthread_ptr=R.pthread_ptr;var le={cmd:"run",start_routine:R.startRoutine,arg:R.arg,pthread_ptr:R.pthread_ptr};return q.runPthread=()=>{T&&q.ref(),q.postMessage(le,R.transferList),delete q.runPthread},q.loaded&&q.runPthread(),0}var sh={varargs:void 0,get:function(){sh.varargs+=4;var R=l()[sh.varargs-4>>2];return R},getStr:function(R){var q=st(R);return q}};function ih(R){if(C)return Zr(1,1,R);Se=R,Sa()||(Ae.terminateAllThreads(),c.onExit&&c.onExit(R),ke=!0),x(R,new Vs(R))}function Og(R,q){if(Se=R,!q&&C)throw lh(R),"unwind";ih(R)}var oh=Og;function Lg(R){if(R instanceof Vs||R=="unwind")return Se;x(1,R)}var Ae={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?Ae.initWorker():Ae.initMainThread()},initMainThread:function(){for(var R=8;R--;)Ae.allocateUnusedWorker()},initWorker:function(){ye=!1},setExitStatus:function(R){Se=R},terminateAllThreads:function(){for(var R of Object.values(Ae.pthreads))Ae.returnWorkerToPool(R);for(var R of Ae.unusedWorkers)R.terminate();Ae.unusedWorkers=[]},returnWorkerToPool:function(R){var q=R.pthread_ptr;delete Ae.pthreads[q],Ae.unusedWorkers.push(R),Ae.runningWorkers.splice(Ae.runningWorkers.indexOf(R),1),R.pthread_ptr=0,T&&R.unref(),Zy(q)},receiveObjectTransfer:function(R){},threadInitTLS:function(){Ae.tlsInitFunctions.forEach(R=>R())},loadWasmModuleToWorker:function(R,q){R.onmessage=Fe=>{var me=Fe.data,we=me.cmd;if(R.pthread_ptr&&(Ae.currentProxiedOperationCallerThread=R.pthread_ptr),me.targetThread&&me.targetThread!=kh()){var _t=Ae.pthreads[me.targetThread];_t?_t.postMessage(me,me.transferList):J('Internal error! Worker sent a message "'+we+'" to target pthread '+me.targetThread+", but that thread no longer exists!"),Ae.currentProxiedOperationCallerThread=void 0;return}we==="processProxyingQueue"?Gp(me.queue):we==="spawnThread"?Pg(me):we==="cleanupThread"?Vp(me.thread):we==="killThread"?Rg(me.thread):we==="cancelThread"?Mg(me.thread):we==="loaded"?(R.loaded=!0,T&&R.unref(),q&&q(R),R.runPthread&&R.runPthread()):we==="print"?Z("Thread "+me.threadId+": "+me.text):we==="printErr"?J("Thread "+me.threadId+": "+me.text):we==="alert"?alert("Thread "+me.threadId+": "+me.text):me.target==="setimmediate"?R.postMessage(me):we==="callHandler"?c[me.handler](...me.args):we&&J("worker sent an unknown command "+we),Ae.currentProxiedOperationCallerThread=void 0},R.onerror=Fe=>{var me="worker sent an error!";throw J(me+" "+Fe.filename+":"+Fe.lineno+": "+Fe.message),Fe},T&&(R.on("message",function(Fe){R.onmessage({data:Fe})}),R.on("error",function(Fe){R.onerror(Fe)}),R.on("detachedExit",function(){}));var le=[],Ne=["onExit","onAbort","print","printErr"];for(var Pe of Ne)c.hasOwnProperty(Pe)&&le.push(Pe);R.postMessage({cmd:"load",handlers:le,urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:be})},allocateUnusedWorker:function(){var R,q=F("tfjs-backend-wasm-threaded-simd.worker.js");R=new Worker(q),Ae.unusedWorkers.push(R)},getNewWorker:function(){return Ae.unusedWorkers.length==0&&(Ae.allocateUnusedWorker(),Ae.loadWasmModuleToWorker(Ae.unusedWorkers[0])),Ae.unusedWorkers.pop()}};c.PThread=Ae;function Up(R){for(;R.length>0;)R.shift()(c)}function zg(){var R=kh(),q=l()[R+52>>2],le=l()[R+56>>2],Ne=q-le;qk(q,Ne),Ih(q)}c.establishStackSpace=zg;function lh(R){if(C)return Zr(2,0,R);try{oh(R)}catch(q){Lg(q)}}var wl=[];function Wg(R){var q=wl[R];return q||(R>=wl.length&&(wl.length=R+1),wl[R]=q=Kn.get(R)),q}function Bg(R,q){var le=Wg(R)(q);Sa()?Ae.setExitStatus(le):Hk(le)}c.invokeEntryPoint=Bg;function Vg(R){Ae.tlsInitFunctions.push(R)}function Ug(R){Vk(R,!I,1,!w),Ae.threadInitTLS()}function Gg(R){C?postMessage({cmd:"cleanupThread",thread:R}):Vp(R)}function uh(R,q,le,Ne){return C?Zr(3,1,R,q,le,Ne):ph(R,q,le,Ne)}function ph(R,q,le,Ne){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Pe=[],Fe=0;if(C&&(Pe.length===0||Fe))return uh(R,q,le,Ne);if(Fe)return Fe;var me={startRoutine:le,pthread_ptr:R,arg:Ne,transferList:Pe};return C?(me.cmd="spawnThread",postMessage(me,Pe),0):Pg(me)}function Hg(){return 65536}var qg=!0;function jg(){return qg}function Gp(R){Atomics.store(l(),R>>2,1),kh()&&Gk(R),Atomics.compareExchange(l(),R>>2,1,0)}c.executeNotifiedProxyingQueue=Gp;function Kg(R,q,le,Ne){if(R==q)setTimeout(()=>Gp(Ne));else if(C)postMessage({targetThread:R,cmd:"processProxyingQueue",queue:Ne});else{var Pe=Ae.pthreads[R];if(!Pe)return;Pe.postMessage({cmd:"processProxyingQueue",queue:Ne})}return 1}function Xg(R,q,le){return-1}function Yg(){Bs("")}function Us(R){Us.shown||(Us.shown={}),Us.shown[R]||(Us.shown[R]=1,T&&(R="warning: "+R),J(R))}function Zg(){T||I||Us("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Jg(){return Date.now()}function ch(){return 2147483648}function Qg(){return ch()}var Hp;T?Hp=()=>{var R=process.hrtime();return R[0]*1e3+R[1]/1e6}:Hp=()=>performance.timeOrigin+performance.now();function eb(R,q,le){i().copyWithin(R,q,q+le)}function tb(){return T?ZD().cpus().length:navigator.hardwareConcurrency}function nb(R){var q=Jy(),le=R();return Ih(q),le}function Zr(R,q){var le=arguments.length-2,Ne=arguments;return nb(()=>{for(var Pe=le,Fe=Sh(Pe*8),me=Fe>>3,we=0;we<le;we++){var _t=Ne[2+we];d()[me+we]=_t}return Uk(R,Pe,Fe,q)})}var qp=[];function ab(R,q,le){qp.length=q;for(var Ne=le>>3,Pe=0;Pe<q;Pe++)qp[Pe]=d()[Ne+Pe];var Fe=R<0,me=Fe?rh[-R-1]:db[R];return me.apply(null,qp)}function rb(R){try{return ue.grow(R-Me.byteLength+65535>>>16),lt(ue.buffer),1}catch(q){}}function sb(R){var q=i().length;if(R=R>>>0,R<=q)return!1;var le=ch();if(R>le)return!1;let Ne=(_t,pa)=>_t+(pa-_t%pa)%pa;for(var Pe=1;Pe<=4;Pe*=2){var Fe=q*(1+.2/Pe);Fe=Math.min(Fe,R+100663296);var me=Math.min(le,Ne(Math.max(R,Fe),65536)),we=rb(me);if(we)return!0}return!1}function ib(){throw"unwind"}function dh(R){return C?Zr(4,1,R):52}function hh(R,q,le,Ne,Pe){return C?Zr(5,1,R,q,le,Ne,Pe):70}var ob=[null,[],[]];function lb(R,q){var le=ob[R];q===0||q===10?((R===1?Z:J)(ht(le,0)),le.length=0):le.push(q)}function mh(R,q,le,Ne){if(C)return Zr(6,1,R,q,le,Ne);for(var Pe=0,Fe=0;Fe<le;Fe++){var me=u()[q>>2],we=u()[q+4>>2];q+=8;for(var _t=0;_t<we;_t++)lb(R,i()[me+_t]);Pe+=we}return u()[Ne>>2]=Pe,0}function fh(R){var q=c["_"+R];return q}function ub(R,q){s().set(R,q)}function pb(R,q,le,Ne,Pe){var Fe={string:ca=>{var Nl=0;if(ca!=null&&ca!==0){var Xk=(ca.length<<2)+1;Nl=Sh(Xk),rt(ca,Nl,Xk)}return Nl},array:ca=>{var Nl=Sh(ca.length);return ub(ca,Nl),Nl}};function me(ca){return q==="string"?st(ca):q==="boolean"?!!ca:ca}var we=fh(R),_t=[],pa=0;if(Ne)for(var Nr=0;Nr<Ne.length;Nr++){var Kk=Fe[le[Nr]];Kk?(pa===0&&(pa=Jy()),_t[Nr]=Kk(Ne[Nr])):_t[Nr]=Ne[Nr]}var Qy=we.apply(null,_t);function ND(ca){return pa!==0&&Ih(pa),me(ca)}return Qy=ND(Qy),Qy}function cb(R,q,le,Ne){le=le||[];var Pe=le.every(me=>me==="number"||me==="boolean"),Fe=q!=="string";return Fe&&Pe&&!Ne?fh(R):function(){return pb(R,q,le,arguments,Ne)}}Ae.init();var db=[null,ih,lh,uh,dh,hh,mh],gh={__emscripten_init_main_thread_js:Ug,__emscripten_thread_cleanup:Gg,__pthread_create_js:ph,_emscripten_default_pthread_stack_size:Hg,_emscripten_get_now_is_monotonic:jg,_emscripten_notify_task_queue:Kg,_emscripten_set_offscreencanvas_size:Xg,abort:Yg,emscripten_check_blocking_allowed:Zg,emscripten_date_now:Jg,emscripten_get_heap_max:Qg,emscripten_get_now:Hp,emscripten_memcpy_big:eb,emscripten_num_logical_cores:tb,emscripten_receive_on_main_thread_js:ab,emscripten_resize_heap:sb,emscripten_unwind_to_js_event_loop:ib,exit:oh,fd_close:dh,fd_seek:hh,fd_write:mh,memory:ue||c.wasmMemory},Bk=Dg(),hb=c.___wasm_call_ctors=function(){return(hb=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},mb=c._init=function(){return(mb=c._init=c.asm.init).apply(null,arguments)},fb=c._init_with_threads_count=function(){return(fb=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},gb=c._get_threads_count=function(){return(gb=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},bb=c._register_tensor=function(){return(bb=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},yb=c._dispose_data=function(){return(yb=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},xb=c._dispose=function(){return(xb=c._dispose=c.asm.dispose).apply(null,arguments)},vb=c._Abs=function(){return(vb=c._Abs=c.asm.Abs).apply(null,arguments)},wb=c._Acos=function(){return(wb=c._Acos=c.asm.Acos).apply(null,arguments)},kb=c._Acosh=function(){return(kb=c._Acosh=c.asm.Acosh).apply(null,arguments)},Ib=c._Add=function(){return(Ib=c._Add=c.asm.Add).apply(null,arguments)},Sb=c._AddN=function(){return(Sb=c._AddN=c.asm.AddN).apply(null,arguments)},Nb=c._All=function(){return(Nb=c._All=c.asm.All).apply(null,arguments)},Tb=c._Any=function(){return(Tb=c._Any=c.asm.Any).apply(null,arguments)},Cb=c._ArgMax=function(){return(Cb=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},_b=c._ArgMin=function(){return(_b=c._ArgMin=c.asm.ArgMin).apply(null,arguments)},Eb=c._Asin=function(){return(Eb=c._Asin=c.asm.Asin).apply(null,arguments)},Ab=c._Asinh=function(){return(Ab=c._Asinh=c.asm.Asinh).apply(null,arguments)},Fb=c._Atan=function(){return(Fb=c._Atan=c.asm.Atan).apply(null,arguments)},$b=c._Atan2=function(){return($b=c._Atan2=c.asm.Atan2).apply(null,arguments)},Db=c._Atanh=function(){return(Db=c._Atanh=c.asm.Atanh).apply(null,arguments)},Rb=c._AvgPool=function(){return(Rb=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Mb=c._AvgPool3D=function(){return(Mb=c._AvgPool3D=c.asm.AvgPool3D).apply(null,arguments)},Pb=c._AvgPool3DGrad=function(){return(Pb=c._AvgPool3DGrad=c.asm.AvgPool3DGrad).apply(null,arguments)},Ob=c._BatchMatMul=function(){return(Ob=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Lb=c._Bincount=function(){return(Lb=c._Bincount=c.asm.Bincount).apply(null,arguments)},zb=c._Ceil=function(){return(zb=c._Ceil=c.asm.Ceil).apply(null,arguments)},Wb=c._ClipByValue=function(){return(Wb=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Bb=c._Conv2D=function(){return(Bb=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},Vb=c._Conv2DBackpropInput=function(){return(Vb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},Ub=c._Conv3D=function(){return(Ub=c._Conv3D=c.asm.Conv3D).apply(null,arguments)},Gb=c._Conv3DBackpropFilterV2=function(){return(Gb=c._Conv3DBackpropFilterV2=c.asm.Conv3DBackpropFilterV2).apply(null,arguments)},Hb=c._Conv3DBackpropInputV2=function(){return(Hb=c._Conv3DBackpropInputV2=c.asm.Conv3DBackpropInputV2).apply(null,arguments)},qb=c._Cos=function(){return(qb=c._Cos=c.asm.Cos).apply(null,arguments)},jb=c._Cosh=function(){return(jb=c._Cosh=c.asm.Cosh).apply(null,arguments)},Kb=c._CropAndResize=function(){return(Kb=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Xb=c._Cumprod=function(){return(Xb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Yb=c._Cumsum=function(){return(Yb=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Zb=c._DenseBincount=function(){return(Zb=c._DenseBincount=c.asm.DenseBincount).apply(null,arguments)},Jb=c._DepthToSpace=function(){return(Jb=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Qb=c._DepthwiseConv2dNative=function(){return(Qb=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},ey=c._Diag=function(){return(ey=c._Diag=c.asm.Diag).apply(null,arguments)},ty=c._Dilation2D=function(){return(ty=c._Dilation2D=c.asm.Dilation2D).apply(null,arguments)},ny=c._Dilation2DBackpropFilter=function(){return(ny=c._Dilation2DBackpropFilter=c.asm.Dilation2DBackpropFilter).apply(null,arguments)},ay=c._Dilation2DBackpropInput=function(){return(ay=c._Dilation2DBackpropInput=c.asm.Dilation2DBackpropInput).apply(null,arguments)},ry=c._Elu=function(){return(ry=c._Elu=c.asm.Elu).apply(null,arguments)},sy=c._EluGrad=function(){return(sy=c._EluGrad=c.asm.EluGrad).apply(null,arguments)},iy=c._Equal=function(){return(iy=c._Equal=c.asm.Equal).apply(null,arguments)},oy=c._Exp=function(){return(oy=c._Exp=c.asm.Exp).apply(null,arguments)},ly=c._Expm1=function(){return(ly=c._Expm1=c.asm.Expm1).apply(null,arguments)},uy=c._FlipLeftRight=function(){return(uy=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},py=c._Floor=function(){return(py=c._Floor=c.asm.Floor).apply(null,arguments)},cy=c._FloorDiv=function(){return(cy=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},dy=c._FusedBatchNorm=function(){return(dy=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},hy=c._FusedConv2D=function(){return(hy=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},my=c._FusedDepthwiseConv2D=function(){return(my=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},fy=c._Gather=function(){return(fy=c._Gather=c.asm.Gather).apply(null,arguments)},gy=c._GatherNd=function(){return(gy=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},by=c._Greater=function(){return(by=c._Greater=c.asm.Greater).apply(null,arguments)},yy=c._GreaterEqual=function(){return(yy=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},xy=c._IsFinite=function(){return(xy=c._IsFinite=c.asm.IsFinite).apply(null,arguments)},vy=c._IsInf=function(){return(vy=c._IsInf=c.asm.IsInf).apply(null,arguments)},wy=c._IsNan=function(){return(wy=c._IsNan=c.asm.IsNan).apply(null,arguments)},ky=c._LRN=function(){return(ky=c._LRN=c.asm.LRN).apply(null,arguments)},Iy=c._LRNGrad=function(){return(Iy=c._LRNGrad=c.asm.LRNGrad).apply(null,arguments)},Sy=c._LeakyRelu=function(){return(Sy=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Ny=c._Less=function(){return(Ny=c._Less=c.asm.Less).apply(null,arguments)},Ty=c._LessEqual=function(){return(Ty=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},Cy=c._LinSpace=function(){return(Cy=c._LinSpace=c.asm.LinSpace).apply(null,arguments)},_y=c._Log=function(){return(_y=c._Log=c.asm.Log).apply(null,arguments)},Ey=c._Log1p=function(){return(Ey=c._Log1p=c.asm.Log1p).apply(null,arguments)},Ay=c._LogicalAnd=function(){return(Ay=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},Fy=c._LogicalNot=function(){return(Fy=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},$y=c._LogicalOr=function(){return($y=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},Dy=c._LogicalXor=function(){return(Dy=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},Ry=c._Max=function(){return(Ry=c._Max=c.asm.Max).apply(null,arguments)},My=c._MaxPool=function(){return(My=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Py=c._MaxPool3D=function(){return(Py=c._MaxPool3D=c.asm.MaxPool3D).apply(null,arguments)},Oy=c._MaxPool3DGrad=function(){return(Oy=c._MaxPool3DGrad=c.asm.MaxPool3DGrad).apply(null,arguments)},Ly=c._Maximum=function(){return(Ly=c._Maximum=c.asm.Maximum).apply(null,arguments)},zy=c._Mean=function(){return(zy=c._Mean=c.asm.Mean).apply(null,arguments)},Wy=c._Min=function(){return(Wy=c._Min=c.asm.Min).apply(null,arguments)},By=c._Minimum=function(){return(By=c._Minimum=c.asm.Minimum).apply(null,arguments)},Vy=c._MirrorPad=function(){return(Vy=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Uy=c._Multinomial=function(){return(Uy=c._Multinomial=c.asm.Multinomial).apply(null,arguments)},Gy=c._Multiply=function(){return(Gy=c._Multiply=c.asm.Multiply).apply(null,arguments)},Hy=c._Neg=function(){return(Hy=c._Neg=c.asm.Neg).apply(null,arguments)},qy=c._NonMaxSuppressionV3=function(){return(qy=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},bh=c._NonMaxSuppressionV4=function(){return(bh=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},yh=c._NonMaxSuppressionV5=function(){return(yh=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},jp=c._NotEqual=function(){return(jp=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},jy=c._OneHot=function(){return(jy=c._OneHot=c.asm.OneHot).apply(null,arguments)},Ky=c._PadV2=function(){return(Ky=c._PadV2=c.asm.PadV2).apply(null,arguments)},kl=c._Pow=function(){return(kl=c._Pow=c.asm.Pow).apply(null,arguments)},xh=c._Prelu=function(){return(xh=c._Prelu=c.asm.Prelu).apply(null,arguments)},Il=c._Prod=function(){return(Il=c._Prod=c.asm.Prod).apply(null,arguments)},Sl=c._RealDiv=function(){return(Sl=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},Xy=c._Reciprocal=function(){return(Xy=c._Reciprocal=c.asm.Reciprocal).apply(null,arguments)},Y=c._Relu=function(){return(Y=c._Relu=c.asm.Relu).apply(null,arguments)},oe=c._Relu6=function(){return(oe=c._Relu6=c.asm.Relu6).apply(null,arguments)},Ie=c._ResizeBilinear=function(){return(Ie=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Xe=c._ResizeBilinearGrad=function(){return(Xe=c._ResizeBilinearGrad=c.asm.ResizeBilinearGrad).apply(null,arguments)},It=c._ResizeNearestNeighbor=function(){return(It=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},St=c._ResizeNearestNeighborGrad=function(){return(St=c._ResizeNearestNeighborGrad=c.asm.ResizeNearestNeighborGrad).apply(null,arguments)},He=c._Reverse=function(){return(He=c._Reverse=c.asm.Reverse).apply(null,arguments)},Be=c._RotateWithOffset=function(){return(Be=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},Lt=c._Round=function(){return(Lt=c._Round=c.asm.Round).apply(null,arguments)},ua=c._Rsqrt=function(){return(ua=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Sr=c._ScatterNd=function(){return(Sr=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},vh=c._SearchSorted=function(){return(vh=c._SearchSorted=c.asm.SearchSorted).apply(null,arguments)},Kp=c._SelectV2=function(){return(Kp=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},Yy=c._Selu=function(){return(Yy=c._Selu=c.asm.Selu).apply(null,arguments)},Mn=c._Sigmoid=function(){return(Mn=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},Jr=c._Sign=function(){return(Jr=c._Sign=c.asm.Sign).apply(null,arguments)},wh=c._Sin=function(){return(wh=c._Sin=c.asm.Sin).apply(null,arguments)},j$=c._Softmax=function(){return(j$=c._Softmax=c.asm.Softmax).apply(null,arguments)},K$=c._Softplus=function(){return(K$=c._Softplus=c.asm.Softplus).apply(null,arguments)},X$=c._SparseFillEmptyRows=function(){return(X$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},Y$=c._SparseReshape=function(){return(Y$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},Z$=c._SparseSegmentReduction=function(){return(Z$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},J$=c._SparseToDense=function(){return(J$=c._SparseToDense=c.asm.SparseToDense).apply(null,arguments)},Q$=c._Sqrt=function(){return(Q$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},eD=c._Square=function(){return(eD=c._Square=c.asm.Square).apply(null,arguments)},tD=c._SquaredDifference=function(){return(tD=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},nD=c._Step=function(){return(nD=c._Step=c.asm.Step).apply(null,arguments)},aD=c._StridedSlice=function(){return(aD=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},rD=c._Sub=function(){return(rD=c._Sub=c.asm.Sub).apply(null,arguments)},sD=c._Sum=function(){return(sD=c._Sum=c.asm.Sum).apply(null,arguments)},iD=c._Tan=function(){return(iD=c._Tan=c.asm.Tan).apply(null,arguments)},oD=c._Tanh=function(){return(oD=c._Tanh=c.asm.Tanh).apply(null,arguments)},lD=c._TensorScatterUpdate=function(){return(lD=c._TensorScatterUpdate=c.asm.TensorScatterUpdate).apply(null,arguments)},uD=c._Tile=function(){return(uD=c._Tile=c.asm.Tile).apply(null,arguments)},pD=c._TopK=function(){return(pD=c._TopK=c.asm.TopK).apply(null,arguments)},cD=c._Transform=function(){return(cD=c._Transform=c.asm.Transform).apply(null,arguments)},dD=c._Transpose=function(){return(dD=c._Transpose=c.asm.Transpose).apply(null,arguments)},hD=c.__FusedMatMul=function(){return(hD=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},mD=c._malloc=function(){return(mD=c._malloc=c.asm.malloc).apply(null,arguments)},fD=c._free=function(){return(fD=c._free=c.asm.free).apply(null,arguments)},gD=c.__emscripten_tls_init=function(){return(gD=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},kh=c._pthread_self=function(){return(kh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},bD=c.___errno_location=function(){return(bD=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},Vk=c.__emscripten_thread_init=function(){return(Vk=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},yD=c.__emscripten_thread_crashed=function(){return(yD=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},xD=c._emscripten_main_thread_process_queued_calls=function(){return(xD=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},vD=c._emscripten_main_browser_thread_id=function(){return(vD=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},Uk=c._emscripten_run_in_main_runtime_thread_js=function(){return(Uk=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},wD=c._emscripten_dispatch_to_thread_=function(){return(wD=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Gk=c.__emscripten_proxy_execute_task_queue=function(){return(Gk=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},Zy=c.__emscripten_thread_free_data=function(){return(Zy=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},Hk=c.__emscripten_thread_exit=function(){return(Hk=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},qk=c._emscripten_stack_set_limits=function(){return(qk=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Jy=c.stackSave=function(){return(Jy=c.stackSave=c.asm.stackSave).apply(null,arguments)},Ih=c.stackRestore=function(){return(Ih=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Sh=c.stackAlloc=function(){return(Sh=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},kD=c.dynCall_iijjiiii=function(){return(kD=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},ID=c.dynCall_jiji=function(){return(ID=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=Sa,c.wasmMemory=ue,c.cwrap=cb,c.ExitStatus=Vs,c.PThread=Ae;var Nh;Ir=function R(){Nh||jk(),Nh||(Ir=R)};function jk(R){if(R=R||b,Yr>0)return;if(C){h(c),Zt(),startWorker(c);return}if(Xr(),Yr>0)return;function q(){Nh||(Nh=!0,c.calledRun=!0,!ke&&(Zt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),eh()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),q()},1)):q()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();jk();var Th;f&&(Th={uncaughtException:process.listeners("uncaughtException").filter(function(R){return!f.uncaughtException.indexOf(R)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(R){return!f.unhandledRejection.indexOf(R)>-1})});var Ch;if(typeof WasmBackendModule!="undefined")Ch=WasmBackendModule;else if(typeof r!="undefined")Ch=r;else throw new Error("Could not find wasm module in post.js");if(Th){var SD=Ch._dispose;Ch._dispose=function(){SD(),Th.uncaughtException.forEach(function(R){process.removeListener("uncaughtException",R)}),Th.unhandledRejection.forEach(function(R){process.removeListener("unhandledRejection",R)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),QD=Ut((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8")+"//# sourceURL="+f)},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.startWorker=instance=>{Module=instance;postMessage({"cmd":"loaded"})};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;for(const handler of e.data.handlers){Module[handler]=function(){postMessage({cmd:"callHandler",handler:handler,args:[...arguments]})}}Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module)}else if(e.data.cmd==="run"){Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),eR=Ut((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(Y,oe){i=Y,o=oe});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(Y,oe)=>{throw oe},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(Y){return s.locateFile?s.locateFile(Y,g):g+Y}var y,x,w,I;function T(Y){Y instanceof xl||D("exiting due to exception: "+Y)}if(f){var C=gv(),E=$S();m?g=E.dirname(g)+"/":g=__dirname+"/",y=(Y,oe)=>(Y=Xr(Y)?new URL(Y):E.normalize(Y),C.readFileSync(Y,oe?void 0:"utf8")),w=Y=>{var oe=y(Y,!0);return oe.buffer||(oe=new Uint8Array(oe)),oe},x=(Y,oe,Ie)=>{Y=Xr(Y)?new URL(Y):E.normalize(Y),C.readFile(Y,function(Xe,It){Xe?Ie(Xe):oe(It.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof xl))throw Y}),process.on("unhandledRejection",function(Y){throw Y}),c=(Y,oe)=>{if(jn())throw process.exitCode=Y,oe;T(oe),process.exit(Y)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.send(null),oe.responseText},m&&(w=Y=>{var oe=new XMLHttpRequest;return oe.open("GET",Y,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),x=(Y,oe,Ie)=>{var Xe=new XMLHttpRequest;Xe.open("GET",Y,!0),Xe.responseType="arraybuffer",Xe.onload=()=>{if(Xe.status==200||Xe.status==0&&Xe.response){oe(Xe.response);return}Ie()},Xe.onerror=Ie,Xe.send(null)},I=Y=>document.title=Y);var F=s.print||console.log.bind(console),D=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var $=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&tr("no native wasm support detected");var B,U=!1,H;function j(Y,oe){Y||tr(oe)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(Y,oe,Ie){for(var Xe=oe+Ie,It=oe;Y[It]&&!(It>=Xe);)++It;if(It-oe>16&&Y.buffer&&K)return K.decode(Y.subarray(oe,It));for(var St="";oe<It;){var He=Y[oe++];if(!(He&128)){St+=String.fromCharCode(He);continue}var Be=Y[oe++]&63;if((He&224)==192){St+=String.fromCharCode((He&31)<<6|Be);continue}var Lt=Y[oe++]&63;if((He&240)==224?He=(He&15)<<12|Be<<6|Lt:He=(He&7)<<18|Be<<12|Lt<<6|Y[oe++]&63,He<65536)St+=String.fromCharCode(He);else{var ua=He-65536;St+=String.fromCharCode(55296|ua>>10,56320|ua&1023)}}return St}function J(Y,oe){return Y?Z(se,Y,oe):""}function ee(Y,oe,Ie,Xe){if(!(Xe>0))return 0;for(var It=Ie,St=Ie+Xe-1,He=0;He<Y.length;++He){var Be=Y.charCodeAt(He);if(Be>=55296&&Be<=57343){var Lt=Y.charCodeAt(++He);Be=65536+((Be&1023)<<10)|Lt&1023}if(Be<=127){if(Ie>=St)break;oe[Ie++]=Be}else if(Be<=2047){if(Ie+1>=St)break;oe[Ie++]=192|Be>>6,oe[Ie++]=128|Be&63}else if(Be<=65535){if(Ie+2>=St)break;oe[Ie++]=224|Be>>12,oe[Ie++]=128|Be>>6&63,oe[Ie++]=128|Be&63}else{if(Ie+3>=St)break;oe[Ie++]=240|Be>>18,oe[Ie++]=128|Be>>12&63,oe[Ie++]=128|Be>>6&63,oe[Ie++]=128|Be&63}}return oe[Ie]=0,Ie-It}function ae(Y,oe,Ie){return ee(Y,se,oe,Ie)}var te,re,se,ye,ue,be,ke,Se,We;function Ge(Y){te=Y,s.HEAP8=re=new Int8Array(Y),s.HEAP16=ye=new Int16Array(Y),s.HEAP32=be=new Int32Array(Y),s.HEAPU8=se=new Uint8Array(Y),s.HEAPU16=ue=new Uint16Array(Y),s.HEAPU32=ke=new Uint32Array(Y),s.HEAPF32=Se=new Float32Array(Y),s.HEAPF64=We=new Float64Array(Y)}var ht=s.INITIAL_MEMORY||16777216,st,at=[],rt=[],Me=[],ft=!1;function jn(){return M}function Ot(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)$n(s.preRun.shift());Ir(at)}function oa(){ft=!0,Ir(rt)}function pn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());Ir(Me)}function $n(Y){at.unshift(Y)}function la(Y){rt.unshift(Y)}function Dn(Y){Me.unshift(Y)}var lt=0,Rn=null,Kn=null;function kr(Y){lt++,s.monitorRunDependencies&&s.monitorRunDependencies(lt)}function yl(Y){if(lt--,s.monitorRunDependencies&&s.monitorRunDependencies(lt),lt==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),Kn)){var oe=Kn;Kn=null,oe()}}function tr(Y){s.onAbort&&s.onAbort(Y),Y="Aborted("+Y+")",D(Y),U=!0,H=1,Y+=". Build with -sASSERTIONS for more info.";var oe=new WebAssembly.RuntimeError(Y);throw o(oe),oe}var Bp="data:application/octet-stream;base64,";function Sa(Y){return Y.startsWith(Bp)}function Xr(Y){return Y.startsWith("file://")}var Zt;Zt="tfjs-backend-wasm.wasm",Sa(Zt)||(Zt=b(Zt));function eh(Y){try{if(Y==Zt&&S)return new Uint8Array(S);if(w)return w(Y);throw"both async and sync fetching of the wasm failed"}catch(oe){tr(oe)}}function _g(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Xr(Zt))return fetch(Zt,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Zt+"'";return Y.arrayBuffer()}).catch(function(){return eh(Zt)});if(x)return new Promise(function(Y,oe){x(Zt,function(Ie){Y(new Uint8Array(Ie))},oe)})}return Promise.resolve().then(function(){return eh(Zt)})}function Eg(){var Y={env:Vp,wasi_snapshot_preview1:Vp};function oe(He,Be){var Lt=He.exports;s.asm=Lt,B=s.asm.memory,Ge(B.buffer),st=s.asm.__indirect_function_table,la(s.asm.__wasm_call_ctors),yl("wasm-instantiate")}kr("wasm-instantiate");function Ie(He){oe(He.instance)}function Xe(He){return _g().then(function(Be){return WebAssembly.instantiate(Be,Y)}).then(function(Be){return Be}).then(He,function(Be){D("failed to asynchronously prepare wasm: "+Be),tr(Be)})}function It(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!Sa(Zt)&&!Xr(Zt)&&!f&&typeof fetch=="function"?fetch(Zt,{credentials:"same-origin"}).then(function(He){var Be=WebAssembly.instantiateStreaming(He,Y);return Be.then(Ie,function(Lt){return D("wasm streaming compile failed: "+Lt),D("falling back to ArrayBuffer instantiation"),Xe(Ie)})}):Xe(Ie)}if(s.instantiateWasm)try{var St=s.instantiateWasm(Y,oe);return St}catch(He){D("Module.instantiateWasm callback failed with error: "+He),o(He)}return It().catch(o),{}}var Lk,Yr;function xl(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}function Ir(Y){for(;Y.length>0;)Y.shift()(s)}function Ag(){tr("")}function th(){return 2147483648}function Bs(){return th()}function Fg(Y,oe,Ie){se.copyWithin(Y,oe,oe+Ie)}function nh(Y){try{return B.grow(Y-te.byteLength+65535>>>16),Ge(B.buffer),1}catch(oe){}}function vl(Y){var oe=se.length;Y=Y>>>0;var Ie=th();if(Y>Ie)return!1;let Xe=(Lt,ua)=>Lt+(ua-Lt%ua)%ua;for(var It=1;It<=4;It*=2){var St=oe*(1+.2/It);St=Math.min(St,Y+100663296);var He=Math.min(Ie,Xe(Math.max(Y,St),65536)),Be=nh(He);if(Be)return!0}return!1}var gn={varargs:void 0,get:function(){gn.varargs+=4;var Y=be[gn.varargs-4>>2];return Y},getStr:function(Y){var oe=J(Y);return oe}};function ah(Y){return 52}function $g(Y,oe,Ie,Xe,It){return 70}var Dg=[null,[],[]];function zk(Y,oe){var Ie=Dg[Y];oe===0||oe===10?((Y===1?F:D)(Z(Ie,0)),Ie.length=0):Ie.push(oe)}function Wk(Y,oe,Ie,Xe){for(var It=0,St=0;St<Ie;St++){var He=ke[oe>>2],Be=ke[oe+4>>2];oe+=8;for(var Lt=0;Lt<Be;Lt++)zk(Y,se[He+Lt]);It+=Be}return ke[Xe>>2]=It,0}function rh(Y){var oe=s["_"+Y];return oe}function Vs(Y,oe){re.set(Y,oe)}function Rg(Y,oe,Ie,Xe,It){var St={string:Mn=>{var Jr=0;if(Mn!=null&&Mn!==0){var wh=(Mn.length<<2)+1;Jr=jp(wh),ae(Mn,Jr,wh)}return Jr},array:Mn=>{var Jr=jp(Mn.length);return Vs(Mn,Jr),Jr}};function He(Mn){return oe==="string"?J(Mn):oe==="boolean"?!!Mn:Mn}var Be=rh(Y),Lt=[],ua=0;if(Xe)for(var Sr=0;Sr<Xe.length;Sr++){var vh=St[Ie[Sr]];vh?(ua===0&&(ua=bh()),Lt[Sr]=vh(Xe[Sr])):Lt[Sr]=Xe[Sr]}var Kp=Be.apply(null,Lt);function Yy(Mn){return ua!==0&&yh(ua),He(Mn)}return Kp=Yy(Kp),Kp}function Mg(Y,oe,Ie,Xe){Ie=Ie||[];var It=Ie.every(He=>He==="number"||He==="boolean"),St=oe!=="string";return St&&It&&!Xe?rh(Y):function(){return Rg(Y,oe,Ie,arguments,Xe)}}var Vp={abort:Ag,emscripten_get_heap_max:Bs,emscripten_memcpy_big:Fg,emscripten_resize_heap:vl,fd_close:ah,fd_seek:$g,fd_write:Wk},Pg=Eg(),sh=s.___wasm_call_ctors=function(){return(sh=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},ih=s._init=function(){return(ih=s._init=s.asm.init).apply(null,arguments)},Og=s._init_with_threads_count=function(){return(Og=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},oh=s._get_threads_count=function(){return(oh=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},Lg=s._register_tensor=function(){return(Lg=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Ae=s._dispose_data=function(){return(Ae=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Up=s._dispose=function(){return(Up=s._dispose=s.asm.dispose).apply(null,arguments)},zg=s._Abs=function(){return(zg=s._Abs=s.asm.Abs).apply(null,arguments)},lh=s._Acos=function(){return(lh=s._Acos=s.asm.Acos).apply(null,arguments)},wl=s._Acosh=function(){return(wl=s._Acosh=s.asm.Acosh).apply(null,arguments)},Wg=s._Add=function(){return(Wg=s._Add=s.asm.Add).apply(null,arguments)},Bg=s._AddN=function(){return(Bg=s._AddN=s.asm.AddN).apply(null,arguments)},Vg=s._All=function(){return(Vg=s._All=s.asm.All).apply(null,arguments)},Ug=s._Any=function(){return(Ug=s._Any=s.asm.Any).apply(null,arguments)},Gg=s._ArgMax=function(){return(Gg=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},uh=s._ArgMin=function(){return(uh=s._ArgMin=s.asm.ArgMin).apply(null,arguments)},ph=s._Asin=function(){return(ph=s._Asin=s.asm.Asin).apply(null,arguments)},Hg=s._Asinh=function(){return(Hg=s._Asinh=s.asm.Asinh).apply(null,arguments)},qg=s._Atan=function(){return(qg=s._Atan=s.asm.Atan).apply(null,arguments)},jg=s._Atan2=function(){return(jg=s._Atan2=s.asm.Atan2).apply(null,arguments)},Gp=s._Atanh=function(){return(Gp=s._Atanh=s.asm.Atanh).apply(null,arguments)},Kg=s._AvgPool=function(){return(Kg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Xg=s._AvgPool3D=function(){return(Xg=s._AvgPool3D=s.asm.AvgPool3D).apply(null,arguments)},Yg=s._AvgPool3DGrad=function(){return(Yg=s._AvgPool3DGrad=s.asm.AvgPool3DGrad).apply(null,arguments)},Us=s._BatchMatMul=function(){return(Us=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Zg=s._Bincount=function(){return(Zg=s._Bincount=s.asm.Bincount).apply(null,arguments)},Jg=s._Ceil=function(){return(Jg=s._Ceil=s.asm.Ceil).apply(null,arguments)},ch=s._ClipByValue=function(){return(ch=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Qg=s._Conv2D=function(){return(Qg=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Hp=s._Conv2DBackpropInput=function(){return(Hp=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},eb=s._Conv3D=function(){return(eb=s._Conv3D=s.asm.Conv3D).apply(null,arguments)},tb=s._Conv3DBackpropFilterV2=function(){return(tb=s._Conv3DBackpropFilterV2=s.asm.Conv3DBackpropFilterV2).apply(null,arguments)},nb=s._Conv3DBackpropInputV2=function(){return(nb=s._Conv3DBackpropInputV2=s.asm.Conv3DBackpropInputV2).apply(null,arguments)},Zr=s._Cos=function(){return(Zr=s._Cos=s.asm.Cos).apply(null,arguments)},qp=s._Cosh=function(){return(qp=s._Cosh=s.asm.Cosh).apply(null,arguments)},ab=s._CropAndResize=function(){return(ab=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},rb=s._Cumprod=function(){return(rb=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},sb=s._Cumsum=function(){return(sb=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},ib=s._DenseBincount=function(){return(ib=s._DenseBincount=s.asm.DenseBincount).apply(null,arguments)},dh=s._DepthToSpace=function(){return(dh=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},hh=s._DepthwiseConv2dNative=function(){return(hh=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},ob=s._Diag=function(){return(ob=s._Diag=s.asm.Diag).apply(null,arguments)},lb=s._Dilation2D=function(){return(lb=s._Dilation2D=s.asm.Dilation2D).apply(null,arguments)},mh=s._Dilation2DBackpropFilter=function(){return(mh=s._Dilation2DBackpropFilter=s.asm.Dilation2DBackpropFilter).apply(null,arguments)},fh=s._Dilation2DBackpropInput=function(){return(fh=s._Dilation2DBackpropInput=s.asm.Dilation2DBackpropInput).apply(null,arguments)},ub=s._Elu=function(){return(ub=s._Elu=s.asm.Elu).apply(null,arguments)},pb=s._EluGrad=function(){return(pb=s._EluGrad=s.asm.EluGrad).apply(null,arguments)},cb=s._Equal=function(){return(cb=s._Equal=s.asm.Equal).apply(null,arguments)},db=s._Exp=function(){return(db=s._Exp=s.asm.Exp).apply(null,arguments)},gh=s._Expm1=function(){return(gh=s._Expm1=s.asm.Expm1).apply(null,arguments)},Bk=s._FlipLeftRight=function(){return(Bk=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},hb=s._Floor=function(){return(hb=s._Floor=s.asm.Floor).apply(null,arguments)},mb=s._FloorDiv=function(){return(mb=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},fb=s._FusedBatchNorm=function(){return(fb=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},gb=s._FusedConv2D=function(){return(gb=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},bb=s._FusedDepthwiseConv2D=function(){return(bb=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},yb=s._Gather=function(){return(yb=s._Gather=s.asm.Gather).apply(null,arguments)},xb=s._GatherNd=function(){return(xb=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},vb=s._Greater=function(){return(vb=s._Greater=s.asm.Greater).apply(null,arguments)},wb=s._GreaterEqual=function(){return(wb=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},kb=s._IsFinite=function(){return(kb=s._IsFinite=s.asm.IsFinite).apply(null,arguments)},Ib=s._IsInf=function(){return(Ib=s._IsInf=s.asm.IsInf).apply(null,arguments)},Sb=s._IsNan=function(){return(Sb=s._IsNan=s.asm.IsNan).apply(null,arguments)},Nb=s._LRN=function(){return(Nb=s._LRN=s.asm.LRN).apply(null,arguments)},Tb=s._LRNGrad=function(){return(Tb=s._LRNGrad=s.asm.LRNGrad).apply(null,arguments)},Cb=s._LeakyRelu=function(){return(Cb=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},_b=s._Less=function(){return(_b=s._Less=s.asm.Less).apply(null,arguments)},Eb=s._LessEqual=function(){return(Eb=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Ab=s._LinSpace=function(){return(Ab=s._LinSpace=s.asm.LinSpace).apply(null,arguments)},Fb=s._Log=function(){return(Fb=s._Log=s.asm.Log).apply(null,arguments)},$b=s._Log1p=function(){return($b=s._Log1p=s.asm.Log1p).apply(null,arguments)},Db=s._LogicalAnd=function(){return(Db=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Rb=s._LogicalNot=function(){return(Rb=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},Mb=s._LogicalOr=function(){return(Mb=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Pb=s._LogicalXor=function(){return(Pb=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Ob=s._Max=function(){return(Ob=s._Max=s.asm.Max).apply(null,arguments)},Lb=s._MaxPool=function(){return(Lb=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},zb=s._MaxPool3D=function(){return(zb=s._MaxPool3D=s.asm.MaxPool3D).apply(null,arguments)},Wb=s._MaxPool3DGrad=function(){return(Wb=s._MaxPool3DGrad=s.asm.MaxPool3DGrad).apply(null,arguments)},Bb=s._Maximum=function(){return(Bb=s._Maximum=s.asm.Maximum).apply(null,arguments)},Vb=s._Mean=function(){return(Vb=s._Mean=s.asm.Mean).apply(null,arguments)},Ub=s._Min=function(){return(Ub=s._Min=s.asm.Min).apply(null,arguments)},Gb=s._Minimum=function(){return(Gb=s._Minimum=s.asm.Minimum).apply(null,arguments)},Hb=s._MirrorPad=function(){return(Hb=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},qb=s._Multinomial=function(){return(qb=s._Multinomial=s.asm.Multinomial).apply(null,arguments)},jb=s._Multiply=function(){return(jb=s._Multiply=s.asm.Multiply).apply(null,arguments)},Kb=s._Neg=function(){return(Kb=s._Neg=s.asm.Neg).apply(null,arguments)},Xb=s._NonMaxSuppressionV3=function(){return(Xb=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},Yb=s._NonMaxSuppressionV4=function(){return(Yb=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Zb=s._NonMaxSuppressionV5=function(){return(Zb=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Jb=s._NotEqual=function(){return(Jb=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Qb=s._OneHot=function(){return(Qb=s._OneHot=s.asm.OneHot).apply(null,arguments)},ey=s._PadV2=function(){return(ey=s._PadV2=s.asm.PadV2).apply(null,arguments)},ty=s._Pow=function(){return(ty=s._Pow=s.asm.Pow).apply(null,arguments)},ny=s._Prelu=function(){return(ny=s._Prelu=s.asm.Prelu).apply(null,arguments)},ay=s._Prod=function(){return(ay=s._Prod=s.asm.Prod).apply(null,arguments)},ry=s._RealDiv=function(){return(ry=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},sy=s._Reciprocal=function(){return(sy=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},iy=s._Relu=function(){return(iy=s._Relu=s.asm.Relu).apply(null,arguments)},oy=s._Relu6=function(){return(oy=s._Relu6=s.asm.Relu6).apply(null,arguments)},ly=s._ResizeBilinear=function(){return(ly=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},uy=s._ResizeBilinearGrad=function(){return(uy=s._ResizeBilinearGrad=s.asm.ResizeBilinearGrad).apply(null,arguments)},py=s._ResizeNearestNeighbor=function(){return(py=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},cy=s._ResizeNearestNeighborGrad=function(){return(cy=s._ResizeNearestNeighborGrad=s.asm.ResizeNearestNeighborGrad).apply(null,arguments)},dy=s._Reverse=function(){return(dy=s._Reverse=s.asm.Reverse).apply(null,arguments)},hy=s._RotateWithOffset=function(){return(hy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},my=s._Round=function(){return(my=s._Round=s.asm.Round).apply(null,arguments)},fy=s._Rsqrt=function(){return(fy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},gy=s._ScatterNd=function(){return(gy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},by=s._SearchSorted=function(){return(by=s._SearchSorted=s.asm.SearchSorted).apply(null,arguments)},yy=s._SelectV2=function(){return(yy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},xy=s._Selu=function(){return(xy=s._Selu=s.asm.Selu).apply(null,arguments)},vy=s._Sigmoid=function(){return(vy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},wy=s._Sign=function(){return(wy=s._Sign=s.asm.Sign).apply(null,arguments)},ky=s._Sin=function(){return(ky=s._Sin=s.asm.Sin).apply(null,arguments)},Iy=s._Softmax=function(){return(Iy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Sy=s._Softplus=function(){return(Sy=s._Softplus=s.asm.Softplus).apply(null,arguments)},Ny=s._SparseFillEmptyRows=function(){return(Ny=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Ty=s._SparseReshape=function(){return(Ty=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Cy=s._SparseSegmentReduction=function(){return(Cy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},_y=s._SparseToDense=function(){return(_y=s._SparseToDense=s.asm.SparseToDense).apply(null,arguments)},Ey=s._Sqrt=function(){return(Ey=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Ay=s._Square=function(){return(Ay=s._Square=s.asm.Square).apply(null,arguments)},Fy=s._SquaredDifference=function(){return(Fy=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},$y=s._Step=function(){return($y=s._Step=s.asm.Step).apply(null,arguments)},Dy=s._StridedSlice=function(){return(Dy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Ry=s._Sub=function(){return(Ry=s._Sub=s.asm.Sub).apply(null,arguments)},My=s._Sum=function(){return(My=s._Sum=s.asm.Sum).apply(null,arguments)},Py=s._Tan=function(){return(Py=s._Tan=s.asm.Tan).apply(null,arguments)},Oy=s._Tanh=function(){return(Oy=s._Tanh=s.asm.Tanh).apply(null,arguments)},Ly=s._TensorScatterUpdate=function(){return(Ly=s._TensorScatterUpdate=s.asm.TensorScatterUpdate).apply(null,arguments)},zy=s._Tile=function(){return(zy=s._Tile=s.asm.Tile).apply(null,arguments)},Wy=s._TopK=function(){return(Wy=s._TopK=s.asm.TopK).apply(null,arguments)},By=s._Transform=function(){return(By=s._Transform=s.asm.Transform).apply(null,arguments)},Vy=s._Transpose=function(){return(Vy=s._Transpose=s.asm.Transpose).apply(null,arguments)},Uy=s.__FusedMatMul=function(){return(Uy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Gy=s._malloc=function(){return(Gy=s._malloc=s.asm.malloc).apply(null,arguments)},Hy=s._free=function(){return(Hy=s._free=s.asm.free).apply(null,arguments)},qy=s.___errno_location=function(){return(qy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},bh=s.stackSave=function(){return(bh=s.stackSave=s.asm.stackSave).apply(null,arguments)},yh=s.stackRestore=function(){return(yh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},jp=s.stackAlloc=function(){return(jp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},jy=s.dynCall_iijjiiii=function(){return(jy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},Ky=s.dynCall_jiji=function(){return(Ky=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Mg;var kl;Kn=function Y(){kl||xh(),kl||(Kn=Y)};function xh(Y){if(Y=Y||p,lt>0||(Ot(),lt>0))return;function oe(){kl||(kl=!0,s.calledRun=!0,!U&&(oa(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),pn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),oe()},1)):oe()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();xh();var Il;l&&(Il={uncaughtException:process.listeners("uncaughtException").filter(function(Y){return!l.uncaughtException.indexOf(Y)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(Y){return!l.unhandledRejection.indexOf(Y)>-1})});var Sl;if(typeof r!="undefined")Sl=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Sl=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Il){var Xy=Sl._dispose;Sl._dispose=function(){Xy(),Il.uncaughtException.forEach(function(Y){process.removeListener("uncaughtException",Y)}),Il.unhandledRejection.forEach(function(Y){process.removeListener("unhandledRejection",Y)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Em=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$c=class{refCount(e){return Xn("refCount")}incRef(e){return Xn("incRef")}timerAvailable(){return!0}time(e){return Xn("time")}read(e){return Xn("read")}readSync(e){return Xn("readSync")}readToGPU(e,t){return Xn("readToGPU")}numDataIds(){return Xn("numDataIds")}disposeData(e,t){return Xn("disposeData")}write(e,t,n){return Xn("write")}move(e,t,n,a,r){return Xn("move")}createTensorFromGPUData(e,t,n){return Xn("createTensorFromGPUData")}memory(){return Xn("memory")}floatPrecision(){return Xn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return Xn("dispose")}};function Xn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function DS(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Jh(e,t,n)}function tR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,Jh(e,n,a),Jh(t,n,a)}function mc(e,t,n){return Math.max(e,Math.min(t,n))}function nR(e){return e%2===0?e:e+1}function Jh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function aR(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function rR(e,t){let n=Math.random();return t*n+(1-n)*e}function sR(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function A(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Tn(e,t,n=""){A(ws(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function wi(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function bt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function iR(e){return e.length===0}function ws(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ml(e){return e%1===0}function oR(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function lR(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function uR(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return DS(t),t}function pc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function pR(e,t=r=>0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function cR(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Ra(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>Ml(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function RS(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Ra(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function MS(e,t){return bv(e,t)}function bv(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function PS(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function OS(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function dR(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Qh(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function LS(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ns(e){return typeof e=="string"||e instanceof String}function zS(e){return typeof e=="boolean"}function WS(e){return typeof e=="number"}function Dc(e){return Array.isArray(e)?Dc(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":WS(e)?"float32":ns(e)?"string":zS(e)?"bool":"float32"}function us(e){return!!(e&&e.constructor&&e.call&&e.apply)}function em(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function nu(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function BS(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=BS(e+l*o,i,n,a)}return r}function Fl(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return BS(0,e,t,n)}function hR(e,t){if(Array.isArray(e))return e;if(t==="float32")return e instanceof Float32Array?e:new Float32Array(e);if(t==="int32")return e instanceof Int32Array?e:new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function yv(e,t){let n=Am(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Am(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function mR(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return Fl(e,new Float32Array(n));if(t==="int32")return Fl(e,new Int32Array(n));if(t==="bool")return Fl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ra(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function fR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function gR(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Fm(e){return e&&e.then&&typeof e.then=="function"}var Yk="tfjsflags",VS=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=bR,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Fm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Yk in e&&e[Yk].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=xR(n,a)})}};function bR(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(yR(t,a[0],a[1]),a.join("="))),t}function yR(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function xR(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function G(){return xv}var xv=null;function vR(e){xv=e}var tx;function US(){if(tx==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");tx=e}return tx}function wR(){let e=US();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function vv(e,t){let n=wR();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var au="Abs",ki="Acos",Ii="Acosh",ks="Add",Si="AddN",ru="All",su="Any",iu="ArgMax",ou="ArgMin",Ni="Asin",Ti="Asinh",Ci="Atan",_i="Atanh",Ei="Atan2",Ai="AvgPool",$m="AvgPoolGrad",lu="AvgPool3D",Rc="AvgPool3DGrad",Fi="BatchMatMul",uu="BatchToSpaceND",pu="Bincount",GS="BroadcastTo",Mc="BroadcastArgs",$i="Cast",Di="Ceil",Is="ClipByValue",Dm="Complex",Pc="ComplexAbs",cu="Concat",Ri="Conv2D",Rm="Conv2DBackpropFilter",Mi="Conv2DBackpropInput",Pi="Conv3D",du="Conv3DBackpropFilterV2",hu="Conv3DBackpropInputV2",Oi="Cos",Li="Cosh",mu="Cumprod",zi="Cumsum",fu="CropAndResize",Oc="DenseBincount",gu="DepthToSpace",Wi="DepthwiseConv2dNative",Mm="DepthwiseConv2dNativeBackpropFilter",Pm="DepthwiseConv2dNativeBackpropInput",Lc="Diag",Bi="Dilation2D",Pl="Dilation2DBackpropInput",Ol="Dilation2DBackpropFilter",Vi="RealDiv",Om="Einsum",Ui="Elu",bu="EluGrad",yu="Erf",xu="Equal",Gi="Exp",vu="ExpandDims",Hi="Expm1",Lm="FFT",zc="Fill",wu="FlipLeftRight",qi="Floor",ji="FloorDiv",Ki="FusedBatchNorm",ku="GatherV2",Iu="GatherNd",Su="Greater",Xi="GreaterEqual",Yi="Identity",zm="IFFT",Wm="Imag",Zi="IsFinite",Ji="IsInf",Qi="IsNan",eo="LeakyRelu",Nu="Less",Tu="LessEqual",Cu="LinSpace",to="Log",no="Log1p",_u="LogicalAnd",Eu="LogicalNot",Au="LogicalOr",HS="LogicalXor",qS="LogSoftmax",kR="LowerBound",ao="LRN",Fu="LRNGrad",IR="MatrixBandPart",ro="Max",so="Maximum",io="MaxPool",Bm="MaxPoolGrad",$u="MaxPool3D",Wc="MaxPool3DGrad",Vm="MaxPoolWithArgmax",oo="Mean",lo="Min",uo="Minimum",po="MirrorPad",Du="Mod",Ru="Multinomial",co="Multiply",Mu="Neg",Pu="NotEqual",Ou="NonMaxSuppressionV3",Lu="NonMaxSuppressionV4",zu="NonMaxSuppressionV5",Wu="OnesLike",ho="OneHot",Bu="Pack",mo="PadV2",SR="Pool",fo="Pow",go="Prelu",bo="Prod",Um="RaggedGather",Gm="RaggedRange",Hm="RaggedTensorToTensor",Bc="Range",qm="Real",yo="Reciprocal",xo="Relu",Vu="Reshape",vo="ResizeNearestNeighbor",Uu="ResizeNearestNeighborGrad",wo="ResizeBilinear",Gu="ResizeBilinearGrad",ko="Relu6",Io="Reverse",So="Round",No="Rsqrt",Hu="ScatterNd",qu="TensorScatterUpdate",ju="SearchSorted",Ku="Select",To="Selu",Xu="Slice",Co="Sin",Yu="Sinh",_o="Sign",Eo="Sigmoid",Ao="Softplus",Fo="Sqrt",$o="Sum",Zu="SpaceToBatchND",Ju="SplitV",Do="Softmax",Vc="SparseFillEmptyRows",Qu="SparseReshape",Uc="SparseSegmentMean",Gc="SparseSegmentSum",ep="SparseToDense",Ro="SquaredDifference",Hc="Square",qc="StaticRegexReplace",tp="StridedSlice",jc="StringNGrams",Kc="StringSplit",Xc="StringToHashBucketFast",Mo="Sub",Po="Tan",Oo="Tanh",Ss="Tile",np="TopK",ap="Transform",Fr="Transpose",Yc="Unique",rp="Unpack",Zc="UnsortedSegmentSum",NR="UpperBound",sp="ZerosLike",Ns="Step",tm="FromPixels",ip="RotateWithOffset",ri="_FusedMatMul",si="FusedConv2D",ii="FusedDepthwiseConv2D";function ts(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.warn(...e)}function TR(...e){G().getBool("IS_TEST")||G().getBool("PROD")||console.log(...e)}var Ll=vv("kernelRegistry",()=>new Map),fc=vv("gradRegistry",()=>new Map);function nm(e,t){let n=wv(e,t);return Ll.get(n)}function bx(e){return fc.get(e)}function am(e){let t=Ll.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Jc(e){let{kernelName:t,backendName:n}=e,a=wv(t,n);Ll.has(a)&&ts(`The kernel '${t}' for backend '${n}' is already registered`),Ll.set(a,e)}function jS(e){let{kernelName:t}=e;fc.has(t)&&G().getBool("DEBUG")&&ts(`Overriding the gradient for '${t}'`),fc.set(t,e)}function CR(e,t){let n=wv(e,t);if(!Ll.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ll.delete(n)}function _R(e){if(!fc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);fc.delete(e)}function ER(e,t){am(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Jc(a)})}function wv(e,t){return`${t}_${e}`}var v={};Ee(v,{arraysEqual:()=>ws,assert:()=>A,assertNonNegativeIntegerDimensions:()=>ra,assertNonNull:()=>wi,assertShapesMatch:()=>Tn,bytesFromStringArray:()=>LS,bytesPerElement:()=>Qh,checkConversionForErrors:()=>PS,clamp:()=>mc,computeStrides:()=>nu,convertBackendValuesAndArrayBuffer:()=>hR,createScalarValue:()=>MR,createShuffledIndices:()=>uR,decodeString:()=>rm,distSquared:()=>sR,encodeString:()=>ed,fetch:()=>OR,fingerPrint64:()=>RR,flatten:()=>ps,getArrayFromDType:()=>bv,getTypedArrayFromDType:()=>MS,hasEncodingLoss:()=>dR,hexToLong:()=>Qc,indexToLoc:()=>gR,inferDtype:()=>Dc,inferFromImplicitShape:()=>cR,isBoolean:()=>zS,isFunction:()=>us,isInt:()=>Ml,isNumber:()=>WS,isPromise:()=>Fm,isScalarShape:()=>iR,isString:()=>ns,isTypedArray:()=>cn,isValidDtype:()=>OS,locToIndex:()=>fR,makeOnesTypedArray:()=>yv,makeZerosNestedTypedArray:()=>mR,makeZerosTypedArray:()=>Am,nearestDivisor:()=>em,nearestLargerEven:()=>nR,now:()=>gc,parseAxisParam:()=>Ra,randUniform:()=>rR,repeatedTry:()=>pR,rightPad:()=>pc,shuffle:()=>DS,shuffleCombo:()=>tR,sizeFromShape:()=>bt,sizeToSquarishShape:()=>lR,squeezeShape:()=>RS,sum:()=>aR,swap:()=>Jh,tanh:()=>oR,toNestedArray:()=>Fl,toTypedArray:()=>jm});var Zk=vs(LD()),Ks=Zk.default||Zk;function Qc(e){return Ks.fromString(e,!0,16)}var KS=Qc("c3a5c85c97cb3127"),qs=Qc("b492b66fbe98f273"),kn=Qc("9ae16a3b2f90404f");function yx(e){return e.xor(e.shru(47))}function XS(e,t,n){let a=e.slice(t,t+n);return Ks.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return XS(e,t,8)}function Jk(e,t){return XS(e,t,4)}function Jt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function is(e,t,n=Qc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function AR(e,t,n,a,r,s){r=r.add(e),s=Jt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Jt(r,44)),[r.add(a),s.add(i)]}function Eh(e,t,n,a){return AR(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function FR(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=gt(e,0).add(kn),r=gt(e,t-8),s=Jt(r,37).mul(n).add(a),i=Jt(a,25).add(r).mul(n);return is(s,i,n)}if(t>=4){let n=kn.add(t*2),a=Jk(e,0);return is(a.shl(3).add(t),Jk(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return yx(kn.mul(s).xor(KS.mul(i))).mul(kn)}return kn}function $R(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(qs),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn);return is(Jt(a.add(r),43).add(Jt(s,30)).add(i),a.add(Jt(r.add(kn),18)).add(s),n)}function DR(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(kn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn),o=Jt(a.add(r),43).add(Jt(s,30)).add(i),l=is(o,a.add(Jt(r.add(kn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return is(Jt(u.add(p),43).add(Jt(d,30)).add(c),u.add(Jt(p.add(a),18)).add(d),n)}function RR(e,t=e.length){let n=Ks.fromNumber(81,!0);if(t<=32)return t<=16?FR(e,t):$R(e,t);if(t<=64)return DR(e,t);let a=n,r=n.mul(qs).add(113),s=yx(r.mul(kn).add(113)).mul(kn),i=[Ks.UZERO,Ks.UZERO],o=[Ks.UZERO,Ks.UZERO];a=a.mul(kn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Jt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(qs),r=Jt(r.add(i[1]).add(gt(e,l+48)),42).mul(qs),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Jt(s.add(o[0]),33).mul(qs),i=Eh(e,l,i[1].mul(qs),a.add(o[0])),o=Eh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=qs.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Jt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Jt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Jt(s.add(o[0]),33).mul(d),i=Eh(e,l,i[1].mul(d),a.add(o[0])),o=Eh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],is(is(i[0],o[0],d).add(yx(r).mul(KS)).add(s),is(i[1],o[1],d).add(a),d)}function MR(e,t){return t==="string"?ed(e):jm([e],t)}function PR(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function jm(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ps(e)),G().getBool("DEBUG")&&PS(e,t),PR(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function gc(){return G().platform.now()}function OR(e,t){return G().platform.fetch(e,t)}function ed(e,t="utf-8"){return t=t||"utf-8",G().platform.encode(e,t)}function rm(e,t="utf-8"){return t=t||"utf-8",G().platform.decode(e,t)}function cn(e){return G().platform.isTypedArray(e)}function ps(e,t=[],n=!1){if(t==null&&(t=[]),typeof e=="boolean"||typeof e=="number"||typeof e=="string"||Fm(e)||e==null||cn(e)&&n)t.push(e);else if(Array.isArray(e)||cn(e))for(let a=0;a<e.length;++a)ps(e[a],t,n);else{let a=-1;for(let r of Object.keys(e))/^([1-9]+[0-9]*|0)$/.test(r)&&(a=Math.max(a,Number(r)));for(let r=0;r<=a;r++)ps(e[r],t,n)}return t}var LR=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new WR)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=gc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:gc()-i})}if(G().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{zR(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function zR(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var WR=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?pc(`${a}ms`,9):a.error,o=pc(e,25),l=t.rank,u=t.size,p=pc(t.shape.toString(),14),d="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;d+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function BR(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],p=u.inputs;for(let d in p){let c=p[d],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d<u.outputs.length;d++)if(s[u.outputs[d].id]){for(let c in p)s[p[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let p={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(p[c]=h)}let d=Object.assign({},u);d.inputs=p,d.outputs=u.outputs,o.push(d)}}return o}function VR(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!ws(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var Qk=20,Xp=3,nx=7;function UR(e,t,n,a){let r=nu(t),s=GR(e,t,n,r),i=t.length,o=Uh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
`)),l.join(`
`)}function GR(e,t,n,a){let r=bt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?tc(e):e;if(o>1)for(let u=0;u<r/s;u++){let p=u*s;for(let d=0;d<s;d++)i[d]=Math.max(i[d],ec(l[p+d],0,n).length)}return i}function ec(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(nx))} + ${parseFloat(e[1].toFixed(nx))}j`:ns(e)?a=`'${e}'`:n==="bool"?a=YS(e):a=parseFloat(e.toFixed(nx)).toString(),pc(a,t)}function YS(e){return e===0?"false":"true"}function Uh(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=tc(e);return[ec(f[0],0,n)]}return n==="bool"?[YS(e[0])]:[e[0].toString()]}if(l===1){if(o>Qk){let f=Xp*i,g=Array.from(e.slice(0,f)),b=Array.from(e.slice((o-Xp)*i,o*i));return n==="complex64"&&(g=tc(g),b=tc(b)),["["+g.map((y,x)=>ec(y,r[x],n)).join(", ")+", ..., "+b.map((y,x)=>ec(y,r[o-Xp+x],n)).join(", ")+"]"]}return["["+(n==="complex64"?tc(e):Array.from(e)).map((f,g)=>ec(f,r[g],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>Qk){for(let f=0;f<Xp;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,!1))}c.push("...");for(let f=o-Xp;f<o;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*d,b=g+d;c.push(...Uh(e.slice(g,b),u,n,p,r,f===o-1))}let h=l===2?",":"";c[0]="["+(o>0?c[0]+h:"");for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function tc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Bt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=bt(e),n!=null){let a=n.length;A(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||bv(t,this.size),this.strides=nu(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Wa().makeTensor(this.values,this.shape,this.dtype)}},Wa=null,_l=null,HR=null;function qR(e){Wa=e}function jR(e){_l=e}function KR(e){HR=e}var Te=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=bt(e),this.strides=nu(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return _l.buffer(this.shape,this.dtype,e)}bufferSync(){return _l.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Fl(this.shape,e,this.dtype==="complex64")}arraySync(){return Fl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Wa().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>rm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Wa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Wa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>rm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Wa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Wa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return _l.print(this,e)}clone(){return this.throwIfDisposed(),_l.clone(this)}toString(e=!1){let t=this.dataSync();return UR(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),_l.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Wa().makeVariable(this,e,t,n)}};Object.defineProperty(Te,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return vv("Tensor",()=>Te)}Q();var cs=class extends Te{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ws(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Wa().disposeTensor(this),this.dataId=e.dataId,Wa().incRef(this,null)}dispose(){Wa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(cs,Symbol.hasInstance,{value:e=>e instanceof Te&&e.assign!=null&&e.assign instanceof Function});var Ua={};Ee(Ua,{assertTypesMatch:()=>QS,getTensorsInContainer:()=>kv,isTensorInList:()=>YR,makeTypesMatch:()=>Ft});var xx;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(xx||(xx={}));var vx;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(vx||(vx={}));var wx;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(wx||(wx={}));var kx;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(kx||(kx={}));var Ix;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ix||(Ix={}));var XR={float32:kx,int32:vx,bool:wx,complex64:Ix};function ga(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return XR[e][t]}function Km(e){return ga(e,"int32")}function ZS(e){return e!=null&&typeof e=="object"&&"texture"in e&&e.texture instanceof WebGLTexture}function JS(e){return typeof GPUBuffer!="undefined"&&e!=null&&typeof e=="object"&&"buffer"in e&&e.buffer instanceof GPUBuffer}function Ft(e,t){if(e.dtype===t.dtype)return[e,t];let n=ga(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function QS(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function YR(e,t){return t.some(n=>n.id===e.id)}function kv(e){let t=[];return eN(e,t,new Set),t}function eN(e,t,n){if(e==null)return;if(e instanceof Te){t.push(e);return}if(!ZR(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),eN(s,t,n))}}function ZR(e){return Array.isArray(e)||typeof e=="object"}function ax(e){return e.kernelName!=null}var eI=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},bc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new eI}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(ts(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new LR(this.backendInstance),!0}setupRegisteredKernels(){am(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){am(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof $c)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,ts(`Initialization of backend ${e} failed`),ts(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return ts(`Initialization of backend ${e} failed`),ts(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return bc.nextTensorId++}nextVariableId(){return bc.nextVariableId++}clone(e){let t=O.runKernel(Yi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel($i,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,nm(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ax(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ax(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=nm(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let x=y.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{a&&(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=ax(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=bx(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&ns(e[0])&&(r=e.map(o=>ed(o)));let s=a.write(r,t,n),i=new Te(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=LS(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Te(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new cs(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Qh(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof cs||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Qh(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=bx(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=Am(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=kv(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Te,()=>"The result y returned by f() must be a tensor.");let s=BR(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?JR(r.shape):n,VR(i,s,l=>this.tidy(l),QR);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(us(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Te),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Te,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(us(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];A(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(u.every(d=>d instanceof Te),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=gc(),n=await this.backend.time(e);return n.wallMs=gc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new eI;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};bc.nextTensorId=0;bc.nextVariableId=0;function JR(e){let t=yv(bt(e),"float32");return O.makeTensor(t,e,"float32")}function tN(){let e=US();if(e._tfengine==null){let t=new VS(e);e._tfengine=new bc(t)}return vR(e._tfengine.ENV),qR(()=>e._tfengine),e._tfengine}var O=tN();function QR(e,t){let n={a:e,b:t};return O.runKernel(ks,n)}var td={};Ee(td,{isBrowser:()=>nN,isMobile:()=>nM,mockIsMobile:()=>tM});function eM(){return typeof navigator!="undefined"&&navigator!=null}var Sx;function tM(e){Sx=e}function nM(e){if(Sx!==void 0)return Sx;if(e||eM()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function nN(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Bn=G();Bn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Bn.registerFlag("IS_BROWSER",()=>nN());Bn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Bn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Bn.registerFlag("IS_SAFARI",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Safari/.test(navigator.userAgent)&&/Apple/.test(navigator.vendor));Bn.registerFlag("PROD",()=>!1);Bn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Bn.getBool("DEBUG"));Bn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Bn.registerFlag("IS_TEST",()=>!1);Bn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>Bn.getBool("DEBUG"));Bn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Bn.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);Bn.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function pr(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(ZS(e)){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}else if(JS(e))return[e.buffer.size/(t==null?4:Qh(t))];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&G().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&aN(e,a,[]),a}function aN(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)aN(e[r],a,n.concat(r))}function tI(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,a="numeric"){if(e instanceof Te)return tI(a,e.dtype,t,n),e;let r=Dc(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),tI(a,r,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=pr(e,r);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?jm(e,r):ps(e,[],!0);return O.makeTensor(i,s,r)}function yc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>_(r,`${t}[${s}]`,n,a))}var Iv="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Iv;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return Fm(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function aM(e,t){let n=_(e,"real","complex"),a=_(t,"imag","complex");Tn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(Dm,r)}var Dr=L({complex_:aM});function Ts(e,t,n,a){if(a==null)a=Dc(e);else if(a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(JS(e)||ZS(e)){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from GPU data only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return O.backend.createTensorFromGPUData(e,t||n,a)}if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ra(t);let r=bt(t),s=bt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==bt(t.slice(i)):!0;A(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?jm(e,a):ps(e,[],!0),O.makeTensor(e,t,a)}function bn(e,t,n){let a=pr(e,n);return Ts(e,t,a,n)}var Nx={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},sm=4;async function rM(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let p=new Promise(async d=>{let c=await l.bytes(),h=c.reduce((g,b)=>g+b.length,0)+sm*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let b=c[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);m.set(y,f),f+=sm,m.set(b,f),f+=b.length}d(m)});a.push(p)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:sM(s),specs:n}}function rN(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=bt(l),p;if("quantization"in s){let d=s.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${s.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Nx[d.dtype],h=e.slice(r,r+u*c),m=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){p=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=g*d.scale+d.min}}else if(d.dtype==="float16")a===void 0&&(a=cM()),p=a(m);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(o==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);p=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];p[f]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let d=bt(s.shape);p=[];for(let c=0;c<d;c++){let h=new Uint32Array(e.slice(r,r+sm))[0];r+=sm;let m=new Uint8Array(e.slice(r,r+h));p.push(m),r+=h}}else{let d=Nx[o],c=e.slice(r,r+u*d);if(o==="float32")p=new Float32Array(c);else if(o==="int32")p=new Int32Array(c);else if(o==="bool")p=new Uint8Array(c);else if(o==="complex64"){p=new Float32Array(c);let h=new Float32Array(p.length/2),m=new Float32Array(p.length/2);for(let b=0;b<h.length;b++)h[b]=p[b*2],m[b]=p[b*2+1];let f=bn(h,l,"float32"),g=bn(m,l,"float32");n[i]=Dr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*d}o!=="complex64"&&(n[i]=bn(p,l,o))}return n}function sM(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Sv=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function nI(e){return Sv?Buffer.byteLength(e):new Blob([e]).size}function iM(e){if(Sv)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function oM(e){if(Sv){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Nv(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function aI(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function sN(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function iN(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function Tv(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),iN(e,n,a)}function nd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:nI(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:nI(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function oN(e){let t=[];for(let n of e)t.push(...n.weights);return t}function lM(){let e=n=>{let a=n<<13,r=0;for(;!(a&8388608);)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function uM(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function pM(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function cM(){let e=lM(),t=uM(),n=pM();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var $t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return $t.instance==null&&($t.instance=new $t),$t.instance}static registerSaveRouter(e){$t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){$t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return $t.getHandlers(e,"save")}static getLoadHandlers(e,t){return $t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?$t.getInstance().loadRouters:$t.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},dM=e=>$t.registerSaveRouter(e),hM=e=>$t.registerLoadRouter(e),mM=e=>$t.getSaveHandlers(e),fM=(e,t)=>$t.getLoadHandlers(e,t),Tx="tensorflowjs",Cx=1,Js="models_store",as="model_info_store";function lN(){if(!G().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function _x(e){let t=e.result;t.createObjectStore(Js,{keyPath:"modelPath"}),t.createObjectStore(as,{keyPath:"modelPath"})}var oi=class{constructor(e){if(this.indexedDB=lN(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Tx,Cx);r.onupgradeneeded=()=>_x(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Js,"readonly"),o=i.objectStore(Js).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=nd(t),o=s.transaction(as,"readwrite"),l=o.objectStore(as),u;try{u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i})}catch(d){return a(d)}let p;u.onsuccess=()=>{p=s.transaction(Js,"readwrite");let d=p.objectStore(Js),c;try{c=d.put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i})}catch(h){return a(h)}c.onsuccess=()=>n({modelArtifactsInfo:i}),c.onerror=h=>{l=o.objectStore(as);let m=l.delete(this.modelPath);m.onsuccess=()=>(s.close(),a(c.error)),m.onerror=f=>(s.close(),a(c.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};oi.URL_SCHEME="indexeddb://";var uN=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?gM(e.slice(oi.URL_SCHEME.length)):null;$t.registerSaveRouter(uN);$t.registerLoadRouter(uN);function gM(e){return new oi(e)}function bM(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var yM=class{constructor(){this.indexedDB=lN()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Tx,Cx);n.onupgradeneeded=()=>_x(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(as,"readonly"),s=r.objectStore(as).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=bM(e),new Promise((t,n)=>{let a=this.indexedDB.open(Tx,Cx);a.onupgradeneeded=()=>_x(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(as,"readwrite"),i=s.objectStore(as),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Js,"readwrite");let d=l.objectStore(Js).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Ar="/",El="tensorflowjs_models",pN="info",xM="model_topology",vM="weight_specs",wM="weight_data",kM="model_metadata";function cN(e){return{info:[El,e,pN].join(Ar),topology:[El,e,xM].join(Ar),weightSpecs:[El,e,vM].join(Ar),weightData:[El,e,wM].join(Ar),modelMetadata:[El,e,kM].join(Ar)}}function dN(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function IM(e){let t=e.split(Ar);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ar)}function SM(e){return e.startsWith(li.URL_SCHEME)?e.slice(li.URL_SCHEME.length):e}var li=class{constructor(e){if(!G().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=cN(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=nd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,iM(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw dN(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=oM(s),t}};li.URL_SCHEME="localstorage://";var hN=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(li.URL_SCHEME)?NM(e.slice(li.URL_SCHEME.length)):null;$t.registerSaveRouter(hN);$t.registerLoadRouter(hN);function NM(e){return new li(e)}var TM=class{constructor(){A(G().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=El+Ar,n=Ar+pN;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=IM(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=SM(e);let t=cN(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return dN(t),n}},$l="://",Pn=class{constructor(){this.managers={}}static getInstance(){return Pn.instance==null&&(Pn.instance=new Pn),Pn.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith($l)&&(e=e.slice(0,e.indexOf($l))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function Gh(e){if(e.indexOf($l)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split($l)[0],path:e.split($l)[1]}}async function mN(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=$t.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=$t.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Gh(e).scheme,l=Gh(e).path,u=o===Gh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function CM(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+$l+r;t[s]=a[r]}}return t}async function _M(e){let t=Gh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function EM(e,t){return mN(e,t,!1)}async function AM(e,t){return mN(e,t,!0)}var FM=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!G().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}isTypedArray(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}};if(G().get("IS_BROWSER")){G().setPlatform("browser",new FM);try{Pn.registerManager(li.URL_SCHEME,new TM)}catch(e){}try{Pn.registerManager(oi.URL_SCHEME,new yM)}catch(e){}}var $M={importFetch:()=>zD()},rx,DM=class{constructor(){this.util=WD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return G().global.fetch!=null?G().global.fetch(e,t):(rx==null&&(rx=$M.importFetch()),rx(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}isTypedArray(e){return this.util.types.isFloat32Array(e)||this.util.types.isInt32Array(e)||this.util.types.isUint8Array(e)||this.util.types.isUint8ClampedArray(e)}};G().get("IS_NODE")&&!G().get("IS_BROWSER")&&G().setPlatform("node",new DM);function ze(e,t="float32",n){return t=t||"float32",ra(e),new Bt(e,t,n)}function RM(e,t){let n=_(e,"x","cast");if(!OS(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel($i,a,r)}var ie=L({cast_:RM});function MM(e){let t={x:_(e,"x","clone","string_or_numeric")};return O.runKernel(Yi,t)}var or=L({clone_:MM});function Cv(e,t=!1){console.log(e.toString(t))}tN();var PM={buffer:ze,cast:ie,clone:or,print:Cv};jR(PM);function OM(){G().set("PROD",!0)}function LM(){G().set("DEBUG",!0)}function zM(){G().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function _v(e){G().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}KR(_v);function WM(){O.disposeVariables()}function Ea(){return O}function im(){return O.memory()}function BM(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function _e(e){kv(e).forEach(t=>t.dispose())}function Ht(e){return O.keep(e)}function VM(e){return O.time(e)}function UM(e){return O.setBackend(e)}function GM(){return O.ready()}function HM(){return O.backendName}function qM(e){O.removeBackend(e)}function jM(e){return O.findBackend(e)}function KM(e){return O.findBackendFactory(e)}function Xm(e,t,n=1){return O.registerBackend(e,t,n)}function fN(){return O.backend}function XM(e,t){G().setPlatform(e,t)}function YM(e,t){let n=_(e,"a","add"),a=_(t,"b","add");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(ks,r)}var X=L({add_:YM});function ZM(e,t){let n=_(e,"a","floorDiv"),a=_(t,"b","floorDiv");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(ji,r)}var Ym=L({floorDiv_:ZM});function JM(e,t){let n=_(e,"a","div"),a=_(t,"b","div");if([n,a]=Ft(n,a),n.dtype==="int32"&&a.dtype==="int32")return Ym(n,a);let r={a:n,b:a},s={};return O.runKernel(Vi,r,s)}var he=L({div_:JM});function QM(e,t){let n=_(e,"a","mul"),a=_(t,"b","mul");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(co,r)}var z=L({mul_:QM});function eP(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(Pc,n)}else{let n={x:t};return O.runKernel(au,n)}}var zt=L({abs_:eP});function tP(e){let t={x:_(e,"x","acos")};return O.runKernel(ki,t)}var Ev=L({acos_:tP});function nP(e){let t={x:_(e,"x","acosh")};return O.runKernel(Ii,t)}var Av=L({acosh_:nP});function aP(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>_(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ws(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(Si,a)}var gN=L({addN_:aP});function rP(e,t=null,n=!1){let a={x:_(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(ru,a,r)}var Zm=L({all_:rP});function sP(e,t=null,n=!1){let a={x:_(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(su,a,r)}var xc=L({any_:sP});function iP(e,t=0){let n={x:_(e,"x","argMax")},a={axis:t};return O.runKernel(iu,n,a)}var ui=L({argMax_:iP});function oP(e,t=0){let n={x:_(e,"x","argMin")},a={axis:t};return O.runKernel(ou,n,a)}var Fv=L({argMin_:oP});function lP(e){let t={x:_(e,"x","asin")};return O.runKernel(Ni,t)}var $v=L({asin_:lP});function uP(e){let t={x:_(e,"x","asinh")};return O.runKernel(Ti,t)}var Dv=L({asinh_:uP});function pP(e){let t={x:_(e,"x","atan")};return O.runKernel(Ci,t)}var Rv=L({atan_:pP});function cP(e,t){let n=_(e,"a","atan2"),a=_(t,"b","atan2");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Ei,r)}var Mv=L({atan2_:cP});function dP(e){let t={x:_(e,"x","atanh")};return O.runKernel(_i,t)}var Pv=L({atanh_:dP});function hP(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=xN(r);return ad(e,o,n,s,a,null,null,l)}function bN(e,t,n,a,r,s,i="channelsLast"){let[o,l]=vc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ad(e,u,n,a,r,s,!1,i)}function mP(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=Ex(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return yN(e,p,n,a,r,!1,d,s)}function ad(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=vc(n),[b,y]=vc(a),x=Dl(c,b),w=Dl(h,y),{padInfo:I,outHeight:T,outWidth:C}=bP(r,u,p,f,g,x,w,s,o),E=i?m*d:m,F;return o==="channelsFirst"?F=[l,E,T,C]:o==="channelsLast"&&(F=[l,T,C,E]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:E,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:b,dilationWidth:y,inShape:e,outShape:F,filterShape:t}}function yN(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[b,y,x]=Ex(n),[w,I,T]=Ex(a),C=Dl(h,w),E=Dl(m,I),F=Dl(f,T),{padInfo:D,outDepth:$,outHeight:S,outWidth:M}=yP(r,u,p,d,b,y,x,C,E,F,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,$,S,M]:i==="channelsLast"&&(U=[l,$,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:$,outHeight:S,outWidth:M,outChannels:B,padInfo:D,strideDepth:b,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:F,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function fP(e,t,n,a,r){a==null&&(a=Ov(e,t,n));let s=e[0],i=e[1],o=wc((s-t+2*a)/n+1,r),l=wc((i-t+2*a)/n+1,r);return[o,l]}function gP(e,t,n,a,r,s){r==null&&(r=Ov(e,t[0],a[0]));let i=[0,0,0,n];for(let o=0;o<3;o++)e[o]+2*r>=t[o]&&(i[o]=wc((e[o]-t[o]+2*r)/a[o]+1,s));return i}function Ov(e,t,n,a=1){let r=Dl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function vc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Ex(e){return typeof e=="number"?[e,e,e]:e}function Dl(e,t){return t<=1?e:e+(e-1)*(t-1)}function bP(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=fP([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),b=h-g;u={top:m,bottom:f,left:g,right:b,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=wc((t-s+c+h)/a+1,o),d=wc((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function yP(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(e==="valid"&&(e=0),typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=gP([t,n,a,1],[o,l,u],1,[r,s,i],e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,b=(m-1)*i+u-a,y=Math.floor(f/2),x=f-y,w=Math.floor(g/2),I=g-w,T=Math.floor(b/2),C=b-T;d={top:w,bottom:I,left:T,right:C,front:y,back:x,type:"SAME"}}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function wc(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ds(e){let[t,n,a]=vc(e);return t===1&&n===1&&a===1}function hr(e,t){return ds(e)||ds(t)}function pi(e){return vc(e).every(t=>t>0)}function xN(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Cn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")A(Ml(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{A(Ml(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function xP(e,t){let n={x:_(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(Vu,n,a)}var W=L({reshape_:xP});function vP(e,t,n,a,r){let s=_(e,"x","avgPool","float32"),i=1;A(hr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Cn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(Ai,u,p);return d=ie(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ya=L({avgPool_:vP});function wP(e,t,n,a,r,s="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),A(typeof n=="number"&&n>0||Array.isArray(n)&&n[0]>0&&n[1]>0&&n[2]>0,()=>`Error in avgPool3d: Stride must be > 0, but got '${n}'`),Cn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(lu,u,p);return d=ie(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Lv=L({avgPool3d_:wP});function kP(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=yc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return or(n[0]);let a=n,r={axis:t};return O.runKernel(cu,a,r)}var Je=L({concat_:kP});function IP(e,t,n=!1,a=!1){let r=_(e,"a","matMul"),s=_(t,"b","matMul");[r,s]=Ft(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(Fi,i,o)}var $e=L({matMul_:IP});function SP(e){let t={x:_(e,"x","sigmoid","float32")};return O.runKernel(Eo,t)}var ma=L({sigmoid_:SP});function NP(e,t,n){let a=_(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(Xu,r,s)}var Ve=L({slice_:NP});function TP(e){let t={x:_(e,"x","tanh","float32")};return O.runKernel(Oo,t)}var ci=L({tanh_:TP});function CP(e,t,n,a,r,s){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),l=_(n,"lstmBias","basicLSTMCell"),u=_(a,"data","basicLSTMCell"),p=_(r,"c","basicLSTMCell"),d=_(s,"h","basicLSTMCell"),c=Je([u,d],1),h=$e(c,o),m=X(h,l),f=m.shape[0],g=m.shape[1]/4,b=[f,g],y=Ve(m,[0,0],b),x=Ve(m,[0,g],b),w=Ve(m,[0,g*2],b),I=Ve(m,[0,g*3],b),T=X(z(ma(y),ci(x)),z(p,ma(X(i,w)))),C=z(ci(T),ma(I));return[T,C]}var vN=L({basicLSTMCell_:CP});function _P(e,t,n){let a=_(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(uu,s,i)}var rd=L({batchToSpaceND_:_P});function EP(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function AP(e,t,n,a,r,s){s==null&&(s=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;a!=null&&(p=_(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:EP(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Ki,d,c);return W(h,i.shape)}var Cs=L({batchNorm_:AP});function FP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var zv=L({batchNorm2d_:FP});function $P(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var Wv=L({batchNorm3d_:$P});function DP(e,t,n,a,r,s){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),l=_(n,"variance","batchNorm"),u;r!=null&&(u=_(r,"scale","batchNorm"));let p;return a!=null&&(p=_(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),Cs(i,o,l,p,u,s)}var Bv=L({batchNorm4d_:DP});function RP(e,t,n){let a=_(e,"x","bincount"),r=_(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(pu,s,i)}var Vv=L({bincount_:RP});function MP(e,t){let n=_(e,"s0","broadcastArgs","int32"),a=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Mc,r)}var wN=L({broadcastArgs_:MP});function PP(e,t){let n=_(e,"broadcastTo","x"),a=n.shape;if(ra(t),t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=W(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return or(n);let i={x:n},o={reps:s};return O.runKernel(Ss,i,o)}var ti=L({broadcastTo_:PP});function OP(e){let t={x:_(e,"x","ceil","float32")};return O.runKernel(Di,t)}var Uv=L({ceil_:OP});function xn(e,t,n){ra(e),n=n||Dc(t);let a={shape:e,value:t,dtype:n};return O.runKernel(zc,{},a)}function LP(e,t,n){let a=_(e,"x","clipByValue");if(A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return xn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(Is,r,s)}var nn=L({clipByValue_:LP});function zP(e){return Je(e,0)}var Gv=L({concat1d_:zP});function WP(e,t){return Je(e,t)}var Hv=L({concat2d_:WP});function BP(e,t){return Je(e,t)}var qv=L({concat3d_:BP});function VP(e,t){return Je(e,t)}var jv=L({concat4d_:VP});function UP(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","conv2d","float32"),l=_(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Cn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),A(hr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(pi(s),()=>"Error in conv2D: Dilated rates should be larger than 0."),A(pi(n),()=>"Error in conv2D: Strides should be larger than 0.");let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Ri,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rt=L({conv2d_:UP});function GP(e,t,n,a,r="NWC",s=1,i){let o=_(e,"x","conv1d"),l=_(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Cn("conv1d",a,i),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(hr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(pi(s),()=>"Error in conv1D: Dilated rates should be larger than 0."),A(pi(n),()=>"Error in conv1D: Stride should be larger than 0."),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Rt(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Jm=L({conv1d_:GP});function HP(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];A(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),A(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Cn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(Mi,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Kv=L({conv2DBackpropInput_:HP});function qP(e,t,n,a,r,s){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return Kv(n,i,o,a,r,"NHWC",s)}var Qm=L({conv2dTranspose_:qP});function jP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(hr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`),A(pi(s),()=>"Error in conv3D: Dilated rates should be larger than 0."),A(pi(n),()=>"Error in conv3D: Strides should be larger than 0.");let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(Pi,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var Xv=L({conv3d_:jP});function KP(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(hu,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var kN=L({conv3DBackpropInput_:KP});function XP(e,t,n,a,r){let s=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return kN(n,s,i,a,r)}var Yv=L({conv3dTranspose_:XP});function YP(e){let t={x:_(e,"x","cos","float32")};return O.runKernel(Oi,t)}var sd=L({cos_:YP});function ZP(e){let t={x:_(e,"x","cosh","float32")};return O.runKernel(Li,t)}var ef=L({cosh_:ZP});function JP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(mu,r,s)}var kc=L({cumprod_:JP});function QP(e,t=0,n=!1,a=!1){let r={x:_(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(zi,r,s)}var tf=L({cumsum_:QP});function eO(e,t,n,a=!1){let r=_(e,"x","denseBincount"),s=_(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(Oc,i,o)}var om=L({denseBincount_:eO});function tO(e,t,n="NHWC"){let a=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(gu,o,l)}var Zv=L({depthToSpace_:tO});function nO(e,t,n,a,r="NHWC",s=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),l=_(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Cn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Wi,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var _s=L({depthwiseConv2d_:nO});function aO(e){let t={x:_(e,"x","diag")};return O.runKernel(Lc,t)}var IN=L({diag_:aO});function rO(e,t,n,a,r=[1,1],s="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0),A(l.shape[3]===o.shape[2],()=>`Error in dilation2d: input and filter must have the same depth: ${l.shape[3]} vs ${o.shape[2]}`);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(Bi,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Jv=L({dilation2d_:rO}),op={};Ee(op,{assertAndGetBroadcastShape:()=>pt,getBroadcastDims:()=>SN,getReductionAxes:()=>Vt});function SN(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Vt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=Math.max(e.length,t.length),a=new Array(n);for(let r=0;r<n;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)a[n-r-1]=i;else if(i===1)a[n-r-1]=s;else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else a[n-r-1]=s}return a}function sO(e,t){let n=_(e,"a","equal","string_or_numeric"),a=_(t,"b","equal","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(xu,r)}var ea=L({equal_:sO});function iO(e,t,n){let a=_(t,"a","where"),r=_(n,"b","where"),s=_(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=ti(s,i),l=ti(a,i),u=ti(r,i),p={condition:o,t:l,e:u};return O.runKernel(Ku,p)}var tn=L({where_:iO});function oO(e){let t={x:_(e,"x","zerosLike")};return O.runKernel(sp,t)}var qe=L({zerosLike_:oO});function lO(e,t){let n=_(e,"a","div"),a=_(t,"b","div");[n,a]=Ft(n,a);let r=he(n,a),s=qe(r),i=ea(a,s);return tn(i,s,r)}var Qv=L({divNoNan_:lO});function uO(e,t){let n=_(e,"t1","dot"),a=_(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=$e(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=$e(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=$e(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return $e(n,i)}}var ew=L({dot_:uO});function pO(e,...t){let n=t.map((r,s)=>_(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(Om,n,a)}var NN=L({einsum_:pO});function cO(e){let t={x:_(e,"x","elu","float32")};return O.runKernel(Ui,t)}var lp=L({elu_:cO});function dO(e){let t=_(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ie(t,"float32"));let n={x:t};return O.runKernel(yu,n)}var tw=L({erf_:dO});function nw(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function TN(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function CN(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function di(e,t){let n=t.map(a=>1);return TN(e,n,t)}function hO(e,t,n){A(nw(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function _N(e,t){if(nw(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function aw(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function mO(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function fO(e,t=null,n=!1){let a={x:_(e,"x","max")},r={reductionIndices:t,keepDims:n};return O.runKernel(ro,a,r)}var fa=L({max_:fO});function gO(e,t=null,n=!1){let a={x:_(e,"x","min")},r={axis:t,keepDims:n};return O.runKernel(lo,a,r)}var zl=L({min_:gO});function bO(e,t){let n=_(e,"base","pow"),a=_(t,"exp","pow");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(fo,r)}var Rr=L({pow_:bO});function ve(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ts(e,[],[],t)}function yO(e){let t={x:_(e,"x","sqrt","float32")};return O.runKernel(Fo,t)}var mn=L({sqrt_:yO});function xO(e){let t=_(e,"x","square"),n={};return O.runKernel("Square",{x:t},n)}var ut=L({square_:xO});function vO(e,t=null,n=!1){let a=_(e,"x","sum");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel($o,r,s)}var fe=L({sum_:vO});function wO(e,t="euclidean",n=null,a=!1){e=_(e,"x","norm");let r=EN(e,t,n),s=r.shape;if(a){let i=Ra(n,e.shape);s=di(r.shape,i)}return W(r,s)}function EN(e,t,n=null){if(e.rank===0)return zt(e);if(e.rank!==1&&n===null)return EN(W(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return fe(zt(e),n);if(t===1/0)return fa(zt(e),n);if(t===-1/0)return zl(zt(e),n);if(t==="euclidean"||t===2)return mn(fe(Rr(zt(e),ve(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return fa(fe(zt(e),n[0]),n[1]-1);if(t===1/0)return fa(fe(zt(e),n[1]),n[0]);if(t===-1/0)return zl(fe(zt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return mn(fe(ut(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var up=L({norm_:wO});function kO(e,t=null,n=!1){return up(e,"euclidean",t,n)}var rw=L({euclideanNorm_:kO});function IO(e){let t={x:_(e,"x","exp")};return O.runKernel(Gi,t)}var yn=L({exp_:IO});function SO(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(vu,a,r)}var Qt=L({expandDims_:SO});function NO(e){let t={x:_(e,"x","expm1")};return O.runKernel(Hi,t)}var sw=L({expm1_:NO});function TO(e,t){let n=_(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(Ss,a,r)}var Ln=L({tile_:TO});function CO(e,t,n,a="float32"){t==null&&(t=e);let r=ze([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=W(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ln(Qt(i,0),[n[0],1,1]);if(n.length===2)return Ln(Qt(Qt(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ln(Qt(Qt(Qt(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var nf=L({eye_:CO});function _O(e){let t={x:_(e,"x","floor","float32")};return O.runKernel(qi,t)}var pp=L({floor_:_O});function EO(e,t,n=0,a=0){let r=_(e,"x","gather"),s=_(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return O.runKernel(ku,i,o)}var cp=L({gather_:EO});function AO(e,t){let n=_(e,"a","greater","string_or_numeric"),a=_(t,"b","greater","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Su,r)}var _n=L({greater_:AO});function FO(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),a=_(t,"b","greaterEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Xi,r)}var Mr=L({greaterEqual_:FO});function $O(e){let t={input:_(e,"input","imag")};return O.runKernel(Wm,t)}var id=L({imag_:$O});function DO(e){let t={x:_(e,"x","isFinite")};return O.runKernel(Zi,t)}var iw=L({isFinite_:DO});function RO(e){let t={x:_(e,"x","isInf")};return O.runKernel(Ji,t)}var ow=L({isInf_:RO});function MO(e){let t={x:_(e,"x","isNaN")};return O.runKernel(Qi,t)}var lw=L({isNaN_:MO});function PO(e,t=.2){let n={x:_(e,"x","leakyRelu")},a={alpha:t};return O.runKernel(eo,n,a)}var od=L({leakyRelu_:PO});function OO(e,t){let n=_(e,"a","less","string_or_numeric"),a=_(t,"b","less","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Nu,r)}var Wl=L({less_:OO});function LO(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),a=_(t,"b","lessEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Tu,r)}var Es=L({lessEqual_:LO});function AN(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return O.runKernel(Cu,{},a)}function zO(e,t=5,n=1,a=1,r=.5){let s=_(e,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(Ml(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(ao,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var uw=L({localResponseNormalization_:zO});function WO(e){let t={x:_(e,"x","log","float32")};return O.runKernel(to,t)}var ta=L({log_:WO});function BO(e){let t={x:_(e,"x","log1p")};return O.runKernel(no,t)}var ld=L({log1p_:BO});function VO(e){return A(us(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),af(i),i[0]})}}function UO(e){return A(us(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=yc(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Tn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),af(i),i})}}function GO(e){return A(us(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Te,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return af(a),{grad:a[0],value:r}}}function HO(e){return A(us(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Te),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Tn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),af(a.grads),a}}function FN(e,t){A(us(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(u=>u instanceof cs),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);A(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function cr(e){return O.customGrad(e)}function af(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function qO(e){let t={x:_(e,"x","neg")};return O.runKernel(Mu,t)}var yt=L({neg_:qO});function jO(e){let t={x:_(e,"x","softplus")};return O.runKernel(Ao,t)}var Lo=L({softplus_:jO});function KO(e){let t=_(e,"x","logSigmoid");return cr(n=>({value:yt(Lo(yt(n))),gradFunc:a=>z(a,ma(yt(n)))}))(t)}var pw=L({logSigmoid_:KO});function XO(e,t){let n=_(e,"a","sub"),a=_(t,"b","sub");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Mo,r)}var pe=L({sub_:XO});function YO(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return cr((a,r)=>{let s=fa(a,t,!0),i=pe(a,s),o=pe(ie(i,"float32"),ta(fe(yn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=yn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var rf=L({logSoftmax_:YO});function ZO(e,t=null,n=!1){let a=_(e,"x","logSumExp"),r=Ra(t,a.shape),s=fa(a,r,!0),i=pe(a,s),o=yn(i),l=fe(o,r),u=ta(l),p=X(W(s,u.shape),u);if(n){let d=di(p.shape,r);return W(p,d)}return p}var sf=L({logSumExp_:ZO});function JO(e,t){let n=_(e,"a","logicalAnd","bool"),a=_(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(_u,r)}var Da=L({logicalAnd_:JO});function QO(e){let t={x:_(e,"x","logicalNot","bool")};return O.runKernel(Eu,t)}var ud=L({logicalNot_:QO});function e3(e,t){let n=_(e,"a","logicalOr","bool"),a=_(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Au,r)}var of=L({logicalOr_:e3});function t3(e,t){let n=_(e,"a","logicalXor","bool"),a=_(t,"b","logicalXor","bool");return pt(n.shape,a.shape),Da(of(e,t),ud(Da(e,t)))}var cw=L({logicalXor_:t3}),Ah=2147483648;function n3(e,t,n="left"){let a=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(bt(l.shape)>=Ah)throw new Error(`values tensor size must less than ${Ah}`);if(o.shape[1]>=Ah)throw new Error(`trailing dim_size must less than ${Ah} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(ju,u,p)}var lf=L({searchSorted_:n3});function $N(e,t){return lf(e,t,"left")}function a3(e,t,n,a,r){let s=_(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(hr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Cn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(io,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Mt=L({maxPool_:a3});function r3(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Cn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel($u,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var dw=L({maxPool3d_:r3});function s3(e,t,n,a,r=!1){let s={x:_(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(Vm,s,i);return{result:o[0],indexes:o[1]}}var DN=L({maxPoolWithArgmax_:s3});function i3(e,t){let n=_(e,"a","maximum"),a=_(t,"b","maximum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(so,r)}var mr=L({maximum_:i3});function o3(e,t=null,n=!1){let a={x:_(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(oo,a,r)}var Et=L({mean_:o3});function Nt(e,t="float32"){if(ra(e),t==="complex64"){let a=Nt(e,"float32"),r=Nt(e,"float32");return Dr(a,r)}let n=Am(bt(e),t);return O.makeTensor(n,e,t)}function Qn(e,t="float32"){if(ra(e),t==="complex64"){let a=Qn(e,"float32"),r=Nt(e,"float32");return Dr(a,r)}let n=yv(bt(e),t);return O.makeTensor(n,e,t)}function RN(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=_(e,"x","meshgrid",e instanceof Te?e.dtype:"float32");if(t===void 0)return[a];let r=_(t,"y","meshgrid",t instanceof Te?t.dtype:"float32"),s=bt(a.shape),i=bt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[$e(Qn([i,1],a.dtype),a),$e(r,Qn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[$e(a,Qn([1,i],a.dtype)),$e(Qn([s,1],r.dtype),r)])}function l3(e,t){let n=_(e,"a","minimum"),a=_(t,"b","minimum");[n,a]=Ft(n,a),n.dtype==="bool"&&(n=ie(n,"int32"),a=ie(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(uo,r)}var hs=L({minimum_:l3});function u3(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=_(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)A(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(po,i,s)}var hw=L({mirrorPad_:u3});function p3(e,t){let n=_(e,"a","mod"),a=_(t,"b","mod");[n,a]=Ft(n,a);let r={a:n,b:a};return O.runKernel(Du,r)}var mw=L({mod_:p3});function c3(e,t=null,n=!1){e=_(e,"x","moments");let a=Ra(t,e.shape),r=Et(e,a,n),s=r.shape;n||(s=di(r.shape,a));let i=ut(pe(ie(e,"float32"),W(r,s))),o=Et(i,a,n);return{mean:r,variance:o}}var pd=L({moments_:c3});function d3(e,t,n,a){let r=_(t,"data","multiRNNCell"),s=yc(n,"c","multiRNNCell"),i=yc(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d<e.length;d++){let c=e[d](o,s[d],i[d]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],p=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),p.push(l[d+1]);return[u,p]}var MN=L({multiRNNCell_:d3});function h3(e,t,n,a=!1){let r=_(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(Ru,o,l);return i===1?W(u,[u.size]):u}var PN=L({multinomial_:h3});function m3(e,t){let n=_(e,"a","notEqual","string_or_numeric"),a=_(t,"b","notEqual","string_or_numeric");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Pu,r)}var hi=L({notEqual_:m3});function f3(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:_(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(ho,s,i)}var Bl=L({oneHot_:f3});function g3(e){let t={x:_(e,"x","onesLike")};return O.runKernel(Wu,t)}var na=L({onesLike_:g3});function b3(e,t){let n=_(e,"v1","outerProduct"),a=_(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return $e(r,s)}var ON=L({outerProduct_:b3});function y3(e,t,n=0){let a=_(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(mo,s,r)}var xa=L({pad_:y3});function x3(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),xa(e,[t],n)}var LN=L({pad1d_:x3});function v3(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var zN=L({pad2d_:v3});function w3(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var WN=L({pad3d_:w3});function k3(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),xa(e,t,n)}var BN=L({pad4d_:k3});function I3(e,t,n){let a=_(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(Zu,r,s)}var cd=L({spaceToBatchND_:I3});function S3(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=_(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(hr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=bN(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=T3([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=N3([p.inHeight,p.inWidth],d,c),g=h?a:"valid",b=h?l:cd(l,d,m),y=(n==="avg"?()=>ya(b,t,s,g,i):()=>Mt(b,t,s,g,i))(),x=h?y:rd(y,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function N3(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function T3(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var fw=L({pool_:S3});function C3(e,t){let n=_(e,"x","prelu"),a=_(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(go,r)}var dd=L({prelu_:C3});function _3(e,t=null,n=!1){let a=_(e,"x","prod");a.dtype==="bool"&&(a=ie(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(bo,r,s)}var gw=L({prod_:_3});function E3(e,t,n,a){let r=e.map((p,d)=>_(p,`tensors${d}`,"raggedGather","int32")),s=_(t,"paramsDenseValues","raggedGather"),i=_(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(Um,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var VN=L({raggedGather_:E3});function A3(e,t,n){let a=_(e,"starts","raggedRange"),r=_(t,"limits","raggedRange",a.dtype),s=_(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(Gm,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var UN=L({raggedRange_:A3});function F3(e,t,n,a,r){let s=_(e,"shape","raggedTensorToTensor","int32"),i=_(t,"values","raggedTensorToTensor"),o=_(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>_(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(Hm,u,p)}var GN=L({raggedTensorToTensor_:F3});function $3(e,t,n){ra(e);let a=bt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return O.makeTensor(r,e,n)}var HN=L({rand_:$3}),bw=vs(_m()),qN={};Ee(qN,{TEST_EPSILON_FLOAT16:()=>jN,createVideoElement:()=>W3,encodeStrings:()=>KN,expectArrayBuffersEqual:()=>z3,expectArraysClose:()=>R3,expectArraysEqual:()=>P3,expectNumbersClose:()=>O3,expectPromiseToFail:()=>M3,expectValuesInRange:()=>L3,play:()=>B3,testEpsilon:()=>yw});var D3=.001,jN=.1;function R3(e,t,n){return n==null&&(n=yw()),Ax(e,t,(a,r)=>xw(a,r,n))}function yw(){return O.backend.floatPrecision()===32?D3:jN}function Ax(e,t,n){let a=!0;if((cn(e)||cn(t))&&(a=!1),cn(e)&&cn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=pr(e),o=pr(t);if(!ws(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=cn(e)?e:ps(e),s=cn(t)?t:ps(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}typeof expect!="undefined"&&expect().nothing()}function M3(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function P3(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ns(e)||ns(e[0])||ns(t)||ns(t[0])?Ax(e,n,(a,r)=>a==r):Ax(e,t,(a,r)=>xw(a,r,0))}function O3(e,t,n){if(n==null&&(n=yw()),!xw(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function xw(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function L3(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function z3(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r<a.length;r++)if(n[r]!==a[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${a[r]} but got ${n[r]} instead`)}function KN(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?KN(n):e[t]=ed(n)}return e}function W3(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function B3(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var vw=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=bw.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},V3=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=bw.alea(r.toString()),this.randn=new vw(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},U3=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=bw.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function G3(e,t,n=1,a="float32",r){if(ra(e),n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new V3(t,n,a,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var XN=L({randomGamma_:G3});function H3(e,t=0,n=1,a,r){if(ra(e),a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new vw(t,n,a,!1,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var uf=L({randomNormal_:H3});function q3(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return uf(e,0,1,t,n)}var YN=L({randomStandardNormal_:q3});function j3(e,t=0,n=1,a="float32",r){ra(e);let s=ze(e,a),i=new U3(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var dp=L({randomUniform_:j3});function mi(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return O.runKernel(Bc,{},r)}function K3(e){let t={input:_(e,"input","real")};return O.runKernel(qm,t)}var Vl=L({real_:K3});function X3(e){let t={x:_(e,"x","reciprocal")};return O.runKernel(yo,t)}var ww=L({reciprocal_:X3});function Y3(e){let t={x:_(e,"x","relu")};return O.runKernel(xo,t)}var Ke=L({relu_:Y3});function Z3(e){let t={x:_(e,"x","relu6")};return O.runKernel(ko,t)}var pf=L({relu6_:Z3});function J3(e,t){let n={x:_(e,"x","reverse")},a={dims:t};return O.runKernel(Io,n,a)}var ba=L({reverse_:J3});function Q3(e){let t=_(e,"x","reverse");return A(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ba(t,0)}var ZN=L({reverse1d_:Q3});function eL(e,t){let n=_(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ba(n,t)}var JN=L({reverse2d_:eL});function tL(e,t){let n=_(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ba(n,t)}var QN=L({reverse3d_:tL});function nL(e,t){let n=_(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ba(n,t)}var eT=L({reverse4d_:nL});function aL(e){let t={x:_(e,"x","round")};return O.runKernel(So,t)}var cf=L({round_:aL});function rL(e){let t={x:_(e,"x","rsqrt","float32")};return O.runKernel(No,t)}var df=L({rsqrt_:rL});function sL(e){let t={x:_(e,"x","selu")};return O.runKernel(To,t)}var hf=L({selu_:sL});function iL(e,t,n,a,r,s=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),l=_(t,"depthwiseFilter","separableConv2d"),u=_(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];A(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=_s(p,l,a,r,i,s),f=Rt(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var As=L({separableConv2d_:iL});async function oL(e,t){let n=_(e,"x","setdiff1d"),a=_(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p<r.length;p++)i.has(r[p])||o++;let l=new Bt([o],n.dtype),u=new Bt([o],"int32");for(let p=0,d=0;p<r.length;p++)i.has(r[p])||(l.values[d]=r[p],u.values[d]=p,d++);return[l.toTensor(),u.toTensor()]}var tT=oL;function lL(e){let t={x:_(e,"x","sign")};return O.runKernel(_o,t)}var kw=L({sign_:lL});function uL(e){let t={x:_(e,"x","sin","float32")};return O.runKernel(Co,t)}var mf=L({sin_:uL});function pL(e){let t={x:_(e,"x","sinh")};return O.runKernel(Yu,t)}var ff=L({sinh_:pL});function cL(e,t,n){let a=_(e,"x","slice1d");return A(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Ve(a,[t],[n])}var hd=L({slice1d_:cL});function dL(e,t,n){let a=_(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Ve(a,t,n)}var gf=L({slice2d_:dL});function hL(e,t,n){let a=_(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Ve(a,t,n)}var zo=L({slice3d_:hL});function mL(e,t,n){let a=_(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Ve(a,t,n)}var Ul=L({slice4d_:mL});function fL(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(Do,a,r)}var Xa=L({softmax_:fL});function gL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(Lm,t)}var md=L({fft_:gL});function bL(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(zm,t)}var Gl=L({ifft_:bL});function yL(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=Gl(r)}else{let r=[n,2*(t-1)],s=W(Vl(e),[n,t]),i=W(id(e),[n,t]),o=ba(Ve(s,[0,1],[n,t-2]),1),l=z(ba(Ve(i,[0,1],[n,t-2]),1),ve(-1)),u=Je([s,o],1),p=Je([i,l],1),d=W(Dr(u,p),[r[0],r[1]]);a=Gl(d)}if(a=Vl(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var bf=L({irfft_:yL});function xL(e,t,n=0){let a={x:_(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(Ju,a,r)}var zn=L({split_:xL});function vL(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Ve(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Je([e,Nt(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(Dr(r,s),[a,n]),o=md(i),l=Math.floor(n/2)+1,u=Vl(o),p=id(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(Dr(d[0],c[0]),h)}var fd=L({rfft_:vL});function wL(e,t){let n=_(e,"a","squaredDifference"),a=_(t,"b","squaredDifference");[n,a]=Ft(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(Ro,r,s)}var yf=L({squaredDifference_:wL});function kL(e,t){let n=_(e,"x","squeeze","string_or_numeric");return W(n,RS(n.shape,t).newShape)}var Fs=L({squeeze_:kL});function IL(e,t=0){let n=yc(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(Bu,a,r)}var Dt=L({stack_:IL});function SL(e,t=0){let n={x:_(e,"x","step")},a={alpha:t};return O.runKernel(Ns,n,a)}var Wo=L({step_:SL});function NL(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(tp,u,p)}var Iw=L({stridedSlice_:NL});function TL(e){let t={x:_(e,"x","tan","float32")};return O.runKernel(Po,t)}var Sw=L({tan_:TL});function je(e,t){wi(e);let n=pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ts(e,null,n,t)}function $a(e,t,n){if(wi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=pr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ts(e,t,a,n)}function gd(e,t,n){if(wi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=pr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function Ma(e,t,n){if(wi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=pr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function nT(e,t,n){if(wi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=pr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ts(e,t,a,n)}function aT(e,t,n){if(wi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=pr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Ts(e,t,a,n)}var xf={};Ee(xf,{calculateShapes:()=>rT,validateInput:()=>vf,validateUpdateShape:()=>Nw});function Nw(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function vf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Nw(n,t,e)}function rT(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;d<s;++d)i*=n[d];let o=r<1?1:r,l=bt(t.shape)/o,u=[...nu(n.slice(0,r)),1],p=bt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:p}}function CL(e,t,n){let a=_(e,"tensor","tensorScatterupdate"),r=_(t,"indices","tensorScatterupdate","int32"),s=_(n,"updates","tensorScatterupdate");if(vf(s,r,a.shape),a.dtype!==s.dtype)throw new Error(`tensor and updates must have the same dtype, instead they are ${a.dtype} and ${s.dtype}.`);let i={tensor:a,indices:r,updates:s},o={};return O.runKernel(qu,i,o)}var sT=L({tensorScatterUpdate_:CL});function _L(e,t=1,n=!0){let a=_(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(np,s,i);return{values:o,indices:l}}var Tw=L({topk_:_L});function EL(e,t=0,n=1,a,r){if(ra(e),a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new vw(t,n,a,!0,r),i=ze(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var wf=L({truncatedNormal_:EL});function AL(e,t=0){let n=_(e,"x","unique","string_or_numeric");A(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Yc,a,r);return{values:s,indices:i}}var Cw=L({unique_:AL});function FL(e,t,n){let a=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");A(Ml(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(Zc,s,i)}var kf=L({unsortedSegmentSum_:FL});function $L(e,t=0){let n=_(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(rp,a,r)}var ct=L({unstack_:$L});function iT(e,t){return lf(e,t,"right")}function _w(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function oT(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=ze(e,"int32"),r=ze([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function DL(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),a=oT(t.shape,n);return e!==t&&t.dispose(),a}var Ew=DL;async function RL(e,t,n){let a=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;A(i>0,()=>"mask cannot be scalar"),Tn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),p=W(a,u),d=W(r,[-1]),c=await Ew(d),h=Fs(c,[1]),m=cp(p,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),p.dispose(),d.dispose(),c.dispose(),m}var lT=RL;function ML(e,t,n){let a=_(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),A(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i<a.rank,()=>`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=Vl(a),o=id(a);return i=O.runKernel(Fr,{x:i},s),o=O.runKernel(Fr,{x:o},s),n&&(o=yt(o)),Dr(i,o)}):O.runKernel(Fr,r,s)}var De=L({transpose_:ML});function PL(e,t,n,a,r=!0){let s=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");QS(s,i),A(ws(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ve(1),u=pe(l,o),p=z(pe(i,s),u);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let d=_(a,"step","movingAverage");p=he(p,pe(l,Rr(o,d)))}return X(s,p)}var uT=L({movingAverage_:PL});function OL(e,t,n){ra(n);let a=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");vf(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(Hu,s,i)}var pT=L({scatterND_:OL});function LL(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function zL(e,t,n,a=0){ra(n);let r=_(e,"sparseIndices","sparseToDense","int32"),s=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(a,"defaultValue","sparseToDense",s.dtype);LL(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(ep,o,l)}var cT=L({sparseToDense_:zL});function WL(e,t){let n=_(t,"indices","gatherND","int32"),a={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(Iu,a)}var dT=L({gatherND_:WL});function BL(e,t){if(t==null)return e.shape.slice();if(ws(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function VL(e,t,n,a){let r=_(e,"x","dropout");if(A(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Te?r.clone():r;let s=BL(r,n),i=1-t,o=he(pp(X(dp(s,0,1,"float32",a),i)),i);return z(r,o)}var Aw=L({dropout_:VL});function Fw(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function If(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return je(r,"float32")}async function UL(e,t,n=1){let a=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");A(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Tn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=MS("bool",l);for(let d=0;d<l;d++){let c=d*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),p[d]=0;for(let f=0;f<n;f++)if(m[f].index===o[d]){p[d]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),bn(p,r.shape,"bool")}var hT=UL,Hl={};Ee(Hl,{conv2d:()=>qL,depthwiseConv2d:()=>YL,matMul:()=>JL});function GL(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),A(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Cn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(Rm,d,c)}var $w=L({conv2DBackpropFilter_:GL});function Sf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Wo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Nf(e,t){let n=t,a=Vt(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function Tf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ke(e);if(t==="elu")return lp(e);if(t==="relu6")return pf(e);if(t==="prelu")return dd(e,n);if(t==="leakyrelu")return od(e,a);if(t==="sigmoid")return ma(e);throw new Error(`Unknown fused activation ${t}.`)}var Cf=(e,t)=>!(e>0)||t==="linear";function HL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",Cf(O.state.gradientDepth,l)===!1){A(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Rt(e,t,n,a,r,s,i);return o!=null&&(T=X(T,o)),Tf(T,l,u,p)}let d=_(e,"x","conv2d","float32"),c=_(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Cn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];A(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),A(hr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=ad(h.shape,c.shape,n,s,a,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=Ft(b,d),r==="NHWC"?pt(g.outShape,b.shape):(A(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),A(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(u!=null){let T=u.shape;if(A(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)A(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{pt(T,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}y=_(u,"prelu weights","fused conv2d")}let x=(T,C)=>{A(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,F,D,$]=C,S=Sf(T,D,l);A(ds(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=Kv(F.shape,S,E,n,a),B=$w(F,S,E.shape,n,a),U=[M,B];if($!=null){let H=Nf($,S);U.push(H)}return U},w={x:h,filter:c,bias:b,preluActivationWeights:y},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((T,C,E)=>{let F=O.runKernel(si,w,I);return E([C,T,F]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:x}})(h,c):cr((T,C,E,F)=>{let D=O.runKernel(si,w,I);return F([C,T,D,E]),m&&(D=W(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:x}})(h,c,b)}var qL=L({fusedConv2d_:HL});function jL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(Mm,u,p)}var mT=L({depthwiseConv2dNativeBackpropFilter_:jL});function KL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(Pm,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var fT=L({depthwiseConv2dNativeBackpropInput_:KL});function XL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(Cf(O.state.gradientDepth,l)===!1){let I=_s(e,t,n,a,r,s,i);return o!=null&&(I=X(I,o)),Tf(I,l,u,p)}let d=_(e,"x","depthwiseConv2d","float32"),c=_(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),A(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),A(hr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Cn("fused depthwiseConv2d",a,i);let f=ad(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=Ft(g,d),pt(f.outShape,g.shape));let b;u!=null&&(b=_(u,"prelu weights","fused depthwiseConv2d"));let y=(I,T)=>{A(ds(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,E,F,D]=T,$=Sf(I,F,l),S=fT(E.shape,$,C,n,a,s,i),M=mT(E,$,C.shape,n,a,s,i);if(D!=null){let B=Nf(g,$);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:b},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?cr((I,T,C)=>{let E=O.runKernel(ii,x,w);return C([T,I,E]),m&&(E=W(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,c):cr((I,T,C,E)=>{let F=O.runKernel(ii,x,w);return E([T,I,F,C]),m&&(F=W(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,c,g)}var YL=L({fusedDepthwiseConv2d_:XL});function ZL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(Cf(O.state.gradientDepth,s)===!1){let D=$e(e,t,n,a);return r!=null&&(D=X(D,r)),Tf(D,s,i,o)}let l=_(e,"a","fused matMul"),u=_(t,"b","fused matMul");[l,u]=Ft(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=bt(m),b=bt(f);A(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let y=pt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[b,h,d]):W(u,[b,d,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=Ft(I,l),pt(y,I.shape));let T;i!=null&&(T=_(i,"prelu weights","fused matMul"));let C=(D,$)=>{let[S,M,B,U]=$,H=Sf(W(D,B.shape),B,s),j,K;if(!n&&!a?(j=$e(H,M,!1,!0),K=$e(S,H,!0,!1)):!n&&a?(j=$e(H,M,!1,!1),K=$e(H,S,!0,!1)):n&&!a?(j=$e(M,H,!1,!0),K=$e(S,H,!1,!1)):(j=$e(M,H,!0,!0),K=$e(H,S,!0,!0)),r!=null){let Z=Nf(U,H);return[j,K,Z]}else return[j,K]},E={a:x,b:w,bias:I,preluActivationWeights:T},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?cr((D,$,S)=>{let M=O.runKernel(ri,E,F);return S([D,$,M]),{value:W(M,y),gradFunc:C}})(x,w):cr((D,$,S,M)=>{let B=O.runKernel(ri,E,F);return M([D,$,B,S]),{value:W(B,y),gradFunc:C}})(x,w,I)}var JL=L({fusedMatMul_:ZL});function QL(e){return If(e,.54,.46)}var ez=L({hammingWindow_:QL});function tz(e){return If(e,.5,.5)}var gT=L({hannWindow_:tz});function nz(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ve(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=Je([Ve(e,s,t-o),xn([o],r)]);i.push(l),s+=n}return i.length===0?$a([],[0,t]):W(Je(i),[i.length,t])}var bT=L({frame_:nz});function az(e,t,n,a,r=gT){a==null&&(a=Fw(t));let s=bT(e,t,n),i=z(s,r(t));return fd(i,a)}var rz=L({stft_:az});function sz(e,t,n,a,r="bilinear",s=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),l=_(n,"boxInd","cropAndResize","int32"),u=o.shape[0];A(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(fu,p,d)}var iz=L({cropAndResize_:sz});function oz(e){let t=_(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(wu,n,{})}var lz=L({flipLeftRight_:oz});function uz(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var pz=L({grayscaleToRGB_:uz});function cz(e,t,n=0,a=.5){let r=_(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(ip,s,i)}var dz=L({rotateWithOffset_:cz});function hp(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function hz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=hp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(Ou,{boxes:s,scores:i},l)}var mz=L({nonMaxSuppression_:hz});function fz(e,t,n){let a=gz(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function gz(e,t,n){return yz(e,t,n||bz)}function bz(e,t){return e>t?1:e<t?-1:0}function yz(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function yT(e,t,n,a,r){return Dw(e,t,n,a,r,0)}function xT(e,t,n,a,r,s){return Dw(e,t,n,a,r,0,!1,s,!0)}function vT(e,t,n,a,r,s){return Dw(e,t,n,a,r,s,!0)}function Dw(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(rI);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:b,boxIndex:y,suppressBeginIndex:x}=g;if(b<r)break;let w=!1;for(let I=d.length-1;I>=x;--I){let T=xz(e,y,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*vz(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===b?(d.push(y),c.push(g.score)):g.score>r&&fz(u,g,rI))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function xz(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),b=Math.min(o,d),y=Math.min(l,c),x=Math.max(b-f,0)*Math.max(y-g,0);return x/(h+m-x)}function vz(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function rI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function wz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=hp(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=yT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),je(d,"int32")}var kz=wz;function Iz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=hp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(zu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var Sz=L({nonMaxSuppressionWithScore_:Iz});async function Nz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=hp(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=vT(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(c,"int32"),selectedScores:je(h)}}var Tz=Nz;function Cz(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),l=hp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(Lu,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var _z=L({nonMaxSuppressionPadded_:Cz});async function Ez(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),l=hp(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=xT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:je(m,"int32"),validOutputs:ve(f,"int32")}}var Az=Ez;function Fz(e,t,n=!1,a=!1){let r=_(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(wo,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wT=L({resizeBilinear_:Fz});function $z(e,t,n=!1,a=!1){let r=_(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(vo,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var kT=L({resizeNearestNeighbor_:$z});function Dz(e,t="binary",n=!1,a=.5){let r=_(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(je([a]),255),p,d,c,h;if(A(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),A(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),A(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),b=z(c,o);h=X(X(f,g),b)}else h=e;if(t==="otsu"){let f=Vv(ie(cf(h),"int32"),bn([]),256);u=Rz(f,l)}let m=n?Es(h,u):_n(h,u);return ie(z(m,255),"int32")}function Rz(e,t){let n=je([-1]),a=je([0]),r=je([0]),s,i,o,l,u,p;for(let d=0;d<e.size-1;d++){s=Ve(e,0,d+1),i=Ve(e,d+1),u=he(fe(s),t),p=he(fe(i),t);let c=fe(z(s,mi(0,s.size)));o=he(c,fe(s));let h=xn(i.shape,s.size),m=X(mi(0,i.size),h),f=z(i,m);l=he(fe(f),fe(i));let g=pe(o,l),b=pe(o,l),y=z(u,p);r=z(z(y,g),b);let x=_n(r,a);a=tn(x,r,a),n=tn(x,je([d]),n)}return n}var Mz=L({threshold_:Dz});function Pz(e,t,n="nearest",a="constant",r=0,s){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");A(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(ap,l,u)}var Oz=L({transform_:Pz});function Lz(e,t,n){let a=_(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2),o,l;typeof t=="number"?(A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(t<=s,()=>`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`),o=_(t<0?s:t,"numLower","bandPart")):(A(t.dtype==="int32",()=>"bandPart(): numLower's dtype must be an int32."),o=tn(Wl(t,0),s,hs(t,s))),typeof n=="number"?(A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`),A(n<=i,()=>`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`),l=_(n<0?i:n,"numUpper","bandPart")):(A(n.dtype==="int32",()=>"bandPart(): numUpper's dtype must be an int32."),l=tn(Wl(n,0),i,hs(n,i)));let u=W(mi(0,s,1,"int32"),[-1,1]),p=mi(0,i,1,"int32"),d=pe(u,p),c=Da(Es(d,o),Mr(d,yt(l))),h=Nt([s,i],a.dtype);return W(Dt(ct(W(a,[-1,s,i])).map(m=>tn(c,m,h))),r)}var zz=L({bandPart_:Lz});function Wz(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)A(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>Fs(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(O.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=z(fe(z(n[i],s)),n[i]);s=pe(s,o)}return he(s,up(s,"euclidean"))}));return t?Dt(n,0):n}var Bz=L({gramSchmidt_:Wz});function Vz(e,t=!1){if(A(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return sI(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ct(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=sI(l,t);r.push(u),s.push(p)});let i=W(Dt(r,0),e.shape),o=W(Dt(s,0),e.shape);return[i,o]}}function sI(e,t=!1){return O.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=nf(n),s=or(e),i=$a([[1]],[1,1]),o=or(i),l=n>=a?a:n;for(let u=0;u<l;++u){let p=s,d=o,c=r;[o,s,r]=O.tidy(()=>{let h=Ve(s,[u,u],[n-u,1]),m=up(h),f=Ve(s,[u,u],[1,1]),g=tn(_n(f,0),$a([[-1]]),$a([[1]])),b=pe(f,z(g,m)),y=he(h,b);y.shape[0]===1?o=or(i):o=Je([i,Ve(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=yt(he($e(g,b),m)),w=Ve(s,[u,0],[n-u,a]),I=z(x,o),T=De(o);if(u===0)s=pe(w,$e(I,$e(T,w)));else{let F=pe(w,$e(I,$e(T,w)));s=Je([Ve(s,[0,0],[u,a]),F],0)}let C=De(I),E=Ve(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(E,$e($e(E,o),C));else{let F=pe(E,$e($e(E,o),C));r=Je([Ve(r,[0,0],[n,u]),F],1)}return[o,s,r]}),_e([p,d,c])}return!t&&n>a&&(r=Ve(r,[0,0],[n,a]),s=Ve(s,[0,0],[a,a])),[r,s]})}var Uz=L({qr_:Vz}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function Gz(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let a=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===In.NONE)return s;if(n===In.SUM)return fe(s);if(n===In.MEAN){if(r==null)return Et(s);{let i=a.size/r.size,o=he(fe(s),fe(r));return i>1?he(o,ve(i)):o}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(fe(s),ve(a.size));{let i=z(r,Qn(a.shape)),o=ie(fe(hi(i,ve(0))),"float32");return he(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Pr=L({computeWeightedLoss_:Gz});function Hz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","absoluteDifference"),s=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),Tn(r.shape,s.shape,"Error in absoluteDifference: ");let o=zt(pe(r,s));return Pr(o,i,a)}var qz=L({absoluteDifference_:Hz});function jz(e,t,n,a,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;a!=null&&(o=_(a,"weights","cosineDistance")),Tn(s.shape,i.shape,"Error in cosineDistance: ");let l=ve(1),u=pe(l,fe(z(s,i),n,!0));return Pr(u,o,r)}var Kz=L({cosineDistance_:jz});function Xz(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","hingeLoss"),s=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),Tn(r.shape,s.shape,"Error in hingeLoss: ");let o=ve(1);r=pe(z(ve(2),r),o);let l=Ke(pe(o,z(r,s)));return Pr(l,i,a)}var Yz=L({hingeLoss_:Xz});function Zz(e,t,n,a=1,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),Tn(s.shape,i.shape,"Error in huberLoss: ");let l=ve(a),u=zt(pe(i,s)),p=hs(u,l),d=pe(u,p),c=X(z(ve(.5),ut(p)),z(l,d));return Pr(c,o,r)}var Jz=L({huberLoss_:Zz});function Qz(e,t,n,a=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),Tn(s.shape,i.shape,"Error in logLoss: ");let l=ve(1),u=ve(a),p=yt(z(s,ta(X(i,u)))),d=z(pe(l,s),ta(X(pe(l,i),u))),c=pe(p,d);return Pr(c,o,r)}var eW=L({logLoss_:Qz});function tW(e,t,n,a=In.SUM_BY_NONZERO_WEIGHTS){let r=_(e,"labels","meanSquaredError"),s=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),Tn(r.shape,s.shape,"Error in meanSquaredError: ");let o=yf(r,s);return Pr(o,i,a)}var nW=L({meanSquaredError_:tW});function aW(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),a=_(t,"logits","sigmoidCrossEntropyWithLogits");Tn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ke(a),s=z(a,n),i=ld(yn(yt(zt(a))));return X(pe(r,s),i)}function rW(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),Tn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(.5);s=X(z(s,pe(p,u)),z(d,u))}let l=aW(s,i);return Pr(l,o,r)}var sW=L({sigmoidCrossEntropy_:rW});function iW(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return cr((a,r,s)=>{let i=sf(r,[n],!0),o=pe(ie(r,"float32"),i);s([a,o]);let l=yt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=di(u.shape,[n]);return[z(W(u,h),pe(ie(d,"float32"),yn(c))),z(W(u,h),pe(yn(c),ie(d,"float32")))]}}})(e,t)}function oW(e,t,n,a=0,r=In.SUM_BY_NONZERO_WEIGHTS){let s=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),Tn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ve(a),p=ve(1),d=ve(s.shape[1]);s=X(z(s,pe(p,u)),he(u,d))}let l=iW(s,i);return Pr(l,o,r)}var lW=L({softmaxCrossEntropy_:oW});function uW(e,t,n,a){let r=_(e,"indices","sparseFillEmptyRows","int32"),s=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(Vc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var pW=L({sparseFillEmptyRows_:uW});function cW(e,t,n){let a=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),s=_(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(Qu,i);return{outputIndices:o[0],outputShape:o[1]}}var dW=L({sparseReshape_:cW});function hW(e,t,n){let a=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),s=_(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Uc,i)}var mW=L({sparseSegmentMean_:hW});function fW(e,t,n){let a=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),s=_(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(Gc,i)}var gW=L({sparseSegmentSum_:fW});function bW(e,t,n,a,r,s,i,o){let l=_(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=_(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(jc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var yW=L({stringNGrams_:bW});function xW(e,t,n=!0){let a=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(Kc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var vW=L({stringSplit_:xW});function wW(e,t){let n=_(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(Xc,r,a)}var kW=L({stringToHashBucketFast_:wW});function IW(e,t,n,a=!0){let r=_(e,"input","staticRegexReplace","string"),s={pattern:t,rewrite:n,replaceGlobal:a};return O.runKernel(qc,{x:r},s)}var SW=L({staticRegexReplace_:IW}),IT={fft:md,ifft:Gl,rfft:fd,irfft:bf},ST={hammingWindow:ez,hannWindow:gT,frame:bT,stft:rz},Fa={flipLeftRight:lz,grayscaleToRGB:pz,resizeNearestNeighbor:kT,resizeBilinear:wT,rotateWithOffset:dz,cropAndResize:iz,nonMaxSuppression:mz,nonMaxSuppressionAsync:kz,nonMaxSuppressionWithScore:Sz,nonMaxSuppressionWithScoreAsync:Tz,nonMaxSuppressionPadded:_z,nonMaxSuppressionPaddedAsync:Az,threshold:Mz,transform:Oz},Rw={bandPart:zz,gramSchmidt:Bz,qr:Uz},NT={absoluteDifference:qz,computeWeightedLoss:Pr,cosineDistance:Kz,hingeLoss:Yz,huberLoss:Jz,logLoss:eW,meanSquaredError:nW,sigmoidCrossEntropy:sW,softmaxCrossEntropy:lW},TT={sparseFillEmptyRows:pW,sparseReshape:dW,sparseSegmentMean:mW,sparseSegmentSum:gW},CT={stringNGrams:yW,stringSplit:vW,stringToHashBucketFast:kW,staticRegexReplace:SW},ne={};Ee(ne,{Serializable:()=>_T,SerializationMap:()=>Xs,registerClass:()=>ET});var _T=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Xs=class{constructor(){this.classNameMap={}}static getMap(){return Xs.instance==null&&(Xs.instance=new Xs),Xs.instance}static register(e){Xs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ET(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xs.register(e)}var Or=class extends _T{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return _e(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return FN(e,t)}dispose(){this.iterations_!=null&&_e(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ve(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Or,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Mw=class extends Or{static get className(){return"Adadelta"}constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=X(z(i,this.rho),z(ut(s),1-this.rho)),u=z(he(mn(X(o,this.epsilon)),mn(X(i,this.epsilon))),s),p=X(z(o,this.rho),z(ut(u),1-this.rho));i.assign(l),o.assign(p);let d=X(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(_e(this.accumulatedGrads.map(e=>e.variable)),_e(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}},Pw=class extends Or{static get className(){return"Adagrad"}constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>xn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=X(s,ut(r));s.assign(i);let o=X(z(he(r,mn(X(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&_e(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}},Ow=class extends Or{static get className(){return"Adam"}constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=ve(t).variable(),this.accBeta2=ve(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=X(z(p,this.beta2),z(ut(l),1-this.beta2)),h=he(d,n),m=he(c,a);u.assign(d),p.assign(c);let f=X(z(he(h,X(mn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&_e(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(Rr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Rr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}},Lw=class extends Or{static get className(){return"Adamax"}constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=ve(0).variable(),this.accBeta1=ve(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=he(-this.learningRate,X(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=X(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=zt(l),m=mr(c,h);u.assign(d),p.assign(m);let f=X(z(he(a,n),he(d,X(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(X(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&_e(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&_e(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}},_f=class extends Or{static get className(){return"SGD"}constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=X(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(ve(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}},zw=class extends _f{static get className(){return"Momentum"}constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ve(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=X(z(this.m,r),s);this.useNesterov?i=X(z(this.c,X(s,z(o,this.m))),a):i=X(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&_e(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}},Ww=class extends Or{static get className(){return"RMSProp"}constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=X(z(i,this.decay),z(ut(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=X(z(u,this.decay),z(s,1-this.decay)),d=he(z(s,this.learningRate),mn(pe(l,X(ut(p),this.epsilon)))),c=X(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=X(z(i,this.decay),z(ut(s),1-this.decay)),p=X(z(o,this.momentum),he(z(s,this.learningRate),mn(X(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&_e(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&_e(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&_e(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}},NW=[Mw,Pw,Ow,Lw,zw,Ww,_f];function TW(){for(let e of NW)ET(e)}var qt={};Ee(qt,{browserFiles:()=>DW,browserHTTPRequest:()=>LW,concatenateArrayBuffers:()=>Nv,copyModel:()=>EM,decodeWeights:()=>rN,encodeWeights:()=>rM,fromMemory:()=>WW,fromMemorySync:()=>RT,getLoadHandlers:()=>fM,getModelArtifactsForJSON:()=>Tv,getModelArtifactsForJSONSync:()=>iN,getModelArtifactsInfoForJSON:()=>nd,getSaveHandlers:()=>mM,getWeightSpecs:()=>oN,http:()=>Vw,isHTTPScheme:()=>Fx,listModels:()=>CM,loadWeights:()=>RW,moveModel:()=>AM,registerLoadRouter:()=>hM,registerSaveRouter:()=>dM,removeModel:()=>_M,weightsLoaderFactory:()=>FT,withSaveHandler:()=>BW,withSaveHandlerSync:()=>VW});var CW="model",_W=".json",EW=".weights.bin";function iI(e){return new Promise(t=>setTimeout(t)).then(e)}var ql=class{constructor(e){if(!G().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ql.URL_SCHEME)&&(e=e.slice(ql.URL_SCHEME.length)),(e==null||e.length===0)&&(e=CW),this.modelJsonFileName=e+_W,this.weightDataFileName=e+EW}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=sN(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await iI(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await iI(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:nd(e)}}}};ql.URL_SCHEME="downloads://";var AW=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Tv(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Nv(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>aI(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=aI(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},FW=e=>G().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ql.URL_SCHEME)?$W(e.slice(ql.URL_SCHEME.length)):null;$t.registerSaveRouter(FW);function $W(e="model"){return new ql(e)}function DW(e){return new AW(e)}function oI(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function AT(e,t){t==null&&(t={});let n=t.fetchFunc==null?G().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await oI(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await oI(i,t.onProgress,o,l)}async function RW(e,t="",n,a){return FT(r=>AT(r,{requestInit:a}))(e,t,n)}function FT(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=Nx[b]*bt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:y})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=y})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=p[c+x].byteLength;let g=new ArrayBuffer(f),b=new Uint8Array(g),y=0;for(let x=0;x<m;x++){let w=new Uint8Array(p[c+x]);b.set(w,y),y+=w.byteLength}s[h].forEach(x=>{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=rN(w,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var MW="application/octet-stream",PW="application/json",Bw=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=G().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=sN(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:PW}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:MW}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:nd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Tv(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=OW(t),r=this.weightPathPrefix||n,s=oN(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await AT(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Nv(l)]}};Bw.URL_SCHEME_REGEX=/^https?:\/\//;function OW(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Fx(e){return e.match(Bw.URL_SCHEME_REGEX)!=null}var $T=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Fx(a)):n=Fx(e),n)return Vw(e,t)}return null};$t.registerSaveRouter($T);$t.registerLoadRouter($T);function Vw(e,t){return new Bw(e,t)}function LW(e,t){return Vw(e,t)}var sx=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},DT=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},zW=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function WW(e,t,n,a){let r=arguments;return new zW(RT(...r))}function RT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new sx(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sx({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new sx({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function BW(e){return new DT(e)}function VW(e){return new DT(e)}var MT={};Ee(MT,{confusionMatrix:()=>GW});function UW(e,t,n){let a=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Bl(ie(a,"int32"),n),i=Bl(ie(r,"int32"),n),o=De(s),l=$e(o,i);return ie(l,"int32")}var GW=L({confusionMatrix_:UW}),Bo={};Ee(Bo,{fromPixels:()=>ZW,fromPixelsAsync:()=>XW,toPixels:()=>YW});var Gs;function PT(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(nm(tm,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(tm,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Gs==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Gs=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Gs=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Gs.canvas.width=l,Gs.canvas.height=u,Gs.drawImage(e,0,0,l,u),p=Gs.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)d[h*t+m]=p[h*4+m]}return gd(d,[u,l,t],"int32")}function HW(e){return e!=null&&e.data instanceof Uint8Array}function qW(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function jW(e){return e!=null&&e.width!==0&&e.height!==0}function KW(e){return qW()&&!(e instanceof ImageBitmap)&&jW(e)&&!HW(e)}async function XW(e,t=3){let n=null;if(G().getBool("WRAP_TO_IMAGEBITMAP")&&KW(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return PT(n,t)}async function YW(e,t){let n=_(e,"img","toPixels");if(!(e instanceof Te)){let u=n;n=ie(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let p=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var ZW=L({fromPixels_:PT}),Uw={};Ee(Uw,{prepareAndValidate:()=>OT});function OT(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(bt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;d<r.length-1;++d)i*=r[d];let o=e.shape,l=r.slice();l.pop();let u=1;for(let d=s;d<n;++d)u*=o[d],l.push(o[d]);let p=[...nu(e.shape).map(d=>d/u),1].slice(0,s);return[l,i,u,p]}var Kt={};Ee(Kt,{assertParamsValid:()=>QW,computeFlatOffset:()=>rB,computeOutShape:()=>tB,getNormalizedAxes:()=>nB,isSliceContinous:()=>aB,maskToAxes:()=>eB,parseSliceParams:()=>qT,sliceInfo:()=>sB,startForAxis:()=>GT,startIndicesWithElidedDims:()=>BT,stopForAxis:()=>HT,stopIndicesWithElidedDims:()=>VT,stridesForAxis:()=>UT,stridesWithElidedDims:()=>LT});var $x=-2,JW=-1;function QW(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)A(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function eB(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function tB(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function LT(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function zT(e,t,n){return n<=e?n:n-(t-1)}function WT(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function nB(e,t,n,a,r,s,i,o,l){let u=e.length,p=new Array(u),d=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;p=BT(i,h,m,a,e),d=VT(o,h,m,r,e),c=LT(s,h,m,e)}else for(let h=0;h<u;h++)p[h]=GT(i,a,s,e,h,l),d[h]=HT(o,r,s,e,h,l),c[h]=UT(s,h,l);return{begin:p,end:d,strides:c}}function BT(e,t,n,a,r){let s=[...r],i=WT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=zT(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function VT(e,t,n,a,r){let s=[...r],i=WT(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=zT(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=mc(0,s[o],r[o])}return s}function UT(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function GT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=mc(0,i,l-1),i}function HT(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=mc(0,i,l):i=mc(-1,i,l-1),i}function aB(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function rB(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function qT(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function sB(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&i&i-1)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let y=0;y<d.dims;y++)p&&1<<y&o&&d.numAddAxisAfterEllipsis++,1<<y&i&&(p=!0);p||(d.ellipsisMask|=1<<d.dims,d.dims++);let c={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};iB(d,c);let h=!0,m=!0,f=!0,g=[],b=[];for(let y=0;y<e.length;++y){if(c.strides[y]===0)throw Error(`strides[${y}] must be non-zero`);let x=!!(c.shrinkAxisMask&1<<y),w=e[y];if(w===-1){g.push(x?1:-1);continue}let I=[c.beginMask&1<<y,c.endMask&1<<y],T=[c.strides[y]>0?0:-1,c.strides[y]>0?w:w-1];if(x&&c.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[y]===1;let C=!!(c.beginMask&1<<y&&c.endMask&1<<y);if(c.beginValid&&c.endValid){if(x){let $=c.begin[y]<0?w+c.begin[y]:c.begin[y];if(c.begin[y]=$,c.end[y]=c.begin[y]+1,$<0||$>=w)throw Error(`slice index ${c.begin[y]} of dimension ${y} out of bounds.`)}else c.begin[y]=lI(c.begin[y],0,c.strides[y],w,I,T),c.end[y]=lI(c.end[y],1,c.strides[y],w,I,T);let D=c.strides[y]===1&&c.begin[y]===0&&c.end[y]===w;h=h&&D,m=m&&(y===0&&c.strides[y]===1||D)}else h=h&&c.strides[y]===1&&C,m=m&&(y===0&&c.strides[y]===1||C);let E,F=!1;if(c.beginValid&&c.endValid?(E=c.end[y]-c.begin[y],F=!0):x?(E=1,F=!0):C&&w>=0&&(c.strides[y]<0?E=-w:E=w,F=!0),F){let D;E===0||E<0!=c.strides[y]<0?D=0:D=Math.trunc(E/c.strides[y])+(E%c.strides[y]!==0?1:0),g.push(D)}else g.push(-1)}for(let y=0;y<c.finalShapeGatherIndices.length;++y){let x=c.finalShapeGatherIndices[y];x>=0?b.push(g[x]):x===$x&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>c.finalShapeGatherIndices[x]!==$x),finalShape:b,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function iB(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a<e.dims;a++)if(1<<a&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-a)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=a}else if(1<<a&e.newAxisMask)t.finalShapeGatherIndices.push($x),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[a]),e.end!=null&&(t.end[n]=e.end[a]),t.strides[n]=e.strides[a],e.beginMask&1<<a&&(t.beginMask|=1<<n),e.endMask&1<<a&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<a?(t.finalShapeGatherIndices.push(JW),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(a)),t.inputShapeGatherIndicesSparse[n]=a,n++}}function lI(e,t,n,a,r,s){if(r[t])return n>0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return i<s[0]?s[0]:i>s[1]?s[1]:i}}var oB="4.3.0",jT=class{static sgd(e){return new _f(e)}static momentum(e,t,n=!1){return new zw(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Ww(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Ow(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Mw(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Lw(e,t,n,a,r)}static adagrad(e,t=.1){return new Pw(e,t)}},js=jT,lB=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Gw(){return new Promise(e=>lB(()=>e()))}var N={};Ee(N,{ERF_A1:()=>IB,ERF_A2:()=>SB,ERF_A3:()=>NB,ERF_A4:()=>TB,ERF_A5:()=>CB,ERF_P:()=>kB,PARALLELIZE_THRESHOLD:()=>Hw,RowPartitionType:()=>ar,SELU_SCALE:()=>XT,SELU_SCALEALPHA:()=>KT,applyActivation:()=>Tf,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>hO,assertParamsConsistent:()=>uB,assignToTypedArray:()=>DB,axesAreInnerMostDims:()=>nw,calculateShapes:()=>rT,checkEinsumDimSizes:()=>zB,checkPadOnDimRoundingMode:()=>Cn,combineLocations:()=>TN,combineRaggedTensorToTensorShapes:()=>cB,complexWithEvenIndex:()=>AB,complexWithOddIndex:()=>FB,computeConv2DInfo:()=>ad,computeConv3DInfo:()=>yN,computeDefaultPad:()=>Ov,computeDilation2DInfo:()=>hP,computeOptimalWindowSize:()=>fB,computeOutAndReduceShapes:()=>CN,computeOutShape:()=>pB,computePool2DInfo:()=>bN,computePool3DInfo:()=>mP,convertConv2DDataFormat:()=>xN,decodeEinsumEquation:()=>OB,eitherStridesOrDilationsAreOne:()=>hr,expandShapeToKeepDim:()=>di,exponent:()=>MB,exponents:()=>RB,fromStringArrayToUint8:()=>i4,fromUint8ToStringArray:()=>s4,getAxesPermutation:()=>_N,getBroadcastDims:()=>SN,getComplexWithIndex:()=>$B,getEinsumComputePath:()=>WB,getEinsumPermutation:()=>LB,getFusedBiasGradient:()=>Nf,getFusedDyActivation:()=>Sf,getImageCenter:()=>gB,getInnerMostAxes:()=>mO,getPermuted:()=>yB,getRaggedRank:()=>hB,getReductionAxes:()=>Vt,getReshaped:()=>bB,getReshapedPermuted:()=>xB,getRowPartitionTypesHelper:()=>dB,getSliceBeginCoords:()=>vB,getSliceSize:()=>wB,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>GB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>HB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>qB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>XB,getSparseReshapeInputOutputMismatchErrorMessage:()=>ZB,getSparseReshapeInputOutputMultipleErrorMessage:()=>YB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>jB,getSparseReshapeNegativeOutputDimErrorMessage:()=>KB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>t4,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>JB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>QB,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>e4,getUndoAxesPermutation:()=>aw,isIdentityPermutation:()=>BB,log:()=>TR,mergeRealAndImagArrays:()=>_B,prepareAndValidate:()=>OT,prepareSplitSize:()=>UB,segment_util:()=>YT,shouldFuse:()=>Cf,slice_util:()=>Kt,splitRealAndImagArrays:()=>EB,stridesOrDilationsArePositive:()=>pi,tupleValuesAreOne:()=>ds,upcastType:()=>ga,validateDefaultValueShape:()=>mB,validateInput:()=>vf,validateUpdateShape:()=>Nw,warn:()=>ts});function uB(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)A(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function pB(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var ar;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(ar||(ar={}));function cB(e,t,n){let a=new Array;if(n==null&&t==null)return a;if(t==null)for(;a.length<e+n.length;)a.push(-1);else a=t.slice();if(n==null)return a;if(e+n.length!==a.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${a.length}`);for(let r=1;r<n.length;++r){let s=n[r],i=a[a.length-n.length+r],o=a[i];if(s>=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function dB(e){let t={FIRST_DIM_SIZE:ar.FIRST_DIM_SIZE,VALUE_ROWIDS:ar.VALUE_ROWIDS,ROW_LENGTHS:ar.ROW_LENGTHS,ROW_SPLITS:ar.ROW_SPLITS,ROW_LIMITS:ar.ROW_LIMITS,ROW_STARTS:ar.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function hB(e){return e.length===0?0:e[0]===ar.FIRST_DIM_SIZE?e.length-1:e.length}function mB(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r<Math.min(n,a-1);++r){let s=e[r],i=t[r+1];if(s>=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Hw=30;function fB(e){return e<=Hw?e:em(e,Math.floor(Math.sqrt(e)))}function gB(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function bB(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function yB(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function xB(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function vB(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function wB(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var KT=1.7580993408473768,XT=1.0507009873554805,kB=.3275911,IB=.254829592,SB=-.284496736,NB=1.421413741,TB=-1.453152027,CB=1.061405429;function _B(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function EB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function AB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function FB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function $B(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function DB(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function RB(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function MB(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var ix="->",PB=/->/g,uI=",",pI="...";function OB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(PB,"").length)/ix.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${ix}").`);let[a,r]=e.split(ix);A(a.indexOf(pI)===-1,()=>`The ellipsis notation ("${pI}") is not supported yet.`);let s=a.split(uI),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==uI&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,p=r.length,d=[];for(let c=p;c<u;++c)d.push(c);return{allDims:o,summedDims:d,idDims:l}}function LB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function zB(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:A(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function WB(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=VB(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function BB(e){return e.every((t,n)=>t===n)}function VB(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function UB(e,t,n=0){let a=[];if(typeof t=="number")A(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function GB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function HB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function qB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function jB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function KB(e,t){return`size ${e} must be non-negative, not ${t}`}function XB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function YB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function ZB(e,t){let n=bt(e),a=bt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function JB(){return"segment ids must be >= 0"}function QB(){return"segment ids are not increasing"}function e4(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function t4(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var YT={};Ee(YT,{collectGatherOpShapeInfo:()=>r4,computeOutShape:()=>a4,segOpComputeOptimalWindowSize:()=>n4});function n4(e,t){let n=!1,a;for(e<=Hw?(a=e,n=!0):a=em(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=em(e,a+1);return a}function a4(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function r4(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let d=0;d<a;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let i=e.shape[n],o=[],l=1,u=1,p=1;for(let d=0;d<a;++d)o.push(e.shape[d]),l*=e.shape[d];for(let d=a;d<n;d++)o.push(e.shape[d]),u*=e.shape[d];for(let d=a;d<r;d++)o.push(t.shape[d]);for(let d=n+1;d<s;d++)o.push(e.shape[d]),p*=e.shape[d];return{batchSize:l,sliceSize:p,outerSize:u,dimSize:i,outputShape:o}}function s4(e){try{return e.map(t=>rm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function i4(e){return e.map(t=>ed(t))}var fr={};Ee(fr,{nonMaxSuppressionV3Impl:()=>yT,nonMaxSuppressionV4Impl:()=>xT,nonMaxSuppressionV5Impl:()=>vT,whereImpl:()=>oT});TW();var ZT={kernelName:au,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Wo(ie(n,"float32"),-1))}}},o4={kernelName:ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(ie(n,"float32")),r=mn(pe(ve(1),a));return yt(he(e,r))}}}},l4={kernelName:Ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=mn(pe(ut(ie(n,"float32")),1));return he(e,a)}}}},u4={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Vt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Vt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},p4={kernelName:Si,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},c4={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},d4={kernelName:ou,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},h4={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,mn(pe(ve(1),ut(ie(n,"float32")))))}}},m4={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=mn(X(ve(1),ut(ie(n,"float32"))));return he(e,a)}}}},f4={kernelName:Ei,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=X(ut(n),ut(a)),i=z(e,he(a,s)),o=Vt(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=X(ut(n),ut(a)),i=yt(z(e,he(n,s))),o=Vt(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},g4={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(ut(ie(n,"float32")),1))}}},b4={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,pe(ve(1),ut(ie(n,"float32"))))}}};function y4(e,t,n,a,r,s){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Cn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(Rc,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var x4=L({avgPool3dGrad_:y4}),v4={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>x4(e,a,r,s,i,o)}}};function w4(e,t,n,a,r){let s=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel($m,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var k4=L({avgPoolGrad_:w4}),I4={kernelName:Ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>k4(e,a,r,s,i)}}},S4={kernelName:Fi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>$e(e,r,!1,!0),b:()=>$e(a,e,!0,!1)}:!s&&i?{a:()=>$e(e,r,!1,!1),b:()=>$e(e,a,!0,!1)}:s&&!i?{a:()=>$e(r,e,!1,!0),b:()=>$e(a,e,!1,!1)}:{a:()=>$e(r,e,!0,!0),b:()=>$e(e,a,!0,!0)}}},N4={kernelName:uu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>cd(e,a,r)}}},T4={kernelName:GS,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>fe(e,o,!0)}}},C4={kernelName:$i,gradFunc:e=>({x:()=>e.clone()})},_4={kernelName:Di,gradFunc:e=>({x:()=>qe(e)})},E4={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>tn(Da(Mr(a,r),Es(a,s)),e,qe(e))}}},A4={kernelName:Pc,inputsToSave:["x"],gradFunc:ZT.gradFunc},F4={kernelName:cu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Ra(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},$4={kernelName:Ri,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(ds(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Kv(a.shape,e,r,i,o,l),filter:()=>$w(a,e,r.shape,i,o,l)}}},D4={kernelName:Mi,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Rt(e,r,s,i,o,1,l),filter:()=>$w(e,a,r.shape,s,i,o,l)}}};function R4(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(du,o,l)}var M4=L({conv3DBackpropFilter_:R4}),P4={kernelName:Pi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(ds(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>kN(i.shape,e,o,r,s),filter:()=>M4(i,e,o.shape,r,s)}}},O4={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(yt(mf(ie(n,"float32"))),e)}}},L4={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ff(ie(n,"float32")),e)}}},z4={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=_N([r],a.rank),l=tf(e,r,s,!i);return o!=null&&(l=De(l,o)),l}}}},W4={kernelName:Wi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(ds(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(hr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Cn("depthwiseConv2d",s,i),{x:()=>fT(l.shape,e,u,r,s,o,i),filter:()=>mT(l,e,u.shape,r,s,o,i)}}},B4={kernelName:Bi,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(Pl,s,n),filter:()=>O.runKernel(Ol,i,n)}}},V4={kernelName:Ui,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(bu,a)}}},U4={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(yn(yt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},G4={kernelName:Gi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},H4={kernelName:vu,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},q4={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,yn(n))}}},j4={kernelName:qi,gradFunc:e=>({x:()=>qe(e)})},K4={kernelName:ji,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Vt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ut(a);return yt(he(s,ie(o,"float32")))}}}},X4={kernelName:Ki,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ve(1):o,u=Vt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)p.push(r.shape[f]);p.push(1)}let d=pe(r,s),c=z(e,l),h=df(X(i,ve(a))),m=z(z(z(h,h),h),ve(-.5));return{x:()=>s.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,ve(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},Y4={kernelName:ku,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Ra(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=cI(0,p),m=cI(p+1,p+1+c),f=dI([u,[l],d]),g=W(e,f),b=W(r,[l]),y=dI([[p],h,m]),x=De(g,y),w=kf(x,b,a.shape[i]),I=aw(y);return w=De(w,I),w},indices:()=>r}}};function cI(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function dI(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var Z4={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},J4={kernelName:Yi,gradFunc:e=>({x:()=>ie(e,"float32")})},Q4={kernelName:Zi,gradFunc:e=>({x:()=>qe(e)})},eV={kernelName:Ji,gradFunc:e=>({x:()=>qe(e)})},tV={kernelName:Qi,gradFunc:e=>({x:()=>qe(e)})},nV={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=_n(a,0);return{x:()=>tn(s,e,z(e,r))}}},aV={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,X(n,1))}}},rV={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(n,"float32"))}}},sV={kernelName:qS,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=yn(a);return pe(e,z(fe(e,r,!0),s))}}}};function iV(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(Fu,o,l)}var oV=L({localResponseNormalizationBackprop_:iV}),lV={kernelName:ao,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>oV(a,r,e,s,i,o,l)}}};function JT(e,t,n,a){return t.rank<n.rank&&(t=W(t,di(t.shape,a))),e.rank<n.rank&&(e=W(e,di(e.shape,a))),{x:()=>z(e,ie(ea(n,t),e.dtype))}}var hI={kernelName:ro,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Ra(r,s.shape),l=JT(e,i,s,o);return{x:()=>l.x()}}},uV={kernelName:so,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Mr(n,a),"float32")),b:()=>z(e,ie(Wl(n,a),"float32"))}}};function pV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPool3dGrad"),l=_(t,"input","maxPool3dGrad"),u=_(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),A(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Cn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(Wc,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var cV=L({maxPool3dGrad_:pV}),dV={kernelName:$u,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>cV(e,a,r,s,i,o,l)}}};function hV(e,t,n,a,r,s,i){let o=_(e,"dy","maxPoolGrad"),l=_(t,"input","maxPoolGrad"),u=_(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Cn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(Bm,p,d)}var mV=L({maxPoolGrad_:hV}),fV={kernelName:io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>mV(e,a,r,s,i,o)}}},gV={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Ra(r,a.shape),i=CN(a.shape,s)[1],o=bt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return he(z(u,Qn(a.shape,"float32")),o)}}}},bV={kernelName:lo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Ra(r,s.shape),l=JT(e,i,s,o);return{x:()=>l.x()}}},yV={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,ie(Es(n,a),"float32")),b:()=>z(e,ie(_n(n,a),"float32"))}}},xV={kernelName:po,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ve(e,s,a.shape)}}},vV={kernelName:Du,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=Vt(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,yt(pp(he(n,a)))),i=Vt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},wV={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=z(e,ie(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Vt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},kV={kernelName:Mu,gradFunc:e=>({x:()=>yt(e)})},IV={kernelName:ho,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Nt(n.shape,"float32")}}},SV={kernelName:Wu,gradFunc:e=>({x:()=>qe(e)})},NV={kernelName:Bu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ct(e,a).map(r=>()=>r)}},mI={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Ve(e,s,a.shape)}}},TV={kernelName:fo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=ie(i,"float32"),u=z(e,z(l,Rr(s,pe(l,ve(1))))),p=Vt(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=_n(s,0),u=tn(l,ta(s),qe(s)),p=z(e,z(r,u)),d=Vt(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},CV={kernelName:go,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=_n(n,0);return{x:()=>tn(r,e,z(e,a)),alpha:()=>{let s=tn(r,qe(e),z(e,n)),i=Vt(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function _V(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=kc(e,n,!0,!1),i=kc(e,n,!0,!0),o=z(s,i);return z(r,o)}function EV(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=De(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=_V(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=De(p,d)}return p}var AV={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>EV(a,e,s)}}},FV={kernelName:Vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=he(e,ie(a,"float32")),i=Vt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,ie(n,"float32")),i=Vt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ut(a);return yt(he(s,ie(o,"float32")))}}}},$V={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,yt(ut(n)))}}},DV={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Es(n,6),Wo(n));return{x:()=>z(e,ie(a,"float32"))}}},RV={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ie(Wo(n),"float32"))}}},MV={kernelName:Vu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},PV={kernelName:wo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Gu,r,n)}}},OV={kernelName:vo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Uu,r,n)}}},LV={kernelName:Io,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Ra(a,e.shape);return{x:()=>ba(e,r)}}},zV={kernelName:So,gradFunc:e=>({x:()=>qe(e)})},WV={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>yt(he(e,z(Rr(n,1.5),2)))}}},BV={kernelName:Ku,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ie(qe(n),"float32"),t:()=>z(e,ie(n,e.dtype)),e:()=>z(e,ie(ud(n),e.dtype))}}},VV={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=_n(n,ve(0)),r=ve(KT),s=ve(XT),i=z(e,s),o=z(z(e,r),yn(ie(n,"float32")));return tn(a,i,o)}}}},UV={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(ve(1),n)))}}},GV={kernelName:_o,gradFunc:e=>({x:()=>qe(e)})},HV={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(sd(ie(n,"float32")),e)}}},qV={kernelName:Yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ef(ie(n,"float32")),e)}}},jV={kernelName:Xu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=qT(a,r,s),u=[];for(let p=0;p<e.rank;p++)u.push([o[p],i[p]-o[p]-l[p]]);return{x:()=>xa(e,u)}}},KV={kernelName:Do,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},XV={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ma(n))}}},fI={kernelName:Zu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>rd(e,a,r)}}},gI={kernelName:Ju,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Je(e,a)}}},YV={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,z(mn(ie(n,"float32")),2))}}},ZV={kernelName:Hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ie(n,"float32"),2))}}},JV={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ve(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},QV={kernelName:Ns,gradFunc:e=>({x:()=>qe(e)})},eU={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=Vt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Vt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(yt(s),a.shape)}}}},tU={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Ra(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Qn(a.shape,"float32"));return{x:()=>o}}},nU={kernelName:Po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ut(sd(n)))}}},aU={kernelName:Oo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(ve(1),ut(n)),e)}}},rU={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=X(s,Ve(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=X(s,Ve(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=X(s,Ve(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=X(s,Ve(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},sU={kernelName:Fr,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=aw(r);return{x:()=>De(e,s)}}},iU={kernelName:rp,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>Dt(e,r)}}},oU={kernelName:Zc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lU(e,n)}}};function lU(e,t){let n=mr(t,qe(t)),a=cp(e,n),r=Mr(t,ve(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=Qt(r,o+1);r=Da(r,Qn(a.shape,"bool"));let i=qe(a);return tn(r,a,i)}var uU={kernelName:sp,gradFunc:e=>({x:()=>qe(e)})},pU=[ZT,o4,l4,u4,p4,c4,d4,h4,m4,f4,g4,b4,v4,I4,S4,N4,T4,C4,_4,E4,A4,F4,D4,$4,P4,O4,L4,z4,W4,B4,FV,V4,U4,G4,H4,q4,K4,j4,X4,Y4,Z4,J4,Q4,eV,tV,nV,aV,rV,sV,lV,hI,hI,uV,dV,fV,gV,bV,yV,xV,vV,wV,kV,IV,SV,NV,mI,mI,TV,CV,AV,$V,DV,RV,MV,PV,OV,LV,zV,WV,BV,VV,UV,GV,HV,qV,jV,KV,XV,fI,fI,gI,gI,YV,JV,ZV,QV,eU,tU,nU,aU,rU,sU,iU,oU,uU];for(let e of pU)jS(e);Q().prototype.abs=function(){return this.throwIfDisposed(),zt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),Ev(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),Av(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),X(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Zm(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),xc(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),ui(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),Fv(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),W(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};Q().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),$v(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),Dv(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),Rv(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),Mv(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Pv(this)};Q().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ya(this,e,t,n,a)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),rd(this,e,t)};Q().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Cs(this,e,t,n,a,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ti(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),ie(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),Uv(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),nn(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Te&&(e=[e]),Je([this,...e],t)};Q().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Jm(this,e,t,n,a,r,s)};Q().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Qm(this,e,t,n,a,r)};Q().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Rt(this,e,t,n,a,r,s)};Q().prototype.cos=function(){return this.throwIfDisposed(),sd(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),ef(this)};Q().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),kc(this,e,t,n)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),tf(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Zv(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),_s(this,e,t,n,a,r,s)};Q().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),Jv(this,e,t,n,a,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),Qv(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),he(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),ew(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),lp(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),ea(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),tw(this)};Q().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),rw(this,e,t)};Q().prototype.exp=function(){return this.throwIfDisposed(),yn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),sw(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),md(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),pp(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),Ym(this,e)};Q().prototype.gather=function(e,t,n){return this.throwIfDisposed(),cp(this,e,t,n)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Mr(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),_n(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),Gl(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),bf(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),iw(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),ow(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),lw(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),od(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),Es(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Wl(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),uw(this,e,t,n,a)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),pw(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),rf(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),sf(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),ta(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),ld(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Da(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),ud(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),of(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),cw(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),$e(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Mt(this,e,t,n,a)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),fa(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),mr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),zl(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),hs(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),hw(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),mw(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),yt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),up(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),hi(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Bl(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),na(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),xa(this,e,t)};Q().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),fw(this,e,t,n,a,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),Rr(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),dd(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),gw(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),ww(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Ke(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),pf(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),wT(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),kT(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),ba(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),fd(this)};Q().prototype.round=function(){return this.throwIfDisposed(),cf(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),df(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),hf(this)};Q().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),As(this,e,t,n,a,r,s)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),ma(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),kw(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),mf(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),ff(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Ve(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Xa(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),Lo(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),cd(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),mn(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ut(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),yf(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),Fs(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Te?[this,e]:[this,...e];return Dt(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),Wo(this,e)};Q().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Iw(this,e,t,n,a,r,s,i,o)};Q().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),Sw(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),ci(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),ie(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),ie(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),ie(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),Tw(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),De(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),Cw(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),kf(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),ct(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),tn(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var Tr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Tr.prototype)}},Ba=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ba.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Le=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Le.prototype)}},QT=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,QT.prototype)}},e2=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function fi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function rr(e,t){if(!e)throw new QT(t)}function bI(e,t){let n=0;for(let a of e)a===t&&n++;return n}function On(e){return e.length===1?e[0]:e}function kt(e){return Array.isArray(e)?e:[e]}function Cr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ys(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Na={};function qw(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Dx(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Dx(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Dx(a))}}}function bd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Na)i=Na[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Na?[o,l]=Na.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Na))u[h]=Na[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},Na);for(let h of Object.keys(n))Na[h]=n[h];Dx(s.config);let c=l(o,s.config,n,r);return Na=Object.assign({},d),c}else{let u=Object.assign({},Na);for(let d of Object.keys(n))Na[d]=n[d];let p=new o(s.config);return Na=Object.assign({},u),p}}}function cU(e,t){return e<t?-1:e>t?1:0}function Fh(e,t){return-1*cU(e,t)}function os(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function dU(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Vo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function jw(e,t,n=0,a=1/0){return rr(n>=0),rr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function en(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>en(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${t2(e)}.`)}function t2(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>t2(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function hU(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a<t||(a=i,r=e(...s)),r}}function n2(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var mU=0;function a2(){return mU++}var $h={};function Ef(e=""){return e in $h||($h[e]=0),$h[e]+=1,e+$h[e].toString()}var fU=["channelsFirst","channelsLast"],gU=["nearest","bilinear"],bU=["valid","same","causal"],yU=["max","avg"],xU=["sum","mul","concat","ave"],Tl=new Map;function Pt(e){Vo(fU,"DataFormat",e)}function vU(e){Vo(gU,"InterpolationFormat",e)}function va(e){Vo(bU,"PaddingMode",e)}function r2(e){Vo(yU,"PoolMode",e)}var cc=[],yI="/";function ni(e,t){cc.push(e);try{let n=t();return cc.pop(),n}catch(n){throw cc.pop(),n}}function wU(){return cc.length===0?"":cc.join(yI)+yI}function s2(e){if(!o2(e))throw new Error("Not a valid tensor name: '"+e+"'");return wU()+e}function i2(e){if(!o2(e))throw new Error("Not a valid tensor name: '"+e+"'");Tl.has(e)||Tl.set(e,0);let t=Tl.get(e);if(Tl.set(e,Tl.get(e)+1),t>0){let n=`${e}_${t}`;return Tl.set(n,1),n}else return e}var kU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function o2(e){return!!e.match(kU)}function IU(e){return e===parseInt(e.toString(),10)}function ls(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function jl(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ms(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function qa(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}var ox;function jt(){return ox==null&&(ox=fN().epsilon()),ox}function ja(){return"channelsLast"}function lr(e,t){return ie(e,t)}function yd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),W(e,n)}function SU(e,t){return P(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=yd(e,1);return Rx(n,[1,t,1])})}function NU(e){let t=[ls(e.shape)];return W(e,t)}function TU(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ls(e.shape,1)];return W(e,t)}function ai(e,t,n){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:return gf(e,[t,0],[n,e.shape[1]]);case 3:return zo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ul(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ve(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ve(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function lx(e,t,n){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:return gf(e,[0,t],[e.shape[0],n]);case 3:return zo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ul(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Dh(e,t,n,a){return P(()=>{switch(e.rank){case 1:return hd(e,t,n);case 2:switch(a){case 1:return ai(e,t,n);case 2:return lx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return ai(e,t,n);case 2:return zo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return lx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return ai(e,t,n);case 2:return Ul(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ul(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return lx(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Kw(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Je(e,t)}function xI(e,t){switch(e.rank){case 1:return Gv([e,t]);case 2:return Hv([e,t],0);case 3:return qv([e,t],0);case 4:return jv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Rx(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function Af(e,t=0,n=1,a,r){return uf(e,t,n,a,r)}function ur(e,t,n,a){if(e.rank<2||t.rank<2)throw new Le(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Le(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return Hl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Mx(e.rank,a,ja()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(De(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(Hl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Mx(e.rank,a,ja()):null,activation:n}),d)}}function l2(e,t,n){return P(()=>(Array.isArray(t)?t=je(t,"int32"):t=ie(t,"int32"),cp(e,t,n)))}function xd(e){return z(e,e)}function Mx(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ya(e,t,n){return P(()=>(n==null&&(n=ja()),Pt(n),X(e,Mx(e.rank,t,n))))}function CU(e,t=1){if(t!==1)throw new Le(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return lp(e)}function _U(e){return P(()=>he(e,X(zt(e),1)))}function u2(e,t,n,a){return P(()=>Aw(e,t,n,a))}function EU(e){return P(()=>{let t=X(.5,z(.2,e));return nn(t,0,1)})}function vd(e,t,n=!1){return n?e():t()}var AU=["fanIn","fanOut","fanAvg"],FU=["normal","uniform","truncatedNormal"];function $U(e){Vo(AU,"FanMode",e)}function DU(e){Vo(FU,"Distribution",e)}var Pa=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Xw=class extends Pa{apply(e,t){return Nt(e,t)}};Xw.className="Zeros";ne.registerClass(Xw);var Ff=class extends Pa{apply(e,t){return Qn(e,t)}};Ff.className="Ones";ne.registerClass(Ff);var Yw=class extends Pa{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(ve(this.value),Qn(e,t)))}getConfig(){return{value:this.value}}};Yw.className="Constant";ne.registerClass(Yw);var Zw=class extends Pa{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return dp(e,this.minval,this.maxval,t,this.seed)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Zw.className="RandomUniform";ne.registerClass(Zw);var Jw=class extends Pa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`randomNormal does not support dType ${t}.`);return Af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Jw.className="RandomNormal";ne.registerClass(Jw);var Qw=class extends Pa{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`truncatedNormal does not support dType ${t}.`);return wf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Qw.className="TruncatedNormal";ne.registerClass(Qw);var e0=class extends Pa{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,nf(e[0]))})}getConfig(){return{gain:this.gain}}};e0.className="Identity";ne.registerClass(e0);function RU(e,t="channelsLast"){let n,a;if(Pt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ls(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ls(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ls(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Vn=class extends Pa{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,$U(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,DU(this.distribution),this.seed=e.seed}apply(e,t){let n=RU(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Le(`${this.getClassName()} does not support dType ${t}.`);return wf(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return dp(e,-i,i,t,this.seed)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Vn.className="VarianceScaling";ne.registerClass(Vn);var $f=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};$f.className="GlorotUniform";ne.registerClass($f);var Df=class extends Vn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Df.className="GlorotNormal";ne.registerClass(Df);var Rf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Rf.className="HeNormal";ne.registerClass(Rf);var Mf=class extends Vn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Mf.className="HeUniform";ne.registerClass(Mf);var Pf=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Pf.className="LeCunNormal";ne.registerClass(Pf);var Of=class extends Vn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Vn.className}};Of.className="LeCunUniform";ne.registerClass(Of);var t0=class extends Pa{constructor(e){super(),this.DEFAULT_GAIN=1,this.ELEMENTS_WARN_SLOW=2e3,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed}apply(e,t){return P(()=>{if(e.length<2)throw new Le("Shape must be at least 2D.");if(t!=="int32"&&t!=="float32"&&t!==void 0)throw new TypeError(`Unsupported data type ${t}.`);t=t;let n=v.sizeFromShape(e.slice(0,-1)),a=e[e.length-1],r=n*a;r>this.ELEMENTS_WARN_SLOW&&console.warn(`Orthogonal initializer is being called on a matrix with more than ${this.ELEMENTS_WARN_SLOW} (${r}) elements: Slowness may result.`);let s=[Math.max(a,n),Math.min(a,n)],i=Af(s,0,1,t,this.seed),o=Rw.qr(i,!1),l=o[0],u=o[1].flatten().stridedSlice([0],[Math.min(a,n)*Math.min(a,n)],[Math.min(a,n)+1]);return l=z(l,u.sign()),n<a&&(l=l.transpose()),z(ve(this.gain),l.reshape(e))})}getConfig(){return{gain:this.gain,seed:this.seed}}};t0.className="Orthogonal";ne.registerClass(t0);var vI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function wI(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return qw(e)}function Tt(e){if(typeof e=="string"){let t=e in vI?vI[e]:e;if(t==="GlorotNormal")return new Df;if(t==="GlorotUniform")return new $f;if(t==="HeNormal")return new Rf;if(t==="HeUniform")return new Mf;if(t==="LeCunNormal")return new Pf;if(t==="LeCunUniform")return new Of;{let n={};return n.className=t,n.config={},wI(n)}}else return e instanceof Pa?e:wI(e)}function Px(e){return Array.isArray(e)&&Array.isArray(e[0])}function lm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ce(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Qe(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function um(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var kI="Variable",p2=class{constructor(e,t="float32",n=kI,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=a2(),n=n==null?kI:n,this.originalName=s2(n),this.name=i2(this.originalName),this.trainable_=a,this.constraint=r,this.val=_w(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),MU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function MU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Ox(e){return e.map(t=>t.read())}function n0(e){e.forEach(t=>{t[0].write(t[1])})}var Wt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Va=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=a2(),s!=null&&(this.originalName=s2(s),this.name=i2(this.originalName)),this.rank=t.length}},PU=0,Lf=class{constructor(e,t){this.callArgs=t,this.id=PU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},OU=0,Ue=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=OU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Cr(n)+"_"+Ef(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ba(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Tr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Tr(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Tr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Tr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=kt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=kt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],p=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=kt(e),a=!0;for(let s of n)if(!(s instanceof Va)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Va){r=!1;break}if(a===r)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return ni(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of kt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=kt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=LU(e),i=this.computeOutputShape(s),o,l=zU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Va(l,u,this,kt(e),t,this.name,p)):o=new Va(l,i,this,kt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Le("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Tr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Tr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ba(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return um(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Ox(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Ox(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}n0(n)})}addWeight(e,t,n,a,r,s,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=o!=null?o():Tt("zeros"));let l=a.apply(t,n),u=new p2(l,n,e,s,i);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=kt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=kt(e);t=kt(t),n=kt(n),a=kt(a),r=lm(r),s=lm(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new Lf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function LU(e){e=kt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function zU(e){return"float32"}function c2(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=c2(i,o,l);for(let p of u)r.indexOf(p)===-1&&r.push(p)}return r}}}var mp=class extends Ue{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Ef("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Va(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new Lf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};mp.className="InputLayer";ne.registerClass(mp);function d2(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new mp({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function WU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ie(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Qs=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Qs)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=WU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Va){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&_e(this.id2Mask)}},pm=new e2,cm=new e2;function BU(e){pm!=null&&pm.setMaxEntries(e),cm!=null&&cm.setMaxEntries(e)}function nc(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=pm.get(p),c;if(d==null){let m=VU(i,t);d=m.sorted,c=m.recipientCounts,pm.put(p,d),cm.put(p,c)}c={},r||Object.assign(c,cm.get(p));let h=new Qs(t);for(let m=0;m<d.length;++m){if(a!=null){let F=im().numTensors;F>a.maxNumTensors&&(a.maxNumTensors=F),F<a.minNumTensors&&(a.minNumTensors=F)}let f=d[m],g=f.sourceLayer;if(g instanceof mp)continue;let b=[],y=[],x=[],w=!1;for(let F of f.inputs){let D=h.getValue(F),$=h.getMask(F);b.push(D),y.push($),$!=null&&(w=!0),r||(c[F.name]--,c[F.name]===0&&!t.hasKey(F)&&o.indexOf(F.name)===-1&&!D.isDisposed&&F.sourceLayer.stateful!==!0&&x.push(D))}w&&(n=n||{},n.mask=y[0]);let I=kt(g.apply(b,n)),T=null;g.supportsMasking&&(T=g.computeMask(b,y));let C=GU(f),E=Array.isArray(C)?C:[C];for(let F=0;F<E.length;++F){h.hasKey(E[F])||h.add(E[F],I[F],Array.isArray(T)?T[0]:T);let D=o.indexOf(E[F].name);D!==-1&&(l[D]=I[F])}r||_e(x)}return h.disposeMasks(),s?l:l[0]}function VU(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=II(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=II(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:UU(a)}}function UU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function II(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function GU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var HU=G();HU.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,BU);var h2={};Ee(h2,{maxNorm:()=>qU,minMaxNorm:()=>XU,nonNeg:()=>KU,unitNorm:()=>jU});function a0(e,t){return P(()=>mn(fe(z(e,e),t,!0)))}var wd=class extends ne.Serializable{getConfig(){return{}}},r0=class extends wd{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=a0(e,this.axis),n=nn(t,0,this.maxValue);return z(e,he(n,X(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};r0.className="MaxNorm";ne.registerClass(r0);var s0=class extends wd{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>he(e,X(jt(),a0(e,this.axis))))}getConfig(){return{axis:this.axis}}};s0.className="UnitNorm";ne.registerClass(s0);var i0=class extends wd{apply(e){return Ke(e)}};i0.className="NonNeg";ne.registerClass(i0);var o0=class extends wd{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=a0(e,this.axis),n=X(z(this.rate,nn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,he(n,X(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};o0.className="MinMaxNorm";ne.registerClass(o0);var SI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Xt(e){return qw(e)}function NI(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in SI?SI[e]:e,config:{}};return NI(t)}else return e instanceof wd?e:NI(e)}function qU(e){return new r0(e)}function jU(e){return new s0(e)}function KU(){return new i0}function XU(e){return new o0(e)}var m2={};Ee(m2,{constant:()=>JU,glorotNormal:()=>sG,glorotUniform:()=>rG,heNormal:()=>iG,heUniform:()=>oG,identity:()=>nG,leCunNormal:()=>lG,leCunUniform:()=>uG,ones:()=>ZU,orthogonal:()=>pG,randomNormal:()=>eG,randomUniform:()=>QU,truncatedNormal:()=>tG,varianceScaling:()=>aG,zeros:()=>YU});function YU(){return new Xw}function ZU(){return new Ff}function JU(e){return new Yw(e)}function QU(e){return new Zw(e)}function eG(e){return new Jw(e)}function tG(e){return new Qw(e)}function nG(e){return new e0(e)}function aG(e){return new Vn(e)}function rG(e){return new $f(e)}function sG(e){return new Df(e)}function iG(e){return new Rf(e)}function oG(e){return new Mf(e)}function lG(e){return new Pf(e)}function uG(e){return new Of(e)}function pG(e){return new t0(e)}var f2={};Ee(f2,{Layer:()=>Ue,RNN:()=>gr,RNNCell:()=>Td,activation:()=>OH,add:()=>qH,alphaDropout:()=>E6,average:()=>jH,averagePooling1d:()=>b1,averagePooling2d:()=>y1,averagePooling3d:()=>x1,avgPool1d:()=>n6,avgPool2d:()=>r6,avgPool3d:()=>i6,avgPooling1d:()=>a6,avgPooling2d:()=>s6,avgPooling3d:()=>o6,batchNormalization:()=>QH,bidirectional:()=>w6,categoryEncoding:()=>R6,centerCrop:()=>$6,concatenate:()=>KH,conv1d:()=>_H,conv2d:()=>EH,conv2dTranspose:()=>AH,conv3d:()=>FH,conv3dTranspose:()=>$H,convLstm2d:()=>b6,convLstm2dCell:()=>y6,cropping2D:()=>RH,dense:()=>LH,depthwiseConv2d:()=>PH,dot:()=>JH,dropout:()=>zH,elu:()=>kH,embedding:()=>HH,flatten:()=>BH,gaussianDropout:()=>_6,gaussianNoise:()=>C6,globalAveragePooling1d:()=>l6,globalAveragePooling2d:()=>u6,globalMaxPool1d:()=>I6,globalMaxPool2d:()=>S6,globalMaxPooling1d:()=>iC,globalMaxPooling2d:()=>oC,gru:()=>c6,gruCell:()=>d6,input:()=>D2,inputLayer:()=>wH,layerNormalization:()=>e6,leakyReLU:()=>SH,lstm:()=>h6,lstmCell:()=>m6,masking:()=>A6,maxPool1d:()=>N6,maxPool2d:()=>T6,maxPooling1d:()=>lC,maxPooling2d:()=>uC,maxPooling3d:()=>p6,maximum:()=>XH,minimum:()=>YH,multiply:()=>ZH,permute:()=>GH,prelu:()=>NH,reLU:()=>IH,repeatVector:()=>VH,rescaling:()=>F6,reshape:()=>UH,resizing:()=>D6,rnn:()=>x6,separableConv2d:()=>DH,simpleRNN:()=>f6,simpleRNNCell:()=>g6,softmax:()=>TH,spatialDropout1d:()=>WH,stackedRNNCells:()=>v6,thresholdedReLU:()=>CH,timeDistributed:()=>k6,upSampling2d:()=>MH,zeroPadding2d:()=>t6});async function Qr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];_e(a)}}function g2(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var TI;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(TI||(TI={}));var cG=125,Kl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},b2=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},dG=class extends Kl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=P(()=>X(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(he(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Ht(t[n])}))}},y2=class extends Kl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},x2=class extends Kl{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Gw,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=cG),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=hU(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Qr(n),a.push(this.yield(e,t,n))),a.push(this.nextFrameFunc()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Qr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Qr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Qr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Qr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Qr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Qr(e),await this.trainEnd(e))}};function v2(e,t){return e==null&&(e={}),e instanceof Kl?[e]:Array.isArray(e)&&e[0]instanceof Kl?e:kt(e).map(n=>new x2(n,t))}var _a=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),_a.checkForDuplicate(t),_a.constructors[e]==null&&(_a.constructors[e]=[]),_a.constructors[e].push(t)}static checkForDuplicate(e){for(let t in _a.constructors)_a.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){_a.constructors={}}static createCallbacks(e){let t=[];for(let n in _a.constructors){let a=+n;e>=a&&t.push(..._a.constructors[a])}return t.map(n=>new n)}};_a.constructors={};function w2(e,t,n,a,r,s,i,o,l){let u=new y2,p=[new dG,..._a.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new b2(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ga(e,t={},n=!1){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function dm(e,t){return P(()=>{e.dtype!=="float32"&&(e=ie(e,"float32"));let n=fe(xd(e),t,!0),a=xn(n.shape,jt()),r=mn(mr(n,a));return he(e,r)})}function Uo(e,t){return P(()=>Et(xd(pe(t,e)),-1))}function zf(e,t){return P(()=>Et(zt(pe(t,e)),-1))}function fp(e,t){return P(()=>{let n=pe(e,t),a=nn(zt(e),jt(),Number.MAX_VALUE),r=zt(he(n,a));return z(100,Et(r,-1))})}function hG(e,t){return P(()=>{let n=nn(t,jt(),Number.MAX_VALUE),a=ta(X(1,n)),r=nn(e,jt(),Number.MAX_VALUE),s=ta(X(1,r));return Et(xd(pe(a,s)),-1)})}function mG(e,t){return P(()=>{let n=mr(0,pe(1,z(e,t)));return Et(xd(n),-1)})}function fG(e,t){return P(()=>{let n=mr(0,pe(1,z(e,t)));return Et(n,-1)})}function gG(e,t){return P(()=>{let n=fe(z(e,t),-1),a=fa(z(pe(1,e),t),-1);return mr(0,X(1,pe(a,n)))})}function bG(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(X(a,Lo(z(-2,a))),n);return Et(r,-1)})}function Ic(e,t,n=!1){return P(()=>{if(n)t=Xa(t);else{let a=fe(t,t.shape.length-1,!0);t=he(t,a)}return t=nn(t,jt(),1-jt()),yt(fe(z(ie(e,"float32"),ta(t)),t.shape.length-1))})}function hm(e,t,n=!1){return P(()=>{let a=ie(pp(NU(e)),"int32");t=nn(t,jt(),1-jt());let r=t.shape,s=W(Bl(a,r[r.length-1]),r);return Ic(s,t,n)})}function yG(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Ke(t),a=yt(zt(t));return X(pe(n,z(t,e)),ld(yn(a)))})}function Wf(e,t){return P(()=>{let n;return n=nn(t,jt(),1-jt()),n=ta(he(n,pe(1,n))),Et(yG(e,n),-1)})}function xG(e,t){return P(()=>{let n=nn(e,jt(),1),a=nn(t,jt(),1);return fe(z(e,ta(he(n,a))),-1)})}function vG(e,t){return P(()=>{let n=ta(X(jt(),t));return Et(pe(t,z(e,n)),-1)})}function l0(e,t){return P(()=>{let n=dm(e,-1),a=dm(t,-1),r=z(n,a);return yt(fe(r,-1))})}var mm={meanSquaredError:Uo,meanAbsoluteError:zf,meanAbsolutePercentageError:fp,meanSquaredLogarithmicError:hG,squaredHinge:mG,hinge:fG,categoricalHinge:gG,logcosh:bG,categoricalCrossentropy:Ic,sparseCategoricalCrossentropy:hm,binaryCrossentropy:Wf,kullbackLeiblerDivergence:xG,poisson:vG,cosineProximity:l0};function ux(e){if(typeof e=="string"){if(e in mm)return mm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function u0(e,t){return P(()=>{let n=z(.5,na(t)),a=lr(_n(t,n),e.dtype);return Et(ea(e,a),-1)})}function p0(e,t){return P(()=>lr(ea(ui(e,-1),ui(t,-1)),"float32"))}function k2(e,t){return P(()=>ie(fe(Da(ea(e,1),ea(t,1))),"float32"))}function wG(e,t){return P(()=>ie(fe(Da(ea(e,1),ea(t,0))),"float32"))}function kG(e,t){return P(()=>ie(fe(Da(ea(e,0),ea(t,1))),"float32"))}function I2(e,t){return P(()=>{let n=k2(e,t),a=kG(e,t),r=X(n,a);return ie(tn(_n(r,0),he(n,r),0),"float32")})}function IG(e,t){return P(()=>{let n=k2(e,t),a=wG(e,t),r=X(n,a);return ie(tn(_n(r,0),he(n,r),0),"float32")})}function S2(e,t){return Wf(e,t)}function N2(e,t){return e.rank===t.rank&&(e=Fs(e,[e.rank-1])),t=ui(t,-1),t.dtype!==e.dtype&&(t=ie(t,e.dtype)),ie(ea(e,t),"float32")}var SG=Uo,NG=Uo,TG=zf,CG=zf,_G=fp,EG=fp,c0=Ic,AG=l0,T2=hm,fm={binaryAccuracy:u0,categoricalAccuracy:p0,precision:I2,categoricalCrossentropy:c0,sparseCategoricalCrossentropy:T2,mse:SG,MSE:NG,mae:TG,MAE:CG,mape:_G,MAPE:EG,cosine:AG};function FG(e){if(typeof e=="string"&&e in fm)return fm[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Rh(e){if(rr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(mm))if(mm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(fm))if(fm[n]===e){t=n;break}return t!==void 0?t:e.name}}function $G(e){let t={Adagrad:()=>js.adagrad(.01),Adadelta:()=>js.adadelta(1,.95,jt()),Adam:()=>js.adam(.001,.9,.999,jt()),Adamax:()=>js.adamax(.002,.9,.999,jt(),0),RMSProp:()=>js.rmsprop(.001,.9,0,jt()),SGD:()=>js.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function CI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Lx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= 1048576.`)}}function Lx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Lx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Lx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function DG(e,t,n,a=console.log){let r=MG(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),gm(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p<o.length;++p)r?PG(o[p],n,a):OG(o[p],n,i,a),a((p===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=RG(e),u=um(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function RG(e){let t;return e.collectedTrainableWeights!=null?t=um(e.collectedTrainableWeights):t=um(e.trainableWeights),t}function MG(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function gm(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function PG(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];gm(o,t,n)}function OG(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;c<d.inboundLayers.length;++c){let h=d.inboundLayers[c].name,m=d.nodeIndices[c],f=d.tensorIndices[c];i.push(`${h}[${m}][${f}]`)}let o=e.name,l=e.getClassName(),u=i.length===0?"":i[0],p=[`${o} (${l})`,s,r,e.countParams().toString(),u];gm(p,t,a);for(let d=1;d<i.length;++d)gm(["","","","",i[d]],t,a)}function C2(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Sc(e,t){if(e===null)return null;if(typeof e=="string")return Ys(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];C2(t,r,s)?n.push(s):n.push(Sc(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ys(a);n[s]=Sc(r,s)}}return n}}function zx(e,t){if(e==null)return null;if(typeof e=="string")return Cr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];C2(t,r,s)?n.push(s):n.push(zx(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=Cr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=zx(r,a)}return n}}var d0="4.3.0",nr=class extends Ue{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Ef(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],os(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);os(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let b of this.inputs){let y=b.sourceLayer,x=b.nodeIndex,w=b.tensorIndex;rr(x===0,"input layer has >1 nodes"),rr(w===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof mp))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},a={},r={},s={},i=[],o=(b,y,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=b.sourceLayer,I=b.nodeIndex,T=b.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Ba(`The tensor ${b.name} at layer "${w.name}" is part of a cycle.`);if(y.indexOf(C)!==-1)return;this.containerNodes.add(nr.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let E=C.inboundLayers.length;for(let F=0;F<E;F++){let D=C.inputTensors[F],$=C.inboundLayers[F],S=C.nodeIndices[F],M=C.tensorIndices[F];o(D,y,x,$,S,M)}for(y.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let b of this.outputs)o(b,l,u);let p=i.slice().reverse();for(let b of p){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],x=a[b.outboundLayer.id]==null?0:a[b.outboundLayer.id];y=Math.max(y,x),a[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let w=0;w<b.inboundLayers.length;w++){let I=b.inboundLayers[w],T=b.nodeIndices[w],C=I.inboundNodes[T],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(y+1,E),n[C.id]=C}}let d={};for(let b in t){let y=t[b];y in d||(d[y]=[]),d[y].push(n[b])}let c={};for(let b in a){let y=a[b];y in c||(c[y]=[]),c[y].push(r[b])}let h=Object.keys(c).map(b=>parseInt(b,10)).sort(Fh);this.layers=[];for(let b of h){let y=c[b];y.sort((x,w)=>{let I=s[x.id],T=s[w.id];return I<T?-1:I>T?1:0});for(let x of y)x instanceof nr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(b=>parseInt(b,10)).sort(Fh);let m=this.inputs.slice(),f=[];for(let b of h)for(let y of d[b]){let x=y.outboundLayer;if(x!=null){for(let w of y.inputTensors)if(m.indexOf(w)===-1)throw new Ba(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of y.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(x=>x===b).length;if(y!==1)throw new Ba(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Lf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}n0(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${d0}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=zx(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=kt(e);let n=new Qs;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return nc(this.outputs,n,t)})}computeMask(e,t){return P(()=>{e=kt(e);let n;return t==null?n=fi(null,e.length):n=kt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=lm(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Fh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],b=l.tensorIndices[m],y=`${f.name}_${g}_${b}`,x=n[y];p.push(x)}let d=u.computeOutputShape(On(p)),c=lm(d),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],p=`${o.name}_${l}_${u}`;s.push(p)}for(let i=0;i<s.length;i++){let o=s[i];rr(o in n),r.push(n[o])}return On(r)}runInternalGraph(e,t){t==null&&(t=fi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],p=t[o];n[l.id]=[u,p]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Fh);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,b,y;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),b=kt(p.call(x,m)),y=kt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),b=kt(p.call(f,m)),y=kt(p.computeMask(f,g));if(p.activityRegularizer)throw new Le("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],I=b[x],T=y[x];n[w.id]=[I,T]}}}}let r=[],s=[],i=[];for(let o of this.outputs){rr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof nr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=nr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return P(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=nr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let p=0;p<s.inboundNodes.length;p++){let d=s.inboundNodes[p],c=nr.nodeKey(s,p),h={};if(this.containerNodes.has(c)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let m=[];for(let f=0;f<d.inboundLayers.length;f++){let g=d.inboundLayers[f],b=d.nodeIndices[f],y=d.tensorIndices[f],x=nr.nodeKey(g,b),w=t[x];w==null&&(w=0),m.push([g.name,w,y,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.inputLayersTensorIndices[s];a.push([i.name,u,p])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=nr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let p=this.outputLayersTensorIndices[s];r.push([i.name,u,p])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let b=[],y;for(let x of g){let w=x[0],I=x[1],T=x[2];if(y=x[3]==null?{}:x[3],!(w in r)){i(f,g);return}let C=r[w];if(C.inboundNodes.length<=I){i(f,g);return}let E=C.inboundNodes[I];b.push(E.outputTensors[T])}b.length>0&&f.apply(On(b),y)}function l(f){let g=f.name,b=Ga(f,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(a),r[g]=b,f.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${y}`);i(b,y)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!dU(s);)for(let f of p){let g=r[f.name];if(g.name in s){let b=s[g.name];delete s[g.name];for(let y of b)o(g,y)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],b=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}let m=t.outputLayers;for(let f of m){let g=f[0],b=f[1],y=f[2];rr(g in r);let x=r[g].inboundNodes[b].outputTensors;c.push(x[y])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function LG(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function _2(e,t){return LG(e,t,"classWeight")}async function E2(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return or(e);if(e.shape.length===2){if(e.shape[1]>1)return ui(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());_e(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),je(i,"float32")}else return null}function zG(e,t){return z(e,t)}var WG=32;function A2(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=_I("input",e.inputNames,n),i=_I("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function _I(e,t,n){if(n instanceof Te)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function BG(e){if(e.length===3)throw new Le("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function VG(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(EI(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=BG(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=v2(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=w2(p,d,n.epochs,null,null,UG(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let b=0,y=0;for(a||(f=await t.iterator());!a||b<n.batchesPerEpoch;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:I}=A2(e,x.value),T={};T.batch=y,T.size=w[0].shape[0],await c.onBatchBegin(y,T);let C=[];if(n.classWeight!=null){let D=_2(n.classWeight,e.outputNames);for(let $=0;$<D.length;++$)C.push(await E2(I[$],null,D[$]))}let E=w.concat(I).concat(C),F=o(E);_e(E);for(let D=0;D<l.length;++D){let $=l[D],S=F[D];T[$]=S,Ht(S)}await c.onBatchEnd(y,T),g2(T),y++,b++}if(a?b>=n.batchesPerEpoch:x.done){if(r){let w;EI(n.validationData)?w=kt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=kt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?WG:n.validationBatchSize,verbose:0}));for(let I=0;I<e.metricsNames.length;++I)g[`val_${e.metricsNames[I]}`]=w[I]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function UG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function EI(e){return typeof e.iterator=="function"}function GG(e){return typeof e.next=="function"}async function HG(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Le("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=GG(t)?t:await t.iterator(),o=0,l=0;for(;!a||l<n.batches;){let u=await i.next();if(s=P(()=>{if(u.value){let{xs:p,ys:d}=A2(e,u.value),c=p.concat(d),h=P(()=>r(c));if(_e(c),l===0)for(let f=0;f<h.length;++f)s.push(ve(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],b=s[f];s[f]=P(()=>X(s[f],z(m,g))),l>0&&_e(b)}_e(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let p=s[u];s[u]=he(s[u],o),_e(p)}return On(s)}function px(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Yp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>ai(a,t,n-t)):ai(e,t,n-t)}function Wx(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>Wx(n,t)):l2(e,t.dtype==="int32"?t:ie(t,"int32")))}function cx(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}function F2(e){let t=[];e instanceof Te&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(yd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function za(e,t){if(e==null)return;let n=[];if(t instanceof Te)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Te)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function qG(e){return e instanceof Te}function Bx(e){return Array.isArray(e)}function AI(e){return!qG(e)&&!Bx(e)}function FI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Bx(e)&&e.length>0)i=!0;else if(AI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(AI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Bx(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=F2(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p>=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function jG(e,t,n){let a=os(e.map(s=>s.shape[0]));a.sort();let r=os(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function KG(e,t,n){let a=[Uo,Wf,Ic];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Ic&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let p=0;p<l.length;++p){let d=l[p],c=u[p];if(c!=null&&d!==c)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function $I(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],p=n[i][l];if(p!=null&&p!==u)throw new V(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function XG(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var YG="layers-model",$r=class extends nr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");DG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=$G(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Or))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ux(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ux(s))}else{let s=ux(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],ni("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=XG(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};ni("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Wf?["accuracy","acc"].indexOf(c)!==-1?p=u0:["crossentropy","ce"].indexOf(c)!==-1&&(p=S2):this.lossFunctions[s]===hm?["accuracy","acc"].indexOf(c)!==-1?p=N2:["crossentropy","ce"].indexOf(c)!==-1&&(p=T2):["accuracy","acc"].indexOf(c)!==-1?p=p0:["crossentropy","ce"].indexOf(c)!==-1&&(p=c0);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=FG(c),u=l+Rh(c);let h;ni(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;px(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{za(s[0],e),za(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),HG(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Qs;if(e instanceof Te&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=nc(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=fi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Le("Verbose predictLoop() is not implemented yet.");let r=cx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)P(()=>{let o=r[i][0],l=r[i][1],u=Yp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)p.push({key:this.inputs[c],value:u[c]});else p.push({key:this.inputs[0],value:u});let d=new Qs(p);return nc(this.outputs,d)}).forEach((o,l)=>s[l].push(o));return On(s.map(i=>Je(i,0)))})}predict(e,t={}){let n=F2(e);$I(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return px(a),this.predictLoop(n,a)}finally{za(n,e)}}predictOnBatch(e){$I(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ba("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===hm?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=FI(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=FI(t,this.feedOutputNames,r,!1,"target"),jG(e,t,null),KG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=_2(a,this.outputNames);l=[];for(let p=0;p<u.length;++p)l.push(await E2(o[p],null,u[p]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return P(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Le("Verbose mode is not implemented yet.");if(r!=null)throw new Le("steps mode in testLoop() is not implemented yet");{let o=cx(s,n),l=je(qa(0,s));for(let u=0;u<o.length;++u){let p=o[u][0],d=o[u][1],c=ai(l,p,d-p),h=Wx(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ve(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=X(i[f],z(d-p,g))}}for(let u=0;u<i.length;++u)i[u]=he(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;if(bI(e,a)>1){let s=bI(e.slice(0,n),a);r+=`_${s}`}t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let p=new Qs(u),d=nc(this.outputs,p,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h],f=m(a[h],d[h]);r[h]!=null&&(f=zG(f,r[h]));let g=Et(f);t.push(g),h===0?c=f:c=X(c,f)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Et(f(a[g],d[g]))}Ht(m),s.push(m)}return c=Et(c),this.calculateLosses().forEach(h=>{c=X(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new Qs(s),o=nc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],p=Et(u(r[l],o[l]));l===0?n=p:n=X(n,p),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],p=this.metricsTensors[l][1],d=Et(u(r[p],o[p]));t.push(d)}return t})}async fit(e,t,n={}){if(this.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");this.isTraining=!0;let a,r,s,i,o,l,u,p,d;try{let c=n.batchSize==null?32:n.batchSize;px(c);let h=!1,m=await this.standardizeUserData(e,t,n.sampleWeight,n.classWeight,h,c);a=m[0],r=m[1],d=m[2];let f=!1,g;if(n.validationData!=null&&n.validationData.length>0){if(f=!0,n.validationData.length===2)o=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Le("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let C=!0,E=await this.standardizeUserData(o,l,null,null,C,c);u=E[0],p=E[1],g=u.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){f=!0;let C=Math.floor(a[0].shape[0]*(1-n.validationSplit)),E=a[0].shape[0];u=Yp(a,C,E),s=a,a=Yp(a,0,C),p=Yp(r,C,E),i=r,r=Yp(r,0,C),g=u.concat(p)}else n.validationSteps!=null&&(f=!0);let b=a.concat(r).concat(d);this.checkTrainableWeightsConsistency();let y=this.makeTrainFunction(),x=this.getDedupedMetricsNames(),w,I;f?(this.makeTestFunction(),w=this.testFunction,I=x.slice().concat(x.map(C=>"val_"+C))):(w=null,g=[],I=x.slice());let T=v2(n.callbacks,n.yieldEvery);return await this.fitLoop(y,b,x,c,n.epochs,n.verbose,T,w,g,n.shuffle,I,n.initialEpoch,null,null)}finally{this.isTraining=!1,za(a,e),za(r,t),za(s,e),za(i,t),za(u,o),za(p,l),d!=null&&_e(d)}}async fitLoop(e,t,n,a,r,s,i,o,l,u,p,d,c,h){a==null&&(a=32),r==null&&(r=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(o!=null&&l!=null&&(m=!0),h!=null&&(m=!0,c==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let f=this.checkNumSamples(t,a,c,"steps_per_epoch"),g;f!=null&&(g=qa(0,f)),s==null&&(s=1);let{callbackList:b,history:y}=w2(i,s,r,d,f,c,a,m,p);b.setModel(this),this.history=y,await b.onTrainBegin(),this.stopTraining_=!1;for(let x=d;x<r;++x){await b.onEpochBegin(x);let w={};if(c!=null)throw new Le("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Le("batch shuffling is not implemneted yet");u&&v.shuffle(g);let I=je(g),T=cx(f,a);for(let C=0;C<T.length;++C){let E={};if(await b.onBatchBegin(C,E),P(()=>{let F=T[C][0],D=T[C][1],$=ai(I,F,D-F);E.batch=C,E.size=D-F;let S=Wx(t,$),M=e(S);for(let B=0;B<n.length;++B){let U=n[B],H=M[B];E[U]=H,Ht(H)}if(C===T.length-1&&m){let B=this.testLoop(o,l,a);for(let U=0;U<n.length;++U){let H=n[U],j=B[U];Ht(j),w["val_"+H]=j}}}),await b.onBatchEnd(C,E),g2(E),this.stopTraining_)break}I.dispose()}if(await b.onEpochEnd(x,w),this.stopTraining_)break}return await b.onTrainEnd(),await this.history.syncData(),this.history}async fitDataset(e,t){return VG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return _e(s),za(n[0],e),za(n[1],t),On(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=im().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-im().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Cr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Cr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Cr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Cr(Rh(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Cr(Rh(e)));{let e={};for(let t in this.metrics)e[t]=Cr(Rh(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Sc(e.optimizer_config),n=Ga(t),a;if(typeof e.loss=="string")a=Ys(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ys(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ys(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ys(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ys(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=qt.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await qt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:YG,generatedBy:`TensorFlow.js tfjs-layers v${d0}`,convertedBy:null};if(t!=null&&t.includeOptimizer&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await qt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=qt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(CI(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){CI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};$r.className="Model";ne.registerClass($r);var $2=class extends $r{};$2.className="Functional";ne.registerClass($2);async function ZG(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Sc(n),r=Ga(a,t);if(e.weightsManifest!=null){let s=await qt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),_e(s)}return r}async function JG(e,t){if(t==null&&(t={}),typeof e=="string"){let n=qt.getLoadHandlers(e,t);if(n.length===0)n.push(qt.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return QG(e,void 0,t)}async function QG(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ga(Sc(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=eH(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),_e(u),_e(p.map(d=>d.tensor))}return o}function eH(e,t){let n=qt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Xl=class extends $r{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Ef("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Xl||e instanceof $r,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=d2({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=c2(this.outputs[0])}this.inboundNodes=[],new Lf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Qe(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new $r({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Xl))throw new Le(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ga(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Xl.className="Sequential";ne.registerClass(Xl);function tH(e){return new $r(e)}function nH(e){return new Xl(e)}function D2(e){return d2(e)}function aH(e,t){_a.registerCallbackConstructor(e,t)}var Gn=class extends ne.Serializable{getConfig(){return{}}},R2=class extends Gn{apply(e,t=1){return CU(e,t)}};R2.className="elu";ne.registerClass(R2);var M2=class extends Gn{apply(e){return hf(e)}};M2.className="selu";ne.registerClass(M2);var P2=class extends Gn{apply(e){return Ke(e)}};P2.className="relu";ne.registerClass(P2);var O2=class extends Gn{apply(e){return P(()=>hs(6,Ke(e)))}};O2.className="relu6";ne.registerClass(O2);var L2=class extends Gn{apply(e){return e}};L2.className="linear";ne.registerClass(L2);var z2=class extends Gn{apply(e){return ma(e)}};z2.className="sigmoid";ne.registerClass(z2);var W2=class extends Gn{apply(e){return EU(e)}};W2.className="hardSigmoid";ne.registerClass(W2);var B2=class extends Gn{apply(e){return Lo(e)}};B2.className="softplus";ne.registerClass(B2);var V2=class extends Gn{apply(e){return _U(e)}};V2.className="softsign";ne.registerClass(V2);var U2=class extends Gn{apply(e){return ci(e)}};U2.className="tanh";ne.registerClass(U2);var h0=class extends Gn{apply(e,t=-1){return Xa(e,t)}};h0.className="softmax";ne.registerClass(h0);var G2=class extends Gn{apply(e,t=-1){return rf(e,t)}};G2.className="logSoftmax";ne.registerClass(G2);var H2=class extends Gn{apply(e,t=1){return P(()=>z(ma(z(e,t)),e))}};H2.className="swish";ne.registerClass(H2);var q2=class extends Gn{apply(e){return P(()=>z(e,ci(Lo(e))))}};q2.className="mish";ne.registerClass(q2);function fs(e){return e.getClassName()}function dx(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function gs(e){if(e==null){let t={};return t.className="linear",t.config={},dx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},dx(t)}else return e instanceof Gn?e:dx(e)}function m0(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var j2=class extends ne.Serializable{},kd=class extends j2{constructor(e){super(),m0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=Nt([1]);return this.hasL1&&(t=X(t,fe(z(this.l1,zt(e))))),this.hasL2&&(t=X(t,fe(z(this.l2,xd(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kd.className="L1L2";ne.registerClass(kd);function rH(e){return m0(e),new kd({l1:e!=null?e.l1:null,l2:0})}function sH(e){return m0(e),new kd({l2:e!=null?e.l2:null,l1:0})}var DI={l1l2:"L1L2"};function mt(e){return qw(e)}function RI(e,t={}){return bd(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ct(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in DI?DI[e]:e,config:{}};return RI(t)}else return e instanceof j2?e:RI(e)}var f0=class extends Ue{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ce(e);let n=Ke(e);return this.maxValue!=null&&(n=nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};f0.className="ReLU";ne.registerClass(f0);var g0=class extends Ue{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ce(e);return od(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};g0.className="LeakyReLU";ne.registerClass(g0);var b0=class extends Ue{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Tt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ct(e.alphaRegularizer),this.alphaConstraint=Yt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Qe(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Wt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ce(e),dd(e,this.alpha.read())}getConfig(){let e={alphaInitializer:At(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Xt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};b0.className="PReLU";ne.registerClass(b0);var y0=class extends Ue{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Le(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ce(e);return lp(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};y0.className="ELU";ne.registerClass(y0);var x0=class extends Ue{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ce(e);return z(n,ie(_n(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};x0.className="ThresholdedReLU";ne.registerClass(x0);var v0=class extends Ue{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new h0().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ce(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};v0.className="Softmax";ne.registerClass(v0);function Rl(e,t,n){if(typeof e=="number")return fi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!IU(r))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ha(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function sr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ms([n-t,0]);else if(a==="same")e=e*t;else throw new V(`Unsupport padding mode: ${a}.`);return e}function w0(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,1]):e))}function K2(e,t){return P(()=>(Pt(t),t==="channelsFirst"?De(e,[0,2,3,4,1]):e))}function iH(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=De(e,[0,2,1])),r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Jm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ya(o,n)),o})}function MI(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=w0(e,s);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Hl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=De(l,[0,3,1,2])),l})}function oH(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=ja()),Pt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=K2(e,s);if(r==="causal")throw new Le("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Xv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ya(o,n)),s==="channelsFirst"&&(o=De(o,[0,4,1,2,3])),o})}var k0=class extends Ue{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",k0.verifyArgs(t),this.rank=e,en(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Le(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Rl(t.kernelSize,e,"kernelSize"),this.strides=Rl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,va(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Pt(this.dataFormat),this.activation=gs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Tt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Yt(t.biasConstraint),this.biasRegularizer=Ct(t.biasRegularizer),this.activityRegularizer=Ct(t.activityRegularizer),this.dilationRate=Rl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(rr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!jw(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:fs(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Id=class extends k0{constructor(e,t){super(e,t),this.kernel=null,Id.verifyArgs(t),this.filters=t.filters,en(this.filters,"filters"),this.kernelInitializer=Tt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Yt(t.kernelConstraint),this.kernelRegularizer=Ct(t.kernelRegularizer)}build(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Ce(e);let n,a=this.bias==null?null:this.bias.read(),r=n2(this.activation.getClassName());if(r!=null&&this.rank===2)n=MI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=iH(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=MI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=oH(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Le("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Qe(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ha(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:At(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Xt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sd=class extends Id{constructor(e){super(2,e),Sd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jw(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Sd.className="Conv2D";ne.registerClass(Sd);var Nd=class extends Id{constructor(e){super(3,e),Nd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Nd.className="Conv3D";ne.registerClass(Nd);var I0=class extends Sd{constructor(e){if(super(e),this.inputSpec=[new Wt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Qe(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Wt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ce(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=sr(o,d,u,this.padding),m=sr(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,1]));let g=Qm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=De(g,[0,3,1,2])),this.bias!=null&&(g=Ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Qe(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=sr(t[a],o,s,this.padding),t[r]=sr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};I0.className="Conv2DTranspose";ne.registerClass(I0);var S0=class extends Nd{constructor(e){if(super(e),this.inputSpec=[new Wt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Qe(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Wt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ce(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],b=sr(l,m,d,this.padding),y=sr(u,f,c,this.padding),x=sr(p,g,h,this.padding),w=[r,b,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=De(n,[0,2,3,4,1]));let I=Yv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=De(I,[0,4,1,2,3])),this.bias!==null&&(I=Ya(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=Qe(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=sr(t[a],u,i,this.padding),t[r]=sr(t[r],p,o,this.padding),t[s]=sr(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};S0.className="Conv3DTranspose";ne.registerClass(S0);var X2=class extends Id{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ct(t.depthwiseRegularizer),this.depthwiseConstraint=Yt(t.depthwiseConstraint),this.pointwiseInitializer=Tt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ct(t.pointwiseRegularizer),this.pointwiseConstraint=Yt(t.pointwiseConstraint)}build(e){if(e=Qe(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Wt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{e=Ce(e);let n;if(this.rank===1)throw new Le("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=De(e,[0,2,3,1])),n=As(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=De(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseConstraint),e.pointwiseConstraint=Xt(this.pointwiseConstraint),e}};X2.className="SeparableConv";var N0=class extends X2{constructor(e){super(2,e)}};N0.className="SeparableConv2D";ne.registerClass(N0);var Bf=class extends Id{constructor(e){super(1,e),Bf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!jw(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Bf.className="Conv1D";ne.registerClass(Bf);var T0=class extends Ue{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Ce(e),this.dataFormat==="channelsLast"){let n=Dh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Dh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Dh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Dh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};T0.className="Cropping2D";ne.registerClass(T0);var C0=class extends Ue{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,vU(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Ce(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=De(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?Fa.resizeNearestNeighbor(n,[r,s]):Fa.resizeBilinear(n,[r,s]);return De(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?Fa.resizeNearestNeighbor(n,[r,s]):Fa.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};C0.className="UpSampling2D";ne.registerClass(C0);function lH(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=ja()),Pt(r);let i=w0(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=_s(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}var _0=class extends k0{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Tt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Yt(e.depthwiseConstraint),this.depthwiseRegularizer=Ct(e.depthwiseRegularizer)}build(e){if(e=Qe(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Ce(e);let n=lH(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ha(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ha(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseRegularizer),e}};_0.className="DepthwiseConv2D";ne.registerClass(_0);function Y2(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Z2(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(qa(2,l));if(t=De(t,u),s!=null)throw new Le("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ie(ie(r,"bool"),"float32"),r.rank===l-1&&(r=Qt(r,-1)),r=De(r,u)),a&&(t=ba(t,0),r!=null&&(r=ba(r,0)));let p=[],d,c=n,h=t.shape[0],m=ct(t),f;r!=null&&(f=ct(r));for(let b=0;b<h;++b){let y=m[b],x=P(()=>e(y,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[b],T=pe(na(I),I),C=X(z(x[0],I),z(c[0],T)),E=c.map((F,D)=>X(z(x[1][D],I),z(F,T)));return{output:C,newStates:E}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=Dt(p,1)),[d,g,c]})}var gr=class extends Ue{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Gf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Wt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return qa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Px(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Le("Constants support is not implemented in RNN yet.");Px(e)&&(e=e[0]),e=e;let t=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new Wt({shape:[t,null,...n]});let a=[e[0]].concat(e.slice(2));this.cell.build(a);let r;if(Array.isArray(this.cell.stateSize)?r=this.cell.stateSize:r=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(s=>s.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new Wt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Tr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_=[Nt([n,this.cell.stateSize])];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Nt([n,a])):this.states_[0]=Nt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(r.shape,i))throw new V(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Ht(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=Y2(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Wt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Va){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Ce(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=Z2((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=Nt(e.shape);return t=fe(t,[1,2]),t=yd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Rx(t,[1,n]):t):this.cell.stateSize>1?[Rx(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===gr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ga(a,n);return new e(Object.assign(t,{cell:r}))}};gr.className="RNN";ne.registerClass(gr);var Td=class extends Ue{},Vf=class extends Td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=gs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=jl([1,ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=bs({ones:()=>na(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=bs({ones:()=>na(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=ur(z(e,s),this.kernel.read()):r=ur(e,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),i!=null&&(n=z(n,i));let o=X(r,ur(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:fs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};Vf.className="SimpleRNNCell";ne.registerClass(Vf);var E0=class extends gr{constructor(e){e.cell=new Vf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};E0.className="SimpleRNN";ne.registerClass(E0);var Uf=class extends Td{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,en(this.units,"units"),this.activation=gs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=gs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=jl([1,ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=bs({ones:()=>na(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=bs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=ur(e,this.kernel.read());this.useBias&&(u=Ya(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,s[0]));let p=this.recurrentKernel.read(),[d,c]=zn(p,[2*this.units,this.units],p.rank-1),h=ur(a,d),[m,f,g]=zn(u,3,u.rank-1),[b,y]=zn(h,2,h.rank-1);i=this.recurrentActivation.apply(X(m,b)),o=this.recurrentActivation.apply(X(f,y));let x=ur(z(o,a),c);l=this.activation.apply(X(g,x));let w=X(z(i,a),z(X(1,yt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:fs(this.activation),recurrentActivation:fs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign(Object.assign({},e),t)}};Uf.className="GRUCell";ne.registerClass(Uf);var A0=class extends gr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Uf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};A0.className="GRU";ne.registerClass(A0);var Cd=class extends Td{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=gs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=gs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Tt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=jl([1,ms([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=jl([1,ms([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Qe(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Pa{apply(i,o){let l=r.apply([s]),u=new Ff().apply([s]),p=r.apply([s*2]);return xI(xI(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=bs({ones:()=>na(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=bs({ones:()=>na(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0<this.dropout&&this.dropout<1&&(e=z(e,s[0]));let d=ur(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=z(a,i[0])),d=X(d,ur(a,this.recurrentKernel.read())),this.useBias&&(d=Ya(d,this.bias.read()));let[c,h,m,f]=zn(d,4,d.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=X(z(l,r),z(o,this.activation.apply(m))),p=this.recurrentActivation.apply(f);let g=z(p,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:fs(this.activation),recurrentActivation:fs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign(Object.assign({},e),t)}};Cd.className="LSTMCell";ne.registerClass(Cd);var F0=class extends gr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Cd(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};F0.className="LSTM";ne.registerClass(F0);var Gf=class extends Td{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Px(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{ni(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ga(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Ox(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}n0(t)}};Gf.className="StackedRNNCells";ne.registerClass(Gf);function bs(e){let{ones:t,rate:n,training:a=!1,count:r=1,dropoutFunc:s}=e,i=()=>s!=null?s(t(),n):u2(t(),n),o=()=>vd(i,t,a);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var uH=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},J2=class extends gr{constructor(e){if(e.unroll)throw new Le("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Le("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Wt({ndim:5})]}call(e,t){return P(()=>{if(this.cell.dropoutMask!=null&&(_e(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(_e(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Nt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new Tr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_=[Nt(r)];else if(e==null)_e(this.states_),this.keptStates!=null&&(_e(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(r)):this.states_[0]=Nt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):_e(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Ht(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ha(l,a[0],r,s[0],i[0]),d=Ha(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};J2.className="ConvRNN2D";var Hf=class extends Cd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,en(this.filters,"filters"),this.kernelSize=Rl(n,2,"kernelSize"),this.kernelSize.forEach(o=>en(o,"kernelSize")),this.strides=Rl(a||1,2,"strides"),this.strides.forEach(o=>en(o,"strides")),this.padding=r||"valid",va(this.padding),this.dataFormat=s||"channelsLast",Pt(this.dataFormat),this.dilationRate=Rl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>en(o,"dilationRate"))}build(e){var t;e=Qe(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Pa{apply(p,d){let c=l.apply([u]),h=Qn([u]),m=l.apply([u*2]);return Kw([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=bs({ones:()=>na(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:z(J[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=bs({ones:()=>na(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),b=l(r,h,3),y=3,[x,w,I,T]=zn(this.kernel.read(),i,y),[C,E,F,D]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,E,this.padding),d=this.inputConv(d,I,F,this.padding),c=this.inputConv(c,T,D,this.padding);let[$,S,M,B]=zn(this.recurrentKernel.read(),i,y);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),b=this.recurrentConv(b,B);let U=this.recurrentActivation.apply(X(u,m)),H=this.recurrentActivation.apply(X(p,f)),j=X(z(H,s),z(U,this.activation.apply(X(d,g)))),K=z(this.recurrentActivation.apply(X(c,b)),this.activation.apply(j));return[K,K,j]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=uH(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=Rt(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ya(r,n,this.dataFormat):r}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Hf.className="ConvLSTM2DCell";ne.registerClass(Hf);var $0=class extends J2{constructor(e){let t=new Hf(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};$0.className="ConvLSTM2D";ne.registerClass($0);var qf=class extends Ue{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return vd(()=>u2(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};qf.className="Dropout";ne.registerClass(qf);var D0=class extends qf{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};D0.className="SpatialDropout1D";ne.registerClass(D0);var R0=class extends Ue{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,en(this.units,"units"),this.activation=gs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Tt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Tt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Yt(e.kernelConstraint),this.biasConstraint=Yt(e.biasConstraint),this.kernelRegularizer=Ct(e.kernelRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Qe(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Qe(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e),a=n2(this.activation.getClassName()),r;return a!=null?r=ur(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=ur(n,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:fs(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};R0.className="Dense";ne.registerClass(R0);var M0=class extends Ue{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Qe(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ls(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=De(n,a)}return TU(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};M0.className="Flatten";ne.registerClass(M0);var P0=class extends Ue{constructor(e){super(e),this.supportsMasking=!0,this.activation=gs(e.activation)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);return this.activation.apply(n)})}getConfig(){let e={activation:fs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};P0.className="Activation";ne.registerClass(P0);var O0=class extends Ue{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Ce(e),SU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};O0.className="RepeatVector";ne.registerClass(O0);var L0=class extends Ue{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else r*=l}let i=ls(e);if(s!==null){if(r===0||i%r!==0)throw new V(n);a[s]=i/r}else if(i!==r)throw new V(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};L0.className="Reshape";ne.registerClass(L0);var z0=class extends Ue{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=qa(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Wt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Qe(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return De(Ce(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};z0.className="Permute";ne.registerClass(z0);var W0=class extends Ue{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ce(e),a=-1;return xc(hi(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e),a=-1,r=!0,s=xc(hi(n,this.maskValue),a,r);return z(n,ie(s,n.dtype))})}};W0.className="Masking";ne.registerClass(W0);var B0=class extends Ue{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(kt(e.inputLength))}this.inputDim=e.inputDim,en(this.inputDim,"inputDim"),this.outputDim=e.outputDim,en(this.outputDim,"outputDim"),this.embeddingsInitializer=Tt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ct(e.embeddingsRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.embeddingsConstraint=Yt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Ce(e),hi(e,qe(e))):null)}computeOutputShape(e){if(e=Qe(e),this.inputLength==null)return[...e,this.outputDim];let t=kt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);n.dtype!=="int32"&&(n=lr(n,"int32"));let a=l2(this.embeddings.read(),W(n,[n.size]));return W(a,Qe(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Xt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};B0.className="Embedding";ne.registerClass(B0);var Go=class extends Ue{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Le}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Qe(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=os(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&os(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ms(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=yd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,p=u[0],d=u.slice(1).concat([p]),c=W(o,[p].concat(ls(u.slice(1))));c=De(c,[1,0]),c=W(c,d),n.push(c),r=!0}else if(l>1){let u=qa(1,l).concat([0]);n.push(De(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(De(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(qa(0,i-1));s=De(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=os(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return P(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Qt(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=Da(n,t[a]);return n})}},V0=class extends Go{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return t})}};V0.className="Add";ne.registerClass(V0);var U0=class extends Go{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};U0.className="Multiply";ne.registerClass(U0);var G0=class extends Go{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=X(t,e[n]);return z(1/e.length,t)})}};G0.className="Average";ne.registerClass(G0);var H0=class extends Go{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=mr(t,e[n]);return t})}};H0.className="Maximum";ne.registerClass(H0);var q0=class extends Go{constructor(e){super(e)}mergeFunction(e){return P(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=hs(t,e[n]);return t})}};q0.className="Minimum";ne.registerClass(q0);var j0=class extends Go{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>Kw(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(ie(na(e[s]),"bool")):t[s].rank<e[s].rank?a.push(Qt(t[s],-1)):a.push(t[s]);let r=Je(a,this.axis);return Zm(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};j0.className="Concatenate";ne.registerClass(j0);function Zp(e,t){for(;e<0;)e+=t;return e}function pH(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Le("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Le("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=W(t,t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=W(e,e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=fe(z(e,t),s[0]):o=fe(z(De(e,[1,0]),t),s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=$e(e,t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p<l+i;++p)u.push(p);o=Fs(o,u)}return o.shape.length===1&&(o=Qt(o,1)),o})}var K0=class extends Go{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zp(r,e[s].shape.length)):a=[Zp(this.axes,t.shape.length),Zp(this.axes,n.shape.length)],this.normalize&&(t=dm(t,a[0]),n=dm(n,a[1])),pH(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zp(this.axes,e.length),Zp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Le("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};K0.className="Dot";ne.registerClass(K0);var X0=class extends Ue{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);return vd(()=>X(Af(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};X0.className="GaussianNoise";ne.registerClass(X0);var Y0=class extends Ue{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ce(e);return this.rate>0&&this.rate<1?vd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,Af(n.shape,1,a))},()=>n,t.training||!1):n})}};Y0.className="GaussianDropout";ne.registerClass(Y0);var Z0=class extends Ue{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ce(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return vd(()=>{let a=Ce(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Mr(dp(n),this.rate);o=lr(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=X(z(a,o),z(X(o,-1),i));return X(z(p,l),u)},()=>Ce(e),t.training||!1)}return e})}};Z0.className="AlphaDropout";ne.registerClass(Z0);function Nc(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=zv(e,t,n,a,r,s);else if(e.rank===3)i=Wv(e,t,n,a,r,s);else if(e.rank===4)i=Bv(e,t,n,a,r,s);else throw new Le(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function cH(e,t,n,a,r=.001){return P(()=>{let s=pd(e,a),i=s.mean,o=s.variance;return[Nc(e,i,o,n,t,r),i,o]})}function dH(e,t,n,a,r=.001){return P(()=>{let s=pd(e,a),i=s.mean,o=s.variance,l=[];for(let h of qa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[Nc(e,u,p,c,d,r),i,o]})}function hH(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),qa(0,e.rank-1))?cH(e,t,n,a,r):dH(e,t,n,a,r)}var J0=class extends Ue{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Tt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Tt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Yt(e.betaConstraint),this.gammaConstraint=Yt(e.gammaConstraint),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer)}build(e){e=Qe(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Wt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Ce(e),r=a.shape,s=r.length,i=qa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=fi(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,qa(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),b=W(this.movingVariance.read(),l),y=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return Nc(a,g,b,y,x,this.epsilon)}else return Nc(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=hH(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,b,y)=>{P(()=>{let x=1-y,w=g.read(),I=z(pe(w,b),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Xt(this.betaConstraint),gammaConstraint:Xt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};J0.className="BatchNormalization";ne.registerClass(J0);var Q0=class extends Ue{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Tt(e.betaInitializer||"zeros"),this.gammaInitializer=Tt(e.gammaInitializer||"ones"),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Qe(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==os(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Ce(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=pd(n,this.axis,!0),o=fi(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h<r;++h)this.axis.indexOf(h)!==-1?(d.push(a[h]),c.push(1)):(d.push(1),c.push(a[h]));return s=Ln(s,d),i=Ln(i,d),u!=null&&(u=Ln(u,c)),p!=null&&(p=Ln(p,c)),Nc(n,s,i,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Q0.className="LayerNormalization";ne.registerClass(Q0);function mH(e,t,n){return P(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ja()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],xa(e,a)})}var e1=class extends Ue{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ja():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){e=Qe(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>mH(Ce(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};e1.className="ZeroPadding2D";ne.registerClass(e1);function jf(e,t,n,a,r,s){return P(()=>{Pt(r),r2(s),va(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=w0(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Mt(e,t,n,o):i=ya(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,3,1,2])),i})}function Q2(e,t,n,a,r,s){return P(()=>{Pt(r),r2(s),va(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=ja()),s==null&&(s="max"),e=K2(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=dw(e,t,n,o):i=Lv(e,t,n,o),r==="channelsFirst"&&(i=De(i,[0,4,1,2,3])),i})}var eC=class extends Ue{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(en(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,va(this.padding),this.inputSpec=[new Wt({ndim:3})]}computeOutputShape(e){e=Qe(e);let t=Ha(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=yd(Ce(e),2);let n=this.poolingFunction(Ce(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Fs(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},t1=class extends eC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),jf(e,t,n,a,r,"max")}};t1.className="MaxPooling1D";ne.registerClass(t1);var n1=class extends eC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),jf(e,t,n,a,r,"avg")}};n1.className="AveragePooling1D";ne.registerClass(n1);var tC=class extends Ue{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),va(this.padding),this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ce(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},a1=class extends tC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),jf(e,t,n,a,r,"max")}};a1.className="MaxPooling2D";ne.registerClass(a1);var r1=class extends tC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),jf(e,t,n,a,r,"avg")}};r1.className="AveragePooling2D";ne.registerClass(r1);var nC=class extends Ue{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),va(this.padding),this.inputSpec=[new Wt({ndim:5})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),a=Ha(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ce(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s1=class extends nC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Q2(e,t,n,a,r,"max")}};s1.className="MaxPooling3D";ne.registerClass(s1);var i1=class extends nC{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Pt(r),va(a),Q2(e,t,n,a,r,"avg")}};i1.className="AveragePooling3D";ne.registerClass(i1);var aC=class extends Ue{constructor(e){super(e),this.inputSpec=[new Wt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Le}},o1=class extends aC{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ce(e);return Et(n,1)})}};o1.className="GlobalAveragePooling1D";ne.registerClass(o1);var l1=class extends aC{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ce(e);return fa(n,1)})}};l1.className="GlobalMaxPooling1D";ne.registerClass(l1);var rC=class extends Ue{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Pt(this.dataFormat),this.inputSpec=[new Wt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Le}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},u1=class extends rC{call(e,t){return P(()=>{let n=Ce(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};u1.className="GlobalAveragePooling2D";ne.registerClass(u1);var p1=class extends rC{call(e,t){return P(()=>{let n=Ce(e);return this.dataFormat==="channelsLast"?fa(n,[1,2]):fa(n,[2,3])})}};p1.className="GlobalMaxPooling2D";ne.registerClass(p1);var sC=class extends Ue{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ga(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},c1=class extends sC{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=Qe(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Qe(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Ce(e),Z2((n,a)=>[Ce(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};c1.className="TimeDistributed";ne.registerClass(c1);function fH(e){Vo(xU,"BidirectionalMergeMode",e)}var gH="concat",d1=class extends sC{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ga(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ga(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gH:e.mergeMode,fH(this.mergeMode),e.weights)throw new Le("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=Y2(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new Wt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Le("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Va;for(let l of s)if(l instanceof Va!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ba(r,1));let i;return this.mergeMode==="concat"?i=Kw([a,r]):this.mergeMode==="sum"?i=X(a,r):this.mergeMode==="ave"?i=z(.5,X(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ni(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ni(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ga(t.layer);if(delete t.layer,t.numConstants!=null)throw new Le("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};d1.className="Bidirectional";ne.registerClass(d1);var h1=class extends Ue{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Ce(e),e.dtype!=="float32"&&(e=lr(e,"float32")),X(z(e,this.scale),this.offset)))}};h1.className="Rescaling";ne.registerClass(h1);var{resizeBilinear:bH,cropAndResize:yH}=Fa,m1=class extends Ue{constructor(e){super(e),this.height=e.height,this.width=e.width}centerCrop(e,t,n,a,r,s,i,o){return P(()=>{let l,u=!1,p=t/s,d=n/i,c=(a+t)/s,h=(r+n)/i,m=[p,d,c,h],f=[];e.rank===3?(u=!0,l=Dt([e])):l=e;for(let x=0;x<l.shape[0];x++)f.push(m);let g=bn(f,[f.length,4]),b=mi(0,f.length,1,"int32"),y=yH(l,g,b,[a,r],"nearest");return lr(u?Ce(ct(y)):y,o)})}upsize(e,t,n,a){return P(()=>{let r=bH(e,[t,n]);return lr(r,a)})}call(e,t){return P(()=>{let n=Ce(e),a=n.dtype,r=n.shape,s=r[r.length-3],i=r[r.length-2],o=0;s!==this.height&&(o=Math.floor((s-this.height)/2));let l=0;return i!==this.width&&(l=Math.floor((i-this.width)/2),l===0&&(l=1)),o>=0&&l>=0?this.centerCrop(n,o,l,this.height,this.width,s,i,a):this.upsize(e,this.height,this.width,a)})}getConfig(){let e={height:this.height,width:this.width},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Qe(e);let t=e.length-3,n=e.length-2;return e[t]=this.height,e[n]=this.width,e}};m1.className="CenterCrop";ne.registerClass(m1);function xH(e,t,n,a){let r=Ce(e);if(r.dtype!=="int32"&&(r=lr(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=Qt(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=Qt(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=om(o,a,n,i):l=om(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var f1=class extends Ue{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=Qe(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Ce(e),e.dtype!=="int32"&&(e=lr(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count.
Received countWeights=${t.countWeights}`);n=Ce(t.countWeights)}let a=fa(e),r=zl(e),s=_n(this.numTokens,a).bufferSync().get(0),i=Mr(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return xH(e,this.outputMode,this.numTokens,n)})}};f1.className="CategoryEncoding";ne.registerClass(f1);var vH=["bilinear","nearest"],PI=new Set(vH),g1=class extends Ue{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(PI.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=!!e.cropToAspectRatio}computeOutputShape(e){e=Qe(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return Fa.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return Fa.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[...PI]} are supported`)})}};g1.className="Resizing";ne.registerClass(g1);function wH(e){return new mp(e)}function kH(e){return new y0(e)}function IH(e){return new f0(e)}function SH(e){return new g0(e)}function NH(e){return new b0(e)}function TH(e){return new v0(e)}function CH(e){return new x0(e)}function _H(e){return new Bf(e)}function EH(e){return new Sd(e)}function AH(e){return new I0(e)}function FH(e){return new Nd(e)}function $H(e){return new S0(e)}function DH(e){return new N0(e)}function RH(e){return new T0(e)}function MH(e){return new C0(e)}function PH(e){return new _0(e)}function OH(e){return new P0(e)}function LH(e){return new R0(e)}function zH(e){return new qf(e)}function WH(e){return new D0(e)}function BH(e){return new M0(e)}function VH(e){return new O0(e)}function UH(e){return new L0(e)}function GH(e){return new z0(e)}function HH(e){return new B0(e)}function qH(e){return new V0(e)}function jH(e){return new G0(e)}function KH(e){return new j0(e)}function XH(e){return new H0(e)}function YH(e){return new q0(e)}function ZH(e){return new U0(e)}function JH(e){return new K0(e)}function QH(e){return new J0(e)}function e6(e){return new Q0(e)}function t6(e){return new e1(e)}function b1(e){return new n1(e)}function n6(e){return b1(e)}function a6(e){return b1(e)}function y1(e){return new r1(e)}function r6(e){return y1(e)}function s6(e){return y1(e)}function x1(e){return new i1(e)}function i6(e){return x1(e)}function o6(e){return x1(e)}function l6(e){return new o1(e)}function u6(e){return new u1(e)}function iC(e){return new l1(e)}function oC(e){return new p1(e)}function lC(e){return new t1(e)}function uC(e){return new a1(e)}function p6(e){return new s1(e)}function c6(e){return new A0(e)}function d6(e){return new Uf(e)}function h6(e){return new F0(e)}function m6(e){return new Cd(e)}function f6(e){return new E0(e)}function g6(e){return new Vf(e)}function b6(e){return new $0(e)}function y6(e){return new Hf(e)}function x6(e){return new gr(e)}function v6(e){return new Gf(e)}function w6(e){return new d1(e)}function k6(e){return new c1(e)}var I6=iC,S6=oC,N6=lC,T6=uC;function C6(e){return new X0(e)}function _6(e){return new Y0(e)}function E6(e){return new Z0(e)}function A6(e){return new W0(e)}function F6(e){return new h1(e)}function $6(e){return new m1(e)}function D6(e){return new g1(e)}function R6(e){return new f1(e)}var pC={};Ee(pC,{MAPE:()=>H6,MSE:()=>K6,binaryAccuracy:()=>M6,binaryCrossentropy:()=>P6,categoricalAccuracy:()=>L6,categoricalCrossentropy:()=>z6,cosineProximity:()=>V6,mape:()=>q6,meanAbsoluteError:()=>U6,meanAbsolutePercentageError:()=>G6,meanSquaredError:()=>j6,mse:()=>X6,precision:()=>W6,recall:()=>B6,sparseCategoricalAccuracy:()=>O6});function M6(e,t){return u0(e,t)}function P6(e,t){return S2(e,t)}function O6(e,t){return N2(e,t)}function L6(e,t){return p0(e,t)}function z6(e,t){return c0(e,t)}function W6(e,t){return I2(e,t)}function B6(e,t){return IG(e,t)}function V6(e,t){return l0(e,t)}function U6(e,t){return zf(e,t)}function G6(e,t){return fp(e,t)}function H6(e,t){return fp(e,t)}function q6(e,t){return fp(e,t)}function j6(e,t){return Uo(e,t)}function K6(e,t){return Uo(e,t)}function X6(e,t){return Uo(e,t)}var cC={};Ee(cC,{modelFromJSON:()=>ZG});var dC={};Ee(dC,{l1:()=>Z6,l1l2:()=>Y6,l2:()=>J6});function Y6(e){return new kd(e)}function Z6(e){return rH(e)}function J6(e){return sH(e)}var hC=class extends Kl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof $r))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Mh(e,t){return e<t}function OI(e,t){return e>t}var mC=class extends hC{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Le("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Mh:this.mode==="max"?this.monitorFunc=OI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=OI:this.monitorFunc=Mh,this.monitorFunc===Mh&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Mh?1/0:-1/0}async onEpochEnd(e,t){await Qr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Q6(e){return new mC(e)}var eq={earlyStopping:Q6},tq=G();tq.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ca;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ca||(Ca={}));var LI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(LI||(LI={}));var v1={};function nq(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};v1[e]=n}function fC(e){return v1[e]}function aq(e){delete v1[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd,u=o<0?t.inputNames.length+o:o;if(s.type==="tensor")return dn(t.inputNames[u],n,a,r);if(s.type==="tensors"){let c=t.inputs.slice(o,l);return t.inputNames.slice(o,l).filter((h,m)=>{var f;return((f=c[m])===null||f===void 0?void 0:f.op)!=="NoOp"}).map(h=>dn(h,n,a,r))}let p=dn(t.inputNames[u],n,a,r),d=p.dataSync();return s.type==="number"?d[0]:v.toNestedArray(p.shape,d)}let i=t.attrParams[e];return i&&i.value}function dn(e,t,n,a){let[r,s]=Zn(e,n);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[bm(r,o)]);return i!==void 0?t[bm(r,i)][s]:void 0}function zI(e,t,n){return t[bm(e,n.currentContextId)]}function _r(e,t){let[n,a,r]=Zn(e,t);return[bm(n,t&&t.currentContextId),a,r]}function bm(e,t){return t?`${e}-${t}`:e}function Zn(e,t){if(e==="")return["",0,void 0];let n=t!=null&&t.parseNodeNameCache!=null;if(n){let s=t.parseNodeNameCache.get(e);if(s!=null)return s}let a=e.split(":"),r;if(a.length===1)r=[e,0,void 0];else{let s=a[0],i=a.length===3?a[1]:void 0,o=Number(a[a.length-1]);r=[s,o,i]}return n&&t.parseNodeNameCache.set(e,r),r}function Hh(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Er(e){return e.kept?e:or(e)}var gC={};Ee(gC,{json:()=>rq});var rq=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],bC={};Ee(bC,{json:()=>sq});var sq=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsFinite",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsInf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],yC={};Ee(yC,{json:()=>iq});var iq=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],xC={};Ee(xC,{json:()=>oq});var oq=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],vC={};Ee(vC,{json:()=>lq});var lq=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],wC={};Ee(wC,{json:()=>uq});var uq=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],kC={};Ee(kC,{json:()=>pq});var pq=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],IC={};Ee(IC,{json:()=>cq});var cq=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],SC={};Ee(SC,{json:()=>dq});var dq=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],NC={};Ee(NC,{json:()=>hq});var hq=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],TC={};Ee(TC,{json:()=>mq});var mq=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],CC={};Ee(CC,{json:()=>fq});var fq=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"MatrixBandPart",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"numLower",type:"tensor"},{start:1,name:"numUpper",type:"tensor"}]}],_C={};Ee(_C,{json:()=>gq});var gq=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],EC={};Ee(EC,{json:()=>bq});var bq=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],AC={};Ee(AC,{json:()=>yq});var yq=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]},{tfOpName:"TensorScatterUpdate",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],FC={};Ee(FC,{json:()=>xq});var xq=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],$C={};Ee($C,{json:()=>vq});var vq=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],DC={};Ee(DC,{json:()=>wq});var wq=[{tfOpName:"StaticRegexReplace",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"pattern",name:"pattern",type:"string"},{tfName:"rewrite",name:"rewrite",type:"string"},{tfName:"replace_global",name:"replaceGlobal",type:"bool"}]},{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],RC={};Ee(RC,{json:()=>kq});var kq=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],WI=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[gC,bC,yC,xC,vC,wC,kC,IC,SC,NC,TC,CC,_C,EC,AC,FC,$C,DC,RC],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,b)=>{let[y,,x]=_r(g),w=i[y];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${y}:${I}`;f.inputNames[b]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=_r(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=_r(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=fC(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Vx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Vx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Xx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Xx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Gx(e.attr,r.tfName,r.defaultValue||0),i===void 0&&r.tfDeprecatedName&&(i=Gx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Kx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Kx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Ux(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Ux(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Zx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Zx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=jx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=jx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Yx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Yx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Hx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=Hx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=qx(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=qx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=BI(e.attr,r.tfName,r.defaultValue),i===void 0&&r.tfDeprecatedName&&(i=BI(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=_r(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:w1(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=_r(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let b=`${h}:${g}`;p.inputNames[c]=b}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=_r(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Iq(e){let t=G().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function MC(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Iq(e);return t?n:n.toLowerCase()}function Vx(e,t,n,a=!1){let r=e[t];return r!=null?MC(r.s,a):n}function Ux(e,t,n){let a=e[t];return a?a.b:n}function Gx(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function w1(e){switch(typeof e=="string"&&(e=Ca[e]),e){case Ca.DT_FLOAT:case Ca.DT_HALF:return"float32";case Ca.DT_INT32:case Ca.DT_INT64:case Ca.DT_INT8:case Ca.DT_UINT8:return"int32";case Ca.DT_BOOL:return"bool";case Ca.DT_DOUBLE:return"float32";case Ca.DT_STRING:return"string";default:return null}}function BI(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Hx(e,t,n){let a=e[t];return a&&a.type?w1(a.type):n}function qx(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>w1(r)):n}function PC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function jx(e,t,n){let a=e[t];return a&&a.shape?PC(a.shape):n}function Kx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Xx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>MC(s,a)):n}function Yx(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>PC(r)):n}function Zx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Sq=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return dn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return dn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Gx(this.node.rawAttrs,e,t);if(n.s!=null)return Vx(this.node.rawAttrs,e,t);if(n.b!=null)return Ux(this.node.rawAttrs,e,t);if(n.shape!=null)return jx(this.node.rawAttrs,e,t);if(n.type!=null)return Hx(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Kx(this.node.rawAttrs,e,t);if(n.list.s!=null)return Xx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Yx(this.node.rawAttrs,e,t);if(n.list.b!=null)return Zx(this.node.rawAttrs,e,t);if(n.list.type!=null)return qx(this.node.rawAttrs,e,t)}return t}},rn={};Ee(rn,{OP_SCOPE_SUFFIX:()=>Iv,abs:()=>zt,acos:()=>Ev,acosh:()=>Av,add:()=>X,addN:()=>gN,all:()=>Zm,any:()=>xc,argMax:()=>ui,argMin:()=>Fv,asin:()=>$v,asinh:()=>Dv,atan:()=>Rv,atan2:()=>Mv,atanh:()=>Pv,avgPool:()=>ya,avgPool3d:()=>Lv,basicLSTMCell:()=>vN,batchNorm:()=>Cs,batchNorm2d:()=>zv,batchNorm3d:()=>Wv,batchNorm4d:()=>Bv,batchToSpaceND:()=>rd,bincount:()=>Vv,booleanMaskAsync:()=>lT,broadcastArgs:()=>wN,broadcastTo:()=>ti,buffer:()=>ze,cast:()=>ie,ceil:()=>Uv,clipByValue:()=>nn,clone:()=>or,complex:()=>Dr,concat:()=>Je,concat1d:()=>Gv,concat2d:()=>Hv,concat3d:()=>qv,concat4d:()=>jv,conv1d:()=>Jm,conv2d:()=>Rt,conv2dTranspose:()=>Qm,conv3d:()=>Xv,conv3dTranspose:()=>Yv,cos:()=>sd,cosh:()=>ef,cosineWindow:()=>If,cumprod:()=>kc,cumsum:()=>tf,denseBincount:()=>om,depthToSpace:()=>Zv,depthwiseConv2d:()=>_s,diag:()=>IN,dilation2d:()=>Jv,div:()=>he,divNoNan:()=>Qv,dot:()=>ew,dropout:()=>Aw,einsum:()=>NN,elu:()=>lp,enclosingPowerOfTwo:()=>Fw,equal:()=>ea,erf:()=>tw,euclideanNorm:()=>rw,exp:()=>yn,expandDims:()=>Qt,expm1:()=>sw,eye:()=>nf,fft:()=>md,fill:()=>xn,floor:()=>pp,floorDiv:()=>Ym,fused:()=>Hl,gather:()=>cp,gatherND:()=>dT,greater:()=>_n,greaterEqual:()=>Mr,ifft:()=>Gl,imag:()=>id,image:()=>Fa,inTopKAsync:()=>hT,irfft:()=>bf,isFinite:()=>iw,isInf:()=>ow,isNaN:()=>lw,leakyRelu:()=>od,less:()=>Wl,lessEqual:()=>Es,linalg:()=>Rw,linspace:()=>AN,localResponseNormalization:()=>uw,log:()=>ta,log1p:()=>ld,logSigmoid:()=>pw,logSoftmax:()=>rf,logSumExp:()=>sf,logicalAnd:()=>Da,logicalNot:()=>ud,logicalOr:()=>of,logicalXor:()=>cw,losses:()=>NT,lowerBound:()=>$N,matMul:()=>$e,max:()=>fa,maxPool:()=>Mt,maxPool3d:()=>dw,maxPoolWithArgmax:()=>DN,maximum:()=>mr,mean:()=>Et,meshgrid:()=>RN,min:()=>zl,minimum:()=>hs,mirrorPad:()=>hw,mod:()=>mw,moments:()=>pd,movingAverage:()=>uT,mul:()=>z,multiRNNCell:()=>MN,multinomial:()=>PN,neg:()=>yt,norm:()=>up,notEqual:()=>hi,oneHot:()=>Bl,ones:()=>Qn,onesLike:()=>na,op:()=>L,outerProduct:()=>ON,pad:()=>xa,pad1d:()=>LN,pad2d:()=>zN,pad3d:()=>WN,pad4d:()=>BN,pool:()=>fw,pow:()=>Rr,prelu:()=>dd,print:()=>Cv,prod:()=>gw,raggedGather:()=>VN,raggedRange:()=>UN,raggedTensorToTensor:()=>GN,rand:()=>HN,randomGamma:()=>XN,randomNormal:()=>uf,randomStandardNormal:()=>YN,randomUniform:()=>dp,range:()=>mi,real:()=>Vl,reciprocal:()=>ww,relu:()=>Ke,relu6:()=>pf,reshape:()=>W,reverse:()=>ba,reverse1d:()=>ZN,reverse2d:()=>JN,reverse3d:()=>QN,reverse4d:()=>eT,rfft:()=>fd,round:()=>cf,rsqrt:()=>df,scalar:()=>ve,scatterND:()=>pT,searchSorted:()=>lf,selu:()=>hf,separableConv2d:()=>As,setdiff1dAsync:()=>tT,sigmoid:()=>ma,sign:()=>kw,signal:()=>ST,sin:()=>mf,sinh:()=>ff,slice:()=>Ve,slice1d:()=>hd,slice2d:()=>gf,slice3d:()=>zo,slice4d:()=>Ul,softmax:()=>Xa,softplus:()=>Lo,spaceToBatchND:()=>cd,sparse:()=>TT,sparseToDense:()=>cT,spectral:()=>IT,split:()=>zn,sqrt:()=>mn,square:()=>ut,squaredDifference:()=>yf,squeeze:()=>Fs,stack:()=>Dt,step:()=>Wo,stridedSlice:()=>Iw,string:()=>CT,sub:()=>pe,sum:()=>fe,tan:()=>Sw,tanh:()=>ci,tensor:()=>bn,tensor1d:()=>je,tensor2d:()=>$a,tensor3d:()=>gd,tensor4d:()=>Ma,tensor5d:()=>nT,tensor6d:()=>aT,tensorScatterUpdate:()=>sT,tile:()=>Ln,topk:()=>Tw,transpose:()=>De,truncatedNormal:()=>wf,unique:()=>Cw,unsortedSegmentSum:()=>kf,unstack:()=>ct,upperBound:()=>iT,variable:()=>_w,where:()=>tn,whereAsync:()=>Ew,zeros:()=>Nt,zerosLike:()=>qe});var Nq=(e,t,n,a=rn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tq=(e,t,n,a=rn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(dn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(dn(e.inputNames[0],t,n))];case"IsInf":return[a.isInf(dn(e.inputNames[0],t,n))];case"IsFinite":return[a.isFinite(dn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Aa(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];v.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function VI(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jp(e,t,n){let a=Jx(e,n),r=!VI(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=Jx(s.shape,a)}),!VI(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function Jx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Cq=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ve(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Aa(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return bn([],[0].concat(this.elementShape));let n=this.readMany(e);return Aa(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Dt(n,0)}concat(e){if(e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return bn([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return Aa(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Je(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ct(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=[0,o===0?0:a[o-1],0],u=[1,e[o],r];s[o]=W(Ve(t,l,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Yl=class{get id(){return this.idTensor.id}constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Aa(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=ve(0),this.maxNumElements=a,Ht(this.idTensor)}copy(){return new Yl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Aa(e,this.elementShape,"TensorList shape mismatch: ");let a=Jp(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return Dt(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Aa(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Aa(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new Yl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Aa(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Jp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Aa(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Aa(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Jp(this.elementShape,this.tensors,n);return e.length===0?bn([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return Dt(r,0)})}concat(e,t){if(e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Aa(this.elementShape,t,"TensorList shape mismatch: ");let n=Jp(this.elementShape,this.tensors,t);return this.size()===0?bn([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Je(a,0)})}};function _q(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Aa(r,t,"TensorList shape mismatch: ");let s=ct(e);return new Yl(s,t,a)}function Eq(e,t,n,a){return new Yl([],e,t,a)}function Aq(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Yl([],n,e.dtype,a),i=ct(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Fq(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Jx(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d<t.length;++d){let c=[0,d===0?0:r[d-1],0],h=[1,t[d],o];p[d]=W(Ve(e,c,h),i)}return e.dispose(),p}),u=new Yl([],n,e.dtype,t.length);for(let p=0;p<l.length;p++)u.setItem(p,l[p]);return u}var $q=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Er(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Er(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>dn(r,t,n)!==void 0);if(a){let r=dn(a,t,n);return[Er(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Er(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Er(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Er(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new Cq(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,ve(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ve(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=Aq(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=Eq(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=_q(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=Fq(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[ve(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function UI(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=Hh(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var Dq=(e,t,n,a=rn)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=Hh(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=UI(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=UI(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=Hh(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=Hh(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rq=(e,t,n,a=rn)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hx(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Mq=async(e,t,n,a,r=rn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=hx(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=hx(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=hx(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pq=(e,t,n,a=rn)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oq=(e,t,n,a=rn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[dn(e.name,t,n)||r];case"Placeholder":return[dn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Er(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Er(p));case"Snapshot":let s=k("x",e,t,n);return[Er(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;p<o.length;p++)console.log(Array.prototype.slice.call(o[p].dataSync()).slice(0,u));return[i];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lq=class{get id(){return this.handle.id}constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ve(0),this.tensorMap=new Map,Ht(this.handle)}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ve(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ct(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Ht(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return P(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return Dt(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},zq=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new Lq(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wq=(e,t,n,a=rn)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bq=(e,t,n,a=rn)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vq=(e,t,n,a=rn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];case"MatrixBandPart":return[a.linalg.bandPart(k("a",e,t,n),k("numLower",e,t,n),k("numUpper",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Uq=(e,t,n,a=rn)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gq=(e,t,n,a=rn)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=a.raggedGather(k("paramsNestedSplits",e,t,n),k("paramsDenseValues",e,t,n),k("indices",e,t,n),k("outputRaggedRank",e,t,n));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=a.raggedRange(k("starts",e,t,n),k("limits",e,t,n),k("splits",e,t,n));return[r,s]}case"RaggedTensorToTensor":return[a.raggedTensorToTensor(k("shape",e,t,n),k("values",e,t,n),k("defaultValue",e,t,n),k("rowPartitionTensors",e,t,n),k("rowPartitionTypes",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hq=(e,t,n,a=rn)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qq=(e,t,n,a=rn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o<r.length;o++)r[o]&&s.push(o);let i=k("x",e,t,n);return[a.reverse(i,s)]}case"ReverseV2":{let r=k("axis",e,t,n),s=k("x",e,t,n);return[a.reverse(s,r)]}case"Slice":{let r=k("begin",e,t,n),s=k("size",e,t,n);return[a.slice(k("x",e,t,n),r,s)]}case"StridedSlice":{let r=k("begin",e,t,n),s=k("end",e,t,n),i=k("strides",e,t,n),o=k("beginMask",e,t,n),l=k("endMask",e,t,n),u=k("ellipsisMask",e,t,n),p=k("newAxisMask",e,t,n),d=k("shrinkAxisMask",e,t,n),c=k("x",e,t,n);return[a.stridedSlice(c,r,s,i,o,l,u,p,d)]}case"Pack":return P(()=>{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}case"TensorScatterUpdate":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("tensor",e,t,n);return[a.tensorScatterUpdate(i,r,s)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jq=(e,t,n,a=rn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kq=(e,t,n,a=rn)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xq=(e,t,n,a=rn)=>{switch(e.op){case"StaticRegexReplace":return[a.string.staticRegexReplace(k("input",e,t,n),k("pattern",e,t,n),k("rewrite",e,t,n),k("replaceGlobal",e,t,n))];case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Yq=(e,t,n,a=rn)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function GI(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>Nq(i,o,l));case"basic_math":return r(()=>Tq(i,o,l));case"control":return $q(i,o,l);case"convolution":return r(()=>Dq(i,o,l));case"creation":return r(()=>Rq(i,o,l));case"dynamic":return Mq(i,o,l);case"evaluation":return r(()=>Pq(i,o,l));case"image":return r(()=>Wq(i,o,l));case"graph":return r(()=>Oq(i,o,l));case"logical":return r(()=>Bq(i,o,l));case"matrices":return r(()=>Vq(i,o,l));case"normalization":return r(()=>Uq(i,o,l));case"ragged":return r(()=>Gq(i,o,l));case"reduction":return r(()=>Hq(i,o,l));case"slice_join":return r(()=>qq(i,o,l));case"sparse":return r(()=>jq(i,o,l));case"spectral":return r(()=>Kq(i,o,l));case"string":return r(()=>Xq(i,o,l));case"transformation":return r(()=>Yq(i,o,l));case"hash_table":return zq(i,o,l,a);case"custom":let u=fC(i.op);if(u&&u.customExecutor)return u.customExecutor(new Sq(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var HI=class{constructor(e={},t={},n={},a={},r){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.parseNodeNameCache=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function qI(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=new Set(Object.keys(e).map(c=>Zn(c)[0]));a=a||[];let p=new Set(a.map(c=>Zn(c.name)[0])),d=[...t];for(;d.length>0;){let c=d.pop();if((Al(c)||rj(c)||sj(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&!u.has(c.name)&&!p.has(c.name)){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Zq(e,t){let{usedNodes:n,inputs:a}=t,r=Object.keys(a).map(g=>Zn(g)[0]).map(g=>e.nodes[g]),s=e.initNodes||[],i=g=>n.has(typeof g=="string"?g:g.name);function o(g){return[...new Map(g.map(b=>[b.name,b])).values()]}let l=o([...r,...e.weights,...s]).filter(i),u=o([...l,...Object.values(e.nodes)]).filter(i),p=new Map(u.map(g=>[g.name,g])),d={};for(let g of u){d[g.name]=d[g.name]||0;for(let b of g.children)i(b)||(d[b.name]=Number.POSITIVE_INFINITY),d[b.name]=(d[b.name]||0)+1}let c=Object.entries(d).filter(([,g])=>g===0).map(([g])=>g),h=[...c];for(;c.length>0;){let g=c.pop(),b=p.get(g);for(let y of b.children.filter(i))--d[y.name]===0&&(h.push(y.name),c.push(y.name))}let m=h.map(g=>p.get(g)),f=Jq(m,l);return Qq(f,l),f}function Jq(e,t){let n=new Map(e.map(s=>[s.name,s])),a=t.map(s=>s.name),r=new Set(a);for(;a.length>0;){let s=a.pop(),i=n.get(s);for(let o of i.children)!n.has(o.name)||r.has(o.name)||(r.add(o.name),a.push(o.name))}return e.filter(s=>r.has(s.name))}var Ph=class extends Error{constructor(e){super(`NodesExecutionOrderError: ${e}`)}};function Qq(e,t){let n=new Map(e.map((o,l)=>[o.name,l])),a=new Set(t.map(o=>o.name)),r=o=>a.has(typeof o=="string"?o:o.name),s=new Set(e.map(o=>o.name)),i=o=>s.has(typeof o=="string"?o:o.name);for(let o of e){for(let l of o.children.filter(i)){if(!n.has(l.name))throw new Ph(`Child ${l.name} of node ${o.name} is unreachable.`);if(n.get(o.name)>n.get(l.name))throw new Ph(`Node ${o.name} is scheduled to run after its child ${l.name}.`)}if(!r(o))for(let l of o.inputs){if(!n.has(l.name))throw new Ph(`Input ${l.name} of node ${o.name} is unreachable.`);if(n.get(l.name)>n.get(o.name))throw new Ph(`Node ${o.name} is scheduled to run before its input ${l.name}.`)}}}function ej(e){let t=new Map(e.map((o,l)=>[o.name,l])),n=Number.MAX_SAFE_INTEGER,a=e.map((o,l)=>Al(o)?n:l),r=o=>{let l=a[t.get(o.name)];return l==null?-1:l},s=e.map((o,l)=>o.children.map(r).reduce((u,p)=>Math.max(u,p),a[l])),i=new Map;for(let o=0;o<e.length;++o){let l=s[o];if(l===n)continue;let u=e[o],p=e[l];i.has(p.name)||i.set(p.name,[]),i.get(p.name).push(u.name)}return i}var tj=new Set(["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"]),nj=new Set(["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"]),aj=new Set(["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"]);function Al(e){return tj.has(e.op)}function rj(e){return nj.has(e.op)}function sj(e){return aj.has(e.op)}var Qx=class{get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this.parseNodeNameCache=new Map,this._weightMap={},this.SEPARATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Qx(e.functions[n],this)})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPARATOR)+"--"+a.join(this.SEPARATOR)}compile(e,t){let n=qI(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let l=t.map(p=>p.name),u=Object.keys(e);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${u}]. Missing the following inputs: [${a}]`)}let i=Zq(this.graph,n),o=ej(i);return{orderedNodes:i,nodeLiveUntilMap:o}}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return Ht(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,n])=>[t,this.cloneTensorList(n)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Zn(d)[0]]),r=t.map(d=>Zn(d)[0]),s=new Set(r),i=r.map(d=>this.graph.nodes[d]);i.length===0&&(i=this._outputs);let o=this.getCompilationKey(a,i),l=this.compiledMap.get(o);l==null&&(l=this.compile(e,i),this.compiledMap.set(o,l));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let u={},p={};return P(()=>{let d=new HI(this.weightMap,u,p,this.functionExecutorMap,this.parseNodeNameCache),c=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(g=>{let[b,y]=Zn(g,d),x=[];x[y]=e[g],c[b]=x,this.keepIntermediateTensors&&(this.clonedTensorsMap[b]=this.cloneTensorList(x))});let h=this.getFrozenTensorIds(c),{orderedNodes:m,nodeLiveUntilMap:f}=l;for(let g of m){if(c[g.name])continue;let b=GI(g,c,d,this._resourceManager);if(v.isPromise(b))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);c[g.name]=b,this.keepIntermediateTensors&&(this.clonedTensorsMap[g.name]=this.cloneTensorList(b)),this.checkTensorForDisposalWithNodeLiveUntilInfo(g,c,d,h,s,f.get(g.name))}return this.parent==null&&d.dispose(h),t.map(g=>dn(g,c,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){if(!(Al(t)||s.has(e))){for(let o of n[e])o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length);for(let o of t.inputs){if(Al(o))continue;let l=zI(o.name,n,a);if(l!=null)for(let u of l){if(!u||u.kept||r.has(u.id))continue;let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}}}}checkTensorForDisposalWithNodeLiveUntilInfo(e,t,n,a,r,s){if(!(Al(e)||r.has(e.name))&&s!=null)for(let i of s){let o=zI(i,t,n);for(let l of o)!l||l.kept||a.has(l.id)||l.dispose()}}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){this.clonedTensorsMap&&(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,n=!1,a={},r={}){this.disposeIntermediateTensors(),n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=G().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let s=new HI(this.weightMap,a,r,this.functionExecutorMap,this.parseNodeNameCache);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,n),o=t.map(d=>dn(d,i,s)),l=o.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(d=>{d.forEach(c=>{c&&!c.isDisposed&&!p.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(x=>this.graph.nodes[Zn(x)[0]]),i=n.map(x=>Zn(x)[0]),o=new Set(i),l=i.map(x=>this.graph.nodes[x]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:p,dynamicNode:d,syncInputs:c}=qI(e,l,this.weightMap,this._initNodes),h=[...s,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),m=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[w,I]=Zn(x),T=[];T[I]=e[x],m[w]=T});let f={},g=this.getFrozenTensorIds(m),b={};for(;h.length>0;){let x=this.processStack(s,h,t,m,b,g,o,f,u);await Promise.all(x)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=l.filter(x=>!Al(x)&&!dn(x.name,m,t)).map(x=>x.name);if(y.length>0){let x="";throw d!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${c}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${p}]. ${x}`)}return m}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=_r(p.node.name,n)),a[p.node.name]==null){let c=GI(p.node,a,n,this._resourceManager);d||([d]=_r(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(m)),n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(c)),this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=_r(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!dn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!dn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Zn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){var t,n;let a={};for(let r in e){let s=(n=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||n===void 0?void 0:n[r];s!=null?a[s.name]=e[r]:a[r]=e[r]}return a}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Zn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var n,a;let r=(a=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||a===void 0?void 0:a[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[n]=Zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},ij=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},oj="?tfjs-format=file",lj="model.json",k1=class{get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}constructor(e,t={},n=qt){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new ij}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Qx(WI.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=WI.Instance.transformGraph(e.modelInitializer);this.initializer=new Qx(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof Te?[e]:e,n={};return t.forEach((a,r)=>n[this.structuredOutputKeys[r]]=a),n}return e}predict(e,t){let n=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(e,t){let n=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(e){var t;if(!(e instanceof Te)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let n=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${e.length} input tensors provided.`);let a=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[a++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,n=Object.keys(t);for(let a=0;a<n.length;a++){let r=n[a],s=t[r];this.resourceIdToCapturedInput[s.resourceId]=e[a]}}}execute(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(this.executeInitializerGraph()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&_e(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function uj(e,t={},n=qt){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=cj(e));let a=new k1(e,t,n);return await a.load(),a}function pj(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=qt.getWeightSpecs(a.weightsManifest),i=qt.getModelArtifactsForJSONSync(a,s,r);t=qt.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=qt.fromMemorySync(e);else throw new Error("Unknown model format");let n=new k1(t);return n.load(),n}function cj(e){return e.endsWith("/")||(e=e+"/"),`${e}${lj}${oj}`}var dj="4.3.0",OC={};Ee(OC,{CSVDataset:()=>qC,Dataset:()=>gp,FileDataSource:()=>QC,TextLineDataset:()=>HC,URLDataSource:()=>e_,array:()=>Mj,csv:()=>qj,func:()=>jj,generator:()=>Kj,microphone:()=>Yj,version_data:()=>Zj,webcam:()=>Xj,zip:()=>Pj});var hj=vs(_m()),mj=vs(_m());function fj(e,t){return ym(e,t)}function ym(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Zl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=ym(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function gj(e,t=zC){return LC(e,t)}function LC(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Zl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=LC(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function zC(e){return e===null?null:Zl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function WC(e,t){let n=new Map;ym(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return ym(e,t,n)}function Zl(e){let t=!1;if(G().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=FS();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Te)&&!(e instanceof Promise)&&!t)}function bj(e){return e==null||yj(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Te||v.isTypedArray(e)}function yj(e){return e===null||typeof e!="object"&&typeof e!="function"}function xj(e){return fj(e,vj)}function vj(e){return e instanceof Te?{value:e.clone(),recurse:!1}:Zl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var BC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},I1=class extends BC{constructor(){super(I1.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};I1.INITIAL_CAPACITY=32;function VC(e){return new Ij(e)}function S1(e){return new Sj(e)}function wj(e,t){return new UC(e,t)}function kj(e,t=rs.FAIL){return new Dj(e,t)}var an=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Fj(this,e)}filter(e){return new Ej(this,e)}map(e){return new Aj(this,e)}mapAsync(e){return new jI(this,e)}serialMapAsync(e){return new jI(this,e).serial()}flatmap(e){return new $j(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new _j(this,e,t)}columnMajorBatch(e,t=!0,n=zC){return this.rowMajorBatch(e,t).map(a=>gj(a,n))}concatenate(e,t){return new UC(VC([this,e]),t)}take(e){return e<0||e==null?this:new Cj(this,e)}skip(e){return e<0||e==null?this:new Tj(this,e)}prefetch(e){return new GC(this,e)}shuffle(e,t){return new Rj(this,e,t)}serial(){return new Nj(this)}},Ij=class extends an{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:xj(e),done:!1}}},Sj=class extends an{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Nj=class extends an{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Tj=class extends an{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;_e(e.value)}return this.upstream.next()}},Cj=class extends an{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},_j=class extends an{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Ej=class extends an{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;_e(e.value)}}},Aj=class extends an{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Fj=class extends an{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},jI=class extends an{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},N1=class extends an{constructor(){super(),this.outputQueue=new I1,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},$j=class extends N1{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return!0}},UC=class extends an{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var Dj=class extends an{constructor(e,t=rs.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof an?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await WC(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},GC=class extends an{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new BC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Rj=class extends GC{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=mj.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},gp=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Yn(async()=>(await n.iterator()).columnMajorBatch(e,t,Oj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Yn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Yn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Yn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Yn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Yn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Yn(async()=>{let a=S1(async()=>({value:await t.iterator(),done:!1}));return wj(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Yn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=hj.alea(t||v.now().toString());return Yn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Yn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};gp.MAX_BUFFER_SIZE=1e4;function Yn(e,t=null){return new class extends gp{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function Mj(e){return Yn(async()=>VC(e),e.length)}function Pj(e){if(!Zl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Yn(async()=>{let n=await WC(e,a=>{if(a instanceof gp)return{value:a.iterator(),recurse:!1};if(Zl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return kj(n,rs.SHORTEST)},t)}function Oj(e){if(e===null)return null;let t=e[0];return bj(t)?{value:Lj(e),recurse:!1}:{value:null,recurse:!0}}function Lj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Te?Dt(e):bn(e)}var HC=class extends gp{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Oh='"',Qp=Symbol("out"),KI=Symbol("field"),Lh=Symbol("quote"),mx=Symbol("quoteafterquote"),XI=Symbol("quoteinquote"),qC=class extends gp{async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new HC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Qp;for(let i=0;i<r;i++)switch(s){case Qp:switch(e.charAt(i)){case Oh:a=i+1,s=Lh;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Qp;break;default:s=KI,a=i;break}break;case KI:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Qp,a=i+1;break;default:}break;case Lh:switch(e.charAt(i)){case Oh:s=mx;break;default:}break;case mx:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Qp,a=i+1;break;case Oh:s=Lh;break;default:s=XI;break}break;case XI:switch(e.charAt(i)){case Oh:s=Lh;break;default:}break;default:}if(s===mx?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},jC=class extends an{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!G().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new jC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),bn(n,t)}},KC=class extends an{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=je([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=$a([s,r,o,i],[1,4])}else this.cropBox=$a([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!G().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new KC(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Bo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(ie(e,"float32"),0),n;n=Fa.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},XC=class{},YC=class extends an{split(e){return new zj(this,e)}},zj=class extends YC{constructor(e,t){super(),this.upstream=e,this.impl=new Wj(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Wj=class extends N1{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Bj=class extends an{decodeUTF8(){return new Vj(this)}},Vj=class extends YC{constructor(e){super(),this.upstream=e,this.impl=new Uj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Uj=class extends N1{constructor(e){if(super(),this.upstream=e,G().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=FS();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return G().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},ZC=class extends Bj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(G().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function Gj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=Hj(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new ZC(i,t)}else throw new Error(s.statusText)}var Hj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function JC(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var QC=class extends XC{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(JC(this.input)&&G().get("IS_NODE")){let e=gv();this.input=e.readFileSync(this.input.slice(7))}return new ZC(this.input,this.options)}},e_=class extends XC{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return JC(this.url)?new QC(this.url,this.fileOptions).iterator():Gj(this.url,this.fileOptions)}};function qj(e,t={}){return new qC(new e_(e),t)}function jj(e){let t=S1(e);return Yn(async()=>t)}function Kj(e){return Yn(async()=>{let t=await e();return S1(()=>t.next())})}async function Xj(e,t){return KC.create(e,t)}async function Yj(e){return jC.create(e)}var Zj="4.3.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Jj=fr.whereImpl,Kf=class extends $c{nextDataId(){return Kf.nextDataId++}constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Em(this,Ea())}write(e,t,n){this.firstUse&&(this.firstUse=!1,G().get("IS_NODE")&&N.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return v.convertBackendValuesAndArrayBuffer(this.data.get(e).values,t)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}makeOutput(e,t,n){return Ea().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return Jj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Kf.nextDataId=0;var T1={};Ee(T1,{addImpl:()=>a_,bincountImpl:()=>_1,bincountReduceImpl:()=>r_,castImpl:()=>n_,ceilImpl:()=>s_,concatImpl:()=>E1,equalImpl:()=>i_,expImpl:()=>l_,expm1Impl:()=>p_,floorDivImpl:()=>d_,floorImpl:()=>c_,gatherNdImpl:()=>h_,gatherV2Impl:()=>m_,greaterEqualImpl:()=>g_,greaterImpl:()=>f_,lessEqualImpl:()=>y_,lessImpl:()=>b_,linSpaceImpl:()=>x_,logImpl:()=>v_,maxImpl:()=>w_,maximumImpl:()=>k_,minimumImpl:()=>I_,multiplyImpl:()=>A1,negImpl:()=>S_,notEqualImpl:()=>N_,prodImpl:()=>T_,raggedGatherImpl:()=>C_,raggedRangeImpl:()=>__,raggedTensorToTensorImpl:()=>E_,rangeImpl:()=>$1,rsqrtImpl:()=>A_,scatterImpl:()=>ei,sigmoidImpl:()=>K5,simpleAbsImpl:()=>t_,sliceImpl:()=>vm,sparseFillEmptyRowsImpl:()=>$_,sparseReshapeImpl:()=>D_,sparseSegmentReductionImpl:()=>D1,sqrtImpl:()=>Z5,squaredDifferenceImpl:()=>R_,staticRegexReplaceImpl:()=>M_,stridedSliceImpl:()=>P_,stringNGramsImpl:()=>R1,stringSplitImpl:()=>M1,stringToHashBucketFastImpl:()=>P1,subImpl:()=>O_,tileImpl:()=>L_,topKImpl:()=>W_,transposeImpl:()=>F1,uniqueImpl:()=>L1});function t_(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var Qj=e=>{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=t_(r),n.makeOutput(a,t.shape,t.dtype)},e5={kernelName:au,backendName:"cpu",kernelFunc:Qj};function Gt(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let b=0;b<p.length;++b)p[b]=e(a[b%a.length],r[b%r.length]);else for(let b=0;b<p.length;++b){let y=v.indexToLoc(b,o,l),x=y.slice(-d);f.forEach(C=>x[C]=0);let w=v.locToIndex(x,d,h),I=y.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[b]=e(a[w],r[T])}return[p,i]}}function Jn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var t5={kernelName:Dm,backendName:"cpu",kernelFunc:Jn};function xm(e,t,n="float32"){if(n==="complex64"){let r=xm(e,t,"float32"),s=xm(e,t,"float32");return Jn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function dr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var n5={kernelName:Yi,backendName:"cpu",kernelFunc:dr};function gi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var a5={kernelName:qm,backendName:"cpu",kernelFunc:gi};function n_(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Gt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function ys(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return dr({inputs:{x:r},backend:n});let p=xm(n,r.shape,r.dtype),d=ys({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Jn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=gi({inputs:{input:r},backend:n}),d=ys({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=dr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=n_(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var r5={kernelName:$i,backendName:"cpu",kernelFunc:ys};function sn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=ys({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=ys({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(b.dataId).values,w=l.data.get(y.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),E=l.makeTensorInfo(C,"float32",I),F=l.makeTensorInfo(C,"float32",T),D=Jn({inputs:{real:E,imag:F},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(F),D}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function C1(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),b=t.length,y=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;I<d.length;I++){let T=I%f.length,C=I%g.length,E=e(f[T*2],f[T*2+1],g[C*2],g[C*2+1]);d[I]=E.real,c[I]=E.imag}else for(let I=0;I<d.length;I++){let T=v.indexToLoc(I,u,p),C=T.slice(-b);h.forEach(S=>C[S]=0);let E=v.locToIndex(C,b,y),F=T.slice(-x);m.forEach(S=>F[S]=0);let D=v.locToIndex(F,x,w),$=e(f[E*2],f[E*2+1],g[D*2],g[D*2+1]);d[I]=$.real,c[I]=$.imag}return[d,c,o]}}var a_=Gt((e,t)=>e+t),s5=C1((e,t,n,a)=>({real:e+n,imag:t+a})),Jl=sn(ks,a_,s5),i5={kernelName:ks,backendName:"cpu",kernelFunc:Jl};function _1(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function r_(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=ze([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function br(e){return(t,n,a)=>{let r=v.getArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function it(e,t,n){let a=br(t);return $s(e,a,n)}function $s(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;ge(i,e);let o=s,l=o.data.get(i.dataId).values,u;if(i.dtype==="string"){if(!Array.isArray(l))throw new Error("String tensor's value was not an instance of Array");u=N.fromUint8ToStringArray(l)}else u=l;let p=n||i.dtype,d=t(u,p,r);return o.makeTensorInfo(i.shape,p,d)}}var s_=br(e=>Math.ceil(e)),o5=$s(Di,s_),l5={kernelName:Di,backendName:"cpu",kernelFunc:o5};function E1(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let p=u*t[1]+s;for(let d=0;d<i.shape[1];++d)r[p+d]=o[l++]}s+=i.shape[1]})}return r}var i_=Gt((e,t)=>e===t?1:0),o_=sn(xu,i_,null,"bool"),u5={kernelName:xu,backendName:"cpu",kernelFunc:o_},l_=br(e=>Math.exp(e)),u_=$s(Gi,l_,"float32"),p5={kernelName:Gi,backendName:"cpu",kernelFunc:u_},p_=br(e=>Math.expm1(e)),c5=$s(Hi,p_),d5={kernelName:Hi,backendName:"cpu",kernelFunc:c5},c_=br(e=>Math.floor(e)),h5=$s(qi,c_),m5={kernelName:qi,backendName:"cpu",kernelFunc:h5},d_=Gt((e,t)=>Math.floor(e/t)),f5=sn(ji,d_,null,"int32"),g5={kernelName:ji,backendName:"cpu",kernelFunc:f5};function h_(e,t,n,a,r,s,i,o,l){let u=ze([a,s],n);for(let p=0;p<a;p++){let d=[],c=0;for(let h=0;h<r;h++){let m=e[p*r+h];c+=m*i[h],d.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;h<s;h++)u.values[p*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function m_(e,t,n){let a=ze(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);0<=u&&u<e.values.length&&(a.values[r]=e.values[u])}return a}var f_=Gt((e,t)=>e>t?1:0),b5=sn(Su,f_,null,"bool"),y5={kernelName:Su,backendName:"cpu",kernelFunc:b5},g_=Gt((e,t)=>e>=t?1:0),x5=sn(Xi,g_,null,"bool"),v5={kernelName:Xi,backendName:"cpu",kernelFunc:x5},b_=Gt((e,t)=>e<t?1:0),w5=sn(Nu,b_,null,"bool"),k5={kernelName:Nu,backendName:"cpu",kernelFunc:w5},y_=Gt((e,t)=>e<=t?1:0),I5=sn(Tu,y_,null,"bool"),S5={kernelName:Tu,backendName:"cpu",kernelFunc:I5};function x_(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var v_=br(e=>Math.log(e)),N5=$s(to,v_),T5={kernelName:to,backendName:"cpu",kernelFunc:N5};function w_(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var k_=Gt((e,t)=>Math.max(e,t)),C5=sn(so,k_),_5={kernelName:so,backendName:"cpu",kernelFunc:C5},I_=Gt((e,t)=>Math.min(e,t)),E5=sn(uo,I_),A5={kernelName:uo,backendName:"cpu",kernelFunc:E5},A1=Gt((e,t)=>e*t),F5=C1((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Xf=sn(co,A1,F5),$5={kernelName:co,backendName:"cpu",kernelFunc:Xf};function S_(e,t,n){let a=v.createScalarValue(-1,n);return A1([],t,a,e,n)}function D5(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=S_(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var R5={kernelName:Mu,backendName:"cpu",kernelFunc:D5},N_=Gt((e,t)=>e!==t?1:0),M5=sn(Pu,N_,null,"bool"),P5={kernelName:Pu,backendName:"cpu",kernelFunc:M5};function F1(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;p<i;++p){let d=v.indexToLoc(p,s,o),c=new Array(d.length);for(let m=0;m<c.length;m++)c[m]=d[a[m]];let h=v.locToIndex(c,s,l);u[h]=e[p]}return u}function Un(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ge(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[s[p]];let l=a.data.get(r.dataId).values,u=F1(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var O5={kernelName:Fr,backendName:"cpu",kernelFunc:Un};function T_(e,t,n,a){let[r,s]=N.computeOutAndReduceShapes(e,a),i=ga(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(r),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let p=u*l,d=1;for(let c=0;c<l;++c)d*=n[p+c];o[u]=d}return{outVals:o,outShape:r,outDtype:i}}function L5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"prod");let o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=N.getAxesPermutation(l,o),p=l,d=r,c=[];u!=null&&(d=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(d),p=N.getInnerMostAxes(p.length,o));let h=n.data.get(d.dataId).values,{outVals:m,outShape:f,outDtype:g}=T_(d.shape,d.dtype,h,p),b=f;return i&&(b=N.expandShapeToKeepDim(f,l)),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,m)}var z5={kernelName:bo,backendName:"cpu",kernelFunc:L5};function W5(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function B5(e,t){for(let n=0;n<e.length;++n){let a=e[n],r=n===e.length-1?t:e[n+1].length;if(a.length===0)throw new Error("Ragged splits may not be empty");if(a[0]<0)throw new Error("Ragged splits must be non-negative");if(a[a.length-1]>r)throw new Error("Ragged splits must not point past values");for(let s=1;s<a.length;++s)if(a[s-1]>a[s])throw new Error("Ragged splits must be sorted in ascending order")}}function V5(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);B5(n,a);let l=1;for(let u=0;u<t.length-1;++u){l*=t[u];let p=t[u+1];for(let d=1;d<l+1;++d)o[u].push(d*p)}for(let u=0;u<e.length;++u){let p=e[u],d=e[u]+1;for(let c=0;c<n.length;++c){let h=n[c],m=c+t.length-1;if(m>=0){let f=o[m],g=f[f.length-1]-h[p];for(let b=p;b<d;++b)o[m].push(h[b+1]+g)}p=h[p],d=h[d]}d!==p&&(r.push([p,d]),s+=d-p)}return{outSplits:o,valueSlices:r,numValues:s}}function U5(e){let t=[];for(let n=0;n<e.length;++n){let a=e[n].length,r=v.getArrayFromDType("int32",a);t.push(r),e[n].forEach((s,i)=>r[i]=s)}return t}function YI(e,t){let n=e.slice(0,t);for(;n.length<t;)n.push(1);for(let a=t;a<e.length;a++)n[t-1]*=e[a];return n}function G5(e,t,n,a,r,s){let i=YI(t,2)[1],o=YI(s,2)[1],l=0;for(let u of n)for(let p=u[0];p<u[1];++p){for(let d=0;d<a;++d)r[l*o+d]=e[p*i+d];++l}}function H5(e,t,n,a,r){let s=t.slice();s[0]=r;let i=v.getArrayFromDType(n,v.sizeFromShape(s)),o=e.length,l=o===0?0:o/t[0];return G5(e,t,a,l,i,s),[i,s]}function C_(e,t,n,a,r,s,i,o){if(e.length===0)throw new Error("paramsNestedSplits must be non empty");if(t[0].length===0)throw new Error("Split tensors must not be scalars");let l=t[0][0]-1;if(W5(s,i,l),a.length===0)throw new Error("params.rank must be nonzero");let u=a[0],{outSplits:p,valueSlices:d,numValues:c}=V5(s,i,e,u),h=U5(p),m=H5(n,a,r,d,c);return[h,m[0],m[1]]}var ZI=2147483647;function __(e,t,n,a,r,s,i){if(t.length>1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g<p.length;++g)if(p[g]!==p[g-1])throw new Error("starts, limits, and deltas must have the same shape");let d=p.length===0?1:p[0],c=v.getArrayFromDType("int32",d+1);c[0]=0;for(let g=0;g<d;++g){let b=o?e[0]:e[g],y=l?a[0]:a[g],x=u?s[0]:s[g];if(x===0)throw new Error("Requires delta != 0");let w;if(x>0&&y<b||x<0&&y>b)w=0;else if(w=Math.ceil(Math.abs((y-b)/x)),w>ZI)throw new Error(`Requires ((limit - start) / delta) <= ${ZI}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;g<d;++g){let b=c[g+1]-c[g],y=o?e[0]:e[g],x=u?s[0]:s[g];for(let w=0;w<b;++w)m[f++]=y,y+=x}return[c,m]}var Ta=N.RowPartitionType,ev=class{constructor(e,t,n,a,r,s,i,o,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=a,this.valuesDType=r,this.defaultValue=s,this.defaultValueShape=i,this.rowPartitionValues=o,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=N.getRowPartitionTypesHelper(u),this.raggedRank=N.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===Ta.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===Ta.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case Ta.VALUE_ROWIDS:return ev.getMaxWidthValueRowID(t);case Ta.ROW_SPLITS:return ev.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${Ta[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let a=0;a<t-1;++a){let r=e[a+1]-e[a];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s<t;++s){let i=e[s];i!==a&&(a=i,r=Math.max(s-n,r),n=s)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return QI(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;N.validateDefaultValueShape(n,t);let a=this.tensorShapeFromTensor(this.shape,this.shapeShape),r=N.combineRaggedTensorToTensorShapes(this.raggedRank,a,t);r[0]<0&&(r[0]=e);for(let s=1;s<=this.raggedRank;++s)r[s]<0&&(r[s]=this.getMaxWidth(s));return r}calculateFirstParentOutputIndex(e,t,n){let a=Math.min(e,n),r=[],s=0;for(let i=0;i<a;++i,s+=t)r.push(s);for(let i=a;i<e;++i)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i<r-1;++i){let o=e[i+1]-e[i],l=Math.min(a,o),u=t[i];u===-1&&(l=0);for(let p=0;p<l;++p)s.push(u),u+=n;for(let p=0;p<o-l;++p)s.push(-1)}if(r>0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u<r;++u){let p=e[u];if(p===o)l>=0&&(++i,i<a?l+=n:l=-1);else{if(i=0,o=p,p>=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Ta.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Ta.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Ta[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Ta.FIRST_DIM_SIZE:return e[0];case Ta.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Ta.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Ta[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=QI(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=ti(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h<l?t[h]:-1;if(m===c){++c;continue}if(d<c){let f=r.subarray(p*o),g=s.subarray(d*o),b=(c-d)*o;JI(g,f,b)}if(h>=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);JI(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function JI(e,t,n){for(let a=0;a<n;a++)e[a]=t[a]}function QI(e,t){let n=[];for(let a of e){if(a<0){if(!t)throw new Error(`Dimension ${a} must be >= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function E_(e,t,n,a,r,s,i,o,l,u){return new ev(e,t,n,a,r,s,i,o,l,u).compute()}function $1(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var A_=br(e=>1/Math.sqrt(e)),q5=$s(No,A_),j5={kernelName:No,backendName:"cpu",kernelFunc:q5};function ei(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return ze(n,t.dtype);let h=l instanceof Bt?l:ze(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m<s;m++){let f=[],g=0;for(let b=0;b<i;b++){let y=d[m*i+b];f.push(y),g+=y*o[b]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let b=0;b<r;b++)u?h.values[g*r+b]+=c[m*r+b]:h.values[g*r+b]=t.rank===0?c[0]:c[m*r+b]}return h}var K5=br(e=>1/(1+Math.exp(-e))),F_=it(Eo,e=>1/(1+Math.exp(-e))),X5={kernelName:Eo,backendName:"cpu",kernelFunc:F_};function vm(e,t,n,a,r){let s=Kt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=Kt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=ze(a,r,l),p=ze(n,r);for(let d=0;d<p.size;++d){let c=p.indexToLoc(d),h=c.map((m,f)=>m+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function bi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=Kt.parseSliceParams(r,s,i);Kt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=vm(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var Y5={kernelName:Xu,backendName:"cpu",kernelFunc:bi};function $_(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),b=v.getArrayFromDType(r,0);return[g,[0,d],b,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let b=e[g*d];if(b<0)throw new Error(N.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,l));++m[b],c=c&&b>=h,h=b}let f=!0;for(let g=0;g<l;++g){let b=m[g]===0;u[g]=b,f=f&&!b,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,b=a;for(let y=0;y<o;++y)p[y]=y;return[g,[o,d],b,u,p]}else{let g=m[l-1],b=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let w=0;w<o;++w){let I=e[w*d],T=x[I],C=(I===0?0:m[I-1])+T;x[I]++;for(let E=0;E<d;++E)b[C*d+E]=e[w*d+E];y[C]=a[w],p[w]=C}for(let w=0;w<l;++w)if(x[w]===0){let I=w===0?0:m[w-1];b[I*d+0]=w;for(let T=1;T<d;++T)b[I*d+T]=0;y[I]=i}return[b,[g,d],y,u,p]}}function D_(e,t,n,a,r){let s=v.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,p=-1;for(let f=0;f<o;++f){let g=r[f];if(g===-1){if(p!==-1)throw new Error(N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(p,f));p=f,l.push(1)}else{if(g<0)throw new Error(N.getSparseReshapeNegativeOutputDimErrorMessage(f,g));u*=g,l.push(g)}}if(p!==-1){if(u<=0)throw new Error(N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let f=Math.trunc(s/u);if(u*f!==s)throw new Error(N.getSparseReshapeInputOutputMultipleErrorMessage(a,l));l[p]=f}if(v.sizeFromShape(l)!==s)throw new Error(N.getSparseReshapeInputOutputMismatchErrorMessage(a,l));let d=a.length,c=[];if(d>0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f<i;++f){let g=0;for(let b=0;b<d;++b)g+=e[f*d+b]*c[b];for(let b=0;b<o;++b)m[f*o+b]=Math.trunc(g/h[b]),g%=h[b]}return[m,[i,o],l]}function D1(e,t,n,a,r,s=!1,i=0){let o=a.length,l=[t[0],e.length/t[0]],u=l[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((y,x)=>y*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,b=r[m];for(;;){let y=0;if(f<o){if(y=r[f],b===y){++f;continue}if(b>=y)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(b<0||b>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b,p));b>g&&h.fill(i,g*u,b*u);for(let x=m;x<f;++x){let w=a[x];if(w<0||w>=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;I<u;I++)h[b*u+I]+=e[w*u+I]}if(s)for(let x=0;x<u;x++)h[b*u+x]/=f-m;if(m=f,++f,g=b+1,b=y,f>o)break}return g<p&&h.fill(i,g*u,p*u),[h,d]}var Z5=br(e=>Math.sqrt(e)),J5=it(Fo,e=>Math.sqrt(e)),Q5={kernelName:Fo,backendName:"cpu",kernelFunc:J5},R_=Gt((e,t)=>{let n=e-t;return n*n}),eK=sn(Ro,R_),tK={kernelName:Ro,backendName:"cpu",kernelFunc:eK},M_=br((e,t)=>{let{pattern:n,replaceGlobal:a,rewrite:r}=t;return e.replace(new RegExp(n,a?"g":""),r)}),nK=$s(qc,M_),aK={kernelName:qc,backendName:"cpu",kernelFunc:nK};function P_(e,t,n,a){let r=ze(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var rK=class{constructor(e,t,n,a,r,s){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),p=s-(l+u),d=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let b=0;b<p;++b)c+=e[d+b].length;c+=u*this.rightPad.length;let h=l+u+p-1;c+=h*this.separator.length,n[a+i]=new Uint8Array(c);let m=n[a+i],f=0,g=b=>b.forEach(y=>m[f++]=y);for(let b=0;b<l;++b)g(this.leftPad),g(this.separator);for(let b=0;b<p-1;++b)g(e[d+b]),g(this.separator);if(p>0){g(e[d+p-1]);for(let b=0;b<u;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<u-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(p=>{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function R1(e,t,n,a,r,s,i,o){return new rK(n,a,r,s,i,o).compute(e,t)}function sK(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;s<e.length;++s)a.push(e.subarray(s,s+1));return}if(t.length===1){let s=t[0],i=e.indexOf(s);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&a.push(o),e=e.subarray(i+1),i=e.indexOf(s)}(!n||e.length!==0)&&a.push(e);return}let r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}}function M1(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=r.length;sK(e[c],t,n,r);let m=r.length-h;o[c]=m,s+=m,i=Math.max(i,m)}let l=v.getArrayFromDType("int32",s*2),u=new Array(s),p=[a,i],d=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[d*2]=c,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,p]}function P1(e,t){let n=v.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=v.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var O_=Gt((e,t)=>e-t),iK=C1((e,t,n,a)=>({real:e-n,imag:t-a})),O1=sn(Mo,O_,iK),oK={kernelName:Mo,backendName:"cpu",kernelFunc:O1};function L_(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=ze(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}var ac=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function z_(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));z_(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),ac(e[a],r)>0&&v.swap(e,n,a);s<i;){for(v.swap(e,s,i),s++,i--;ac(e[s],r)<0;)s=s+1;for(;ac(e[i],r)>0;)i=i-1}ac(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function W_(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;d<i;d++){let c=d*o,h=e.subarray(c,c+o),m=new Array(h.length);h.forEach((y,x)=>m[x]={value:y,index:x}),a<m.length&&(z_(m,a),m=m.slice(0,a)),r&&m.sort(ac);let f=d*a,g=l.subarray(f,f+a),b=u.subarray(f,f+a);for(let y=0;y<a;y++)g[y]=m[y].value,b[y]=m[y].index}let p=t.slice();return p[p.length-1]=a,[ze(p,n,l),ze(p,"int32",u)]}function L1(e,t,n,a){let r=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i=new Map,o=new Int32Array(n[r]),l=new Bt(s,a,e),u=[],p=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(p)f=e[m].toString();else{let b=[];for(let y=0;y<s[0];y++)for(let x=0;x<s[2];x++)b.push(l.get(y,m,x));f=b.join(",")}let g=i.get(f);if(g!=null)o[m]=g;else{let b=i.size;i.set(f,b),o[m]=b,u.push(m)}}let d=s.slice();d[1]=i.size;let c=new Bt(d,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let b=0;b<s[2];b++)c.set(l.get(g,m,b),g,f,b)});let h=n.slice();return h[r]=d[1],{outputValues:c.values,outputShape:h,indices:o}}var lK="4.3.0";Xm("cpu",()=>new Kf,1);var B_=it(Ui,e=>e>=0?e:Math.exp(e)-1),uK={kernelName:Ui,backendName:"cpu",kernelFunc:B_};function V_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var pK={kernelName:eo,backendName:"cpu",kernelFunc:V_},cK=Gt((e,t)=>e<0?t*e:e);function U_(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=cK(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var dK={kernelName:go,backendName:"cpu",kernelFunc:U_},G_=it(xo,e=>Math.max(0,e)),hK={kernelName:xo,backendName:"cpu",kernelFunc:G_},H_=it(ko,e=>Math.min(Math.max(0,e),6)),mK={kernelName:ko,backendName:"cpu",kernelFunc:H_};function wm(e,t,n,a,r){if(n==="linear")return dr({inputs:{x:t},backend:e});if(n==="relu")return G_({inputs:{x:t},backend:e});if(n==="elu")return B_({inputs:{x:t},backend:e});if(n==="relu6")return H_({inputs:{x:t},backend:e});if(n==="prelu")return U_({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return V_({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return F_({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var fK={kernelName:Vu,backendName:"cpu",kernelFunc:xt};function q_(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=op.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=xt({inputs:{x:r},backend:n,attrs:{shape:x}}),T=xt({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],F=o?T.shape[1]:T.shape[2],D=Math.max(g,b),$=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,H,j]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,J]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=E*F,ae=ze([D,E,F],I.dtype),te=ae.values,re=n.blockSize;for(let se=0;se<D;se++){let ye=se%g,ue=se%b;for(let be=0;be<E;be+=re){let ke=Math.min(be+re,E);for(let Se=0;Se<F;Se+=re){let We=Math.min(Se+re,F);for(let Ge=0;Ge<C;Ge+=re){let ht=Math.min(Ge+re,C);for(let st=be;st<ke;st++)for(let at=Se;at<We;at++){let rt=0;for(let Me=Ge;Me<ht;Me++){let ft=$[ye*U+st*H+Me*j],jn=S[Me*K+at*Z+ue*J];rt+=ft*jn}te[se*ee+(st*F+at)]+=rt}}}}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo(T),n.makeTensorInfo(y,ae.dtype,ae.values)}var gK={kernelName:Fi,backendName:"cpu",kernelFunc:q_};function bK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c,h,m,f=[];c=q_({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Jl({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),p&&(m=wm(n,c,p,o,d),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var yK={kernelName:ri,backendName:"cpu",kernelFunc:bK},xK=it(ki,e=>Math.acos(e)),vK={kernelName:ki,backendName:"cpu",kernelFunc:xK},wK=it(Ii,e=>Math.acosh(e)),kK={kernelName:Ii,backendName:"cpu",kernelFunc:wK};function IK(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=ze(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var SK={kernelName:Si,backendName:"cpu",kernelFunc:IK};function NK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"all");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x&&I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var TK={kernelName:ru,backendName:"cpu",kernelFunc:NK};function CK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"any");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];x=x||I}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var _K={kernelName:su,backendName:"cpu",kernelFunc:CK};function EK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMax");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I>y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var AK={kernelName:iu,backendName:"cpu",kernelFunc:EK};function FK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Un({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let b=g*m,y=f[b],x=0;for(let w=0;w<m;++w){let I=f[b+w];I<y&&(y=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var $K={kernelName:ou,backendName:"cpu",kernelFunc:FK},DK=it(Ni,e=>Math.asin(e)),RK={kernelName:Ni,backendName:"cpu",kernelFunc:DK},MK=it(Ti,e=>Math.asinh(e)),PK={kernelName:Ti,backendName:"cpu",kernelFunc:MK},OK=it(Ci,e=>Math.atan(e)),LK={kernelName:Ci,backendName:"cpu",kernelFunc:OK},zK=Gt((e,t)=>Math.atan2(e,t)),WK=sn(Ei,zK),BK={kernelName:Ei,backendName:"cpu",kernelFunc:WK},VK=it(_i,e=>Math.atanh(e)),UK={kernelName:_i,backendName:"cpu",kernelFunc:VK};function z1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=ze(r.outShape,n),g=f.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let I=w*b,T=w*a[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let F=E*i-c,D=Math.max(0,F),$=Math.min(r.inHeight,p+F),S=I+E*y;for(let M=0;M<r.outWidth;++M){let B=M*o-h,U=Math.max(0,B),H=Math.min(r.inWidth,d+B),j=m,K=0,Z=0;for(let ee=D;ee<$;ee+=l){let ae=T+ee*a[1];for(let te=U;te<H;te+=u){let re=ae+te*a[2],se=e[re+C];s==="max"&&se>j?j=se:s==="avg"&&(K+=se,Z++)}if(isNaN(j))break}let J=S+M*x+C;g[J]=s==="avg"?K/Z:j}}}return f}function j_(e,t,n,a,r=!1,s=!1){let i=ze(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=ze(t,n,e);for(let g=0;g<a.batchSize;++g)for(let b=0;b<a.inChannels;++b)for(let y=0;y<a.outHeight;++y){let x=y*o-h,w=x;for(;w<0;)w+=u;let I=Math.min(a.inHeight,d+x);for(let T=0;T<a.outWidth;++T){let C=T*l-m,E=C;for(;E<0;)E+=p;let F=Math.min(a.inWidth,c+C),D=Number.NEGATIVE_INFINITY,$=-1;for(let S=w;S<I;S+=u){let M=S-x;for(let B=E;B<F;B+=p){let U=B-C,H=f.get(g,S,B,b);H>D&&(D=H,r?$=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+b:(S*a.inWidth+B)*a.inChannels+b:$=M*c+U)}}i.set($,g,y,T,b)}}return i}function K_(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=ze(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let F=0;F<r.batchSize;++F){let D=F*I,$=F*a[0];for(let S=0;S<r.inChannels;++S)for(let M=0;M<r.outDepth;++M){let B=M*i-f,U=B;for(;U<0;)U+=u;let H=Math.min(r.inDepth,c+B),j=D+M*T;for(let K=0;K<r.outHeight;++K){let Z=K*o-g,J=Z;for(;J<0;)J+=p;let ee=Math.min(r.inHeight,h+Z),ae=j+K*C;for(let te=0;te<r.outWidth;++te){let re=te*l-b,se=re;for(;se<0;)se+=d;let ye=Math.min(r.inWidth,m+re),ue=ae+te*E,be=y,ke=0,Se=0;for(let Ge=U;Ge<H;Ge+=u){let ht=$+Ge*a[1];for(let st=J;st<ee;st+=p){let at=ht+st*a[2];for(let rt=se;rt<ye;rt+=d){let Me=at+rt*a[3],ft=e[Me+S];if(s==="max"&&ft>be?be=ft:s==="avg"&&(ke+=ft,Se++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let We=ue+S;w[We]=s==="avg"?ke/Math.max(Se,1):be}}}}return x}function GK(e,t){let n=ze(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*a-c,x=y;for(;x<0;)x+=i;let w=Math.min(t.inDepth,u+y);for(let I=0;I<t.outHeight;++I){let T=I*r-h,C=T;for(;C<0;)C+=o;let E=Math.min(t.inHeight,p+T);for(let F=0;F<t.outWidth;++F){let D=F*s-m,$=D;for(;$<0;)$+=l;let S=Math.min(t.inWidth,d+D),M=Number.NEGATIVE_INFINITY,B=-1;for(let U=x;U<w;U+=i){let H=U-y;for(let j=C;j<E;j+=o){let K=j-T;for(let Z=$;Z<S;Z+=l){let J=Z-D,ee=e.get(f,U,j,Z,g);ee>=M&&(M=ee,B=H*p*d+K*p+J)}}}n.set(B,f,b,I,F,g)}}}return n}function HK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=dr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=z1(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var qK={kernelName:Ai,backendName:"cpu",kernelFunc:HK};function jK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=K_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var KK={kernelName:lu,backendName:"cpu",kernelFunc:jK};function XK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,b=p.dilationDepth,y=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,E=T-1-p.padInfo.left,F=I-1-p.padInfo.top,D=ze(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M<p.batchSize;++M)for(let B=0;B<p.inChannels;++B)for(let U=0;U<p.inDepth;++U)for(let H=0;H<p.inHeight;++H)for(let j=0;j<p.inWidth;++j){let K=U-C,Z=H-F,J=j-E,ee=0;for(let ae=0;ae<w;ae+=b){let te=(K+ae)/d;if(!(te<0||te>=p.outDepth||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(Z+re)/c;if(!(se<0||se>=p.outHeight||Math.floor(se)!==se))for(let ye=0;ye<T;ye+=x){let ue=(J+ye)/h;if(ue<0||ue>=p.outWidth||Math.floor(ue)!==ue)continue;let be=S.get(M,te,se,ue,B);ee+=be}}}D.set(ee*$,M,U,H,j,B)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var YK={kernelName:Rc,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,b=p.effectiveFilterHeight,y=p.effectiveFilterWidth,x=y-1-p.padInfo.left,w=b-1-p.padInfo.top,I=ze(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,E=ze(r.shape,"float32",C);for(let F=0;F<p.batchSize;++F)for(let D=0;D<p.inChannels;++D)for(let $=0;$<p.inHeight;++$)for(let S=0;S<p.inWidth;++S){let M=$-w,B=S-x,U=0;for(let H=0;H<b;H+=f){let j=(M+H)/d;if(!(j<0||j>=p.outHeight||Math.floor(j)!==j))for(let K=0;K<y;K+=g){let Z=(B+K)/c;if(Z<0||Z>=p.outWidth||Math.floor(Z)!==Z)continue;let J=E.get(F,j,Z,D);U+=J}}I.set(U*T,F,$,S,D)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var JK={kernelName:$m,backendName:"cpu",kernelFunc:ZK};function QK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,b=h.length,y=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let E=0;E<p.length;++E)f[E]=m[w++]+(p[E]-d[I++])*h[T++]/Math.sqrt(c[C++]+u),w>=g&&(w=0),I>=x&&(I=0),T>=b&&(T=0),C>=y&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var e8={kernelName:Ki,backendName:"cpu",kernelFunc:QK};function t8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=xt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:u}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=bi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var n8={kernelName:uu,backendName:"cpu",kernelFunc:t8};function a8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=_1(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var r8={kernelName:pu,backendName:"cpu",kernelFunc:a8};function s8(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var i8={kernelName:Mc,backendName:"cpu",kernelFunc:s8},o8=it(Is,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),l8={kernelName:Is,backendName:"cpu",kernelFunc:o8},u8=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let p=o[u],d=l[u];a[u]=Math.hypot(p,d)}return n.makeOutput(a,t.shape,"float32")},p8={kernelName:Pc,backendName:"cpu",kernelFunc:u8};function Ql(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var c8={kernelName:Wm,backendName:"cpu",kernelFunc:Ql};function eu(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(f=>f.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return dr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>gi({inputs:{input:w},backend:n})),g=l.map(w=>Ql({inputs:{input:w},backend:n})),b=eu({inputs:f,backend:n,attrs:{axis:s}}),y=eu({inputs:g,backend:n,attrs:{axis:s}}),x=Jn({inputs:{real:b,imag:y},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),x}let u=l.map(f=>{let g=[-1,v.sizeFromShape(f.shape.slice(s))];return xt({inputs:{x:f},backend:n,attrs:{shape:g}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=E1(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var d8={kernelName:cu,backendName:"cpu",kernelFunc:eu};function X_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,b=c.padInfo.left,y=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Bt(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],E=x?I[1]:I[2],F=x?I[2]:1,D=x?1:I[1],$=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,H=n.data.get(s.dataId).values,j=w.values;for(let K=0;K<c.batchSize;++K){let Z=K*C,J=K*$;for(let ee=0;ee<c.outHeight;++ee){let ae=J+ee*S,te=ee*c.strideHeight-y;for(let re=0;re<h;++re){let se=te+re*f;if(se<0||se>=c.inHeight)continue;let ye=re*T[0],ue=Z+se*E;for(let be=0;be<c.outWidth;++be){let ke=ae+be*M,Se=be*c.strideWidth-b;for(let We=0;We<m;++We){let Ge=Se+We*g;if(Ge<0||Ge>=c.inWidth)continue;let ht=ye+We*T[1],st=ue+Ge*F,at=ht;for(let rt=0;rt<c.inChannels;++rt){let Me=U[st+rt*D];for(let ft=0;ft<c.outChannels;++ft)j[ke+ft*B]+=Me*H[at+ft];at+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,j)}var h8={kernelName:Ri,backendName:"cpu",kernelFunc:X_};function m8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,b=c.dataFormat==="channelsLast",y=new Bt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=new Bt(r.shape,r.dtype,I),E=new Bt(s.shape,s.dtype,T);for(let F=0;F<f;++F){let D=Math.max(0,Math.ceil((w-F)/h)),$=Math.min(c.outHeight,(c.inHeight+w-F)/h);for(let S=0;S<g;++S){let M=Math.max(0,Math.ceil((x-S)/m)),B=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.outChannels;++H){let j=0;for(let K=0;K<c.batchSize;++K)for(let Z=D;Z<$;++Z){let J=F+Z*h-w;for(let ee=M;ee<B;++ee){let ae=S+ee*m-x;b?j+=C.get(K,J,ae,U)*E.get(K,Z,ee,H):j+=C.get(K,U,J,ae)*E.get(K,H,Z,ee)}}y.set(j,F,S,U,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var f8={kernelName:Rm,backendName:"cpu",kernelFunc:m8};function g8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a;ge([r,s],"conv2dBackpropInput");let d=v.computeStrides(s.shape),c=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,h),f=new Bt(m.inShape,"float32"),g=f.values,b=n.data.get(r.dataId).values,y=n.data.get(s.dataId).values,[x,w,I]=d,{batchSize:T,filterHeight:C,filterWidth:E,inChannels:F,inHeight:D,inWidth:$,outChannels:S,outHeight:M,outWidth:B,strideHeight:U,strideWidth:H}=m;h=m.dataFormat;let j=C-1-m.padInfo.top,K=E-1-m.padInfo.left,Z=h==="channelsLast",J=f.strides[0],ee=Z?f.strides[1]:f.strides[2],ae=Z?f.strides[2]:1,te=Z?1:f.strides[1],re=c[0],se=Z?c[1]:c[2],ye=Z?c[2]:1,ue=Z?1:c[1];for(let be=0;be<T;++be)for(let ke=0;ke<F;++ke)for(let Se=0;Se<D;++Se){let We=Se-j,Ge=Math.max(0,Math.ceil(We/U)),ht=Math.min(M,(C+We)/U);for(let st=0;st<$;++st){let at=st-K,rt=Math.max(0,Math.ceil(at/H)),Me=Math.min(B,(E+at)/H),ft=0;for(let Ot=Ge;Ot<ht;++Ot){let oa=Ot*U-We;for(let pn=rt;pn<Me;++pn){let $n=pn*H-at,la=re*be+se*Ot+ye*pn,Dn=x*(C-1-oa)+w*(E-1-$n)+I*ke;for(let lt=0;lt<S;++lt){let Rn=b[la+ue*lt],Kn=y[Dn+lt];ft+=Rn*Kn}}}let jn=J*be+ee*Se+ae*st+te*ke;g[jn]=ft}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var b8={kernelName:Mi,backendName:"cpu",kernelFunc:g8};function y8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ge([r,s],"conv3d");let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:p,filterHeight:d,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,b=g.front,y=g.left,x=g.top,w=new Bt(u.outShape,r.dtype),I=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,C=w.values,E=v.computeStrides(r.shape),F=v.computeStrides(s.shape);for(let D=0;D<u.batchSize;++D){let $=D*E[0],S=D*w.strides[0];for(let M=0;M<u.outDepth;++M){let B=S+M*w.strides[1],U=M*u.strideDepth-b;for(let H=0;H<p;++H){let j=U+H*h;if(j<0||j>=u.inDepth)continue;let K=H*F[0],Z=$+j*E[1];for(let J=0;J<u.outHeight;++J){let ee=B+J*w.strides[2],ae=J*u.strideHeight-x;for(let te=0;te<d;++te){let re=ae+te*m;if(re<0||re>=u.inHeight)continue;let se=K+te*F[1],ye=Z+re*E[2];for(let ue=0;ue<u.outWidth;++ue){let be=ee+ue*u.outChannels,ke=ue*u.strideWidth-y;for(let Se=0;Se<c;++Se){let We=ke+Se*f;if(We<0||We>=u.inWidth)continue;let Ge=se+Se*F[2],ht=ye+We*u.inChannels,st=Ge;for(let at=0;at<u.inChannels;++at){let rt=I[ht+at];for(let Me=0;Me<u.outChannels;++Me)C[be+Me]+=rt*T[st+Me];st+=u.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var x8={kernelName:Pi,backendName:"cpu",kernelFunc:y8};function v8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ge([r,s],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(r.shape,l,i,1,o),c=d.strideDepth,h=d.strideHeight,m=d.strideWidth,f=d.filterDepth,g=d.filterHeight,b=d.filterWidth,y=new Bt(d.filterShape,"float32"),x=y.values,[w,I,T,C]=y.strides,E=n.data.get(s.dataId).values,[F,D,$,S]=p,M=n.data.get(r.dataId).values,[B,U,H,j]=u,K=d.padInfo.front,Z=d.padInfo.left,J=d.padInfo.top;for(let ee=0;ee<f;++ee){let ae=Math.max(0,Math.ceil((K-ee)/c)),te=Math.min(d.outDepth,(d.inDepth+K-ee)/c),re=ee*w;for(let se=0;se<g;++se){let ye=Math.max(0,Math.ceil((J-se)/h)),ue=Math.min(d.outHeight,(d.inHeight+J-se)/h),be=se*I+re;for(let ke=0;ke<b;++ke){let Se=Math.max(0,Math.ceil((Z-ke)/m)),We=Math.min(d.outWidth,(d.inWidth+Z-ke)/m),Ge=ke*T+be;for(let ht=0;ht<d.inChannels;++ht){let st=ht*C+Ge;for(let at=0;at<d.outChannels;++at){let rt=0;for(let Me=0;Me<d.batchSize;++Me){let ft=Me*B,jn=Me*F;for(let Ot=ae;Ot<te;++Ot){let oa=(ee+Ot*c-K)*U+ft,pn=Ot*D+jn;for(let $n=ye;$n<ue;++$n){let la=(se+$n*h-J)*H+oa,Dn=$n*$+pn;for(let lt=Se;lt<We;++lt){let Rn=(ke+lt*m-Z)*j+la,Kn=lt*S+Dn;rt+=M[Rn+ht]*E[Kn+at]}}}}x[st+at]=rt}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var w8={kernelName:du,backendName:"cpu",kernelFunc:v8};function k8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ge([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),p=v.computeStrides(s.shape),d=N.computeConv3DInfo(l,s.shape,o,1,i),c=new Bt(d.inShape,"float32"),h=c.values,[m,f,g,b]=c.strides,y=n.data.get(r.dataId).values,[x,w,I,T]=u,C=n.data.get(s.dataId).values,[E,F,D,$]=p,{batchSize:S,filterDepth:M,filterHeight:B,filterWidth:U,inChannels:H,inDepth:j,inHeight:K,inWidth:Z,outChannels:J,outDepth:ee,outHeight:ae,outWidth:te,strideDepth:re,strideHeight:se,strideWidth:ye}=d,ue=M-1-d.padInfo.front,be=B-1-d.padInfo.top,ke=U-1-d.padInfo.left;for(let Se=0;Se<S;++Se)for(let We=0;We<H;++We)for(let Ge=0;Ge<j;++Ge){let ht=Ge-ue,st=Math.max(0,Math.ceil(ht/re)),at=Math.min(ee,(M+ht)/re);for(let rt=0;rt<K;++rt){let Me=rt-be,ft=Math.max(0,Math.ceil(Me/se)),jn=Math.min(ae,(B+Me)/se);for(let Ot=0;Ot<Z;++Ot){let oa=Ot-ke,pn=Math.max(0,Math.ceil(oa/ye)),$n=Math.min(te,(U+oa)/ye),la=0;for(let Dn=st;Dn<at;++Dn){let lt=Dn*re-ht;for(let Rn=ft;Rn<jn;++Rn){let Kn=Rn*se-Me;for(let kr=pn;kr<$n;++kr){let yl=kr*ye-oa,tr=x*Se+w*Dn+I*Rn+T*kr,Bp=E*(M-1-lt)+F*(B-1-Kn)+D*(U-1-yl)+$*We;for(let Sa=0;Sa<J;++Sa){let Xr=y[tr+Sa],Zt=C[Bp+Sa];la+=Xr*Zt}}}}h[m*Se+f*Ge+g*rt+b*Ot+We]=la}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var I8={kernelName:hu,backendName:"cpu",kernelFunc:k8},S8=it(Oi,e=>Math.cos(e)),N8={kernelName:Oi,backendName:"cpu",kernelFunc:S8},T8=it(Li,e=>Math.cosh(e)),C8={kernelName:Li,backendName:"cpu",kernelFunc:T8};function _8(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,b=ze([m,f,g,h],"float32"),y=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(b.shape);for(let C=0;C<m;C++){let E=C*4,F=y[E],D=y[E+1],$=y[E+2],S=y[E+3],M=x[C];if(M>=p)continue;let B=f>1?($-F)*(d-1)/(f-1):0,U=g>1?(S-D)*(c-1)/(g-1):0;for(let H=0;H<f;H++){let j=f>1?F*(d-1)+H*B:.5*(F+$)*(d-1);if(j<0||j>d-1){for(let K=0;K<g;K++)for(let Z=0;Z<h;Z++){let J=Z+K*T[2]+H*T[1]+C*T[0];b.values[J]=u}continue}if(l==="bilinear"){let K=Math.floor(j),Z=Math.ceil(j),J=j-K;for(let ee=0;ee<g;ee++){let ae=g>1?D*(c-1)+ee*U:.5*(D+S)*(c-1);if(ae<0||ae>c-1){for(let ye=0;ye<h;ye++){let ue=ye+ee*T[2]+H*T[1]+C*T[0];b.values[ue]=u}continue}let te=Math.floor(ae),re=Math.ceil(ae),se=ae-te;for(let ye=0;ye<h;ye++){let ue=ye+te*I[2]+K*I[1]+M*I[0],be=w[ue];ue=ye+re*I[2]+K*I[1]+M*I[0];let ke=w[ue];ue=ye+te*I[2]+Z*I[1]+M*I[0];let Se=w[ue];ue=ye+re*I[2]+Z*I[1]+M*I[0];let We=w[ue],Ge=be+(ke-be)*se,ht=Se+(We-Se)*se;ue=ye+ee*T[2]+H*T[1]+C*T[0],b.values[ue]=Ge+(ht-Ge)*J}}}else for(let K=0;K<g;++K){let Z=g>1?D*(c-1)+K*U:.5*(D+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;ae<h;ae++){let te=ae+K*T[2]+H*T[1]+C*T[0];b.values[te]=u}continue}let J=Math.round(Z),ee=Math.round(j);for(let ae=0;ae<h;ae++){let te=ae+J*I[2]+ee*I[1]+M*I[0],re=ae+K*T[2]+H*T[1]+C*T[0];b.values[re]=w[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var E8={kernelName:fu,backendName:"cpu",kernelFunc:_8};function A8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumprod");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ga(u.dtype,"int32"),c=v.makeOnesTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?1:h[x];else{let w=f(b,y-1);c[x]=i?h[w]*c[w]:h[x]*c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var F8={kernelName:mu,backendName:"cpu",kernelFunc:A8};function $8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ge(r,"cumsum");let l=N.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=Un({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=N.getInnerMostAxes(1,r.shape.length)[0];if(p!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${p}`);let d=ga(u.dtype,"int32"),c=v.makeZerosTypedArray(v.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(b,y)=>b+m-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=m)for(let y=0;y<m;y++){let x=f(b,y);if(y===0)c[x]=i?0:h[x];else{let w=f(b,y-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let g=n.makeTensorInfo(u.shape,d,c);if(l!=null){let b=N.getUndoAxesPermutation(l),y=Un({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var D8={kernelName:zi,backendName:"cpu",kernelFunc:$8};function R8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=_1(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=r_(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var M8={kernelName:Oc,backendName:"cpu",kernelFunc:R8};function P8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<d;++y){let x=Math.floor(y/s),w=y%s;for(let I=0;I<c;++I){let T=Math.floor(I/s),C=I%s,E=(w*s+C)*h;for(let F=0;F<h;++F){let D=F+E+p*(T+u*(x+l*b));f[g++]=m[D]}}}return n.makeTensorInfo([o,d,c,h],r.dtype,f)}var O8={kernelName:gu,backendName:"cpu",kernelFunc:P8};function Y_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;ge([r,s],"depthwiseConv2DNative");let p=v.computeStrides(r.shape),d=v.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:b,padInfo:y}=h,x=y.left,w=y.top,I=h.outChannels/h.inChannels,T=new Bt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(s.dataId).values,F=T.values;for(let D=0;D<h.batchSize;++D){let $=D*p[0],S=D*T.strides[0];for(let M=0;M<h.outHeight;++M){let B=S+M*T.strides[1],U=M*h.strideHeight-w;for(let H=0;H<m;++H){let j=U+H*g;if(j<0||j>=h.inHeight)continue;let K=H*d[0],Z=$+j*p[1];for(let J=0;J<h.outWidth;++J){let ee=B+J*T.strides[2],ae=J*h.strideWidth-x;for(let te=0;te<f;++te){let re=ae+te*b;if(re<0||re>=h.inWidth)continue;let se=K+te*d[1],ye=Z+re*h.inChannels,ue=ee,be=se;for(let ke=0;ke<h.inChannels;++ke){let Se=C[ye+ke];for(let We=0;We<I;++We)F[ue+We]+=Se*E[be+We];ue+=I,be+=I}}}}}}return n.makeTensorInfo(T.shape,T.dtype,T.values)}var L8={kernelName:Wi,backendName:"cpu",kernelFunc:Y_};function z8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a;ge([r,s],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=d,g=new Bt(d.filterShape,"float32"),b=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,w=n.data.get(r.dataId).values,I=new Bt(r.shape,r.dtype,w),T=n.data.get(s.dataId).values,C=new Bt(s.shape,s.dtype,T);for(let E=0;E<m;++E){let F=Math.max(0,Math.ceil((y-E)/c)),D=Math.min(d.outHeight,(d.inHeight+y-E)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((b-$)/h)),M=Math.min(d.outWidth,(d.inWidth+b-$)/h);for(let B=0;B<d.outChannels;++B){let U=Math.trunc(B/x),H=B%x,j=0;for(let K=0;K<d.batchSize;++K)for(let Z=F;Z<D;++Z){let J=E+Z*c-y;for(let ee=S;ee<M;++ee){let ae=$+ee*h-b;j+=I.get(K,J,ae,U)*C.get(K,Z,ee,B)}}g.set(j,E,$,U,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var W8={kernelName:Mm,backendName:"cpu",kernelFunc:z8};function B8(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a;ge([r,s],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),c=v.computeStrides(s.shape),h=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),m=new Bt(h.inShape,"float32"),f=m.values,[g,b,y]=m.strides,x=n.data.get(r.dataId).values,[w,I,T]=d,C=n.data.get(s.dataId).values,[E,F,D]=c,{batchSize:$,filterHeight:S,filterWidth:M,inChannels:B,inHeight:U,inWidth:H,outChannels:j,outHeight:K,outWidth:Z,strideHeight:J,strideWidth:ee}=h,ae=S-1-h.padInfo.top,te=M-1-h.padInfo.left,re=j/B;for(let se=0;se<$;++se)for(let ye=0;ye<B;++ye)for(let ue=0;ue<U;++ue){let be=ue-ae,ke=Math.max(0,Math.ceil(be/J)),Se=Math.min(K,(S+be)/J);for(let We=0;We<H;++We){let Ge=We-te,ht=Math.max(0,Math.ceil(Ge/ee)),st=Math.min(Z,(M+Ge)/ee),at=0;for(let rt=ke;rt<Se;++rt){let Me=rt*J-be;for(let ft=ht;ft<st;++ft){let jn=ft*ee-Ge,Ot=w*se+I*rt+T*ft,oa=E*(S-1-Me)+F*(M-1-jn)+D*ye;for(let pn=0;pn<re;++pn){let $n=ye*re+pn,la=x[Ot+$n],Dn=C[oa+pn];at+=la*Dn}}}f[g*se+b*ue+y*We+ye]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var V8={kernelName:Pm,backendName:"cpu",kernelFunc:B8};function U8(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=ze([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var G8={kernelName:Lc,backendName:"cpu",kernelFunc:U8},H8={kernelName:Bi,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:b,outWidth:y,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:E,dilationWidth:F,outShape:D}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=v.sizeFromShape(D),S=D.length,M=v.getArrayFromDType(a.dtype,$);for(let B=0;B<h;++B)for(let U=0;U<b;++U){let H=U*w-x.top;for(let j=0;j<y;++j){let K=j*I-x.left;for(let Z=0;Z<g;++Z){let J=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<T;++ae){let te=H+ae*E;if(te>=0&&te<m)for(let re=0;re<C;++re){let se=K+re*F;if(se>=0&&se<f){let ye=v.locToIndex([B,te,se,Z],p,v.computeStrides(a.shape)),ue=v.locToIndex([ae,re,Z],c,v.computeStrides(r.shape)),be=u[ye]+d[ue];be>J&&(J=be)}}}let ee=v.locToIndex([B,U,j,Z],S,v.computeStrides(D));M[ee]=J}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),D,a.dtype),shape:D,dtype:a.dtype}}},q8={kernelName:Ol,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Ol}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=0,J=0;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ee,J=te)}}}$[Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},j8={kernelName:Pl,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:b,padInfo:y,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:E,outShape:F}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===F.length,()=>`Error in ${Pl}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let D=v.toNestedArray(F,u.data.get(s.dataId).values),$=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let M=0;M<g;++M){let B=M*x-y.top;for(let U=0;U<b;++U){let H=U*w-y.left;for(let j=0;j<f;++j){let K=Number.MIN_SAFE_INTEGER,Z=B<0?0:B,J=H<0?0:H;for(let ee=0;ee<I;++ee){let ae=B+ee*C;if(ae>=0&&ae<h)for(let te=0;te<T;++te){let re=H+te*E;if(re>=0&&re<m){let se=p[S][ae][re][j]+d[ee][te][j];se>K&&(K=se,Z=ae,J=re)}}}$[S][Z][J][j]+=D[S][M][U][j]}}}return{dataId:u.write(v.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function _d(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=ys({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=dr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Un({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=xm(n,h,f),b=v.sizeFromShape(m),y=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<y.length;++w){let I=w*b,T=0;for(let C=0;C<b;++C)T+=x[I+C];y[w]=T}if(i){let w=N.expandShapeToKeepDim(g.shape,u),I=g;g=xt({inputs:{x:g},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(I)}return n.disposeIntermediateTensorInfo(o),p!=null&&n.disposeIntermediateTensorInfo(c),g}var K8={kernelName:$o,backendName:"cpu",kernelFunc:_d};function X8(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Un({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=xt({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Xf({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=_d({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Y8={kernelName:Om,backendName:"cpu",kernelFunc:X8};function Z8(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=0?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var J8={kernelName:bu,backendName:"cpu",kernelFunc:Z8},Q8=N.ERF_P,eX=N.ERF_A1,tX=N.ERF_A2,nX=N.ERF_A3,aX=N.ERF_A4,rX=N.ERF_A5,sX=it(yu,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Q8*n);return t*(1-((((rX*a+aX)*a+nX)*a+tX)*a+eX)*a*Math.exp(-n*n))}),iX={kernelName:yu,backendName:"cpu",kernelFunc:sX};function km(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:r},backend:n,attrs:{shape:o}})}var oX={kernelName:vu,backendName:"cpu",kernelFunc:km},lX=Gt((e,t)=>e/t),W1=sn(Vi,lX),tv={kernelName:Vi,backendName:"cpu",kernelFunc:W1};function Z_(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g<r;g++){let b=bi({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),y=bi({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=Jn({inputs:{real:b,imag:y},backend:n}),{real:w,imag:I}=uX(x,t,n),T=N.mergeRealAndImagArrays(w,I);for(let C=0;C<s;C++){let E=N.getComplexWithIndex(T,C);d[g*s+C]=E.real,c[g*s+C]=E.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),m=n.makeTensorInfo(u,"float32",c),f=Jn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function uX(e,t,n){let a=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(pX(a)){let o=nv(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),p=n.makeTensorInfo(l,"float32",o.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),c=dr({inputs:{x:d},backend:n}),h=tv.kernelFunc({inputs:{a:u,b:d},backend:n}),m=tv.kernelFunc({inputs:{a:p,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=N.mergeRealAndImagArrays(s,i),l=cX(o,a,t);return N.splitRealAndImagArrays(l)}}function pX(e){return(e&e-1)===0}function nv(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=N.mergeRealAndImagArrays(e,t),i=n/2,o=N.complexWithEvenIndex(s),l=o.real,u=o.imag,p=[l.length],d=r.makeTensorInfo(p,"float32",l),c=r.makeTensorInfo(p,"float32",u),h=Jn({inputs:{real:d,imag:c},backend:r}),m=N.complexWithOddIndex(s),f=m.real,g=m.imag,b=[f.length],y=r.makeTensorInfo(b,"float32",f),x=r.makeTensorInfo(b,"float32",g),w=Jn({inputs:{real:y,imag:x},backend:r}),I=nv(l,u,i,a,r),T=I.real,C=I.imag,E=[T.length],F=r.makeTensorInfo(E,"float32",T),D=r.makeTensorInfo(E,"float32",C),$=Jn({inputs:{real:F,imag:D},backend:r}),S=nv(f,g,i,a,r),M=S.real,B=S.imag,U=[M.length],H=r.makeTensorInfo(U,"float32",M),j=r.makeTensorInfo(U,"float32",B),K=Jn({inputs:{real:H,imag:j},backend:r}),Z=N.exponents(n,a),J=[Z.real.length],ee=r.makeTensorInfo(J,"float32",Z.real),ae=r.makeTensorInfo(J,"float32",Z.imag),te=Jn({inputs:{real:ee,imag:ae},backend:r}),re=Xf({inputs:{a:te,b:K},backend:r}),se=Jl({inputs:{a:$,b:re},backend:r}),ye=O1({inputs:{a:$,b:re},backend:r}),ue=gi({inputs:{input:se},backend:r}),be=gi({inputs:{input:ye},backend:r}),ke=Ql({inputs:{input:se},backend:r}),Se=Ql({inputs:{input:ye},backend:r}),We=eu({inputs:[ue,be],backend:r,attrs:{axis:0}}),Ge=eu({inputs:[ke,Se],backend:r,attrs:{axis:0}}),ht=r.data.get(We.dataId).values,st=r.data.get(Ge.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(be),r.disposeIntermediateTensorInfo(Se),r.disposeIntermediateTensorInfo(We),r.disposeIntermediateTensorInfo(Ge),{real:ht,imag:st}}function cX(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=N.exponent(r*o,t,n),u=N.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),N.assignToTypedArray(a,s,i,r)}return a}function dX(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=Z_(o,!1,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var hX={kernelName:Lm,backendName:"cpu",kernelFunc:dX};function B1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||v.inferDtype(r),o=v.getArrayFromDType(i,v.sizeFromShape(a));return fX(o,r,i),t.makeTensorInfo(a,i,o)}var mX={kernelName:zc,backendName:"cpu",kernelFunc:B1};function fX(e,t,n){e.fill(t)}var gX={kernelName:wu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d<i;d++){let c=d*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let b=0;b<u;b++){let y=Math.round(l-f-1),x=c+m+g+b,w=p[x];if(y>=0&&y<l){let I=y*u,T=c+m+I+b;w=p[T]}s[x]=w}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function bX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=X_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=xt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=Jl({inputs:{a:f,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else f=Jl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=xt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=wm(n,f,h,b,m),n.disposeIntermediateTensorInfo(b)}else f=wm(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var yX={kernelName:si,backendName:"cpu",kernelFunc:bX};function xX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=Y_({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=Jl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=wm(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var vX={kernelName:ii,backendName:"cpu",kernelFunc:xX};function wX(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=h_(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var kX={kernelName:Iu,backendName:"cpu",kernelFunc:wX};function IX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w<u.length;++w){let I=u[w];v.assert(I<=p-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=xt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=xt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],b=n.bufferSync(f),y=n.bufferSync(m),x=m_(y,b,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var SX={kernelName:ku,backendName:"cpu",kernelFunc:IX};function NX(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=xt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=Z_(o,!0,n),u=xt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var TX={kernelName:zm,backendName:"cpu",kernelFunc:NX},CX=it(Zi,e=>Number.isFinite(e)?1:0,"bool"),_X={kernelName:Zi,backendName:"cpu",kernelFunc:CX},EX=it(Ji,e=>Math.abs(e)===1/0?1:0,"bool"),AX={kernelName:Ji,backendName:"cpu",kernelFunc:EX},FX=it(Qi,e=>Number.isNaN(e)?1:0,"bool"),$X={kernelName:Qi,backendName:"cpu",kernelFunc:FX};function DX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=x_(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var RX={kernelName:Cu,backendName:"cpu",kernelFunc:DX},MX=it(no,e=>Math.log1p(e)),PX={kernelName:no,backendName:"cpu",kernelFunc:MX},OX=Gt((e,t)=>e&&t),LX=sn(_u,OX,null,"bool"),zX={kernelName:_u,backendName:"cpu",kernelFunc:LX},WX=it(Eu,e=>e?0:1,"bool"),BX={kernelName:Eu,backendName:"cpu",kernelFunc:WX},VX=Gt((e,t)=>e||t),UX=sn(Au,VX,null,"bool"),GX={kernelName:Au,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,b=f-g+Math.max(0,g-s),y=f-g+Math.min(g+s,p),x=0;for(;b<=y;b++){let w=d[b];x+=w*w}return x}for(let f=0;f<c;f++){let g=m(f),b=d[f]*Math.pow(i+o*g,-l);h[f]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var qX={kernelName:ao,backendName:"cpu",kernelFunc:HX};function jX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;ge(i,"LRNGrad");let d=v.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(d),b=d;for(let y=0;y<b;y++){let x=y%c,w=y-x+Math.max(0,x-o),I=y-x+Math.min(c,x+o+1),T=0;for(let C=w;C<I;C++)T+=Math.pow(m[C],2);T=u*T+l;for(let C=w;C<I;C++){let E=-2*u*p*m[C]*f[y]/T;y===C&&(E+=Math.pow(T,-p)),E*=h[y],g[C]+=E}}return n.makeTensorInfo(i.shape,r.dtype,g)}var KX={kernelName:Fu,backendName:"cpu",kernelFunc:jX};function J_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,p=v.parseAxisParam(s,l),d=p,c=N.getAxesPermutation(d,u),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(u);for(let I=0;I<w.length;I++)w[I]=l[c[I]];h=F1(h,l,r.dtype,c,w),d=N.getInnerMostAxes(d.length,u),l=w}ge(r,"max"),N.assertAxesAreInnerMostDims("max",d,u);let[m,f]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(f),b=w_(h,g,m,r.dtype),y=o.write(b,m,r.dtype),x=m;return i&&(x=N.expandShapeToKeepDim(m,p)),{dataId:y,shape:x,dtype:r.dtype}}var XX={kernelName:ro,backendName:"cpu",kernelFunc:J_};function YX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=dr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=z1(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var ZX={kernelName:io,backendName:"cpu",kernelFunc:YX};function JX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=K_(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var QX={kernelName:$u,backendName:"cpu",kernelFunc:JX};function eY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=GK(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,b=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,E=w-1-p.padInfo.top,F=ze(s.shape,"float32"),D=n.bufferSync(r);for(let $=0;$<p.batchSize;++$)for(let S=0;S<p.inChannels;++S)for(let M=0;M<p.inDepth;++M)for(let B=0;B<p.inHeight;++B)for(let U=0;U<p.inWidth;++U){let H=M-T,j=B-E,K=U-C,Z=0;for(let J=0;J<x;J+=g){let ee=(H+J)/h;if(!(ee<0||ee>=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae<w;ae+=b){let te=(j+ae)/m;if(!(te<0||te>=p.outHeight||Math.floor(te)!==te))for(let re=0;re<I;re+=y){let se=(K+re)/f;if(se<0||se>=p.outWidth||Math.floor(se)!==se)continue;let ye=x*w*I-1-c.get($,ee,te,se,S),ue=J*w*I+ae*I+re,be=ye===ue?1:0;if(be===0)continue;let ke=D.get($,ee,te,se,S);Z+=ke*be}}}F.set(Z,$,M,B,U,S)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var tY={kernelName:Wc,backendName:"cpu",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=ze(c.outShape,o.dtype,j_(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,b=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=ze(o.shape,"float32"),E=n.data.get(r.dataId).values,F=ze(r.shape,"float32",E);for(let D=0;D<c.batchSize;++D)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let M=0;M<c.inWidth;++M){let B=S-T,U=M-I,H=0;for(let j=0;j<x;j+=b){let K=(B+j)/f;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z<w;Z+=y){let J=(U+Z)/g;if(J<0||J>=c.outWidth||Math.floor(J)!==J)continue;let ee=x*w-1-m.get(D,K,J,$),ae=j*w+Z,te=ee===ae?1:0;if(te===0)continue;let re=F.get(D,K,J,$);H+=re*te}}C.set(H,D,S,M,$)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var aY={kernelName:Bm,backendName:"cpu",kernelFunc:nY};function rY(e,t,n,a,r){let s=v.computeStrides(t),i=z1(e,t,n,s,r,"max"),o=j_(e,t,n,r,!0,a);return[i.values,o.values]}var sY={kernelName:Vm,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=rY(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function iY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=ys({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=W1({inputs:{a:c,b:d},backend:n});p.push(h);let m=_d({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var oY={kernelName:oo,backendName:"cpu",kernelFunc:iY};function lY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Un({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let b=0;b<m.length;++b){let y=b*h,x=f[y];for(let w=0;w<h;++w){let I=f[y+w];(Number.isNaN(I)||I<x)&&(x=I)}m[b]=x}u!=null&&n.disposeIntermediateTensorInfo(p);let g=n.makeTensorInfo(d,p.dtype,m);if(i){let b=N.expandShapeToKeepDim(d,o),y=xt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var uY={kernelName:lo,backendName:"cpu",kernelFunc:lY};function pY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ge(r,"mirrorPad");let o=s.map((y,x)=>y[0]+r.shape[x]+y[1]),l=s.map(y=>y[0]),u=s.map((y,x)=>y[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),b=v.getTypedArrayFromDType(r.dtype,m);for(let y=0;y<m;y++){let x=v.indexToLoc(y,f,g);for(let I=0;I<f;I++)x[I]<l[I]?x[I]=l[I]*2-x[I]-p:x[I]>=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);b[y]=d[w]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var cY={kernelName:po,backendName:"cpu",kernelFunc:pY},dY=Gt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),hY=sn(Du,dY),mY={kernelName:Du,backendName:"cpu",kernelFunc:hY},fY=vs(_m());function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=J_({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),c=O1({inputs:{a:r,b:d},backend:n}),h=u_({inputs:{x:c},backend:n}),m=_d({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:p}}),g=W1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var gY={kernelName:Do,backendName:"cpu",kernelFunc:Q_};function bY(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:Q_({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*p,g=new Float32Array(p-1);g[0]=d[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[f+x];let b=fY.alea(i.toString()),y=m*s;for(let x=0;x<s;++x){let w=b();h[y+x]=g.length;for(let I=0;I<g.length;I++)if(w<g[I]){h[y+x]=I;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var yY={kernelName:Ru,backendName:"cpu",kernelFunc:bY},xY=fr.nonMaxSuppressionV3Impl;function vY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ge(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:d}=xY(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var wY={kernelName:Ou,backendName:"cpu",kernelFunc:vY},kY=fr.nonMaxSuppressionV4Impl;function IY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;ge(r,"NonMaxSuppressionPadded");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=kY(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var SY={kernelName:Lu,backendName:"cpu",kernelFunc:IY},NY=fr.nonMaxSuppressionV5Impl;function TY(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;ge(r,"NonMaxSuppressionWithScore");let p=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=NY(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var CY={kernelName:zu,backendName:"cpu",kernelFunc:TY};function _Y(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a;ge(r,"oneHot");let u=v.sizeFromShape(r.shape),p=new Float32Array(u*i);p.fill(l);let d=n.data.get(r.dataId).values;for(let c=0;c<u;++c)d[c]>=0&&d[c]<i&&(p[c*i+d[c]]=o);return n.makeTensorInfo([...r.shape,i],s,p)}var EY={kernelName:ho,backendName:"cpu",kernelFunc:_Y};function Im(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=gi({inputs:{input:a},backend:n}),s=Im({inputs:{x:r},backend:n}),i=Ql({inputs:{input:a},backend:n}),o=Im({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return B1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var AY={kernelName:sp,backendName:"cpu",kernelFunc:Im};function eE(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=gi({inputs:{input:a},backend:n}),s=eE({inputs:{x:r},backend:n}),i=Ql({inputs:{input:a},backend:n}),o=Im({inputs:{x:i},backend:n}),l=Jn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return B1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var FY={kernelName:Wu,backendName:"cpu",kernelFunc:eE};function tE(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return km({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=km({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=eu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var $Y={kernelName:Bu,backendName:"cpu",kernelFunc:tE};function DY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((b,y)=>b[0]+r.shape[y]+b[1]),l=s.map(b=>b[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let b=0;b<p;b++){let y=v.indexToLoc(b,d,c).map((w,I)=>w+l[I]),x=v.locToIndex(y,m,f);g[x]=u[b]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var nE={kernelName:mo,backendName:"cpu",kernelFunc:DY},RY=Gt((e,t)=>Math.pow(e,t)),MY=sn(fo,RY),PY={kernelName:fo,backendName:"cpu",kernelFunc:MY};function OY(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.data.get(b.dataId).values),u=r.map(b=>b.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=C_(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var LY={kernelName:Um,backendName:"cpu",kernelFunc:OY};function zY(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=__(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var WY={kernelName:Gm,backendName:"cpu",kernelFunc:zY};function BY(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=E_(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var VY={kernelName:Hm,backendName:"cpu",kernelFunc:BY};function UY(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=$1(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var GY={kernelName:Bc,backendName:"cpu",kernelFunc:UY},HY=it(yo,e=>1/e),qY={kernelName:yo,backendName:"cpu",kernelFunc:HY};function jY(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=b[0]/y[0],I=b[1]/y[1];for(let T=0;T<d;T++)for(let C=0;C<u;C++){let E;i?E=w*(C+.5)-.5:E=w*C;let F=Math.max(0,Math.floor(E)),D=E-F,$=Math.min(c-1,Math.ceil(E)),S=T*l[0]+F*l[1],M=T*l[0]+$*l[1];for(let B=0;B<p;B++){let U;i?U=I*(B+.5)-.5:U=I*B;let H=Math.max(0,Math.floor(U)),j=U-H,K=Math.min(h-1,Math.ceil(U)),Z=S+H*l[2],J=M+H*l[2],ee=S+K*l[2],ae=M+K*l[2];for(let te=0;te<m;te++){let re=f[Z+te],se=f[J+te],ye=f[ee+te],ue=f[ae+te],be=re+(ye-re)*j,ke=se+(ue-se)*j,Se=be+(ke-be)*D;g[x++]=Se}}}return n.makeTensorInfo([d,u,p,m],"float32",g)}var KY={kernelName:wo,backendName:"cpu",kernelFunc:jY};function XY(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeBilinearGrad");let o=v.computeStrides(r.shape),[l,u,p,d]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*p*d),f=[i&&c>1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],b=f[0]/g[0],y=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I<l;I++){let T=I*o[0];for(let C=0;C<c;C++){let E=C*b,F=Math.floor(E),D=Math.min(Math.ceil(E),u-1),$=T+F*o[1],S=T+D*o[1],M=E-F,B=1-M;for(let U=0;U<h;U++){let H=U*y,j=Math.floor(H),K=Math.min(Math.ceil(H),p-1),Z=H-j,J=1-Z,ee=$+j*o[2],ae=$+K*o[2],te=S+j*o[2],re=S+K*o[2],se=B*J,ye=B*Z,ue=M*J,be=M*Z;for(let ke=0;ke<d;ke++){let Se=x[w++];m[ee+ke]+=Se*se,m[ae+ke]+=Se*ye,m[te+ke]+=Se*ue,m[re+ke]+=Se*be}}}}return n.makeTensorInfo([l,p,u,d],"float32",m)}var YY={kernelName:Gu,backendName:"cpu",kernelFunc:XY};function ZY(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(d*u*p*m),b=[s&&u>1?c-1:c,s&&p>1?h-1:h],y=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=b[0]/y[0],w=b[1]/y[1],I=0;for(let T=0;T<d;T++){let C=T*l[0];for(let E=0;E<u;E++){let F=i?x*(E+.5):x*E,D=Math.min(c-1,s?Math.round(F):Math.floor(F));i&&(D=Math.max(0,D));let $=C+D*l[1];for(let S=0;S<p;S++){let M=i?w*(S+.5):w*S,B=Math.min(h-1,s?Math.round(M):Math.floor(M));i&&(B=Math.max(0,B));let U=$+B*l[2];for(let H=0;H<m;H++){let j=f[U+H];g[I++]=j}}}}return n.makeTensorInfo([d,u,p,m],r.dtype,g)}var JY={kernelName:vo,backendName:"cpu",kernelFunc:ZY};function QY(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ge([s,r],"resizeNearestNeighborGrad");let o=v.computeStrides(r.shape),l=v.computeStrides(s.shape),[u,p,d,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*p*d*c),g=n.data.get(s.dataId).values,b=[i&&h>1?p-1:p,i&&m>1?d-1:d],y=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=b[0]/y[0],w=b[1]/y[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,E=Math.ceil(T)*2+2;for(let F=0;F<u;F++){let D=F*o[0];for(let $=0;$<p;$++){let S=D+$*o[1],M=Math.floor($*I),B=Math.floor(M-C/2);for(let U=0;U<d;U++){let H=S+U*o[2],j=Math.floor(U*T),K=Math.floor(j-E/2);for(let Z=0;Z<c;Z++){let J=0;for(let ee=0;ee<C;ee++){let ae=ee+B;if(ae<0||ae>=h)continue;let te=D+ae*l[1],re=ae*x,se=Math.min(p-1,i?Math.round(re):Math.floor(re));if($===se)for(let ye=0;ye<E;ye++){let ue=ye+K;if(ue<0||ue>=m)continue;let be=te+ue*l[2],ke=ue*w,Se=Math.min(d-1,i?Math.round(ke):Math.floor(ke));U===Se&&(J+=g[be+Z])}}f[H+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var e7={kernelName:Uu,backendName:"cpu",kernelFunc:QY};function t7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return dr({inputs:{x:r},backend:n});let l=new Bt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;p<l.size;p++){let d=l.indexToLoc(p),c=d.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var n7={kernelName:Io,backendName:"cpu",kernelFunc:t7},a7={kernelName:ip,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let w=x*d*p*c;for(let I=0;I<p;I++){let T=I*(d*c);for(let C=0;C<d;C++){let E=C*c;for(let F=0;F<c;F++){let D=[u,I,C,F],$=D[2],S=D[1],M=($-h)*b-(S-m)*g,B=($-h)*g+(S-m)*b;M=Math.round(M+h),B=Math.round(B+m);let U=s;if(typeof s!="number"&&(F===3?U=f:U=s[F]),M>=0&&M<d&&B>=0&&B<p){let j=B*(d*c),K=M*c,Z=w+j+K+F;U=y[Z]}let H=w+T+E+F;l[H]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},r7=it(So,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),s7={kernelName:So,backendName:"cpu",kernelFunc:r7};function i7(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=ei(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var o7={kernelName:Hu,backendName:"cpu",kernelFunc:i7};function l7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<t?n=r+1:a=r;return a}function u7(e,t){let n=0,a=e.length,r=0;for(;n<a;)r=Math.floor((n+a)/2),e[r]<=t?n=r+1:a=r;return a}function p7(e,t,n,a,r,s){let i=v.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let l=e.slice(o*a,(o+1)*a),u=o*r;for(let p=0;p<r;++p)i[u+p]=s==="left"?l7(l,t[p+u]):u7(l,t[p+u])}return i}function c7(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=p7(o,l,r.shape[0],r.shape[1],s.shape[1],i);return n.makeTensorInfo(s.shape,"int32",u)}var d7={kernelName:ju,backendName:"cpu",kernelFunc:c7};function h7(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ge([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=ga(r.dtype,s.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),p),c=0,h=i===0||i>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?d[c++]=l[m]:d[c++]=u[m];return n.makeTensorInfo(r.shape,p,d)}var m7={kernelName:Ku,backendName:"cpu",kernelFunc:h7},f7=N.SELU_SCALEALPHA,g7=N.SELU_SCALE,b7=it(To,e=>e>=0?g7*e:f7*(Math.exp(e)-1)),y7={kernelName:To,backendName:"cpu",kernelFunc:b7},x7=it(_o,e=>e<0?-1:e>0?1:0),v7={kernelName:_o,backendName:"cpu",kernelFunc:x7},w7=it(Co,e=>Math.sin(e)),k7={kernelName:Co,backendName:"cpu",kernelFunc:w7},I7=it(Yu,e=>Math.sinh(e)),S7={kernelName:Yu,backendName:"cpu",kernelFunc:I7},N7=11920928955078125e-23,eS=Math.log(N7)+2,T7=it(Ao,e=>{let t=e>-eS,n=e<eS,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),C7={kernelName:Ao,backendName:"cpu",kernelFunc:T7};function _7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ge([r],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=nE.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=xt({inputs:{x:u},backend:n,attrs:{shape:p}}),m=Un({inputs:{x:h},backend:n,attrs:{perm:d}}),f=xt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var E7={kernelName:Zu,backendName:"cpu",kernelFunc:_7};function A7(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,p=n.data.get(i.dataId).values[0],[d,c,h,m,f]=$_(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var F7={kernelName:Vc,backendName:"cpu",kernelFunc:A7};function $7(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=D_(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var D7={kernelName:Qu,backendName:"cpu",kernelFunc:$7};function R7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=D1(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var M7={kernelName:Uc,backendName:"cpu",kernelFunc:R7};function P7(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=D1(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var O7={kernelName:Gc,backendName:"cpu",kernelFunc:P7};function L7(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),b=!!n.data.get(i.dataId).values[0];f=ei(m,g,o,c,p,u,l,d,b,h);break}case"float32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ei(m,g,o,c,p,u,l,d,b,h);break}case"int32":{let g=n.bufferSync(s),b=n.data.get(i.dataId).values[0];f=ei(m,g,o,c,p,u,l,d,b,h);break}case"string":{let g=n.bufferSync(s),b=v.decodeString(n.data.get(i.dataId).values[0]);f=ei(m,g,o,c,p,u,l,d,b,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var z7={kernelName:ep,backendName:"cpu",kernelFunc:L7};function W7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=bi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var B7={kernelName:Ju,backendName:"cpu",kernelFunc:W7},V7={kernelName:Hc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},U7=it(Ns,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),G7={kernelName:Ns,backendName:"cpu",kernelFunc:U7};function H7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=xt({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=bi({inputs:{x:r},backend:n,attrs:{begin:y,size:T}});I=xt({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=P_(h,T,w,y);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var q7={kernelName:tp,backendName:"cpu",kernelFunc:H7};function j7(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=R1(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var K7={kernelName:jc,backendName:"cpu",kernelFunc:j7};function X7(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=M1(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Y7={kernelName:Kc,backendName:"cpu",kernelFunc:X7};function Z7(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=P1(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var J7={kernelName:Xc,backendName:"cpu",kernelFunc:Z7},Q7=it(Po,e=>Math.tan(e)),eZ={kernelName:Po,backendName:"cpu",kernelFunc:Q7},tZ=it(Oo,e=>Math.tanh(e)),nZ={kernelName:Oo,backendName:"cpu",kernelFunc:tZ};function aZ(e){let{inputs:t,backend:n}=e,{tensor:a,indices:r,updates:s}=t,{sliceRank:i,numUpdates:o,sliceSize:l,strides:u,outputSize:p}=N.calculateShapes(s,r,a.shape),d=!1,c=n.bufferSync(r),h=n.bufferSync(s),m=n.bufferSync(a),f=ei(c,h,a.shape,p,l,o,i,u,m,d);return n.makeTensorInfo(a.shape,f.dtype,f.values)}var rZ={kernelName:qu,backendName:"cpu",kernelFunc:aZ};function sZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=L_(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var iZ={kernelName:Ss,backendName:"cpu",kernelFunc:sZ};function oZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=W_(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var lZ={kernelName:np,backendName:"cpu",kernelFunc:oZ};function uZ(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=v.computeStrides(r.shape),y=b[0],x=b[1],w=b[2],I=v.computeStrides(g),T=I[0],C=I[1],E=I[2],F=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));F.fill(l);let D=a.data.get(r.dataId).values,$=a.data.get(s.dataId).values;for(let S=0;S<p;++S){let M=s.shape[0]===1?$:$.subarray(S*8,S*8+8);for(let B=0;B<m;++B)for(let U=0;U<f;++U)for(let H=0;H<h;++H){let j,K=M[6]*U+M[7]*B+1;if(K===0)continue;let Z=(M[0]*U+M[1]*B+M[2])/K,J=(M[3]*U+M[4]*B+M[5])/K,ee=tS(Z,c,o),ae=tS(J,d,o);switch(i){case"nearest":j=fZ(D,d,c,y,x,w,S,ae,ee,H,l);break;case"bilinear":j=gZ(D,d,c,y,x,w,S,ae,ee,H,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let te=S*T+B*C+U*E+H;F[te]=j}return a.makeTensorInfo(g,r.dtype,F)}return{dataId:a.write(F,g,r.dtype),shape:r.shape,dtype:r.dtype}}var pZ={kernelName:ap,backendName:"cpu",kernelFunc:uZ};function tS(e,t,n){switch(n){case"reflect":return cZ(e,t);case"wrap":return dZ(e,t);case"nearest":return mZ(e,t);case"constant":default:return hZ(e,t)}}function cZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function dZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function hZ(e,t){return e}function mZ(e,t){return v.clamp(0,e,t-1)}function rc(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[d]:p}function fZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.round(o),c=Math.round(l);return rc(e,t,n,a,r,s,i,d,c,u,p)}function gZ(e,t,n,a,r,s,i,o,l,u,p){let d=Math.floor(o),c=Math.floor(l),h=d+1,m=c+1,f=(m-l)*rc(e,t,n,a,r,s,i,d,c,u,p)+(l-c)*rc(e,t,n,a,r,s,i,d,m,u,p),g=(m-l)*rc(e,t,n,a,r,s,i,h,c,u,p)+(l-c)*rc(e,t,n,a,r,s,i,h,m,u,p);return(h-o)*f+(o-d)*g}function bZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ge(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=L1(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var yZ={kernelName:Yc,backendName:"cpu",kernelFunc:bZ};function xZ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i).fill(0),d=r.shape.slice();d[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){p[s]=h;let m=bi({inputs:{x:r},backend:n,attrs:{begin:p,size:d}});c[h]=xt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var vZ={kernelName:rp,backendName:"cpu",kernelFunc:xZ};function wZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ge(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],p=[],d=o-l,c=s;for(let m=0;m<d;++m){let f=km({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,p.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),b=o_({inputs:{a:g,b:c},backend:n}),y=ys({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),x=Xf({inputs:{a:y,b:r},backend:n}),w=_d({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(w),p.push(g),p.push(b),p.push(y),p.push(x),p.push(w)}let h=tE({inputs:u,backend:n,attrs:{axis:0}});return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var kZ={kernelName:Zc,backendName:"cpu",kernelFunc:wZ},IZ=[yK,e5,vK,kK,i5,SK,TK,_K,AK,$K,RK,PK,LK,BK,UK,qK,KK,YK,JK,gK,e8,n8,r8,i8,r5,l5,l8,t5,p8,d8,h8,f8,b8,x8,w8,I8,N8,C8,E8,F8,D8,M8,O8,L8,W8,V8,G8,H8,q8,j8,Y8,uK,J8,u5,iX,p5,oX,d5,hX,mX,gX,m5,g5,yX,vX,kX,SX,y5,v5,n5,TX,c8,_X,AX,$X,pK,k5,S5,RX,T5,PX,zX,BX,GX,qX,KX,XX,_5,ZX,QX,tY,aY,sY,oY,uY,A5,cY,mY,yY,$5,R5,wY,SY,CY,P5,EY,FY,$Y,nE,PY,dK,z5,LY,WY,VY,GY,a5,tv,qY,hK,mK,fK,KY,YY,JY,e7,n7,a7,s7,j5,o7,d7,m7,y7,X5,v7,k7,S7,Y5,gY,C7,E7,F7,D7,M7,O7,z7,B7,Q5,V7,tK,aK,G7,q7,K7,Y7,J7,oK,K8,eZ,nZ,rZ,iZ,lZ,pZ,O5,yZ,vZ,kZ,AY];for(let e of IZ)Jc(e);var aE={};Ee(aE,{assertNotComplex:()=>yp,bindCanvasToFramebuffer:()=>RZ,bindColorTextureToFramebuffer:()=>jh,bindTextureToProgramUniformSampler:()=>xE,bindTextureUnit:()=>gE,bindVertexBufferToProgramAttribute:()=>av,callAndCheck:()=>de,canBeRepresented:()=>sE,createFragmentShader:()=>lE,createFramebuffer:()=>fE,createProgram:()=>uE,createStaticIndexBuffer:()=>dE,createStaticVertexBuffer:()=>cE,createTexture:()=>hE,createVertexShader:()=>oE,getBatchDim:()=>yi,getExtensionOrThrow:()=>sc,getFramebufferErrorMessage:()=>vE,getMaxTexturesInShader:()=>SE,getNumChannels:()=>$Z,getProgramUniformLocation:()=>yE,getProgramUniformLocationOrThrow:()=>bE,getRowsCols:()=>xi,getShapeAs3D:()=>oc,getTextureShapeFromLogicalShape:()=>kE,getWebGLDisjointQueryTimerVersion:()=>NE,getWebGLErrorMessage:()=>iE,getWebGLMaxTextureSize:()=>IE,hasExtension:()=>ha,isCapableOfRenderingToFloatTexture:()=>TE,isDownloadFloatTextureEnabled:()=>CE,isReshapeFree:()=>Cc,isWebGLFenceEnabled:()=>_E,isWebGLVersionEnabled:()=>sv,linkProgram:()=>pE,logShaderSourceAndInfoLog:()=>U1,resetMaxTextureSize:()=>MZ,resetMaxTexturesInShader:()=>PZ,unbindColorTextureFromFramebuffer:()=>rv,unbindTextureUnit:()=>DZ,validateFramebuffer:()=>ic,validateProgram:()=>qh,validateTextureSize:()=>mE});var Zs={},zh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function rE(e,t){Zs[e]=t}function Ka(e,t){if(!(e in Zs)||t!=null){let a=NZ(e,t);if(a!==null)Zs[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=Zs[e];return n==null||n.isContextLost()?(delete Zs[e],Ka(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Zs[e])}function SZ(e){if(!G().getBool("IS_SAFARI")&&typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function NZ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?SZ(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete Zs[e]},!1),G().getBool("SOFTWARE_WEBGL_ENABLED")&&(zh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",zh)||n.getContext("experimental-webgl",zh):n.getContext("webgl2",zh)}var Tc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Tc||(Tc={}));var da;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(da||(da={}));var hn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(hn||(hn={}));function Ed(e,t){return[t,e]}function TZ(e,t){return e*t}function Wh(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function bp(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function CZ(e,t){let[n,a]=bp(e,t);return n*a*4}function V1(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return G().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function de(e,t){let n=t();return G().getBool("DEBUG")&&_Z(e),n}function _Z(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+iE(e,t))}var EZ=596e-10,AZ=65504;function sE(e){return!!(G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||EZ<Math.abs(e)&&Math.abs(e)<AZ)}function iE(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function sc(e,t){return Lr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function oE(e,t){let n=Lr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function lE(e,t){let n=Lr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(de(e,()=>e.shaderSource(n,t)),de(e,()=>e.compileShader(n)),G().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw U1(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var FZ=/ERROR: [0-9]+:([0-9]+):/g;function U1(e,t){let n=FZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;d<i.length;d++)o=Math.max(i[d].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),p=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(p.join(`
`))}function uE(e){return Lr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function pE(e,t){if(de(e,()=>e.linkProgram(t)),!G().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function qh(e,t){if(de(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function cE(e,t){let n=Lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function dE(e,t){let n=Lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),de(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function $Z(){return G().getNumber("WEBGL_VERSION")===2?1:4}function hE(e){return Lr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function mE(e,t){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function fE(e){return Lr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function av(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),de(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),de(e,()=>e.enableVertexAttribArray(o)),!0)}function gE(e,t,n){wE(e,n),de(e,()=>e.activeTexture(e.TEXTURE0+n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function DZ(e,t){wE(e,t),de(e,()=>e.activeTexture(e.TEXTURE0+t)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function bE(e,t,n){return Lr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function yE(e,t,n){return e.getUniformLocation(t,n)}function xE(e,t,n,a){de(e,()=>gE(e,t,a)),de(e,()=>e.uniform1i(n,a))}function RZ(e){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),de(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function jh(e,t,n){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function rv(e,t){de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),de(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ic(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+vE(e,t))}function vE(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Lr(e,t,n){let a=de(e,()=>t());if(a==null)throw new Error(n);return a}function wE(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function xi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function oc(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yi(e),...xi(e)]),t}function kE(e,t=!1){let n=G().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=G().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&G().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=yi(e),l=2,u=2;e.length&&([l,u]=xi(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function Bh(e){return e%2===0}function Cc(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e[e.length-1],a=t[t.length-1];if(n===a||Bh(n)&&Bh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Bh(e[0])&&Bh(t[0])}var Kh,Xh;function IE(e){if(Kh==null){let t=Ka(e);Kh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Kh}function MZ(){Kh=null}function PZ(){Xh=null}function SE(e){if(Xh==null){let t=Ka(e);Xh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Xh)}function NE(e){if(e===0)return 0;let t,n=Ka(e);return ha(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ha(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ha(e,t){return e.getExtension(t)!=null}function sv(e){try{if(Ka(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function TE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ha(t,"OES_texture_float"))return!1}else if(!ha(t,"EXT_color_buffer_float"))return!1;return iv(t)}function CE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ha(t,"OES_texture_float")||!ha(t,"WEBGL_color_buffer_float"))return!1}else{if(ha(t,"EXT_color_buffer_float"))return iv(t);let n="EXT_color_buffer_half_float";if(ha(t,n)){let a=t.getExtension(n);return OZ(t,a)}return!1}return iv(t)}function iv(e){let t=V1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function OZ(e,t){let n=V1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function _E(e){return e!==2?!1:Ka(e).fenceSync!=null}function yp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var xe=G();xe.registerFlag("HAS_WEBGL",()=>xe.getNumber("WEBGL_VERSION")>0);xe.registerFlag("WEBGL_VERSION",()=>sv(2)?2:sv(1)?1:0);xe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);xe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>xe.get("WEBGL_VERSION")===2);xe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);xe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);xe.registerFlag("WEBGL_PACK",()=>xe.getBool("HAS_WEBGL"));xe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_CLIP",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_PACK_REDUCE",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_LAZILY_UNPACK",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_CONV_IM2COL",()=>xe.getBool("WEBGL_PACK"));xe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>IE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>SE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=xe.getNumber("WEBGL_VERSION");return e===0?0:NE(e)});xe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>xe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!td.isMobile());xe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>TE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>xe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:xe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));xe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>CE(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>_E(xe.getNumber("WEBGL_VERSION")));xe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>xe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);xe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});xe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>td.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});xe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);xe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);xe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);xe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);xe.registerFlag("WEBGL_EXP_CONV",()=>!1);xe.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>xe.getBool("IS_TEST"));xe.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);xe.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);xe.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);xe.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function En(){let e,t,n,a,r,s,i,o,l,u;return G().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=G().getBool("WEBGL2_ISNAN_CUSTOM")?`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`:"",l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Ho(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Yf(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function LZ(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function zZ(e,t,n="index"){let a=e.map((s,i)=>i),r=LZ(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function G1(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function H1(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var EE=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:AE}=N;function WZ(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=q1(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(`
`),s=e.map(c=>BZ(c,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),i=t.texShape,o=En(),l=GZ(o),u,p,d=jZ(o);return t.isPacked?(u=VZ(t.logicalShape,i,n.enableShapeUniforms),p=qZ(o)):(u=UZ(t.logicalShape,i,n.enableShapeUniforms),p=HZ(o)),n.packedInputs&&(d+=ZZ),[d,l,p,r,u,s,n.userCode].join(`
`)}function xp(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return uJ(e,t);case 1:return cJ(e,t);case 2:return hJ(e,t);case 3:return fJ(e,t);case 4:return bJ(e,t);case 5:return yJ(e);case 6:return xJ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function FE(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return lJ(e);case 1:return pJ(e,t);case 2:return dJ(e,t);case 3:return mJ(e,t);default:return gJ(e,t)}}function BZ(e,t,n=!1,a){let r="";n?r+=FE(e,a):r+=xp(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=vJ(e,t):r+=wJ(e,t)),r}function VZ(e,t,n){switch(e.length){case 0:return $E();case 1:return JZ(e,t,n);case 2:return iJ(e,t,n);case 3:return eJ(e,t,n);default:return nJ(e,t,n)}}function UZ(e,t,n){switch(e.length){case 0:return $E();case 1:return QZ(e,t,n);case 2:return oJ(e,t,n);case 3:return tJ(e,t,n);case 4:return aJ(e,t,n);case 5:return rJ(e,t);case 6:return sJ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function GZ(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function HZ(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function qZ(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function jZ(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${KZ}
${XZ}
${YZ}
`}var KZ=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,XZ=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,YZ=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ZZ=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function $E(){return`
int getOutputCoords() {
return 0;
}
`}function JZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${a[1]}.0);
}
`:a[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${a[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
return 2 * (resTexRC.x * ${a[1]} + resTexRC.y);
}
`}function QZ(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function eJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function tJ(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Yf(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let a=Ho(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec3(r, c, d);
}
`}function nJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u<e.length-1;u++)i*=e[e.length-u-1],o=`
int b${u} = index / ${i};
index -= b${u} * ${i};
`+o,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
${o}
int b = index / ${s};
index -= b * ${s};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function aJ(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${Yf(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let a=Ho(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
return ivec4(r, c, d, d2);
}
`}function rJ(e,t){let n=Ho(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function sJ(e,t){let n=Ho(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function iJ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${a[0]}, ${a[1]}));
int index = resTexRC.x * ${a[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function oJ(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function qo(e){return`offset${e}`}function lJ(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=En();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function uJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${a}() {return ${n};}`;let[r,s]=e.shapeInfo.texShape;if(r===1&&s===1)return`
float ${a}() {
return sampleTexture(${n}, halfCR);
}
`;let i=qo(n);if(t)return`
float ${a}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
return sampleTexture(${n}, uv);
}
`;let[o,l]=e.shapeInfo.texShape;return`
float ${a}() {
vec2 uv = uvFromFlat(${o}, ${l}, ${i});
return sampleTexture(${n}, uv);
}
`}function pJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=En();if(t)return`
vec4 ${a}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${s.texture2D}(${n}, uv);
}
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${a}(int index) {
vec2 uv = packedUVfrom1D(
${i[0]}, ${i[1]}, index);
return ${s.texture2D}(${n}, uv);
}
`}function cJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${a}(int index) {
${vp(e)}
}
`;let r=e.shapeInfo.texShape,s=r[0],i=r[1];if(i===1&&s===1)return`
float ${a}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let o=qo(n);return i===1?t?`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${s}.0);
return sampleTexture(${n}, uv);
}
`:s===1?t?`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${a}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int index) {
vec2 uv = uvFromFlat(${s}, ${i}, index + ${o});
return sampleTexture(${n}, uv);
}
`}function dJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=s[0],o=s[1],l=En();if(s!=null&&v.arraysEqual(n,s))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return ${l.texture2D}(${a}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
return ${l.texture2D}(${a}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${a}, uv);
}
`;let u=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],p=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${p}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${a}, uv);
}
`}function hJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape;if(s!=null&&v.arraysEqual(n,s)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`;let c=s[0],h=s[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`}let{newShape:i,keptDims:o}=v.squeezeShape(n),l=i;if(l.length<n.length){let c=wp(e,l),h=["row","col"];return`
${xp(c,t)}
float ${r}(int row, int col) {
return ${r}(${kp(h,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${vp(e)}
}
`;let u=s[0],p=s[1],d=qo(a);return p===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${a}TexShape[0]));
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${a}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${a}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${a}TexShape[1]), 0.5);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${p}.0, 0.5);
return sampleTexture(${a}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a}Shape[1] + col + ${d};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${d};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${a}, uv);
}
`}function mJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)];if(n[0]===1){let c=n.slice(1),h=[1,2],m=wp(e,c),f=["b","row","col"];return`
${FE(m,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${kp(f,h)});
}
`}let o=En();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${a}TexShape[0]) / 2.0), ceil(float(${a}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${a}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${a}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`;let l=i[0],u=i[1],p=Math.ceil(n[2]/2),d=p*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${d}, ${p}, b, row, col);
return ${o.texture2D}(${a}, uv);
}
`}function fJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[1]*n[2],i=n[2],{newShape:o,keptDims:l}=v.squeezeShape(n),u=o;if(u.length<n.length){let f=wp(e,u),g=["row","col","depth"];return`
${xp(f,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${kp(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${s}, ${i}, 1)));
${vp(e)}
}
`;let p=e.shapeInfo.texShape,d=p[0],c=p[1],h=e.shapeInfo.flatOffset;if(c===s&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${a}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${i}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;if(c===i&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${a}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}.0, ${d}.0);
return sampleTexture(${a}, uv);
}
`;let m=qo(a);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${a}Shape[1] * ${a}Shape[2];
int stride1 = ${a}Shape[2];
int index = row * stride0 + col * stride1 + depth + ${m};
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s} + col * ${i} + depth + ${m};
vec2 uv = uvFromFlat(${d}, ${c}, index);
return sampleTexture(${a}, uv);
}
`}function gJ(e,t){let n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=En();if(t)return`
vec4 ${a}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let s=e.shapeInfo.logicalShape,i=s.length,o=e.shapeInfo.texShape,l=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],u=l[0],p=l[1],d=Math.ceil(s[i-1]/2),c=d*Math.ceil(s[i-2]/2),h="int b, int row, int col",m=`b * ${c} + (row / 2) * ${d} + (col / 2)`;for(let f=2;f<i-1;f++)h=`int b${f}, `+h,c*=s[i-f-1],m=`b${f} * ${c} + `+m;return`
vec4 ${a}(${h}) {
int index = ${m};
int texR = index / ${p};
int texC = index - texR * ${p};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function bJ(e,t){let n=e.shapeInfo.logicalShape,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=n[3],i=n[2]*s,o=n[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let y=wp(e,l),x=["row","col","depth","depth2"];return`
${xp(y,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${kp(x,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, 1)));
${vp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1],m=`int stride2 = ${a}Shape[3];`,f=`int stride1 = ${a}Shape[2] * stride2;`,g=`int stride0 = ${a}Shape[1] * stride1;`;if(h===o&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${m}
${f}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${i}, ${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;if(h===s&&p==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${a}Shape[1] * ${a}Shape[2], ${a}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}TexShape[1], ${a}TexShape[0]);
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${a}, uv);
}
`;let b=qo(a);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${m}
${f}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${a}TexShape[0], ${a}TexShape[1], index + ${b});
return sampleTexture(${a}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} +
depth * ${s} + depth2;
vec2 uv = uvFromFlat(${c}, ${h}, index + ${b});
return sampleTexture(${a}, uv);
}
`}function yJ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=wp(e,l),g=["row","col","depth","depth2","depth3"];return`
${xp(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${kp(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${vp(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,c=d[0],h=d[1];if(h===o&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&p==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=qo(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function xJ(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=v.squeezeShape(t);if(r.length<t.length){let g=wp(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
${xp(g)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${kp(b,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,p=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${p}, ${u}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${vp(e)}
}
`;let d=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===p&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&d==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=qo(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${p} + col * ${u} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function vp(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function vJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=AE(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),u=i-s,p,d=["x","y","z","w","u","v"];s===0?p="":i<2&&o.length>=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,b)=>`coords.${d[b+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let g=s-2,b=s-1;o.indexOf(g)>-1&&o.indexOf(b)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(b)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${p}
vec4 outputValue = get${a}(${c});
${h}
}
`}function wJ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=dt(l),p=AE(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function q1(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.length<s||i;return{useSqueezeShape:l,uniformShape:l?o:t,keptDims:r}}function wp(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function kp(e,t){return t.map(n=>e[n]).join(", ")}function kJ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=WZ(r,i,t),l=lE(e.gl,o),u=e.createProgram(l);return G().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,variablesLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},DE(e,t,u))}function DE(e,t,n){let a=[],r=[],s,i,o,l=null,u=null;u=e.getUniformLocation(n,"NAN",!1),G().getNumber("WEBGL_VERSION")===1&&(l=e.getUniformLocation(n,"INFINITY",!1));let p=!1;for(let d of t.variableNames){let c={name:d,uniform:e.getUniformLocation(n,d,p),offset:e.getUniformLocation(n,`offset${d}`,p)};t.enableShapeUniforms&&(c.shape=e.getUniformLocation(n,`${d}Shape`,p),c.texShape=e.getUniformLocation(n,`${d}TexShape`,p)),a.push(c)}if(t.enableShapeUniforms&&(s=e.getUniformLocation(n,"outShape",p),o=e.getUniformLocation(n,"outShapeStrides",p),i=e.getUniformLocation(n,"outTexShape",p)),t.customUniforms)for(let d of t.customUniforms)r.push(e.getUniformLocation(n,d.name,p));return{variablesLocations:a,customUniformLocations:r,infLoc:l,nanLoc:u,outShapeLocation:s,outShapeStridesLocation:o,outTexShapeLocation:i}}function nS(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function IJ(e,t,n,a,r){t.program.enableShapeUniforms||(nS(t.inShapeInfos,n),nS([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),G().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN);for(let l=0;l<n.length;++l){let u=n[l],{uniform:p,offset:d,shape:c,texShape:h}=t.variablesLocations[l];if(c){let{uniformShape:m}=q1(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(c,new Int32Array(m));break;case 2:e.gl.uniform2iv(c,new Int32Array(m));break;case 3:e.gl.uniform3iv(c,new Int32Array(m));break;case 4:e.gl.uniform4iv(c,new Int32Array(m));break;default:break}}if(h&&e.gl.uniform2i(h,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(v.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}continue}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}}let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}if(t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r)for(let l=0;l<t.program.customUniforms.length;++l){let u=t.program.customUniforms[l],p=t.customUniformLocations[l],d=r[l];if(u.type==="float")e.gl.uniform1fv(p,d);else if(u.type==="vec2")e.gl.uniform2fv(p,d);else if(u.type==="vec3")e.gl.uniform3fv(p,d);else if(u.type==="vec4")e.gl.uniform4fv(p,d);else if(u.type==="int")e.gl.uniform1iv(p,d);else if(u.type==="ivec2")e.gl.uniform2iv(p,d);else if(u.type==="ivec3")e.gl.uniform3iv(p,d);else if(u.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${u.type} is not supported yet.`)}e.executeProgram()}function SJ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=q1(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),b=v.sizeFromShape(i.shape)===1,y=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${b}_${y}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${G().getNumber("WEBGL_VERSION")}`,s}function vn(e){return G().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var NJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Tc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Yf(["r","c","d"],e):Ho(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},TJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Tc.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?Yf(["r","c","d"],e):Ho(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},CJ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
${EE}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},_J=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=da.DOWNLOAD;let t=En();this.outputShape=e,this.userCode=`
${EE}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},EJ={R:0,G:1,B:2,A:3},aS=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;i<n.length;i++){let o=n[i];s+=`
if(offset == ${i}) {
result = values[${EJ[o]}];
}`}this.userCode=`
${this.enableShapeUniforms?H1():G1(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
float result = 0.;
int offset = imod(flatIndex, ${n.length});
flatIndex = idiv(flatIndex, ${n.length}, 1.);
int r = flatIndex / texShape[1];
if (r < texShape[0]) {
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${a.texture2D}(A, uv);
${s}
}
${a.output} = vec4(${r}, 0., 0., 0.);
}
`}},AJ=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=En();this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let a="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let s=0;s<=1;s++)for(let i=0;i<=1;i++){let o=s*2+i;a+=`
localCoords = coords;
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${i};
if (localCoords[1] + ${s} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${s};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${o}] = values[0];
} else if (offset == 1) {
result[${o}] = values[1];
} else if (offset == 2) {
result[${o}] = values[2];
} else {
result[${o}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?H1():G1(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${a}
${n.output} = ${r};
}
`}},RE={};Ee(RE,{bindVertexProgramAttributeStreams:()=>UE,createBufferFromOutputTexture:()=>qE,createFloat16MatrixTexture:()=>zE,createFloat16PackedMatrixTexture:()=>VE,createFloat32MatrixTexture:()=>LE,createIndexBuffer:()=>OE,createPackedMatrixTexture:()=>BE,createUnsignedBytesMatrixTexture:()=>WE,createVertexBuffer:()=>PE,createVertexShader:()=>ME,downloadByteEncodedFloatMatrixFromOutputTexture:()=>KE,downloadFloat32MatrixFromBuffer:()=>jE,downloadMatrixFromPackedOutputTexture:()=>YE,downloadPackedMatrixFromBuffer:()=>XE,getInternalFormatForFloat16MatrixTexture:()=>K1,getInternalFormatForFloat16PackedMatrixTexture:()=>Z1,getInternalFormatForFloat32MatrixTexture:()=>j1,getInternalFormatForPackedMatrixTexture:()=>Y1,getInternalFormatForUnsignedBytesMatrixTexture:()=>X1,uploadDenseMatrixToTexture:()=>GE,uploadPixelDataToTexture:()=>HE});function ME(e){let t=En(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return oE(e,n)}function PE(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return cE(e,t)}function OE(e){let t=new Uint16Array([0,1,2,2,1,3]);return dE(e,t)}function Ad(e,t,n,a,r,s){mE(t,n);let i=hE(e),o=e.TEXTURE_2D;return de(e,()=>e.bindTexture(o,i)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),de(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),de(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),G().getNumber("WEBGL_VERSION")===1?de(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):de(e,()=>e.texStorage2D(o,1,a,t,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function j1(e){return e.internalFormatFloat}function LE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,j1(a),a.textureFormatFloat,e.FLOAT)}function K1(e){return e.internalFormatHalfFloat}function zE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,K1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function X1(e){return e.downloadTextureFormat}function WE(e,t,n,a){let[r,s]=Ed(t,n);return Ad(e,r,s,X1(a),e.RGBA,e.UNSIGNED_BYTE)}function Y1(e){return e.internalFormatPackedFloat}function BE(e,t,n,a){let[r,s]=bp(t,n);return Ad(e,r,s,Y1(a),e.RGBA,e.FLOAT)}function Z1(e){return e.internalFormatPackedHalfFloat}function VE(e,t,n,a){let[r,s]=bp(t,n);return Ad(e,r,s,Z1(a),e.RGBA,a.textureTypeHalfFloat)}function UE(e,t,n){return de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),av(e,t,"clipSpacePos",n,3,20,0)&&av(e,t,"uv",n,2,20,12)}function GE(e,t,n,a,r,s){de(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function HE(e,t,n){de(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):G().getNumber("WEBGL_VERSION")===2?de(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):de(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),de(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function qE(e,t,n,a){let r=e.createBuffer();de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return de(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),de(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function jE(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function KE(e,t,n,a){let[r,s]=Ed(t,n),i=4,o=new Uint8Array(TZ(t*n,i));return de(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function XE(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(CZ(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function YE(e,t,n){let a=new Float32Array(t*n*4);return de(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Yh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=G().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,rE(t,e)):this.gl=Ka(t),e=this.gl,G().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>de(r,()=>r.createVertexArray()),this.bindVertexArray=s=>de(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>de(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>de(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>de(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>de(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>de(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>de(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),G().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=sc(this.gl,r),ha(this.gl,s))this.textureHalfFloatExtension=sc(this.gl,s);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ha(this.gl,a))this.colorBufferHalfFloatExtension=sc(this.gl,a);else if(G().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ha(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ha(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=PE(this.gl),this.indexBuffer=OE(this.gl),this.framebuffer=fE(this.gl),this.textureConfig=V1(this.gl,this.textureHalfFloatExtension)}get debug(){return G().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;de(e,()=>e.finish()),de(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),de(e,()=>e.deleteFramebuffer(this.framebuffer)),de(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),de(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),de(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),LE(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),zE(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),WE(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),HE(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),GE(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),VE(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),BE(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(rv(this.gl,this.framebuffer),this.outputTexture=null),de(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>KE(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return XE(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return jE(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=qE(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(G().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>YE(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=ME(t));let n=uE(t);de(t,()=>t.attachShader(n,this.vertexShader)),de(t,()=>t.attachShader(n,e)),pE(t,n);let a;return a=Object.assign(n,{vao:this.createVertexArray()}),this.bindVertexArray(a.vao),de(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),console.assert(UE(t,a,this.vertexBuffer),"gpgpu_util.bindVertexProgramAttributeStreams not fully successful."),this.debug&&qh(t,a),this.setProgram(a),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(de(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&(this.bindVertexArray(this.program.vao),this.debug&&qh(this.gl,this.program)),de(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?bE(this.gl,e,t):yE(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),de(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),xE(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=bp(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&qh(this.gl,this.program),ic(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}de(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),de(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=sc(this.gl,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=FJ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in G().platform&&(n=G().platform.setTimeoutCustom.bind(G().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),jh(this.gl,e,this.framebuffer),this.debug&&ic(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(jh(this.gl,this.outputTexture,this.framebuffer),this.debug&&ic(this.gl)):rv(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;jh(a,e,this.framebuffer),this.debug&&ic(a),this.outputTexture=e,de(a,()=>a.viewport(0,0,t,n)),de(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),de(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function FJ(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:$J,bincountImpl:ZE,bincountReduceImpl:DJ,castImpl:RJ,ceilImpl:MJ,concatImpl:PJ,equalImpl:OJ,expImpl:LJ,expm1Impl:zJ,floorImpl:WJ,gatherNdImpl:BJ,gatherV2Impl:VJ,greaterImpl:UJ,greaterEqualImpl:GJ,lessImpl:HJ,lessEqualImpl:qJ,linSpaceImpl:jJ,logImpl:KJ,maxImpl:XJ,maximumImpl:YJ,minimumImpl:ZJ,multiplyImpl:JJ,negImpl:QJ,notEqualImpl:e9,prodImpl:t9,raggedGatherImpl:n9,raggedRangeImpl:a9,raggedTensorToTensorImpl:r9,rangeImpl:s9,rsqrtImpl:i9,scatterImpl:o9,sigmoidImpl:l9,simpleAbsImpl:JE,sliceImpl:u9,sparseFillEmptyRowsImpl:p9,sparseReshapeImpl:c9,sparseSegmentReductionImpl:QE,sqrtImpl:d9,staticRegexReplaceImpl:h9,stridedSliceImpl:m9,stringNGramsImpl:f9,stringSplitImpl:g9,stringToHashBucketFastImpl:b9,subImpl:y9,tileImpl:x9,topKImpl:v9,transposeImpl:J1,uniqueImpl:w9}=T1;function eA(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Sn(e,t){return t===1?[e]:eA(e,t)}function k9(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var I9=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=vn(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Sn("rc",this.rank),n=dt(this.rank),a=this.getOutOfBoundsCondition(t),r=this.getSetup(t),s=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${s}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let a=0;a<=1;a++){let r=`${n===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let s=2;s<this.rank;s++)r=`${e[e.length-1-s]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],a=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${a};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},tA=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${S9(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?H1():G1(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function S9(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?zZ(["r","c","d"],"inputShape"):Ho(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var N9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.usedTextures={},this.logEnabled=!1}acquireTexture(e,t,n){let a=sS(t,n),r=iS(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=rS(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].pop();return this.usedTextures[r].push(o),o}let i;return a===hn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===hn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===hn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===hn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===hn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=sS(n,a),s=iS(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=rS(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=G().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l&&l.indexOf(e);if(u==null||u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l[u]=l[l.length-1],l.pop(),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function T9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function rS(e,t,n,a,r){let s=C9(t,a),i;if(r){let[l,u]=bp(e[0],e[1]);i=l*u}else{let[l,u]=Ed(e[0],e[1]);i=l*u}let o=T9(n,s);return i*o}function C9(e,t){switch(e){case hn.PACKED_2X2_FLOAT32:return Y1(t);case hn.PACKED_2X2_FLOAT16:return Z1(t);case hn.UNPACKED_FLOAT32:return j1(t);case hn.UNPACKED_FLOAT16:return K1(t);case hn.PACKED_4X1_UNSIGNED_BYTE:return X1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function _9(e){return G().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?hn.PACKED_2X2_FLOAT32:hn.UNPACKED_FLOAT32:e?hn.PACKED_2X2_FLOAT16:hn.UNPACKED_FLOAT16}function sS(e,t){if(e===da.UPLOAD)return hn.PACKED_2X2_FLOAT32;if(e===da.RENDER||e==null)return _9(t);if(e===da.DOWNLOAD||e===da.PIXELS)return hn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function iS(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ir=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Oa="if (isnan(x)) return x;",E9="return x;",oS="return abs(x);",A9="return (x >= 0.0) ? x : (exp(x) - 1.0);",F9=Oa+`
return (x < 0.0) ? 0.0 : x;
`,$9=Oa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,es="return x;",D9="return 1.0 / (1.0 + exp(-1.0 * x));",R9="return x;",M9=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,P9=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,O9=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,L9="return 1.0 / (1.0 + exp(-1.0 * x));",ss=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},z9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.length,n=Sn("rc",t),a=dt(t),r=k9(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},W9=fr.whereImpl,B9=1e-7,V9=1e-4,fx={};function U9(e){return e in fx||(fx[e]={}),fx[e]}var G9=G().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),H9=600;function q9(){return G().global.screen==null?1024:G().global.screen.height*G().global.screen.width*window.devicePixelRatio*H9/1024/1024}var Zf=class extends $c{nextDataId(){return Zf.nextDataId++}constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!G().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof Yh)t=e;else{let n=Ka(G().getNumber("WEBGL_VERSION"),e);t=new Yh(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ka(G().getNumber("WEBGL_VERSION"));t=new Yh(n),this.binaryCache=U9(G().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new N9(this.gpgpu),this.numMBBeforeWarning=q9(),this.texData=new Em(this,Ea())}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=oc(t),u=new aS(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((G().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||G().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:da.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(G().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:da.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new ss(i,es):d=new ir(i,es);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ss(a,es):h=new ir(a,es);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(G().getBool("DEBUG")&&!G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&G().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&G().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Wh(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;de(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ea().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new ss(r,es):c=new ir(r,es);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=Ea().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return ze(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!sE(n))throw G().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=v.sizeFromShape(t);if(G().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),c=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture.texture,...Wh(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let s=G().getBool("WEBGL_PACK")&&a===!0,i=s?oc(t):t,o=s?new _J(i):new CJ(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),p}timerAvailable(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(G().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=G9){return G().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return W9(e.shape,t)}packedUnaryOp(e,t,n){let a=new ss(e.shape,t),r=this.compileAndRun(a,[e],n);return Ea().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=JE(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(G().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,oS,e.dtype);let t=new ir(e.shape,oS),n=this.compileAndRun(t,[e]);return Ea().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return Ea().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new z9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new I9(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yi(e.shape),...xi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yi(t),...xi(t)],s=new tA(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=oc(r),o;a?o=new TJ(i):o=new NJ(i);let l=!0,u=[t!=null?t:Wh(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Tc.DENSE){let g=s!=null?s:Wh(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=G().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!Cc(b.shape,g.shape)){let y=g,x=g.shape;g.shape=b.shape,g=this.packedReshape(g,x),l.push(g),b=this.texData.get(g.dataId),y.shape=x}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=SJ(e,u,p),c=this.getAndSaveBinary(d,()=>kJ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),G().get("ENGINE_COMPILE_ONLY")||IJ(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=G().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!G().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(G().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!G().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=G().getBool("DEBUG");G().set("DEBUG",!1);let t=this.abs(ve(1e-8)).dataSync()[0];if(G().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?B9:V9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=kE(n,o),t.texShape=p),r!=null){let d=oc(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=bp(p[0],p[1])),o?c=new AJ(d,f):c=new aS(d,f);let g=f?[m,h]:p,b=this.makeTensorInfo(g,a),y=this.texData.get(b.dataId);f?y.usage=da.PIXELS:y.usage=da.UPLOAD,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[b],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,G().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(b),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return t!=null&&(n.values=j9(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await Gw(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(U1(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let e of Object.values(this.binaryCache)){let{variablesLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,outShapeLocation:s,outShapeStridesLocation:i,outTexShapeLocation:o}=DE(this.gpgpu,e.program,e.webGLProgram);e.variablesLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.outShapeLocation=s,e.outShapeStridesLocation=i,e.outTexShapeLocation=o}}createTensorFromGPUData(e,t,n){e.channels=e.channels||"RGBA";let{texture:a,height:r,width:s,channels:i}=e,o=Ea().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return Ea().makeTensorFromDataId(l,t,n,o)}};Zf.nextDataId=0;function j9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var K9="4.3.0";function nA(){G().set("WEBGL_FORCE_F16_TEXTURES",!0)}td.isBrowser()&&Xm("webgl",()=>new Zf,2);var X9={forceHalfFloat:nA},Q1=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,tu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=vn(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},jo=`
result.r = isNaN.r ? NAN : result.r;
result.g = isNaN.g ? NAN : result.g;
result.b = isNaN.b ? NAN : result.b;
result.a = isNaN.a ? NAN : result.a;
`,Fd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=vn(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${dt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?s+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Sn("coords",r);this.enableShapeUniforms?s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function aa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var Y9={kernelName:Yi,backendName:"webgl",kernelFunc:aa};function Ds(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=aa({inputs:{x:a},backend:n}),l=aa({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var Z9={kernelName:Dm,backendName:"webgl",kernelFunc:Ds},aA="return (a < 0.) ? b * a : a;",rA=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function J9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(rA,r.shape,i.shape):new tu(aA,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var Q9={kernelName:eo,backendName:"webgl",kernelFunc:J9},sA="return (a < 0.) ? b * a : a;",iA=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function eQ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(iA,a.shape,r.shape):new tu(sA,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var tQ={kernelName:go,backendName:"webgl",kernelFunc:eQ},Ip="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=G().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new ss(i.shape,t):p=new ir(i.shape,e),o.runWebGLProgram(p,[i],l)}}function fn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,b]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},E=new tu(e,l.shape,u.shape);return p.runWebGLProgram(E,[T,C],ga(w.dtype,I.dtype))}),y=Ds({inputs:{real:g,imag:b},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(b),y}let d=s||ga(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,b=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[y,x]=r(l.shape,u.shape,g,b,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=y,w}let c=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Fd(t,l.shape,u.shape,n):h=new tu(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function _c(e,t=!1){if(e==="linear")return t?R9:E9;if(e==="relu")return t?P9:F9;if(e==="elu")return t?M9:A9;if(e==="relu6")return t?O9:$9;if(e==="prelu")return t?iA:sA;if(e==="leakyrelu")return t?rA:aA;if(e==="sigmoid")return t?L9:D9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var oA=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=vn(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,g="result = activation(result);");let b=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`imod(rc.x, ${e[0]})`:t[0]<e[0]&&(x=`imod(rc.x, ${t[0]})`),this.userCode=`
${f}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
int batchA = ${y};
int batchB = ${x};
for (int i = 0; i < ${p}; i++) {
vec4 a = getMatrixA(batchA, ${d});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${g}
setOutput(result);
}
`}},lS={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},uS=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},pS="return a * b;";function ek(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=N.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new uS(lS.REAL,a.shape,r.shape),p=new uS(lS.IMAG,a.shape,r.shape),d=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Ds({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,p]=JJ(a.shape,r.shape,o.values,l.values,s),d=n.makeTensorInfo(p,s),c=n.texData.get(d.dataId);return c.values=u,d}let i;return G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Fd(pS,a.shape,r.shape):i=new tu(pS,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var nQ={kernelName:co,backendName:"webgl",kernelFunc:ek};function aQ(e,t,n){let a=[yi(e.shape),...xi(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[yi(t),...xi(t)],i=new tA(s,a),o=!0,l=[a],u=n.runWebGLProgram(i,[r],e.dtype,l,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ce(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!Cc(r.shape,l)&&!(p.texture!==null&&Cc(p.shape,l))?aQ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var rQ={kernelName:Vu,backendName:"webgl",kernelFunc:ce},cS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},sQ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${o}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,c="vec4";t==="all"?(i="1.0",d=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",d=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${d}
} else if (${p===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${d}
} else if (${p===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${d}
}
setOutput(${l});
}
`}};function iQ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ko(e,t,n,a){let r=iQ(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],p,d;n==="mean"?p=i===0?new cS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new cS({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):p=new sQ({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),d=s,s=a.runWebGLProgram(p,[s],t),d.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(d)}return s}var oQ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=lQ(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function lQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var uQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=dt(this.rank),r=eA("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function Jf(e,t,n){let a=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uQ(e.shape,t):new oQ(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function pQ(e,t,n,a){let r=t,s=e.shape.length,i=v.parseAxisParam(r,e.shape),o=i,l=N.getAxesPermutation(o,s),u=l!=null,p=e;u&&(p=Jf(e,l,a),o=N.getInnerMostAxes(o.length,s)),N.assertAxesAreInnerMostDims("sum",o,s);let[d,c]=N.computeOutAndReduceShapes(p.shape,o),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let m=v.sizeFromShape(c),f=v.sizeFromShape(e.shape)/m,g=ce({inputs:{x:p},attrs:{shape:[f,m]},backend:a}),b=Km(e.dtype),y=Ko(g,b,"sum",a),x=ce({inputs:{x:y},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(y),u&&a.disposeIntermediateTensorInfo(p),x}function Qf(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return pQ(r,s,i,n)}var cQ={kernelName:$o,backendName:"webgl",kernelFunc:Qf};function Nn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let p=0;p<l.length;p++)l[p]=r.shape[s[p]];let u;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=J1(p,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=d}else u=Jf(r,s,i);return u}var dQ={kernelName:Fr,backendName:"webgl",kernelFunc:Nn},lA=1e3;function Sm({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,p=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[p-1]:t.shape[p-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[p-2]:t.shape[p-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=v.sizeFromShape(f),y=v.sizeFromShape(g),x=op.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,m]);v.assert(d===c,()=>`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[b,d,h]:[b,h,d],I=a?[y,m,c]:[y,c,m],T=ce({inputs:{x:e},backend:r,attrs:{shape:w}}),C=ce({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[T,C],F=Math.max(b,y),D=n?T.shape[1]:T.shape[2],$=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?_c(l,!0):null,U=$||S||M||B!=null,H;if((h===1||m===1)&&D>lA&&U===!1){let K=T,Z=C;n&&(K=Nn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(Z=Nn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z));let J=m!==1,ee=m===1,ae=K;J&&(ae=ce({inputs:{x:K},backend:r,attrs:{shape:[F,D,1]}}),E.push(ae));let te=m===1?2:1,re=Z;ee&&(re=ce({inputs:{x:Z},backend:r,attrs:{shape:[F,1,D]}}),E.push(re));let se=ek({inputs:{a:ae,b:re},backend:r});H=Qf({inputs:{x:se},backend:r,attrs:{axis:te,keepDims:!0}}),E.push(se)}else{let K=ga(e.dtype,t.dtype),Z=new oA(w,I,[F,h,m],n,a,$,B,S,M),J=[T,C];if(s!=null&&J.push(s),S&&J.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));J.push(ee),E.push(ee)}H=r.runWebGLProgram(Z,J,K)}let j=ce({inputs:{x:H},backend:r,attrs:{shape:x}});E.push(H);for(let K of E)r.disposeIntermediateTensorInfo(K);return j}function hQ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Sm({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var mQ={kernelName:ri,backendName:"webgl",kernelFunc:hQ},dS="return abs(x);";function fQ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=JE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ss(a.shape,dS):r=new ir(a.shape,dS),n.runWebGLProgram(r,[a],a.dtype)}var gQ={kernelName:au,backendName:"webgl",kernelFunc:fQ},bQ=Oa+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,yQ=Ye({opSnippet:bQ}),xQ={kernelName:ki,backendName:"webgl",kernelFunc:yQ},vQ=Oa+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,wQ=Ye({opSnippet:vQ}),kQ={kernelName:Ii,backendName:"webgl",kernelFunc:wQ},hS="return a + b;",IQ=fn({opSnippet:hS,packedOpSnippet:hS,supportsComplex:!0,cpuKernelImpl:$J}),SQ={kernelName:ks,backendName:"webgl",kernelFunc:IQ},NQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},TQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Zh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return aa({inputs:{x:a[0]},backend:n});if(a.length>G().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Zh({inputs:a.slice(0,o),backend:n}),u=Zh({inputs:a.slice(o),backend:n});return Zh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ga(o,l)),s=a.map(o=>o.shape),i=G().getBool("WEBGL_PACK")?new TQ(a[0].shape,s):new NQ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var CQ={kernelName:Si,backendName:"webgl",kernelFunc:Zh};function _Q(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Ko(f,f.dtype,"all",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var EQ={kernelName:ru,backendName:"webgl",kernelFunc:_Q};function AQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Ko(f,f.dtype,"any",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var FQ={kernelName:su,backendName:"webgl",kernelFunc:AQ},$Q=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},DQ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),u=Sn("coords",o),p,d;if(s===1){d=o+1;let C=dt(d);p=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[o-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[o-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[o-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[o-2]};`}else d=o,p=`
${l} sourceLocR = coords;
++${u[o-1]};
${l} sourceLocG = coords;
++${u[o-2]};
${l} sourceLocA = coords;
--${u[o-1]};
${l} sourceLocB = coords;
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=Sn("sourceLocR",d-1).concat("inIdx.r"),g=Sn("sourceLocG",d-1).concat("inIdx.g"),b=Sn("sourceLocB",d-1).concat("inIdx.b"),y=Sn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${y.join()})));`,I=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,T=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${T}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${I};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${I};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function uA(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new $Q(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=uA(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function pA(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new DQ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=pA(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function cA(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!G().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=ce({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=uA(e,c,a);s.push(h);let m=ce({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return pA(e,t,a)}function RQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=cA(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var MQ={kernelName:iu,backendName:"webgl",kernelFunc:RQ};function PQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=cA(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var OQ={kernelName:ou,backendName:"webgl",kernelFunc:PQ},LQ=Oa+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,zQ=Ye({opSnippet:LQ}),WQ={kernelName:Ni,backendName:"webgl",kernelFunc:zQ},BQ=Oa+"return log(x + sqrt(x * x + 1.0));",VQ=Ye({opSnippet:BQ}),UQ={kernelName:Ti,backendName:"webgl",kernelFunc:VQ},GQ=Oa+`
return atan(x);
`,HQ=Ye({opSnippet:GQ}),qQ={kernelName:Ci,backendName:"webgl",kernelFunc:HQ},jQ=Q1+`
return atan(a, b);
`,KQ=`
vec4 result = atan(a, b);
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jo+`
return result;
`,XQ=fn({opSnippet:jQ,packedOpSnippet:KQ}),YQ={kernelName:Ei,backendName:"webgl",kernelFunc:XQ},ZQ=Oa+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,JQ=Ye({opSnippet:ZQ}),QQ={kernelName:_i,backendName:"webgl",kernelFunc:JQ},Ec=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(m||(b="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / max(count, 1.0)");let w=Math.floor(s/4)*4,I=s%4,T=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${y}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${T}
}
int xC = xCCorner + ${w};
if (${I===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${I===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${T}
} else if (${I===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${T}
}
}
setOutput(${x});
}
`}},tk=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let F=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${F} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / max(count, 1.0)");let T=Math.floor(s/4)*4,C=s%4,E=`
if (${y}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${g}, ${b});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
);
${E}
}
int xC = xCCorner + ${T};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${d}, ch),
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
initializationValue
);
${E}
}
}
}
setOutput(${I});
}
`}};function eee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new Ec(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var tee={kernelName:Ai,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new tk(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var aee={kernelName:lu,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${p});
const float avgMultiplier = float(${d});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},see=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${d};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function iee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new see(c);return n.runWebGLProgram(h,[r],i.dtype)}var oee={kernelName:Rc,backendName:"webgl",kernelFunc:iee};function lee(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;yp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new ree(p);return n.runWebGLProgram(d,[r],i.dtype)}var uee={kernelName:$m,backendName:"webgl",kernelFunc:lee};function pee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Sm({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var cee={kernelName:Fi,backendName:"webgl",kernelFunc:pee},dee=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},hee=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},mee=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=G().getBool("WEBGL_PACK_NORMALIZATION")?new hee(a.shape,r.shape,s.shape,p,d,l):new dee(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},fee={kernelName:Ki,backendName:"webgl",kernelFunc:mee},gee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=bee(this.rank),a,r=e.map((s,i)=>`sourceLoc.${ov[i]} = start[${i}] + coords.${ov[i]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${a}
setOutput(getSource(${n}));
}
`}},ov=["x","y","z","w","u","v"];function bee(e){if(e===1)return"sourceLoc";if(e<=6)return ov.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var yee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=dt(this.rank),n=Sn("coords",this.rank),a=Sn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}};function xee(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Kt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Sp(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Kt.parseSliceParams(r,s,i);if(Kt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=u9(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=Kt.isSliceContinous(r.shape,o,l);if(u||!p){let d=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yee(l):new gee(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),xee(r,o,l,n)}var vee={kernelName:Xu,backendName:"webgl",kernelFunc:Sp},wee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=ce({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:p}}),b=Sp({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},kee={kernelName:uu,backendName:"webgl",kernelFunc:wee};function Iee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=ZE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var See={kernelName:pu,backendName:"webgl",kernelFunc:Iee};function Nee(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var Tee={kernelName:Mc,backendName:"webgl",kernelFunc:Nee},Cee="return float(a != b);",dA=fn({opSnippet:Cee,cpuKernelImpl:e9,dtype:"bool"}),_ee={kernelName:Pu,backendName:"webgl",kernelFunc:dA};function $d(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.real},backend:n})}var Eee={kernelName:qm,backendName:"webgl",kernelFunc:$d},Aee="return float(int(x));";function Fee(e,t){let n=new ir(e.shape,Aee),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function lv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let i=Nt(r.shape),o=lv({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Ds({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=$d({inputs:{input:r},backend:n}),o=lv({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=aa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=RJ(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return Fee(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=dA({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var $ee={kernelName:$i,backendName:"webgl",kernelFunc:lv},mS="return ceil(x);",Dee=Ye({opSnippet:mS,packedOpSnippet:mS,cpuKernelImpl:MJ}),Ree={kernelName:Di,backendName:"webgl",kernelFunc:Dee},Mee=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Pee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function Oee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;G().getBool("WEBGL_PACK_CLIP")?o=new Pee(r.shape):o=new Mee(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var Lee={kernelName:Is,backendName:"webgl",kernelFunc:Oee},zee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function fS(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Wee(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new zee(a.shape),i=[fS(a,r.complexTensorInfos.real),fS(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var Bee={kernelName:Pc,backendName:"webgl",kernelFunc:Wee},Vee=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},Uee=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=dt(a),s=Sn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),p=i.join(),d=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${p}), vec2(${u.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];d+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Vh(i,l,f)}),
vec2(${Vh(u,l,f)}));
}`}let c=o.length,h=o[o.length-1];d+=`
return getChannel(
getT${c}(${Vh(i,l,h)}),
vec2(${Vh(u,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${d}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Vh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function eg(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return aa({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Gee={kernelName:Wm,backendName:"webgl",kernelFunc:eg};function lc(e,t,n){let a=e[0].dtype;if(a==="complex64"){let h=e.map(y=>$d({inputs:{input:y},backend:n})),m=e.map(y=>eg({inputs:{input:y},backend:n})),f=lc(h,t,n),g=lc(m,t,n),b=Ds({inputs:{real:f,imag:g},backend:n});return h.forEach(y=>n.disposeIntermediateTensorInfo(y)),m.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),b}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let h=e.map(w=>{let I=[-1,v.sizeFromShape(w.shape.slice(t))];return ce({inputs:{x:w},backend:n,attrs:{shape:I}})}),m=h.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),f=N.computeOutShape(h.map(w=>w.shape),1),g=h[0].shape[0]===1,b=PJ(m,f,a,g),y=N.computeOutShape(e.map(w=>w.shape),t),x=n.makeTensorInfo(y,a,b);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new ir(e[0].shape,es):new ss(e[0].shape,es);return n.runWebGLProgram(h,e,a)}let o=G().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let f=0;f<s.length;f+=o){let g=s.slice(f,f+o);h.push(lc(g,t,n))}let m=lc(h,t,n);for(let f of h)n.disposeIntermediateTensorInfo(f);return m}if(i){let h=new Uee(s.map(m=>m.shape),t);return n.runWebGLProgram(h,s,a)}let{tensors2D:l,outShape:u}=Hee(s,t,n),p=new Vee(l.map(h=>h.shape)),d=n.runWebGLProgram(p,l,a);l.forEach(h=>n.disposeIntermediateTensorInfo(h));let c=ce({inputs:{x:d},attrs:{shape:u},backend:n});return n.disposeIntermediateTensorInfo(d),c}function Hee(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>ce({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function hA(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?aa({inputs:{x:l[0]},backend:n}):lc(l,s,n)}var qee={kernelName:cu,backendName:"webgl",kernelFunc:hA},mA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,b=f?2:3,y=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${y}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${I}
${w}
setOutput(result);
}
`}},jee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},fA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f<u;f++)d+=`
vec4 xTexelC${f*2};
int xTexelC${f*2}Ready;
vec4 xTexelC${f*2+1};
int xTexelC${f*2+1}Ready;
vec4 xC${f};`;d+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let f=0;f<u;f++)d+=`
xTexelC${f*2} = vec4(0.0);
xTexelC${f*2}Ready = 0;
xTexelC${f*2+1} = vec4(0.0);
xTexelC${f*2+1}Ready = 0;
xC${f} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=`
xC = xCCorner + ${g*o};
`,i===1){if(g<u&&(s%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,o===1&&g>0?d+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let b=s%2===0?v.nearestLargerEven(o):o;o%2===0&&s%2===1||o%2!==0&&s%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,o>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):b===1?d+=`
xC${g+1} = xTexelC${g};
`:d+=`
xCOffset = xC + ${b};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(s%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(d+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(d+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(d+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}d+=`
}
`,d+=`
}
`,d+=`
}
`;let c="",h="";n&&(a?c=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?c=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:c=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${c}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${h}
setOutput(result);
}
`}},Kee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=vn(this.outputShape.length);let{dataFormat:n}=t,a=En(),r=n==="channelsLast",s=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let p=0;p<=1;p++)l+=`
blockIndex = rc.z + ${p};
pos = rc.y + ${u};
${o}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${s}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${i}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+p}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+p}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${a.output} = result;
}
`}};function Nm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function gA({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,b=[];if(s!=null){let y=Nm(s.shape,h);y!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:y}}),b.push(s))}if(r!=null){let y=Nm(r.shape,h);y!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:y}}),b.push(r))}if(!((d===1||c===1)&&p>lA)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let y=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,y,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Cc(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(I);let T=Sm({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=aa({inputs:{x:T},backend:a}),g.shape=n.outShape,b.push(T)}else{let y=n.outHeight*n.outWidth,x=ce({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,y,n.inChannels]:[n.batchSize,n.inChannels,y]}}),w=ce({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Sm({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=ce({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),b.push(x),b.push(w),b.push(I)}for(let y of b)a.disposeIntermediateTensorInfo(y);return g}function bA({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,b=[n.batchSize,f,g],y=!0,x=!1,w=[];if(s!=null){let K=Nm(s.shape,m);K!=null&&(s=ce({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=Nm(r.shape,m);K!=null&&(r=ce({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=ce({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new Kee(b,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=a.runWebGLProgram(T,[e],"float32",C),F=ce({inputs:{x:E},backend:a,attrs:{shape:b}});w.push(E),w.push(F);let D=r!=null,$=s!=null,S=o==="leakyrelu",M=o?_c(o,!0):null,B=new oA(m?F.shape:I.shape,m?I.shape:F.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,x,D,M,$,S),U=m?[F,I]:[I,F];if(r&&U.push(r),$&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let H=a.runWebGLProgram(B,U,"float32"),j=ce({inputs:{x:H},backend:a,attrs:{shape:n.outShape}});w.push(H);for(let K of w)a.disposeIntermediateTensorInfo(K);return j}function Xee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=gA({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let f=new fA(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(G().getBool("WEBGL_CONV_IM2COL"))h=bA({x:r,filter:s,convInfo:c,backend:n});else{let f=new mA(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=ce({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var Yee={kernelName:Ri,backendName:"webgl",kernelFunc:Xee},Zee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
${s?`float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);`:`float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);`}
}
}
}
setOutput(dotProd);
}
`}},Jee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},Qee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},ete=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function tte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new Zee(c);return n.runWebGLProgram(h,[r,s],"float32")}var nte={kernelName:Rm,backendName:"webgl",kernelFunc:tte},ate=class{constructor(e){this.variableNames=["dy","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"strides",type:"vec2"}],this.outputShape=e.inShape,this.enableShapeUniforms=vn(this.outputShape.length);let t=e.filterHeight,n=e.filterWidth,a=t-1-e.padInfo.top,r=n-1-e.padInfo.left;this.userCode=`
const ivec2 pads = ivec2(${a}, ${r});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = ivec2(coords[1], coords[2]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
vec4 result = vec4(0.);
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / strides[0];
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
int wCPerm = ${n} - 1 - wC;
float dyC = float(dyCCorner + wC) / strides[1];
bool idyCVal = (dyC >= 0.0) && (dyC < ${e.outWidth}.0)
&& (fract(dyC) == 0.0);
int idyC = int(dyC);
float dyC2 = float(dyCCorner + wC + 1) / strides[1];
bool idyCVal2 = (dyC2 >= 0.0) && (dyC2 < ${e.outWidth}.0)
&& (fract(dyC2) == 0.0);
int idyC2 = int(dyC2);
if (idyCVal && idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec4 dySample2 = (idyC / 2 == idyC2 / 2) ?
dySample : getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
dyValue = mod(float(idyC2), 2.) == 0. ?
dySample2.xy : dySample2.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC, d2);
vec2 dyValue = mod(float(idyC), 2.) == 0. ?
dySample.xy : dySample.zw;
result.xy += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
} else if (idyCVal2) {
for (int d2 = 0; d2 < ${e.outChannels}; d2 += 2) {
vec4 wValue = getW(wRPerm, wCPerm, d1, d2);
vec4 dySample = getDy(batch, idyR, idyC2, d2);
vec2 dyValue = mod(float(idyC2), 2.) == 0. ?
dySample.xy : dySample.zw;
result.zw += vec2(dot(dyValue, wValue.xy),
dot(dyValue, wValue.zw));
}
}
}
}
setOutput(result);
}
`}};function rte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d);if(G().getBool("WEBGL_PACK")&&d==="channelsLast"){let h=[[c.strideHeight,c.strideWidth]],m=new ate(c);return n.runWebGLProgram(m,[r,s],"float32",h)}else{let h=new Jee(c);return n.runWebGLProgram(h,[r,s],"float32")}}var ste={kernelName:Mi,backendName:"webgl",kernelFunc:rte};function ite(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new jee(u);return n.runWebGLProgram(p,[r,s],"float32")}var ote={kernelName:Pi,backendName:"webgl",kernelFunc:ite};function lte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new Qee(u);return n.runWebGLProgram(p,[r,s],"float32")}var ute={kernelName:du,backendName:"webgl",kernelFunc:lte};function pte(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new ete(u);return n.runWebGLProgram(p,[r,s],"float32")}var cte={kernelName:hu,backendName:"webgl",kernelFunc:pte},dte=Ip+`
return cos(x);
`,hte=`
vec4 result = cos(x);
bvec4 isNaN = isnan(x);
${jo}
return result;
`,mte=Ye({opSnippet:dte,packedOpSnippet:hte}),fte={kernelName:Oi,backendName:"webgl",kernelFunc:mte},gte=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,bte=Ye({opSnippet:gte}),yte={kernelName:Li,backendName:"webgl",kernelFunc:bte},xte=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${y});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${g};
float width_scale = ${x};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},vte=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new xte(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},wte={kernelName:fu,backendName:"webgl",kernelFunc:vte},Ac;(function(e){e.Prod="*",e.Sum="+"})(Ac||(Ac={}));var gS=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===Ac.Prod?"1.0":"0.0",i=n?s:`getX(${bS(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${dt(r)} coords = getOutputCoords();
int end = ${yS(r,"coords",this.op)};
float val = ${i};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${yS(r,"coords",this.op)} = idx;
val ${this.op}= getX(${bS(r,"coords",this.op)});
}
setOutput(val);
}
`}};function bS(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function yS(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function yA(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=Nn({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=aa({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new gS(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new gS(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=Nn({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function kte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return yA(Ac.Prod,r,n,s,i,o)}var Ite={kernelName:mu,backendName:"webgl",kernelFunc:kte};function Ste(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return yA(Ac.Sum,r,n,s,i,o)}var Nte={kernelName:zi,backendName:"webgl",kernelFunc:Ste};function Tte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=ZE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=DJ(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Cte={kernelName:Oc,backendName:"webgl",kernelFunc:Tte},_te=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ete(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new _te(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Ate={kernelName:gu,backendName:"webgl",kernelFunc:Ete},xA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${o};
int q = d2 - d1 * ${o};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${s}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${i}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${p}
${u}
setOutput(result);
}
`}},vA=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=vn(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<p;g++)c+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;c+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<p;g++)c+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;c+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(c+=`
xC = xCCorner + ${b*l};
`,o===1){if(b<p&&(i%2===1?(c+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
`,l===1&&b>0?c+=`
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
`:c+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
} else {
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
}
`):c+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xC${b} = xTexelC${b};
`,b+1<p)){let y=i%2===0?v.nearestLargerEven(l):l;l%2===0&&i%2===1||l%2!==0&&i%2!==1?(c+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
`,l>1?c+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${b+1} = vec4(previous.zw, xTexelC${b+1}.xy);
} else {
xC${b+1} = vec4(0.0, 0.0, xTexelC${b+1}.xy);
}
`:c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
`):y===1?c+=`
xC${b+1} = xTexelC${b};
`:c+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b+1} = xTexelC${b+1};
`}}else b<p&&(i%2===1?(c+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.0);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`,b+1<p&&(c+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
`)):(c+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
xTexelC${b} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${b}.zw = vec2(0.0);
}
xTexelC${b}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${b+1}.zw = vec2(0.);
}
xTexelC${b+1}Ready = 1;
}
xC${b} = vec4(
xTexelC${b}.xy, xTexelC${b+1}.xy);
`,b+1<p&&(c+=`
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
`)));b<p&&(c+=`
wTexel = getW(r, ${b}, d1, q);
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
`,b+1<p&&(c+=`
wTexel = getW(r, ${b+1}, d1, q);
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
`))}c+=`
}
`,c+=`
}
`;let h="",m="";n&&(a?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,m="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${c}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${m}
setOutput(result);
}
`}};function Fte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;G().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new vA(d):c=new xA(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var $te={kernelName:Wi,backendName:"webgl",kernelFunc:Fte},Dte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Rte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Mte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new Dte(d);return n.runWebGLProgram(c,[r,s],"float32")}var Pte={kernelName:Mm,backendName:"webgl",kernelFunc:Mte};function Ote(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new Rte(d);return n.runWebGLProgram(c,[r,s],"float32")}var Lte={kernelName:Pm,backendName:"webgl",kernelFunc:Ote},zte=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function Wte(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=ce({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new zte(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ce({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Bte={kernelName:Lc,backendName:"webgl",kernelFunc:Wte},Vte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${p}, ${d});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Ute(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new Vte(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=ce({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var Gte={kernelName:Bi,backendName:"webgl",kernelFunc:Ute};function Hte(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f<d;++f){for(let g of p[f]){let{permutationIndices:b,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(b)?x=s[g]:(x=Nn({inputs:{x:s[g]},backend:n,attrs:{perm:b}}),m.push(x));let w=x.shape.slice();for(let I=0;I<y.length;++I)w.splice(y[I],0,1);v.arraysEqual(x.shape,w)||(x=ce({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=ek({inputs:{a:x,b:c},backend:n}),m.push(c))}f<d-1&&(u[f]>=0&&(c=Qf({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var qte={kernelName:Om,backendName:"webgl",kernelFunc:Hte},jte="return (x >= 0.0) ? x : (exp(x) - 1.0);",Kte=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Xte=Ye({opSnippet:jte,packedOpSnippet:Kte}),Yte={kernelName:Ui,backendName:"webgl",kernelFunc:Xte},Zte="return (b >= 0.0) ? a : a * (b + 1.0);",Jte=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Qte=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=G().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Fd(Jte,a.shape,r.shape):new tu(Zte,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},ene={kernelName:bu,backendName:"webgl",kernelFunc:Qte},tne=`
return vec4(equal(a, b));
`,nne="return float(a == b);",ane=fn({opSnippet:nne,packedOpSnippet:tne,dtype:"bool",cpuKernelImpl:OJ}),rne={kernelName:xu,backendName:"webgl",kernelFunc:ane},sne=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,ine=Ye({opSnippet:sne}),one={kernelName:yu,backendName:"webgl",kernelFunc:ine},lne=Ip+`
return exp(x);
`,une=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,wA=Ye({opSnippet:lne,packedOpSnippet:une,cpuKernelImpl:LJ,dtype:"float32"}),pne={kernelName:Gi,backendName:"webgl",kernelFunc:wA};function uv(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),ce({inputs:{x:s},backend:a,attrs:{shape:o}})}var cne={kernelName:vu,backendName:"webgl",kernelFunc:uv},xS="return exp(x) - 1.0;",dne=Ye({opSnippet:xS,packedOpSnippet:xS,cpuKernelImpl:zJ}),hne={kernelName:Hi,backendName:"webgl",kernelFunc:dne},vS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function kA(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=ce({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new vS("real",l,t),p=new vS("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Ds({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=ce({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function mne(e){let{inputs:t,backend:n}=e,{input:a}=t;return kA(a,!1,n)}var fne={kernelName:Lm,backendName:"webgl",kernelFunc:mne},gne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Dd(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new gne(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var bne={kernelName:zc,backendName:"webgl",kernelFunc:Dd},yne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},xne={kernelName:wu,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new yne(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},wS="return floor(x);",vne=Ye({opSnippet:wS,packedOpSnippet:wS,cpuKernelImpl:WJ}),wne={kernelName:qi,backendName:"webgl",kernelFunc:vne},kne=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Ine=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Sne=fn({opSnippet:kne,packedOpSnippet:Ine,dtype:"int32"}),Nne={kernelName:ji,backendName:"webgl",kernelFunc:Sne},Tne=class{constructor(e){this.variableNames=["A"];let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Cne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=En(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},_ne={kernelName:tm,backendName:"webgl",kernelFunc:Ene},Cl,gx=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Ene(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=G().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Cl==null||f!==gx)&&(gx=f,Cl=document.createElement("canvas").getContext("2d",{willReadFrequently:gx})),Cl.canvas.width=l,Cl.canvas.height=u,Cl.drawImage(r,0,0,l,u),r=Cl.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=da.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=G().getBool("WEBGL_PACK")?new Cne(d):new Tne(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Ane(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),b,y=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let E=[r,s],F=(D,$)=>{if($==="NCHW"&&D.shape.length===1&&D.shape[0]!==1){let S=ce({inputs:{x:D},backend:n,attrs:{shape:[D.shape[0],1,1]}});return y.push(S),S}return D};if(x&&E.push(F(i,p)),w&&E.push(F(o,p)),I){let D=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(D),y.push(D)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=gA({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&G().getBool("WEBGL_EXP_CONV")){let E=h?_c(h,!0):null,F=new fA(g,x,E,w,I),D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=T();b=n.runWebGLProgram(F,$,"float32",D)}else if(G().getBool("WEBGL_CONV_IM2COL"))b=bA({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let E=h?_c(h,!1):null,F=new mA(g,x,E,w,I),D=T();b=n.runWebGLProgram(F,D,"float32")}let C=ce({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Fne={kernelName:si,backendName:"webgl",kernelFunc:Ane};function $ne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),b=G().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=c?_c(c,b):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let D=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(D),m.push(D)}let C;b?C=new vA(g,w,y,I,T):C=new xA(g,w,y,I,T);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(C,x,"float32",E);return m.forEach(D=>n.disposeIntermediateTensorInfo(D)),F}var Dne={kernelName:ii,backendName:"webgl",kernelFunc:$ne},Rne=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(n.length),s=`
int index;`;for(let i=0;i<this.sliceDim;i++)s+=`
index = round(getIndices(coords[0], ${i}));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${this.paramsShape[i]};
flattenIndex += index * ${this.strides[i]};`;this.userCode=`
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
${s}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Mne(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=ce({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=ce({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(a),x=BJ(b,y,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new Rne(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Pne={kernelName:Iu,backendName:"webgl",kernelFunc:Mne},One=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),a=Lne(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${a}));
}
`}};function Lne(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("index"):a.push(`${n[r]}`);return a.join()}function IA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0];if(G().get("DEBUG")){let y=n.readSync(s.dataId),x=r.shape[l];for(let w=0;w<y.length;++w){let I=y[w];v.assert(I<=x-1&&I>=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=ce({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ce({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(c),w=VJ(x,y,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new One(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let b=ce({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var zne={kernelName:ku,backendName:"webgl",kernelFunc:IA},Wne="return float(a > b);",Bne=`
return vec4(greaterThan(a, b));
`,Vne=fn({opSnippet:Wne,packedOpSnippet:Bne,cpuKernelImpl:UJ,dtype:"bool"}),Une={kernelName:Su,backendName:"webgl",kernelFunc:Vne},Gne="return float(a >= b);",Hne=`
return vec4(greaterThanEqual(a, b));
`,qne=fn({opSnippet:Gne,packedOpSnippet:Hne,dtype:"bool",cpuKernelImpl:GJ}),jne={kernelName:Xi,backendName:"webgl",kernelFunc:qne};function Kne(e){let{inputs:t,backend:n}=e,{input:a}=t;return kA(a,!0,n)}var Xne={kernelName:zm,backendName:"webgl",kernelFunc:Kne},Yne="return float(!isnan(x) && !isinf(x));",Zne=Ye({opSnippet:Yne,dtype:"bool"}),Jne={kernelName:Zi,backendName:"webgl",kernelFunc:Zne},Qne="return float(isinf(x));",eae=Ye({opSnippet:Qne,dtype:"bool"}),tae={kernelName:Ji,backendName:"webgl",kernelFunc:eae},nae="return float(isnan(x));",aae=Ye({opSnippet:nae,dtype:"bool"}),rae={kernelName:Qi,backendName:"webgl",kernelFunc:aae},sae="return float(a < b);",iae=`
return vec4(lessThan(a, b));
`,oae=fn({opSnippet:sae,packedOpSnippet:iae,cpuKernelImpl:HJ,dtype:"bool"}),lae={kernelName:Nu,backendName:"webgl",kernelFunc:oae},uae="return float(a <= b);",pae=`
return vec4(lessThanEqual(a, b));
`,cae=fn({opSnippet:uae,packedOpSnippet:pae,cpuKernelImpl:qJ,dtype:"bool"}),dae={kernelName:Tu,backendName:"webgl",kernelFunc:cae};function hae(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=jJ(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var mae={kernelName:Cu,backendName:"webgl",kernelFunc:hae},fae=Ip+`
return x < 0.0 ? 0./0. : log(x);
`,gae=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,bae=Ye({opSnippet:fae,packedOpSnippet:gae,cpuKernelImpl:KJ}),yae={kernelName:to,backendName:"webgl",kernelFunc:bae},xae=Ip+`
return log(1.0 + x);
`,vae=Ye({opSnippet:xae}),wae={kernelName:no,backendName:"webgl",kernelFunc:vae},kae="return float(a >= 1.0 && b >= 1.0);",Iae=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Sae=fn({opSnippet:kae,packedOpSnippet:Iae,dtype:"bool"}),Nae={kernelName:_u,backendName:"webgl",kernelFunc:Sae},Tae="return float(!(x >= 1.0));",Cae=Ye({opSnippet:Tae}),_ae={kernelName:Eu,backendName:"webgl",kernelFunc:Cae},Eae="return float(a >= 1.0 || b >= 1.0);",Aae=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Fae=fn({opSnippet:Eae,packedOpSnippet:Aae,dtype:"bool"}),$ae={kernelName:Au,backendName:"webgl",kernelFunc:Fae},Dae=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},Rae=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},Mae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=G().getBool("WEBGL_PACK_NORMALIZATION")?new Rae(r.shape,s,i,o,l):new Dae(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Pae={kernelName:ao,backendName:"webgl",kernelFunc:Mae},Oae=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b, r, c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Lae=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Oae(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},zae={kernelName:Fu,backendName:"webgl",kernelFunc:Lae};function Wae(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ko(i,e.dtype,"max",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function SA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let y=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T<x.length;T++)x[T]=r.shape[p[T]];let w=J1(y,r.shape,r.dtype,p,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=w}else h=Jf(r,p,n);u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("max",u,o);let[m,f]=N.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=N.expandShapeToKeepDim(m,l));let b;if(c){let y=n.texData.get(h.dataId).values,x=XJ(y,v.sizeFromShape(f),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(b.dataId);w.values=x}else b=Wae(h,f,g,n);return d&&n.disposeIntermediateTensorInfo(h),b}var Bae={kernelName:ro,backendName:"webgl",kernelFunc:SA},Vae=Q1+`
return max(a, b);
`,Uae=`
vec4 result = vec4(max(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jo+`
return result;
`,Gae=fn({opSnippet:Vae,packedOpSnippet:Uae,cpuKernelImpl:YJ}),Hae={kernelName:so,backendName:"webgl",kernelFunc:Gae};function qae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;yp(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return aa({inputs:{x:r},backend:n});let d=new Ec(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var jae={kernelName:io,backendName:"webgl",kernelFunc:qae};function Kae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new tk(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Xae={kernelName:$u,backendName:"webgl",kernelFunc:Kae},Yae=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},Zae=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${d}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function Jae(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new tk(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new Zae(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Qae={kernelName:Wc,backendName:"webgl",kernelFunc:Jae};function ere(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;yp([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new Ec(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Yae(c),b=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),b}var tre={kernelName:Bm,backendName:"webgl",kernelFunc:ere};function nre(e,t,n,a){let r=new Ec(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Ec(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var are={kernelName:Vm,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=nre(a,o,p,l);return[d,c]}};function rre(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=ce({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ko(i,"float32","mean",a),l=ce({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var sre={kernelName:oo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;C<w.length;C++)w[C]=a.shape[p[C]];let I=J1(x,a.shape,a.dtype,p,w);m=i.makeTensorInfo(w,a.dtype);let T=i.texData.get(m.dataId);T.values=I}else m=Jf(a,p,i);h.push(m),u=N.getInnerMostAxes(u.length,o)}N.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=N.computeOutAndReduceShapes(m.shape,u),b=f;r&&(b=N.expandShapeToKeepDim(f,l));let y=rre(m,g,b,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return y}};function ire(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Ko(f,f.dtype,"min",n),b;if(i){let y=N.expandShapeToKeepDim(c,l);b=ce({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=ce({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),b}var ore={kernelName:lo,backendName:"webgl",kernelFunc:ire},lre=Q1+`
return min(a, b);
`,ure=`
vec4 result = vec4(min(a, b));
bvec4 isNaNA = isnan(a);
bvec4 isNaNB = isnan(b);
bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w);
`+jo+`
return result;
`,pre=fn({opSnippet:lre,packedOpSnippet:ure,cpuKernelImpl:ZJ}),cre={kernelName:uo,backendName:"webgl",kernelFunc:pre},dre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,p)=>u[0]+e[p]+u[1]);let a=e.length,r=dt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},hre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=dt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${d};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${d};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${d}) +
gte * ((end - 1) * 2 - source + ${d});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${p});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${p});
${o[a-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${p});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},mre=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hre(a.shape,r,s):new dre(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},fre={kernelName:po,backendName:"webgl",kernelFunc:mre},gre=`if (b == 0.0) return NAN;
return mod(a, b);`,bre=`
vec4 result = mod(a, b);
bvec4 isNaN = equal(b, vec4(0.0));
`+jo+`
return result;
`,yre=fn({opSnippet:gre,packedOpSnippet:bre}),xre={kernelName:Du,backendName:"webgl",kernelFunc:yre},vre=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},wre=`
if (a == b) {
return 1.0;
};
return a / b;`,kre=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,NA=fn({opSnippet:wre,packedOpSnippet:kre,checkOutOfBounds:!0}),Ire={kernelName:Vi,backendName:"webgl",kernelFunc:NA},kS="return a - b;",TA=fn({opSnippet:kS,packedOpSnippet:kS,supportsComplex:!0,cpuKernelImpl:y9}),Sre={kernelName:Mo,backendName:"webgl",kernelFunc:TA};function CA(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=SA({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=ce({inputs:{x:o},backend:n,attrs:{shape:l}}),p=TA({inputs:{a:r,b:u},backend:n}),d=wA({inputs:{x:p},backend:n}),c=Qf({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=ce({inputs:{x:c},backend:n,attrs:{shape:l}}),m=NA({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Nre={kernelName:Do,backendName:"webgl",kernelFunc:CA};function Tre(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:CA({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new vre(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Cre={kernelName:Ru,backendName:"webgl",kernelFunc:Tre},_re=Oa+`
return -x;
`,Ere=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Are(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=QJ(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return G().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ss(a.shape,Ere):r=new ir(a.shape,_re),n.runWebGLProgram(r,[a],a.dtype)}var Fre={kernelName:Mu,backendName:"webgl",kernelFunc:Are},$re=fr.nonMaxSuppressionV3Impl;function Dre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=$re(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Rre={kernelName:Ou,backendName:"webgl",kernelFunc:Dre},Mre=fr.nonMaxSuppressionV4Impl;function Pre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Mre(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ore={kernelName:Lu,backendName:"webgl",kernelFunc:Pre},Lre=fr.nonMaxSuppressionV5Impl;function zre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:b}=Lre(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var Wre={kernelName:zu,backendName:"webgl",kernelFunc:zre},Bre=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},Vre=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new Bre(u,i,o,l),d=ce({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=ce({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},Ure={kernelName:ho,backendName:"webgl",kernelFunc:Vre};function Tm(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=$d({inputs:{input:a},backend:n}),s=Tm({inputs:{x:r},backend:n}),i=eg({inputs:{input:a},backend:n}),o=Tm({inputs:{x:i},backend:n}),l=Ds({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Dd({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var Gre={kernelName:sp,backendName:"webgl",kernelFunc:Tm};function _A(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=$d({inputs:{input:a},backend:n}),s=_A({inputs:{x:r},backend:n}),i=eg({inputs:{input:a},backend:n}),o=Tm({inputs:{x:i},backend:n}),l=Ds({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Dd({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var Hre={kernelName:Wu,backendName:"webgl",kernelFunc:_A};function qre(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return uv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=uv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=hA({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var jre={kernelName:Bu,backendName:"webgl",kernelFunc:qre},Kre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=dt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},Xre=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=dt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=Sn("rc",a),l=Sn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${u}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${d[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${p});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},EA=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return Dd({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Xre(r.shape,s,i):new Kre(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},Yre={kernelName:mo,backendName:"webgl",kernelFunc:EA},Zre=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,Jre=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
bvec4 isNaN1 = lessThan(a, vec4(0.0));
bvec4 isNaN2 = lessThan(floor(b), b);
bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w);
`+jo+`
return result;
`,Qre=fn({opSnippet:Zre,packedOpSnippet:Jre}),ese={kernelName:fo,backendName:"webgl",kernelFunc:Qre};function tse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=Nn({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:b}=t9(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,b,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),b=ce({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),y=Km(r.dtype),x=Ko(b,y,"prod",n);h=ce({inputs:{x},backend:n,attrs:{shape:m}}),l.push(b),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=ce({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var nse={kernelName:bo,backendName:"webgl",kernelFunc:tse};function ase(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(b=>n.readSync(b.dataId)),u=r.map(b=>b.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=n9(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(b=>n.makeTensorInfo([b.length],"int32",b)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var rse={kernelName:Um,backendName:"webgl",kernelFunc:ase};function sse(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=a9(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var ise={kernelName:Gm,backendName:"webgl",kernelFunc:sse};function ose(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=r9(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var lse={kernelName:Hm,backendName:"webgl",kernelFunc:ose},AA=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=s9(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},use={kernelName:Bc,backendName:"webgl",kernelFunc:AA},pse="return 1.0 / x;",cse=Ye({opSnippet:pse}),dse={kernelName:yo,backendName:"webgl",kernelFunc:cse},hse=Oa+`
return (x < 0.0) ? 0.0 : x;
`,mse=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,fse=Ye({opSnippet:hse,packedOpSnippet:mse}),gse={kernelName:xo,backendName:"webgl",kernelFunc:fse},bse=Oa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,yse=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,xse=Ye({opSnippet:bse,packedOpSnippet:yse}),vse={kernelName:ko,backendName:"webgl",kernelFunc:xse},wse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},kse=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Ise(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new kse(r.shape,l,u,s,i):new wse(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Sse={kernelName:wo,backendName:"webgl",kernelFunc:Ise},Nse=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Tse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Nse(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Cse={kernelName:Gu,backendName:"webgl",kernelFunc:Tse},_se=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/p[0]},
${u[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Ese=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/p[0]},
${u[1]/p[1]},
${u[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Ase(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=G().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Ese(r.shape,l,u,s,i):new _se(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Fse={kernelName:vo,backendName:"webgl",kernelFunc:Ase},$se=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${p});
const float invHeightScale = float(${d});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Dse(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new $se(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Rse={kernelName:Uu,backendName:"webgl",kernelFunc:Dse},Mse=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=dt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Pse=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=Sn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${u(a.slice())};
if(${r}) {
result.a = ${p(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((b,y)=>c(y,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Ose(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return aa({inputs:{x:r},backend:n});let l=G().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Pse(r.shape,o):new Mse(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Lse={kernelName:Io,backendName:"webgl",kernelFunc:Ose},zse=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Wse={kernelName:ip,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new zse(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},Bse=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Vse=Ye({opSnippet:Bse}),Use={kernelName:So,backendName:"webgl",kernelFunc:Vse},Gse="return inversesqrt(x);",Hse=Ye({opSnippet:Gse,cpuKernelImpl:i9}),qse={kernelName:No,backendName:"webgl",kernelFunc:Hse},nk=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let l=dt(r.length),u=dt(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${d});
flattenedIndex += index * ${g};
}
if (flattenedIndex == coords[0]) {
sum += ${h};
found = true;
}
}
setOutput(mix(${f}, sum, float(found)));
}
`}},jse=class{constructor(e,t,n,a,r,s,i=!0,o=!1){this.variableNames=["updates","indices","defaultValue"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=s;let l=dt(r.length),u=dt(s.length),p="";n===1?p="i":n===2&&(p="i, j");let d=`getIndices(${p})`,c="";a===1?c="i":a===2&&(c="i, coords[1]");let h=`getUpdates(${c})`,m="";o&&(m="coords[0], coords[1]");let f=`getDefaultValue(${m})`,g=t>1?"strides[j]":"strides",b=t>1?"strides[j + 1]":"strides";this.userCode=`
${l} strides = ${l}(${r});
void main() {
${u} coords = getOutputCoords();
vec4 sum = vec4(0.);
vec4 found = vec4(0.);
for (int i = 0; i < ${e}; i+=2) {
ivec2 flattenedIndex = ivec2(0);
for (int j = 0; j < ${t}; j+=2) {
ivec4 index = round(${d});
flattenedIndex += index.xz * ${g};
if (j + 1 < ${t}) {
flattenedIndex += index.yw * ${b};
}
}
if (flattenedIndex[0] == coords[0] || flattenedIndex[1] == coords[0] ||
flattenedIndex[0] == coords[0] + 1 || flattenedIndex[1] == coords[0] + 1) {
vec4 updVals = ${h};
if (flattenedIndex[0] == coords[0]) {
sum.xy += updVals.xy;
found.xy = vec2(1.);
} else if (flattenedIndex[0] == coords[0] + 1) {
sum.zw += updVals.xy;
found.zw = vec2(1.);
}
if (flattenedIndex[1] == coords[0]) {
sum.xy += updVals.zw;
found.xy = vec2(1.);
} else if (flattenedIndex[1] == coords[0] + 1) {
sum.zw += updVals.zw;
found.zw = vec2(1.);
}
}
}
setOutput(mix(${f}, sum, found));
}
`}};function Kse(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=ce({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g;G().getBool("WEBGL_PACK")?g=new jse(l,o,h.shape.length,m.shape.length,p,c):g=new nk(l,o,h.shape.length,m.shape.length,p,c);let b=n.runWebGLProgram(g,[m,h,f],m.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(f),y}var Xse={kernelName:Hu,backendName:"webgl",kernelFunc:Kse},Yse=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=G().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${i}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${o} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Zse(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new Yse(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var Jse={kernelName:ju,backendName:"webgl",kernelFunc:Zse},Qse=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=dt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function eie(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new Qse(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ga(r.dtype,s.dtype))}var tie={kernelName:Ku,backendName:"webgl",kernelFunc:eie},nie=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,aie=Ye({opSnippet:nie}),rie={kernelName:To,backendName:"webgl",kernelFunc:aie},sie=Ip+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,iie=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oie=Ye({opSnippet:sie,packedOpSnippet:iie,cpuKernelImpl:l9}),lie={kernelName:Eo,backendName:"webgl",kernelFunc:oie},uie=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,pie=Ye({opSnippet:uie}),cie={kernelName:_o,backendName:"webgl",kernelFunc:pie},die=Ip+`
return sin(x);
`,hie=`
vec4 result = sin(x);
bvec4 isNaN = isnan(x);
${jo}
return result;
`,mie=Ye({opSnippet:die,packedOpSnippet:hie}),fie={kernelName:Co,backendName:"webgl",kernelFunc:mie},gie=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,bie=Ye({opSnippet:gie}),yie={kernelName:Yu,backendName:"webgl",kernelFunc:bie},xie=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,vie=Ye({opSnippet:xie}),wie={kernelName:Ao,backendName:"webgl",kernelFunc:vie},kie=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,y)=>b*y),l=[[0,0]];l.push(...i);for(let b=1+s.length;b<r.shape.length;++b)l.push([0,0]);let u=[],p=EA({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(p.shape,s,o,!1),c=N.getPermuted(d.length,s.length,!1),h=N.getReshapedPermuted(p.shape,s,o,!1),m=ce({inputs:{x:p},backend:n,attrs:{shape:d}}),f=Nn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=ce({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(p),u.push(m),u.push(f),u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Iie={kernelName:Zu,backendName:"webgl",kernelFunc:kie};function Sie(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=p9(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Nie={kernelName:Vc,backendName:"webgl",kernelFunc:Sie};function Tie(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=c9(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Cie={kernelName:Qu,backendName:"webgl",kernelFunc:Tie};function _ie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=QE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Eie={kernelName:Uc,backendName:"webgl",kernelFunc:_ie};function Aie(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=QE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Fie={kernelName:Gc,backendName:"webgl",kernelFunc:Aie};function $ie(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=o9(b,y,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new nk(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=ce({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Die={kernelName:ep,backendName:"webgl",kernelFunc:$ie};function Rie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Sp({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var Mie={kernelName:Ju,backendName:"webgl",kernelFunc:Rie},IS="return sqrt(x);",Pie=Ye({opSnippet:IS,packedOpSnippet:IS,cpuKernelImpl:d9}),Oie={kernelName:Fo,backendName:"webgl",kernelFunc:Pie},Lie="return x * x;",zie=Ye({opSnippet:Lie}),Wie={kernelName:Hc,backendName:"webgl",kernelFunc:zie},SS="return (a - b) * (a - b);",Bie=fn({opSnippet:SS,packedOpSnippet:SS}),Vie={kernelName:Ro,backendName:"webgl",kernelFunc:Bie};function Uie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;if(r.dtype!=="string")throw new Error("Input must be of datatype string");let s=n.readSync(r.dataId),i=N.fromUint8ToStringArray(s),o=h9(i,"string",a);return n.makeTensorInfo(r.shape,"string",o)}var Gie={kernelName:qc,backendName:"webgl",kernelFunc:Uie};function Hie({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Oa+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new ir(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var qie={kernelName:Ns,backendName:"webgl",kernelFunc:Hie},jie=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=dt(n.length),s=dt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function Kie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ce({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Kt.computeOutShape(y,x,w),E=Sp({inputs:{x:r},backend:n,attrs:{begin:y,size:C}});I=ce({inputs:{x:E},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=ze(r.shape,r.dtype,C),F=m9(h,E,w,y);I=n.makeTensorInfo(m,r.dtype,F.values)}else{let C=new jie(y,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=ce({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var Xie={kernelName:tp,backendName:"webgl",kernelFunc:Kie};function Yie(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=f9(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var Zie={kernelName:jc,backendName:"webgl",kernelFunc:Yie};function Jie(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=g9(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Qie={kernelName:Kc,backendName:"webgl",kernelFunc:Jie};function eoe(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=b9(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var toe={kernelName:Xc,backendName:"webgl",kernelFunc:eoe},noe="return tan(x);",aoe=Ye({opSnippet:noe}),roe={kernelName:Po,backendName:"webgl",kernelFunc:aoe},soe=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,ioe=Ye({opSnippet:soe}),ooe={kernelName:Oo,backendName:"webgl",kernelFunc:ioe};function loe(e){let{inputs:t,backend:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=t,{}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(i,s,r.shape),c=[d/u,u];if(d===0)return n.makeTensorInfo(r.shape,s.dtype);let h=ce({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),m=ce({inputs:{x:i},backend:n,attrs:{shape:[l,u]}}),f=ce({inputs:{x:r},backend:n,attrs:{shape:c}}),g=new nk(l,o,h.shape.length,m.shape.length,p,c,!1,!0),b=n.runWebGLProgram(g,[m,h,f],f.dtype),y=ce({inputs:{x:b},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),y}var uoe={kernelName:qu,backendName:"webgl",kernelFunc:loe},poe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=dt(this.rank),r=coe(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function coe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function FA(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=ze(r.shape,r.dtype,l),p=x9(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new poe(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var doe={kernelName:Ss,backendName:"webgl",kernelFunc:FA},hoe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},moe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Hs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function NS(e){let t=1;for(;t<e;)t*=2;return t}function foe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=G().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=G().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,p=u[u.length-1];if(n.shouldExecuteOnCPU([r])||p<o||s>l){let F=n.readSync(r.dataId),[D,$]=v9(F,u,r.dtype,s,i);return[n.makeTensorInfo(D.shape,D.dtype,D.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,Dd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=ce({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Hs(n,h);let g=NS(s),b=NS(p),y=null,x=()=>y===null?[f,f]:[f,y],w=(F,D,$)=>{let S=x(),M=new hoe($),B=[[p],[y===null?1:0],[Number.NEGATIVE_INFINITY],[F],[D]],U=y;y=n.runWebGLProgram(M,S,"int32",B),Hs(n,U)};for(let F=1;F<g;F*=2){let D=F*2;for(let $=F;$>=1;$/=2)w(D,$,[m,b])}for(let F=b;F>g;F/=2){let D=x(),$=new moe([m,F/2]),S=[[p],[y===null?1:0],[g]],M=y;y=n.runWebGLProgram($,D,"int32",S),Hs(n,M);let B=g/2,U=B*2;for(let H=B;H>=1;H/=2)w(U,H,y.shape)}let I=y;y=Sp({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,s]}}),Hs(n,I);let T=IA({inputs:{x:f,indices:y},backend:n,attrs:{axis:1,batchDims:1}});Hs(n,f);let C=u.slice(0,-1);C.push(s),I=y,y=ce({inputs:{x:y},attrs:{shape:C},backend:n}),Hs(n,I);let E=T;return T=ce({inputs:{x:T},attrs:{shape:C},backend:n}),Hs(n,E),[T,y]}var goe={kernelName:np,backendName:"webgl",kernelFunc:foe},boe=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function yoe(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new boe(d,c,i,o,l,g);return n.runWebGLProgram(b,[r,s],"float32")}var xoe={kernelName:ap,backendName:"webgl",kernelFunc:yoe};function voe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;yp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=w9(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var woe={kernelName:Yc,backendName:"webgl",kernelFunc:voe};function koe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;f<o;f++)f!==s&&(u[p++]=i.shape[f]);let d=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=Sp({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),b=ce({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=b,d.push(g)}return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var Ioe={kernelName:rp,backendName:"webgl",kernelFunc:koe},Soe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${d}
}
int inIdx = inOffset + ${u};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${d}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${d}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${d}
}
setOutput(${l});
}
`}};function Noe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=ce({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Km(r.dtype),g=(w,I,T,C,E)=>{let F=w.shape[0],D=w.shape[1],$=N.segment_util.segOpComputeOptimalWindowSize(D,E),S={windowSize:$,inSize:D,batchSize:F,numSegments:E},M=new Soe(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===E)return B;let U=AA({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),H=FA({inputs:{x:U},backend:n,attrs:{reps:[D/$]}});return l.push(U),l.push(H),g(B,I,H,C,E)},b=g(m,"unsortedSegmentSum",s,f,i),y=ce({inputs:{x:b},backend:n,attrs:{shape:c}}),x=y;if(p!=null){l.push(y);let w=N.getUndoAxesPermutation(p);x=Nn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var Toe={kernelName:Zc,backendName:"webgl",kernelFunc:Noe},Coe=[mQ,gQ,xQ,kQ,SQ,CQ,EQ,FQ,MQ,OQ,WQ,UQ,qQ,YQ,QQ,tee,aee,oee,uee,cee,fee,kee,See,Tee,$ee,Ree,Lee,Z9,Bee,qee,Yee,nte,ste,ote,ute,cte,fte,yte,wte,Ite,Nte,Cte,Ate,$te,Pte,Lte,Bte,Gte,qte,Yte,ene,rne,one,pne,cne,hne,fne,bne,xne,wne,Nne,_ne,Fne,Dne,Pne,zne,Une,jne,Y9,Xne,Gee,Jne,tae,rae,Q9,lae,dae,mae,yae,wae,Nae,_ae,$ae,Pae,zae,Bae,Hae,jae,Xae,Qae,tre,are,sre,ore,cre,fre,xre,Cre,nQ,Fre,Rre,Ore,Wre,_ee,Ure,Hre,jre,Yre,ese,tQ,nse,rse,ise,lse,use,Eee,Ire,dse,gse,vse,rQ,Sse,Cse,Fse,Rse,Lse,Wse,Use,qse,Xse,Jse,tie,rie,lie,cie,fie,yie,vee,Nre,wie,Iie,Nie,Cie,Eie,Fie,Die,Mie,Oie,Wie,Vie,Gie,qie,Xie,Zie,Qie,toe,Sre,cQ,roe,ooe,uoe,doe,goe,xoe,dQ,woe,Ioe,Toe,Gre];for(let e of Coe)Jc(e);var et;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(et||(et={}));var Fc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Fc||(Fc={}));var $A;function _oe(e){$A=e.wasm.cwrap(ri,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Eoe(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let E=n.dataIdMap.get(i.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);m=E.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Fc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let b=l?r.shape[2]:r.shape[1],y=u?s.shape[1]:s.shape[2],x=op.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,b,y],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return $A(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var Aoe={kernelName:ri,backendName:"wasm",setupFunc:_oe,kernelFunc:Eoe};function Ze(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,et[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Foe=Ze(au),$oe=Ze(ki),Doe=Ze(Ii);function on(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),b=new Uint8Array(new Int32Array(p.shape).buffer),y=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,b,p.shape.length,et[u.dtype],y),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Roe=!0,Moe=on(ks,Roe),DA;function Poe(e){DA=e.wasm.cwrap(Si,null,["array","number","number","number"])}function Ooe(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return DA(s,r.length,et[a.dtype],i),a}var Loe={kernelName:Si,backendName:"wasm",setupFunc:Poe,kernelFunc:Ooe};function tg(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return bn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var zoe={kernelName:Yi,backendName:"wasm",kernelFunc:tg},RA;function Woe(e){RA=e.wasm.cwrap(Fr,null,["number","array","number","number","number","array","number"])}function xs(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Voe(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=Boe(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=tg({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),p=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return RA(p,h,l.shape.length,et[l.dtype],d,c,s.length),u}function Boe(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function Voe(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Uoe={kernelName:Fr,backendName:"wasm",kernelFunc:xs,setupFunc:Woe};function Rs(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c<p.length;c++)p[c]=a[o[c]];i=N.getInnerMostAxes(i.length,r),l=xs({inputs:{x:e},attrs:{perm:o},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var MA;function Goe(e){MA=e.wasm.cwrap(ru,null,["number, number, number"])}function Hoe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Rs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("all",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;MA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var qoe={kernelName:ru,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe},PA;function joe(e){PA=e.wasm.cwrap(su,null,["number, number, number"])}function Koe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Rs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("any",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;PA(o,g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Xoe={kernelName:su,backendName:"wasm",setupFunc:joe,kernelFunc:Koe};function OA(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number","number","number","number"])}function a(r){let{backend:s,inputs:i,attrs:o}=r,{axis:l}=o,{x:u}=i,p=s.dataIdMap.get(u.dataId).id,d=p,c=u,{transposed:h,axes:m,inputWasTransposed:f}=Rs(u,l,s);if(f){let I=s.dataIdMap.get(h.dataId).id;I!==p&&(c=h,d=I)}let g=c.shape.slice(0,-1),b=s.makeOutput(g,"int32"),y=s.dataIdMap.get(b.dataId).id,x=v.sizeFromShape(b.shape),w=c.shape[m[0]];return t(d,et[c.dtype],x,w,y),f&&s.disposeData(h.dataId),b}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Yoe=OA(iu),Zoe=OA(ou),Joe=Ze(Ni),Qoe=Ze(Ti),ele=Ze(Ci),tle=on(Ei,!1),nle=Ze(_i),LA;function ale(e){LA=e.wasm.cwrap(Ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rle(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.strideHeight,y=p.strideWidth,x=p.inChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);if(p.dilationWidth!==1||p.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${p.dilationHeight}, ${p.dilationWidth}].`);let w=a.makeOutput(p.outShape,"float32"),I=a.dataIdMap.get(w.dataId).id;return LA(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,I),w}var sle={kernelName:Ai,backendName:"wasm",setupFunc:ale,kernelFunc:rle},zA;function ile(e){zA=e.wasm.cwrap("AvgPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ole(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return zA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var lle={kernelName:lu,backendName:"wasm",setupFunc:ile,kernelFunc:ole},WA;function ule(e){WA=e.wasm.cwrap("AvgPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ple(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return WA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left,p.filterDepth,p.filterHeight,p.filterWidth),d}var cle={kernelName:Rc,backendName:"wasm",setupFunc:ule,kernelFunc:ple};function Wn(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=v.sizeFromShape(a.shape),i=v.inferFromImplicitShape(r,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var dle={kernelName:Vu,backendName:"wasm",kernelFunc:Wn},BA;function hle(e){BA=e.wasm.cwrap(Fi,null,["number","array","number","number","array","number","number","number","number"])}function mle(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),b=v.sizeFromShape(f),y=op.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[b,h,d]:[b,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get(T.dataId).id,F=i?I.shape[2]:I.shape[1],D=o?T.shape[1]:T.shape[2],$=Math.max(g,b),S=n.makeOutput([$,F,D],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return BA(C,B,I.shape.length,E,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=y,S}var fle={kernelName:Fi,backendName:"wasm",setupFunc:hle,kernelFunc:mle};function vi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=vm(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)gle(l,p[0],c,s,i);else if(h===3)ble(l,p[0],p[1],c,s,i);else if(h===4)yle(l,p[0],p[1],p[2],c,s,i);else{let m=vm(l,s,i,t.shape,t.dtype);c.set(m)}return u}function gle(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let p=u*t+o;n.set(e.subarray(p,p+r[1]),s),s+=r[1]}}function ble(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],p=o+s[0],d=l+s[1];for(let c=o;c<p;c++)for(let h=l;h<d;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function yle(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],p=s[2],d=l+i[0],c=u+i[1],h=p+i[2],m=s[3];for(let f=l;f<d;f++)for(let g=u;g<c;g++)for(let b=p;b<h;b++){let y=f*t+g*n+b*a+m;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var xle={kernelName:Xu,backendName:"wasm",kernelFunc:vi};function vle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a,o=s.reduce((b,y)=>b*y),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=xs({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=vi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var wle={kernelName:uu,backendName:"wasm",kernelFunc:vle},VA;function kle(e){VA=e.wasm.cwrap(pu,null,["number","number","boolean","number","number","number"])}function Ile(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i}=a,o=s.shape.reduce((d,c)=>d*c,1)!==0,l=r.shape.length===1?[i]:[r.shape[0],i],u=t.makeOutput(l,s.dtype);function p(d){return t.dataIdMap.get(d.dataId).id}return VA(p(r),i,o,p(s),et[s.dtype],p(u)),u}var Sle={kernelName:pu,backendName:"wasm",setupFunc:kle,kernelFunc:Ile};function Nle(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.typedArrayFromHeap(a),i=n.typedArrayFromHeap(r),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeOutput([o.length],"int32",void 0,new Int32Array(o))}var Tle={kernelName:Mc,backendName:"wasm",kernelFunc:Nle};function Ms(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Cle={kernelName:$i,backendName:"wasm",kernelFunc:Ms},_le=Ze(Di),UA;function Ele(e){UA=e.wasm.cwrap(Is,null,["number","number","number","number"])}function Ale(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return UA(o,s,i,u),l}var Fle={kernelName:Is,backendName:"wasm",setupFunc:Ele,kernelFunc:Ale};function GA(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return tg({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=[-1,v.sizeFromShape(x.shape.slice(a))];return Wn({inputs:{x},backend:n,attrs:{shape:w}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=E1(m,s,t[0].dtype,f),b=N.computeOutShape(i.map(x=>x.shape),a);o.shape=b;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<d.length;f++){let g=p[f],b=h*g,y=d[f].subarray(b,b+g);c.set(y,m),m+=g}}return o}var $le={kernelName:cu,backendName:"wasm",kernelFunc:GA},HA;function Dle(e){HA=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Rle(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d,dataFormat:c}=n,h=N.convertConv2DDataFormat(c),m=N.computeConv2DInfo(r.shape,s.shape,l,u,p,d,!1,h),f=m.filterHeight,g=m.filterWidth,b=m.padInfo.top,y=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,I=m.dilationHeight,T=m.dilationWidth,C=m.strideHeight,E=m.strideWidth,F=m.inChannels,D=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),M=a.dataIdMap.get(S.dataId).id;return HA(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,b,y,x,w,$,I,T,C,E,F,D,M),S}var Mle={kernelName:Ri,backendName:"wasm",setupFunc:Dle,kernelFunc:Rle},qA;function Ple(e){qA=e.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ole(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:p}=a,d=1,c=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(p,s.shape,i,d,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:b,inHeight:y,inWidth:x,outChannels:w,outHeight:I,outWidth:T,strideHeight:C,strideWidth:E}=h,F=f-1-h.padInfo.top,D=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=v.computeStrides(h.inShape),M=v.computeStrides(r.shape),[B,U,H]=v.computeStrides(s.shape),j=S[0],K=$?S[1]:S[2],Z=$?S[2]:1,J=$?1:S[1],ee=M[0],ae=$?M[1]:M[2],te=$?M[2]:1,re=$?1:M[1],se=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(se.dataId).id,ue=t.dataIdMap.get(r.dataId).id,be=t.dataIdMap.get(s.dataId).id;return qA(ue,be,m,f,g,y,x,b,I,T,w,C,E,F,D,B,U,H,j,K,Z,J,ee,ae,te,re,ye),se}var Lle={kernelName:Mi,backendName:"wasm",setupFunc:Ple,kernelFunc:Ole},jA;function zle(e){jA=e.wasm.cwrap(Pi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor x must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=n.makeOutput(u.outShape,r.dtype);return jA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var Ble={kernelName:Pi,backendName:"wasm",setupFunc:zle,kernelFunc:Wle},KA;function Vle(e){KA=e.wasm.cwrap(du,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ule(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(r.shape,l,i,1,o),p=n.makeOutput(u.filterShape,s.dtype);return KA(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var Gle={kernelName:du,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule},XA;function Hle(e){XA=e.wasm.cwrap(hu,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qle(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;if(r.dtype!=="float32")throw new Error(`Tensor dy must have dtype float32, got ${r.dtype}`);if(s.dtype!=="float32")throw new Error(`Tensor filter must have dtype float32, got ${s.dtype}`);let u=N.computeConv3DInfo(l,s.shape,o,1,i),p=n.makeOutput(u.inShape,r.dtype);return XA(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(p.dataId).id,u.batchSize,u.inDepth,u.inHeight,u.inWidth,u.inChannels,u.outDepth,u.outHeight,u.outWidth,u.outChannels,u.strideDepth,u.strideHeight,u.strideWidth,u.dilationDepth,u.dilationHeight,u.dilationWidth,u.filterDepth,u.filterHeight,u.filterWidth,u.padInfo.front,u.padInfo.top,u.padInfo.left),p}var jle={kernelName:hu,backendName:"wasm",setupFunc:Hle,kernelFunc:qle},Kle=Ze(Oi),Xle=Ze(Li),pv;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(pv||(pv={}));var YA;function Yle(e){YA=e.wasm.cwrap(fu,null,["number","number","number","number","array","number","number","number","number","number"])}function Zle(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,p=l.shape[0],[d,c]=i,h=[p,d,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Ms({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,b=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(o.shape).buffer);return YA(g,b,y,p,I,d,c,pv[r],s,w),f!=null&&t.disposeData(f.dataId),x}var Jle={kernelName:fu,backendName:"wasm",setupFunc:Yle,kernelFunc:Zle},ZA;function Qle(e){ZA=e.wasm.cwrap(mu,null,["number","number","number","number","number","number"])}function eue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=xs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;ZA(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=xs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var tue={kernelName:mu,backendName:"wasm",setupFunc:Qle,kernelFunc:eue},JA;function nue(e){JA=e.wasm.cwrap(zi,null,["number","number","number","number","number","number"])}function aue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=xs({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;JA(m,i?1:0,o?1:0,h,f,et[r.dtype]);let g=c;if(u!==null){let b=N.getUndoAxesPermutation(u);g=xs({inputs:{x:c},attrs:{perm:b},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var rue={kernelName:zi,backendName:"wasm",setupFunc:nue,kernelFunc:aue},QA;function sue(e){QA=e.wasm.cwrap("DenseBincount",null,["number","array","number","number","boolean","number","number","boolean","number"])}function iue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,weights:s}=n,{size:i,binaryOutput:o}=a,l=s.shape.reduce((c,h)=>c*h,1)!==0,u=r.shape.length===1?[i]:[r.shape[0],i],p=t.makeOutput(u,s.dtype);function d(c){return t.dataIdMap.get(c.dataId).id}return QA(d(r),new Uint8Array(new Int32Array(r.shape).buffer),r.shape.length,i,l,d(s),et[s.dtype],o,d(p)),p}var oue={kernelName:Oc,backendName:"wasm",setupFunc:sue,kernelFunc:iue},eF;function lue(e){eF=e.wasm.cwrap(gu,null,["number","number","number","array","number","array","array","number","number"])}function uue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return eF(g,s,i==="NHWC"?1:0,b,r.shape.length-1,y,x,m.length,w),f}var pue={kernelName:gu,backendName:"wasm",setupFunc:lue,kernelFunc:uue},tF;function cue(e){tF=e.wasm.cwrap(Wi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function due(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,E=h.inChannels,F=h.outChannels,D=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return tF(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,b,y,x,D,w,I,T,C,E,F,S),$}var hue={kernelName:Wi,backendName:"wasm",setupFunc:cue,kernelFunc:due},nF;function mue(e){nF=e.wasm.cwrap("Diag",null,["number","number","number","number"])}function fue(e){let{inputs:t,backend:n}=e,{x:a}=t,r=v.sizeFromShape(a.shape),s=n.makeOutput([...a.shape,...a.shape],a.dtype);return nF(n.dataIdMap.get(a.dataId).id,et[a.dtype],r,n.dataIdMap.get(s.dataId).id),s}var gue={kernelName:Lc,backendName:"wasm",setupFunc:mue,kernelFunc:fue},aF;function bue(e){aF=e.wasm.cwrap(Bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;if(r.dtype!==s.dtype)throw new Error(`Dilation2D error: x must have the same dtype as filter. Got ${r.dtype} and ${s.dtype}`);let u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p=n.makeOutput(u.outShape,r.dtype);return aF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(p.dataId).id,et[r.dtype],u.batchSize,u.inChannels,u.inHeight,u.inWidth,u.outHeight,u.outWidth,u.strideHeight,u.strideWidth,u.dilationHeight,u.dilationWidth,u.filterHeight,u.filterWidth,u.padInfo.top,u.padInfo.left),p}var xue={kernelName:Bi,backendName:"wasm",setupFunc:bue,kernelFunc:yue},rF;function vue(e){rF=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropFilter error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(s.shape,s.dtype);return rF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var kue={kernelName:Ol,backendName:"wasm",setupFunc:vue,kernelFunc:wue},sF;function Iue(e){sF=e.wasm.cwrap(Pl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Sue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,dy:i}=t,{strides:o,pad:l,dilations:u}=a;if(r.dtype!==s.dtype||r.dtype!==i.dtype)throw new Error(`Dilation2DBackpropInput error: x must have the same dtype as filter and dy. Got ${r.dtype}, ${s.dtype}, and ${i.dtype}`);let p=N.computeDilation2DInfo(r.shape,s.shape,o,l,"NHWC",u),d=n.makeOutput(r.shape,r.dtype);return sF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,et[r.dtype],p.batchSize,p.inChannels,p.inHeight,p.inWidth,p.outHeight,p.outWidth,p.strideHeight,p.strideWidth,p.dilationHeight,p.dilationWidth,p.filterHeight,p.filterWidth,p.padInfo.top,p.padInfo.left),d}var Nue={kernelName:Pl,backendName:"wasm",setupFunc:Iue,kernelFunc:Sue},Tue=Ze(Ui),iF;function Cue(e){iF=e.wasm.cwrap(bu,null,["number","number","number"])}function _ue(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=n.makeOutput(r.shape,"float32"),i=o=>n.dataIdMap.get(o.dataId).id;return iF(i(r),i(a),i(s)),s}var Eue={kernelName:bu,backendName:"wasm",setupFunc:Cue,kernelFunc:_ue},Aue=!1,Fue=on(xu,Aue,"bool"),$ue=Ze(Gi,"float32");function cv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Due={kernelName:vu,backendName:"wasm",kernelFunc:cv},Rue=Ze(Hi,"float32");function oF(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Mue={kernelName:zc,backendName:"wasm",kernelFunc:oF},lF;function Pue(e){lF=e.wasm.cwrap(wu,null,["number","number","number","number","number","number"])}function Oue(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return lF(s,o,l,u,p,i),r}var Lue={kernelName:wu,backendName:"wasm",kernelFunc:Oue,setupFunc:Pue},zue=Ze(qi),Wue=!1,Bue=on(ji,Wue),uF;function Vue(e){uF=e.wasm.cwrap(Ki,null,["number","number","number","number","number","number","number"])}function Uue(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return uF(p,d,c,h,m,r,g),f}var Gue={kernelName:Ki,backendName:"wasm",setupFunc:Vue,kernelFunc:Uue},pF;function Hue(e){pF=e.wasm.cwrap(si,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function que(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=Fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return pF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var jue={kernelName:si,backendName:"wasm",setupFunc:Hue,kernelFunc:que},cF;function Kue(e){cF=e.wasm.cwrap(ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=Fc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=a.dataIdMap.get(r.dataId).id,y=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,E=f.padInfo.right,F=f.padInfo.bottom,D=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,H=f.padInfo.type==="SAME"?1:0,j=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return cF(b,j,K,Z,y,I,T,w,C,E,F,D,H,$,S,M,B,U,x,g,ae,m||0,ee),J}var Yue={kernelName:ii,backendName:"wasm",setupFunc:Kue,kernelFunc:Xue},dF;function Zue(e){dF=e.wasm.cwrap(Iu,null,["number","number","number","number","number","number","array","number"])}function Jue(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Uw.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return dF(c,et[a.dtype],h,i,d,o,m,f),u}var Que={kernelName:Iu,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue},hF;function epe(e){hF=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function tpe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C<u.length;++C){let E=u[C];v.assert(E<=p-1&&E>=0,()=>`GatherV2: the index value ${E} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let b=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return hF(y,et[r.dtype],I,b,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var npe={kernelName:ku,backendName:"wasm",setupFunc:epe,kernelFunc:tpe},ape=!1,rpe=on(Su,ape,"bool"),spe=!1,ipe=on(Xi,spe,"bool"),ope=Ze(Zi,"bool"),lpe=Ze(Ji,"bool"),upe=Ze(Qi,"bool"),mF;function ppe(e){mF=e.wasm.cwrap(eo,null,["number","number","number","number"])}function cpe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;mF(r,et[t.dtype],n,i)}return s}var dpe={kernelName:eo,backendName:"wasm",setupFunc:ppe,kernelFunc:cpe},hpe=!1,mpe=on(Nu,hpe,"bool"),fpe=!1,gpe=on(Tu,fpe,"bool"),fF;function bpe(e){fF=e.wasm.cwrap(Cu,null,["number","number","number","number"])}function ype(e){let{attrs:t,backend:n}=e,{start:a,stop:r,num:s}=t,i=Math.floor(s),o=n.makeOutput([i],"float32");return fF(n.dataIdMap.get(o.dataId).id,a,r,i),o}var xpe={kernelName:Cu,backendName:"wasm",setupFunc:bpe,kernelFunc:ype},vpe=Ze(to),wpe=Ze(no),kpe=!1,Ipe=on(_u,kpe,"bool"),Spe=Ze(Eu),Npe=!1,Tpe=on(Au,Npe,"bool"),Cpe=!1,_pe=on(HS,Cpe,"bool"),gF;function Epe(e){gF=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","number"])}function Ape(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;if(r.dtype!=="float32")throw new Error("LRN error: x must have dtype float32");let u=n.makeOutput(r.shape,r.dtype);return gF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(u.dataId).id,r.shape[3],s,i,o,l),u}var Fpe={kernelName:ao,backendName:"wasm",setupFunc:Epe,kernelFunc:Ape},bF;function $pe(e){bF=e.wasm.cwrap(Fu,null,["number","number","number","number","number","number","number","number","number"])}function Dpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a;if(r.dtype!=="float32"||s.dtype!=="float32"||i.dtype!=="float32")throw new Error("LRNGrad error: x, y, and dy must have dtype float32");let d=n.makeOutput(r.shape,r.dtype);return bF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(i.dataId).id,n.dataIdMap.get(d.dataId).id,i.shape[3],o,l,u,p),d}var Rpe={kernelName:Fu,backendName:"wasm",setupFunc:$pe,kernelFunc:Dpe},yF;function Mpe(e){yF=e.wasm.cwrap(ro,null,["number","number","number","number"])}function Ppe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Rs(i,r,t);if(c){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),b=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(b.dataId).id;yF(o,et[i.dtype],g,y)}if(c&&t.disposeData(u.dataId),s){let y=N.expandShapeToKeepDim(b.shape,d);b.shape=y}return b}var Ope={kernelName:ro,backendName:"wasm",setupFunc:Mpe,kernelFunc:Ppe},Lpe=!1,zpe=on(so,Lpe),xF;function Wpe(e){xF=e.wasm.cwrap(io,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Bpe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,b=p.dilationHeight,y=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),E=a.dataIdMap.get(C.dataId).id;return xF(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,b,y,x,w,I,T,E),C}var Vpe={kernelName:io,backendName:"wasm",setupFunc:Wpe,kernelFunc:Bpe},vF;function Upe(e){vF=e.wasm.cwrap("MaxPool3D",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gpe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.makeOutput(p.outShape,r.dtype);return vF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var Hpe={kernelName:$u,backendName:"wasm",setupFunc:Upe,kernelFunc:Gpe},wF;function qpe(e){wF=e.wasm.cwrap("MaxPool3DGrad",null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jpe(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a,p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.makeOutput(s.shape,s.dtype);return wF(n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(d.dataId).id,p.batchSize,p.inChannels,p.inDepth,p.inHeight,p.inWidth,p.outDepth,p.outHeight,p.outWidth,p.strideDepth,p.strideHeight,p.strideWidth,p.dilationDepth,p.dilationHeight,p.dilationWidth,p.effectiveFilterDepth,p.effectiveFilterHeight,p.effectiveFilterWidth,p.padInfo.front,p.padInfo.top,p.padInfo.left),d}var Kpe={kernelName:Wc,backendName:"wasm",setupFunc:qpe,kernelFunc:jpe},kF;function Xpe(e){kF=e.wasm.cwrap(oo,null,["number, number, number"])}function Ype(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Rs(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=Ms({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;kF(l,b,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Zpe={kernelName:oo,backendName:"wasm",setupFunc:Xpe,kernelFunc:Ype},IF;function Jpe(e){IF=e.wasm.cwrap(lo,null,["number","number","number","number"])}function Qpe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Rs(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;IF(l,et[i.dtype],b,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var ece={kernelName:lo,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},tce=!1,nce=on(uo,tce),dv;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(dv||(dv={}));var SF;function ace(e){SF=e.wasm.cwrap(po,null,["number","array","number","number","array","array","number","number"])}function rce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return SF(i,u,t.shape.length,et[t.dtype],c,h,dv[r],l),o}var sce={kernelName:po,backendName:"wasm",kernelFunc:rce,setupFunc:ace},NF;function ice(e){NF=e.wasm.cwrap(Do,null,["number","number","number","number"])}function TF(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||NF(r,i,o,l),s}var oce={kernelName:Do,backendName:"wasm",setupFunc:ice,kernelFunc:TF},CF;function lce(e){CF=e.wasm.cwrap(Ru,null,["number","number","number","number","number","number"])}function uce(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;if(r.dtype!=="float32")throw new Error(`Tensor logits must have dtype float32, got ${r.dtype}`);let l=o?r:TF({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),[u,p]=l.shape,d=n.makeOutput([u,s],"int32");return CF(n.dataIdMap.get(l.dataId).id,u,p,s,i,n.dataIdMap.get(d.dataId).id),o||n.disposeData(l.dataId),d}var pce={kernelName:Ru,backendName:"wasm",setupFunc:lce,kernelFunc:uce},cce=!0,dce=on(co,cce),hce=Ze(Mu);function ak(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var _F;function mce(e){_F=e.wasm.cwrap(Ou,"number",["number","number","number","number","number"])}function fce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=_F(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=ak(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var gce={kernelName:Ou,backendName:"wasm",setupFunc:mce,kernelFunc:fce},EF;function bce(e){EF=e.wasm.cwrap(Lu,"number",["number","number","number","number","number","bool"])}function yce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=EF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=ak(t,c);t.wasm._free(f);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var xce={kernelName:Lu,backendName:"wasm",setupFunc:bce,kernelFunc:yce},AF;function vce(e){AF=e.wasm.cwrap(zu,"number",["number","number","number","number","number","number"])}function wce(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=AF(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=ak(t,c);t.wasm._free(g);let b=t.makeOutput([m],"int32",h),y=t.makeOutput([m],"float32",f);return[b,y]}var kce={kernelName:zu,backendName:"wasm",setupFunc:vce,kernelFunc:wce},Ice=!1,Sce=on(Pu,Ice,"bool"),FF;function Nce(e){FF=e.wasm.cwrap(ho,null,["number","number","number","number","number"])}function Tce(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return FF(d,i,o,l,p),u}var Cce={kernelName:ho,backendName:"wasm",setupFunc:Nce,kernelFunc:Tce};function _ce(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Ece={kernelName:Wu,backendName:"wasm",kernelFunc:_ce};function Ace(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return cv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=cv({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=GA({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Fce={kernelName:Bu,backendName:"wasm",kernelFunc:Ace},$F;function $ce(e){$F=e.wasm.cwrap(mo,null,["number","array","number","number","array","array","number","number"])}function Dce(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return oF({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return $F(i,u,t.shape.length,et[t.dtype],c,h,r,l),o}var DF={kernelName:mo,backendName:"wasm",kernelFunc:Dce,setupFunc:$ce},Rce=!1,Mce=on(fo,Rce),RF;function Pce(e){RF=e.wasm.cwrap(go,null,["number","number","number"])}function Oce(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=Ms({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return RF(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var Lce={kernelName:go,backendName:"wasm",setupFunc:Pce,kernelFunc:Oce},MF;function zce(e){MF=e.wasm.cwrap(bo,null,["number","number","number","number"])}function Wce(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Rs(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;MF(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var Bce={kernelName:bo,backendName:"wasm",setupFunc:zce,kernelFunc:Wce},Vce=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=$1(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Uce={kernelName:Bc,backendName:"wasm",kernelFunc:Vce},Gce=!0,Hce=on(Vi,Gce),qce=Ze(yo),jce=Ze(xo),Kce=Ze(ko),PF;function Xce(e){PF=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number"])}function Yce(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Ms({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let b=f.id,y=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return PF(b,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Zce={kernelName:wo,backendName:"wasm",setupFunc:Xce,kernelFunc:Yce},OF;function Jce(e){OF=e.wasm.cwrap(Gu,null,["number","number","number","array","array","boolean"])}function Qce(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ms({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),OF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var ede={kernelName:Gu,backendName:"wasm",setupFunc:Jce,kernelFunc:Qce},LF;function tde(e){LF=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number"])}function nde(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),b;g.dtype!=="float32"&&(b=Ms({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(b.dataId));let y=g.id,x=t.dataIdMap.get(f.dataId).id;return LF(y,p,d,c,h,l,u,s?1:0,i?1:0,x),b!=null&&t.disposeData(b.dataId),f}var ade={kernelName:vo,backendName:"wasm",setupFunc:tde,kernelFunc:nde},zF;function rde(e){zF=e.wasm.cwrap(Uu,null,["number","number","number","array","array","boolean"])}function sde(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(r.dataId),u;return l.dtype!=="float32"&&(u=Ms({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),l=n.dataIdMap.get(u.dataId)),zF(n.dataIdMap.get(r.dataId).id,n.dataIdMap.get(s.dataId).id,n.dataIdMap.get(o.dataId).id,new Uint8Array(new Int32Array(r.shape).buffer),new Uint8Array(new Int32Array(s.shape).buffer),i),u!=null&&n.disposeData(u.dataId),o}var ide={kernelName:Uu,backendName:"wasm",setupFunc:rde,kernelFunc:sde},WF;function ode(e){WF=e.wasm.cwrap(Io,null,["number","array","number","array","number","number"])}function lde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return tg({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);WF(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var ude={kernelName:Io,backendName:"wasm",kernelFunc:lde,setupFunc:ode},BF;function pde(e){BF=e.wasm.cwrap(ip,null,["number","number","number","number","number","number","number","number","array","number","number"])}function cde(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),b=i===0,y=255,x=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],w=new Uint8Array(new Int32Array(x).buffer);return BF(u,d,c,h,m,s,f,g,w,x.length,p),l}var dde={kernelName:ip,backendName:"wasm",kernelFunc:cde,setupFunc:pde},hde=Ze(So),mde=Ze(No),VF;function fde(e){VF=e.wasm.cwrap(Hu,null,["number","number","number","number","number","number","array","number","number"])}function gde(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=xf.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return VF(h,m,et[s.dtype],l,u,p,f,c,g),o}var bde={kernelName:Hu,backendName:"wasm",setupFunc:fde,kernelFunc:gde},UF;function yde(e){UF=e.wasm.cwrap(ju,null,["number","number","number","number","number","number","bool","number"])}function xde(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a;if(r.dtype!==s.dtype)throw new Error(`SearchSorted error: sorted_sequence must have the same dtype as values. Got ${r.dtype} and ${s.dtype}`);let o=n.makeOutput(s.shape,"int32");function l(u){return n.dataIdMap.get(u.dataId).id}return UF(l(r),l(s),r.shape[0],r.shape[1],s.shape[1],et[r.dtype],i==="left",l(o)),o}var vde={kernelName:ju,backendName:"wasm",setupFunc:yde,kernelFunc:xde},GF;function wde(e){GF=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function kde(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return GF(i,o,l,h,p),u}var Ide={kernelName:Ku,backendName:"wasm",kernelFunc:kde,setupFunc:wde},Sde=Ze(To),HF;function Nde(e){HF=e.wasm.cwrap(Eo,null,["number","number"])}function Tde(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||HF(a,s),r}var Cde={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Nde,kernelFunc:Tde},_de=Ze(_o),Ede=Ze(Co),Ade=Ze(Ao);function Fde(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=DF.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(u.shape,s,o,!1),d=N.getPermuted(p.length,s.length,!1),c=N.getReshapedPermuted(u.shape,s,o,!1),h=Wn({inputs:{x:u},backend:n,attrs:{shape:p}}),m=xs({inputs:{x:h},backend:n,attrs:{perm:d}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeData(u.dataId),n.disposeData(h.dataId),n.disposeData(m.dataId),f}var $de={kernelName:Zu,backendName:"wasm",kernelFunc:Fde},qF;function Dde(e){qF=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function Rde(e){let{backend:t,inputs:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=n,o=a.shape[0],l=a.shape[1],u=t.readSync(s.dataId)[0],p=[o+u,l],d=t.dataIdMap.get(a.dataId).id,c=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,m=t.makeOutput(p,a.dtype),f=t.dataIdMap.get(m.dataId).id,g=t.makeOutput(p.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([u],"bool"),x=t.dataIdMap.get(y.dataId).id,w=t.makeOutput([o],a.dtype),I=t.dataIdMap.get(w.dataId).id,T=t.makeOutput([4],"int32"),C=t.dataIdMap.get(T.dataId).id,E=qF(d,c,et[r.dtype],o,u,l,h,f,b,x,I,C),F=t.readSync(T.dataId),D;switch(F[0]){case 1:{D=N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(F[1]);break}case 2:{D=N.getSparseFillEmptyRowsNegativeIndexErrorMessage(F[1],F[2]);break}case 3:D=N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(F[1],F[2],F[3]);break;default:D=""}if(t.disposeData(T.dataId),D)throw t.disposeData(m.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(w.dataId),new Error(D);let $=m,S=g;return E!==p[0]&&($=vi({inputs:{x:m},attrs:{begin:0,size:[E,l]},backend:t}),S=vi({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(m.dataId),t.disposeData(g.dataId)),[$,S,y,w]}var Mde={kernelName:Vc,backendName:"wasm",setupFunc:Dde,kernelFunc:Rde},jF;function Pde(e){jF=e.wasm.cwrap(Qu,null,["number","number","number","number","number","number","number"])}function Ode(e){let{backend:t,inputs:n}=e,{inputIndices:a,inputShape:r,newShape:s}=n;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=t.dataIdMap.get(a.dataId).id,o=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=a.shape[0],p=v.sizeFromShape(s.shape),d=t.makeOutput([u,p],a.dtype),c=t.dataIdMap.get(d.dataId).id,h=t.makeOutput([p],s.dtype),m=t.dataIdMap.get(h.dataId).id,f=t.makeOutput([3],"int32"),g=t.dataIdMap.get(f.dataId).id;jF(i,o,l,u,c,m,g);let b=t.readSync(f.dataId),y;switch(b[0]){case 0:{y=N.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=N.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=N.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMultipleErrorMessage(x,w);break}case 4:{let x=Array.from(t.readSync(r.dataId)),w=Array.from(t.readSync(h.dataId));y=N.getSparseReshapeInputOutputMismatchErrorMessage(x,w);break}default:y=""}if(t.disposeData(f.dataId),y)throw t.disposeData(d.dataId),t.disposeData(h.dataId),new Error(y);return[d,h]}var Lde={kernelName:Qu,backendName:"wasm",setupFunc:Pde,kernelFunc:Ode},KF;function XF(e){KF=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function YF(e,t){let{backend:n,inputs:a}=e,{data:r,indices:s,segmentIds:i}=a,o=s.shape[0],l=n.readSync(i.dataId,o-1,o)[0],u=o>0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),b=n.dataIdMap.get(g.dataId).id;KF(d,et[r.dtype],r.shape[0],c,h,f,b,t,0);let y=n.readSync(g.dataId),x;switch(y[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y[1],y[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(y[1],y[2],y[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function zde(e){return YF(e,!0)}var Wde={kernelName:Uc,backendName:"wasm",setupFunc:XF,kernelFunc:zde};function Bde(e){return YF(e,!1)}var Vde={kernelName:Gc,backendName:"wasm",setupFunc:XF,kernelFunc:Bde},ZF;function Ude(e){ZF=e.wasm.cwrap(ep,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Gde(e){let{backend:t,inputs:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=n,{outputShape:o}=a,l=t.makeOutput(o,i.dtype);if(v.sizeFromShape(o)===0)return l;let{sliceRank:u,numUpdates:p,sliceSize:d,strides:c,outputSize:h}=N.calculateShapes(s,r,o),m=t.dataIdMap.get(r.dataId).id,f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(i.dataId).id,b=new Uint8Array(new Int32Array(c).buffer),y=t.dataIdMap.get(l.dataId).id;return ZF(m,f,s.shape.length,g,et[i.dtype],u,p,d,b,h,y),l}var Hde={kernelName:ep,backendName:"wasm",setupFunc:Ude,kernelFunc:Gde};function qde(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=vi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var jde={kernelName:Ju,backendName:"wasm",kernelFunc:qde},Kde=Ze(Fo),Xde=Ze(Hc),Yde=!0,Zde=on(Ro,Yde),JF;function Jde(e){JF=e.wasm.cwrap(Ns,null,["number","number","number","number"])}function Qde(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return JF(i,r,et[s.dtype],l),o}var ehe={kernelName:Ns,backendName:"wasm",setupFunc:Jde,kernelFunc:Qde},QF;function the(e){QF=e.wasm.cwrap(tp,null,["number","array","number","array","array","array","array","array","number","number"])}function nhe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:b,begin:y,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||b){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(y,x,w),C=vi({inputs:{x:r},backend:t,attrs:{begin:y,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),F=new Uint8Array(new Int32Array(y).buffer),D=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;QF(C,E,r.shape.length,F,D,$,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var ahe={kernelName:tp,backendName:"wasm",setupFunc:the,kernelFunc:nhe};function rhe(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=R1(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),b=t.dataIdMap.get(g.dataId);b.stringBytes=m;let y=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(y).set(f),[g,y]}var she={kernelName:jc,backendName:"wasm",kernelFunc:rhe};function ihe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=M1(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var ohe={kernelName:Kc,backendName:"wasm",kernelFunc:ihe};function lhe(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=P1(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var uhe={kernelName:Xc,backendName:"wasm",kernelFunc:lhe},phe=!0,che=on(Mo,phe),e$;function dhe(e){e$=e.wasm.cwrap($o,null,["number","number","number","number"])}function hhe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Rs(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),b=v.sizeFromShape(g),y=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;e$(l,b,et[y.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(y.shape,c);y.shape=x}return y}var mhe={kernelName:$o,backendName:"wasm",setupFunc:dhe,kernelFunc:hhe},fhe=Ze(Po),ghe=Ze(Oo),t$;function bhe(e){t$=e.wasm.cwrap(qu,null,["number","number","number","number","number","number","array","number","number","number"])}function yhe(e){let{backend:t,inputs:n,attrs:a}=e,{tensor:r,indices:s,updates:i}=n,{}=a,o=t.makeOutput(r.shape,r.dtype);if(v.sizeFromShape(r.shape)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=xf.calculateShapes(i,s,r.shape),h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(i.dataId).id,f=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(d).buffer),b=t.dataIdMap.get(o.dataId).id;return t$(h,m,et[i.dtype],l,u,p,g,c,b,f),o}var xhe={kernelName:qu,backendName:"wasm",setupFunc:bhe,kernelFunc:yhe},n$;function vhe(e){n$=e.wasm.cwrap(Ss,null,["number","array","number","array","number","number"])}function whe(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),p=n.makeOutput(o,r.dtype),d=n.dataIdMap.get(p.dataId).id;return n$(s,l,r.shape.length,u,o.length,et[p.dtype],d),p}var khe={kernelName:Ss,backendName:"wasm",setupFunc:vhe,kernelFunc:whe},a$;function Ihe(e){a$=e.wasm.cwrap(np,null,["number","array","number","number","number","bool","number","number"])}var She=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return a$(i,o,a.shape.length,et[a.dtype],r,s,p,c),[u,d]},Nhe={kernelName:np,backendName:"wasm",setupFunc:Ihe,kernelFunc:She},r$;function The(e){r$=e.wasm.cwrap(ap,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function Che(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],b=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return r$(I,T,s.shape[0]>1,p,m,f,h,c,d,b,r.shape.length-1,y,g.length-1,C,E,l,w),x}var _he={kernelName:ap,backendName:"wasm",setupFunc:The,kernelFunc:Che};function Ehe(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t,{outputValues:i,outputShape:o,indices:l}=L1(a.readSync(s.dataId),r,s.shape,s.dtype);return[a.makeOutput(o,s.dtype,void 0,i),a.makeOutput([l.length],"int32",void 0,l)]}var Ahe={kernelName:Yc,backendName:"wasm",kernelFunc:Ehe};function Fhe(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let p=new Array(i),d=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<p.length;h++)d[s]=h,p[h]=vi({inputs:{x:r},attrs:{begin:d,size:c},backend:n});return p.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var $he={kernelName:rp,backendName:"wasm",kernelFunc:Fhe};function Dhe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Rhe={kernelName:sp,backendName:"wasm",kernelFunc:Dhe},Mhe=[Aoe,Foe,$oe,Doe,Moe,Loe,qoe,Xoe,Yoe,Zoe,Joe,Qoe,ele,tle,nle,sle,lle,cle,fle,wle,Sle,Tle,Cle,_le,Fle,$le,Mle,Lle,Ble,Gle,jle,Kle,Xle,Jle,tue,rue,oue,pue,hue,gue,xue,kue,Nue,Tue,Eue,Fue,$ue,Due,Rue,Mue,Lue,zue,Bue,Gue,jue,Yue,Que,npe,rpe,ipe,zoe,ope,lpe,upe,dpe,mpe,gpe,xpe,wpe,vpe,Ipe,Spe,Tpe,_pe,Fpe,Rpe,Ope,zpe,Vpe,Hpe,Kpe,Zpe,ece,nce,sce,pce,dce,hce,gce,xce,kce,Sce,Cce,Ece,Fce,DF,Mce,Lce,Bce,Uce,Hce,qce,jce,Kce,dle,Zce,ede,ade,ide,ude,dde,hde,mde,bde,vde,Ide,Sde,Cde,_de,Ede,xle,oce,Ade,$de,Mde,Lde,Wde,Vde,Hde,jde,Kde,Xde,Zde,ehe,ahe,she,ohe,uhe,che,mhe,fhe,ghe,xhe,khe,Nhe,_he,Uoe,Ahe,$he,Rhe];for(let e of Mhe)Jc(e);var hv=G();hv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});hv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(hv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var TS=vs(JD()),Phe=vs(QD()),CS=vs(eR()),_S=TS.default||TS,Ohe=CS.default||CS,s$=class extends $c{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(i$),mv=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Em(this,Ea())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return Whe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n,a){let r;if(n==null)r=this.write(a!=null?a:null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let i=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,i,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Lhe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function ES(e,t,n){if(Cm!=null)return Cm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),dc!=null&&dc[a]!=null?dc[a]:n+a}async function zhe(){let[e,t]=await Promise.all([G().getAsync("WASM_HAS_SIMD_SUPPORT"),G().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=Phe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?ES(e,t,uc!=null?uc:l):l+o},rk&&(r.instantiateWasm=Lhe(ES(e,t,uc!=null?uc:"")));let s=!1;r.onAbort=()=>{s||hc||(hc=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Cm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+_S.toString()],{type:"text/javascript"}),i=_S(r)):i=Ohe(r),i.then(o=>{s=!0,hc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function Whe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Bhe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Cm=null,uc=null,dc={},hc=!1,rk=!1;function Vhe(e,t=!1){if(_v("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Cm=e,rk=t}function Uhe(e,t=!1){if(hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")uc=e;else{dc=e;let n=Bhe.filter(a=>dc[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}rk=t}var i$=-1,mv=-1;function Ghe(e){i$=e}function Hhe(){if(mv===-1)throw new Error("WASM backend not initialized.");return mv}var qhe="4.3.0",jhe=2;Xm("wasm",async()=>{let{wasm:e}=await zhe();return new s$(e)},jhe);var AS="4.3.0",Khe="4.3.0",Xhe="4.3.0",Yhe="4.3.0",Zhe="4.3.0",Jhe={tfjs:AS,"tfjs-core":AS,"tfjs-converter":Khe,"tfjs-backend-cpu":Xhe,"tfjs-backend-webgl":Yhe,"tfjs-backend-wasm":Zhe};var Ek={};_h(Ek,{AnchorPosition:()=>vk,DrawBox:()=>Pd,DrawBoxOptions:()=>sg,DrawFaceLandmarks:()=>gg,DrawFaceLandmarksOptions:()=>fg,DrawTextField:()=>Vr,DrawTextFieldOptions:()=>_p,drawContour:()=>zr,drawDetections:()=>ome,drawFaceExpressions:()=>dme,drawFaceLandmarks:()=>mme});function zr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var lk={};_h(lk,{computeReshapedDimensions:()=>ok,getCenterPoint:()=>Zo,isDimensions:()=>ag,isEven:()=>ng,isFloat:()=>ik,isTensor:()=>Xo,isTensor1D:()=>Qhe,isTensor2D:()=>sk,isTensor3D:()=>Wr,isTensor4D:()=>wa,isValidNumber:()=>Za,isValidProbablitiy:()=>Np,range:()=>yr,round:()=>Yo});var wn=class{constructor(t,n){if(!Za(t)||!Za(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new wn(1/this.width,1/this.height)}};function Xo(e,t){return e instanceof Te&&e.shape.length===t}function Qhe(e){return Xo(e,1)}function sk(e){return Xo(e,2)}function Wr(e){return Xo(e,3)}function wa(e){return Xo(e,4)}function ik(e){return e%1!==0}function ng(e){return e%2===0}function Yo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function ag(e){return e&&e.width&&e.height}function ok({width:e,height:t},n){let a=n/Math.max(t,e);return new wn(Math.round(e*a),Math.round(t*a))}function Zo(e){return e.reduce((t,n)=>t.add(n),new Re(0,0)).div(new Re(e.length,e.length))}function yr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Za(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Np(e){return Za(e)&&e>=0&&e<=1}var Re=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Re(this.x+t.x,this.y+t.y)}sub(t){return new Re(this.x-t.x,this.y-t.y)}mul(t){return new Re(this.x*t.x,this.y*t.y)}div(t){return new Re(this.x/t.x,this.y/t.y)}abs(){return new Re(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Re(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Za)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Za),s=[a.x,a.y,a.width,a.height].every(Za);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Re(this.left,this.top)}get topRight(){return new Re(this.right,this.top)}get bottomLeft(){return new Re(this.left,this.bottom)}get bottomRight(){return new Re(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return a<r&&(t-=s/2,a+=s),r<a&&(n-=s/2,r+=s),new ot({x:t,y:n,width:a,height:r})}rescale(t){let n=ag(t)?t.width:t,a=ag(t)?t.height:t;return new ot({x:this.x*n,y:this.y*a,width:this.width*n,height:this.height*a})}pad(t,n){let[a,r,s,i]=[this.x-t/2,this.y-n/2,this.width+t,this.height+n];return new ot({x:a,y:r,width:s,height:i})}clipAtImageBorders(t,n){let{x:a,y:r,right:s,bottom:i}=this,o=Math.max(a,0),l=Math.max(r,0),u=s-o,p=i-l,d=Math.min(u,t-o),c=Math.min(p,n-l);return new ot({x:o,y:l,width:d,height:c}).floor()}shift(t,n){let{width:a,height:r}=this,s=this.x+t,i=this.y+n;return new ot({x:s,y:i,width:a,height:r})}padAtBorders(t,n){let a=this.width+1,r=this.height+1,s=1,i=1,o=a,l=r,u=this.left,p=this.top,d=this.right,c=this.bottom;return d>n&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Jo=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Br=class{constructor(t,n,a,r,s){this._imageDims=new wn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Br(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var vt=class extends Br{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new vt(a,r,s)}};function uk(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function pk(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>l<o?l:o,1/0),r=n.reduce((o,l)=>l<o?l:o,1/0),s=t.reduce((o,l)=>o<l?l:o,0),i=n.reduce((o,l)=>o<l?l:o,0);return new Jo(a,r,s,i)}function ck(e,t,n,a=!0){let r=t.map((i,o)=>({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;u<o.length;u++){let p=o[u],d=e[i],c=e[p];l.push(uk(d,c,a))}r=r.filter((u,p)=>l[p]<=n)}return s}function Ja(e,t){return P(()=>{let[n,a,r]=t,s=xn([...e.shape.slice(0,3),1],n,"float32"),i=xn([...e.shape.slice(0,3),1],a,"float32"),o=xn([...e.shape.slice(0,3),1],r,"float32"),l=Je([s,i,o],3);return pe(e,l)})}function dk(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,xn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>ie(c,"float32"));return Je(d,i)})}function eme(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Rd(e){return 1/(1+Math.exp(-e))}function tme(e){return Math.log(e/(1-e))}var Qo=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var nme=.5,ame=.43,rme=.45,sa=class{constructor(t,n,a=new Re(0,0)){let{width:r,height:s}=n;this._imgDims=new wn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Re(r,s)).add(a))}get shift(){return new Re(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Re(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Re(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof vt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/rme),l=Zo(t),u=Math.floor(Math.max(0,l.x-nme*o)),p=Math.floor(Math.max(0,l.y-ame*o));return new Qo(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=pk(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var hk=class extends sa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Zo([t[3],t[4]])]}};var el=class extends sa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Zo)}};var Tp=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Yo(this.distance)})`:""}`}};var Cp=class extends ot{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(ot.assertIsValidBox(n,a),!Za(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var xr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new xr(t.label,n)}};var mk=class extends Cp{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(Cp.assertIsValidLabeledBox(n,a),!Np(n.score)||!Np(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function vr(e){return e.detection instanceof vt}function tl(e,t){return{...e,...{detection:t}}}function fk(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Md(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function rg(e){let t="";if(!e&&Md())try{e=ED("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function gk(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=rg();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function bk(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ln;function sme(){if(!ln)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return ln}function yk(e){ln=e}function xk(){return bk()?yk(fk()):Md()?yk(gk()):null}function ime(e){if(ln||xk(),!ln)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=ln.Canvas,Image:n=ln.Image}=e;ln.Canvas=t,ln.Image=n,ln.createCanvasElement=e.createCanvasElement||(()=>new t),ln.createImageElement=e.createImageElement||(()=>new n),ln.ImageData=e.ImageData||ln.ImageData,ln.Video=e.Video||ln.Video,ln.fetch=e.fetch||ln.fetch,ln.readFile=e.readFile||ln.readFile}var tt={getEnv:sme,setEnv:yk,initialize:xk,createBrowserEnv:fk,createFileSystem:rg,createNodejsEnv:gk,monkeyPatch:ime,isBrowser:bk,isNodejs:Md};xk();function nl(e){return!tt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Hn(e){let{Canvas:t,CanvasRenderingContext2D:n}=tt.getEnv();if(e instanceof n)return e;let a=nl(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var vk=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(vk||{}),_p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},Vr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof Vr?t.text:t,this.anchor=n,this.options=new _p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a<r?r:a,0)+2*n}measureHeight(){let{fontSize:t,padding:n}=this.options;return this.text.length*t+2*n}getUpperLeft(t,n){let{anchorPosition:a}=this.options,r=a==="BOTTOM_RIGHT"||a==="TOP_RIGHT",s=a==="BOTTOM_LEFT"||a==="BOTTOM_RIGHT",i=this.measureWidth(t),o=this.measureHeight(),l=r?this.anchor.x-i:this.anchor.x,u=s?this.anchor.y-o:this.anchor.y;if(n){let{width:p,height:d}=n,c=Math.max(Math.min(l,p-i),0),h=Math.max(Math.min(u,d-o),0);return{x:c,y:h}}return{x:l,y:u}}draw(t){let n=nl(t),a=Hn(n),{backgroundColor:r,fontColor:s,fontSize:i,fontStyle:o,padding:l}=this.options;a.font=`${i}px ${o}`;let u=this.measureWidth(a),p=this.measureHeight();a.fillStyle=r;let d=this.getUpperLeft(a,n);a.fillRect(d.x,d.y,u,p),a.fillStyle=s,this.text.forEach((c,h)=>{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var sg=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new _p({...i,...s})}},Pd=class{constructor(t,n={}){this.box=new ot(t),this.options=new sg(n)}draw(t){let n=Hn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new Vr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function ome(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof vt?a.score:vr(a)?a.detection.score:void 0,s=a instanceof vt?a.box:vr(a)?a.detection.box:new ot(a),i=r?`${Yo(r)}`:void 0;new Pd(s,{label:i}).draw(e)})}function Od(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function wk(e){return new Promise((t,n)=>{(e instanceof tt.getEnv().Canvas||Od(e))&&t(null);function a(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){s.currentTarget&&(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function kk(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=tt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function al(e){let{Image:t,Video:n}=tt.getEnv();return e instanceof t?new wn(e.naturalWidth,e.naturalHeight):e instanceof n?new wn(e.videoWidth,e.videoHeight):new wn(e.width,e.height)}function rl({width:e,height:t}){let{createCanvasElement:n}=tt.getEnv(),a=n();return a.width=e,a.height=t,a}function Ld(e,t){let{ImageData:n}=tt.getEnv();if(!(e instanceof n)&&!Od(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||al(e),s=rl({width:a,height:r});return e instanceof n?Hn(s).putImageData(e,0,0):Hn(s).drawImage(e,0,0,a,r),s}async function Ik(e,t){let n=t||tt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(wa(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await Bo.toPixels(i,n),i.dispose(),n}function ig(e){let{Image:t,Canvas:n,Video:a}=tt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Sk(e,t,n=!1){let{Image:a,Canvas:r}=tt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return rl({width:1,height:1});let s=al(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=rl({width:t,height:t}),p=e instanceof r?e:Ld(e),d=Math.abs(o-l)/2,c=n&&o<l?d:0,h=n&&l<o?d:0;return p.width>0&&p.height>0&&Hn(u).drawImage(p,c,h,o,l),u}var wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Wr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(wa(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof tt.getEnv().Canvas?a:Ld(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return yr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return ok({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=yr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Te){let o=wa(i)?i:Qt(i);return o=dk(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Fa.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof tt.getEnv().Canvas)return Bo.fromPixels(Sk(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return Dt(a.map(s=>ie(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function wt(e){if(e instanceof wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(nl);return a.forEach((r,s)=>{if(!ig(r)&&!Wr(r)&&!wa(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(wa(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>ig(r)&&wk(r))),new wr(a,Array.isArray(e))}async function Ep(e,t){let{Canvas:n}=tt.getEnv(),a=e;if(!(e instanceof n)){let i=await wt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Ik(o)}let r=Hn(a);return t.map(i=>i instanceof vt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=rl({width:l,height:u});return l>0&&u>0&&Hn(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function Ap(e,t){if(!Wr(e)&&!wa(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(wa(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(wa(e)?1:0);return t.map(o=>o instanceof vt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>zo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function Ur(e,t){let{fetch:n}=tt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function lme(e){let t=await Ur(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return kk(n)}async function Nk(e){return(await Ur(e)).json()}async function ume(e){return new Float32Array(await(await Ur(e)).arrayBuffer())}function o$(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=tt.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function pme(e){let t=await Ur(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return o$(n)}function og(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Tk(e,t){let{manifestUri:n,modelBaseUri:a}=og(e,t),r=await Nk(n);return qt.loadWeights(r,a)}function cme(e,t,n=!1){let{width:a,height:r}=n?al(t):t;return e.width=a,e.height=r,{width:a,height:r}}var un=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof cs)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof cs))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=bn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Tk(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=tt.getEnv(),{manifestUri:a,modelBaseUri:r}=og(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=qt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Te))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function qn(e,t,n){return P(()=>{let a=As(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=X(a,t.bias),a})}function lg(e,t,n=!1){return P(()=>{let a=Ke(n?X(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):qn(e,t.conv0,[2,2])),r=qn(a,t.conv1,[1,1]),s=Ke(X(a,r)),i=qn(s,t.conv2,[1,1]);return Ke(X(a,X(r,i)))})}function zd(e,t,n=!1,a=!0){return P(()=>{let r=Ke(n?X(Rt(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):qn(e,t.conv0,a?[2,2]:[1,1])),s=qn(r,t.conv1,[1,1]),i=Ke(X(r,s)),o=qn(i,t.conv2,[1,1]),l=Ke(X(r,X(s,o))),u=qn(l,t.conv3,[1,1]);return Ke(X(r,X(s,X(o,u))))})}function sl(e,t,n="same",a=!1){return P(()=>{let r=X(Rt(e,t.filters,[1,1],n),t.bias);return a?Ke(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Fp(e,t){return(n,a,r,s)=>{let i=Ma(e(n*a*r*r),[r,r,n,a]),o=je(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function ug(e,t){return(n,a,r)=>{let s=$a(e(n*a),[n,a]),i=je(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Wd=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function $p(e,t){return(n,a,r)=>{let s=Ma(e(9*n),[3,3,n,1]),i=Ma(e(n*a),[1,1,n,a]),o=je(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Wd(s,i,o)}}function Dp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Wd(n,a,r)}}function ia(e,t){return(n,a,r)=>{let s=e[n];if(!Xo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function Fn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function pg(e,t){let n=Fp(e,t),a=$p(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function l$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock4Params:r}=pg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function cg(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function dg(e,t){let n=ia(e,t),a=cg(n),r=Dp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function u$(e){let t=[],{extractDenseBlock4Params:n}=dg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var Rp=class extends un{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=zd(s,n.dense0,!0);return i=zd(i,n.dense1),i=zd(i,n.dense2),i=zd(i,n.dense3),i=ya(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await wt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return u$(t)}extractParams(t){return l$(t)}};function Bd(e,t){return P(()=>X($e(e,t.weights),t.bias))}function p$(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=Fn(e),o=ug(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function c$(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function hg(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Mp=class extends un{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n;return Bd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return p$(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=hg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),c$(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var Ck=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Gr=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Ck.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Ck.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Vd=class extends Mp{constructor(t=new Rp){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Xa(this.runNet(t)))}async forward(t){return this.forwardInput(await wt(t))}async predictExpressions(t){let n=await wt(t),a=await this.forwardInput(n),r=await Promise.all(ct(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Gr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function _k(e){return e.expressions instanceof Gr}function mg(e,t){return{...e,...{expressions:t}}}function dme(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Gr?s:_k(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=vr(s)?s.detection.box.bottomLeft:a||new Re(0,0);new Vr(l.map(d=>`${d.expression} (${Yo(d.probability)})`),u).draw(e)})}function il(e){return vr(e)&&e.landmarks instanceof sa&&e.unshiftedLandmarks instanceof sa&&e.alignedRect instanceof vt}function hme(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l._x-u._x)**2+(l._y-u._y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l._x-u._x),c=Math.floor(u._x-p._x);return d-c},s=(l,u)=>{let p=Math.hypot(u._x-l._x,u._y-l._y),d=u._y-l._y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u._x-l._x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c={_x:(l._x+p._x)/2,_y:(l._y+p._y)/2},h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c._y-u._y<0?-1:1;return f*g};if(!e||!e._positions||e._positions.length!==68)return a;let o=e._positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function Pp(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new vt(e.detection.score,r.rescale(s.reverse()),s),o=hme(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var fg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},gg=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new fg(n)}draw(t){let n=Hn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof el&&(n.strokeStyle=i,n.lineWidth=s,zr(n,this.faceLandmarks.getJawOutline()),zr(n,this.faceLandmarks.getLeftEyeBrow()),zr(n,this.faceLandmarks.getRightEyeBrow()),zr(n,this.faceLandmarks.getNose()),zr(n,this.faceLandmarks.getLeftEye(),!0),zr(n,this.faceLandmarks.getRightEye(),!0),zr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function mme(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof sa?a:il(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks<WithFaceDetection<{}>> or array thereof");new gg(r).draw(e)})}var d$="1.7.10";function bme(e,t){let n=Fp(e,t),a=$p(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function h$(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=Fn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=bme(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};yr(t,0,1).forEach(b=>{h[`main_block_${b}`]=l(128,`middle_flow/main_block_${b}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function yme(e,t){let n=ia(e,t),a=cg(n),r=Dp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function m$(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=yme(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};yr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function f$(e,t,n){return X(Rt(e,t.filters,n,"same"),t.bias)}function Ak(e,t,n=!0){let a=n?Ke(e):e;return a=qn(a,t.separable_conv0,[1,1]),a=qn(Ke(a),t.separable_conv1,[1,1]),a=Mt(a,[3,3],[2,2],"same"),a=X(a,f$(e,t.expansion_conv,[2,2])),a}function xme(e,t){let n=qn(Ke(e),t.separable_conv0,[1,1]);return n=qn(Ke(n),t.separable_conv1,[1,1]),n=qn(Ke(n),t.separable_conv2,[1,1]),n=X(n,e),n}var bg=class extends un{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=ie(n.toBatchTensor(112,!0),"float32"),i=Ja(r,[122.782,117.001,104.298]).div(255),o=Ke(f$(i,a.entry_flow.conv_in,[2,2]));return o=Ak(o,a.entry_flow.reduction_block_0,!1),o=Ak(o,a.entry_flow.reduction_block_1),yr(this._numMainBlocks,0,1).forEach(l=>{o=xme(o,a.middle_flow[`main_block_${l}`])}),o=Ak(o,a.exit_flow.reduction_block),o=Ke(qn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await wt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return m$(n,this._numMainBlocks)}extractParams(n){return h$(n,this._numMainBlocks)}};function g$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),r=ug(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function b$(e){let t=[],n=ia(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var yg=(n=>(n.FEMALE="female",n.MALE="male",n))(yg||{});var Ud=class extends un{constructor(n=new bg(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof wr?this.faceFeatureExtractor.forwardInput(n):n,s=ya(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=Bd(s,a.fc.age).as1D(),o=Bd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Xa(r)}})}async forward(n){return this.forwardInput(await wt(n))}async predictAgeAndGender(n){let a=await wt(n),r=await this.forwardInput(a),s=ct(r.age),i=ct(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return g$(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=hg(n);return this.faceFeatureExtractor.loadFromWeightMap(a),b$(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var Op=class extends Mp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>Dt([xn([68],d,"float32"),xn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>c<h),u=d=>o(d,(c,h)=>h<c);return t.mul(xn([s,136],n,"float32")).sub(Dt(Array.from(Array(s),(d,c)=>i(l(c),u(c))))).div(Dt(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await wt(t))}async detectLandmarks(t){let n=await wt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>ng(d)),u=o.filter((p,d)=>!ng(d));return new el(Array(68).fill(0).map((p,d)=>new Re(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var ol=class extends Op{constructor(t=new Rp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function y$(e){let t=[],{extractDenseBlock3Params:n}=dg(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function x$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractDenseBlock3Params:r}=pg(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var xg=class extends un{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(112,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=lg(s,n.dense0,!0);return i=lg(i,n.dense1),i=lg(i,n.dense2),i=ya(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await wt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return y$(t)}extractParams(t){return x$(t)}};var Gd=class extends Op{constructor(t=new xg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Fk=class extends ol{};function v$(e,t){return X(z(e,t.weights),t.biases)}function $k(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Rt(e,s,n,r);return o=X(o,i),o=v$(o,t.scale),a?Ke(o):o}function w$(e,t){return $k(e,t,[1,1],!0)}function Dk(e,t){return $k(e,t,[1,1],!1)}function vg(e,t){return $k(e,t,[2,2],!0,"valid")}function vme(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(ik(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>De(Ma(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=je(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=je(e(o)),p=je(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function k$(e){let{extractWeights:t,getRemainingWeights:n}=Fn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=vme(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),b=s(589824,256,3,"conv256_down",!0),y=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>De($a(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:b,conv256_1:y,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function wme(e,t){let n=ia(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function I$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=wme(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),b=a("conv256_2"),y=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!sk(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:b,conv256_down_out:y,fc:x};return An(e,t),{params:w,paramMappings:t}}function Qa(e,t){let n=w$(e,t.conv1);return n=Dk(n,t.conv2),n=X(n,e),n=Ke(n),n}function Hd(e,t){let n=vg(e,t.conv1);n=Dk(n,t.conv2);let a=ya(e,2,2,"valid"),r=Nt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=Nt(o);n=Je([n,l],1);let u=[...n.shape];u[2]=1;let p=Nt(u);n=Je([n,p],2)}return a=s?Je([a,r],3):a,n=X(a,n),n=Ke(n),n}var ll=class extends un{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(150,!0),"float32"),s=Ja(a,[122.782,117.001,104.298]).div(255),i=vg(s,n.conv32_down);i=Mt(i,3,2,"valid"),i=Qa(i,n.conv32_1),i=Qa(i,n.conv32_2),i=Qa(i,n.conv32_3),i=Hd(i,n.conv64_down),i=Qa(i,n.conv64_1),i=Qa(i,n.conv64_2),i=Qa(i,n.conv64_3),i=Hd(i,n.conv128_down),i=Qa(i,n.conv128_1),i=Qa(i,n.conv128_2),i=Hd(i,n.conv256_down),i=Qa(i,n.conv256_1),i=Qa(i,n.conv256_2),i=Hd(i,n.conv256_down_out);let o=i.mean([1,2]);return $e(o,n.fc)})}async forward(t){return this.forwardInput(await wt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await wt(t),a=P(()=>ct(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return I$(t)}extractParams(t){return k$(t)}};function kme(e){let t=new ll;return t.extractWeights(e),t}function wg(e,t){return{...e,...{descriptor:t}}}function Ime(e){return typeof e.age=="number"}function kg(e,t){return{...e,...{age:t}}}function Sme(e){return(e.gender==="male"||e.gender==="female")&&Np(e.genderProbability)}function Ig(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Nme(e,t){function n(l,u){let p=Ma(e(9*l),[3,3,l,1]),d=je(e(l)),c=je(e(l)),h=je(e(l)),m=je(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Ma(e(l*u*p*p),[p,p,l,u]),m=je(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),b=s(512,512,"mobilenetv1/conv_9"),y=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:b,conv_10:y,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),y=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),E=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),D=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:y,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:E,class_predictor:F},box_predictor_5:{box_encoding_predictor:D,class_predictor:$}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function S$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=Fn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Nme(n,t),i=r(),o=s(),u={extra_dim:gd(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function Tme(e,t){let n=ia(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),y=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:y},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function N$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Tme(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Wr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function La(e,t,n){return P(()=>{let a=Rt(e,t.filters,n,"same");return a=X(a,t.batch_norm_offset),nn(a,0,6)})}var Cme=.0010000000474974513;function _me(e,t,n){return P(()=>{let a=_s(e,t.filters,n,"same");return a=Cs(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Cme),nn(a,0,6)})}function Eme(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function T$(e,t){return P(()=>{let n,a=La(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Eme(o);a=_me(a,s.depthwise_conv,l),a=La(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Ame(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),b=Math.min(o,d),y=Math.max(g-m,0)*Math.max(b-f,0);return y/(c+h-y)}function C$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Ame(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Fme(e){let t=ct(De(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[X(t[0],he(n[0],2)),X(t[1],he(n[1],2))];return{sizes:n,centers:a}}function $me(e,t){let{sizes:n,centers:a}=Fme(e),r=ct(De(t,[1,0])),s=he(z(yn(he(r[2],5)),n[0]),2),i=X(z(he(r[0],10),n[0]),a[0]),o=he(z(yn(he(r[3],5)),n[1]),2),l=X(z(he(r[1],10),n[1]),a[1]);return De(Dt([pe(i,s),pe(l,o),X(i,s),X(l,o)]),[1,0])}function _$(e,t,n){return P(()=>{let a=e.shape[0],r=$me(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=ma(Ve(t,[0,0,1],[-1,-1,-1])),i=Ve(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ct(r),l=ct(i);return{boxes:o,scores:l}})}function ul(e,t){return P(()=>{let n=e.shape[0],a=W(sl(e,t.box_encoding_predictor),[n,-1,1,4]),r=W(sl(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function E$(e,t,n){return P(()=>{let a=La(e,n.conv_0,[1,1]),r=La(a,n.conv_1,[2,2]),s=La(r,n.conv_2,[1,1]),i=La(s,n.conv_3,[2,2]),o=La(i,n.conv_4,[1,1]),l=La(o,n.conv_5,[2,2]),u=La(l,n.conv_6,[1,1]),p=La(u,n.conv_7,[2,2]),d=ul(t,n.box_predictor_0),c=ul(e,n.box_predictor_1),h=ul(r,n.box_predictor_2),m=ul(i,n.box_predictor_3),f=ul(l,n.box_predictor_4),g=ul(p,n.box_predictor_5),b=Je([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),y=Je([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:y}})}var ka=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ps=class extends un{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=ie(t.toBatchTensor(512,!1),"float32"),r=pe(he(a,127.5),1),s=T$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=E$(s.out,s.conv11,n.prediction_layer);return _$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await wt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new ka(n),s=await wt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x<i.length;x++)i[x].dispose(),o[x].dispose();let p=Array.from(u.dataSync()),c=C$(l,p,a,.5,r),h=s.getReshapedInputDimensions(0),m=s.inputSize,f=m/h.width,g=m/h.height,b=l.arraySync(),y=c.map(x=>{let[w,I]=[Math.max(0,b[x][0]),Math.min(1,b[x][2])].map(E=>E*g),[T,C]=[Math.max(0,b[x][1]),Math.min(1,b[x][3])].map(E=>E*f);return new vt(p[x],new Qo(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),y}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return N$(t)}extractParams(t){return S$(t)}};function A$(e){let t=new Ps;return t.extractWeights(e),t}function Dme(e){return A$(e)}var Rk=class extends Ps{};var F$=.4,$$=[new Re(.738768,.874946),new Re(2.42204,2.65704),new Re(4.30971,7.04493),new Re(10.246,4.59428),new Re(12.6868,11.8741)],D$=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],R$=[117.001,114.697,97.404],M$="tiny_yolov2_model",P$="tiny_yolov2_separable_conv_model";var Sg=e=>typeof e=="number";function Mk(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Sg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Sg(t.x)&&Sg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Sg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Lp(e){return P(()=>{let t=z(e,ve(.10000000149011612));return X(Ke(pe(e,t)),t)})}function Hr(e,t){return P(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=X(n,t.conv.bias),Lp(n)})}function qr(e,t){return P(()=>{let n=xa(e,[[0,0],[1,1],[1,1],[0,0]]);return n=As(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=X(n,t.bias),Lp(n)})}function Rme(e,t){let n=Fp(e,t);function a(i,o){let l=je(e(i)),u=je(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=$p(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function O$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=Fn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=Rme(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,b,y,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),E=u(f,g,"conv4"),F=u(g,b,"conv5"),D=y?u(b,y,"conv6"):void 0,$=x?u(y,x,"conv7"):void 0,S=o(x||y||b,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}else{let[d,c,h,m,f,g,b,y,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),E=l(f,g,"conv4"),F=l(g,b,"conv5"),D=l(b,y,"conv6"),$=l(y,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:E,conv5:F,conv6:D,conv7:$,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function Mme(e,t){let n=ia(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=Dp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function L$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Mme(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var er=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Pk=class extends un{constructor(n){super("TinyYolov2");Mk(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Hr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=Hr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=Hr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=Hr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=Hr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=Hr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=Hr(r,a.conv6),r=Hr(r,a.conv7),sl(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?Lp(sl(n,a.conv0,"valid",!1)):qr(n,a.conv0);return r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv1),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv2),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv3),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv4),r=Mt(r,[2,2],[2,2],"same"),r=qr(r,a.conv5),r=Mt(r,[2,2],[1,1],"same"),r=a.conv6?qr(r,a.conv6):r,r=a.conv7?qr(r,a.conv7):r,sl(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=ie(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?Ja(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await wt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new er(a),i=await wt(n),o=await this.forwardInput(i,r),l=P(()=>ct(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(b=>b.box),c=p.map(b=>b.score),h=p.map(b=>b.classScore),m=p.map(b=>this.config.classes[b.label]);return ck(d.map(b=>b.rescale(r)),c,this.config.iouThreshold,!0).map(b=>new Br(c[b],h[b],m[b],d[b],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return L$(n,this.config)}extractParams(n){let a=this.config.filterSizes||Pk.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return O$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let y=n.reshape([p,p,d,this.boxEncodingSize]),x=y.slice([0,0,0,0],[p,p,d,4]),w=y.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Xa(y.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):ve(0);return[x,w,I]}),f=[],g=await h.array(),b=await c.array();for(let y=0;y<p;y++)for(let x=0;x<p;x++)for(let w=0;w<d;w++){let I=Rd(g[y][x][w][0]);if(!r||I>r){let T=(x+Rd(b[y][x][w][0]))/p*l,C=(y+Rd(b[y][x][w][1]))/p*u,E=Math.exp(b[y][x][w][2])*this.config.anchors[w].x/p*l,F=Math.exp(b[y][x][w][3])*this.config.anchors[w].y/p*u,D=T-E/2,$=C-F/2,S={row:y,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Jo(D,$,D+E,$+F),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},pl=Pk;pl.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var cl=class extends pl{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:F$,classes:["face"],...t?{anchors:D$,meanRgb:R$}:{anchors:$$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new vt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?P$:M$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Pme(e,t=!0){let n=new cl(t);return n.extractWeights(e),n}var qd=class extends er{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Ia=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function dl(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>il(l)?r(l):l.detection),i=a||(t instanceof Te?await Ap(t,s):await Ep(t,s)),o=await n(i);return i.forEach(l=>l instanceof Te&&l.dispose()),o}async function zp(e,t,n,a,r){return dl([e],t,async s=>n(s[0]),a,r)}var z$=.4,W$=[new Re(1.603231,2.094468),new Re(6.041143,7.080126),new Re(2.882459,3.518061),new Re(4.266906,5.178857),new Re(9.041765,10.66308)],B$=[117.001,114.697,97.404];var hl=class extends pl{constructor(){let t={withSeparableConvs:!0,iouThreshold:z$,classes:["face"],anchors:W$,meanRgb:B$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new vt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new Ps,tinyFaceDetector:new hl,tinyYolov2:new cl,faceLandmark68Net:new ol,faceLandmark68TinyNet:new Gd,faceRecognitionNet:new ll,faceExpressionNet:new Vd,ageGenderNet:new Ud},V$=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),Ome=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),Lme=(e,t)=>nt.tinyYolov2.locateFaces(e,t),U$=e=>nt.faceLandmark68Net.detectLandmarks(e),zme=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),Wme=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),Bme=e=>nt.faceExpressionNet.predictExpressions(e),Vme=e=>nt.ageGenderNet.predictAgeAndGender(e),G$=e=>nt.ssdMobilenetv1.load(e),Ume=e=>nt.tinyFaceDetector.load(e),Gme=e=>nt.tinyYolov2.load(e),Hme=e=>nt.faceLandmark68Net.load(e),qme=e=>nt.faceLandmark68TinyNet.load(e),jme=e=>nt.faceRecognitionNet.load(e),Kme=e=>nt.faceExpressionNet.load(e),Xme=e=>nt.ageGenderNet.load(e),Yme=G$,Zme=V$,Jme=U$;var Ng=class extends Ia{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},ml=class extends Ng{async run(){let t=await this.parentTask,n=await dl(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>mg(a,n[r]))}withAgeAndGender(){return new gl(this,this.input)}},fl=class extends Ng{async run(){let t=await this.parentTask;if(!t)return;let n=await zp(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return mg(t,n)}withAgeAndGender(){return new bl(this,this.input)}},Os=class extends ml{withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new jr(this,this.input)}},Ls=class extends fl{withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Kr(this,this.input)}};var Tg=class extends Ia{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},gl=class extends Tg{async run(){let t=await this.parentTask,n=await dl(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return kg(Ig(a,i,o),s)})}withFaceExpressions(){return new ml(this,this.input)}},bl=class extends Tg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zp(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return kg(Ig(t,a,r),n)}withFaceExpressions(){return new fl(this,this.input)}},zs=class extends gl{withFaceExpressions(){return new Os(this,this.input)}withFaceDescriptors(){return new jr(this,this.input)}},Ws=class extends bl{withFaceExpressions(){return new Ls(this,this.input)}withFaceDescriptor(){return new Kr(this,this.input)}};var jd=class extends Ia{constructor(n,a){super();this.parentTask=n;this.input=a}},jr=class extends jd{async run(){let t=await this.parentTask;return(await dl(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>wg(t[r],a))}withFaceExpressions(){return new Os(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}},Kr=class extends jd{async run(){let t=await this.parentTask;if(!t)return;let n=await zp(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return wg(t,n)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}};var Kd=class extends Ia{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},Xd=class extends Kd{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Te?await Ap(this.input,n):await Ep(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Te&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>Pp(i,r[o]))}withFaceExpressions(){return new Os(this,this.input)}withAgeAndGender(){return new zs(this,this.input)}withFaceDescriptors(){return new jr(this,this.input)}},Yd=class extends Kd{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Te?await Ap(this.input,[n]):await Ep(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Te&&s.dispose()),Pp(t,r)}withFaceExpressions(){return new Ls(this,this.input)}withAgeAndGender(){return new Ws(this,this.input)}withFaceDescriptor(){return new Kr(this,this.input)}};var Zd=class extends Ia{constructor(n,a=new ka){super();this.input=n;this.options=a}},Wp=class extends Zd{async run(){let{input:t,options:n}=this,a;if(n instanceof qd)a=nt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof ka)a=nt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof er)a=nt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>tl({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new Xd(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ml(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new gl(this.runAndExtendWithFaceDetections(),this.input)}},Jd=class extends Zd{async run(){let t=await new Wp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?tl({},n):void 0)})}withFaceLandmarks(t=!1){return new Yd(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new fl(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new bl(this.runAndExtendWithFaceDetection(),this.input)}};function Qme(e,t=new ka){return new Jd(e,t)}function Cg(e,t=new ka){return new Wp(e,t)}async function H$(e,t){return Cg(e,new ka(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function efe(e,t={}){return Cg(e,new er(t)).withFaceLandmarks().withFaceDescriptors()}var tfe=H$;function Ok(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var Qd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof xr)return i;if(i instanceof Float32Array)return new xr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new xr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Ok(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Tp(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distance<a.distance?n:a)}findBestMatch(t){let n=this.matchDescriptor(t);return n.distance<this._distanceThreshold?n:new Tp("unknown",n.distance)}toJSON(){return{distanceThreshold:this._distanceThreshold,labeledDescriptors:this._labeledDescriptors.map(t=>t.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>xr.fromJSON(a));return new Qd(n,t.distanceThreshold)}};function nfe(e){let t=new hl;return t.extractWeights(e),t}function q$(e,t){let{width:n,height:a}=new wn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>q$(r,{width:n,height:a}));if(il(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Pp(tl(e,r),s)}return vr(e)?tl(e,e.detection.forSize(n,a)):e instanceof sa||e instanceof vt?e.forSize(n,a):e}var afe=d$;return FD(rfe);})();